WO2006085452A1 - 対物レンズ、光ピックアップ装置及び光情報記録再生装置 - Google Patents

対物レンズ、光ピックアップ装置及び光情報記録再生装置 Download PDF

Info

Publication number
WO2006085452A1
WO2006085452A1 PCT/JP2006/301542 JP2006301542W WO2006085452A1 WO 2006085452 A1 WO2006085452 A1 WO 2006085452A1 JP 2006301542 W JP2006301542 W JP 2006301542W WO 2006085452 A1 WO2006085452 A1 WO 2006085452A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
wavelength
light flux
pickup device
Prior art date
Application number
PCT/JP2006/301542
Other languages
English (en)
French (fr)
Inventor
Tohru Kimura
Eiji Nomura
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2006519651A priority Critical patent/JP4404092B2/ja
Priority to CN2006800000433A priority patent/CN1942946B/zh
Priority to KR1020117028779A priority patent/KR101409691B1/ko
Priority to KR1020117028780A priority patent/KR101409689B1/ko
Priority to EP06712685A priority patent/EP1855274A4/en
Publication of WO2006085452A1 publication Critical patent/WO2006085452A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an objective lens, an optical pickup device, and an optical information recording / reproducing device, and more particularly to appropriately recording and recording information on different optical information recording media using light sources having different wavelengths.
  • the present invention relates to an optical pickup apparatus and an optical information recording / reproducing apparatus capable of performing Z or reproduction, and an objective lens used therefor.
  • HD DVD High Definition DVD: hereinafter referred to as HD
  • BD coma aberration caused by the tilt (skew) of the optical disk increases, so the protective layer is designed thinner than in DVD (0.1 mm compared to 0.6 mm for DVD). The amount of coma due to skew is reduced.
  • high density optical disc such an optical disc is referred to as a “high density optical disc”.
  • an optical disc player Z recorder As a product is sufficient, just because information can be appropriately recorded and reproduced on a high-density optical disc.
  • DVDs with a wide variety of information are currently being sold, it is not only possible to record information on a high-density optical disc.
  • an optical disc player Z recorder for high-density optical discs it is possible to properly record and reproduce information Z. This leads to an increase in the value of the product.
  • the optical pickup device installed in the optical disk player Z recorder for high-density optical discs records information appropriately while maintaining compatibility with both high-density optical discs and DVDs. It is desirable to have a performance that can be achieved.
  • an optical system for high-density optical discs and an optical system for DVDs can be used even with compatible optical pickup devices! It is preferable to reduce the number of optical parts constituting the optical pickup device as much as possible. It is most advantageous for simplifying the configuration of the optical pickup device and reducing the cost to make the objective lens arranged opposite to the optical disk in common and further to make this objective lens a single lens configuration.
  • a diffraction structure having the wavelength dependence of spherical aberration is formed on the surface as an objective lens common to a plurality of types of optical disks having different wavelengths of light beams used for recording and reproducing information.
  • An objective lens that corrects the spherical aberration due to the difference in the recording Z reproduction wavelength and the thickness of the protective layer of the optical disk by utilizing the wavelength dependence of the diffractive structure is known.
  • Patent Document 1 discloses an objective lens having a single-lens configuration capable of recording and / or reproducing or recording information in a manner compatible with a high-density optical disc and a DVD.
  • the objective lens disclosed in Patent Document 1 has a diffractive structure that generates second-order folding light for a blue-violet laser beam and first-order diffracted light for a red laser beam for DVD.
  • the spherical aberration due to the difference in the protective layer thickness between the high-density optical disc and the DVD is corrected by the diffractive action of the diffractive structure.
  • this objective lens since this objective lens has a single lens configuration, it can be produced at low cost, but has the following two problems.
  • optical information recording media optical information recording media are also referred to as optical discs
  • used wavelengths are also referred to as recording Z playback wavelengths
  • laser light source selection problem is caused by using a diffraction structure in which the value of “diffraction order X wavelength” is almost the same between wavelengths used for high-density optical discs and DVDs.
  • the diffraction pitch must be reduced. .
  • the wavelength dependence of the spherical aberration of the diffractive structure increases, and the “laser light source selection problem” as described above becomes apparent.
  • Another problem is that a diffractive structure is formed on an optical surface with a large inclination, so that the light flux of the stepped part is transferred and the fine structure such as the ring-shaped corner of the diffractive structure is transferred.
  • the transmittance is reduced due to defects, and sufficient light utilization efficiency cannot be obtained.
  • the number of apertures of the objective lens increases, the inclination of the optical surface increases. Therefore, in a BD using an objective lens with a numerical aperture of 0.85, such a decrease in transmittance becomes more remarkable.
  • Patent Document 1 JP 2004-79146 A
  • the present invention has been made in view of the above problems, and an object of the present invention is to record and / or reproduce information on a plurality of types of optical information recording media using light beams having different wavelengths.
  • Objective lens that can be applied to an optical pickup device that performs spherical aberration, and has a small wavelength dependency of spherical aberration, an optical pickup device that uses this objective lens, and an optical information recording / reproducing device equipped with this optical pickup device Is to provide.
  • an objective lens according to the present invention is an objective lens used in an optical pickup device, and has a first optical path having predetermined characteristics on one surface of a lens having power. It has an overlapping structure in which the difference providing structure and the second optical path difference providing structure are overlapped.
  • FIG. 1 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 2 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 3 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side.
  • FIG. 5 is a cross-sectional view of another example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side.
  • FIG. 6 is a diagram schematically showing a configuration of an optical pickup device of the present embodiment.
  • the objective lens of the first configuration is an objective lens used in an optical pickup device, and has spherical aberration when the wavelength of a light beam incident on one surface of a lens having power is made longer.
  • Superimposition that superimposes the first optical path difference providing structure that changes in the undercorrected direction and the second optical path difference providing structure in which spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam is longer. It has a structure.
  • the objective lens of the second configuration is the objective lens according to the first configuration, wherein the one surface of the lens is formed with a portion where the superimposed structure is formed and a portion where the superimposed structure is not formed And have.
  • the above-described superposed structure is an aspherical surface.
  • An objective lens having a fourth configuration is the objective lens according to any one of the first to third configurations.
  • the one surface of the lens has a central region including an optical axis and a peripheral region surrounding the central region, and the overlapping structure is formed in the central region.
  • An objective lens having a fifth configuration is the objective lens according to any one of the first to fourth configurations, wherein the one surface of the lens is placed on a light source side when mounted on an optical pickup device. This is the surface to be placed.
  • An objective lens having a sixth configuration is the objective lens according to any one of the first to fifth configurations, wherein the one surface of the lens is a convex surface.
  • An objective lens according to a seventh configuration is the objective lens according to any one of the first to sixth configurations, in which the other surface of the lens is an aspherical surface.
  • An objective lens having an eighth configuration is the objective lens according to any one of the first to seventh configurations, wherein the lens is disposed when an optical information recording medium is disposed opposite to an optical pickup device. The lens is arranged closest to the optical information recording medium.
  • An objective lens having a ninth configuration is a single lens configuration including the lens according to any one of the first to eighth configurations.
  • An objective lens having a tenth configuration is the objective lens according to any one of the first to ninth configurations, wherein a first light source that emits a first light flux having a first wavelength ⁇ 1; A first optical information recording medium having a second light source that emits a second light beam having a wavelength ⁇ 2, a condensing optical system including an objective lens, and a photodetector, and having a protective layer having a thickness of tl.
  • the second light having a protective layer with a thickness of t2 (tl ⁇ t 2) is reproduced and Z or recorded using the first light flux of the first wavelength ⁇ 1 emitted from the first light source.
  • An objective lens having an eleventh configuration is the objective lens according to any one of the first to tenth configurations, wherein the first optical path difference providing structure is a diffractive structure.
  • An objective lens of a twelfth configuration is the objective lens according to the eighth configuration, wherein the first optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the second light flux is a diffraction structure having the same order, and the second optical path difference providing structure is provided for the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the thirteenth configuration is the objective lens according to the twelfth configuration, wherein only one integer greater than or equal to 1 of the diffractive structure is formed in one annular zone of the phase structure. ing.
  • the objective lens of the fourteenth configuration is the objective lens according to the twelfth or thirteenth configuration, wherein the same order is 1, and the blazed wavelength ⁇ of the diffractive structure is the following (1) The expression is satisfied.
  • the objective lens having the fifteenth configuration satisfies the following formulas (2) and (3) in the objective lens according to any one of the twelfth to fourteenth configurations.
  • the objective lens of the sixteenth configuration is the objective lens according to the fifteenth configuration, wherein the numerical aperture of the objective lens when reproducing or recording information on the first optical information recording medium is NA1, When the numerical aperture of the objective lens is NA2 when reproducing or recording information on the second optical information recording medium, the superimposing structure is provided in a region corresponding to the numerical aperture NA2, The blazed wavelength ⁇ of the diffractive structure, the numerical aperture ⁇ 1, and the numerical aperture ⁇ 2 satisfy the following equations (4) and (5).
  • the objective lens of the seventeenth configuration is the objective lens according to the fifteenth or sixteenth configuration, wherein the same amount of optical path difference is approximately five times the first wavelength ⁇ 1 for the first light flux. Therefore, the second light flux is approximately three times the second wavelength ⁇ 2.
  • An objective lens according to an eighteenth configuration is the objective lens according to any one of the eleventh to seventeenth configurations, in which the diffractive structure is configured such that a negative direction force also increases in a positive direction as the optical axis force increases.
  • the direction of the laze structure changes at least once.
  • the diffractive structure is a blazed structure in a positive direction.
  • the objective lens of the twentieth configuration is the objective lens according to the tenth configuration, wherein the first optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • a diffraction structure in which the diffraction order having the maximum diffraction efficiency with respect to the incidence of the second light flux is a different order, and the second optical path difference providing structure is applied to the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the twenty-first configuration is the objective lens according to the twentieth configuration, wherein the diffraction order at which the diffraction efficiency is maximum with respect to incidence of the first light flux is 3, and the second light flux The diffraction order at which the diffraction efficiency is maximum for the incidence of is 2.
  • the objective lens of the twenty-second configuration is the objective lens according to the twentieth or twenty-first configuration, wherein the same amount of optical path difference is substantially equal to the first wavelength ⁇ 1 for the first light flux. 5 times, and about 3 times the second wavelength ⁇ 2 for the second light flux.
  • the second optical path difference providing structure is a diffractive structure.
  • the objective lens of the twenty-fourth configuration is the objective lens described in the twenty-third configuration, wherein the second optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • a diffraction structure in which the diffraction order having the maximum diffraction efficiency with respect to the incidence of the second light flux is a different order, and the first optical path difference providing structure is applied to the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the twenty-fifth configuration is the objective lens according to the twenty-fourth configuration, wherein the diffraction order that maximizes the diffraction efficiency with respect to the incidence of the first light flux is 2, and the second light flux The diffraction order with the maximum diffraction efficiency for the incidence of is 1.
  • the objective lens of the twenty-sixth configuration is the objective lens according to the twenty-fourth or twenty-fifth configuration, wherein the same amount of optical path difference is substantially equal to the first wavelength ⁇ 1 for the first light flux. 5 times, and about 3 times the second wavelength ⁇ 2 for the second light flux.
  • An objective lens according to a twenty-seventh aspect is the objective lens according to any one of the first to twenty-sixth aspects, wherein the lens is a glass lens.
  • An objective lens according to a twenty-eighth configuration is the objective lens according to any one of the first to twenty-sixth configurations, in which the resin layer having the superposed structure is bonded to a glass element. It is a configuration.
  • the objective lens of the 29th configuration includes a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2, and an objective lens.
  • An objective lens used in an optical pickup device that reproduces and records or records information by using a second light beam of ( ⁇ 1 ⁇ 2) has a single lens configuration, a central region including an optical axis, and the central lens An optical surface having at least two regions, a peripheral region surrounding the region,
  • the central region includes a diffractive structure having the same diffraction order for the first light flux and the second light flux, and the first light flux and the second light flux.
  • a phase structure that adds the same amount of optical path difference is formed.
  • phase structure here is a general term for a structure having a plurality of steps in the optical axis direction and adding an optical path difference between the steps to the incident light beam.
  • the optical path difference added to the incident light flux by this step may be an integer multiple of the wavelength of the incident light flux or a non-integer multiple of the wavelength of the incident light flux.
  • the “optical path difference providing structure” includes the above-described phase structure and the phase difference providing structure including the diffraction structure.
  • . 1 to 3 are schematic diagrams of longitudinal spherical aberration diagrams of the objective lens.
  • the optical axis crosses the optical axis on the near side of the paraxial image point (left side of the origin in the figure, that is, on the objective lens).
  • “Nearly corrected” is defined as “undercorrected”, and when it intersects the optical axis at a position far from the paraxial image point (right side from the origin in the figure, ie, the side far from the objective lens), “overcorrected”.
  • BD is described as an example of the first optical information recording medium
  • DVD is described as an example of the second optical information recording medium.
  • the pupil coordinate E2 on the vertical axis corresponds to the numerical aperture of DVD
  • E1 corresponds to the numerical aperture of BD.
  • FIG. 1 is a longitudinal spherical aberration diagram when applied.
  • the value of spherical aberration is assumed to be zero regardless of the position from the optical axis.
  • the diffractive structure formed in the central region is a structure for correcting spherical aberration caused by the difference in the protective layer thickness between BD and DVD, so when the incident light flux becomes longer, the spherical aberration is undercorrected.
  • the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam is shortened. Therefore, when the wavelength ⁇ 1 becomes longer by ⁇ ⁇ ( ⁇ ⁇ > 0), as indicated by the dotted line in FIG.
  • the spherical aberration changes in the direction of insufficient correction in the central region, and the wavelength ⁇ 1
  • the spherical aberration changes in the overcorrected direction in the central region, as indicated by the dashed line in FIG.
  • the spherical aberration is small and the spherical aberration is almost constant.
  • FIG. 2 is a longitudinal spherical aberration diagram when only a predetermined phase structure is formed on the optical surface of the objective lens.
  • this phase structure when the wavelength of the incident light beam becomes longer, the spherical aberration changes in the overcorrected direction, and when the wavelength of the incident light beam becomes shorter, the spherical aberration changes in the undercorrected direction. It has a wavelength dependency opposite to that of the folded structure.
  • the spherical aberration curve is made continuous even when the light beam of ⁇ ⁇ -M passes or the light beam of ⁇ 1 + ⁇ ⁇ passes. Therefore, the occurrence of higher order spherical aberration can be reduced.
  • the optical path difference added by the phase structure is changed to a step amount of the phase structure having the same phase difference with respect to each of the design wavelength ( ⁇ 1) of the BD and the design wavelength ( ⁇ 2) of the DVD. Therefore, even when a phase structure is formed, the wavelength dependence of the spherical aberration of the diffractive structure (here, ⁇ ⁇ It is possible to correct the spherical aberration change when the wavelength of the incident light beam is changed in the range of nm.
  • the “same amount of optical path difference” means that the optical path difference added by the phase structure with respect to ⁇ e 2 satisfies the following two expressions.
  • Ll and L2 are the optical path differences at wavelengths ⁇ 1 and 2 which are caused by one step in the phase structure.
  • A represents an arbitrary integer
  • b represents an arbitrary positive integer smaller than a.
  • the step of the diffractive structure is such that the diffraction order that maximizes the diffraction efficiency is the same order for both the first light flux and the second light flux. Since the amount is determined, it is possible to correct spherical aberration at a large pitch (correction of spherical aberration due to the recording Z playback wavelength and the thickness of the protective layer). Therefore, the wavelength dependence of the spherical aberration of the diffractive structure is not too large, and therefore the pitch of the phase structure for correcting it does not become too small. Therefore, it is possible to suppress a decrease in transmittance due to a shape error of the diffractive structure or the phase structure.
  • a diffraction structure or a phase structure having a fine step is formed in the central region having a relatively small inclination, and therefore, the light flux at the step portion is scattered and the fine structure is small. It is possible to suppress a decrease in transmittance due to defective transfer of the structure, and to obtain sufficient light utilization efficiency.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the diffractive structure DS and the phase structure PS are exaggerated for easy understanding. I'm drawing.
  • the central region CR corresponds to a region in which the first light beam and the second light beam that have passed therethrough are used in common for recording or reproduction of the corresponding optical information recording medium, and the peripheral region PR is there. Only the first light beam that has passed through this field corresponds to the area used when recording or reproducing the corresponding optical information recording medium.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the diffractive structure DS and the phase structure PS are exaggerated for easy understanding. I'm drawing.
  • the central region CR corresponds to a region in which the first light beam and the second
  • the diffractive structure DS having a blazed cross section centered on the optical axis X indicated by the solid line is superposed with the phase structure PS, and is thus locally displaced in the axial direction.
  • the diffraction structure DS since the diffraction structure DS only has a positive blazed structure, if the step in the optical axis direction in the phase structure PS and its extension line are connected to the line passing through the apex of the blaze, An envelope (dotted line shown in Fig. 4) indicating the shape of the phase structure PS is drawn.
  • a diffractive structure DS a blazed structure with a negative orientation may be mixed.
  • the objective lens according to the thirtieth configuration is the objective lens according to the twenty-ninth configuration, wherein the diffraction structure causes the spherical aberration to change in the direction of insufficient correction when the wavelength of the incident light beam becomes long.
  • the phase structure has the wavelength dependence of spherical aberration such that the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam becomes longer.
  • the objective lens of the thirty-first configuration is the objective lens according to the twenty-ninth or thirty-third configuration, wherein only one integer greater than or equal to one of the annular zones of the diffractive structure is included in one annular zone of the phase structure. It is formed. More specifically, in FIG. 4, a state where an integer number of blazes or the like of the diffractive structure DS is exactly one or more within one step of the envelope indicating the shape of the phase structure PS. This facilitates mold processing and creates diffractive structures and phase structures with high accuracy. Can be made.
  • the objective lens of the thirty-second configuration is the objective lens according to any one of the twenty-ninth to thirty-first configurations, wherein the same order is 1, and a blazed wave wavelength ⁇ B of the diffractive structure is as follows: Therefore, the diffraction efficiency of the first light beam having the first wavelength ⁇ 1 and the second light beam having the second wavelength ⁇ 2 that passes through the diffraction structure can be balanced.
  • the objective lens of the thirty-third configuration is the objective lens according to any one of the twenty-ninth to thirty-first configurations.
  • information can be recorded and recorded or reproduced in a manner compatible with, for example, BD or HD and DVD.
  • the objective lens of the present embodiment is particularly effective when the wavelength used satisfies the equations (2) and (3), and the effect can be maximized.
  • the objective lens of the thirty-fourth configuration is the objective lens according to the thirty-third configuration, wherein the numerical aperture of the objective lens when reproducing or recording information on the first optical information recording medium is set.
  • NA1 is set and NA2 is the numerical aperture of the objective lens when information is reproduced or recorded on the second optical information recording medium
  • the central area is an area corresponding to the numerical aperture NA2.
  • the blazed wavelength ⁇ ⁇ , the numerical aperture ⁇ 1, and the numerical aperture ⁇ 2 of the diffractive structure satisfy the following expressions (4) and (5).
  • the blazed wavelength ⁇ ⁇ of the diffractive structure it is preferable to distribute the diffraction efficiency to each light beam by setting the blazed wavelength ⁇ ⁇ of the diffractive structure to an intermediate wavelength between the first wavelength ⁇ 1 and the second wavelength ⁇ 2. Since the wavelength difference is large at the second wavelength ⁇ 2, there is a possibility that high diffraction efficiency cannot be secured for any wavelength.
  • the numerical aperture ⁇ 2 of the objective lens is sufficiently smaller than the numerical aperture NA1, that is, when the numerical aperture NA1 and the numerical aperture ⁇ 2 satisfy (5), the effective diameter of the first wavelength ⁇ 1 Occupied
  • the diffraction efficiency of the second wavelength ⁇ 2 is made closer to the second wavelength ⁇ 2 (ie, the blazed wavelength ⁇ (is (4 Even when () is satisfied)
  • the blazed wavelength ⁇ ⁇ ⁇ is larger than the lower limit of the equation (4)! / And the diffraction efficiency of the second wavelength ⁇ 2 can be secured sufficiently high, the recording / reproduction characteristics on the second optical information recording medium can be secured. Can be improved.
  • the blazed wavelength ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is smaller than the upper limit of Equation (4), the effective inner area weighted average of the diffraction efficiency of the first wavelength ⁇ ⁇ ⁇ ⁇ can be made sufficiently high. Recording on the medium ⁇ It becomes possible to improve the reproduction characteristics.
  • the objective lens of the thirty-fifth configuration is the objective lens according to either the thirty-third or thirty-fourth configuration, wherein the same amount of optical path difference is the first wavelength with respect to the first light flux. 5 times ⁇ 1 and 3 times the second wavelength 2 for the second light flux. As a result, the same amount of optical path difference can be added to the first wavelength ⁇ 1 and the second wavelength ⁇ 2 that satisfy the equations (2) and (3).
  • the term “5 times” or “3 times” here refers to only an integer multiple in a strict sense, as long as the optical design viewpoint is substantially 5 times or substantially 3 times. Of course it is not intended.
  • the term “almost 5 times” or “almost 3 times” in this specification is the same as that. “Almost 5 times” is 4.8 times to 5.2 times, and “almost 3 times” is 2. 8 times to 3.2 times.
  • the peripheral region is an aspherical surface on which a fine step structure is not formed. It is possible to increase the transmittance of the peripheral region that increases. Furthermore, only in the central region, the second optical flux passing through the peripheral region is corrected by correcting spherical aberration due to differences in the recording wavelength and the protective layer thickness of the first optical information recording medium and the second optical information recording medium. Therefore, the second light flux that has passed through the peripheral region becomes a flare component that does not contribute to spot formation on the information recording surface of the second optical information recording medium. This makes it possible to automatically perform aperture restriction corresponding to the numerical aperture of the second optical information recording medium.
  • V ⁇ ⁇ “fine step structure” means diffraction structure or phase structure.
  • the objective lens of the thirty-seventh configuration is the objective lens according to any one of the twenty-ninth to thirty-sixth configurations.
  • the optical surface on which the diffractive structure and the phase structure are formed is an optical surface located on the light source side in a state of being mounted on the optical pickup device, so that when a parallel light beam is incident on the objective lens,
  • the divergence angle or the convergence angle is relatively small, so that a decrease in transmittance due to light vignetting can be suppressed.
  • the objective lens of the thirty-eighth configuration is the objective lens according to any one of the twenty-ninth to thirty-seventh configurations, wherein the diffractive structure moves from a negative direction to a positive direction as the optical axis force also increases.
  • the direction of the blaze structure changes at least once.
  • a blazed structure in which the optical path length decreases as the distance from the optical axis decreases is referred to as a positive direction
  • a blazed structure in which the optical path length increases as the distance from the optical axis increases is a negative direction.
  • FIG. 5 is a cross-sectional view of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the surface shape is exaggerated for easy understanding.
  • the central region CR includes a first region R1 including the optical axis X, a second region R2 around the first region R1, and a third region R3 in the periphery and in contact with the peripheral region PR. It consists of and.
  • the first region R1 since the blazed structure in the negative direction and the phase structure are superimposed, the step in the optical axis direction in the phase structure and its extension line and the line passing through the bottom of the blaze are connected.
  • the blazed structure and the phase structure in the positive direction are superimposed, which corresponds to a step in the phase structure.
  • Positional force Connecting the line extending in the direction of the optical axis and the line passing through the apex of the blaze forms an envelope (dotted line shown in Fig. 5) indicating the shape of the phase structure PS.
  • the second region R2 is a transition region necessary for switching between the negatively-oriented blazed structure and the positively-oriented blazed structure.
  • This transition region is a region corresponding to an inflection point of the optical path difference function when the optical path difference added to the transmitted wavefront by the diffractive structure is expressed by an optical path difference function described later. If the optical path difference function has an inflection point, the inclination of the optical path difference function becomes small, so that it is possible to widen the ring zone pitch of the blazed structure, and to suppress the decrease in transmittance due to the shape error of the diffraction structure.
  • the phase structure has a predetermined height in the central region as shown in FIG. Until, the optical path length becomes longer as the distance from the optical axis increases, and outside the predetermined height, the optical path length becomes shorter as the optical axis force increases (the dotted line shown in FIG. 5). Is preferred. At this time, it is more preferable that the ring zone having the longest optical path length among the ring zones of the phase structure includes the position of 70% height in the central region.
  • the diffractive structure is a blazed structure in a positive direction.
  • Fig. 4 shows the blade structure in the positive direction.
  • the shape of the phase structure is aligned in the direction of the optical axis so that the optical path length decreases as the distance from the optical axis increases, as shown in FIG. It is preferable to adopt a shape that changes to (dotted line shown in FIG. 4).
  • the objective lens of the fortieth configuration is a glass lens in the objective lens described in any of the 29th to 39th configurations, a change in refractive index with respect to a change in temperature can be kept small.
  • the objective lens of the present invention can be applied to either a resin lens or a glass lens, and a power resin lens that can achieve the same effect has a refractive index change of 10 times or more as a function of temperature compared to a glass lens. Since it is large, it is preferable to use a glass lens.
  • the objective lens of the forty-first configuration is the objective lens according to any one of the twenty-ninth to thirty-ninth configurations, wherein the resin layer on which the diffractive structure and the phase structure are formed is disposed on a glass lens. Because it is joined, the change in the refractive index with respect to the temperature change can be suppressed to / J, though it is easy to manufacture. [0072] With such a configuration, it is possible to provide an objective lens with a wide operating temperature range, and it is possible to improve transferability of the diffractive structure and the phase structure.
  • a resin layer is formed by pressing a mold having a diffractive structure or a phase structure against an ultraviolet curable resin coated on a glass lens and irradiating it with ultraviolet light. Is suitable for manufacturing.
  • the objective lens of the forty-second configuration is the objective lens according to any of the twenty-ninth to forty-first configurations, wherein information is reproduced or recorded on the first optical information recording medium.
  • the magnification of the objective lens is ml
  • the focal length when reproducing or recording information on the second optical information recording medium is f2
  • the magnification is m2
  • the optical element disposed between the laser light source and the objective lens, or the light receiving element that receives the reflected light beam from the information recording surface can be used for the first wavelength.
  • ⁇ 1 and the second wavelength 2 can be easily shared, which is advantageous for reducing the number of parts, cost reduction, and space saving of the optical pickup device.
  • the optical pickup device having the forty-third structure includes a first light source that emits a first light beam having a first wavelength ⁇ 1, a second light source that emits a second light beam having a second wavelength ⁇ 2, and an objective lens.
  • the second wavelength ⁇ 2 (2) emitted from the second light source is reproduced from the second optical information recording medium having a protective layer with a thickness t2 (tl ⁇ t2).
  • an optical pickup device that reproduces and records or records information using the second light flux of ⁇ 1 ⁇ 2)
  • the objective lens has a single lens configuration and has an optical surface having at least two regions, a central region including the optical axis and a peripheral region surrounding the central region.
  • the diffraction order that maximizes the diffraction efficiency has the first light flux and the first light flux.
  • a diffraction structure having the same order for both of the two light beams and a phase structure for adding the same amount of optical path difference to the first light beam and the second light flux are formed. This effect is the same as in the 29th configuration.
  • the optical pickup device of the forty-fourth configuration is the optical pickup device of the forty-third configuration, wherein the diffractive structure of the objective lens corrects spherical aberration when the wavelength of the incident light beam becomes long.
  • the phase structure described above has the wavelength dependence of spherical aberration in which the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam becomes shorter. Have sex. This function and effect are the same as in the thirtieth configuration.
  • the optical pickup device of the forty-fifth configuration is the optical pickup device described in the forty-third or forty-fourth configuration, wherein the annular zone of the diffractive structure is within one annular zone of the phase structure of the objective lens. Only an integer of 1 or more is formed. This function and effect are the same as in the 31st configuration.
  • the optical pickup device having the forty-sixth configuration is the optical pickup device according to any one of the forty-third to forty-fifth embodiments, wherein the same order is 1, and the blazed wavelength ⁇ B of the diffractive structure is (1) is satisfied.
  • the optical pickup device of the forty-seventh configuration is the optical pickup device according to any of the forty-third to forty-sixth configurations,
  • the optical pickup device of the forty-eighth configuration is the optical pickup device described in the forty-seventh configuration, wherein the object is used when information is reproduced or recorded on the first optical information recording medium.
  • the central region is This is a region corresponding to the numerical aperture NA2, and the blazed wavelength ⁇ B of the diffractive structure, the numerical aperture NA1, and the numerical aperture ⁇ 2 satisfy the following formulas (4) and (5).
  • the optical pickup device of the 49th configuration is the optical pickup device of the 47th or 48th configuration, wherein the same amount of optical path difference is the first wavelength ⁇ with respect to the first light flux. 5 times 1 and 3 times the second wavelength 2 for the second luminous flux. This function and effect are the same as in the thirty-fifth configuration.
  • the peripheral area is an aspherical surface on which a fine step structure is not formed. This function and effect are the same as in the thirty-sixth configuration.
  • the optical pickup device of the 51st configuration is the optical pickup device according to any of the 43rd to 50th configurations of the objective lens in which the diffractive structure and the phase structure are formed.
  • the optical surface is an optical surface arranged on the light source side in a state where the objective lens is mounted on the optical pickup device. This function and effect are the same as in the 37th configuration.
  • the optical pickup device of the 52nd configuration is the optical pickup device according to any of the 43rd to 51st configurations, wherein the diffractive structure causes the negative direction force to become positive as the optical axis force also increases. And the direction of the blaze structure changes at least once. This effect is
  • the diffractive structure is a blazed structure in a positive direction. This effect is the same as in the 39th configuration.
  • the objective lens is a glass lens. This function and effect are the same as in the fortieth configuration.
  • the optical pickup device of the 55th configuration is the optical pickup device according to any of the 43rd to 53rd configurations, wherein the objective lens includes the diffractive structure and the phase structure
  • the resin layer formed with was bonded onto a glass lens. This function and effect are the same as in the 41st configuration.
  • An optical pickup device of the 56th configuration is the optical pickup device according to any of the 43rd to 55th configurations, wherein information is reproduced or recorded on the first optical information recording medium.
  • the magnification of the objective lens is ml
  • the magnification of the objective lens when reproducing or recording information on the second optical information recording medium is m2
  • the following equation (6) and The expression (7) is satisfied.
  • the optical pickup device of the 57th configuration includes a light source, the objective lens described in any of the 1st to 28th configurations, and a photodetector.
  • An optical information recording / reproducing apparatus is equipped with the optical pickup device according to any of the 43rd to 57th configurations.
  • an “objective lens” is an optical pickup device that is disposed at a position facing an optical information recording medium and converts a light beam emitted from a light source into optical information.
  • An optical system having a function of condensing on an information recording surface of a recording medium also referred to as an optical disk
  • an optical system that can be displaced at least in the optical axis direction by an actuator when mounted on an optical pickup device. refers to the system.
  • the “objective lens” may be a single lens, or may be composed of a plurality of lenses, or may include other optical elements.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 400 ° C or lower is used, molding can be performed at a relatively low temperature, thereby extending the life of the mold. You can do it.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • glass glass generally has a specific gravity greater than that of a resin lens. Therefore, if the objective lens is a glass lens, the weight is increased and a burden is imposed on an actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, it is preferable that the specific gravity is 3.0 or less. 2. More preferably, it is 8 or less.
  • the refractive index at a temperature of 25 ° C with respect to a wavelength of 405 nm is 1 among the cyclic olefin systems preferably using a cyclic olefin-based resin material.
  • the refractive index change rate dNZdT (° C _1 ) for a wavelength of 405 nm with a temperature change within the range of 54 to 1.60 and within a temperature range of 5 ° C to 70 ° C is 10 X 10- It is more preferable to use a resin material in the range of 5 to 8 — 8 X 10—5.
