WO2006080384A1 - 修飾酸化チタン微粒子及びそれを用いた光電変換素子 - Google Patents

修飾酸化チタン微粒子及びそれを用いた光電変換素子 Download PDF

Info

Publication number
WO2006080384A1
WO2006080384A1 PCT/JP2006/301199 JP2006301199W WO2006080384A1 WO 2006080384 A1 WO2006080384 A1 WO 2006080384A1 JP 2006301199 W JP2006301199 W JP 2006301199W WO 2006080384 A1 WO2006080384 A1 WO 2006080384A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
oxides
oxide
titanium
group
Prior art date
Application number
PCT/JP2006/301199
Other languages
English (en)
French (fr)
Inventor
Teruhisa Inoue
Koichiro Shigaki
Takayuki Hoshi
Masayoshi Kaneko
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2007500563A priority Critical patent/JP4909256B2/ja
Priority to KR1020077016916A priority patent/KR101290894B1/ko
Priority to CA002594857A priority patent/CA2594857A1/en
Priority to EP06712381A priority patent/EP1858108A4/en
Priority to AU2006209496A priority patent/AU2006209496B2/en
Publication of WO2006080384A1 publication Critical patent/WO2006080384A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to modified titanium oxide fine particles, a method for producing the same, and a photoelectric conversion element using the same.
  • the single crystal electrode has the disadvantage that the conversion efficiency is very low and the cost is high due to the small adsorption capacity of the dye.
  • a method using a high surface area semiconductor with sintered fine particles and a large number of pores as an electrode was used by Tsubomura et al. It has been reported that the performance of an electrode using high quality zinc oxide is very high (Patent Document 1).
  • the main factors that affect the conversion efficiency of dye-sensitized solar cells include short-circuit current, open-circuit voltage, and shape factor.
  • the short-circuit current and form factor are the sensitizing dyes used.
  • Various improvements have been proposed to improve the conversion efficiency by expanding the absorption wavelength region by reducing the internal resistance of the battery and reducing the internal resistance of the battery.
  • open-circuit voltage there is little research on open-circuit voltage, and it is no exaggeration to say that improvement has hardly progressed.
  • Patent Document 2 is a force-single metal oxide that uses niobium oxide as a semiconductor electrode for the purpose of improving the open-circuit voltage, so its effect is insufficient.
  • Patent Document 1 Japanese Patent No. 2664194
  • Patent Document 2 Japanese Patent No. 2945955
  • Non-Patent Document 1 J. Am. Chem. Soc. 115 (1993) 6382
  • the main object of the present invention is to provide metal oxide fine particles useful for dye-sensitized solar cells and a solar cell capable of developing a high open-circuit voltage using the same.
  • modified acid titanium fine particles can solve the above-mentioned problems and have completed the present invention.
  • the present invention provides: (1) Periodic table Group IB oxides, Group oxides, Group oxides, Group oxides, Group oxides, Group IVA oxides other than titanium oxides, Group IVB oxides, Group VIA oxides, Group VIII oxide and vanadate strength Group strength: One or more selected non-titanium metal oxides (including silicon oxide) and modified titanium oxide fine particles composed of titanium oxide,
  • Non-titanium metal oxides are magnesium oxide, calcium oxide, strontium oxide, zirconium oxide, tantalum oxide, chromium oxide, molybdate oxide, niobium oxide , Scandium oxide, vanadium oxide, iron oxide, nickel oxide, tungstic oxide, zinc oxide, aluminum oxide, indium oxide, silicon acid And modified stannic acid titanium fine particles as described in (1), which are one or two kinds of selected group forces,
  • the ratio of non-titanium metal oxides (including silicon oxide) other than titanium oxide to titanium oxide is the atomic ratio of titanium Z non-titanium metal atoms (including silicon atoms).
  • Periodic table Group metal consisting of Group I metal, Group X metal, Group X metal, Group X metal, Group IVA metal other than Titanium, Group IVB metal and Group VA metal
  • One or more types selected Production of modified titanium oxide fine particles composed of titanium oxide and non-titanium metal oxide (including silicon oxide), characterized by reacting titanium metal (including silicon) alkoxide with titanium alkoxide in an organic solvent.
  • Alcohol solvating power is a monohydric alcohol or a polyhydric alcohol, The method for producing modified titanium oxide fine particles according to (6),
  • modified titanium oxide fine particles characterized in that it is polyhydric alcohol power 1, 4 butanediol or octanol,
  • a conductive support having a semiconductor-containing layer sensitized by a dye and a conductive support having a counter electrode are arranged to face each other at a predetermined interval, and a charge transfer layer is provided in the gap between the two supports.
  • Dye power A dye-sensitized photoelectric conversion element according to (9) or (10), which is an S-methine dye or a metal complex dye,
  • a conductive support having a semiconductor-containing layer sensitized by a dye and a conductive support having a counter electrode are arranged to face each other at a predetermined interval, and a charge transfer layer is sandwiched between the two supports.
  • a dye-sensitized photoelectric conversion element comprising modified titanium oxide fine particles made of titanium
  • the solar cell using the modified titanium oxide titanium fine particles of the present invention has a high open circuit voltage. Therefore, it is useful as a power source for electrical products that function with only a certain voltage and minimum current, such as a calculator. In addition, since the voltage is high, the number of batteries in series can be reduced, and there is an advantage that the manufacturing cost of electrical products and the like is reduced.
  • modified titanium oxide fine particles of the present invention are excellent in photocatalytic activity, they are useful as a catalyst for oxidation reaction utilizing light or for semiconductor electrodes.
  • modified titanium oxide fine particles of the present invention will be described.
  • the modified oxide titanium fine particles of the present invention can also be referred to as titanium-based composite oxide fine particles.
  • the ratio of non-titanium metal oxides (including silicon oxides) combined with titanium, and the composite method, are also characteristic.
  • Types of non-titanium metal oxides (including silicon oxides) compounded with modified titanium oxide fine particles include periodic table group IB oxides, group oxides, group oxides, group oxides, One type selected from the group consisting of Group IIIB oxides, Group IVA oxides other than titanium oxides, Group IVB oxides, Group VIA oxides, Group VIII oxides and vanadium oxides, or Two or more types of non-titanium metal oxides (including silicon oxides) are used.
  • Preferred examples of non-titanium metal oxides (including silicon oxides) include vanadium oxides, periodic table group oxides such as magnesium oxide, calcium oxide, strontium oxide, and group oxides.
  • Certain zinc oxides scandium oxides, group oxides, aluminum oxides, group oxides, indium oxides, zirconium oxides, group IVA oxides, hafnium Acids, IVB group silicon oxides, stannates, VIA group chromium oxides, molybdates, tungsten oxides VIII group oxides such as iron oxides, nickel oxides, and group IB oxides such as silver oxides.
  • magnesium, zirconium, and silicon oxides are preferred. Is one type or two or more types It may be.
  • tantalum oxide or niobium oxide may be used as the metal oxide.
  • the proportion of non-titanium metal oxide (including silicon oxide) other than acid / titanium combined with acid / titanium is titanium Z non-titanium metal.
  • I / O. 005-20 force S is preferable, 1ZO. 01-3 is more preferable, and I / O. 02-0.5 force is more preferable.
  • the semiconductor-containing layer made of the modified titanium oxide fine particles preferably has a high surface area for the purpose of adsorbing sensitizing dyes and the like.
  • the modified acid titanium fine particles of the present invention have a high surface area. It is preferable that the primary particle size of the sugure be small. Specifically, 1 to 3000 nm, preferably 5 to 500 nm is more preferable.
  • the primary particle diameter of the modified titanium oxide fine particles can be calculated from the specific surface area, and the specific surface area is usually 0.5 to 1500 m 2 Zg, preferably 3 to 300 m 2 Zg.
  • the pore volume of the modified acid titanium fine particles is preferably 0.05 to 0.8 ml / g, and the average pore diameter is preferably in the range of 1 to 250 nm.
  • the modified titanium oxide fine particles obtained by the production method as described below are usually obtained as fine particles having the above-mentioned physical properties. If desired, the physical properties of the fine particles are adjusted to the above-mentioned range by sieving. It's pretty cute.
  • the method for producing the modified titanium oxide fine particles of the present invention includes a material that is a raw material for the modified titanium oxide fine particles, each of the non-titanium metal oxides other than titanium alkoxide and titanium (including silicon oxide).
  • Alkoxide can be obtained by reaction in a reaction vessel in a solvent. It can also be obtained by reacting a mixture of titanium alkoxide and the above-mentioned metal other than titanium, such as chloride, sulfide, nitrate, acetate, etc. in a reaction vessel in a solvent.
  • a method using an alkoxide of a non-titanium metal (including silicon) is preferable.
  • an organic solvent such as alcohol, hexane, toluene, or a mixture thereof can be used.
  • an organic solvent such as alcohol, hexane, toluene, or a mixture thereof
  • modified titanium oxide fine particles having high crystallinity can be obtained.
  • the raw material is a metal alkoxide
  • the organic solvent which does not add water is preferable.
  • an organic solvent to which water is not added means an organic solvent in a natural state.
  • Organic solvents having a water content of 10% or less, 5% or less, and 3% or less are preferable in this order.
  • the reaction temperature is preferably about 110 ° C to 400 ° C.
  • the reaction may be performed under nitrogen substitution.
  • the desired fine particles may be obtained by an operation such as centrifugation.
  • the valve attached to the reaction vessel is opened while maintaining the temperature in the vicinity of the reaction temperature, and the internal pressure is required. Depending on the conditions, fine particles can be obtained by removing the solvent such as alcohol used in the vaporized state under heating.
  • the modified acid oxide titanium fine particles of the present invention are excellent in photocatalytic activity, the Hyundai-Fujishima effect It can be used as a catalyst for photo-oxidation reaction typified by, and a catalyst carrier utilizing its heat resistance, but a preferred application is as a semiconductor-containing layer (semiconductor electrode) in a dye-sensitized photoelectric conversion element. It is a use.
  • the use of the modified oxide-titanium fine particles of the present invention in a photoelectric conversion element exhibits a remarkable effect in improving the open-circuit voltage.
  • the modified titanium oxide fine particles of the present invention are obtained by devising the types and ratios of titanium oxide and non-titanium metal oxides (including silicon oxides) compounded therewith, as well as the composite method.
  • the photocatalytic ability of titanium fine particles can be increased by, for example, sensitizing with a photocatalytic substance having high catalytic activity or a specific sensitizing dye. That is, at least one of a conductive support having a semiconductor-containing layer in which a sensitizing dye is adsorbed on a conductive support such as transparent conductive glass, and a conductive support having a counter electrode.
  • a photoelectric conversion element that is arranged to face each other at a predetermined interval and has a charge transfer layer sandwiched between the two supports, the modified titanium oxide fine particles are formed as the semiconductor-containing layer using the modified titanium oxide fine particles.
  • a solar cell is a closed circuit in which lead wires are arranged so that a current generated from the photoelectric conversion element can be taken out.
  • examples of the conductive support include conductive materials typified by FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), and ITO (indium-doped tin oxide).
  • Is obtained by forming a thin film on the surface of a stable inorganic or organic substrate such as glass, plastic, polymer film, titanium, tantalum, or bonbon. Its conductivity is usually 1000 ⁇ / cm 2 or less, preferably 100 ⁇ / cm 2 or less.
  • a semiconductor electrode is obtained by disposing a semiconductor-containing layer sensitized with a dye on the surface of a conductive support.
  • the conductive support is also simply referred to as a conductive support.
  • Such a conductive support may be prepared by a method known per se or obtained from a factory.
  • a slurry or paste of modified titanium oxide fine particles is applied or coated on the conductive support, and then dried, cured, or cured.
  • Other preferred methods include a method in which a thin film made of an oxide semiconductor is directly formed on a substrate by vapor deposition, a method in which the substrate is used as an electrode, and the like. The method using a slurry of modified oxide titanium fine particles is most preferable in terms of the performance of the oxide semiconductor electrode.
  • the oxide semiconductor fine particles that may be secondary agglomerated are dispersed in a dispersion medium using a dispersing agent so that the average primary particle diameter force becomes ⁇ 3000 nm, or in the present invention, Preparation of suspension strength of titanium oxide fine particles modified by hydrolysis of alkoxides, etc., precursors of acid semiconductors by hydrolysis of alkoxide in alcohol (glycothermal method) I can do it.
  • a dispersion medium for obtaining a slurry water, alcohol such as ethanol, ketone such as acetone or acetylacetone, hexane, etc. may be used as long as it can disperse modified acid titanium fine particles.
  • Organic solvents such as hydrocarbons may be used, and these may be used as a mixture. The use of water is preferred from the viewpoint of reducing the change in viscosity of the slurry.
  • a dispersion stabilizer or the like may be added to the slurry for the purpose of obtaining stable primary fine particles.
  • the dispersion stabilizer that can be used include polyhydric alcohols such as polyethylene glycol, condensates of these polyhydric alcohols with phenol, octyl alcohol, etc., hydroxypropinoremethinoresenorelose, hydroxymethinoresenole.