  • As the resin material suitable for the objective lens of the present invention there is “Asamal resin” other than the above-mentioned cyclic olefin type.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • the refractive index of the resin material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is also known to prevent a change in refractive index by causing these properties to work together to cancel each other.
  • a material for the objective lens of the present invention a material in which inorganic particles of 30 nanometers or less, preferably 20 nanometers or less, more preferably 10 to 15 nanometers are dispersed in a base resin is used. It is possible to provide an objective lens that does not depend on the temperature of the refractive index or has a very low objective lens.
  • niobium oxide Nb 2 O 3
  • acrylic resin fine particles of niobium oxide (Nb 2 O 3) are dispersed in acrylic resin.
  • the base resin is 80 in volume ratio and about 20 in niobium oxide. These are mixed evenly.
  • the fine particles have a problem that they tend to aggregate, but a necessary dispersion state can be generated by a technique such as applying a charge to the particle surface to disperse.
  • the mixing and dispersion of the resin and the base material are performed in-line at the time of injection molding of the objective lens.
  • the material is not cooled and solidified until it is formed into an objective lens.
  • This volume ratio controls the rate of change of the refractive index with respect to the temperature. In addition, it can be appropriately increased or decreased, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
  • the ratio is 80:20, ie 4: 1 in the above example, but from 90:10 (9: 1) to 60:40
  • the fine particles are preferably inorganic and more preferably acidic. And it is preferable that the acid state is saturated and the acid is not oxidized any more.
  • an inorganic substance is preferable because it is low in reaction with the base resin, which is a high molecular organic compound, and is preferred as an acid so as to prevent deterioration due to use. Come out.
  • oxidation tends to be accelerated under severe conditions such as high temperatures and laser irradiation.
  • inorganic oxide fine particles can prevent deterioration due to oxidation.
  • the resin as described in JP-A-2004-144951, JP-A-2004-144954, JP-A-2004-144953, etc. is suitably used as the base material. Adopt well.
  • the force described with an example of a lens in which a superposition structure in which a diffraction structure and a phase structure are superposed is formed on an optical surface has the same function. It can be set as the superimposition structure on which the optical path difference providing structure was superimposed. More specifically, when the wavelength of the incident light beam is set to a longer wavelength, the first optical path difference providing structure in which the spherical aberration changes in the direction of insufficient correction, and the wavelength of the incident light beam is set to a longer wavelength.
  • a spherical structure is created by superimposing at least two different optical path difference providing structures such as a second optical path difference providing structure in which spherical aberration changes in the overcorrected direction on one surface of a lens having power.
  • the objective lens can be obtained since the wavelength dependency of aberration is small.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the first optical information recording medium is BD
  • the second optical information recording medium is DVD.
  • the first optical pickup device PU1 receives a reflected light beam from the information recording surface RL1 of the blue-violet semiconductor laser LD1 and BD as a first light source that emits a first light beam having a first wavelength of 408 nm.
  • Information recording surface RL2 of the second module LD1 and the second optical disk OD2 as the second light source emitting the second light flux with the second wavelength of 658nm The second module MD2, integrated with the second photodetector PD2 that receives the reflected beam from the light, the dichroic prism PS, the collimating lens CL, the aperture ST, the objective lens OBJ, and the focusing Z tracking 2 Axial actuator AC, etc. is also roughly configured.
  • the optical surface on the light source side is divided into a central region including the optical axis and a peripheral region around it, and a diffraction structure and a phase structure are formed in the central region.
  • the divergent light beam having a first wavelength of 408 nm emitted from the blue-violet semiconductor laser LD1 is transmitted through the Dike mouth prism Pr. It is converted into circularly polarized light, its beam diameter is regulated by the stop ST, and becomes a spot formed on the information recording surface RL 1 of the BD via the protective layer PL1 having a thickness of 0.0875 mm by the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL As a result, the light beam converges on the light receiving surface of the first photodetector PD1 after passing through the dichroic prism PS. Then, using the output signal of the first photodetector PD1, the information recorded on the BD can be read by tracking the objective lens OBJ with the two-axis actuator AC.
  • the divergent light beam having the second wavelength of 658 nm emitted from the red semiconductor laser LD2 is reflected by the polarization dichroic prism PS, converted into a parallel light beam by the collimator lens CL, and then linearly polarized by a 1Z4 wavelength plate (not shown). It is converted into circularly polarized light and enters the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL
  • the light beam is converged by the dichroic prism PS and then converged on the light receiving surface of the second photodetector PD2.
  • the output signal of the second photodetector PD2 the information recorded on the DVD can be read by tracking the objective optical element OBJ with the two-axis actuator AC.
  • the peripheral area of the objective lens OBJ is an aspheric surface where no fine step structure is formed
  • the light beam having the second wavelength of 658 nm that has passed through the peripheral area contributes to spot formation on the information recording surface RL2 of the DVD. Does not flare. This automatically limits the aperture corresponding to the numerical aperture of the DVD.
  • a power of 10 (for example, 2.5 X 10 — 3) is expressed using E (for example, 2.5E 1 3).
  • E for example, 2.5E 1 3
  • the range h represents the distance from the optical axis
  • the unit is mm
  • the unit of curvature radius (R, Ri) is mm.
  • the optical surface of the objective optical system is formed as an aspherical surface that is axisymmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in the table are substituted into formula (8).
  • optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted for the optical path difference function of Equation (9).
  • The wavelength of the light beam incident on the diffractive structure
  • Example 1 is an objective lens made of glass (OHAR A S-BSM14) suitable for the optical pickup device shown in FIG.
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1 to the 2-5th plane corresponds to the central area, and the 2nd to 6th plane corresponds to the peripheral area.
  • the diffractive structure with blazed wavelength ⁇ B: 490nm is formed on the 2nd-1st surface to the 2nd 5th surface. DVD: 79%.
  • the 2-6th surface is aspherical.
  • Phase 2-1 surface force Phase structure is superimposed on the 2nd to 5th surfaces, so that for one beam passing through the 2nd to 1st surface, 5 x ⁇ 1 on the 2nd to 2nd surface Since an optical path difference of (nm) is added, the phase is delayed by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X 1 (nm) and 5 X ⁇ 1 for the ⁇ 1 beam transmitted through the 2nd to 1st surface respectively.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength 2.
  • the same amount of optical path difference is added to the light flux having the wavelength.
  • the negative direction force is once switched to the positive direction! / See (see FIG. 5).
  • the optical surface on the optical disc side has an aspherical shape.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third order component: 0.029 1RMS and the higher order component: 0.010 ⁇ 1RMS
  • the diffraction structure of the second surface The high-order component is reduced with respect to the amount of change when the phase structure is not superimposed (third-order component: 0.009 ⁇ 1 RMS, high-order component: 0.029 RMS).
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • Example 2 is an objective lens made of resin suitable for the optical pickup device shown in FIG. Table 3 and Table 4 show the lens data of Example 2 (including design wavelength, focal length, image-side numerical aperture, and magnification).
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1 to the 2-5th plane corresponds to the central area, and the 2nd to 6th plane corresponds to the peripheral area.
  • the 2nd-1 surface force The diffractive structure of blazed wavelength ⁇ B: 490nm is formed on the 2nd-5th surface, the diffraction order is BD: 1st order, DVD: 1st order, and its diffraction efficiency is BD: 85 %, DVD: 78%.
  • the 2-6th surface is aspherical.
  • Phase structure is superimposed on the 2nd-5th surface, and for the first light beam passing through the 2-1st surface, 5 X ⁇ 1 on the 2nd-2nd surface Since an optical path difference of (nm) is added, the phase is delayed by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X 1 (nm) and 5 X ⁇ 1 for the ⁇ 1 beam transmitted through the 2nd to 1st surface respectively.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength 2.
  • the same amount of optical path difference is added to the light flux having the wavelength.
  • the negative direction force is once switched to the positive direction! / See (see FIG. 5).
  • the optical surface on the optical disc side (third surface) is aspherical.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third-order component: 0.035 1RMS and the higher-order component: 0.014 ⁇ 1RMS
  • the diffraction structure of the second surface The high-order component is reduced with respect to the amount of change when the phase structure is not superimposed (third-order component: 0.020 ⁇ 1 RMS, high-order component: 0.032 RMS).
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • Example 3 is an objective lens made of glass (OH-ARA S-B SM14) suitable for the optical pickup device shown in FIG.
  • Tables 5 and 6 show the lens data of Example 3 (including the design wavelength, focal length, image-side numerical aperture, and magnification).
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1st to 2nd-5th planes corresponds to the central area, and the 2nd-6th plane corresponds to the peripheral areas.
  • Diffraction structures with a blazed wavelength ⁇ B: 490 nm are formed on the 2nd to 1st surfaces to the 2nd to 5th surfaces. : 85%, DVD: 79%.
  • the 2-6th surface is aspherical.
  • Phase 2-1 surface force The phase structure is superimposed on the 2nd to 5th surfaces, so that for one light beam passing through the 2nd to 1st surface, 5 X ⁇ 1 on the 2nd to 2nd surfaces Since an optical path difference of (nm) is given, the phase advances by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X ⁇ 1 (nm) and 1 15 X ⁇ 1 (nm), 1 20 X ⁇ 1 (nm) optical path difference is given, so that 2 ⁇ X 10 (rad), 2 ⁇ X 15 (rad), 2 ⁇ X 20 ( rad) will advance the phase.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength ⁇ 2.
  • the optical path difference of substantially the same amount is added to the light flux having the wavelength of.
  • the direction of the blaze structure is positive and constant in the central region (see FIG. 4).
  • the optical surface on the optical disc side (third surface) is aspherical.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third order component: 0.006 ⁇ 1RMS, the higher order component: 0.014 ⁇ 1RMS Yes, the amount of change when the phase structure is not superimposed on the diffraction structure of the second surface (3rd order component: 0.085 ⁇ 1RMS, higher order component: 0 042 ⁇ RMS), the higher order components are reduced.
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • the force for setting the blazed ⁇ wavelength ⁇ ⁇ of the diffractive structure to 490 nm is not limited to this, and by changing the blazed ⁇ wavelength ⁇ B, the first wavelength ⁇ It is possible to change the diffraction efficiency of the first and second wavelengths ⁇ 2 appropriately.
  • the powers illustrating some examples in which the first optical path difference providing structure is a diffractive structure and the second optical path difference providing structure is a phase structure are a diffractive structure and the second optical path difference providing structure is a phase structure.
  • the present invention is limited to these examples. is not.
  • the diffraction order that maximizes the diffraction efficiency for the light beam with the first wavelength ⁇ 1 is the third-order diffracted light, and the diffraction efficiency is the maximum for the light beam with the second wavelength ⁇ 2.
  • the diffraction structure in which the diffraction order is the second-order diffracted light is the first optical path difference providing structure, and an optical path difference of approximately 5 times ⁇ 1 is imparted to the light beam having the first wavelength ⁇ 1, and A phase structure that gives almost three times the optical path difference of ⁇ 2 to the light beam with the second wavelength ⁇ 1 is used as the second optical path difference providing structure, and the first and second optical path difference providing structures are superimposed. Can be used.
  • an optical path difference of about 5 times ⁇ 1 is imparted to the light flux of the first wavelength ⁇ 1, and an optical path of almost 3 times ⁇ 2 of the light flux of the second wavelength ⁇ 2
  • the phase structure that gives the difference is the first optical path difference giving structure, and the diffraction order that maximizes the diffraction efficiency for the light beam with the first wavelength ⁇ 1 is the second-order diffracted light, and the second wavelength ⁇ 2
  • the second optical path difference providing structure a superposed structure in which the first and second optical path difference providing structures are overlapped is used as the second optical path difference providing structure. This is also a preferred example.
  • an objective lens that can be applied to an optical pickup device that records and Z or reproduces information on a plurality of types of optical information recording media using light beams having different wavelengths, and has a wavelength of spherical aberration. It is possible to provide an objective lens having a small dependency, an optical pickup device using the objective lens, and an optical information recording / reproducing device equipped with the optical pickup device.
  • a lens, an optical pickup device using the objective lens, and an optical information recording / reproducing device equipped with the optical pickup device can be provided.
  • An objective lens used in an optical pickup device in which a spherical aberration changes in a direction of insufficient correction when the wavelength of a light beam incident on one surface of a lens having power is set to a longer wavelength. It has a superposition structure that superimposes an optical path difference providing structure and a second optical path difference providing structure in which spherical aberration changes in the overcorrected direction when the incident light beam has a longer wavelength. Objective lens.
  • the one surface of the lens has a central region including an optical axis and a peripheral region surrounding the central region, and the overlapping structure is formed in the central region.
  • the objective lens according to any one of Items 1 to 3.
  • the objective lens according to any one of Items.
  • a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2, a condensing optical system including an objective lens, and a photodetector And having at least a thickness of tl Information is reproduced and Z or recorded on the first optical information recording medium having the protective layer using the first light flux having the first wavelength ⁇ 1 emitted from the first light source, and the thickness t2 (tl For a second optical information recording medium having a protective layer of ⁇ t2), information is reproduced and stored or recorded using a second light beam having a second wavelength ⁇ 2 ( ⁇ ⁇ ⁇ 2) emitted from the second light source.
  • the objective lens according to any one of claims 1 to 9, wherein the objective lens is used in an optical pick-up device capable of performing the above.
  • the first optical path difference providing structure has a diffraction order that maximizes the diffraction efficiency with respect to the incidence of the first light flux, and a diffraction order that maximizes the diffraction efficiency with respect to the incidence of the second light flux.
  • the diffraction structure is of the same order
  • the second optical path difference providing structure is a phase structure that adds the same amount of optical path difference to the first light flux and the second light flux.
  • the numerical aperture of the objective lens is NA1
  • the information is reproduced or recorded on the second optical information recording medium.
  • the numerical aperture of the objective lens is NA2
  • the superposition structure is provided in a region corresponding to the numerical aperture NA2, the blazed wavelength ⁇ ⁇ of the diffractive structure, the numerical aperture ⁇ 1, and 16.
  • the same amount of optical path difference is approximately five times the first wavelength ⁇ 1 for the first light flux, and is approximately 3 times the second wavelength ⁇ 2 for the second light flux.
  • the diffractive structure is a blazed structure in a positive direction.
  • the objective lens according to any one of items 1 to 17.
  • the first optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux, and a diffraction order that maximizes diffraction efficiency with respect to the incidence of the second light flux.
  • the second optical path difference providing structure is a phase structure that adds the same amount of optical path difference to the first light flux and the second light flux. Objective lens according to claim 10 in the scope of request.
  • the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the first light flux is 3, and the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the second light flux is 2.
  • the objective lens according to claim 20 is
  • the same amount of optical path difference is approximately 5 times the first wavelength ⁇ 1 for the first light flux, and is approximately 3 times the second wavelength ⁇ 2 for the second light flux.
  • the second optical path difference providing structure has a diffraction order that maximizes the diffraction efficiency with respect to the incidence of the first light flux, and a diffraction order that maximizes the diffraction efficiency with respect to the incidence of the second light flux.
  • the diffraction structure has different orders, and the first optical path difference providing structure is a phase structure that adds the same amount of optical path difference to the first light flux and the second light flux.
  • Objective lens according to claim 23 [25]
  • the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the first light flux is 2, and the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the second light flux is 1.
  • the objective lens according to claim 24 is 1.
  • the same amount of optical path difference is approximately five times the first wavelength ⁇ 1 for the first light flux, and approximately 3 of the second wavelength ⁇ 2 for the second light flux. 26.
  • a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2, a condensing optical system including an objective lens, and a photodetector
  • a first optical information recording medium having a protective layer with a thickness of tl, and reproducing and storing or recording information using a first light flux having a first wavelength ⁇ 1 emitted from the first light source.
  • the second optical information recording medium having a thickness t2 (tl ⁇ t2) and a second wavelength ⁇ 2 ( ⁇ 1 ⁇ 2) emitted from the second light source Using an optical pickup device that uses a light beam to reproduce and record or record information,
  • An optical surface having at least two regions, a central region including the optical axis and a peripheral region surrounding the central region;
  • the central region includes a diffractive structure having the same diffraction order for the first light flux and the second light flux, and the first light flux and the second light flux.
  • An objective lens wherein a phase structure for adding the same amount of optical path difference is formed.
  • the diffractive structure has a wavelength dependency of spherical aberration such that the spherical aberration changes in the direction of insufficient correction when the wavelength of the incident light beam becomes long, and the phase structure 30.
  • the numerical aperture of the objective lens is NA1
  • the information is reproduced or recorded on the second optical information recording medium.
  • the numerical aperture of the objective lens is NA2
  • the central region is a region corresponding to the numerical aperture NA2
  • the blazed wavelength ⁇ B of the diffractive structure the numerical aperture NA1, and 34.
  • the same amount of optical path difference is 5 times the first wavelength ⁇ 1 for the first light flux and 3 times the second wavelength ⁇ 2 for the second light flux.
  • 35. The objective lens according to claim 33 or 34, wherein the objective lens is.
  • the optical surfaces on which the diffractive structure and the phase structure are formed are optical surfaces arranged on the light source side in a state of being mounted on the optical pickup device.
  • the objective lens according to any one of Items.
  • the diffractive structure has a blaze structure from a negative direction to a positive direction as the optical axis force also increases.
  • the objective lens according to any one of claims 29 to 37, wherein the direction of the structure is changed at least once.
  • the diffractive structure is a blazed structure in a positive direction.
  • the magnification of the objective lens is ml
  • the information is reproduced or recorded on the second optical information recording medium. 42.
  • the expression (6) and the expression (7) below are satisfied when the magnification of the objective lens is m2 at the time: Objective lens.
  • a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2, a condensing optical system including an objective lens, and a photodetector
  • a first optical information recording medium having a protective layer with a thickness of tl, and reproducing and storing or recording information using a first light flux having a first wavelength ⁇ 1 emitted from the first light source.
  • the second optical information recording medium having a thickness t2 (tl ⁇ t2) and a second wavelength ⁇ 2 ( ⁇ 1 ⁇ 2) emitted from the second light source
  • the objective lens has a single lens configuration and includes a central region including an optical axis, and a peripheral region surrounding the central region.
  • the central region includes a diffractive structure having the same diffraction order for the first light flux and the second light flux, and the first light flux and the second light flux.
  • An optical pickup device characterized in that a phase structure for adding the same amount of optical path difference is formed.
  • the diffractive structure of the objective lens has a wavelength dependency of spherical aberration such that the spherical aberration changes in the direction of insufficient correction when the wavelength of the incident light beam becomes long, and the phase structure 44.
  • the optical pickup device according to claim 43, wherein the wavelength dependence of the spherical aberration is such that the spherical aberration changes in the overcorrection direction when the wavelength of the optical axis becomes longer.
  • the numerical aperture of the objective lens when performing information reproduction or recording on the first optical information recording medium is NA1, and information is reproduced or recorded on the second optical information recording medium.
  • the central region is a region corresponding to the numerical aperture NA2, the blazed wavelength ⁇ B of the diffractive structure, the numerical aperture NA1, and 48.
  • the same amount of optical path difference is 5 times the first wavelength ⁇ 1 for the first light flux and 3 times the second wavelength ⁇ 2 for the second light flux.
  • 49. The optical pickup device according to claim 47 or 48, wherein the optical pickup device is provided.
  • the peripheral region is an aspherical surface without forming a fine step structure.
  • the optical pickup device according to any one of claims 43 to 49.
  • the optical surface of the objective lens on which the diffractive structure and the phase structure are formed is an optical surface arranged on the light source side in a state where the objective lens is mounted on the optical pickup device. 51.
  • the diffractive structure is a blazed structure in a positive direction.
  • the magnification of the objective lens is ml
  • the information is reproduced or recorded on the second optical information recording medium.
  • Optical pickup device When the information is reproduced or recorded on the first optical information recording medium, the magnification of the objective lens is ml, and the information is reproduced or recorded on the second optical information recording medium.
  • An optical pickup device comprising a light source, the objective lens according to any one of claims 1 to 28, and a photodetector.
  • An optical information recording / reproducing apparatus comprising the optical pickup device according to any one of claims 43 to 57.
  • IPC International Patent Classification
  • JP 2004-264815 A (Konica Minolta Holdings 58
  • JP 2004-247025 A (Konica Minolta Holdings 58
  • JP 2004-326861 A (Konika inoruta Oputo ⁇ 58
  • JP 2004-362626 A (Pentax Kabushiki Kaisha) 58
  • the objective lens according to the present invention is an objective lens used in an optical pickup device, and when a wavelength of a light beam incident on one surface of a lens having power is set to a longer wavelength, spherical aberration is corrected in an insufficient direction.
  • the present invention relates to an objective lens, an optical pickup device, and an optical information recording / reproducing device, and more particularly to appropriately recording and recording information on different optical information recording media using light sources having different wavelengths.
  • the present invention relates to an optical pickup apparatus and an optical information recording / reproducing apparatus capable of performing Z or reproduction, and an objective lens used therefor.
  • HD DVD High Definition DVD: hereinafter referred to as HD
  • BD coma aberration caused by the tilt (skew) of the optical disk increases, so the protective layer is designed thinner than in DVD (0.1 mm compared to 0.6 mm for DVD). The amount of coma due to skew is reduced.
  • high density optical disc such an optical disc is referred to as a “high density optical disc”.
  • an optical disc player Z recorder As a product is sufficient, just because information can be appropriately recorded and reproduced on a high-density optical disc.
  • DVDs with a wide variety of information are currently being sold, it is not only possible to record information on a high-density optical disc.
  • an optical disc player Z recorder for high-density optical discs it is possible to properly record and reproduce information Z. This leads to an increase in the value of the product.
  • the optical pickup device installed in the optical disk player Z recorder for high-density optical discs records information appropriately while maintaining compatibility with both high-density optical discs and DVDs. It is desirable to have a performance that can be achieved.
  • an optical system for high-density optical discs and an optical system for DVDs can be used even with compatible optical pickup devices! It is preferable to reduce the number of optical parts constituting the optical pickup device as much as possible. It is most advantageous for simplifying the configuration of the optical pickup device and reducing the cost to make the objective lens arranged opposite to the optical disk in common and further to make this objective lens a single lens configuration.
  • a diffraction structure having the wavelength dependence of spherical aberration is formed on the surface as an objective lens common to a plurality of types of optical disks having different wavelengths of light beams used for recording and reproducing information.
  • An objective lens that corrects the spherical aberration due to the difference in the recording Z reproduction wavelength and the thickness of the protective layer of the optical disk by utilizing the wavelength dependence of the diffractive structure is known.
  • Patent Document 1 discloses an objective lens having a single-lens configuration capable of recording and / or reproducing or recording information in a manner compatible with a high-density optical disc and a DVD.
  • the objective lens disclosed in Patent Document 1 has a diffractive structure that generates second-order folding light for a blue-violet laser beam and first-order diffracted light for a red laser beam for DVD.
  • the spherical aberration due to the difference in the protective layer thickness between the high-density optical disc and the DVD is corrected by the diffractive action of the diffractive structure.
  • this objective lens since this objective lens has a single lens configuration, it can be produced at low cost, but has the following two problems.
  • optical information recording media optical information recording media are also referred to as optical discs
  • used wavelengths are also referred to as recording Z playback wavelengths
  • laser light source selection problem is caused by using a diffraction structure in which the value of “diffraction order X wavelength” is almost the same between wavelengths used for high-density optical discs and DVDs.
  • the diffraction pitch must be reduced. .
  • the wavelength dependence of the spherical aberration of the diffractive structure increases, and the “laser light source selection problem” as described above becomes apparent.
  • Another problem is that a diffractive structure is formed on an optical surface with a large inclination, so that the light flux of the stepped part is transferred and the fine structure such as the ring-shaped corner of the diffractive structure is transferred.
  • the transmittance is reduced due to defects, and sufficient light utilization efficiency cannot be obtained.
  • the number of apertures of the objective lens increases, the inclination of the optical surface increases. Therefore, in a BD using an objective lens with a numerical aperture of 0.85, such a decrease in transmittance becomes more remarkable.
  • Patent Document 1 JP 2004-79146 A
  • the present invention has been made in view of the above problems, and an object of the present invention is to record and / or reproduce information on a plurality of types of optical information recording media using light beams having different wavelengths.
  • Objective lens that is applicable to an optical pickup device that performs spherical aberration, and has a small wavelength dependency of spherical aberration, an optical pickup device that uses this objective lens, and an optical information recording / reproducing device equipped with this optical pickup device Is to provide. It is a further object of the present invention to provide an objective lens capable of recording and / or reproducing information on different types of optical information recording media, and having a high transmittance with small wavelength dependence of spherical aberration. It is to provide an objective lens having a single lens configuration, an optical pickup device using the objective lens, and an optical information recording / reproducing device equipped with the optical pickup device
  • an objective lens according to the present invention is an objective lens used in an optical pickup device, and has a first optical path having predetermined characteristics on one surface of a lens having power. It has an overlapping structure in which the difference providing structure and the second optical path difference providing structure are overlapped.
  • FIG. 1 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 2 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 3 is a schematic diagram of longitudinal spherical aberration diagrams of an objective lens.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side.
  • FIG. 5 is a cross-sectional view of another example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side.
  • FIG. 6 is a diagram schematically showing a configuration of an optical pickup device of the present embodiment.
  • the objective lens of the first configuration is an objective lens used in an optical pickup device, and has spherical aberration when the wavelength of a light beam incident on one surface of a lens having power is made longer.
  • Superimposition that superimposes the first optical path difference providing structure that changes in the undercorrected direction and the second optical path difference providing structure in which spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam is longer. It has a structure.
  • the objective lens of the second configuration is the objective lens according to the first configuration, wherein the one surface of the lens is formed with a portion where the superimposed structure is formed and a portion where the superimposed structure is not formed And have.
  • the above-described superposed structure is an aspherical surface.
  • An objective lens having a fourth configuration is the objective lens according to any one of the first to third configurations.
  • the one surface of the lens has a central region including an optical axis and a peripheral region surrounding the central region, and the overlapping structure is formed in the central region.
  • An objective lens having a fifth configuration is the objective lens according to any one of the first to fourth configurations, wherein the one surface of the lens is placed on a light source side when mounted on an optical pickup device. This is the surface to be placed.
  • An objective lens having a sixth configuration is the objective lens according to any one of the first to fifth configurations, wherein the one surface of the lens is a convex surface.
  • An objective lens according to a seventh configuration is the objective lens according to any one of the first to sixth configurations, in which the other surface of the lens is an aspherical surface.
  • An objective lens having an eighth configuration is the objective lens according to any one of the first to seventh configurations, wherein the lens is disposed when an optical information recording medium is disposed opposite to an optical pickup device. The lens is arranged closest to the optical information recording medium.
  • An objective lens having a ninth configuration is a single lens configuration including the lens according to any one of the first to eighth configurations.
  • An objective lens having a tenth configuration is the objective lens according to any one of the first to ninth configurations, wherein a first light source that emits a first light flux having a first wavelength ⁇ 1; A first optical information recording medium having a second light source that emits a second light beam having a wavelength ⁇ 2, a condensing optical system including an objective lens, and a photodetector, and having a protective layer having a thickness of tl.
  • the second light having a protective layer with a thickness of t2 (tl ⁇ t 2) is reproduced and Z or recorded using the first light flux of the first wavelength ⁇ 1 emitted from the first light source.
  • An objective lens having an eleventh configuration is the objective lens according to any one of the first to tenth configurations, wherein the first optical path difference providing structure is a diffractive structure.
  • An objective lens of a twelfth configuration is the objective lens according to the eighth configuration, wherein the first optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • the diffraction order at which the diffraction efficiency is maximum with respect to the incidence of the second light flux is a diffraction structure having the same order, and the second optical path difference providing structure is provided for the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the thirteenth configuration is the objective lens according to the twelfth configuration, wherein only one integer greater than or equal to 1 of the diffractive structure is formed in one annular zone of the phase structure. ing.
  • the objective lens of the fourteenth configuration is the objective lens according to the twelfth or thirteenth configuration, wherein the same order is 1, and the blazed wavelength ⁇ of the diffractive structure is the following (1) The expression is satisfied.
  • the objective lens having the fifteenth configuration satisfies the following formulas (2) and (3) in the objective lens according to any one of the twelfth to fourteenth configurations.
  • the objective lens of the sixteenth configuration is the objective lens according to the fifteenth configuration, wherein the numerical aperture of the objective lens when reproducing or recording information on the first optical information recording medium is NA1, When the numerical aperture of the objective lens is NA2 when reproducing or recording information on the second optical information recording medium, the superimposing structure is provided in a region corresponding to the numerical aperture NA2, The blazed wavelength ⁇ of the diffractive structure, the numerical aperture ⁇ 1, and the numerical aperture ⁇ 2 satisfy the following equations (4) and (5).
  • the objective lens of the seventeenth configuration is the objective lens according to the fifteenth or sixteenth configuration, wherein the same amount of optical path difference is approximately five times the first wavelength ⁇ 1 for the first light flux. Therefore, the second light flux is approximately three times the second wavelength ⁇ 2.
  • An objective lens according to an eighteenth configuration is the objective lens according to any one of the eleventh to seventeenth configurations, in which the diffractive structure is configured such that a negative direction force also increases in a positive direction as the optical axis force increases.
  • the direction of the laze structure changes at least once.
  • the diffractive structure is a blazed structure in a positive direction.
  • the objective lens of the twentieth configuration is the objective lens according to the tenth configuration, wherein the first optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • a diffraction structure in which the diffraction order having the maximum diffraction efficiency with respect to the incidence of the second light flux is a different order, and the second optical path difference providing structure is applied to the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the twenty-first configuration is the objective lens according to the twentieth configuration, wherein the diffraction order at which the diffraction efficiency is maximum with respect to incidence of the first light flux is 3, and the second light flux The diffraction order at which the diffraction efficiency is maximum for the incidence of is 2.
  • the objective lens of the twenty-second configuration is the objective lens according to the twentieth or twenty-first configuration, wherein the same amount of optical path difference is substantially equal to the first wavelength ⁇ 1 for the first light flux. 5 times, and about 3 times the second wavelength ⁇ 2 for the second light flux.
  • the second optical path difference providing structure is a diffractive structure.
  • the objective lens of the twenty-fourth configuration is the objective lens described in the twenty-third configuration, wherein the second optical path difference providing structure has a diffraction order that maximizes diffraction efficiency with respect to incidence of the first light flux.
  • a diffraction structure in which the diffraction order having the maximum diffraction efficiency with respect to the incidence of the second light flux is a different order, and the first optical path difference providing structure is applied to the first light flux and the second light flux.
  • the phase structure adds the same amount of optical path difference.
  • the objective lens of the twenty-fifth configuration is the objective lens according to the twenty-fourth configuration, wherein the diffraction order that maximizes the diffraction efficiency with respect to the incidence of the first light flux is 2, and the second light flux The diffraction order with the maximum diffraction efficiency for the incidence of is 1.
  • the objective lens of the twenty-sixth configuration is the objective lens according to the twenty-fourth or twenty-fifth configuration, wherein the same amount of optical path difference is substantially equal to the first wavelength ⁇ 1 for the first light flux. 5 times, and about 3 times the second wavelength ⁇ 2 for the second light flux.
  • An objective lens according to a twenty-seventh aspect is the objective lens according to any one of the first to twenty-sixth aspects, wherein the lens is a glass lens.
  • An objective lens according to a twenty-eighth configuration is the objective lens according to any one of the first to twenty-sixth configurations, in which the resin layer having the superposed structure is bonded to a glass element. It is a configuration.
  • the objective lens of the 29th configuration includes a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2, and an objective lens.
  • An objective lens used in an optical pickup device that reproduces and records or records information by using a second light beam of ( ⁇ 1 ⁇ 2) has a single lens configuration, a central region including an optical axis, and the central lens An optical surface having at least two regions, a peripheral region surrounding the region,