  • Cellulose cellulose derivatives such as hydroxyethylenocellulose, carboxymethylcellulose, polyacrylamide, poly (meth) acrylic acid and its salts, poly (meth) acrylic acid and its salts, acrylamide and (meth) acrylic acid Or a copolymer with an alkali metal salt thereof, or (A) an acrylamide and an alkali metal salt of Z or (meth) acrylic acid and (B) methyl (meth) acrylate, (meth
  • Salts of (meth) acrylic acid esters such as ethyl acrylate, or polyacrylic acid derivatives that are copolymers with hydrophobic monomers such as styrene, ethylene, propylene, and water-soluble polyacrylic acid derivatives, melamine sulfonic acid formaldehyde condensates
  • Examples include salts of naphthalene sulfonic acid formaldehyde condensates, high molecular weight lignin sulfonates, acids such as hydrochloric acid, nitric acid, and acetic acid. These are not limited to these dispersion stabilizers. These dispersion stabilizers can be used alone or in combination of two or more.
  • polyhydric alcohols such as polyethylene glycol, or condensates with phenol, octyl alcohol, etc., and carboxyl groups and z or sulfone groups in the molecule.
  • Poly (meth) acrylic acid, poly (meth) acrylic acid sodium, poly (meth) acrylic acid sodium salt, poly (meth) acrylic acid potassium salt, poly (meth) acrylic acid lithium and the like are preferred.
  • Acrylic acid and its salts, and acids such as carboxymethylcellulose, hydrochloric acid, nitric acid and acetic acid are preferred.
  • the concentration of the modified acid titanium fine particles in the slurry is usually 1 to 90% by weight, preferably 5 to 80% by weight.
  • the firing temperature of the conductive support coated with the slurry is generally below the melting point (or softening point) of the substrate used, and is usually 100 to 900 ° C, preferably 100 to 600 ° C.
  • the firing time is not particularly limited, but is preferably within 4 hours.
  • the film thickness after firing is preferably about 1 to about 3 to 50 ⁇ m, more preferably about 5 to 30 ⁇ m, and more preferably about LOO ⁇ m.
  • Secondary treatment may be performed for the purpose of improving the surface smoothness of the semiconductor-containing layer thus obtained! /! (See Non-Patent Document 1).
  • non-titanium metal oxides (including silicon) alkoxides, chlorides, nitrides, and sulfides that are the same as the non-titanium metal oxides (including silicon oxides) used to prepare the modified oxide titanium fine particles.
  • Smoothness can be improved by immersing the conductive support having a semiconductor-containing layer directly in a solution of acetate or the like and drying or refiring.
  • metal alkoxide examples include titanium ethoxide, titanium isopropoxide, titanium tertoxide, n-dibutyldiacetyltin and the like, and an alcohol solution thereof is used.
  • a salted product for example, tetrasalt-titanium, tetrasalt-titanium, zinc chloride, etc. are mentioned, and an aqueous solution thereof is appropriately used.
  • the sensitizing dye When the sensitizing dye is adsorbed (supported) on the modified titanium oxide fine particles of the present invention, light energy can be absorbed and converted into electric energy.
  • a dye for sensitization a metal complex dye, a non-metal organic dye, or the like is used, and there is no particular limitation as long as it can enhance light absorption in combination with modified titanium oxide fine particles. You may mix and use a pigment
  • dyes may be sufficient and an organic pigment
  • by mixing dyes having different absorption wavelengths a wide range of absorption wavelengths can be used, and a dye-sensitized photoelectric conversion element and a solar cell with high conversion efficiency can be obtained.
  • metal complex dyes examples include Ruthenium complexes, phthalocyanines, porphyrins, and the like.
  • organic dyes include methine dyes such as non-metallic phthalocyanines, porphyrinsyanine, merocyanine, oxonol, trifluoromethane, and acrylic acid dyes, and xanthene.
  • dyes such as azo-type, azo-type, anthraquinone-type and perylene-type.
  • Preferred examples include ruthenium complexes, merocyanine, and methine dyes such as acrylic acid.
  • Preferable examples include International Patent Publication No. WO2002011213, International Patent Publication No.
  • the ratio of each dye in the case of using a mixture of dyes is not particularly limited, and the optimum condition is selected according to each dye. Generally, from the equimolar mixture, 10% mol per dye. It is preferable to use more than about.
  • the total concentration of the dyes in the solution may be the same as when only one kind is supported.
  • Solvents as described below can be used, and the solvent for each dye used may be the same or different.
  • the above-described dye is dissolved in a solvent as described below, or in a dispersion obtained by dispersing the dye in the case of a poorly soluble dye.
  • a method of immersing a conductive support provided with a semiconductor-containing layer made of modified titanium oxide fine particles or modified titanium oxide fine particles is preferred.
  • the immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 to 48 hours.
  • the solvent that can be used for dissolving the dye examples include methanol, ethanol, acetonitrile, dimethylsulfoxide, dimethylformamide, and t-butanol.
  • Dye concentration of the solution is usually 1 X 10- 6 M ⁇ 1M goodness tool preferably 1 X 10- 5 M ⁇ 1 X is 10.
  • the conductive support on which the semiconductor-containing layer sensitized with the dye is arranged as a semiconductor electrode.
  • the dye When the dye is supported on the semiconductor-containing layer, it is effective to support the dye in the presence of the inclusion compound in order to prevent the association between the dyes.
  • clathrate compounds include steroidal compounds such as cholic acid, crown ether, cyclodextrin, calixarene, and polyethylene oxide.
  • Preferred examples include cholic acid, deoxycholic acid, and chenodeoxyl. These include cholic acid, cholic acid methyl ester, and cholic acids such as sodium cholate, polyethylene oxide, and the like.
  • the surface of the semiconductor electrode may be treated with an amine compound such as tert-butyl pyridine.
  • a treatment method for example, a method of immersing a substrate provided with a semiconductor-containing layer carrying a dye in an ethanol solution of amine is employed.
  • the photoelectric conversion element of the present invention includes a semiconductor electrode obtained by supporting a sensitizing dye on the semiconductor-containing layer, a counter electrode provided to face the semiconductor electrode, and a charge transfer layer provided between the electrodes. Configured as the main element.
  • a solution in which a redox electrolyte, a hole transport material, or the like is dissolved in a solvent or a room temperature molten salt (ionic liquid) is used.
  • Examples of usable acid-reducing electrolytes include halogen molecules and halogen ions.
  • Halogen oxidation-reduction electrolytes composed of halogen compounds, ferrocyanates, ferricyanates, metal complexes such as ferricium ions, cobalt complexes, etc., alkyl thiol alkyl disulfides
  • Examples thereof include organic acid-reducing electrolytes such as piorogen dye and hydroquinone-quinone, but halogen redox electrolytes are preferred.
  • Examples of the halogen molecule in the halogenate-reducing electrolyte, which is the halogen compound power include iodine molecules and bromine molecules, and iodine molecules are preferred.
  • Examples of the halogen compound having a halogen ion as a counter ion include halogenated metal salts such as Lil, Nal, KI, Csl, Cal, and Cul.
  • a salt having a counter ion as a counter ion is preferred.
  • the salt having iodine ion as a counter ion include lithium iodide, sodium iodide, trimethylammonium iodide salt and the like.
  • an electrochemically inert solvent is used as the solvent.
  • acetonitrile, propylene carbonate, ethylene carbonate are particularly preferable.
  • DOO, 3-methoxypropionate - tolyl, methoxy ⁇ Seth nitrile, E Ji glycol, 3-methoxy-O hexa-di-lysine one 2-one, y- butylate port Rataton are particularly preferred. These may be used alone or in combination of two or more.
  • the concentration of the redox electrolyte is usually 0.01 to 99% by weight, preferably 0.1 to 90% by weight.
  • a method in which a room temperature melt (ionic liquid) is used as a solvent for the redox electrolyte can be employed.
  • room temperature melts include 1 —Methyl-1-alkyl imidazolium iodide, buryu imidazolium tetrafluoride, 1-ethyl imidazolium sulfonate, alkyl imidazolium trifluoromethanesulamide, 1 methylpyrrolidi-umioiodide, 1 -Methyl-3 alkyl imidazolium bis (trifluoromethanesulfol) amide and the like.
  • a low molecular gelling agent is dissolved in the charge transfer layer to increase the viscosity, or a reactive component is used in combination to cause a reaction after injection of the charge transfer layer. I will do it.
  • a hole transport material or a P-type semiconductor can be used as a solid type instead of the redox electrolyte.
  • the hole transport material examples include conductive polymers such as amamine derivatives, polyacetylene, polyaline, and polythiophene, and discotic liquid crystals.
  • P-type semiconductors include, for example, Cul and CuSCN. Can be mentioned.
  • the surface of the conductive support such as the FTO conductive glass has a platinum, carbon, or rhodium that catalytically acts on the reduction reaction of the redox electrolyte.
  • platinum, carbon, or rhodium that catalytically acts on the reduction reaction of the redox electrolyte.
  • those known per se such as those obtained by vapor-depositing ruthenium or the like, or applying and firing conductive fine particle precursors are used.
  • the thickness of platinum, carbon, rhodium, ruthenium, etc. after coating and firing is preferably 10 to 50 ⁇ .
  • a counter electrode is disposed opposite to a semiconductor electrode in which a semiconductor-containing layer sensitized with a dye is disposed on the surface of a conductive support at a predetermined interval, and the periphery is sealed with a sealant.
  • the charge transfer layer is sealed in the gap.
  • a semiconductor-containing layer sensitized with a dye is arranged around a conductive support in consideration of a seal portion to form a semiconductor electrode.
  • the injection hole of the charge transfer layer is left around the semiconductor electrode, and the sheet is sealed by screen printing or a dispenser.
  • the coating agent for example, the solvent is evaporated by heating at 100 ° C for 10 minutes, and then the other conductive support with platinum or the like is superposed so that the conductive surfaces face each other, The gap is made with a press, and UV light is irradiated with a high-pressure mercury lamp, for example, 3000 mJ Zcm 2 and cured.
  • Post-curing if necessary, for example at 120 ° C for 10 minutes Chisaru
  • the charge transfer layer injection port is sealed with a sealant to obtain a photoelectric conversion element.
  • the sealant is prepared using epoxy resin, epoxy (meth) acrylate resin, crosslinking agent, polymerization initiator and the like as main components.
  • the sealant is prepared using polyisobutylene-based resin as a main component. Each of these can be used as it is on the market.
  • the photoelectric conversion element of the present invention thus obtained has excellent durability such as adhesion and heat-and-moisture resistance. Lead wires are arranged between the positive electrode and the negative electrode, and a resistance component is inserted between them. A dye-sensitized solar cell can be obtained.
  • FIG. 1 is a schematic cross-sectional view of the relevant part for explaining the structure of a dye-sensitized solar cell using a photoelectric conversion element prepared from modified titanium oxide fine particles according to the present invention.
  • Conductive material, 2 indicates a semiconductor-containing layer sensitized by a dye.
  • 1 and 2 are collectively referred to as a semiconductor electrode.
  • 3 is a counter electrode in which platinum or the like is disposed on a conductive surface inside the substrate
  • 4 is a charge transfer layer disposed so as to be sandwiched between opposing conductive supports
  • 5 is a sealant
  • 6 is a substrate.
  • Respectively. 1 and 6 are collectively referred to as a conductive support.
  • Titanium isopropoxide 7.32g as titanium alkoxide and 24.23g zircoyu isopropoxide as zircaure alkoxide, 1,4-butanediol 130ml with the mixture (TiZZr atomic ratio 1Z3) as solvent It was suspended in and placed in a 300 ml autoclave and sealed. After replacing the inside of the autoclave with nitrogen, the temperature was raised to 300 ° C and heat treatment was performed for 2 hours. After completion of the reaction, the autoclave valve was opened while maintaining the temperature at 300 ° C., and the solvent was removed, whereby the reaction product was recovered as xerogel to obtain 11.4 g of modified titanium oxide fine particles.
  • Titanium isopropoxide 25g as titanium alkoxide and 18.2g zirco-isopropoxide as zircoure alkoxide, and their mixture (TiZZr atomic ratio 1 /0.3) was suspended in 130 ml of 1,4 butanediol as a solvent and sealed in an autoclave having a capacity of 300 ml. After replacing the inside of the autoclave with nitrogen, the temperature was raised to 300 ° C and heat treatment was performed for 2 hours. After completion of the reaction, the mixture was naturally cooled to obtain 150 ml of a suspension containing 13.7 g of modified titanium oxide fine particles.
  • Titanium isopropoxide and tetraethyl orthokeate were used in the atomic ratios shown in Table 2, and 150 ml of a suspension containing modified acid-titanium fine particles 11. Ig was obtained in the same manner as in Example 2.
  • Titanium isopropoxide and tetraethyl orthokeate were used in the atomic ratios shown in Table 2, and 150 ml of a suspension containing modified acid-titanium fine particles 11. Ig was obtained in the same manner as in Example 2.
  • Titanium isopropoxide, ketyl orthokete and zirco-isopropoxide were used at the atomic ratios shown in Table 2, and in the same manner as in Example 2, suspended suspension containing 4.2 g of modified titanium oxide fine particles. 150 ml of turbid liquid was obtained.