  • the central region includes a diffractive structure having the same diffraction order for the first light flux and the second light flux, and the first light flux and the second light flux.
  • a phase structure that adds the same amount of optical path difference is formed.
  • phase structure here is a general term for a structure having a plurality of steps in the optical axis direction and adding an optical path difference between the steps to the incident light beam.
  • the optical path difference added to the incident light flux by this step may be an integer multiple of the wavelength of the incident light flux or a non-integer multiple of the wavelength of the incident light flux.
  • the “optical path difference providing structure” includes the above-described phase structure and the phase difference providing structure including the diffraction structure.
  • . 1 to 3 are schematic diagrams of longitudinal spherical aberration diagrams of the objective lens.
  • the optical axis crosses the optical axis on the near side of the paraxial image point (left side of the origin in the figure, that is, on the objective lens).
  • “Nearly corrected” is defined as “undercorrected”, and when it intersects the optical axis at a position far from the paraxial image point (right side from the origin in the figure, ie, the side far from the objective lens), “overcorrected”.
  • BD is described as an example of the first optical information recording medium
  • DVD is described as an example of the second optical information recording medium.
  • the pupil coordinate E2 on the vertical axis corresponds to the numerical aperture of DVD
  • E1 corresponds to the numerical aperture of BD.
  • FIG. 1 is a longitudinal spherical aberration diagram when applied.
  • the value of spherical aberration is assumed to be zero regardless of the position from the optical axis.
  • the diffractive structure formed in the central region is a structure for correcting spherical aberration caused by the difference in the protective layer thickness between BD and DVD, so when the incident light flux becomes longer, the spherical aberration is undercorrected.
  • the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam is shortened. Therefore, when the wavelength ⁇ 1 becomes longer by ⁇ ⁇ ( ⁇ ⁇ > 0), as indicated by the dotted line in FIG.
  • the spherical aberration changes in the direction of insufficient correction in the central region, and the wavelength ⁇ 1
  • the spherical aberration changes in the overcorrected direction in the central region, as indicated by the dashed line in FIG.
  • the spherical aberration is small and the spherical aberration is almost constant.
  • FIG. 2 is a longitudinal spherical aberration diagram when only a predetermined phase structure is formed on the optical surface of the objective lens.
  • this phase structure when the wavelength of the incident light beam becomes longer, the spherical aberration changes in the overcorrected direction, and when the wavelength of the incident light beam becomes shorter, the spherical aberration changes in the undercorrected direction. It has a wavelength dependency opposite to that of the folded structure.
  • the spherical aberration curve is made continuous even when the light beam of ⁇ ⁇ -M passes or the light beam of ⁇ 1 + ⁇ ⁇ passes. Therefore, the occurrence of higher order spherical aberration can be reduced.
  • the optical path difference added by the phase structure is changed to a step amount of the phase structure having the same phase difference with respect to each of the design wavelength ( ⁇ 1) of the BD and the design wavelength ( ⁇ 2) of the DVD. Therefore, even when a phase structure is formed, the wavelength dependence of the spherical aberration of the diffractive structure (here, ⁇ ⁇ It is possible to correct the spherical aberration change when the wavelength of the incident light beam is changed in the range of nm.
  • the “same amount of optical path difference” means that the optical path difference added by the phase structure with respect to ⁇ e 2 satisfies the following two expressions.
  • Ll and L2 are the optical path differences at wavelengths ⁇ 1 and 2 which are caused by one step in the phase structure.
  • A represents an arbitrary integer
  • b represents an arbitrary positive integer smaller than a.
  • the step of the diffractive structure is such that the diffraction order that maximizes the diffraction efficiency is the same order for both the first light flux and the second light flux. Since the amount is determined, it is possible to correct spherical aberration at a large pitch (correction of spherical aberration due to the recording Z playback wavelength and the thickness of the protective layer). Therefore, the wavelength dependence of the spherical aberration of the diffractive structure is not too large, and therefore the pitch of the phase structure for correcting it does not become too small. Therefore, it is possible to suppress a decrease in transmittance due to a shape error of the diffractive structure or the phase structure.
  • a diffraction structure or a phase structure having a fine step is formed in the central region having a relatively small inclination, and therefore, the light flux at the step portion is scattered and the fine structure is small. It is possible to suppress a decrease in transmittance due to defective transfer of the structure, and to obtain sufficient light utilization efficiency.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the diffractive structure DS and the phase structure PS are exaggerated for easy understanding. I'm drawing.
  • the central region CR corresponds to a region in which the first light beam and the second light beam that have passed therethrough are used in common for recording or reproduction of the corresponding optical information recording medium, and the peripheral region PR is there. Only the first light beam that has passed through this field corresponds to the area used when recording or reproducing the corresponding optical information recording medium.
  • FIG. 4 is a cross-sectional view of an example of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the diffractive structure DS and the phase structure PS are exaggerated for easy understanding. I'm drawing.
  • the central region CR corresponds to a region in which the first light beam and the second
  • the diffractive structure DS having a blazed cross section centered on the optical axis X indicated by the solid line is superposed with the phase structure PS, and is thus locally displaced in the axial direction.
  • the diffraction structure DS since the diffraction structure DS only has a positive blazed structure, if the step in the optical axis direction in the phase structure PS and its extension line are connected to the line passing through the apex of the blaze, An envelope (dotted line shown in Fig. 4) indicating the shape of the phase structure PS is drawn.
  • a diffractive structure DS a blazed structure with a negative orientation may be mixed.
  • the objective lens according to the thirtieth configuration is the objective lens according to the twenty-ninth configuration, wherein the diffraction structure causes the spherical aberration to change in the direction of insufficient correction when the wavelength of the incident light beam becomes long.
  • the phase structure has the wavelength dependence of spherical aberration such that the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam becomes longer.
  • the objective lens of the thirty-first configuration is the objective lens according to the twenty-ninth or thirty-third configuration, wherein only one integer greater than or equal to one of the annular zones of the diffractive structure is included in one annular zone of the phase structure. It is formed. More specifically, in FIG. 4, a state where an integer number of blazes or the like of the diffractive structure DS is exactly one or more within one step of the envelope indicating the shape of the phase structure PS. This facilitates mold processing and creates diffractive structures and phase structures with high accuracy. Can be made.
  • the objective lens of the thirty-second configuration is the objective lens according to any one of the twenty-ninth to thirty-first configurations, wherein the same order is 1, and a blazed wave wavelength ⁇ B of the diffractive structure is as follows: Therefore, the diffraction efficiency of the first light beam having the first wavelength ⁇ 1 and the second light beam having the second wavelength ⁇ 2 that passes through the diffraction structure can be balanced.
  • the objective lens of the thirty-third configuration is the objective lens according to any one of the twenty-ninth to thirty-first configurations.
  • information can be recorded and recorded or reproduced in a manner compatible with, for example, BD or HD and DVD.
  • the objective lens of the present embodiment is particularly effective when the wavelength used satisfies the equations (2) and (3), and the effect can be maximized.
  • the objective lens of the thirty-fourth configuration is the objective lens according to the thirty-third configuration, wherein the numerical aperture of the objective lens when reproducing or recording information on the first optical information recording medium is set.
  • NA1 is set and NA2 is the numerical aperture of the objective lens when information is reproduced or recorded on the second optical information recording medium
  • the central area is an area corresponding to the numerical aperture NA2.
  • the blazed wavelength ⁇ ⁇ , the numerical aperture ⁇ 1, and the numerical aperture ⁇ 2 of the diffractive structure satisfy the following expressions (4) and (5).
  • the blazed wavelength ⁇ ⁇ of the diffractive structure it is preferable to distribute the diffraction efficiency to each light beam by setting the blazed wavelength ⁇ ⁇ of the diffractive structure to an intermediate wavelength between the first wavelength ⁇ 1 and the second wavelength ⁇ 2. Since the wavelength difference is large at the second wavelength ⁇ 2, there is a possibility that high diffraction efficiency cannot be secured for any wavelength.
  • the numerical aperture ⁇ 2 of the objective lens is sufficiently smaller than the numerical aperture NA1, that is, when the numerical aperture NA1 and the numerical aperture ⁇ 2 satisfy (5), the effective diameter of the first wavelength ⁇ 1 Occupied
  • the diffraction efficiency of the second wavelength ⁇ 2 is made closer to the second wavelength ⁇ 2 (ie, the blazed wavelength ⁇ (is (4 Even when () is satisfied)
  • the blazed wavelength ⁇ ⁇ ⁇ is larger than the lower limit of the equation (4)! / And the diffraction efficiency of the second wavelength ⁇ 2 can be secured sufficiently high, the recording / reproduction characteristics on the second optical information recording medium can be secured. Can be improved.
  • the blazed wavelength ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is smaller than the upper limit of Equation (4), the effective inner area weighted average of the diffraction efficiency of the first wavelength ⁇ ⁇ ⁇ ⁇ can be made sufficiently high. Recording on the medium ⁇ It becomes possible to improve the reproduction characteristics.
  • the objective lens of the thirty-fifth configuration is the objective lens according to either the thirty-third or thirty-fourth configuration, wherein the same amount of optical path difference is the first wavelength with respect to the first light flux. 5 times ⁇ 1 and 3 times the second wavelength 2 for the second light flux. As a result, the same amount of optical path difference can be added to the first wavelength ⁇ 1 and the second wavelength ⁇ 2 that satisfy the equations (2) and (3).
  • the term “5 times” or “3 times” here refers to only an integer multiple in a strict sense, as long as the optical design viewpoint is substantially 5 times or substantially 3 times. Of course it is not intended.
  • the term “almost 5 times” or “almost 3 times” in this specification is the same as that. “Almost 5 times” is 4.8 times to 5.2 times, and “almost 3 times” is 2. 8 times to 3.2 times.
  • the peripheral region is an aspherical surface on which a fine step structure is not formed. It is possible to increase the transmittance of the peripheral region that increases. Furthermore, only in the central region, the second optical flux passing through the peripheral region is corrected by correcting spherical aberration due to differences in the recording wavelength and the protective layer thickness of the first optical information recording medium and the second optical information recording medium. Therefore, the second light flux that has passed through the peripheral region becomes a flare component that does not contribute to spot formation on the information recording surface of the second optical information recording medium. This makes it possible to automatically perform aperture restriction corresponding to the numerical aperture of the second optical information recording medium.
  • V ⁇ ⁇ “fine step structure” means diffraction structure or phase structure.
  • the objective lens of the thirty-seventh configuration is the objective lens according to any one of the twenty-ninth to thirty-sixth configurations.
  • the optical surface on which the diffractive structure and the phase structure are formed is an optical surface located on the light source side in a state of being mounted on the optical pickup device, so that when a parallel light beam is incident on the objective lens,
  • the divergence angle or the convergence angle is relatively small, so that a decrease in transmittance due to light vignetting can be suppressed.
  • the objective lens of the thirty-eighth configuration is the objective lens according to any one of the twenty-ninth to thirty-seventh configurations, wherein the diffractive structure moves from a negative direction to a positive direction as the optical axis force also increases.
  • the direction of the blaze structure changes at least once.
  • a blazed structure in which the optical path length decreases as the distance from the optical axis decreases is referred to as a positive direction
  • a blazed structure in which the optical path length increases as the distance from the optical axis increases is a negative direction.
  • FIG. 5 is a cross-sectional view of an objective lens OBJ in which a diffractive structure and a phase structure are formed on the optical surface on the light source side, but the surface shape is exaggerated for easy understanding.
  • the central region CR includes a first region R1 including the optical axis X, a second region R2 around the first region R1, and a third region R3 in the periphery and in contact with the peripheral region PR. It consists of and.
  • the first region R1 since the blazed structure in the negative direction and the phase structure are superimposed, the step in the optical axis direction in the phase structure and its extension line and the line passing through the bottom of the blaze are connected.
  • the blazed structure and the phase structure in the positive direction are superimposed, which corresponds to a step in the phase structure.
  • Positional force Connecting the line extending in the direction of the optical axis and the line passing through the apex of the blaze forms an envelope (dotted line shown in Fig. 5) indicating the shape of the phase structure PS.
  • the second region R2 is a transition region necessary for switching between the negatively-oriented blazed structure and the positively-oriented blazed structure.
  • This transition region is a region corresponding to an inflection point of the optical path difference function when the optical path difference added to the transmitted wavefront by the diffractive structure is expressed by an optical path difference function described later. If the optical path difference function has an inflection point, the inclination of the optical path difference function becomes small, so that it is possible to widen the ring zone pitch of the blazed structure, and to suppress the decrease in transmittance due to the shape error of the diffraction structure.
  • the phase structure has a predetermined height in the central region as shown in FIG. Until, the optical path length becomes longer as the distance from the optical axis increases, and outside the predetermined height, the optical path length becomes shorter as the optical axis force increases (the dotted line shown in FIG. 5). Is preferred. At this time, it is more preferable that the ring zone having the longest optical path length among the ring zones of the phase structure includes the position of 70% height in the central region.
  • the diffractive structure is a blazed structure in a positive direction.
  • Fig. 4 shows the blade structure in the positive direction.
  • the shape of the phase structure is aligned in the direction of the optical axis so that the optical path length decreases as the distance from the optical axis increases, as shown in FIG. It is preferable to adopt a shape that changes to (dotted line shown in FIG. 4).
  • the objective lens of the fortieth configuration is a glass lens in the objective lens described in any of the 29th to 39th configurations, a change in refractive index with respect to a change in temperature can be kept small.
  • the objective lens of the present invention can be applied to either a resin lens or a glass lens, and a power resin lens that can achieve the same effect has a refractive index change of 10 times or more as a function of temperature compared to a glass lens. Since it is large, it is preferable to use a glass lens.
  • the objective lens of the forty-first configuration is the objective lens according to any one of the twenty-ninth to thirty-ninth configurations, wherein the resin layer on which the diffractive structure and the phase structure are formed is disposed on a glass lens. Because it is joined, the change in the refractive index with respect to the temperature change can be suppressed to / J, though it is easy to manufacture. [0072] With such a configuration, it is possible to provide an objective lens with a wide operating temperature range, and it is possible to improve transferability of the diffractive structure and the phase structure.
  • a resin layer is formed by pressing a mold having a diffractive structure or a phase structure against an ultraviolet curable resin coated on a glass lens and irradiating it with ultraviolet light. Is suitable for manufacturing.
  • the objective lens of the forty-second configuration is the objective lens according to any of the twenty-ninth to forty-first configurations, wherein information is reproduced or recorded on the first optical information recording medium.
  • the magnification of the objective lens is ml
  • the focal length when reproducing or recording information on the second optical information recording medium is f2
  • the magnification is m2
  • the optical element disposed between the laser light source and the objective lens, or the light receiving element that receives the reflected light beam from the information recording surface can be used for the first wavelength.
  • ⁇ 1 and the second wavelength 2 can be easily shared, which is advantageous for reducing the number of parts, cost reduction, and space saving of the optical pickup device.
  • the optical pickup device having the forty-third structure includes a first light source that emits a first light beam having a first wavelength ⁇ 1, a second light source that emits a second light beam having a second wavelength ⁇ 2, and an objective lens.
  • the second wavelength ⁇ 2 (2) emitted from the second light source is reproduced from the second optical information recording medium having a protective layer with a thickness t2 (tl ⁇ t2).
  • an optical pickup device that reproduces and records or records information using the second light flux of ⁇ 1 ⁇ 2)
  • the objective lens has a single lens configuration and has an optical surface having at least two regions, a central region including the optical axis and a peripheral region surrounding the central region.
  • the diffraction order that maximizes the diffraction efficiency has the first light flux and the first light flux.
  • a diffraction structure having the same order for both of the two light beams and a phase structure for adding the same amount of optical path difference to the first light beam and the second light flux are formed. This effect is the same as in the 29th configuration.
  • the optical pickup device of the forty-fourth configuration is the optical pickup device of the forty-third configuration, wherein the diffractive structure of the objective lens corrects spherical aberration when the wavelength of the incident light beam becomes long.
  • the phase structure described above has the wavelength dependence of spherical aberration in which the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam becomes shorter. Have sex. This function and effect are the same as in the thirtieth configuration.
  • the optical pickup device of the forty-fifth configuration is the optical pickup device described in the forty-third or forty-fourth configuration, wherein the annular zone of the diffractive structure is within one annular zone of the phase structure of the objective lens. Only an integer of 1 or more is formed. This function and effect are the same as in the 31st configuration.
  • the optical pickup device having the forty-sixth configuration is the optical pickup device according to any one of the forty-third to forty-fifth embodiments, wherein the same order is 1, and the blazed wavelength ⁇ B of the diffractive structure is (1) is satisfied.
  • the optical pickup device of the forty-seventh configuration is the optical pickup device according to any of the forty-third to forty-sixth configurations,
  • the optical pickup device of the forty-eighth configuration is the optical pickup device described in the forty-seventh configuration, wherein the object is used when information is reproduced or recorded on the first optical information recording medium.
  • the central region is This is a region corresponding to the numerical aperture NA2, and the blazed wavelength ⁇ B of the diffractive structure, the numerical aperture NA1, and the numerical aperture ⁇ 2 satisfy the following formulas (4) and (5).
  • the optical pickup device of the 49th configuration is the optical pickup device of the 47th or 48th configuration, wherein the same amount of optical path difference is the first wavelength ⁇ with respect to the first light flux. 5 times 1 and 3 times the second wavelength 2 for the second luminous flux. This function and effect are the same as in the thirty-fifth configuration.
  • the peripheral area is an aspherical surface on which a fine step structure is not formed. This function and effect are the same as in the thirty-sixth configuration.
  • the optical pickup device of the 51st configuration is the optical pickup device according to any of the 43rd to 50th configurations of the objective lens in which the diffractive structure and the phase structure are formed.
  • the optical surface is an optical surface arranged on the light source side in a state where the objective lens is mounted on the optical pickup device. This function and effect are the same as in the 37th configuration.
  • the optical pickup device of the 52nd configuration is the optical pickup device according to any of the 43rd to 51st configurations, wherein the diffractive structure causes the negative direction force to become positive as the optical axis force also increases. And the direction of the blaze structure changes at least once. This effect is
  • the diffractive structure is a blazed structure in a positive direction. This effect is the same as in the 39th configuration.
  • the objective lens is a glass lens. This function and effect are the same as in the fortieth configuration.
  • the optical pickup device of the 55th configuration is the optical pickup device according to any of the 43rd to 53rd configurations, wherein the objective lens includes the diffractive structure and the phase structure
  • the resin layer formed with was bonded onto a glass lens. This function and effect are the same as in the 41st configuration.
  • An optical pickup device of the 56th configuration is the optical pickup device according to any of the 43rd to 55th configurations, wherein information is reproduced or recorded on the first optical information recording medium.
  • the magnification of the objective lens is ml
  • the magnification of the objective lens when reproducing or recording information on the second optical information recording medium is m2
  • the following equation (6) and The expression (7) is satisfied.
  • the optical pickup device of the 57th configuration includes a light source, the objective lens described in any of the 1st to 28th configurations, and a photodetector.
  • An optical information recording / reproducing apparatus is equipped with the optical pickup device according to any of the 43rd to 57th configurations.
  • an “objective lens” is an optical pickup device that is disposed at a position facing an optical information recording medium and converts a light beam emitted from a light source into optical information.
  • An optical system having a function of condensing on an information recording surface of a recording medium also referred to as an optical disk
  • an optical system that can be displaced at least in the optical axis direction by an actuator when mounted on an optical pickup device. refers to the system.
  • the “objective lens” may be a single lens, or may be composed of a plurality of lenses, or may include other optical elements.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 400 ° C or lower is used, molding can be performed at a relatively low temperature, thereby extending the life of the mold. You can do it.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • glass glass generally has a specific gravity greater than that of a resin lens. Therefore, if the objective lens is a glass lens, the weight is increased and a burden is imposed on an actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, it is preferable that the specific gravity is 3.0 or less. 2. More preferably, it is 8 or less.
  • the refractive index at a temperature of 25 ° C with respect to a wavelength of 405 nm is 1 among the cyclic olefin systems preferably using a cyclic olefin-based resin material.
  • the refractive index change rate dNZdT (° C _1 ) for a wavelength of 405 nm with a temperature change within the range of 54 to 1.60 and within a temperature range of 5 ° C to 70 ° C is 10 X 10- It is more preferable to use a resin material in the range of 5 to 8 — 8 X 10—5.
  • As the resin material suitable for the objective lens of the present invention there is “Asamal resin” other than the above-mentioned cyclic olefin type.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • the refractive index of the resin material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is also known to prevent a change in refractive index by causing these properties to work together to cancel each other.
  • a material for the objective lens of the present invention a material in which inorganic particles of 30 nanometers or less, preferably 20 nanometers or less, more preferably 10 to 15 nanometers are dispersed in a base resin is used. It is possible to provide an objective lens that does not depend on the temperature of the refractive index or has a very low objective lens.
  • niobium oxide Nb 2 O 3
  • acrylic resin fine particles of niobium oxide (Nb 2 O 3) are dispersed in acrylic resin.
  • the base resin is 80 in volume ratio and about 20 in niobium oxide. These are mixed evenly.
  • the fine particles have a problem that they tend to aggregate, but a necessary dispersion state can be generated by a technique such as applying a charge to the particle surface to disperse.
  • the mixing and dispersion of the resin and the base material are performed in-line at the time of injection molding of the objective lens.
  • the material is not cooled and solidified until it is formed into an objective lens.
  • This volume ratio controls the rate of change of the refractive index with respect to the temperature. In addition, it can be appropriately increased or decreased, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
  • the ratio is 80:20, ie 4: 1 in the above example, but from 90:10 (9: 1) to 60:40
  • the fine particles are preferably inorganic and more preferably acidic. And it is preferable that the acid state is saturated and the acid is not oxidized any more.
  • an inorganic substance is preferable because it is low in reaction with the base resin, which is a high molecular organic compound, and is preferred as an acid so as to prevent deterioration due to use. Come out.
  • oxidation tends to be accelerated under severe conditions such as high temperatures and laser irradiation.
  • inorganic oxide fine particles can prevent deterioration due to oxidation.
  • the resin as described in JP-A-2004-144951, JP-A-2004-144954, JP-A-2004-144953, etc. is suitably used as the base material. Adopt well.
  • the force described with an example of a lens in which a superposition structure in which a diffraction structure and a phase structure are superposed is formed on an optical surface has the same function. It can be set as the superimposition structure on which the optical path difference providing structure was superimposed. More specifically, when the wavelength of the incident light beam is set to a longer wavelength, the first optical path difference providing structure in which the spherical aberration changes in the direction of insufficient correction, and the wavelength of the incident light beam is set to a longer wavelength.
  • a spherical structure is created by superimposing at least two different optical path difference providing structures such as a second optical path difference providing structure in which spherical aberration changes in the overcorrected direction on one surface of a lens having power.
  • the objective lens can be obtained since the wavelength dependency of aberration is small.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the first optical information recording medium is BD
  • the second optical information recording medium is DVD.
  • the first optical pickup device PU1 receives a reflected light beam from the information recording surface RL1 of the blue-violet semiconductor laser LD1 and BD as a first light source that emits a first light beam having a first wavelength of 408 nm.
  • Information recording surface RL2 of the second module LD1 and the second optical disk OD2 as the second light source emitting the second light flux with the second wavelength of 658nm The second module MD2, integrated with the second photodetector PD2 that receives the reflected beam from the light, the dichroic prism PS, the collimating lens CL, the aperture ST, the objective lens OBJ, and the focusing Z tracking 2 Axial actuator AC, etc. is also roughly configured.
  • the optical surface on the light source side is divided into a central region including the optical axis and a peripheral region around it, and a diffraction structure and a phase structure are formed in the central region.
  • the divergent light beam having a first wavelength of 408 nm emitted from the blue-violet semiconductor laser LD1 is transmitted through the Dike mouth prism Pr. It is converted into circularly polarized light, its beam diameter is regulated by the stop ST, and becomes a spot formed on the information recording surface RL 1 of the BD via the protective layer PL1 having a thickness of 0.0875 mm by the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL As a result, the light beam converges on the light receiving surface of the first photodetector PD1 after passing through the dichroic prism PS. Then, using the output signal of the first photodetector PD1, the information recorded on the BD can be read by tracking the objective lens OBJ with the two-axis actuator AC.
  • the divergent light beam having the second wavelength of 658 nm emitted from the red semiconductor laser LD2 is reflected by the polarization dichroic prism PS, converted into a parallel light beam by the collimator lens CL, and then linearly polarized by a 1Z4 wavelength plate (not shown). It is converted into circularly polarized light and enters the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL
  • the light beam is converged by the dichroic prism PS and then converged on the light receiving surface of the second photodetector PD2.
  • the output signal of the second photodetector PD2 the information recorded on the DVD can be read by tracking the objective optical element OBJ with the two-axis actuator AC.
  • the peripheral area of the objective lens OBJ is an aspheric surface where no fine step structure is formed
  • the light beam having the second wavelength of 658 nm that has passed through the peripheral area contributes to spot formation on the information recording surface RL2 of the DVD. Does not flare. This automatically limits the aperture corresponding to the numerical aperture of the DVD.
  • a power of 10 (for example, 2.5 X 10 — 3) is expressed using E (for example, 2.5E 1 3).
  • E for example, 2.5E 1 3
  • the range h represents the distance from the optical axis
  • the unit is mm
  • the unit of curvature radius (R, Ri) is mm.
  • the optical surface of the objective optical system is formed as an aspherical surface that is axisymmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in the table are substituted into formula (8).
  • optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted for the optical path difference function of Equation (9).
  • The wavelength of the light beam incident on the diffractive structure
  • Example 1 is an objective lens made of glass (OHAR A S-BSM14) suitable for the optical pickup device shown in FIG.
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1 to the 2-5th plane corresponds to the central area, and the 2nd to 6th plane corresponds to the peripheral area.
  • the diffractive structure with blazed wavelength ⁇ B: 490nm is formed on the 2nd-1st surface to the 2nd 5th surface. DVD: 79%.
  • the 2-6th surface is aspherical.
  • Phase 2-1 surface force Phase structure is superimposed on the 2nd to 5th surfaces, so that for one beam passing through the 2nd to 1st surface, 5 x ⁇ 1 on the 2nd to 2nd surface Since an optical path difference of (nm) is added, the phase is delayed by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X 1 (nm) and 5 X ⁇ 1 for the ⁇ 1 beam transmitted through the 2nd to 1st surface respectively.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength 2.
  • the same amount of optical path difference is added to the light flux having the wavelength.
  • the negative direction force is once switched to the positive direction! / See (see FIG. 5).
  • the optical surface on the optical disc side has an aspherical shape.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third order component: 0.029 1RMS and the higher order component: 0.010 ⁇ 1RMS
  • the diffraction structure of the second surface The high-order component is reduced with respect to the amount of change when the phase structure is not superimposed (third-order component: 0.009 ⁇ 1 RMS, high-order component: 0.029 RMS).
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • Example 2 is an objective lens made of resin suitable for the optical pickup device shown in FIG. Table 3 and Table 4 show the lens data of Example 2 (including design wavelength, focal length, image-side numerical aperture, and magnification).
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1 to the 2-5th plane corresponds to the central area, and the 2nd to 6th plane corresponds to the peripheral area.
  • the 2nd-1 surface force The diffractive structure of blazed wavelength ⁇ B: 490nm is formed on the 2nd-5th surface, the diffraction order is BD: 1st order, DVD: 1st order, and its diffraction efficiency is BD: 85 %, DVD: 78%.
  • the 2-6th surface is aspherical.
  • Phase structure is superimposed on the 2nd-5th surface, and for the first light beam passing through the 2-1st surface, 5 X ⁇ 1 on the 2nd-2nd surface Since an optical path difference of (nm) is added, the phase is delayed by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X 1 (nm) and 5 X ⁇ 1 for the ⁇ 1 beam transmitted through the 2nd to 1st surface respectively.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength 2.
  • the same amount of optical path difference is added to the light flux having the wavelength.
  • the negative direction force is once switched to the positive direction! / See (see FIG. 5).
  • the optical surface on the optical disc side (third surface) is aspherical.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third-order component: 0.035 1RMS and the higher-order component: 0.014 ⁇ 1RMS
  • the diffraction structure of the second surface The high-order component is reduced with respect to the amount of change when the phase structure is not superimposed (third-order component: 0.020 ⁇ 1 RMS, high-order component: 0.032 RMS).
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • Example 3 is an objective lens made of glass (OH-ARA S-B SM14) suitable for the optical pickup device shown in FIG.
  • Tables 5 and 6 show the lens data of Example 3 (including the design wavelength, focal length, image-side numerical aperture, and magnification).
  • the optical surface on the light source side consists of the 2-1 surface including the optical axis, the 2-2 surface, the 2-3 surface, the 2-4 surface, It consists of 6 areas, 2-5 and 2-6.
  • the area from the 2-1st to 2nd-5th planes corresponds to the central area, and the 2nd-6th plane corresponds to the peripheral areas.
  • Diffraction structures with a blazed wavelength ⁇ B: 490 nm are formed on the 2nd to 1st surfaces to the 2nd to 5th surfaces. : 85%, DVD: 79%.
  • the 2-6th surface is aspherical.
  • Phase 2-1 surface force The phase structure is superimposed on the 2nd to 5th surfaces, so that for one light beam passing through the 2nd to 1st surface, 5 X ⁇ 1 on the 2nd to 2nd surfaces Since an optical path difference of (nm) is given, the phase advances by 2 ⁇ X 5 (rad) in terms of phase difference.
  • 10 X ⁇ 1 (nm) and 1 15 X ⁇ 1 (nm), 1 20 X ⁇ 1 (nm) optical path difference is given, so that 2 ⁇ X 10 (rad), 2 ⁇ X 15 (rad), 2 ⁇ X 20 ( rad) will advance the phase.
  • the optical path difference added to the light flux of each wavelength by one step of the phase structure is 2040 nm for the first wavelength ⁇ 1 and 1974 nm for the second wavelength ⁇ 2.
  • the optical path difference of substantially the same amount is added to the light flux having the wavelength of.
  • the direction of the blaze structure is positive and constant in the central region (see FIG. 4).
  • the optical surface on the optical disc side (third surface) is aspherical.
  • the amount of change in spherical aberration when the first wavelength ⁇ 1 is changed by +5 nm is the third order component: 0.006 ⁇ 1RMS, the higher order component: 0.014 ⁇ 1RMS Yes, the amount of change when the phase structure is not superimposed on the diffraction structure of the second surface (3rd order component: 0.085 ⁇ 1RMS, higher order component: 0 042 ⁇ RMS), the higher order components are reduced.
  • “higher order component” is defined as the square root of the square sum of the fifth and seventh order components.
  • the force for setting the blazed ⁇ wavelength ⁇ ⁇ of the diffractive structure to 490 nm is not limited to this, and by changing the blazed ⁇ wavelength ⁇ B, the first wavelength ⁇ It is possible to change the diffraction efficiency of the first and second wavelengths ⁇ 2 appropriately.
  • the powers illustrating some examples in which the first optical path difference providing structure is a diffractive structure and the second optical path difference providing structure is a phase structure are a diffractive structure and the second optical path difference providing structure is a phase structure.
  • the present invention is limited to these examples. is not.
  • the diffraction order that maximizes the diffraction efficiency for the light beam with the first wavelength ⁇ 1 is the third-order diffracted light, and the diffraction efficiency is the maximum for the light beam with the second wavelength ⁇ 2.
  • the diffraction structure in which the diffraction order is the second-order diffracted light is the first optical path difference providing structure, and an optical path difference of approximately 5 times ⁇ 1 is imparted to the light beam having the first wavelength ⁇ 1, and A phase structure that gives almost three times the optical path difference of ⁇ 2 to the light beam with the second wavelength ⁇ 1 is used as the second optical path difference providing structure, and the first and second optical path difference providing structures are superimposed. Can be used.
  • an optical path difference of about 5 times ⁇ 1 is imparted to the light flux of the first wavelength ⁇ 1, and an optical path of almost 3 times ⁇ 2 of the light flux of the second wavelength ⁇ 2
  • the phase structure that gives the difference is the first optical path difference giving structure, and the diffraction order that maximizes the diffraction efficiency for the light beam with the first wavelength ⁇ 1 is the second-order diffracted light, and the second wavelength ⁇ 2
  • the second optical path difference providing structure a superposed structure in which the first and second optical path difference providing structures are overlapped is used as the second optical path difference providing structure. This is also a preferred example.
  • an objective lens that can be applied to an optical pickup device that records and Z or reproduces information on a plurality of types of optical information recording media using light beams having different wavelengths, and has a wavelength of spherical aberration. It is possible to provide an objective lens having a small dependency, an optical pickup device using the objective lens, and an optical information recording / reproducing device equipped with the optical pickup device.
  • a lens, an optical pickup device using the objective lens, and an optical information recording / reproducing device equipped with the optical pickup device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 本発明に係る対物レンズは、光ピックアップ装置に用いられる対物レンズであって、パワーを有するレンズの一面に、入射される光束の波長をより長い波長とした場合には球面収差が補正不足方向に変化する第1光路差付与構造と、入射される光束の波長をより長い波長とした場合には球面収差が補正過剰方向に変化する第2光路差付与構造とを重畳させた重畳構造とを有する。