  • Titanium isopropoxide and zirconia isopropoxide were used at the atomic ratios shown in Table 2, and 150 ml of a suspension containing 8.5 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8.
  • Titanium isopropoxide and zirconia isopropoxide are used in the atomic ratio as shown in Table 2, the mixture is suspended in 130 ml of toluene as a solvent, and other conditions are the same as in Example 8. As a result, 150 ml of a suspension containing 13. lg of modified acid titanium fine particles was obtained.
  • Titanium isopropoxide and tetraethyl orthokeate were used in the atomic ratio as shown in Table 2, and in the same manner as in Example 8, 150 ml of a suspension containing 10.3 g of modified acid titanium fine particles was obtained.
  • Example 14 Titanium isopropoxide and tetraethyl orthokeate were used in the atomic ratio as shown in Table 2, and in the same manner as in Example 8, 150 ml of a suspension containing 17. lg of modified acid titanium fine particles was obtained.
  • Titanium isopropoxide and aluminum tetraisopropoxide were used in the atomic ratio as shown in Table 2, and the mixture was suspended in 130 ml of hexane as a solvent. Other conditions were as in Example 8. Similarly, a suspension of 15 Oml containing 8.2 g of modified titanium oxide fine particles was obtained.
  • Titanium isopropoxide, tetraethyl orthokeate and zirco-isopropoxide are used in the atomic ratios as shown in Table 2, and the mixture is suspended in 130 ml of n-otatanol as a solvent and the other The conditions were the same as in Example 8 to obtain 150 ml of a suspension containing 14.2 g of modified titanium oxide fine particles.
  • Titanium isopropoxide, tetraethyl orthokeate and zirco-isopropoxide were used at the atomic ratios shown in Table 2, and as in Example 8, suspended containing 16.5 g of modified acid titanium fine particles. 150 ml of turbid liquid was obtained.
  • Titanium isopropoxide and niobium butoxide were used in an atomic ratio as shown in Table 2, and 150 ml of a suspension containing 7.6 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8. [0061]
  • Example 21 Titanium isopropoxide and niobium butoxide were used in an atomic ratio as shown in Table 2, and 150 ml of a suspension containing 7.6 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8. [0061]
  • Titanium isopropoxide and niobium butoxide were used in the atomic ratio as shown in Table 2, and in the same manner as in Example 8, 150 ml of a suspension containing 14.6 g of modified acid titanium fine particles was obtained.
  • Titanium isopropoxide and magnesium acetate tetrahydrate were used in the atomic ratio as shown in Table 2, and the mixture was suspended in 130 ml of n-octanol as a solvent. In the same manner as in 8, a suspension of 15 Oml containing 7.7 g of modified titanium oxide fine particles was obtained.
  • Titanium isopropoxide and magnesium acetate tetrahydrate were used in the atomic ratio as shown in Table 2, and 150 ml of a suspension containing 9.3 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8.
  • Titanium isopropoxide and strontium isopropoxide were used at an atomic ratio as shown in Table 2, and 150 ml of a suspension containing 9.6 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8.
  • Titanium isopropoxide and indium isopropoxide were used in an atomic ratio as shown in Table 2, and 150 ml of a suspension containing 9.8 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8.
  • Example 28 150 ml of a suspension containing 9.5 g of modified titanium oxide fine particles was obtained in the same manner as in Example 8 using titanium isopropoxide and tungsten isopropoxide in the atomic ratio as shown in Table 2.
  • Titanium isopropoxide was used in the same manner as in Example 8 to obtain 150 ml of a suspension containing titanium oxide fine particles 7. Og.
  • conductive support of dye-sensitized solar cell as shown in the example of photoelectric conversion element (Fig. 1)
  • Fig. 1 After coating each modified titanium oxide fine particle obtained in Examples 1 to 7 in a paste form with turbineol and baking at 450 ° C for 30 minutes, the following dye (1), dye (2), dye (3) created one of or two 3 dye were mixed in X 10- 4 Micromax ethanol solution was immersed 24 hours in sensitized with dye semiconductor electrodes (2) of the.
  • a counter electrode (3) was prepared by depositing 200 A of Pt on the conductive material FTO of the same conductive glass support. These are bonded together with a sealant (5), and the charge transfer layer (4) between the two electrodes (not shown) is filled with an iodine-based charge transfer layer 4a (iodine Z lithium iodide Z methyl heximidazo Ryumu-iodide (manufactured by Shikoku Kasei Kogyo Co., Ltd.) / ⁇ butyl pyridine is filled in the cell to adjust to 0.1M / 0.1M / 0.6MZ1M in 3-methoxypropyl-tolyl) Then, it was cured with an injection roller and an ultraviolet curable sealant, and cured by irradiating with ultraviolet rays to obtain the photoelectric conversion elements of the present invention.
  • iodine-based charge transfer layer 4a iodine Z lithium iodide Z methyl heximidazo
  • Table 3 below shows the modified oxide titanium fine particles, the dye, the film thickness after firing of the modified titanium oxide fine particle layer used in each example, and the charge transfer layer used.
  • the charge transfer layer 4b was prepared from ethylene Z-acetonitrile (6Z4) with iodine Z-iodide tetra-n-propyl ammonium at 0.05M / 0.5M.
  • the dye-sensitized solar cell using the photoelectric conversion element of the present invention generates a high voltage with an open circuit voltage of 0.71 or more.
  • those using modified titanium oxide fine particles modified with zirconium or aluminum generate a higher voltage with an open circuit voltage of 1 or more.
  • a voltage higher than a certain level such as a calculator or a mobile phone, is the highest.
  • FIG. 1 is a schematic cross-sectional view of the relevant part of one example of the dye-sensitized photoelectric conversion device of the present invention.