Description

明 細 書
対物レンズ、光ピックアップ装置及び光情報記録再生装置
技術分野
[0001] 本発明は、対物レンズ、光ピックアップ装置及び光情報記録再生装置に関し、特に 異なる波長の光源を用いて異なる光情報記録媒体に対して適切に情報の記録及び
Z又は再生を行える光ピックアップ装置及び光情報記録再生装置、並びにそれに用 いる対物レンズに関する。
背景技術
[0002] 近年、波長 400nm程度の青紫色半導体レーザを用いて、情報の記録及び Z又は 再生(以下、記録及び Z又は再生を、記録 Z再生、或いは、記録再生ともいう)を行 える高密度光ディスクシステムの研究 '開発が急速に進んでいる。一例として、 NAO . 85、光源波長 405nmの仕様で情報記録 Z再生を行う光ディスク、いわゆる Blu— r ay Disc (以下、 BDという)では、 DVD (NAO. 6、光源波長 650nm、記憶容量 4、 7 GB)と同じ大きさである直径 12cmの光ディスクに対して、 1層あたり 23〜27GBの情 報の記録が可能であり、又、 NAO. 65、光源波長 405nmの仕様で情報記録 Z再生 を行う光ディスク、いわゆる HD DVD (High Definition DVD :以下、 HDという) では、直径 12cmの光ディスクに対して、 1層あたり 15〜20GBの情報の記録が可能 である。尚、 BDでは、光ディスクの傾き (スキュー)に起因して発生するコマ収差が増 大するため、 DVDにおける場合よりも保護層を薄く設計し (DVDの 0. 6mmに対して 、 0. 1mm)、スキューによるコマ収差量を低減している。以下、本明細書では、このよ うな光ディスクを「高密度光ディスク」と呼ぶ。
[0003] ところで、力かるタイプの高密度光ディスクに対して適切に情報の記録 Z再生がで きると言うだけでは、光ディスクプレーヤ Zレコーダの製品としての価値は十分なもの とはいえない。現在において、多種多様な情報を記録した DVDが販売されている現 実をふまえると、高密度光ディスクに対して情報の記録 Z再生ができるだけでは足ら ず、例えばユーザが所有している DVDに対しても同様に適切に情報の記録 Z再生 ができるようにすることが、高密度光ディスク用の光ディスクプレーヤ Zレコーダとして の商品価値を高めることに通じるのである。このような背景から、高密度光ディスク用 の光ディスクプレーヤ Zレコーダに搭載される光ピックアップ装置は、高密度光デイス クと DVDの何れに対しても互換性を維持しながら適切に情報を記録 Z再生できる性 能を有することが望まれる。
[0004] 高密度光ディスクと DVDの何れに対しても互換性を維持しながら適切に情報を記 録 Z再生できるようにする方法として、高密度光ディスク用の光学系と DVD用の光学 系とを情報を記録 Z再生する光ディスクの記録密度に応じて選択的に切り替える方 法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコスト が増大する。
[0005] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置にお!ヽても、高密度光ディスク用の光学系と DVD用の 光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らす のが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化し、更に この対物レンズを単レンズ構成とすることが光ピックアップ装置の構成の簡素ィ匕、低コ スト化に最も有利となる。尚、情報の記録 Z再生を行う際に使用される光束の波長が 互いに異なる複数種類の光ディスクに対して共通な対物レンズとして、球面収差の波 長依存性を有する回折構造をその表面に形成し、カゝかる回折構造の波長依存性を 利用して、記録 Z再生波長や、光ディスクの保護層厚さの違いによる球面収差を補 正する対物レンズが知られて 、る。
[0006] ここで、特許文献 1には、高密度光ディスクと DVDに対して互換可能に情報の記録 及び Z又は再生を行える単レンズ構成の対物レンズが開示されている。
[0007] ここで、特許文献 1に開示された対物レンズは、青紫色レーザ光束に対して 2次回 折光を発生させ、 DVD用の赤色レーザ光束に対して 1次回折光を発生させるような 回折構造を有し、カゝかる回折構造の回折作用により高密度光ディスクと DVDの保護 層厚さの違いによる球面収差を補正するものである。しかし、この対物レンズは、単レ ンズ構成であるので、低コストで生産が可能であるものの、以下に述べるような 2つの 課題を有している。
[0008] 課題の 1つは、回折構造により発生する球面収差の波長依存性が大きいことである 。このような場合、発振波長が設計波長力もずれたレーザ光源が使用できず、レーザ 光源の選別が必要となるため光ピックアップ装置の製造コストが増大する。回折光の 回折角は、「回折次数 X波長 Z回折ピッチ」で表される。回折作用を利用して使用波 長 (以下、使用波長を、記録 Z再生波長ともいう)が互いに異なる光情報記録媒体( 以下、光情報記録媒体を、光ディスクともいう)間の互換を実現するためには、使用 波長間の回折角に所定の差を持たせる必要がある。上述した「レーザ光源の選別問 題」は、高密度光ディスクと DVDの使用波長間で「回折次数 X波長」の値が殆ど同じ 回折構造を利用して ヽることに起因して ヽる。特許文献 1に開示された対物レンズに ぉ 、て、青紫色レーザ光束と赤色レーザ光束との「回折次数 X波長」の比は 810Z6 55 = 1. 24と 1に近いため(但し、波長の単位を nmとした)、高密度光情報記録媒体 と DVDの保護層厚さの違 、による球面収差を補正するために必要な回折角の差を 得るためには、回折ピッチを小さくしなければならない。そのため、回折構造の球面 収差の波長依存性が大きくなり、上述したような、「レーザ光源の選別問題」が顕在化 する。
[0009] もう 1つの課題は、傾斜が大きな光学面上に回折構造を形成しているため、段差部 分の光束のけられや、回折構造の輪帯形状角部などの微細な構造の転写不良によ る透過率低下が起こり、十分な光利用効率が得られないことである。対物レンズの開 口数が大きくなるほど、光学面の傾斜は大きくなるため、開口数 0. 85の対物レンズ を使用する BDでは、かかる透過率の低下がより顕著となる。
特許文献 1 :特開 2004— 79146号公報
発明の開示
[0010] 本発明は、上記の課題を鑑みてなされたものであり、本発明の目的は、異なる波長 の光束を用いて、複数種類の光情報記録媒体に対して情報の記録及び Z又は再生 を行う光ピックアップ装置に適用可能な対物レンズであって、球面収差の波長依存 性が小さい対物レンズ、この対物レンズを使用した光ピックアップ装置、及び、この光 ピックアップ装置を搭載した光情報記録再生装置を提供することである。本発明の更 なる目的は、異なる種類の光情報記録媒体に対して良好に情報の記録及び Z又は 再生を行える対物レンズであって、球面収差の波長依存性が小さぐ高い透過率を 有する単レンズ構成の対物レンズ、この対物レンズを使用した光ピックアップ装置、 及び、この光ピックアップ装置を搭載した光情報記録再生装置を提供することである
[0011] 上記課題を解決するため、本発明に係るに記載の対物レンズは、光ピックアップ装 置に用いられる対物レンズであって、パワーを有するレンズの一面に、所定の特性を 持つ第 1光路差付与構造と第 2光路差付与構造とを重畳させた重畳構造を有する。 図面の簡単な説明
[0012] [図 1]対物レンズの縦球面収差図の概略図である。
[図 2]対物レンズの縦球面収差図の概略図である。
[図 3]対物レンズの縦球面収差図の概略図である。
[図 4]光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの例にか かる断面図である。
[図 5]光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの別例に かかる断面図である。
[図 6]本実施の形態の光ピックアップ装置の構成を概略的に示す図である。
発明を実施するための最良の形態
[0013] 以下本発明の好ましい形態を説明する。
[0014] 第 1の構成の対物レンズは、光ピックアップ装置に用いられる対物レンズであって、 パワーを有するレンズの一面に、入射される光束の波長をより長い波長とした場合に は球面収差が補正不足方向に変化する第 1光路差付与構造と、入射される光束の 波長をより長い波長とした場合には球面収差が補正過剰方向に変化する第 2光路差 付与構造とを重畳させた重畳構造を有する。
[0015] 第 2の構成の対物レンズは、第 1の構成に記載の対物レンズにおいて、前記レンズ の前記一面には、前記重畳構造が形成された部分と、前記重畳構造が形成されて いない部分とを有する。
[0016] 第 3の構成の対物レンズは、第 1又は第 2の構成に記載の対物レンズにおいて、前 記重畳構造が形成されて ヽな ヽ部分は、非球面である。
[0017] 第 4の構成の対物レンズは、第 1乃至第 3の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、光軸を含む中央領域と前記中央領域を囲む周辺 領域とを有し、前記重畳構造は前記中央領域に形成されている。
[0018] 第 5の構成の対物レンズは、第 1乃至第 4の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、光ピックアップ装置に搭載された際に光源側に配 置される面である。
[0019] 第 6の構成の対物レンズは、第 1乃至第 5の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、凸面である。
[0020] 第 7の構成の対物レンズは、第 1乃至第 6の構成の何れかに記載の対物レンズにお いて、前記レンズの他方の面は、非球面である。
[0021] 第 8の構成の対物レンズは、第 1乃至第 7の構成の何れかに記載の対物レンズにお いて、前記レンズは、光ピックアップ装置に光情報記録媒体が対向配置された際に、 最も光情報記録媒体側に配置されるレンズである。
[0022] 第 9の構成の対物レンズは、第 1乃至第 8の構成の何れかに記載の対物レンズにお いて、前記レンズからなる単レンズ構成である。
[0023] 第 10の構成の対物レンズは、第 1乃至第 9の構成の何れかに記載の対物レンズに おいて、第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出 射する第 2光源と、対物レンズを含む集光光学系と、光検出器とを少なくとも有し、厚 さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1光源から出射される 第 1波長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を行い、厚さ t2(tl≤t 2)の保護層を有する第 2光情報記録媒体に対して、第 2光源力 出射される第 2波 ¾ 2 ( λ Κ λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を行うことができ る光ピックアップ装置に用いられる。
[0024] 第 11の構成の対物レンズは、第 1乃至第 10の構成の何れかに記載の対物レンズ において、前記第 1光路差付与構造は、回折構造である。
[0025] 第 12の構成の対物レンズは、第 8の構成に記載の対物レンズにおいて、前記第 1 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、同一次数となる 回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記第 2光束に対 して同量の光路差を付加させる位相構造である。
[0026] 第 13の構成の対物レンズは、第 12の構成に記載の対物レンズにおいて、前記位 相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形成されて いる。
[0027] 第 14の構成の対物レンズは、第 12又は第 13の構成に記載の対物レンズにおいて 、前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たす。
[0028] λ 1 < λ < λ 2 (1)
第 15の構成の対物レンズは、第 12乃至第 14の構成の何れかに記載の対物レンズ において、以下の(2)式、及び(3)式を満たす。
[0029] 380nm< λ K420nm (2)
630nm< λ 2< 680nm (3)
第 16の構成の対物レンズは、第 15の構成に記載の対物レンズにおいて、前記第 1 光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レンズの開口 数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う際の、 前記対物レンズの開口数を NA2としたとき、前記開口数 NA2内に相当する領域内 に前記重畳構造を備え、前記回折構造のブレーズ化波長 λ Β、前記開口数 ΝΑ1、 及び前記開口数 ΝΑ2が以下の (4)式、及び(5)式を満たす。
[0030] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
第 17の構成の対物レンズは、第 15又は第 16の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0031] 第 18の構成の対物レンズは、第 11乃至第 17の構成の何れかに記載の対物レンズ において、前記回折構造は、光軸力も離れるに従って、負の向き力も正の向きへとブ レーズ構造の向きが少なくとも一度入れ替わる。
[0032] 第 19の構成の対物レンズは、第 11乃至第 17の構成の何れかに載の対物レンズに おいて、前記回折構造は、正の向きのブレーズ構造である。 [0033] 第 20の構成の対物レンズは、第 10の構成に記載の対物レンズにおいて、前記第 1 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異なる次数とな る回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記第 2光束に 対して同量の光路差を付加させる位相構造である。
[0034] 第 21の構成の対物レンズは、第 20の構成に記載の対物レンズにおいて、前記第 1 光束の入射に対して回折効率が最大となる回折次数は 3であって、前記第 2光束の 入射に対して回折効率が最大となる回折次数は 2である。
[0035] 第 22の構成の対物レンズは、第 20又は第 21の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0036] 第 23の構成の対物レンズは、第 1乃至第 10の構成の何れかに記載の対物レンズ において、前記第 2光路差付与構造は、回折構造である。
[0037] 第 24の構成の対物レンズは、第 23の構成に記載の対物レンズにおいて、前記第 2 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異なる次数とな る回折構造であり、前記第 1光路差付与構造は、前記第 1光束及び前記第 2光束に 対して同量の光路差を付加させる位相構造である。
[0038] 第 25の構成の対物レンズは、第 24の構成に記載の対物レンズにおいて、前記第 1 光束の入射に対して回折効率が最大となる回折次数は 2であって、前記第 2光束の 入射に対して回折効率が最大となる回折次数は 1である。
[0039] 第 26の構成の対物レンズは、第 24又は第 25の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0040] 第 27の構成の対物レンズは、第 1乃至第 26の構成の何れかに記載の対物レンズ において、前記レンズはガラスレンズである。
[0041] 第 28の構成の対物レンズは、第 1乃至第 26の構成の何れかに記載の対物レンズ において、前記レンズは、前記重畳構造を有する榭脂層がガラス素子上に接合され た構成である。
[0042] 第 29の構成の対物レンズは、第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2 波長 λ 2の第 2光束を出射する第 2光源と、対物レンズを含む集光光学系と、光検出 器とを有し、厚さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1光源か ら出射される第 1波長 λ ΐの第 1光束を用 、て情報の再生及び Ζ又は記録を行 、、 厚さ t2 (tl≤t2)の保護層を有する第 2光情報記録媒体に対して、第 2光源力も出射 される第 2波長 λ 2 ( λ 1 < λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を 行う光ピックアップ装置に用いられる対物レンズにおいて、単レンズ構成を有し、 光軸を含む中央領域と、該中央領域を囲む周辺領域との少なくとも 2つの領域を有 する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されている。
なお、ここでいう「位相構造」とは、光軸方向の段差を複数有し、入射光束に対してそ の段差間で光路差を付加する構造の総称である。この段差により入射光束に付加さ れる光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整 数倍であっても良い。
また、本明細書において、「光路差付与構造」とは、上述の位相構造、及び回折構造 を含む位相差付与構造を含むものとする。
[0043] 本発明の対物レンズを想起するに至る考え方を、分かり易く説明するために、以下 に具体的な一例を挙げながら説明するが、本発明はこの具体例に限定されるもので はない。図 1〜3は、対物レンズの縦球面収差図の概略図である。図 1〜3に示す、 近軸像点位置を原点とする球面収差にお!、て、近軸像点よりも手前側で光軸と交わ る場合(図で原点より左側、すなわち対物レンズに近い側)を「補正不足」、近軸像点 よりも遠い位置で光軸と交わる場合(図で原点より右側、すなわち対物レンズに遠い 側)を「補正過剰」とする。ここでは、第 1の光情報記録媒体として BD、第 2の光情報 記録媒体として DVDを例にとり説明する。縦軸の瞳座標 E2は DVDの開口数に相当 し、 E1は BDの開口数に相当する。 [0044] まず、 BDと DVDの保護層厚さの差に起因して生じる球面収差、及び Z又は使用 する光束の波長の差に起因して生じる球面収差を補正するために回折構造のみを、 前記対物レンズの光学面における中央領域 (瞳座標 0〜E2の範囲)に形成した場合 を考える。図 1は、力かる場合の縦球面収差図である。
[0045] 図 1の実線で示すように、波長 λ 1の光束が通過した場合、球面収差の値は光軸か らの位置に関わらずゼロであるとする。中央領域に形成した回折構造は BDと DVD の保護層厚さの差に起因する球面収差を補正するための構造であるので、入射光 束の波長が長くなつた場合に球面収差が補正不足方向に変化し、入射光束の波長 が短くなつた場合に球面収差が補正過剰方向に変化するような特性を有する。従つ て、波長 λ 1が Δ λ ( Δ λ >0)だけ長くなつた場合には、図 1において点線で示した ように、中央領域では球面収差は補正不足方向に変化し、波長 λ 1が Δ λ ( Δ λ > 0)だけ短くなつた場合には、図 1において一点鎖線で示したように、中央領域では球 面収差は補正過剰方向に変化する。しかし、図 1に示す例では、周辺領域である瞳 座標 Ε2〜Ε1の範囲においては、回折構造が存在しないので、球面収差の波長依 存性は小さぐ球面収差はほぼ一定である。このように、波長が変化した場合に、球 面収差カーブが不連続になると、 5次以上の高次成分の球面収差が発生することに なるため問題となる。光ピックアップ装置において光源として使用される半導体レー ザは、製造誤差により数 nm程度の波長誤差を個体間で持つ。力かる波長誤差により 発生する 3次球面収差成分は、コリメートレンズの光軸方向の位置調整により補正で きるものの、高次球面収差は、コリメートレンズの光軸方向の位置調整だけでは補正 出来ない。そのため、図 1に示したような球面収差の波長依存性を有する対物レンズ では、設計波長力もずれた半導体レーザが使用できないため、半導体レーザの選別 が必要となり量産として成立しな 、虞がある。
[0046] 上述のような課題に対して、本発明における対物レンズの一態様では、図 2に示す ような球面収差の波長依存性を有する位相構造を形成した。図 2は、対物レンズの光 学面に、所定の位相構造のみを形成した場合の縦球面収差図である。この位相構 造は、入射光束の波長が長くなつた場合に球面収差が補正過剰方向に変化し、入 射光束の波長が短くなつた場合に球面収差が補正不足方向に変化し、前述した回 折構造とは逆の波長依存性を有する。
[0047] 図 1に示す回折構造の特性に合わせて、図 2に示す位相構造の特性を決めること で、回折構造の球面収差の波長依存性をうち消すようにできできる。また更に、図 3 に示す縦球面収差図のように、 λ ΐ - Mの光束が通過した場合でも λ 1 + Δ λの 光束が通過した場合でも、球面収差カーブが連続となるようにした場合には、高次球 面収差の発生を小さくできる。
[0048] このとき、位相構造により付加される光路差を、 BDの設計波長( λ 1)と DVDの設 計波長( λ 2)のそれぞれに対して同じ位相差となる位相構造の段差量に決定するこ とによって、位相構造を形成した場合でも、回折構造による λ 1とえ 2の集光特性を 変化させず、回折構造の球面収差の波長依存性 (ここでは、 λ ΐやえ 2から数 nmの 範囲で入射光束の波長が変化した際の球面収差変化を指す)を補正することが可能 となる。尚、「同量の光路差」とは、 λ ΐとえ 2に対して位相構造により付加される光路 差が以下の 2つの式を満たすものとする。
[0049] a X O. 9 X λ 1 ≤ LI ≤ a X l . I X λ 1
b X O. 9 Χ λ 2 ≤ L2 ≤ b X l . I X λ 2
ここで、 Ll、 L2はそれぞれ、位相構造の一つの段差によって生じる波長 λ 1、え 2で の光路差である。また、 aは任意の整数を表し、 bは aよりも小さい任意の正の整数を 表す。
[0050] 尚、 aと bの組み合わせは、(a、 b) = (5、 3)、(10、 6)であることが好ましい。
[0051] ここで、本態様の対物レンズでは、回折効率が最大となる回折次数が、前記第 1光 束及び前記第 2光束の何れに対しても同一次数となるように、回折構造の段差量を 決定しているため、大きなピッチでの球面収差補正 (記録 Z再生波長や、保護層厚 さの違いによる球面収差の補正)が可能である。従って、回折構造の球面収差の波 長依存性が大きくなりすぎな 、ため、それを補正するための位相構造のピッチが小さ くなりすぎない。そのため、回折構造や位相構造の形状誤差による透過率低下を抑 制できる。
[0052] さらに、本態様の対物レンズでは、比較的傾斜が小さい中央領域に微細な段差を 有する回折構造や位相構造を形成しているため、段差部分の光束のけられや、微細 構造の転写不良による透過率低下が抑制でき、十分な光利用効率を得ることが可能 である。
[0053] 尚、回折構造と位相構造とは、異なる光学面に形成しても上述の効果が得られるが 、この場合、形状誤差による透過率低下が起こる可能性のある光学面が 2つとなって しまう。本態様の対物レンズのように、回折構造と位相構造とを同一の光学面上に重 畳して形成することで、形状誤差による透過率低下を抑制できると ヽぅ利点がある。
[0054] 図 4は、光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの例 にかかる断面図であるが、理解しやすいように回折構造 DSと位相構造 PSとは誇張し て描いている。中央領域 CRは、そこを通過した第 1光束及び第 2光束がそれぞれ共 に、それぞれ対応する光情報記録媒体の記録又は再生に共通して利用される領域 に対応し、周辺領域 PRは、そこを通過した第 1光束のみ力 対応する光情報記録媒 体の記録又は再生の際に利用される領域に対応する。図 4において、実線で示す光 軸 Xを中心とした断面がブレーズ状の回折構造 DSは、位相構造 PSと重畳させてい るため、局所的に軸線方向に変位した構成となっている。図 4に示す例では、回折構 造 DSが正の向きのブレーズ構造のみ力 なるために、位相構造 PSにおける光軸方 向の段差及びその延長線とブレーズの頂点を通る線とを結ぶと、位相構造 PSの形 状を示す包絡線(図 4で示す点線)が描かれる。尚、回折構造 DSとして、負の向きの ブレーズ構造を混在させてもょ 、。
[0055] 第 30の構成の対物レンズは、第 29の構成に記載の対物レンズにおいて、前記回 折構造は、入射光束の波長が長くなつた場合に、球面収差が補正不足方向に変化 するような球面収差の波長依存性を有するとともに、前記位相構造は、入射光束の 波長が長くなつた場合に、球面収差が補正過剰方向に変化するような球面収差の波 長依存性を有する。
[0056] 第 31の構成の対物レンズは、第 29又は第 30の構成に記載の対物レンズにおいて 、前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されている。より具体的には、図 4において、位相構造 PSの形状を示す包絡線の 1 つの段差内に、回折構造 DSのブレーズ等が丁度 1以上の整数個分おさまっている 状態をいう。これにより、金型加工が容易になり、回折構造や位相構造を精度良く創 成することができる。
[0057] 第 32の構成の対物レンズは、第 29乃至第 31の構成のいずれかに記載の対物レン ズにおいて、前記同一次数は 1であって、前記回折構造のブレーズィヒ波長 λ Bが以 下の(1)式を満たすので、前記回折構造を通過する前記第 1波長 λ 1の第 1光束と、 前記第 2波長 λ 2の第 2光束の回折効率をバランスさせることができる。
[0058] λ 1 < λ < λ 2 (1)
第 33の構成の対物レンズは、第 29乃至第 31の構成のいずれかに記載の対物レン ズにおいて、
以下の(2)式、及び(3)式を満たすので、例えば BDまたは HDと、 DVDとに対して 互換可能に情報の記録及び Ζ又は再生を行うことができる。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
本実施の対物レンズは、使用波長が(2)式や (3)式を満たす場合に特に有効であ り、その効果を最大限に発揮することが可能である。
[0059] 第 34の構成の対物レンズは、第 33の構成に記載の対物レンズにおいて、前記第 1 光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レンズの開口 数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う際の、 前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口数 NA2内 に相当する領域であって、前記回折構造のブレーズ化波長 λ Β、前記開口数 ΝΑ1、 及び前記開口数 ΝΑ2が以下の (4)式、及び(5)式を満たす。
[0060] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
回折構造のブレーズィ匕波長 λ Βを第 1波長 λ 1と第 2波長 λ 2の中間の波長とする ことで、回折効率をそれぞれの光束に対して振り分けることが好ましいが、第 1波長え 1と第 2波長 λ 2では、波長差が大きいため、何れの波長に対しても高い回折効率を 確保することが出来ない可能性がある。
[0061] 対物レンズの開口数 ΝΑ2が、開口数 NA1に対して十分小さい場合 (すなわち、開 口数 NA1と開口数 ΝΑ2が(5)式を満たす場合)には、第 1波長 λ 1の有効径に占め る、回折構造が形成された領域(中央領域)の面積割合が小さくなるため、第 2波長 λ 2の回折効率を第 2波長 λ 2寄りにした場合 (すなわち、ブレーズ化波長 λ Βが (4) 式を満たす場合)でも、第 1波長 λ 1の回折効率の有効径内面積加重平均値を十分 高く確保することが可能となる。
[0062] ブレーズ化波長 λ Βが (4)式の下限より大き!/、と、第 2波長 λ 2の回折効率を十分 に高く確保できるので、第 2光情報記録媒体への記録 Ζ再生特性を良好なものにす ることが可能となる。一方、ブレーズィ匕波長 λ Βが (4)式の上限より小さいと、第 1波長 λ ΐの回折効率の有効径内面積加重平均を十分に高い値とすることができるため、 第 1光情報記録媒体への記録 Ζ再生特性を良好なものにすることが可能となる。
[0063] 第 35の構成の対物レンズは、第 33又は第 34の構成のいずれかに記載の対物レン ズにおいて、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5 倍であって、前記第 2光束に対しては前記第 2波長え 2の 3倍である。これにより、(2) 式、及び (3)式を満たす第 1波長 λ 1と第 2波長 λ 2とに対して同量の光路差を付カロ させることが可能となる。尚、ここでいう「5倍」或いは「3倍」とは、光学設計上の見地 力 実質的に 5倍或いは実質的に 3倍であれば良ぐ厳密な意味での整数倍の数値 のみを意図するものではな 、ことは勿論である。本明細書における「ほぼ 5倍」或いは 「ほぼ 3倍」も、それと同様の主旨であり、「ほぼ 5倍」は 4. 8倍〜 5. 2倍であり、「ほぼ 3倍」は 2. 8倍〜 3. 2倍である。
[0064] 第 36の構成の対物レンズは、第 29乃至第 35の構成のいずれかに記載の対物レン ズにおいて、前記周辺領域は、微細な段差構造が形成されない非球面であるので、 傾斜が大きくなる周辺領域の透過率を高めることができる。さらに、中央領域内での み、第 1光情報記録媒体と第 2光情報記録媒体の記録 Ζ再生波長や、保護層厚さの 違いによる球面収差が補正され、周辺領域を通過する第 2光束の球面収差は補正さ れない構成であるので、周辺領域を通過した第 2光束は、第 2光情報記録媒体の情 報記録面上で、スポット形成に寄与しないフレア成分となる。これにより、第 2光情報 記録媒体の開口数に対応した開口制限を自動的に行うことが可能となる。尚、ここで Vヽぅ「微細な段差構造」とは、回折構造や位相構造を ヽぅ。
[0065] 第 37の構成の対物レンズは、第 29乃至第 36の構成のいずれかに記載の対物レン ズにおいて、前記回折構造及び前記位相構造が形成された光学面は、前記光ピック アップ装置に搭載した状態で光源側に位置する光学面であるので、前記対物レンズ に平行光束が入射した場合はもちろんのこと、発散光束或いは収束光束が入射した 場合でも、その発散角又は収束角は比較的小さいので、光線のケラレによる透過率 低下を抑制できる。
[0066] 第 38の構成の対物レンズは、第 29乃至第 37の構成のいずれかに記載の対物レン ズにおいて、前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへと ブレーズ構造の向きが少なくとも一度入れ替わる。尚、本明細書においては、光軸か ら離れるに従って光路長が短くなるブレーズ構造を正の向きであるといい、光軸から 離れるに従って光路長が長くなるブレーズ構造を負の向きであるというものとする。
[0067] 図 5は、光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの別 例に力かる断面図であるが、理解しやすいように表面形状は誇張して描いている。図 5に示す対物レンズ OBJにおいては、中央領域 CRが、光軸 Xを含む第 1領域 R1と、 その周囲の第 2領域 R2と、更にその周囲であって周辺領域 PRと接する第 3領域 R3 とから構成されている。ここで、第 1領域 R1においては、負の向きのブレーズ構造と 位相構造とが重畳されているので、位相構造における光軸方向の段差及びその延 長線とブレーズの底部を通る線とを結ぶと、位相構造 PSの形状を示す包絡線(図 5 で示す点線)となり、第 3領域 R3においては、正の向きのブレーズ構造と位相構造と が重畳されているので、位相構造における段差に相当する位置力 光軸方向へ延 ばした線とブレーズの頂点を通る線とを結ぶと、位相構造 PSの形状を示す包絡線 ( 図 5で示す点線)となる。第 2領域 R2は、負の向きのブレーズ構造と、正の向きのブレ ーズ構造との切り替えのために必要な遷移領域である。この遷移領域は、回折構造 により透過波面に付加される光路差を後述する光路差関数で表現したとき、光路差 関数の変曲点に相当する領域である。光路差関数が変曲点を持つと、光路差関数 の傾きが小さくなるので、ブレーズ構造の輪帯ピッチを広げることが可能となり、回折 構造の形状誤差による透過率低下を抑制できる。
[0068] 尚、ブレーズ構造の向きが光軸力 離れるに従って負の向き力 正の向きへと一度 入れ替わる場合は、位相構造の形状を、図 5に示したように、中央領域の所定の高さ までは、光軸から離れるに従って光路長が長くなり、所定の高さより外側では、光軸 力 離れるに従って光路長が短くなるように、光軸方向に変移する形状(図 5で示す 点線)とするのが好ましい。このとき、位相構造の輪帯のうち最も光路長が長い輪帯 に、中央領域の 7割の高さの位置が含まれるのがより好ましい。
[0069] 第 39の構成の対物レンズは、第 29乃至第 37の構成のいずれかに記載の対物レン ズにおいて、前記回折構造は、正の向きのブレーズ構造である。正の向きのブレー ズ構造を図 4に示す。ブレーズ構造の向きを中央領域内で同一とすることで、金型カロ 工具が金型に対してあたる位置を常に同じ一定に保つことができるので、精度良くブ レーズ構造を創成することが可能となる。さらに、ブレーズ構造の向きを正とすること で、色収差 (微少な波長変化に伴うフォーカス位置ずれ)を補正することが可能となり 、短波長レーザ光源 (青紫色半導体レーザなど)を使用する第 1光情報記録媒体に 対する安定した情報 Z記録特性が得られる。尚、ブレーズ構造の向きが中央領域内 で正の向きの場合は、位相構造の形状を、図 4に示したように、光軸から離れるに従 つて光路長が短くなるように、光軸方向に変移する形状(図 4で示す点線)とするのが 好ましい。
[0070] 第 40の構成の対物レンズは、第 29乃至第 39の構成のいずれかに記載の対物レン ズにおいて、ガラスレンズであるので、温度変化に対する屈折率変化を小さく抑える ことができる。本発明の対物レンズは、榭脂レンズとガラスレンズの何れにも適用可能 であり、同様の効果が得られる力 榭脂レンズはガラスレンズに比べて温度変化に伴 う屈折率変化が 10倍以上大きいため、ガラスレンズとするのが好ましい。球面収差は 、対物レンズの開口数の 4乗で大きくなるため、開口数が 0. 85である BDにおいて対 物レンズを榭脂レンズとした場合、屈折率変化に伴う球面収差の影響が甚大となる。 本発明の対物レンズをガラスレンズとすることで、使用温度範囲の広 ヽ対物レンズを 提供することが可能となる。
[0071] 第 41の構成の対物レンズは、第 29乃至第 39の構成のいずれかに記載の対物レン ズにおいて、前記回折構造及び前記位相構造が形成された榭脂層を、ガラスレンズ 上に接合したので、製造が容易であるにも関わらず、温度変化に対する屈折率変化 を/ J、さく抑えることができる。 [0072] このような構成とすることで、使用温度範囲が広い対物レンズを提供することができ るとともに、回折構造や位相構造の転写性を向上することができる。尚、榭脂層の形 成方法としては、ガラスレンズ上に塗布した紫外線硬化樹脂に、回折構造や位相構 造を形成した金型を押し当て、紫外線照射させることで榭脂層を形成する方法が製 造上適している。
[0073] 第 42の構成の対物レンズは、第 29乃至第 41の構成のいずれかに記載の対物レン ズにおいて、前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前 記対物レンズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は 記録を行う際の焦点距離を f2、倍率を m2としたとき、以下の(6)式、及び (7)式を満 たす。
[0074] -0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
これにより、何れの波長の光束も略平行光束の状態で対物レンズに対して入射させ ることが可能となるので、トラッキングによるコマ収差発生を抑制でき、良好なトラツキ ング特性が得られる。また、倍率 mlと倍率 m2とを同じ倍率とすることで、レーザ光源 と対物レンズとの間に配置される光学素子や、情報記録面からの反射光束を受光す る受光素子を、第 1波長 λ 1と第 2波長え 2とで共通化することが容易になり、光ピック アップ装置の部品点数削減、低コスト化、省スペース化に有利となる。
[0075] 第 43の構成の光ピックアップ装置は、第 1波長 λ 1の第 1光束を出射する第 1光源 と、第 2波長 λ 2の第 2光束を出射する第 2光源と、対物レンズを含む集光光学系と、 光検出器とを有し、厚さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1 光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を 行い、厚さ t2 (tl≤t2)の保護層を有する第 2光情報記録媒体に対して、第 2光源か ら出射される第 2波長 λ 2 ( λ 1 < λ 2)の第 2光束を用いて情報の再生及び Ζ又は 記録を行う光ピックアップ装置にぉ 、て、
前記対物レンズは、単レンズ構成を有し、且つ光軸を含む中央領域と、該中央領 域を囲む周辺領域との少なくとも 2つの領域を有する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されている。この作用効果は 、第 29の構成と同様である。
[0076] 第 44の構成の光ピックアップ装置は、第 43の構成に記載の光ピックアップ装置に おいて、前記対物レンズの回折構造は、入射光束の波長が長くなつた場合に、球面 収差が補正不足方向に変化するような球面収差の波長依存性を有するとともに、前 記位相構造は、入射光束の波長が短くなつた場合に、球面収差が補正過剰方向に 変化するような球面収差の波長依存性を有する。この作用効果は、第 30の構成と同 様である。
[0077] 第 45の構成の光ピックアップ装置は、第 43又は第 44の構成に記載の光ピックアツ プ装置において、前記対物レンズの位相構造の 1つの輪帯内に、前記回折構造の 輪帯が 1以上の整数個だけ形成されている。この作用効果は、第 31の構成と同様で ある。
[0078] 第 46の構成の光ピックアップ装置は、第 43乃至第 45のいずれかに記載の光ピック アップ装置において、前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Bが以下の(1)式を満たす。
[0079] λ 1 < λ < λ 2 (1)
この作用効果は、第 32の構成と同様である。
[0080] 第 47の構成の光ピックアップ装置は、第 43乃至第 46の構成のいずれかに記載の 光ピックアップ装置にお ヽて、
以下の(2)式、及び(3)式を満たす。
[0081] 380nm< λ K420nm (2)
630nm< λ 2< 680nm (3)
この作用効果は、第 33の構成と同様である。
[0082] 第 48の構成の光ピックアップ装置は、第 47の構成に記載の光ピックアップ装置に おいて、前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対 物レンズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は 記録を行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記 開口数 NA2内に相当する領域であって、前記回折構造のブレーズ化波長 λ B、前 記開口数 NA1、及び前記開口数 ΝΑ2が以下の(4)式、及び(5)式を満たす。
[0083] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
この作用効果は、第 34の構成と同様である。
[0084] 第 49の構成の光ピックアップ装置は、第 47又は第 48の構成に記載の光ピックアツ プ装置において、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1 の 5倍であって、前記第 2光束に対しては前記第 2波長え 2の 3倍である。この作用効 果は、第 35の構成と同様である。
[0085] 第 50の構成の光ピックアップ装置は、第 43乃至第 49の構成のいずれかに記載の 光ピックアップ装置において、前記周辺領域は、微細な段差構造が形成されない非 球面である。この作用効果は、第 36の構成と同様である。
[0086] 第 51の構成の光ピックアップ装置は、第 43乃至第 50の構成のいずれかに記載の 光ピックアップ装置にお ヽて、前記回折構造及び前記位相構造が形成された前記対 物レンズの光学面は、前記対物レンズを前記光ピックアップ装置に搭載した状態で 光源側に配置された光学面である。この作用効果は、第 37の構成と同様である。
[0087] 第 52の構成の光ピックアップ装置は、第 43乃至第 51の構成のいずれかに記載の 光ピックアップ装置において、前記回折構造は、光軸力も離れるに従って、負の向き 力も正の向きへとブレーズ構造の向きが少なくとも一度入れ替わる。この作用効果は
、第 38の構成と同様である。
[0088] 第 53の構成の光ピックアップ装置は、第 43乃至第 51の構成のいずれかに記載の 光ピックアップ装置において、前記回折構造は、正の向きのブレーズ構造である。こ の作用効果は、第 39の構成と同様である。
[0089] 第 54の構成の光ピックアップ装置は、第 43乃至第 53の構成のいずれかに記載の 光ピックアップ装置において、前記対物レンズがガラスレンズである。この作用効果 は、第 40の構成と同様である。
[0090] 第 55の構成の光ピックアップ装置は、第 43乃至第 53の構成のいずれかに記載の 光ピックアップ装置において、前記対物レンズは、前記回折構造及び前記位相構造 が形成された榭脂層を、ガラスレンズ上に接合した。この作用効果は、第 41の構成と 同様である。
[0091] 第 56の構成の光ピックアップ装置は、第 43乃至第 55の構成のいずれかに記載の 光ピックアップ装置において、前記第 1光情報記録媒体に対して情報の再生又は記 録を行う際の、前記対物レンズの倍率を mlとし、前記第 2光情報記録媒体に対して 情報の再生又は記録を行う際の、前記対物レンズの倍率を m2としたとき、以下の(6 )式、及び (7)式を満たす。
[0092] -0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
この作用効果は、第 42の構成と同様である。
[0093] 第 57の構成の光ピックアップ装置は、光源と、第 1乃至第 28の構成の何れかに記 載の対物レンズと、光検出器とを備えた。
[0094] 第 58の構成の光情報記録再生装置は、第 43乃至第 57の構成のいずれかに記載 の光ピックアップ装置を搭載した。
[0095] また、本明細書にぉ 、て、「対物レンズ」とは、光ピックアップ装置にお!、て光情報 記録媒体に対向する位置に配置され、光源から射出された光束を、光情報記録媒 体 (光ディスクともいう)の情報記録面上に集光する機能を有する光学系であって、光 ピックアップ装置に搭載された際には、ァクチユエータにより少なくとも光軸方向に変 位可能される光学系を指す。「対物レンズ」は単レンズであっても良いし、複数のレン ズから構成されて 、ても良ぐまた他の光学素子を含んで 、ても良 、。
[0096] また、対物レンズをガラスレンズとする場合は、ガラス転移点 Tgが 400°C以下である ガラス材料を使用すると、比較的低温での成形が可能となるので、金型の寿命を延 ばすことが出来る。このようなガラス転移点 Tgが低いガラス材料としては、例えば (株 )住田光学ガラス製の K— PG325や、 K— PG375 (共に製品名)がある。
[0097] ところで、ガラスレンズは一般的に榭脂レンズよりも比重が大きいため、対物レンズ をガラスレンズとすると、重量が大きくなり対物レンズを駆動するァクチユエ一タに負 担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラ ス材料を使用するのが好ましい。具体的には、比重が 3. 0以下であるのが好ましぐ 2. 8以下であるのがより好ましい。
[0098] また、対物レンズを榭脂レンズとする場合は、環状ォレフィン系の榭脂材料を使用 するのが好ましぐ環状ォレフィン系の中でも、波長 405nmに対する温度 25°Cでの 屈折率が 1. 54乃至 1. 60の範囲内であって、 5°Cから 70°Cの温度範囲内での温 度変化に伴う波長 405nmに対する屈折率変化率 dNZdT(°C_1)が— 10 X 10—5乃 至— 8 X 10—5の範囲内である榭脂材料を使用するのがより好ましい。
[0099] 或 、は、本発明の対物レンズに適した榭脂材料として、上記環状ォレフィン系以外 にも「アサ一マル樹脂」がある。アサ一マル樹脂とは、母材となる樹脂の温度変化に 伴う屈折率変化率とは、逆符号の屈折率変化率を有する直径が 30nm以下の粒子 を分散させた榭脂材料である。一般に、透明な榭脂材料に微粉末を混合させると、 光の散乱が生じ、透過率が低下するため、光学材料として使用することは困難であつ たが、微粉末を透過光束の波長より小さい大きさにすることにより、散乱が事実上発 生しな 、ようにできることがわ力 てきた。
[0100] さて榭脂材料は、温度が上昇することにより、屈折率が低下してしまうが、無機粒子 は温度が上昇すると屈折率が上昇する。そこでこれらの性質をあわせて打ち消しあう ように作用させることにより、屈折率変化が生じないようにすることも知られている。本 発明の対物レンズの材料として、母材となる樹脂に 30ナノメートル以下、好ましくは 2 0ナノメートル以下、さらに好ましくは 10〜 15ナノメートルの無機粒子を分散させた材 料を利用することで、屈折率の温度依存性が無いか、あるいはきわめて低い対物レ ンズを提供できる。
[0101] たとえば、アクリル榭脂に、酸ィ匕ニオブ (Nb O )の微粒子を分散させている。
2 5
[0102] 母材となる榭脂は、体積比で 80、酸ィ匕ニオブは 20程度の割合であり、これらを均 一に混合する。微粒子は凝集しやすいという問題があるが、粒子表面に電荷を与え て分散させる等の技術により、必要な分散状態を生じさせることが出来る。
[0103] 後述するように、母材となる樹脂と粒子との混合'分散は、対物レンズの射出成形時 にインラインで行うことが好ましい。いいかえると、混合'分散した後は、対物レンズに 成形される迄、冷却,固化されないことが好ましい。
[0104] なお、この体積比率は、屈折率の温度に対する変化の割合をコントロールするため に、適宜増減できるし、複数種類のナノサイズ無機粒子をブレンドして分散させること も可能である。
[0105] 比率では、上記の例では 80 : 20、すなわち 4 : 1であるが、 90 : 10 (9 : 1)から 60 :40
(3: 2)までの間で適宜調整可能である。 9: 1よりも少な 、と温度変化抑制の効果が 小さくなり、逆に 3 : 2を越えると榭脂の成形性に問題が生じるために好ましくない。
[0106] 微粒子は無機物であることが好ましぐさらに酸ィ匕物であることが好ましい。そして酸 化状態が飽和して 、て、それ以上酸化しな 、酸ィ匕物であることが好ま 、。
[0107] 無機物であることは、高分子有機化合物である母材となる樹脂との反応を低く抑え られるために好ましぐまた酸ィ匕物であることによって、使用に伴う劣化を防ぐことが出 来る。特に高温化や、レーザ光を照射されるという過酷な条件において、酸化が促進 されやすくなるが、このような無機酸ィ匕物の微粒子であれば、酸化による劣化を防ぐ ことが出来る。
[0108] また、その他の要因による樹脂の酸ィ匕を防止するために、酸化防止剤を添加するこ とも勿論可能である。
[0109] ちなみに、母材となる榭脂は、特開 2004— 144951号公報、特開 2004— 14495 4号公報、特開 2004— 144953号公報等に記載されているような榭脂を適宜好まし く採用することがでさる。
[0110] 尚、以上の説明では、好ましい具体的な態様として、回折構造と位相構造とを重畳 させた重畳構造を光学面に形成したレンズの例を挙げて説明した力 それぞれ同様 な機能を有する光路差付与構造を重畳させた重畳構造とすることができる。より具体 的には、入射される光束の波長をより長い波長とした場合には球面収差が補正不足 方向に変化する第 1光路差付与構造と、入射される光束の波長をより長い波長とした 場合には球面収差が補正過剰方向に変化する第 2光路差付与構造といった、異な る少なくとも 2つの光路差付与構造を、パワーを有するレンズの一面に重畳させた重 畳構造とすることで、球面収差の波長依存性が小さ 、対物レンズを得ることが可能と なる。
[0111] 以下、本発明の具体的な実施の形態を図面を参照して説明する。図 6は、異なる光 情報記録媒体 (光ディスクとも 、う)である BDと DVDに対して適切に情報の記録 Z 再生を行える本実施の形態の光ピックアップ装置 PU1の構成を概略的に示す図で ある。かかる光ピックアップ装置 PU1は、光情報記録再生装置に搭載できる。ここで は、第 1光情報記録媒体を BDとし、第 2光情報記録媒体を DVDとする。
[0112] 第 1の光ピックアップ装置 PU1は、第 1波長 408nmの第 1光束を射出する第 1光源 としての青紫色半導体レーザ LD1と BDの情報記録面 RL1からの反射光束を受光す る第 1の光検出器 PD1とが一体ィ匕された第 1のモジュール MD1、第 2波長 658nm の第 2光束を出射する第 2光源としての赤色半導体レーザ LD2と第 2の光ディスク O D2の情報記録面 RL2からの反射光束を受光する第 2の光検出器 PD2とが一体ィ匕さ れた第 2のモジュール MD2、ダイクロイツクプリズム PS、コリメートレンズ CL、絞り ST 、対物レンズ OBJ、フォーカシング Zトラッキング用の 2軸ァクチユエータ AC等カも概 略構成される。尚、対物レンズ OBJは、光源側の光学面が、光軸を含む中央領域と、 その周辺の周辺領域とに分かれており、中央領域には、回折構造及び位相構造が 形成されている。
[0113] 青紫色半導体レーザ LD1から射出された第 1波長 408nmの発散光束は、ダイク口 イツクプリズム PSを透過し、コリメートレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、絞り STによりその光束径が規制 され、対物レンズ OBJによって厚さ 0. 0875mmの保護層 PL1を介して、 BDの情報 記録面 RL 1上に形成されるスポットとなる。
[0114] 情報記録面 RL1上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、ダイクロイツクプリズム PSを透過した後 、第 1の光検出器 PD1の受光面上に収束する。そして、第 1の光検出器 PD1の出力 信号を用いて、 2軸ァクチユエータ ACにより対物レンズ OBJをフォーカシングゃトラッ キングさせることで、 BDに記録された情報を読みとることができる。
[0115] また赤色半導体レーザ LD2から射出された第 2波長 658nmの発散光束は、偏光 ダイクロイツクプリズム PSにより反射され、コリメートレンズ CLにより平行光束とされた 後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、対物レンズ OBJ に入射する。対物レンズ OBJの中央領域を通過した第 2波長 658nmの光束は、厚さ 0. 6mmの保護層 PL2を介して、 DVDの情報記録面 RL2上に形成されるスポットと なる。
[0116] 情報記録面 RL2上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、ダイクロイツクプリズム PSにより反射さ れた後、第 2の光検出器 PD2の受光面上に収束する。そして、第 2の光検出器 PD2 の出力信号を用いて、 2軸ァクチユエータ ACにより対物光学素子 OBJをフォーカシ ングゃトラッキングさせることで、 DVDに記録された情報を読みとることができる。 尚、対物レンズ OBJの周辺領域は、微細な段差構造が形成されない非球面であるの で、周辺領域を通過した第 2波長 658nmの光束は、 DVDの情報記録面 RL2上で、 スポット形成に寄与しないフレア成分となる。これにより、 DVDの開口数に対応した 開口制限が自動的に行われる。
実施例
[0117]
以下、本実施の形態に好適な実施例について説明する。尚、これ以降 (表のレンズ データ含む)において、 10のべき乗数(例えば、 2. 5 X 10_3)を、 E (例えば、 2. 5E 一 3)を用いて表すものとする。また、実施例の表中、範囲 hは、光軸からの距離を表 し、単位は mm、曲率半径 (R, Ri)の単位も mmである。
[0118] 対物光学系の光学面は、それぞれ式 (8)に、表に示す係数を代入した数式で規定 される、光軸の周りに軸対称な非球面に形成されて 、る。
[0119] z= (h2/R) /[l + ^{ l - (K + l) (h/R) 2}] +A +A h4+A h6+A h8+A
0 4 6 8 10
, 10 , . , 12 , . , 14 , . , 16 , . , 18 , . , 20
h +A h +A h +A h +A h +A h
12 14 16 18 20
•••(8)
但し、
z :非球面形状 (非球面の面頂点に接する平面から光軸に沿った方向の距離) h:光軸からの距離
R:曲率半径
K :コーニック係数 A , A , A , A , A , A , A , A , A :非球面係数
4 6 8 10 12 14 16 18 20
また、回折構造により各波長の光束に対して与えられる光路差は、式 (9)の光路差 関数に、表に示す係数を代入した数式で規定される。
[0120] =dor X λ / λ X (C h2+C h4+C h6 + C h8+C h10+C h12 + C h14+C
B 2 4 6 8 10 12 14
16 h16+c 18 h18+c 20 h20)
•••(9)
但し、
Φ :光路差関数
λ:回折構造に入射する光束の波長
λ :ブレーズ化波長
Β
dor:光ディスクに対する記録 Z再生に使用する回折光の回折次数
h :光軸からの距離
C , C , C , C , C , C , C , C , C , C :回折面係数
2 4 6 8 10 12 14 16 18 20
(実施例 1)
実施例 1のレンズデータ (設計波長、焦点距離、像側の開口数、倍率を含む)を表 1 と表 2に示す。実施例 1は、図 6に示す光ピックアップ装置に好適なガラス製 (OHAR A製 S— BSM14)の対物レンズである。光源側の光学面は、光軸力も近い順に、 光軸を含む第 2— 1面と、その周辺に形成された、第 2— 2面、第 2— 3面、第 2— 4面 、第 2— 5面、そして第 2— 6面の 6領域で構成されている。第 2—1から第 2— 5面まで の領域が中央領域に相当し、第 2— 6面が周辺領域に相当する。第 2— 1面から第 2 5面にはブレーズィ匕波長 λ B :490nmの回折構造が形成され、その回折次数は B D : l次、 DVD : 1次であり、その回折効率は BD : 85%、 DVD : 79%となっている。ま た、第 2— 6面は非球面形状である。
[0121] [表 1] 〔0
( 列 1 )
mr A 1 408nm ス 2: 658nm レンズの焦„^SEIIt f 1: 1 .756mm f2:〗 .829mm 麵の開口数 NA1: 0.85 NA2: 0.66 倍率 ml: 0 m2: 0 第 2面の^ @ ø 3.00mm 02.36 mm ータ
Figure imgf000027_0001
【第 2面データ】
Figure imgf000027_0002
【第 3面データ】
Figure imgf000028_0001
[0123] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相差 に換算して 2 π X 5 (rad)だけ位相が遅れることになる。また、第 2— 3面、第 2— 4面、 及び第 2— 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X 1 ( nm)、 5 X λ 1 (nm)、 0 X λ 1 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 10 (rad)、 2 π X 5 (rad)、 2 π X 0 (rad)だけ位相が遅れることとなる 。また、第 2— 1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3面、第 2— 4面 、及び第 2— 5面では、それぞれ 3 X X 2 (nm)、 6 X λ 2 (nm)、 3 X λ 2 (nm)、 0 X λ 2 (nm)の光路差が付与されるので、位相差に換算してそれぞれ 2 π X 3 (rad)、 2 π X 6 (rad)ゝ 2 π X 3 (rad)、 2 π X 0 (rad)だけ位相が遅れることになる。すなわち、 位相構造の 1つの段差によりそれぞれの波長の光束に対して付加される光路差は、 第 1波長 λ 1に対しては 2040nm、第 2波長え 2に対しては 1974nmであり、何れの 波長の光束に対しても略同量の光路差が付加される。尚、本実施例においては、中 央領域内で、ブレーズ構造の向きが光軸力 離れるに従って負の向き力も正の向き へと一度入れ替わるようになって!/ヽる(図 5参照)。
[0124] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 1の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 029 1RMS、高次成分: 0. 010 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 009 λ 1RMS、高次成分: 0 . 029 RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
(実施例 2)
実施例 2は、図 6に示す光ピックアップ装置に好適な榭脂製の対物レンズのもので ある。実施例 2のレンズデータ (設計波長、焦点距離、像側の開口数、倍率を含む)を 表 3と表 4に示す。光源側の光学面は、光軸から近い順に、光軸を含む第 2— 1面と、 その周辺に形成された、第 2— 2面、第 2— 3面、第 2— 4面、第 2— 5面、そして第 2 —6面の 6領域で構成されている。第 2—1から第 2— 5面までの領域が中央領域に 相当し、第 2— 6面が周辺領域に相当する。第 2—1面力 第 2— 5面にはブレーズィ匕 波長 λ B :490nmの回折構造が形成され、その回折次数は BD: 1次、 DVD: 1次で あり、その回折効率は BD: 85%、 DVD: 78%となっている。また、第 2— 6面は非球 面形状である。
[表 3]
〔o
(鋼列 2)
皮長 λ 1: 08nm λ 2: 658nm
1レンズの ί^Θϋ ft: 1.750mm f2: 1.819mm 像側の開口数 NA1: 0.85 NA2: 0.66 ml: 0 m2: 0 第 2面の 03.00mm φ 2.36mm
【 由 タ I
Figure imgf000030_0001
Figure imgf000030_0002
【第 3面データ】
Figure imgf000031_0001
[0127] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相差 に換算して 2 π X 5 (rad)だけ位相が遅れることになる。また、第 2— 3面、第 2— 4面、 及び第 2— 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X 1 ( nm)、 5 X λ 1 (nm)、 0 X λ 1 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 10 (rad)、 2 π X 5 (rad)、 2 π X 0 (rad)だけ位相が遅れることとなる 。また、第 2— 1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3面、第 2— 4面 、及び第 2— 5面では、それぞれ 3 X X 2 (nm)、 6 X λ 2 (nm)、 3 X λ 2 (nm)、 0 X λ 2 (nm)の光路差が付与されるので、位相差に換算してそれぞれ 2 π X 3 (rad)、 2 π X 6 (rad)ゝ 2 π X 3 (rad)、 2 π X 0 (rad)だけ位相が遅れることになる。すなわち、 位相構造の 1つの段差によりそれぞれの波長の光束に対して付加される光路差は、 第 1波長 λ 1に対しては 2040nm、第 2波長え 2に対しては 1974nmであり、何れの 波長の光束に対しても略同量の光路差が付加される。尚、本実施例においては、中 央領域内で、ブレーズ構造の向きが光軸力 離れるに従って負の向き力も正の向き へと一度入れ替わるようになって!/ヽる(図 5参照)。
[0128] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 2の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 035 1RMS、高次成分: 0. 014 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 020 λ 1RMS、高次成分: 0 . 032 RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
(実施例 3)
実施例 3は、図 6に示す光ピックアップ装置に好適なガラス製 (OHARA製 S -B SM14)の対物レンズのものである。実施例 3のレンズデータ (設計波長、焦点距離、 像側の開口数、倍率を含む)を表 5と表 6に示す。光源側の光学面は、光軸から近い 順に、光軸を含む第 2— 1面と、その周辺に形成された、第 2— 2面、第 2— 3面、第 2 —4面、第 2— 5面、そして第 2— 6面の 6領域で構成されている。第 2—1から第 2— 5 面までの領域が中央領域に相当し、第 2— 6面が周辺領域に相当する。第 2— 1面か ら第 2— 5面にはブレーズィ匕波長 λ B:490nmの回折構造が形成され、その回折次 数は BD: 1次、 DVD: 1次であり、その回折効率は BD : 85%、 DVD: 79%となって いる。また、第 2— 6面は非球面形状である。
[表 5]
〔013 皮長 λ 1 : 408nm λ 2: 658nm レンズの Sl^iSSi f 1 : 1 .778mm f2: 1 .828mm Wの開口数 NA1 : 0.85 NA2: 0.67 ml : 0 ιη2: 0 2面の摘径 03.00mm 02.36 mm
Figure imgf000033_0001
2 ー
Figure imgf000033_0002
【第 3面データ】
Figure imgf000034_0001
[0131] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相 差に換算して 2 π X 5 (rad)だけ位相が進むことになる。また、第 2— 3面、第 2— 4面 、及び第 2 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X λ 1 (nm)、 一 15 X λ 1 (nm)、 一 20 X λ 1 (nm)の光路差が付与されるので、位相 差に換算してそれぞれ 2 π X 10 (rad)、 2 π X 15 (rad)、 2 π X 20 (rad)だけ位相が 進むこととなる。また、第 2—1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3 面、第 2— 4面、及び第 2— 5面では、それぞれ 3 X 2 (nm)、一 6 X 2 (nm)、 —9 X 2 (nm)、—12 X λ 2 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 3 (rad)、 2 π X 6 (rad)、 2 π X 9 (rad)、 2 π X 12 (rad)だけ位相が 進むことになる。すなわち、位相構造の 1つの段差によりそれぞれの波長の光束に対 して付加される光路差は、第 1波長 λ 1に対しては 2040nm、第 2波長 λ 2に対して は 1974nmであり、何れの波長の光束に対しても略同量の光路差が付加される。尚 、本実施例においては、中央領域内で、ブレーズ構造の向きは正で一定である(図 4 参照)。
[0132] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 3の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 006 λ 1RMS、高次成分: 0. 014 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 085 λ 1RMS、高次成分: 0 . 042 λ RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
[0133] 尚、実施例 1から実施例 3の対物レンズにおいて、第 1波長 λ 1の回折効率の有効 径内面積加重平均値を計算すると、 90. 7%となり、記録 Ζ再生の高速化が求めら れる BDに対して高 、光利用効率が得られる。
[0134] また、実施例 1から実施例 3の対物レンズにおいては、回折構造のブレーズィ匕波長 λ Βを 490nmとした力 これに限らず、ブレーズィ匕波長 λ Bを変えることで、第 1波長 λ 1と第 2波長 λ 2の回折効率のノランスを適宜変更することが可能である。
更に、以上の実施例では、第 1光路差付与構造を回折構造とし、第 2光路差付与構 造を位相構造とした幾つかの例を例示した力 本発明はこれらの例に限定されるもの ではない。
好ましい他の例としては、第 1波長 λ 1の光束に対して回折効率が最大となる回折次 数が 3次回折光であって、且つ第 2波長 λ 2の光束に対して回折効率が最大となる 回折次数が 2次回折光となる回折構造を、第 1光路差付与構造とし、第 1波長 λ 1の 光束に対しては λ 1のほぼ 5倍の光路差を付与するものであって、且つ第 2波長 λ 1 の光束に対しては λ 2のほぼ 3倍の光路差を付与する位相構造を、第 2光路差付与 構造として、それら第 1及び第 2光路差付与構造を重畳した重畳構造を用いることが 挙げられる。
また、第 1波長 λ 1の光束に対しては λ 1のほぼ 5倍の光路差を付与するものであつ て、且つ第 2波長 λ 2の光束に対しては λ 2のほぼ 3倍の光路差を付与する位相構 造を、第 1光路差付与構造とし、第 1波長 λ 1の光束に対して回折効率が最大となる 回折次数が 2次回折光であって、且つ第 2波長 λ 2の光束に対して回折効率が最大 となる回折次数が 1次回折光となる回折構造を、前記第 2光路差付与構造として、そ れら第 1及び第 2光路差付与構造を重畳した重畳構造を用いることも、好ましい例と して挙げられる。
更にまた、本発明は、 BDだけではなぐ HDを含む他の高密度光ディスク用の対物 レンズに対して適用することも可能であり、上述した効果と同様の効果が得られる。 産業上の利用可能性 本発明によれば、異なる波長の光束を用いて、複数種類の光情報記録媒体に対し て情報の記録及び Z又は再生を行う光ピックアップ装置に適用可能な対物レンズで あって、球面収差の波長依存性が小さい対物レンズ、この対物レンズを使用した光ピ ックアップ装置、及び、この光ピックアップ装置を搭載した光情報記録再生装置を提 供することができる。また、異なる種類の光情報記録媒体に対して良好に情報の記録 及び Z又は再生を行える対物レンズであって、球面収差の波長依存性が小さぐ高 V、透過率を有する単レンズ構成の対物レンズ、この対物レンズを使用した光ピックァ ップ装置、及び、この光ピックアップ装置を搭載した光情報記録再生装置を提供する ことができる。
請求の範囲
[1] 光ピックアップ装置に用いられる対物レンズであって、パワーを有するレンズの一面 に、入射される光束の波長をより長!ヽ波長とした場合には球面収差が補正不足方向 に変化する第 1光路差付与構造と、入射される光束の波長をより長い波長とした場合 には球面収差が補正過剰方向に変化する第 2光路差付与構造とを重畳させた重畳 構造を有することを特徴とする対物レンズ。
[2] 前記レンズの前記一面には、前記重畳構造が形成された部分と、前記重畳構造が 形成されていない部分とを有することを特徴とする請求の範囲第 1項記載の対物レン ズ。
[3] 前記重畳構造が形成されて 、な 、部分は、非球面であることを特徴とする請求の 範囲第 1又は 2項記載の対物レンズ。
[4] 前記レンズの前記一面は、光軸を含む中央領域と前記中央領域を囲む周辺領域と を有し、前記重畳構造は前記中央領域に形成されて ヽることを特徴とする請求の範 囲第 1項乃至 3項の何れか一項記載の対物レンズ。
[5] 前記レンズの前記一面は、光ピックアップ装置に搭載された際に光源側に配置さ れる面であることを特徴とする請求の範囲第 1項乃至 4項の何れか一項記載の対物 レンズ。
[6] 前記レンズの前記一面は、凸面であることを特徴とする請求の範囲第 1項乃至 5項 の何れか一項記載の対物レンズ。
[7] 前記レンズの他方の面は、非球面であることを特徴とする請求の範囲第 1項乃至 6 項の何れか一項記載の対物レンズ。
[8] 前記レンズは、光ピックアップ装置に光情報記録媒体が対向配置された際に、最も 光情報記録媒体側に配置されるレンズであることを特徴とする請求の範囲第 1項乃 至 7項の何れか一項記載の対物レンズ。
[9] 前記レンズ力 なる単レンズ構成であることを特徴とする請求の範囲第 1項乃至 8項 の何れか一項記載の対物レンズ。
[10] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを少なくとも有し、厚さ tlの 保護層を有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波 長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を行い、厚さ t2 (tl≤t2)の 保護層を有する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ Κ λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を行うことができる光ピ ックアップ装置に用いられることを特徴とする請求の範囲第 1項乃至 9項の何れか一 項記載の対物レンズ。
[11] 前記第 1光路差付与構造は、回折構造であることを特徴とする請求の範囲第 1項乃 至 10項の何れか一項記載の対物レンズ。
[12] 前記第 1光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、同 一次数となる回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記 第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請求 の範囲第 8項記載の対物レンズ。
[13] 前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されていることを特徴とする請求の範囲第 12項記載の対物レンズ。
[14] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 12項又は 13項記載の対物レンズ。
λ 1 < λ Β< λ 2 (1)
[15] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 12項乃至 14項 の何れか一項記載の対物レンズ。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[16] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記開口数 NA2内に相当す る領域内に前記重畳構造を備え、前記回折構造のブレーズ化波長 λ Β、前記開口 数 ΝΑ1、及び前記開口数 ΝΑ2が以下の(4)式、及び(5)式を満たすことを特徴とす る請求の範囲第 15項記載の対物レンズ。 1. 15 X λ 1 < λ Β< 0. 85 X λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[17] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 15項又は 16項記載の対物レンズ。
[18] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 11項乃至 17項 の何れか一項記載の対物レンズ。
[19] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 1
1項乃至 17項の何れか一項記載の対物レンズ。
[20] 前記第 1光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異 なる次数となる回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前 記第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請 求の範囲第 10項記載の対物レンズ。
[21] 前記第 1光束の入射に対して回折効率が最大となる回折次数は 3であって、前記 第 2光束の入射に対して回折効率が最大となる回折次数は 2であることを特徴とする 請求の範囲第 20項記載の対物レンズ。
[22] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 20項又は 21項記載の対物レンズ。
[23] 前記第 2光路差付与構造は、回折構造であることを特徴とする請求の範囲第 1項乃 至 10項の何れか一項記載の対物レンズ。
[24] 前記第 2光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異 なる次数となる回折構造であり、前記第 1光路差付与構造は、前記第 1光束及び前 記第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請 求の範囲第 23項記載の対物レンズ。 [25] 前記第 1光束の入射に対して回折効率が最大となる回折次数は 2であって、前記 第 2光束の入射に対して回折効率が最大となる回折次数は 1であることを特徴とする 請求の範囲第 24項記載の対物レンズ。
[26] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 24項又は 25項記載の対物レンズ。
[27] 前記レンズはガラスレンズであることを特徴とする請求の範囲第 1項乃至 26項の何 れか一項記載の対物レンズ。
[28] 前記レンズは、前記重畳構造を有する榭脂層がガラス素子上に接合された構成で あることを特徴とする請求の範囲第 1項乃至 26項の何れか一項記載の対物レンズ。
[29] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを有し、厚さ tlの保護層を 有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Ζ又は記録を行 、、厚さ t2 (tl≤t2)の保護層を有 する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ 1 < λ 2 )の第 2光束を用 、て情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いら れる対物レンズにぉ ヽて、
単レンズ構成を有し、
光軸を含む中央領域と、該中央領域を囲む周辺領域との少なくとも 2つの領域を有 する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されていることを特徴とする 対物レンズ。
[30] 前記回折構造は、入射光束の波長が長くなつた場合に、球面収差が補正不足方 向に変化するような球面収差の波長依存性を有するとともに、前記位相構造は、入 射光束の波長が長くなつた場合に、球面収差が補正過剰方向に変化するような球面 収差の波長依存性を有することを特徴とする請求の範囲第 29項に記載の対物レン ズ。
[31] 前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されていることを特徴とする請求の範囲第 29項又は 30項に記載の対物レンズ。
[32] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 29項乃至 31項の何れか一項に記載の対物 レンズ。
λ 1 < λ < λ 2 (1)
[33] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 29項乃至 32項 の何れか一項に記載の対物レンズ。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[34] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口 数 NA2内に相当する領域であって、前記回折構造のブレーズィ匕波長 λ B、前記開 口数 NA1、及び前記開口数 NA2が以下の(4)式、及び(5)式を満たすことを特徴と する請求の範囲第 33項に記載の対物レンズ。
1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[35] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5倍であって、 前記第 2光束に対しては前記第 2波長 λ 2の 3倍であることを特徴とする請求の範囲 第 33項又は 34項に記載の対物レンズ。
[36] 前記周辺領域は、微細な段差構造が形成されな 、非球面であることを特徴とする 請求の範囲第 29項乃至 35項の何れか一項に記載の対物レンズ。
[37] 前記回折構造及び前記位相構造が形成された光学面は、前記光ピックアップ装置 に搭載した状態で光源側に配置される光学面であることを特徴とする請求の範囲第 29項乃至 36項の何れか一項に記載の対物レンズ。
[38] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 29項乃至 37項 の何れか一項に記載の対物レンズ。
[39] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 2
9項乃至 37項の何れか一項に記載の対物レンズ。
[40] ガラスレンズであることを特徴とする請求の範囲第 29項乃至 39項の何れか一項に 記載の対物レンズ。
[41] 前記回折構造及び前記位相構造が形成された榭脂層を、ガラスレンズ上に接合し たことを特徴とする請求の範囲第 29項乃至 40項の何れか一項に記載の対物レンズ