  • [0081] 1 is a conductive material
  • 2 is a semiconductor metal layer
  • 3 is a counter electrode
  • 4 is a charge transfer layer
  • 5 is a sealing agent
  • 6 is a substrate (glass support).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

【課題】色素増感型太陽電池等に有用な金属微粒子の開発及び色素増感型太陽電池においてより高い開放電圧を発現する光電変換素子を提供すること。 【解決手段】周期表IB族酸化物、IIA族酸化物、IIB族酸化物、IIIA族酸化物、IIIB族酸化物、チタン酸化物以外のIVA族酸化物、IVB族酸化物、VIA族酸化物、VIII族酸化物及びバナジウム酸化物からなる群から選ばれる一種類又は二種類以上の非チタン金属酸化物(珪素酸化物も含む)と酸化チタンから成る修飾酸化チタン微粒子、及び該修飾酸化チタン微粒子を使用した光電変換素子。

Description

修飾酸ィヒチタン微粒子及びそれを用いた光電変換素子
技術分野
[0001] 本発明は、修飾酸化チタン微粒子及びその製造方法並びにそれを用いた光電変 換素子に関するものである。 背景技術
[0002] クリーンなエネルギー源として注目されて 、る太陽電池は、近年、一般住宅用に利 用されるようになってきたが、未だ充分に普及するには至っていない。その理由として は、太陽電池そのものの性能が充分優れて 、るとは言 ヽ難 、ためモジュールを大き くせざるを得ないこと、モジュール製造における生産性が低いこと、その結果、太陽 電池そのものが高価になること等が挙げられる。
[0003] 太陽電池には 、くつかの種類があるが実用化して 、る大部分はシリコン太陽電池 である。しかし、最近になって色素増感型太陽電池が注目され、実用化を目指して研 究がなされて!/、る。色素増感型の湿式太陽電池は古くから研究されて 、るものであり 、その基本構造は、通常、金属酸化物等の半導体、そこに吸着した色素、電解質溶 液及び対極力ゝらなっている。これらのうち、色素や電解溶液については様々な種類 のものが検討されている力 半導体についての研究はその種類が限られている。初 期の色素増感型の湿式太陽電池においては、半導体の単結晶電極、例えば、酸ィ匕 チタン (TiO )、酸ィ匕亜鉛 (ZnO)、硫ィ匕カドミウム (CdS)、酸化スズ (SnO )等が用い
2 2 られている。しかし、単結晶電極は色素の吸着能が小さいため変換効率が非常に低 ぐコストが高いというデメリットがあった。これを改善すべく提案されたのが、微粒子を 焼結し、細孔を多く設けた高表面積半導体を電極として用いる方法で、坪村らによつ て、有機色素を吸着したこのような多孔質の酸ィ匕亜鉛を用いた電極の性能が非常に 高 、ことが報告されて 、る(特許文献 1)。
[0004] その後、 1991年にグレッツエル (スイス)らによって光電変換素子を用いた新しいタ イブの光 (太陽)電池が開発された。これは、グレツツ ルセルとも呼ばれ、透明導電 性基板上に色素によって増感され、一方の極になる酸ィ匕物半導体微粒子力 なる薄 膜基板と、それと対畤するようにプラチナ等の還元剤を配した対極からなる基板との 間に電荷移動層(レドックス物質を含む電解液)を狭持したもので、ルテニウム錯体色 素を多孔質酸ィ匕チタン電極に吸着させることにより、シリコン太陽電池に近い性能を 有するまでになつている(非特許文献 1)。しかし、このような色素増感型の太陽電池 についてはその後、エネルギー変換効率の顕著な向上効果が得られていない。又、 前記シリコン太陽電池は高価であり、その代替えとしても、色素増感型の太陽電池の 更なる変換効率の向上等が必要とされている。
色素増感型の太陽電池の変換効率を左右する主要な因子としては、短絡電流、開 放電圧、形状因子などが挙げられるが、これらのうち短絡電流や形状因子について は、使用する増感色素の工夫による吸収波長領域の拡大、電池の内部抵抗の減少 等による変換効率の向上の為のさまざまな改善が提案されている。しかしながら、開 放電圧については、余り研究もされず、その改善が殆ど進んでいないと言っても過言 ではない。唯一、特許文献 2では、開放電圧の向上という目的で酸ィ匕ニオブを半導 体電極に用いている力 単一金属の酸ィ匕物であるため、その効果は不十分である。
[0005] 特許文献 1:特許第 2664194号公報
特許文献 2:特許第 2945955号公報
非特許文献 1 :J. Am. Chem. Soc. 115 (1993) 6382
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、色素増感型太陽電池に有用な金属酸化物微粒子並びにそれを 用いた高い開放電圧の発現を可能にする太陽電池を提供することを主要な目的とす る。
課題を解決するための手段
[0007] 本発明者らは前記したような課題を解決すべく鋭意研究を重ねた結果、特定の非 チタン金属酸化物 (珪素酸化物も含む)で修飾された多孔質のチタン系複合酸化物 微粒子 (以下修飾酸ィ匕チタン微粒子と 、う)が前記課題を解決するものであることを 見出し、本発明を完成させたものである。
[0008] 即ち本発明は、 (1)周期表 IB族酸化物、 ΠΑ族酸化物、 ΠΒ族酸化物、 ΠΙΑ族酸化物、 ΠΙΒ族酸化物、 チタン酸化物以外の IVA族酸化物、 IVB族酸化物、 VIA族酸化物、 VIII族酸化物及 びバナジウム酸ィ匕物力 なる群力 選ばれる一種類又は二種類以上の非チタン金属 酸化物 (珪素酸化物も含む)と酸化チタンから成る修飾酸化チタン微粒子、
(2)非チタン金属酸化物 (珪素酸化物も含む)がマグネシウム酸ィ匕物、カルシウム酸 化物、ストロンチウム酸化物、ジルコニウム酸化物、タンタル酸化物、クロム酸化物、 モリブデン酸ィ匕物、ニオブ酸化物、スカンジウム酸化物、バナジウム酸化物、鉄酸ィ匕 物、ニッケル酸ィ匕物、タングステン酸ィ匕物、亜鉛酸化物、アルミニウム酸ィ匕物、インジ ゥム酸ィ匕物、珪素酸ィ匕物及びスズ酸ィ匕物力 なる群力 選ばれる一種又は二種であ る(1)に記載の修飾酸ィ匕チタン微粒子、
(3)酸ィ匕チタンがアナタース型である(1)または(2)に記載の修飾酸ィ匕チタン微粒子