[42] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う 際の、前記対物レンズの倍率を m2としたとき、以下の(6)式、及び(7)式を満たすこ とを特徴とする請求の範囲第 29項乃至 41項の何れか一項に記載の対物レンズ。
-0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
[43] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを有し、厚さ tlの保護層を 有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Ζ又は記録を行 、、厚さ t2 (tl≤t2)の保護層を有 する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ 1 < λ 2 )の第 2光束を用いて情報の再生及び Ζ又は記録を行う光ピックアップ装置にぉ 、て 前記対物レンズは、単レンズ構成を有し、且つ光軸を含む中央領域と、該中央領 域を囲む周辺領域との少なくとも 2つの領域を有する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されていることを特徴とする 光ピックアップ装置。 [44] 前記対物レンズの回折構造は、入射光束の波長が長くなつた場合に、球面収差が 補正不足方向に変化するような球面収差の波長依存性を有するとともに、前記位相 構造は、入射光束の波長が長くなつた場合に、球面収差が補正過剰方向に変化す るような球面収差の波長依存性を有することを特徴とする請求の範囲第 43項に記載 の光ピックアップ装置。
[45] 前記対物レンズの位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整 数個だけ形成されていることを特徴とする請求の範囲第 43項又は 44項に記載の光 ピックアップ装置。
[46] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 43項乃至 45項の何れか一項に記載の光ピ ックアップ装置。
λ 1 < λ < λ 2 (1)
[47] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 43項乃至 46項 の何れか一項に記載の光ピックアップ装置。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[48] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口 数 NA2内に相当する領域であって、前記回折構造のブレーズィ匕波長 λ B、前記開 口数 NA1、及び前記開口数 NA2が以下の(4)式、及び(5)式を満たすことを特徴と する請求の範囲第 47項に記載の光ピックアップ装置。
1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[49] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5倍であって、 前記第 2光束に対しては前記第 2波長 λ 2の 3倍であることを特徴とする請求の範囲 第 47項又は 48項に記載の光ピックアップ装置。
[50] 前記周辺領域は、微細な段差構造が形成されな 、非球面であることを特徴とする 請求の範囲第 43項乃至 49項の何れか一項に記載の光ピックアップ装置。
[51] 前記回折構造及び前記位相構造が形成された前記対物レンズの光学面は、前記 対物レンズを前記光ピックアップ装置に搭載した状態で光源側に配置される光学面 であることを特徴とする請求の範囲第 43項乃至 50項の何れか一項に記載の光ピック アップ装置。
[52] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 43項至 51項の 何れか一項に記載の光ピックアップ装置。
[53] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 4
3項乃至 51項の何れか一項に記載の光ピックアップ装置。
[54] 前記対物レンズはガラスレンズであることを特徴とする請求の範囲第 43項乃至 53 項の何れか一項に記載の光ピックアップ装置。
[55] 前記対物レンズは、前記回折構造及び前記位相構造が形成された榭脂層を、ガラ スレンズ上に接合したことを特徴とする請求の範囲第 43項乃至 53項の何れか一項 に記載の光ピックアップ装置。
[56] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う 際の、前記対物レンズの倍率を m2としたとき、以下の(6)式、及び(7)式を満たすこ とを特徴とする請求の範囲第 43項乃至 55項の何れか一項に記載の光ピックアップ 装置。
-0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
[57] 光源と、請求の範囲第 1項乃至 28項の何れか一項記載の対物レンズと、光検出器 とを備えたことを特徴とする光ピックアップ装置。
[58] 請求の範囲第 43項乃至 57項の 、ずれかに記載の光ピックアップ装置を搭載した ことを特徴とする光情報記録再生装置。
Figure imgf000045_0001
0 +
Figure imgf000046_0001
+
Figure imgf000047_0001
0 +
小 第 1波長 M
の有効領域
(周辺領域 PR)
第 2波長 Λ 2
の有効領域
(中央領域 GR)
X 位相構造 PSの形状を 表す包絡線
Figure imgf000049_0001
位相構造 PSの形状を 表す包絡線
Figure imgf000050_0001
剛] ひ 0£/900Zdf/ェ:) d
9/9 INTERNATIONAL SEARCH REPORT International application No.
PCT/JP2006/301542
A. CLASSIFICATION OF SUBJECT MATTER
G11B7/135 {2006.01) , G02B13/00 (2006.01) , G02B13/18 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G11B7/12-7/22 , G02B13 / 00 - 13 /26
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2006
Kokai Jitsuyo Shinan Koho 1971-2006 Toroku Jitsuyo Shinan Koho 1994-2006
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A JP 2004-264815 A (Konica Minolta Holdings ■58
Kabushiki Kaisha) ,
24 September, 2004 (24.09.04) ,
Par. No. [0030] ; Figs . 6 to 7
(Family: none)
A JP 2004-247025 A (Konica Minolta Holdings ■58
Kabushiki Kaisha) ,
02 September, 2004 (02.09.04) ,
Par. Nos . [0084] to [0090] , [0154] to [0157]
Fig. 11
& US 2004/0047269 Al
Further documents are listed in the continuation of Box C. [ ι See patent family annex.
* Special categories oi cited documents: "T" later document published after the international filing date or priority
"Ά state of the art which is not considered to date and not in conflict with the application but cited to understand
Figure imgf000051_0001
the principle or theory underlying the invention
earlier application or patent but published on or after the international filing "X" document of particular relevance; the claimed invention cannoi be date considered novel or cannot be considered to involve an inventive
X document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is
Ό" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination being obvious to a person skilled in the art
P" document published prior to the international filing date but later than the
priority date claimed "&" document member of the same patent family
Figure imgf000051_0002
Form PCT/ISA/210 (second sheet) (April 2005) INTERNATIONAL SEARCH REPORT International application No.
PCT/JP2006/301542
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A JP 2004-326861 A (Konika inoruta Oputo ■58
Kabushiki Kaisha) ,
18 November, 2004 (18.11.04) ,
Par. Nos . [0048] to [0052]; Figs . 3 to 5
& US 2004/0213136 Al
A JP 2004-362626 A (Pentax Kabushiki Kaisha) ■58
24 December, 2004 (24.12.04) ,
Par. No. [0034]; Fig. 3
( Family: none)
Form PCT/ISA/210 (continuation of second sheet) (April 2005) 要 約 書
本発明に係る対物レンズは、光ピックアップ装置に用いられる対物レンズであって、パワーを 有するレンズの一面に、入射される光束の波長をより長い波長とした場合には球面収差が補正 不足方向に変化する第 1光路差付与構造と、入射される光束の波長をより長い波長とした場合 には球面収差が補正過剰方向に変化する第 2光路差付与構造とを重畳させた重畳構造とを 有する。
明 細 書
対物レンズ、光ピックアップ装置及び光情報記録再生装置
技術分野
[0001] 本発明は、対物レンズ、光ピックアップ装置及び光情報記録再生装置に関し、特に 異なる波長の光源を用いて異なる光情報記録媒体に対して適切に情報の記録及び
Z又は再生を行える光ピックアップ装置及び光情報記録再生装置、並びにそれに用 いる対物レンズに関する。
背景技術
[0002] 近年、波長 400nm程度の青紫色半導体レーザを用いて、情報の記録及び Z又は 再生(以下、記録及び Z又は再生を、記録 Z再生、或いは、記録再生ともいう)を行 える高密度光ディスクシステムの研究 '開発が急速に進んでいる。一例として、 NAO . 85、光源波長 405nmの仕様で情報記録 Z再生を行う光ディスク、いわゆる Blu— r ay Disc (以下、 BDという)では、 DVD (NAO. 6、光源波長 650nm、記憶容量 4、 7 GB)と同じ大きさである直径 12cmの光ディスクに対して、 1層あたり 23〜27GBの情 報の記録が可能であり、又、 NAO. 65、光源波長 405nmの仕様で情報記録 Z再生 を行う光ディスク、いわゆる HD DVD (High Definition DVD :以下、 HDという) では、直径 12cmの光ディスクに対して、 1層あたり 15〜20GBの情報の記録が可能 である。尚、 BDでは、光ディスクの傾き (スキュー)に起因して発生するコマ収差が増 大するため、 DVDにおける場合よりも保護層を薄く設計し (DVDの 0. 6mmに対して 、 0. 1mm)、スキューによるコマ収差量を低減している。以下、本明細書では、このよ うな光ディスクを「高密度光ディスク」と呼ぶ。
[0003] ところで、力かるタイプの高密度光ディスクに対して適切に情報の記録 Z再生がで きると言うだけでは、光ディスクプレーヤ Zレコーダの製品としての価値は十分なもの とはいえない。現在において、多種多様な情報を記録した DVDが販売されている現 実をふまえると、高密度光ディスクに対して情報の記録 Z再生ができるだけでは足ら ず、例えばユーザが所有している DVDに対しても同様に適切に情報の記録 Z再生 ができるようにすることが、高密度光ディスク用の光ディスクプレーヤ Zレコーダとして の商品価値を高めることに通じるのである。このような背景から、高密度光ディスク用 の光ディスクプレーヤ Zレコーダに搭載される光ピックアップ装置は、高密度光デイス クと DVDの何れに対しても互換性を維持しながら適切に情報を記録 Z再生できる性 能を有することが望まれる。
[0004] 高密度光ディスクと DVDの何れに対しても互換性を維持しながら適切に情報を記 録 Z再生できるようにする方法として、高密度光ディスク用の光学系と DVD用の光学 系とを情報を記録 Z再生する光ディスクの記録密度に応じて選択的に切り替える方 法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコスト が増大する。
[0005] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置にお!ヽても、高密度光ディスク用の光学系と DVD用の 光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らす のが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化し、更に この対物レンズを単レンズ構成とすることが光ピックアップ装置の構成の簡素ィ匕、低コ スト化に最も有利となる。尚、情報の記録 Z再生を行う際に使用される光束の波長が 互いに異なる複数種類の光ディスクに対して共通な対物レンズとして、球面収差の波 長依存性を有する回折構造をその表面に形成し、カゝかる回折構造の波長依存性を 利用して、記録 Z再生波長や、光ディスクの保護層厚さの違いによる球面収差を補 正する対物レンズが知られて 、る。
[0006] ここで、特許文献 1には、高密度光ディスクと DVDに対して互換可能に情報の記録 及び Z又は再生を行える単レンズ構成の対物レンズが開示されている。
[0007] ここで、特許文献 1に開示された対物レンズは、青紫色レーザ光束に対して 2次回 折光を発生させ、 DVD用の赤色レーザ光束に対して 1次回折光を発生させるような 回折構造を有し、カゝかる回折構造の回折作用により高密度光ディスクと DVDの保護 層厚さの違いによる球面収差を補正するものである。しかし、この対物レンズは、単レ ンズ構成であるので、低コストで生産が可能であるものの、以下に述べるような 2つの 課題を有している。
[0008] 課題の 1つは、回折構造により発生する球面収差の波長依存性が大きいことである 。このような場合、発振波長が設計波長力もずれたレーザ光源が使用できず、レーザ 光源の選別が必要となるため光ピックアップ装置の製造コストが増大する。回折光の 回折角は、「回折次数 X波長 Z回折ピッチ」で表される。回折作用を利用して使用波 長 (以下、使用波長を、記録 Z再生波長ともいう)が互いに異なる光情報記録媒体( 以下、光情報記録媒体を、光ディスクともいう)間の互換を実現するためには、使用 波長間の回折角に所定の差を持たせる必要がある。上述した「レーザ光源の選別問 題」は、高密度光ディスクと DVDの使用波長間で「回折次数 X波長」の値が殆ど同じ 回折構造を利用して ヽることに起因して ヽる。特許文献 1に開示された対物レンズに ぉ 、て、青紫色レーザ光束と赤色レーザ光束との「回折次数 X波長」の比は 810Z6 55 = 1. 24と 1に近いため(但し、波長の単位を nmとした)、高密度光情報記録媒体 と DVDの保護層厚さの違 、による球面収差を補正するために必要な回折角の差を 得るためには、回折ピッチを小さくしなければならない。そのため、回折構造の球面 収差の波長依存性が大きくなり、上述したような、「レーザ光源の選別問題」が顕在化 する。
[0009] もう 1つの課題は、傾斜が大きな光学面上に回折構造を形成しているため、段差部 分の光束のけられや、回折構造の輪帯形状角部などの微細な構造の転写不良によ る透過率低下が起こり、十分な光利用効率が得られないことである。対物レンズの開 口数が大きくなるほど、光学面の傾斜は大きくなるため、開口数 0. 85の対物レンズ を使用する BDでは、かかる透過率の低下がより顕著となる。
特許文献 1 :特開 2004— 79146号公報
発明の開示
[0010] 本発明は、上記の課題を鑑みてなされたものであり、本発明の目的は、異なる波長 の光束を用いて、複数種類の光情報記録媒体に対して情報の記録及び Z又は再生 を行う光ピックアップ装置に適用可能な対物レンズであって、球面収差の波長依存 性が小さい対物レンズ、この対物レンズを使用した光ピックアップ装置、及び、この光 ピックアップ装置を搭載した光情報記録再生装置を提供することである。本発明の更 なる目的は、異なる種類の光情報記録媒体に対して良好に情報の記録及び Z又は 再生を行える対物レンズであって、球面収差の波長依存性が小さぐ高い透過率を 有する単レンズ構成の対物レンズ、この対物レンズを使用した光ピックアップ装置、 及び、この光ピックアップ装置を搭載した光情報記録再生装置を提供することである
[0011] 上記課題を解決するため、本発明に係るに記載の対物レンズは、光ピックアップ装 置に用いられる対物レンズであって、パワーを有するレンズの一面に、所定の特性を 持つ第 1光路差付与構造と第 2光路差付与構造とを重畳させた重畳構造を有する。 図面の簡単な説明
[0012] [図 1]対物レンズの縦球面収差図の概略図である。
[図 2]対物レンズの縦球面収差図の概略図である。
[図 3]対物レンズの縦球面収差図の概略図である。
[図 4]光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの例にか かる断面図である。
[図 5]光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの別例に かかる断面図である。
[図 6]本実施の形態の光ピックアップ装置の構成を概略的に示す図である。
発明を実施するための最良の形態
[0013] 以下本発明の好ましい形態を説明する。
[0014] 第 1の構成の対物レンズは、光ピックアップ装置に用いられる対物レンズであって、 パワーを有するレンズの一面に、入射される光束の波長をより長い波長とした場合に は球面収差が補正不足方向に変化する第 1光路差付与構造と、入射される光束の 波長をより長い波長とした場合には球面収差が補正過剰方向に変化する第 2光路差 付与構造とを重畳させた重畳構造を有する。
[0015] 第 2の構成の対物レンズは、第 1の構成に記載の対物レンズにおいて、前記レンズ の前記一面には、前記重畳構造が形成された部分と、前記重畳構造が形成されて いない部分とを有する。
[0016] 第 3の構成の対物レンズは、第 1又は第 2の構成に記載の対物レンズにおいて、前 記重畳構造が形成されて ヽな ヽ部分は、非球面である。
[0017] 第 4の構成の対物レンズは、第 1乃至第 3の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、光軸を含む中央領域と前記中央領域を囲む周辺 領域とを有し、前記重畳構造は前記中央領域に形成されている。
[0018] 第 5の構成の対物レンズは、第 1乃至第 4の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、光ピックアップ装置に搭載された際に光源側に配 置される面である。
[0019] 第 6の構成の対物レンズは、第 1乃至第 5の構成の何れかに記載の対物レンズにお いて、前記レンズの前記一面は、凸面である。
[0020] 第 7の構成の対物レンズは、第 1乃至第 6の構成の何れかに記載の対物レンズにお いて、前記レンズの他方の面は、非球面である。
[0021] 第 8の構成の対物レンズは、第 1乃至第 7の構成の何れかに記載の対物レンズにお いて、前記レンズは、光ピックアップ装置に光情報記録媒体が対向配置された際に、 最も光情報記録媒体側に配置されるレンズである。
[0022] 第 9の構成の対物レンズは、第 1乃至第 8の構成の何れかに記載の対物レンズにお いて、前記レンズからなる単レンズ構成である。
[0023] 第 10の構成の対物レンズは、第 1乃至第 9の構成の何れかに記載の対物レンズに おいて、第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出 射する第 2光源と、対物レンズを含む集光光学系と、光検出器とを少なくとも有し、厚 さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1光源から出射される 第 1波長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を行い、厚さ t2(tl≤t 2)の保護層を有する第 2光情報記録媒体に対して、第 2光源力 出射される第 2波 ¾ 2 ( λ Κ λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を行うことができ る光ピックアップ装置に用いられる。
[0024] 第 11の構成の対物レンズは、第 1乃至第 10の構成の何れかに記載の対物レンズ において、前記第 1光路差付与構造は、回折構造である。
[0025] 第 12の構成の対物レンズは、第 8の構成に記載の対物レンズにおいて、前記第 1 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、同一次数となる 回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記第 2光束に対 して同量の光路差を付加させる位相構造である。
[0026] 第 13の構成の対物レンズは、第 12の構成に記載の対物レンズにおいて、前記位 相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形成されて いる。
[0027] 第 14の構成の対物レンズは、第 12又は第 13の構成に記載の対物レンズにおいて 、前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たす。
[0028] λ 1 < λ < λ 2 (1)
第 15の構成の対物レンズは、第 12乃至第 14の構成の何れかに記載の対物レンズ において、以下の(2)式、及び(3)式を満たす。
[0029] 380nm< λ K420nm (2)
630nm< λ 2< 680nm (3)
第 16の構成の対物レンズは、第 15の構成に記載の対物レンズにおいて、前記第 1 光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レンズの開口 数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う際の、 前記対物レンズの開口数を NA2としたとき、前記開口数 NA2内に相当する領域内 に前記重畳構造を備え、前記回折構造のブレーズ化波長 λ Β、前記開口数 ΝΑ1、 及び前記開口数 ΝΑ2が以下の (4)式、及び(5)式を満たす。
[0030] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
第 17の構成の対物レンズは、第 15又は第 16の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0031] 第 18の構成の対物レンズは、第 11乃至第 17の構成の何れかに記載の対物レンズ において、前記回折構造は、光軸力も離れるに従って、負の向き力も正の向きへとブ レーズ構造の向きが少なくとも一度入れ替わる。
[0032] 第 19の構成の対物レンズは、第 11乃至第 17の構成の何れかに載の対物レンズに おいて、前記回折構造は、正の向きのブレーズ構造である。 [0033] 第 20の構成の対物レンズは、第 10の構成に記載の対物レンズにおいて、前記第 1 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異なる次数とな る回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記第 2光束に 対して同量の光路差を付加させる位相構造である。
[0034] 第 21の構成の対物レンズは、第 20の構成に記載の対物レンズにおいて、前記第 1 光束の入射に対して回折効率が最大となる回折次数は 3であって、前記第 2光束の 入射に対して回折効率が最大となる回折次数は 2である。
[0035] 第 22の構成の対物レンズは、第 20又は第 21の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0036] 第 23の構成の対物レンズは、第 1乃至第 10の構成の何れかに記載の対物レンズ において、前記第 2光路差付与構造は、回折構造である。
[0037] 第 24の構成の対物レンズは、第 23の構成に記載の対物レンズにおいて、前記第 2 光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる回折次数と 、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異なる次数とな る回折構造であり、前記第 1光路差付与構造は、前記第 1光束及び前記第 2光束に 対して同量の光路差を付加させる位相構造である。
[0038] 第 25の構成の対物レンズは、第 24の構成に記載の対物レンズにおいて、前記第 1 光束の入射に対して回折効率が最大となる回折次数は 2であって、前記第 2光束の 入射に対して回折効率が最大となる回折次数は 1である。
[0039] 第 26の構成の対物レンズは、第 24又は第 25の構成に記載の対物レンズにおいて 、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍である。
[0040] 第 27の構成の対物レンズは、第 1乃至第 26の構成の何れかに記載の対物レンズ において、前記レンズはガラスレンズである。
[0041] 第 28の構成の対物レンズは、第 1乃至第 26の構成の何れかに記載の対物レンズ において、前記レンズは、前記重畳構造を有する榭脂層がガラス素子上に接合され た構成である。
[0042] 第 29の構成の対物レンズは、第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2 波長 λ 2の第 2光束を出射する第 2光源と、対物レンズを含む集光光学系と、光検出 器とを有し、厚さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1光源か ら出射される第 1波長 λ ΐの第 1光束を用 、て情報の再生及び Ζ又は記録を行 、、 厚さ t2 (tl≤t2)の保護層を有する第 2光情報記録媒体に対して、第 2光源力も出射 される第 2波長 λ 2 ( λ 1 < λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を 行う光ピックアップ装置に用いられる対物レンズにおいて、単レンズ構成を有し、 光軸を含む中央領域と、該中央領域を囲む周辺領域との少なくとも 2つの領域を有 する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されている。
なお、ここでいう「位相構造」とは、光軸方向の段差を複数有し、入射光束に対してそ の段差間で光路差を付加する構造の総称である。この段差により入射光束に付加さ れる光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整 数倍であっても良い。
また、本明細書において、「光路差付与構造」とは、上述の位相構造、及び回折構造 を含む位相差付与構造を含むものとする。
[0043] 本発明の対物レンズを想起するに至る考え方を、分かり易く説明するために、以下 に具体的な一例を挙げながら説明するが、本発明はこの具体例に限定されるもので はない。図 1〜3は、対物レンズの縦球面収差図の概略図である。図 1〜3に示す、 近軸像点位置を原点とする球面収差にお!、て、近軸像点よりも手前側で光軸と交わ る場合(図で原点より左側、すなわち対物レンズに近い側)を「補正不足」、近軸像点 よりも遠い位置で光軸と交わる場合(図で原点より右側、すなわち対物レンズに遠い 側)を「補正過剰」とする。ここでは、第 1の光情報記録媒体として BD、第 2の光情報 記録媒体として DVDを例にとり説明する。縦軸の瞳座標 E2は DVDの開口数に相当 し、 E1は BDの開口数に相当する。 [0044] まず、 BDと DVDの保護層厚さの差に起因して生じる球面収差、及び Z又は使用 する光束の波長の差に起因して生じる球面収差を補正するために回折構造のみを、 前記対物レンズの光学面における中央領域 (瞳座標 0〜E2の範囲)に形成した場合 を考える。図 1は、力かる場合の縦球面収差図である。
[0045] 図 1の実線で示すように、波長 λ 1の光束が通過した場合、球面収差の値は光軸か らの位置に関わらずゼロであるとする。中央領域に形成した回折構造は BDと DVD の保護層厚さの差に起因する球面収差を補正するための構造であるので、入射光 束の波長が長くなつた場合に球面収差が補正不足方向に変化し、入射光束の波長 が短くなつた場合に球面収差が補正過剰方向に変化するような特性を有する。従つ て、波長 λ 1が Δ λ ( Δ λ >0)だけ長くなつた場合には、図 1において点線で示した ように、中央領域では球面収差は補正不足方向に変化し、波長 λ 1が Δ λ ( Δ λ > 0)だけ短くなつた場合には、図 1において一点鎖線で示したように、中央領域では球 面収差は補正過剰方向に変化する。しかし、図 1に示す例では、周辺領域である瞳 座標 Ε2〜Ε1の範囲においては、回折構造が存在しないので、球面収差の波長依 存性は小さぐ球面収差はほぼ一定である。このように、波長が変化した場合に、球 面収差カーブが不連続になると、 5次以上の高次成分の球面収差が発生することに なるため問題となる。光ピックアップ装置において光源として使用される半導体レー ザは、製造誤差により数 nm程度の波長誤差を個体間で持つ。力かる波長誤差により 発生する 3次球面収差成分は、コリメートレンズの光軸方向の位置調整により補正で きるものの、高次球面収差は、コリメートレンズの光軸方向の位置調整だけでは補正 出来ない。そのため、図 1に示したような球面収差の波長依存性を有する対物レンズ では、設計波長力もずれた半導体レーザが使用できないため、半導体レーザの選別 が必要となり量産として成立しな 、虞がある。
[0046] 上述のような課題に対して、本発明における対物レンズの一態様では、図 2に示す ような球面収差の波長依存性を有する位相構造を形成した。図 2は、対物レンズの光 学面に、所定の位相構造のみを形成した場合の縦球面収差図である。この位相構 造は、入射光束の波長が長くなつた場合に球面収差が補正過剰方向に変化し、入 射光束の波長が短くなつた場合に球面収差が補正不足方向に変化し、前述した回 折構造とは逆の波長依存性を有する。
[0047] 図 1に示す回折構造の特性に合わせて、図 2に示す位相構造の特性を決めること で、回折構造の球面収差の波長依存性をうち消すようにできできる。また更に、図 3 に示す縦球面収差図のように、 λ ΐ - Mの光束が通過した場合でも λ 1 + Δ λの 光束が通過した場合でも、球面収差カーブが連続となるようにした場合には、高次球 面収差の発生を小さくできる。
[0048] このとき、位相構造により付加される光路差を、 BDの設計波長( λ 1)と DVDの設 計波長( λ 2)のそれぞれに対して同じ位相差となる位相構造の段差量に決定するこ とによって、位相構造を形成した場合でも、回折構造による λ 1とえ 2の集光特性を 変化させず、回折構造の球面収差の波長依存性 (ここでは、 λ ΐやえ 2から数 nmの 範囲で入射光束の波長が変化した際の球面収差変化を指す)を補正することが可能 となる。尚、「同量の光路差」とは、 λ ΐとえ 2に対して位相構造により付加される光路 差が以下の 2つの式を満たすものとする。
[0049] a X O. 9 X λ 1 ≤ LI ≤ a X l . I X λ 1
b X O. 9 Χ λ 2 ≤ L2 ≤ b X l . I X λ 2
ここで、 Ll、 L2はそれぞれ、位相構造の一つの段差によって生じる波長 λ 1、え 2で の光路差である。また、 aは任意の整数を表し、 bは aよりも小さい任意の正の整数を 表す。
[0050] 尚、 aと bの組み合わせは、(a、 b) = (5、 3)、(10、 6)であることが好ましい。
[0051] ここで、本態様の対物レンズでは、回折効率が最大となる回折次数が、前記第 1光 束及び前記第 2光束の何れに対しても同一次数となるように、回折構造の段差量を 決定しているため、大きなピッチでの球面収差補正 (記録 Z再生波長や、保護層厚 さの違いによる球面収差の補正)が可能である。従って、回折構造の球面収差の波 長依存性が大きくなりすぎな 、ため、それを補正するための位相構造のピッチが小さ くなりすぎない。そのため、回折構造や位相構造の形状誤差による透過率低下を抑 制できる。
[0052] さらに、本態様の対物レンズでは、比較的傾斜が小さい中央領域に微細な段差を 有する回折構造や位相構造を形成しているため、段差部分の光束のけられや、微細 構造の転写不良による透過率低下が抑制でき、十分な光利用効率を得ることが可能 である。
[0053] 尚、回折構造と位相構造とは、異なる光学面に形成しても上述の効果が得られるが 、この場合、形状誤差による透過率低下が起こる可能性のある光学面が 2つとなって しまう。本態様の対物レンズのように、回折構造と位相構造とを同一の光学面上に重 畳して形成することで、形状誤差による透過率低下を抑制できると ヽぅ利点がある。
[0054] 図 4は、光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの例 にかかる断面図であるが、理解しやすいように回折構造 DSと位相構造 PSとは誇張し て描いている。中央領域 CRは、そこを通過した第 1光束及び第 2光束がそれぞれ共 に、それぞれ対応する光情報記録媒体の記録又は再生に共通して利用される領域 に対応し、周辺領域 PRは、そこを通過した第 1光束のみ力 対応する光情報記録媒 体の記録又は再生の際に利用される領域に対応する。図 4において、実線で示す光 軸 Xを中心とした断面がブレーズ状の回折構造 DSは、位相構造 PSと重畳させてい るため、局所的に軸線方向に変位した構成となっている。図 4に示す例では、回折構 造 DSが正の向きのブレーズ構造のみ力 なるために、位相構造 PSにおける光軸方 向の段差及びその延長線とブレーズの頂点を通る線とを結ぶと、位相構造 PSの形 状を示す包絡線(図 4で示す点線)が描かれる。尚、回折構造 DSとして、負の向きの ブレーズ構造を混在させてもょ 、。
[0055] 第 30の構成の対物レンズは、第 29の構成に記載の対物レンズにおいて、前記回 折構造は、入射光束の波長が長くなつた場合に、球面収差が補正不足方向に変化 するような球面収差の波長依存性を有するとともに、前記位相構造は、入射光束の 波長が長くなつた場合に、球面収差が補正過剰方向に変化するような球面収差の波 長依存性を有する。
[0056] 第 31の構成の対物レンズは、第 29又は第 30の構成に記載の対物レンズにおいて 、前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されている。より具体的には、図 4において、位相構造 PSの形状を示す包絡線の 1 つの段差内に、回折構造 DSのブレーズ等が丁度 1以上の整数個分おさまっている 状態をいう。これにより、金型加工が容易になり、回折構造や位相構造を精度良く創 成することができる。
[0057] 第 32の構成の対物レンズは、第 29乃至第 31の構成のいずれかに記載の対物レン ズにおいて、前記同一次数は 1であって、前記回折構造のブレーズィヒ波長 λ Bが以 下の(1)式を満たすので、前記回折構造を通過する前記第 1波長 λ 1の第 1光束と、 前記第 2波長 λ 2の第 2光束の回折効率をバランスさせることができる。
[0058] λ 1 < λ < λ 2 (1)
第 33の構成の対物レンズは、第 29乃至第 31の構成のいずれかに記載の対物レン ズにおいて、
以下の(2)式、及び(3)式を満たすので、例えば BDまたは HDと、 DVDとに対して 互換可能に情報の記録及び Ζ又は再生を行うことができる。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
本実施の対物レンズは、使用波長が(2)式や (3)式を満たす場合に特に有効であ り、その効果を最大限に発揮することが可能である。
[0059] 第 34の構成の対物レンズは、第 33の構成に記載の対物レンズにおいて、前記第 1 光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レンズの開口 数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う際の、 前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口数 NA2内 に相当する領域であって、前記回折構造のブレーズ化波長 λ Β、前記開口数 ΝΑ1、 及び前記開口数 ΝΑ2が以下の (4)式、及び(5)式を満たす。
[0060] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
回折構造のブレーズィ匕波長 λ Βを第 1波長 λ 1と第 2波長 λ 2の中間の波長とする ことで、回折効率をそれぞれの光束に対して振り分けることが好ましいが、第 1波長え 1と第 2波長 λ 2では、波長差が大きいため、何れの波長に対しても高い回折効率を 確保することが出来ない可能性がある。
[0061] 対物レンズの開口数 ΝΑ2が、開口数 NA1に対して十分小さい場合 (すなわち、開 口数 NA1と開口数 ΝΑ2が(5)式を満たす場合)には、第 1波長 λ 1の有効径に占め る、回折構造が形成された領域(中央領域)の面積割合が小さくなるため、第 2波長 λ 2の回折効率を第 2波長 λ 2寄りにした場合 (すなわち、ブレーズ化波長 λ Βが (4) 式を満たす場合)でも、第 1波長 λ 1の回折効率の有効径内面積加重平均値を十分 高く確保することが可能となる。
[0062] ブレーズ化波長 λ Βが (4)式の下限より大き!/、と、第 2波長 λ 2の回折効率を十分 に高く確保できるので、第 2光情報記録媒体への記録 Ζ再生特性を良好なものにす ることが可能となる。一方、ブレーズィ匕波長 λ Βが (4)式の上限より小さいと、第 1波長 λ ΐの回折効率の有効径内面積加重平均を十分に高い値とすることができるため、 第 1光情報記録媒体への記録 Ζ再生特性を良好なものにすることが可能となる。
[0063] 第 35の構成の対物レンズは、第 33又は第 34の構成のいずれかに記載の対物レン ズにおいて、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5 倍であって、前記第 2光束に対しては前記第 2波長え 2の 3倍である。これにより、(2) 式、及び (3)式を満たす第 1波長 λ 1と第 2波長 λ 2とに対して同量の光路差を付カロ させることが可能となる。尚、ここでいう「5倍」或いは「3倍」とは、光学設計上の見地 力 実質的に 5倍或いは実質的に 3倍であれば良ぐ厳密な意味での整数倍の数値 のみを意図するものではな 、ことは勿論である。本明細書における「ほぼ 5倍」或いは 「ほぼ 3倍」も、それと同様の主旨であり、「ほぼ 5倍」は 4. 8倍〜 5. 2倍であり、「ほぼ 3倍」は 2. 8倍〜 3. 2倍である。
[0064] 第 36の構成の対物レンズは、第 29乃至第 35の構成のいずれかに記載の対物レン ズにおいて、前記周辺領域は、微細な段差構造が形成されない非球面であるので、 傾斜が大きくなる周辺領域の透過率を高めることができる。さらに、中央領域内での み、第 1光情報記録媒体と第 2光情報記録媒体の記録 Ζ再生波長や、保護層厚さの 違いによる球面収差が補正され、周辺領域を通過する第 2光束の球面収差は補正さ れない構成であるので、周辺領域を通過した第 2光束は、第 2光情報記録媒体の情 報記録面上で、スポット形成に寄与しないフレア成分となる。これにより、第 2光情報 記録媒体の開口数に対応した開口制限を自動的に行うことが可能となる。尚、ここで Vヽぅ「微細な段差構造」とは、回折構造や位相構造を ヽぅ。
[0065] 第 37の構成の対物レンズは、第 29乃至第 36の構成のいずれかに記載の対物レン ズにおいて、前記回折構造及び前記位相構造が形成された光学面は、前記光ピック アップ装置に搭載した状態で光源側に位置する光学面であるので、前記対物レンズ に平行光束が入射した場合はもちろんのこと、発散光束或いは収束光束が入射した 場合でも、その発散角又は収束角は比較的小さいので、光線のケラレによる透過率 低下を抑制できる。
[0066] 第 38の構成の対物レンズは、第 29乃至第 37の構成のいずれかに記載の対物レン ズにおいて、前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへと ブレーズ構造の向きが少なくとも一度入れ替わる。尚、本明細書においては、光軸か ら離れるに従って光路長が短くなるブレーズ構造を正の向きであるといい、光軸から 離れるに従って光路長が長くなるブレーズ構造を負の向きであるというものとする。
[0067] 図 5は、光源側の光学面に回折構造と位相構造とを形成した対物レンズ OBJの別 例に力かる断面図であるが、理解しやすいように表面形状は誇張して描いている。図 5に示す対物レンズ OBJにおいては、中央領域 CRが、光軸 Xを含む第 1領域 R1と、 その周囲の第 2領域 R2と、更にその周囲であって周辺領域 PRと接する第 3領域 R3 とから構成されている。ここで、第 1領域 R1においては、負の向きのブレーズ構造と 位相構造とが重畳されているので、位相構造における光軸方向の段差及びその延 長線とブレーズの底部を通る線とを結ぶと、位相構造 PSの形状を示す包絡線(図 5 で示す点線)となり、第 3領域 R3においては、正の向きのブレーズ構造と位相構造と が重畳されているので、位相構造における段差に相当する位置力 光軸方向へ延 ばした線とブレーズの頂点を通る線とを結ぶと、位相構造 PSの形状を示す包絡線 ( 図 5で示す点線)となる。第 2領域 R2は、負の向きのブレーズ構造と、正の向きのブレ ーズ構造との切り替えのために必要な遷移領域である。この遷移領域は、回折構造 により透過波面に付加される光路差を後述する光路差関数で表現したとき、光路差 関数の変曲点に相当する領域である。光路差関数が変曲点を持つと、光路差関数 の傾きが小さくなるので、ブレーズ構造の輪帯ピッチを広げることが可能となり、回折 構造の形状誤差による透過率低下を抑制できる。
[0068] 尚、ブレーズ構造の向きが光軸力 離れるに従って負の向き力 正の向きへと一度 入れ替わる場合は、位相構造の形状を、図 5に示したように、中央領域の所定の高さ までは、光軸から離れるに従って光路長が長くなり、所定の高さより外側では、光軸 力 離れるに従って光路長が短くなるように、光軸方向に変移する形状(図 5で示す 点線)とするのが好ましい。このとき、位相構造の輪帯のうち最も光路長が長い輪帯 に、中央領域の 7割の高さの位置が含まれるのがより好ましい。
[0069] 第 39の構成の対物レンズは、第 29乃至第 37の構成のいずれかに記載の対物レン ズにおいて、前記回折構造は、正の向きのブレーズ構造である。正の向きのブレー ズ構造を図 4に示す。ブレーズ構造の向きを中央領域内で同一とすることで、金型カロ 工具が金型に対してあたる位置を常に同じ一定に保つことができるので、精度良くブ レーズ構造を創成することが可能となる。さらに、ブレーズ構造の向きを正とすること で、色収差 (微少な波長変化に伴うフォーカス位置ずれ)を補正することが可能となり 、短波長レーザ光源 (青紫色半導体レーザなど)を使用する第 1光情報記録媒体に 対する安定した情報 Z記録特性が得られる。尚、ブレーズ構造の向きが中央領域内 で正の向きの場合は、位相構造の形状を、図 4に示したように、光軸から離れるに従 つて光路長が短くなるように、光軸方向に変移する形状(図 4で示す点線)とするのが 好ましい。
[0070] 第 40の構成の対物レンズは、第 29乃至第 39の構成のいずれかに記載の対物レン ズにおいて、ガラスレンズであるので、温度変化に対する屈折率変化を小さく抑える ことができる。本発明の対物レンズは、榭脂レンズとガラスレンズの何れにも適用可能 であり、同様の効果が得られる力 榭脂レンズはガラスレンズに比べて温度変化に伴 う屈折率変化が 10倍以上大きいため、ガラスレンズとするのが好ましい。球面収差は 、対物レンズの開口数の 4乗で大きくなるため、開口数が 0. 85である BDにおいて対 物レンズを榭脂レンズとした場合、屈折率変化に伴う球面収差の影響が甚大となる。 本発明の対物レンズをガラスレンズとすることで、使用温度範囲の広 ヽ対物レンズを 提供することが可能となる。
[0071] 第 41の構成の対物レンズは、第 29乃至第 39の構成のいずれかに記載の対物レン ズにおいて、前記回折構造及び前記位相構造が形成された榭脂層を、ガラスレンズ 上に接合したので、製造が容易であるにも関わらず、温度変化に対する屈折率変化 を/ J、さく抑えることができる。 [0072] このような構成とすることで、使用温度範囲が広い対物レンズを提供することができ るとともに、回折構造や位相構造の転写性を向上することができる。尚、榭脂層の形 成方法としては、ガラスレンズ上に塗布した紫外線硬化樹脂に、回折構造や位相構 造を形成した金型を押し当て、紫外線照射させることで榭脂層を形成する方法が製 造上適している。
[0073] 第 42の構成の対物レンズは、第 29乃至第 41の構成のいずれかに記載の対物レン ズにおいて、前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前 記対物レンズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は 記録を行う際の焦点距離を f2、倍率を m2としたとき、以下の(6)式、及び (7)式を満 たす。
[0074] -0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
これにより、何れの波長の光束も略平行光束の状態で対物レンズに対して入射させ ることが可能となるので、トラッキングによるコマ収差発生を抑制でき、良好なトラツキ ング特性が得られる。また、倍率 mlと倍率 m2とを同じ倍率とすることで、レーザ光源 と対物レンズとの間に配置される光学素子や、情報記録面からの反射光束を受光す る受光素子を、第 1波長 λ 1と第 2波長え 2とで共通化することが容易になり、光ピック アップ装置の部品点数削減、低コスト化、省スペース化に有利となる。
[0075] 第 43の構成の光ピックアップ装置は、第 1波長 λ 1の第 1光束を出射する第 1光源 と、第 2波長 λ 2の第 2光束を出射する第 2光源と、対物レンズを含む集光光学系と、 光検出器とを有し、厚さ tlの保護層を有する第 1光情報記録媒体に対して、前記第 1 光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を 行い、厚さ t2 (tl≤t2)の保護層を有する第 2光情報記録媒体に対して、第 2光源か ら出射される第 2波長 λ 2 ( λ 1 < λ 2)の第 2光束を用いて情報の再生及び Ζ又は 記録を行う光ピックアップ装置にぉ 、て、
前記対物レンズは、単レンズ構成を有し、且つ光軸を含む中央領域と、該中央領 域を囲む周辺領域との少なくとも 2つの領域を有する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されている。この作用効果は 、第 29の構成と同様である。
[0076] 第 44の構成の光ピックアップ装置は、第 43の構成に記載の光ピックアップ装置に おいて、前記対物レンズの回折構造は、入射光束の波長が長くなつた場合に、球面 収差が補正不足方向に変化するような球面収差の波長依存性を有するとともに、前 記位相構造は、入射光束の波長が短くなつた場合に、球面収差が補正過剰方向に 変化するような球面収差の波長依存性を有する。この作用効果は、第 30の構成と同 様である。
[0077] 第 45の構成の光ピックアップ装置は、第 43又は第 44の構成に記載の光ピックアツ プ装置において、前記対物レンズの位相構造の 1つの輪帯内に、前記回折構造の 輪帯が 1以上の整数個だけ形成されている。この作用効果は、第 31の構成と同様で ある。
[0078] 第 46の構成の光ピックアップ装置は、第 43乃至第 45のいずれかに記載の光ピック アップ装置において、前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Bが以下の(1)式を満たす。
[0079] λ 1 < λ < λ 2 (1)
この作用効果は、第 32の構成と同様である。
[0080] 第 47の構成の光ピックアップ装置は、第 43乃至第 46の構成のいずれかに記載の 光ピックアップ装置にお ヽて、
以下の(2)式、及び(3)式を満たす。
[0081] 380nm< λ K420nm (2)
630nm< λ 2< 680nm (3)
この作用効果は、第 33の構成と同様である。
[0082] 第 48の構成の光ピックアップ装置は、第 47の構成に記載の光ピックアップ装置に おいて、前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対 物レンズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は 記録を行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記 開口数 NA2内に相当する領域であって、前記回折構造のブレーズ化波長 λ B、前 記開口数 NA1、及び前記開口数 ΝΑ2が以下の(4)式、及び(5)式を満たす。
[0083] 1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
この作用効果は、第 34の構成と同様である。
[0084] 第 49の構成の光ピックアップ装置は、第 47又は第 48の構成に記載の光ピックアツ プ装置において、前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1 の 5倍であって、前記第 2光束に対しては前記第 2波長え 2の 3倍である。この作用効 果は、第 35の構成と同様である。
[0085] 第 50の構成の光ピックアップ装置は、第 43乃至第 49の構成のいずれかに記載の 光ピックアップ装置において、前記周辺領域は、微細な段差構造が形成されない非 球面である。この作用効果は、第 36の構成と同様である。
[0086] 第 51の構成の光ピックアップ装置は、第 43乃至第 50の構成のいずれかに記載の 光ピックアップ装置にお ヽて、前記回折構造及び前記位相構造が形成された前記対 物レンズの光学面は、前記対物レンズを前記光ピックアップ装置に搭載した状態で 光源側に配置された光学面である。この作用効果は、第 37の構成と同様である。
[0087] 第 52の構成の光ピックアップ装置は、第 43乃至第 51の構成のいずれかに記載の 光ピックアップ装置において、前記回折構造は、光軸力も離れるに従って、負の向き 力も正の向きへとブレーズ構造の向きが少なくとも一度入れ替わる。この作用効果は
、第 38の構成と同様である。
[0088] 第 53の構成の光ピックアップ装置は、第 43乃至第 51の構成のいずれかに記載の 光ピックアップ装置において、前記回折構造は、正の向きのブレーズ構造である。こ の作用効果は、第 39の構成と同様である。
[0089] 第 54の構成の光ピックアップ装置は、第 43乃至第 53の構成のいずれかに記載の 光ピックアップ装置において、前記対物レンズがガラスレンズである。この作用効果 は、第 40の構成と同様である。
[0090] 第 55の構成の光ピックアップ装置は、第 43乃至第 53の構成のいずれかに記載の 光ピックアップ装置において、前記対物レンズは、前記回折構造及び前記位相構造 が形成された榭脂層を、ガラスレンズ上に接合した。この作用効果は、第 41の構成と 同様である。
[0091] 第 56の構成の光ピックアップ装置は、第 43乃至第 55の構成のいずれかに記載の 光ピックアップ装置において、前記第 1光情報記録媒体に対して情報の再生又は記 録を行う際の、前記対物レンズの倍率を mlとし、前記第 2光情報記録媒体に対して 情報の再生又は記録を行う際の、前記対物レンズの倍率を m2としたとき、以下の(6 )式、及び (7)式を満たす。
[0092] -0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
この作用効果は、第 42の構成と同様である。
[0093] 第 57の構成の光ピックアップ装置は、光源と、第 1乃至第 28の構成の何れかに記 載の対物レンズと、光検出器とを備えた。
[0094] 第 58の構成の光情報記録再生装置は、第 43乃至第 57の構成のいずれかに記載 の光ピックアップ装置を搭載した。
[0095] また、本明細書にぉ 、て、「対物レンズ」とは、光ピックアップ装置にお!、て光情報 記録媒体に対向する位置に配置され、光源から射出された光束を、光情報記録媒 体 (光ディスクともいう)の情報記録面上に集光する機能を有する光学系であって、光 ピックアップ装置に搭載された際には、ァクチユエータにより少なくとも光軸方向に変 位可能される光学系を指す。「対物レンズ」は単レンズであっても良いし、複数のレン ズから構成されて 、ても良ぐまた他の光学素子を含んで 、ても良 、。
[0096] また、対物レンズをガラスレンズとする場合は、ガラス転移点 Tgが 400°C以下である ガラス材料を使用すると、比較的低温での成形が可能となるので、金型の寿命を延 ばすことが出来る。このようなガラス転移点 Tgが低いガラス材料としては、例えば (株 )住田光学ガラス製の K— PG325や、 K— PG375 (共に製品名)がある。
[0097] ところで、ガラスレンズは一般的に榭脂レンズよりも比重が大きいため、対物レンズ をガラスレンズとすると、重量が大きくなり対物レンズを駆動するァクチユエ一タに負 担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラ ス材料を使用するのが好ましい。具体的には、比重が 3. 0以下であるのが好ましぐ 2. 8以下であるのがより好ましい。
[0098] また、対物レンズを榭脂レンズとする場合は、環状ォレフィン系の榭脂材料を使用 するのが好ましぐ環状ォレフィン系の中でも、波長 405nmに対する温度 25°Cでの 屈折率が 1. 54乃至 1. 60の範囲内であって、 5°Cから 70°Cの温度範囲内での温 度変化に伴う波長 405nmに対する屈折率変化率 dNZdT(°C_1)が— 10 X 10—5乃 至— 8 X 10—5の範囲内である榭脂材料を使用するのがより好ましい。
[0099] 或 、は、本発明の対物レンズに適した榭脂材料として、上記環状ォレフィン系以外 にも「アサ一マル樹脂」がある。アサ一マル樹脂とは、母材となる樹脂の温度変化に 伴う屈折率変化率とは、逆符号の屈折率変化率を有する直径が 30nm以下の粒子 を分散させた榭脂材料である。一般に、透明な榭脂材料に微粉末を混合させると、 光の散乱が生じ、透過率が低下するため、光学材料として使用することは困難であつ たが、微粉末を透過光束の波長より小さい大きさにすることにより、散乱が事実上発 生しな 、ようにできることがわ力 てきた。
[0100] さて榭脂材料は、温度が上昇することにより、屈折率が低下してしまうが、無機粒子 は温度が上昇すると屈折率が上昇する。そこでこれらの性質をあわせて打ち消しあう ように作用させることにより、屈折率変化が生じないようにすることも知られている。本 発明の対物レンズの材料として、母材となる樹脂に 30ナノメートル以下、好ましくは 2 0ナノメートル以下、さらに好ましくは 10〜 15ナノメートルの無機粒子を分散させた材 料を利用することで、屈折率の温度依存性が無いか、あるいはきわめて低い対物レ ンズを提供できる。
[0101] たとえば、アクリル榭脂に、酸ィ匕ニオブ (Nb O )の微粒子を分散させている。
2 5
[0102] 母材となる榭脂は、体積比で 80、酸ィ匕ニオブは 20程度の割合であり、これらを均 一に混合する。微粒子は凝集しやすいという問題があるが、粒子表面に電荷を与え て分散させる等の技術により、必要な分散状態を生じさせることが出来る。
[0103] 後述するように、母材となる樹脂と粒子との混合'分散は、対物レンズの射出成形時 にインラインで行うことが好ましい。いいかえると、混合'分散した後は、対物レンズに 成形される迄、冷却,固化されないことが好ましい。
[0104] なお、この体積比率は、屈折率の温度に対する変化の割合をコントロールするため に、適宜増減できるし、複数種類のナノサイズ無機粒子をブレンドして分散させること も可能である。
[0105] 比率では、上記の例では 80 : 20、すなわち 4 : 1であるが、 90 : 10 (9 : 1)から 60 :40
(3: 2)までの間で適宜調整可能である。 9: 1よりも少な 、と温度変化抑制の効果が 小さくなり、逆に 3 : 2を越えると榭脂の成形性に問題が生じるために好ましくない。
[0106] 微粒子は無機物であることが好ましぐさらに酸ィ匕物であることが好ましい。そして酸 化状態が飽和して 、て、それ以上酸化しな 、酸ィ匕物であることが好ま 、。
[0107] 無機物であることは、高分子有機化合物である母材となる樹脂との反応を低く抑え られるために好ましぐまた酸ィ匕物であることによって、使用に伴う劣化を防ぐことが出 来る。特に高温化や、レーザ光を照射されるという過酷な条件において、酸化が促進 されやすくなるが、このような無機酸ィ匕物の微粒子であれば、酸化による劣化を防ぐ ことが出来る。
[0108] また、その他の要因による樹脂の酸ィ匕を防止するために、酸化防止剤を添加するこ とも勿論可能である。
[0109] ちなみに、母材となる榭脂は、特開 2004— 144951号公報、特開 2004— 14495 4号公報、特開 2004— 144953号公報等に記載されているような榭脂を適宜好まし く採用することがでさる。
[0110] 尚、以上の説明では、好ましい具体的な態様として、回折構造と位相構造とを重畳 させた重畳構造を光学面に形成したレンズの例を挙げて説明した力 それぞれ同様 な機能を有する光路差付与構造を重畳させた重畳構造とすることができる。より具体 的には、入射される光束の波長をより長い波長とした場合には球面収差が補正不足 方向に変化する第 1光路差付与構造と、入射される光束の波長をより長い波長とした 場合には球面収差が補正過剰方向に変化する第 2光路差付与構造といった、異な る少なくとも 2つの光路差付与構造を、パワーを有するレンズの一面に重畳させた重 畳構造とすることで、球面収差の波長依存性が小さ 、対物レンズを得ることが可能と なる。
[0111] 以下、本発明の具体的な実施の形態を図面を参照して説明する。図 6は、異なる光 情報記録媒体 (光ディスクとも 、う)である BDと DVDに対して適切に情報の記録 Z 再生を行える本実施の形態の光ピックアップ装置 PU1の構成を概略的に示す図で ある。かかる光ピックアップ装置 PU1は、光情報記録再生装置に搭載できる。ここで は、第 1光情報記録媒体を BDとし、第 2光情報記録媒体を DVDとする。
[0112] 第 1の光ピックアップ装置 PU1は、第 1波長 408nmの第 1光束を射出する第 1光源 としての青紫色半導体レーザ LD1と BDの情報記録面 RL1からの反射光束を受光す る第 1の光検出器 PD1とが一体ィ匕された第 1のモジュール MD1、第 2波長 658nm の第 2光束を出射する第 2光源としての赤色半導体レーザ LD2と第 2の光ディスク O D2の情報記録面 RL2からの反射光束を受光する第 2の光検出器 PD2とが一体ィ匕さ れた第 2のモジュール MD2、ダイクロイツクプリズム PS、コリメートレンズ CL、絞り ST 、対物レンズ OBJ、フォーカシング Zトラッキング用の 2軸ァクチユエータ AC等カも概 略構成される。尚、対物レンズ OBJは、光源側の光学面が、光軸を含む中央領域と、 その周辺の周辺領域とに分かれており、中央領域には、回折構造及び位相構造が 形成されている。
[0113] 青紫色半導体レーザ LD1から射出された第 1波長 408nmの発散光束は、ダイク口 イツクプリズム PSを透過し、コリメートレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、絞り STによりその光束径が規制 され、対物レンズ OBJによって厚さ 0. 0875mmの保護層 PL1を介して、 BDの情報 記録面 RL 1上に形成されるスポットとなる。
[0114] 情報記録面 RL1上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、ダイクロイツクプリズム PSを透過した後 、第 1の光検出器 PD1の受光面上に収束する。そして、第 1の光検出器 PD1の出力 信号を用いて、 2軸ァクチユエータ ACにより対物レンズ OBJをフォーカシングゃトラッ キングさせることで、 BDに記録された情報を読みとることができる。
[0115] また赤色半導体レーザ LD2から射出された第 2波長 658nmの発散光束は、偏光 ダイクロイツクプリズム PSにより反射され、コリメートレンズ CLにより平行光束とされた 後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、対物レンズ OBJ に入射する。対物レンズ OBJの中央領域を通過した第 2波長 658nmの光束は、厚さ 0. 6mmの保護層 PL2を介して、 DVDの情報記録面 RL2上に形成されるスポットと なる。
[0116] 情報記録面 RL2上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、ダイクロイツクプリズム PSにより反射さ れた後、第 2の光検出器 PD2の受光面上に収束する。そして、第 2の光検出器 PD2 の出力信号を用いて、 2軸ァクチユエータ ACにより対物光学素子 OBJをフォーカシ ングゃトラッキングさせることで、 DVDに記録された情報を読みとることができる。 尚、対物レンズ OBJの周辺領域は、微細な段差構造が形成されない非球面であるの で、周辺領域を通過した第 2波長 658nmの光束は、 DVDの情報記録面 RL2上で、 スポット形成に寄与しないフレア成分となる。これにより、 DVDの開口数に対応した 開口制限が自動的に行われる。
実施例
[0117]
以下、本実施の形態に好適な実施例について説明する。尚、これ以降 (表のレンズ データ含む)において、 10のべき乗数(例えば、 2. 5 X 10_3)を、 E (例えば、 2. 5E 一 3)を用いて表すものとする。また、実施例の表中、範囲 hは、光軸からの距離を表 し、単位は mm、曲率半径 (R, Ri)の単位も mmである。
[0118] 対物光学系の光学面は、それぞれ式 (8)に、表に示す係数を代入した数式で規定 される、光軸の周りに軸対称な非球面に形成されて 、る。
[0119] z= (h2/R) /[l + ^{ l - (K + l) (h/R) 2}] +A +A h4+A h6+A h8+A
0 4 6 8 10
, 10 , . , 12 , . , 14 , . , 16 , . , 18 , . , 20
h +A h +A h +A h +A h +A h
12 14 16 18 20
•••(8)
但し、
z :非球面形状 (非球面の面頂点に接する平面から光軸に沿った方向の距離) h:光軸からの距離
R:曲率半径
K :コーニック係数 A , A , A , A , A , A , A , A , A :非球面係数
4 6 8 10 12 14 16 18 20
また、回折構造により各波長の光束に対して与えられる光路差は、式 (9)の光路差 関数に、表に示す係数を代入した数式で規定される。
[0120] =dor X λ / λ X (C h2+C h4+C h6 + C h8+C h10+C h12 + C h14+C
B 2 4 6 8 10 12 14
16 h16+c 18 h18+c 20 h20)
•••(9)
但し、
Φ :光路差関数
λ:回折構造に入射する光束の波長
λ :ブレーズ化波長
Β
dor:光ディスクに対する記録 Z再生に使用する回折光の回折次数
h :光軸からの距離
C , C , C , C , C , C , C , C , C , C :回折面係数
2 4 6 8 10 12 14 16 18 20
(実施例 1)
実施例 1のレンズデータ (設計波長、焦点距離、像側の開口数、倍率を含む)を表 1 と表 2に示す。実施例 1は、図 6に示す光ピックアップ装置に好適なガラス製 (OHAR A製 S— BSM14)の対物レンズである。光源側の光学面は、光軸力も近い順に、 光軸を含む第 2— 1面と、その周辺に形成された、第 2— 2面、第 2— 3面、第 2— 4面 、第 2— 5面、そして第 2— 6面の 6領域で構成されている。第 2—1から第 2— 5面まで の領域が中央領域に相当し、第 2— 6面が周辺領域に相当する。第 2— 1面から第 2 5面にはブレーズィ匕波長 λ B :490nmの回折構造が形成され、その回折次数は B D : l次、 DVD : 1次であり、その回折効率は BD : 85%、 DVD : 79%となっている。ま た、第 2— 6面は非球面形状である。
[0121] [表 1] 〔0
( 列 1 )
mr A 1 408nm ス 2: 658nm レンズの焦„^SEIIt f 1: 1 .756mm f2:〗 .829mm 麵の開口数 NA1: 0.85 NA2: 0.66 倍率 ml: 0 m2: 0 第 2面の^ @ ø 3.00mm 02.36 mm ータ
Figure imgf000078_0001
【第 2面データ】
Figure imgf000078_0002
【第 3面データ】
Figure imgf000079_0001
[0123] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相差 に換算して 2 π X 5 (rad)だけ位相が遅れることになる。また、第 2— 3面、第 2— 4面、 及び第 2— 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X 1 ( nm)、 5 X λ 1 (nm)、 0 X λ 1 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 10 (rad)、 2 π X 5 (rad)、 2 π X 0 (rad)だけ位相が遅れることとなる 。また、第 2— 1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3面、第 2— 4面 、及び第 2— 5面では、それぞれ 3 X X 2 (nm)、 6 X λ 2 (nm)、 3 X λ 2 (nm)、 0 X λ 2 (nm)の光路差が付与されるので、位相差に換算してそれぞれ 2 π X 3 (rad)、 2 π X 6 (rad)ゝ 2 π X 3 (rad)、 2 π X 0 (rad)だけ位相が遅れることになる。すなわち、 位相構造の 1つの段差によりそれぞれの波長の光束に対して付加される光路差は、 第 1波長 λ 1に対しては 2040nm、第 2波長え 2に対しては 1974nmであり、何れの 波長の光束に対しても略同量の光路差が付加される。尚、本実施例においては、中 央領域内で、ブレーズ構造の向きが光軸力 離れるに従って負の向き力も正の向き へと一度入れ替わるようになって!/ヽる(図 5参照)。
[0124] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 1の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 029 1RMS、高次成分: 0. 010 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 009 λ 1RMS、高次成分: 0 . 029 RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
(実施例 2)
実施例 2は、図 6に示す光ピックアップ装置に好適な榭脂製の対物レンズのもので ある。実施例 2のレンズデータ (設計波長、焦点距離、像側の開口数、倍率を含む)を 表 3と表 4に示す。光源側の光学面は、光軸から近い順に、光軸を含む第 2— 1面と、 その周辺に形成された、第 2— 2面、第 2— 3面、第 2— 4面、第 2— 5面、そして第 2 —6面の 6領域で構成されている。第 2—1から第 2— 5面までの領域が中央領域に 相当し、第 2— 6面が周辺領域に相当する。第 2—1面力 第 2— 5面にはブレーズィ匕 波長 λ B :490nmの回折構造が形成され、その回折次数は BD: 1次、 DVD: 1次で あり、その回折効率は BD: 85%、 DVD: 78%となっている。また、第 2— 6面は非球 面形状である。
[表 3]
〔o
(鋼列 2)
皮長 λ 1: 08nm λ 2: 658nm
1レンズの ί^Θϋ ft: 1.750mm f2: 1.819mm 像側の開口数 NA1: 0.85 NA2: 0.66 ml: 0 m2: 0 第 2面の 03.00mm φ 2.36mm
【 由 タ I
Figure imgf000081_0001
Figure imgf000081_0002
【第 3面データ】
Figure imgf000082_0001
[0127] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相差 に換算して 2 π X 5 (rad)だけ位相が遅れることになる。また、第 2— 3面、第 2— 4面、 及び第 2— 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X 1 ( nm)、 5 X λ 1 (nm)、 0 X λ 1 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 10 (rad)、 2 π X 5 (rad)、 2 π X 0 (rad)だけ位相が遅れることとなる 。また、第 2— 1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3面、第 2— 4面 、及び第 2— 5面では、それぞれ 3 X X 2 (nm)、 6 X λ 2 (nm)、 3 X λ 2 (nm)、 0 X λ 2 (nm)の光路差が付与されるので、位相差に換算してそれぞれ 2 π X 3 (rad)、 2 π X 6 (rad)ゝ 2 π X 3 (rad)、 2 π X 0 (rad)だけ位相が遅れることになる。すなわち、 位相構造の 1つの段差によりそれぞれの波長の光束に対して付加される光路差は、 第 1波長 λ 1に対しては 2040nm、第 2波長え 2に対しては 1974nmであり、何れの 波長の光束に対しても略同量の光路差が付加される。尚、本実施例においては、中 央領域内で、ブレーズ構造の向きが光軸力 離れるに従って負の向き力も正の向き へと一度入れ替わるようになって!/ヽる(図 5参照)。
[0128] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 2の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 035 1RMS、高次成分: 0. 014 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 020 λ 1RMS、高次成分: 0 . 032 RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
(実施例 3)
実施例 3は、図 6に示す光ピックアップ装置に好適なガラス製 (OHARA製 S -B SM14)の対物レンズのものである。実施例 3のレンズデータ (設計波長、焦点距離、 像側の開口数、倍率を含む)を表 5と表 6に示す。光源側の光学面は、光軸から近い 順に、光軸を含む第 2— 1面と、その周辺に形成された、第 2— 2面、第 2— 3面、第 2 —4面、第 2— 5面、そして第 2— 6面の 6領域で構成されている。第 2—1から第 2— 5 面までの領域が中央領域に相当し、第 2— 6面が周辺領域に相当する。第 2— 1面か ら第 2— 5面にはブレーズィ匕波長 λ B:490nmの回折構造が形成され、その回折次 数は BD: 1次、 DVD: 1次であり、その回折効率は BD : 85%、 DVD: 79%となって いる。また、第 2— 6面は非球面形状である。
[表 5]
〔013 皮長 λ 1 : 408nm λ 2: 658nm レンズの Sl^iSSi f 1 : 1 .778mm f2: 1 .828mm Wの開口数 NA1 : 0.85 NA2: 0.67 ml : 0 ιη2: 0 2面の摘径 03.00mm 02.36 mm
Figure imgf000084_0001
2 ー
Figure imgf000084_0002
【第 3面データ】
Figure imgf000085_0001
[0131] 第 2—1面力 第 2— 5面には位相構造が重畳されており、第 2—1面を透過するえ 1の光束に対して、第 2— 2面では 5 X λ 1 (nm)の光路差が付与されるので、位相 差に換算して 2 π X 5 (rad)だけ位相が進むことになる。また、第 2— 3面、第 2— 4面 、及び第 2 5面では、第 2— 1面を透過する λ 1の光束に対して、それぞれ 10 X λ 1 (nm)、 一 15 X λ 1 (nm)、 一 20 X λ 1 (nm)の光路差が付与されるので、位相 差に換算してそれぞれ 2 π X 10 (rad)、 2 π X 15 (rad)、 2 π X 20 (rad)だけ位相が 進むこととなる。また、第 2—1面を透過するえ 2の光束に対して、第 2— 2面、第 2— 3 面、第 2— 4面、及び第 2— 5面では、それぞれ 3 X 2 (nm)、一 6 X 2 (nm)、 —9 X 2 (nm)、—12 X λ 2 (nm)の光路差が付与されるので、位相差に換算して それぞれ 2 π X 3 (rad)、 2 π X 6 (rad)、 2 π X 9 (rad)、 2 π X 12 (rad)だけ位相が 進むことになる。すなわち、位相構造の 1つの段差によりそれぞれの波長の光束に対 して付加される光路差は、第 1波長 λ 1に対しては 2040nm、第 2波長 λ 2に対して は 1974nmであり、何れの波長の光束に対しても略同量の光路差が付加される。尚 、本実施例においては、中央領域内で、ブレーズ構造の向きは正で一定である(図 4 参照)。
[0132] 一方、光ディスク側光学面 (第 3面)は、非球面形状である。力かる実施例 3の対物 レンズにおいては、第 1波長 λ 1が + 5nm波長変化した際の球面収差の変化量は 3 次成分: 0. 006 λ 1RMS、高次成分: 0. 014 λ 1RMSであり、第 2面の回折構造に 位相構造を重畳させないと場合の変化量(3次成分: 0. 085 λ 1RMS、高次成分: 0 . 042 λ RMS)に対して、高次成分が低減されている。尚、ここでは「高次成分」を、 5 次成分と 7次成分の 2乗和の平方根として 、る。
[0133] 尚、実施例 1から実施例 3の対物レンズにおいて、第 1波長 λ 1の回折効率の有効 径内面積加重平均値を計算すると、 90. 7%となり、記録 Ζ再生の高速化が求めら れる BDに対して高 、光利用効率が得られる。
[0134] また、実施例 1から実施例 3の対物レンズにおいては、回折構造のブレーズィ匕波長 λ Βを 490nmとした力 これに限らず、ブレーズィ匕波長 λ Bを変えることで、第 1波長 λ 1と第 2波長 λ 2の回折効率のノランスを適宜変更することが可能である。
更に、以上の実施例では、第 1光路差付与構造を回折構造とし、第 2光路差付与構 造を位相構造とした幾つかの例を例示した力 本発明はこれらの例に限定されるもの ではない。
好ましい他の例としては、第 1波長 λ 1の光束に対して回折効率が最大となる回折次 数が 3次回折光であって、且つ第 2波長 λ 2の光束に対して回折効率が最大となる 回折次数が 2次回折光となる回折構造を、第 1光路差付与構造とし、第 1波長 λ 1の 光束に対しては λ 1のほぼ 5倍の光路差を付与するものであって、且つ第 2波長 λ 1 の光束に対しては λ 2のほぼ 3倍の光路差を付与する位相構造を、第 2光路差付与 構造として、それら第 1及び第 2光路差付与構造を重畳した重畳構造を用いることが 挙げられる。
また、第 1波長 λ 1の光束に対しては λ 1のほぼ 5倍の光路差を付与するものであつ て、且つ第 2波長 λ 2の光束に対しては λ 2のほぼ 3倍の光路差を付与する位相構 造を、第 1光路差付与構造とし、第 1波長 λ 1の光束に対して回折効率が最大となる 回折次数が 2次回折光であって、且つ第 2波長 λ 2の光束に対して回折効率が最大 となる回折次数が 1次回折光となる回折構造を、前記第 2光路差付与構造として、そ れら第 1及び第 2光路差付与構造を重畳した重畳構造を用いることも、好ましい例と して挙げられる。
更にまた、本発明は、 BDだけではなぐ HDを含む他の高密度光ディスク用の対物 レンズに対して適用することも可能であり、上述した効果と同様の効果が得られる。 産業上の利用可能性 本発明によれば、異なる波長の光束を用いて、複数種類の光情報記録媒体に対し て情報の記録及び Z又は再生を行う光ピックアップ装置に適用可能な対物レンズで あって、球面収差の波長依存性が小さい対物レンズ、この対物レンズを使用した光ピ ックアップ装置、及び、この光ピックアップ装置を搭載した光情報記録再生装置を提 供することができる。また、異なる種類の光情報記録媒体に対して良好に情報の記録 及び Z又は再生を行える対物レンズであって、球面収差の波長依存性が小さぐ高 V、透過率を有する単レンズ構成の対物レンズ、この対物レンズを使用した光ピックァ ップ装置、及び、この光ピックアップ装置を搭載した光情報記録再生装置を提供する ことができる。