(4)酸化チタンに対する酸化チタン以外の非チタン金属酸化物 (珪素酸化物も含む) の割合が、チタン Z非チタン金属原子 (珪素原子も含む)の原子比で、 I/O. 02〜0 . 5である(1)乃至(3)の ヽずれか 1項に記載の修飾酸化チタン微粒子、
(5)周期表 ΠΑ族金属、 ΠΒ族金属、 ΠΙΑ族金属、 ΠΙΒ族金属、チタン以外の IVA族金 属、 IVB族金属及び VA族金属からなる群力 選ばれる一種類又は二種類以上の非 チタン金属 (珪素も含む)のアルコキサイドを有機溶媒中でチタンアルコキサイドと反 応させることを特徴とする非チタン金属酸化物 (珪素酸化物も含む)と酸化チタンから 成る修飾酸化チタン微粒子の製造方法、
(6)有機溶媒がアルコール溶媒であることを特徴とする(5)に記載の修飾酸化チタン 微粒子の製造方法、
(7)アルコール溶媒力 1価アルコール又は多価アルコールであることを特徴とする( 6)に記載の修飾酸化チタン微粒子の製造方法、
(8)多価アルコール力 1, 4 ブタンジオール又はォクタノールであることを特徴とす る(7)に記載の修飾酸化チタン微粒子の製造方法、
(9)色素によって増感された半導体含有層を有する導電性支持体と、対向電極を有 する導電性支持体を所定の間隔で対向配置し、当該両支持体の間隙に電荷移動層 を挟持してなる光電変換素子にぉ 、て、該半導体含有層が(1)乃至 (4)の 、ずれか 1項に記載の修飾酸化チタン微粒子を含有することを特徴とする色素増感光電変換 素子、
(10)修飾酸化チタン微粒子の一次粒子の平均粒子径が 1〜: LOOOnmの範囲である (9)記載の色素増感光電変換素子、
(11)色素カ^チン系色素であることを特徴とする、 (9)又は(10)記載の色素増感光 電変換素子、
(12)色素力 Sメチン系色素及び金属錯体系色素であることを特徴とする、(9)又は(1 0)記載の色素増感光電変換素子、
(13)色素によって増感された半導体含有層を有する導電性支持体と、対向電極を 有する導電性支持体を所定の間隔で対向配置し、当該両支持体の間隙に電荷移動 層を挟持してなる光電変換素子にぉ 、て、該半導体含有層が(5)乃至 (8)の 、ずれ 力 1項に記載の方法により得られた、ニオブ酸ィ匕物又はタンタル酸ィ匕物と酸ィ匕チタン から成る、修飾酸化チタン微粒子を含有することを特徴とする色素増感光電変換素 子、
(14)色素カ^チン系色素であることを特徴とする、(13)記載の色素増感光電変換 素子、
(15)色素力 Sメチン系色素及び金属錯体系色素であることを特徴とする、(13)記載 の色素増感光電変換素子、
に関する。
発明の効果
本発明の修飾酸ィ匕チタン微粒子を用いた太陽電池は開放電圧が高い。従って、電 卓など一定以上の電圧と最小限の電流だけで機能するような電気製品用の電源とし て有用である。また、電圧が高いので、電池の直列枚数を少なくすることができ、電 気製品等の製作コストが低くなるというメリットがある。
また、本発明の修飾酸化チタン微粒子は光触媒能に優れているので、光を利用した 酸化反応用の触媒としてあるいは半導体電極等に有用である。
発明を実施するための最良の形態 [0010] 以下に本発明を詳細に説明する。
まず本発明の修飾酸化チタン微粒子について説明する。
本発明の修飾酸ィ匕チタン微粒子は、チタン系複合酸ィ匕物微粒子とも言うことができ るもので、酸化チタンに複合される非チタン金属酸化物 (珪素酸化物も含む)の種類 、酸化チタンと複合される非チタン金属酸化物 (珪素酸化物も含む)との割合、更に はその複合方法にそれぞれ特徴を有するものである。
[0011] 修飾酸化チタン微粒子に複合される非チタン金属酸化物 (珪素酸化物も含む)の 種類としては、周期表 IB族酸化物、 ΠΑ族酸化物、 ΠΒ族酸化物、 ΠΙΑ族酸化物、 IIIB 族酸化物、チタン酸化物以外の IVA族酸化物、 IVB族酸化物、 VIA族酸化物、 VIII族 酸ィ匕物及びバナジウム酸ィ匕物カゝらなる群カゝら選ばれる一種類又は二種類以上の非 チタン金属酸化物 (珪素酸化物も含む)が用いられる。非チタン金属酸化物 (珪素酸 化物も含む)の好ましいものとしては、例えばバナジウム酸ィ匕物、周期表 ΠΑ族酸化物 であるマグネシウム酸化物、カルシウム酸化物、ストロンチウム酸化物、 ΠΒ族酸化物 である亜鉛酸ィ匕物、 ΠΙΑ族酸ィ匕物であるスカンジウム酸ィ匕物、 ΠΙΒ族酸ィ匕物であるァ ルミニゥム酸化物、インジウム酸化物、 IVA族酸化物であるジルコニウム酸化物、ハフ ユウム酸ィ匕物、 IVB族酸ィ匕物である珪素酸ィ匕物、スズ酸ィ匕物、 VIA族酸ィ匕物であるク ロム酸化物、モリブデン酸ィ匕物、タングステンの酸ィ匕物、 VIII族酸化物である鉄酸ィ匕 物、ニッケル酸ィ匕物、 IB族酸化物である銀酸化物、があげられ、特に、マグネシウム、 ジルコニウム、珪素の酸ィ匕物が好ましぐこれらは一種類あるいは 2種類以上併用し ても良い。また、金属酸ィ匕物としてタンタル酸ィ匕物やニオブ酸ィ匕物を使用しても良い
[0012] 本発明の修飾酸ィ匕チタン微粒子において、酸ィ匕チタンに複合される酸ィ匕チタン以 外の非チタン金属酸化物 (珪素酸化物も含む)の割合は、チタン Z非チタン金属原 子 (珪素原子も含む)の原子比で、 I/O. 005〜20力 S好ましく、 1ZO. 01〜3がより 好ましく、 I/O. 02-0. 5力さらに好ましい。
[0013] 本発明の修飾酸化チタン微粒子を太陽電池用に使用する場合、修飾酸化チタン 微粒子からなる半導体含有層(後記)は、増感色素等を吸着させる目的で高い表面 積を有するものが好ましい。又本発明の修飾酸ィ匕チタン微粒子は、高い表面積を達 成すベぐその 1次粒子径が小さいことが好ましい。具体的には l〜3000nm、好まし くは 5〜500nmが更に好ましい。修飾酸ィ匕チタン微粒子の 1次粒子径は比表面積か ら計算が可能で、比表面積は通常 0. 5〜1500m2Zg、好ましくは 3〜300m2Zgで ある。また、修飾酸ィ匕チタン微粒子の細孔容積は 0. 05〜0. 8ml/gが好ましぐ更 に平均細孔径が l〜250nmの範囲にあることが好ましい。下記するような製造法で 得られた修飾酸ィ匕チタン微粒子は通常前記のような物性を有する微粒子として得ら れるが、所望により、篩い分けることにより微粒子の物性を前記したような範囲に整え ることち可會である。