Claims

請求の範囲
[1] 光ピックアップ装置に用いられる対物レンズであって、パワーを有するレンズの一面 に、入射される光束の波長をより長!ヽ波長とした場合には球面収差が補正不足方向 に変化する第 1光路差付与構造と、入射される光束の波長をより長い波長とした場合 には球面収差が補正過剰方向に変化する第 2光路差付与構造とを重畳させた重畳 構造を有することを特徴とする対物レンズ。
[2] 前記レンズの前記一面には、前記重畳構造が形成された部分と、前記重畳構造が 形成されていない部分とを有することを特徴とする請求の範囲第 1項記載の対物レン ズ。
[3] 前記重畳構造が形成されて 、な 、部分は、非球面であることを特徴とする請求の 範囲第 1又は 2項記載の対物レンズ。
[4] 前記レンズの前記一面は、光軸を含む中央領域と前記中央領域を囲む周辺領域と を有し、前記重畳構造は前記中央領域に形成されて ヽることを特徴とする請求の範 囲第 1項乃至 3項の何れか一項記載の対物レンズ。
[5] 前記レンズの前記一面は、光ピックアップ装置に搭載された際に光源側に配置さ れる面であることを特徴とする請求の範囲第 1項乃至 4項の何れか一項記載の対物 レンズ。
[6] 前記レンズの前記一面は、凸面であることを特徴とする請求の範囲第 1項乃至 5項 の何れか一項記載の対物レンズ。
[7] 前記レンズの他方の面は、非球面であることを特徴とする請求の範囲第 1項乃至 6 項の何れか一項記載の対物レンズ。
[8] 前記レンズは、光ピックアップ装置に光情報記録媒体が対向配置された際に、最も 光情報記録媒体側に配置されるレンズであることを特徴とする請求の範囲第 1項乃 至 7項の何れか一項記載の対物レンズ。
[9] 前記レンズ力 なる単レンズ構成であることを特徴とする請求の範囲第 1項乃至 8項 の何れか一項記載の対物レンズ。
[10] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを少なくとも有し、厚さ tlの 保護層を有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波 長 λ 1の第 1光束を用いて情報の再生及び Z又は記録を行い、厚さ t2 (tl≤t2)の 保護層を有する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ Κ λ 2)の第 2光束を用いて情報の再生及び Ζ又は記録を行うことができる光ピ ックアップ装置に用いられることを特徴とする請求の範囲第 1項乃至 9項の何れか一 項記載の対物レンズ。
[11] 前記第 1光路差付与構造は、回折構造であることを特徴とする請求の範囲第 1項乃 至 10項の何れか一項記載の対物レンズ。
[12] 前記第 1光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、同 一次数となる回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前記 第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請求 の範囲第 8項記載の対物レンズ。
[13] 前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されていることを特徴とする請求の範囲第 12項記載の対物レンズ。
[14] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 12項又は 13項記載の対物レンズ。
λ 1 < λ Β< λ 2 (1)
[15] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 12項乃至 14項 の何れか一項記載の対物レンズ。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[16] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記開口数 NA2内に相当す る領域内に前記重畳構造を備え、前記回折構造のブレーズ化波長 λ Β、前記開口 数 ΝΑ1、及び前記開口数 ΝΑ2が以下の(4)式、及び(5)式を満たすことを特徴とす る請求の範囲第 15項記載の対物レンズ。
1. 15 X λ 1 < λ Β< 0. 85 X λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[17] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 15項又は 16項記載の対物レンズ。
[18] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 11項乃至 17項 の何れか一項記載の対物レンズ。
[19] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 1
1項乃至 17項の何れか一項記載の対物レンズ。
[20] 前記第 1光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異 なる次数となる回折構造であり、前記第 2光路差付与構造は、前記第 1光束及び前 記第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請 求の範囲第 10項記載の対物レンズ。
[21] 前記第 1光束の入射に対して回折効率が最大となる回折次数は 3であって、前記 第 2光束の入射に対して回折効率が最大となる回折次数は 2であることを特徴とする 請求の範囲第 20項記載の対物レンズ。
[22] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 20項又は 21項記載の対物レンズ。
[23] 前記第 2光路差付与構造は、回折構造であることを特徴とする請求の範囲第 1項乃 至 10項の何れか一項記載の対物レンズ。
[24] 前記第 2光路差付与構造は、前記第 1光束の入射に対して回折効率が最大となる 回折次数と、前記第 2光束の入射に対して回折効率が最大となる回折次数とが、異 なる次数となる回折構造であり、前記第 1光路差付与構造は、前記第 1光束及び前 記第 2光束に対して同量の光路差を付加させる位相構造であることを特徴とする請 求の範囲第 23項記載の対物レンズ。
[25] 前記第 1光束の入射に対して回折効率が最大となる回折次数は 2であって、前記 第 2光束の入射に対して回折効率が最大となる回折次数は 1であることを特徴とする 請求の範囲第 24項記載の対物レンズ。
[26] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1のほぼ 5倍であつ て、前記第 2光束に対しては前記第 2波長 λ 2のほぼ 3倍であることを特徴とする請求 の範囲第 24項又は 25項記載の対物レンズ。
[27] 前記レンズはガラスレンズであることを特徴とする請求の範囲第 1項乃至 26項の何 れか一項記載の対物レンズ。
[28] 前記レンズは、前記重畳構造を有する榭脂層がガラス素子上に接合された構成で あることを特徴とする請求の範囲第 1項乃至 26項の何れか一項記載の対物レンズ。
[29] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを有し、厚さ tlの保護層を 有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Ζ又は記録を行 、、厚さ t2 (tl≤t2)の保護層を有 する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ 1 < λ 2 )の第 2光束を用 、て情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いら れる対物レンズにぉ ヽて、
単レンズ構成を有し、
光軸を含む中央領域と、該中央領域を囲む周辺領域との少なくとも 2つの領域を有 する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されていることを特徴とする 対物レンズ。
[30] 前記回折構造は、入射光束の波長が長くなつた場合に、球面収差が補正不足方 向に変化するような球面収差の波長依存性を有するとともに、前記位相構造は、入 射光束の波長が長くなつた場合に、球面収差が補正過剰方向に変化するような球面 収差の波長依存性を有することを特徴とする請求の範囲第 29項に記載の対物レン ズ。
[31] 前記位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整数個だけ形 成されていることを特徴とする請求の範囲第 29項又は 30項に記載の対物レンズ。
[32] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 29項乃至 31項の何れか一項に記載の対物 レンズ。
λ 1 < λ < λ 2 (1)
[33] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 29項乃至 32項 の何れか一項に記載の対物レンズ。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[34] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口 数 NA2内に相当する領域であって、前記回折構造のブレーズィ匕波長 λ B、前記開 口数 NA1、及び前記開口数 NA2が以下の(4)式、及び(5)式を満たすことを特徴と する請求の範囲第 33項に記載の対物レンズ。
1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[35] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5倍であって、 前記第 2光束に対しては前記第 2波長 λ 2の 3倍であることを特徴とする請求の範囲 第 33項又は 34項に記載の対物レンズ。
[36] 前記周辺領域は、微細な段差構造が形成されな 、非球面であることを特徴とする 請求の範囲第 29項乃至 35項の何れか一項に記載の対物レンズ。
[37] 前記回折構造及び前記位相構造が形成された光学面は、前記光ピックアップ装置 に搭載した状態で光源側に配置される光学面であることを特徴とする請求の範囲第 29項乃至 36項の何れか一項に記載の対物レンズ。
[38] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 29項乃至 37項 の何れか一項に記載の対物レンズ。
[39] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 2
9項乃至 37項の何れか一項に記載の対物レンズ。
[40] ガラスレンズであることを特徴とする請求の範囲第 29項乃至 39項の何れか一項に 記載の対物レンズ。
[41] 前記回折構造及び前記位相構造が形成された榭脂層を、ガラスレンズ上に接合し たことを特徴とする請求の範囲第 29項乃至 40項の何れか一項に記載の対物レンズ
[42] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う 際の、前記対物レンズの倍率を m2としたとき、以下の(6)式、及び(7)式を満たすこ とを特徴とする請求の範囲第 29項乃至 41項の何れか一項に記載の対物レンズ。
-0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
[43] 第 1波長 λ 1の第 1光束を出射する第 1光源と、第 2波長 λ 2の第 2光束を出射する 第 2光源と、対物レンズを含む集光光学系と、光検出器とを有し、厚さ tlの保護層を 有する第 1光情報記録媒体に対して、前記第 1光源から出射される第 1波長 λ 1の第 1光束を用いて情報の再生及び Ζ又は記録を行 、、厚さ t2 (tl≤t2)の保護層を有 する第 2光情報記録媒体に対して、第 2光源から出射される第 2波長 λ 2 ( λ 1 < λ 2 )の第 2光束を用いて情報の再生及び Ζ又は記録を行う光ピックアップ装置にぉ 、て 前記対物レンズは、単レンズ構成を有し、且つ光軸を含む中央領域と、該中央領 域を囲む周辺領域との少なくとも 2つの領域を有する光学面を有し、
前記中央領域には、回折効率が最大となる回折次数が、前記第 1光束及び前記第 2光束の何れに対しても同一次数である回折構造と、前記第 1光束及び前記第 2光 束に対して同量の光路差を付加させる位相構造が形成されていることを特徴とする 光ピックアップ装置。
[44] 前記対物レンズの回折構造は、入射光束の波長が長くなつた場合に、球面収差が 補正不足方向に変化するような球面収差の波長依存性を有するとともに、前記位相 構造は、入射光束の波長が長くなつた場合に、球面収差が補正過剰方向に変化す るような球面収差の波長依存性を有することを特徴とする請求の範囲第 43項に記載 の光ピックアップ装置。
[45] 前記対物レンズの位相構造の 1つの輪帯内に、前記回折構造の輪帯が 1以上の整 数個だけ形成されていることを特徴とする請求の範囲第 43項又は 44項に記載の光 ピックアップ装置。
[46] 前記同一次数は 1であって、前記回折構造のブレーズ化波長 λ Βが以下の(1)式 を満たすことを特徴とする請求の範囲第 43項乃至 45項の何れか一項に記載の光ピ ックアップ装置。
λ 1 < λ < λ 2 (1)
[47] 以下の(2)式、及び (3)式を満たすことを特徴とする請求の範囲第 43項乃至 46項 の何れか一項に記載の光ピックアップ装置。
380應く λ 1 < 420nm (2)
630nm< λ 2< 680nm (3)
[48] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの開口数を NA1とし、前記第 2光情報記録媒体に対して情報の再生又は記録を 行う際の、前記対物レンズの開口数を NA2としたとき、前記中央領域は、前記開口 数 NA2内に相当する領域であって、前記回折構造のブレーズィ匕波長 λ B、前記開 口数 NA1、及び前記開口数 NA2が以下の(4)式、及び(5)式を満たすことを特徴と する請求の範囲第 47項に記載の光ピックアップ装置。
1. 15 X λ 1 < λ Β< 0. 85 Χ λ 2 (4)
ΝΑ2/ΝΑΚ 0. 8 (5)
[49] 前記同量の光路差は、前記第 1光束に対しては前記第 1波長 λ 1の 5倍であって、 前記第 2光束に対しては前記第 2波長 λ 2の 3倍であることを特徴とする請求の範囲 第 47項又は 48項に記載の光ピックアップ装置。
[50] 前記周辺領域は、微細な段差構造が形成されな 、非球面であることを特徴とする 請求の範囲第 43項乃至 49項の何れか一項に記載の光ピックアップ装置。
[51] 前記回折構造及び前記位相構造が形成された前記対物レンズの光学面は、前記 対物レンズを前記光ピックアップ装置に搭載した状態で光源側に配置される光学面 であることを特徴とする請求の範囲第 43項乃至 50項の何れか一項に記載の光ピック アップ装置。
[52] 前記回折構造は、光軸力も離れるに従って、負の向きから正の向きへとブレーズ構 造の向きが少なくとも一度入れ替わることを特徴とする請求の範囲第 43項至 51項の 何れか一項に記載の光ピックアップ装置。
[53] 前記回折構造は、正の向きのブレーズ構造であることを特徴とする請求の範囲第 4
3項乃至 51項の何れか一項に記載の光ピックアップ装置。
[54] 前記対物レンズはガラスレンズであることを特徴とする請求の範囲第 43項乃至 53 項の何れか一項に記載の光ピックアップ装置。
[55] 前記対物レンズは、前記回折構造及び前記位相構造が形成された榭脂層を、ガラ スレンズ上に接合したことを特徴とする請求の範囲第 43項乃至 53項の何れか一項 に記載の光ピックアップ装置。
[56] 前記第 1光情報記録媒体に対して情報の再生又は記録を行う際の、前記対物レン ズの倍率を mlとし、前記第 2光情報記録媒体に対して情報の再生又は記録を行う 際の、前記対物レンズの倍率を m2としたとき、以下の(6)式、及び(7)式を満たすこ とを特徴とする請求の範囲第 43項乃至 55項の何れか一項に記載の光ピックアップ 装置。
-0. 02<ml < 0. 02 (6)
-0. 02<m2< 0. 02 (7)
[57] 光源と、請求の範囲第 1項乃至 28項の何れか一項記載の対物レンズと、光検出器 とを備えたことを特徴とする光ピックアップ装置。
[58] 請求の範囲第 43項乃至 57項の 、ずれかに記載の光ピックアップ装置を搭載した ことを特徴とする光情報記録再生装置。
PCT/JP2006/301542 2005-02-10 2006-01-31 対物レンズ、光ピックアップ装置及び光情報記録再生装置 WO2006085452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006519651A JP4404092B2 (ja) 2005-02-10 2006-01-31 対物レンズ、光ピックアップ装置及び光情報記録再生装置
CN2006800000433A CN1942946B (zh) 2005-02-10 2006-01-31 物镜、光拾取装置及光信息记录再生装置
KR1020117028779A KR101409691B1 (ko) 2005-02-10 2006-01-31 대물렌즈, 광 픽업 장치 및 광 정보 기록 재생 장치
KR1020117028780A KR101409689B1 (ko) 2005-02-10 2006-01-31 대물렌즈, 광 픽업 장치 및 광 정보 기록 재생 장치
EP06712685A EP1855274A4 (en) 2005-02-10 2006-01-31 OBJECTIVE LENS, OPTICAL REMOVAL DEVICE AND DEVICE FOR RECORDING / PLAYING OPTICAL INFORMATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-034814 2005-02-10
JP2005034814 2005-02-10

Publications (1)

Publication Number Publication Date
WO2006085452A1 true WO2006085452A1 (ja) 2006-08-17

Family

ID=36793028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301542 WO2006085452A1 (ja) 2005-02-10 2006-01-31 対物レンズ、光ピックアップ装置及び光情報記録再生装置

Country Status (7)

Country Link
US (2) US7660225B2 (ja)
EP (1) EP1855274A4 (ja)
JP (3) JP4404092B2 (ja)
KR (3) KR20070104206A (ja)
CN (2) CN101789243B (ja)
TW (1) TW200641864A (ja)
WO (1) WO2006085452A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044475A1 (fr) * 2006-10-12 2008-04-17 Konica Minolta Opto, Inc. Unité d'élément optique objectif et dispositif de capture optique
US7742383B2 (en) 2006-11-08 2010-06-22 Hitachi Maxell, Ltd. Optical pickup lens
JP2011204301A (ja) * 2010-03-24 2011-10-13 Hoya Corp 光情報記録再生装置用対物レンズ、及び光情報記録再生装置
WO2011148832A1 (ja) * 2010-05-24 2011-12-01 コニカミノルタオプト株式会社 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2011243276A (ja) * 2005-02-10 2011-12-01 Konica Minolta Opto Inc 対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2011248936A (ja) * 2010-05-24 2011-12-08 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538959B1 (en) * 2006-05-09 2009-05-26 L-3 Communications Sonoma Eo, Inc. Stress decoupling optic mount
TWI456265B (zh) * 2012-03-08 2014-10-11 Wintek Corp 影像感測裝置及具有其之光學互動裝置
JP7402781B2 (ja) 2020-10-28 2023-12-21 株式会社日立製作所 撮像光学系、撮像装置および焦点深度拡大光学システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276104A2 (en) 2001-07-11 2003-01-15 Konica Corporation Aberration compensating optical element, optical system, optical pickup device, recorder and reproducer
US20030053223A1 (en) 2001-03-30 2003-03-20 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens for optical pick-up
JP2004247025A (ja) * 2002-12-18 2004-09-02 Konica Minolta Holdings Inc 光ピックアップ装置及び光学素子
JP2004264815A (ja) * 2003-02-13 2004-09-24 Konica Minolta Holdings Inc 対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2004326861A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 対物光学素子、光ピックアップ装置及び光情報記録再生装置
JP2004362626A (ja) * 2003-06-02 2004-12-24 Pentax Corp 光ピックアップ用対物レンズおよび光ピックアップ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995813B2 (ja) * 1998-12-09 2007-10-24 ペンタックス株式会社 回折レンズの設計方法
DE60034829T2 (de) * 1999-01-22 2008-01-31 Konica Minolta Opto, Inc., Hachioji Optische Abtastvorrichtung zur Informationsaufzeichnung und Informationswiedergabe
JP4060007B2 (ja) * 1999-04-23 2008-03-12 ペンタックス株式会社 光ディスク装置の光学系
CN1287185C (zh) * 2000-10-06 2006-11-29 宾得株式会社 用于光学头的物镜、光学头以及光盘驱动器
HUP0303190A2 (hu) * 2000-10-16 2003-12-29 Konica Corporation Tárgylencse, kapcsoló lencse, fénykonvergáló optikai rendszer és optikai felvevő-lejátszó eszköz
JP4120788B2 (ja) 2001-10-12 2008-07-16 コニカミノルタホールディングス株式会社 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
US7411884B2 (en) * 2002-08-21 2008-08-12 Hoya Corporation Optical system with objective lens having diffraction structure
JP4329330B2 (ja) 2002-09-30 2009-09-09 コニカミノルタホールディングス株式会社 対物光学素子及び光ピックアップ装置
TW200502670A (en) * 2002-11-21 2005-01-16 Konica Minolta Holdings Inc Objective lens, optical system and optical pickup apparatus
US7248409B2 (en) * 2002-11-25 2007-07-24 Matsushita Electric Industrial Co., Ltd. Optical element, optical lens, optical head apparatus, optical information apparatus, computer, optical information medium player, car navigation system, optical information medium recorder, and optical information medium server
EP1465170A3 (en) * 2003-03-31 2007-05-16 Konica Minolta Holdings, Inc. Converging optical system of optical pickup device
JP5002118B2 (ja) * 2003-06-18 2012-08-15 コニカミノルタアドバンストレイヤー株式会社 光ピックアップ装置用の光学素子、及び光ピックアップ装置
JP4321217B2 (ja) * 2003-10-31 2009-08-26 コニカミノルタオプト株式会社 光学素子及び光ピックアップ装置
JP4562645B2 (ja) * 2004-12-01 2010-10-13 Hoya株式会社 光学素子の設計方法および光情報記録再生装置
CN101789243B (zh) * 2005-02-10 2012-08-22 柯尼卡美能达精密光学株式会社 物镜、光拾取装置及光信息记录再生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053223A1 (en) 2001-03-30 2003-03-20 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens for optical pick-up
EP1276104A2 (en) 2001-07-11 2003-01-15 Konica Corporation Aberration compensating optical element, optical system, optical pickup device, recorder and reproducer
JP2004247025A (ja) * 2002-12-18 2004-09-02 Konica Minolta Holdings Inc 光ピックアップ装置及び光学素子
JP2004264815A (ja) * 2003-02-13 2004-09-24 Konica Minolta Holdings Inc 対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2004326861A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 対物光学素子、光ピックアップ装置及び光情報記録再生装置
JP2004362626A (ja) * 2003-06-02 2004-12-24 Pentax Corp 光ピックアップ用対物レンズおよび光ピックアップ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1855274A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243276A (ja) * 2005-02-10 2011-12-01 Konica Minolta Opto Inc 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2008044475A1 (fr) * 2006-10-12 2008-04-17 Konica Minolta Opto, Inc. Unité d'élément optique objectif et dispositif de capture optique
US7859978B2 (en) 2006-11-08 2010-12-28 Hitachi Maxell, Ltd. Optical pickup lens
US7830774B2 (en) 2006-11-08 2010-11-09 Hitachi Maxell, Ltd. Optical pickup lens
US7742383B2 (en) 2006-11-08 2010-06-22 Hitachi Maxell, Ltd. Optical pickup lens
US8116189B2 (en) 2006-11-08 2012-02-14 Hitachi Maxell, Ltd. Optical pickup lens
US8184521B2 (en) 2006-11-08 2012-05-22 Hitachi Maxell, Ltd. Optical pickup lens
US8270282B2 (en) 2006-11-08 2012-09-18 Hitachi Maxell, Ltd. Optical pickup lens
US8274876B2 (en) 2006-11-08 2012-09-25 Hitachi Maxell, Ltd. Optical pickup lens
US8427926B2 (en) 2006-11-08 2013-04-23 Hitachi Maxwell, Ltd. Optical pickup lens
JP2011204301A (ja) * 2010-03-24 2011-10-13 Hoya Corp 光情報記録再生装置用対物レンズ、及び光情報記録再生装置
WO2011148832A1 (ja) * 2010-05-24 2011-12-01 コニカミノルタオプト株式会社 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2011248936A (ja) * 2010-05-24 2011-12-08 Konica Minolta Opto Inc 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
CN102906815A (zh) * 2010-05-24 2013-01-30 柯尼卡美能达先进多层薄膜株式会社 光拾取装置用物镜、光拾取装置及光信息记录再生装置

Also Published As

Publication number Publication date
CN101789243A (zh) 2010-07-28
JP4822175B2 (ja) 2011-11-24
JP2011243276A (ja) 2011-12-01
EP1855274A1 (en) 2007-11-14
KR20120002618A (ko) 2012-01-06
TW200641864A (en) 2006-12-01
KR20120002617A (ko) 2012-01-06
CN1942946A (zh) 2007-04-04
US7957249B2 (en) 2011-06-07
JPWO2006085452A1 (ja) 2008-06-26
US20090316563A1 (en) 2009-12-24
CN101789243B (zh) 2012-08-22
CN1942946B (zh) 2010-04-21
JP4404092B2 (ja) 2010-01-27
KR101409691B1 (ko) 2014-06-18
US7660225B2 (en) 2010-02-09
KR20070104206A (ko) 2007-10-25
EP1855274A4 (en) 2008-12-10
KR101409689B1 (ko) 2014-06-18
JP2009277352A (ja) 2009-11-26
US20060209644A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP5056937B2 (ja) 光ピックアップ装置及び記録・再生装置
WO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
JP4404092B2 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2004005943A (ja) 記録再生用光学系、対物レンズ、収差補正用光学素子、光ピックアップ装置、及び記録再生装置
JP2006012394A (ja) 光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2010013616A1 (ja) 対物レンズ及び光ピックアップ装置
JPWO2005083694A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
JP2005353261A (ja) 光ピックアップ装置
JPWO2007145202A1 (ja) 光学素子の設計方法、光学素子及び光ピックアップ装置
WO2005074388A2 (ja) 光ピックアップ装置及び光情報記録及び/又は再生装置
JP4483864B2 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2005043523A1 (ja) 光ピックアップ装置及び発散角変換素子
WO2006115081A1 (ja) 光ピックアップ装置用対物光学素子、光ピックアップ装置用光学素子、光ピックアップ装置用対物光学素子ユニット及び光ピックアップ装置
JP2006134366A (ja) 光ピックアップ装置及び対物光学素子
JP2005135555A (ja) 光学素子、光ピックアップ装置及び光情報記録再生装置
JP2006127721A (ja) 対物レンズ、光ピックアップ装置及びカップリングレンズ
WO2005119668A1 (ja) 対物レンズ及び光ピックアップ装置
JP4400326B2 (ja) 光ピックアップ光学系、光ピックアップ装置及び光ディスクドライブ装置
JP2007265585A (ja) 光ピックアップ装置
JP2006012393A (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP2007294101A (ja) 対物レンズ
JP2005129204A (ja) 光ピックアップ光学系、光ピックアップ装置及び光情報記録再生装置
JP4062742B2 (ja) 対物レンズ、光ピックアップ装置、及び記録・再生装置
JP4062742B6 (ja) 対物レンズ、光ピックアップ装置、及び記録・再生装置
JP2007273085A (ja) 光ピックアップ装置用の光学素子、カップリングレンズ及び光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519651

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067013904

Country of ref document: KR

Ref document number: 200680000043.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006712685

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006712685

Country of ref document: EP