[0014] 本発明の修飾酸化チタン微粒子の製造方法としては修飾酸化チタン微粒子の原 料となる物質、チタンアルコキサイドとチタン以外の前記各非チタン金属酸ィ匕物 (珪 素酸化物も含む)のアルコキサイドを溶媒中、反応容器内で反応させて得ることが出 来る。尚、チタンアルコキサイド及びチタン以外の前記金属の、塩化物、硫化物、硝 酸塩、酢酸塩等の任意塩からなる混合物を溶媒中、反応容器内で反応させること〖こ よっても得られるが、非チタン金属 (珪素も含む)のアルコキサイドを用いる方法が好 ましい。使用する溶媒としては、例えばアルコール、へキサン、トルエン等の有機溶媒 、若しくはそれらの混合物を用いることが出来る。このような溶媒を使用することにより 、結晶性の高い修飾酸ィ匕チタン微粒子が得られる。原料が金属アルコキサイドである 場合は特に、 1価アルコール又は多価アルコールであることが好ましぐより好ましく は沸点が 80°C以上の多価アルコール、特に 1, 4 ブタンジオール、ォクタノールが 好ましい。また、水を添加しない有機溶媒が好ましい。ここで、「水を添加しない有機 溶媒」とは自然状態のときの有機溶媒のことである。水分含量が 10%以下、 5%以下 、 3%以下の有機溶媒がこの順で好ましい。反応温度は概ね 110°C以上 400°C以下 が好ましい。反応は窒素置換下で行なっても良い。また反応終了後、遠心分離等の 操作により所望の微粒子を得ても良いし、反応終了後、反応温度付近に温度を保持 したまま反応容器に取り付けられたバルブを開放して、内圧により、必要に応じて加 熱下に、使用したアルコール類等の溶媒を気化した状態で除去する事により微粒子 を得ることも出来る。
[0015] 本発明の修飾酸ィ匕チタン微粒子は光触媒能に優れているので、本多ー藤嶋効果 に代表される光酸化反応用の触媒や、その耐熱性を利用した触媒用担体等として使 用が可能であるが、好ましい用途は色素増感光電変換素子における半導体含有層 ( 半導体電極)としての用途である。即ち、本発明の修飾酸ィ匕チタン微粒子を用いた光 電変換素子に使用することにより開放電圧の向上等において顕著な効果が発揮され る。
[0016] 以下本発明の修飾酸化チタン微粒子の好ましい用途の一つである太陽電池に使 用する方法について説明する。
本発明の修飾酸化チタン微粒子は酸化チタンとそれに複合される非チタン金属酸 化物 (珪素酸化物も含む)の種類と割合、更には複合方法を工夫したものであり、こ のような修飾酸ィ匕チタン微粒子は、例えば、触媒活性の高い光触媒物質や特定の増 感用色素で増感することにより、その光触媒能を増大することが出来る。即ち、少なく とも一方は透明な導電性ガラス等の導電性の支持体上に増感色素を吸着させた半 導体含有層を有する導電性の支持体と、対向電極を有する導電性の支持体を所定 の間隔で対向配置し、当該両支持体の間隙に電荷移動層を挟持してなる光電変換 素子において、半導体含有層として本修飾酸化チタン微粒子を用いて形成し、該修 飾酸ィヒチタン微粒子に増感用色素を吸着させることにより、前記特徴を持つ光電変 換素子及び太陽電池を得ることを可能にする。尚、本発明では、光電変換素子から 発生した電流を取り出せるようにリード線を配し、閉回路としたものを太陽電池と!/、う。
[0017] 本発明にお 、て、導電性の支持体としては、例えば FTO (フッ素ドープ酸化スズ)、 ATO (アンチモンドープ酸化スズ)、 ITO (インジウムドープ酸化スズ)に代表される導 電性物質をガラス、プラスティック、ポリマーフィルム、チタン、タンタル、力一ボンなど の安定な無機性又は有機性基板の表面に薄膜化させたものが用いられる。その導 電性は通常 1000 Ω /cm2以下、好ましくは 100 Ω /cm2以下である。導電性の支持 体の表面に、色素によって増感された半導体含有層を配置したものが半導体電極で ある。以下、導電性の支持体を単に導電性支持体ともいう。このような導電性支持体 はそれ自体公知の方法により調製してもよ 、し、巿場から入手することも出来る。
[0018] 半導体含有層を導電性支持体上に設ける方法としては、修飾酸化チタン微粒子の スラリー又はペーストを導電性支持体上に塗布又はコートした後、乾燥、硬化もしくは 焼成する方法等が好ましぐその他酸化物半導体からなる薄膜を蒸着により直接基 板上に作成する方法、基板を電極として電気的に析出させる方法等も採用出来る。 修飾酸ィ匕チタン微粒子のスラリーを用いる方法等が酸ィ匕物半導体電極の性能上最 も好ましい。スラリーは 2次凝集していることのある酸ィ匕物半導体微粒子を分散剤を 用いて分散媒中に平均 1次粒子径力^〜 3000nmになるように分散させたり、本発明 におけるような、アルコール中でのアルコキサイドの加水分解反応(グリコサーマル法 )にて酸ィ匕物半導体の前駆体であるアルコキサイド等を加水分解して得られた修飾 酸ィ匕チタン微粒子の懸濁液力 調製することが出来る。
[0019] スラリーを得る上での分散媒としては修飾酸ィ匕チタン微粒子を分散させ得るもので あれば何れでも良ぐ水、エタノール等のアルコール、アセトン、ァセチルアセトン等 のケトン、へキサン等の炭化水素等の有機溶媒が用いられ、これらは混合して用いて も良く、水を用いることはスラリーの粘度変化を少なくすると 、う点で好ま 、。
[0020] スラリーには安定した一次微粒子を得る目的で分散安定剤等を加えることも可能で ある。用いうる分散安定剤の具体例にはポリエチレングリコール等の多価アルコール 、またはこれらの多価アルコールとフエノール、ォクチルアルコール等との縮合物、ヒ ドロキシプロピノレメチノレセノレロース、ヒドロキシメチノレセノレロース、ヒドロキシェチノレセ ルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリアクリルアマイド、 ポリ(メタ)アクリル酸及びその塩、ポリ(メタ)アクリル酸及びその塩の、アクリルァマイ ドと (メタ)アクリル酸またはそのアルカリ金属塩との共重合体又は (A)アクリルァマイ ド及び Zまたは (メタ)アクリル酸のアルカリ金属塩と (B) (メタ)アクリル酸メチル、(メタ
)アクリル酸ェチル等の(メタ)アクリル酸エステル、もしくはスチレン、エチレン、プロピ レン等の疎水性モノマーとの共重合体で水溶性であるポリアクリル酸系誘導体、メラミ ンスルホン酸ホルムアルデヒド縮合物の塩、ナフタリンスルホン酸ホルムアルデヒド縮 合物の塩、高分子量のリグニンスルホン酸塩、塩酸、硝酸、酢酸等の酸が挙げられる 力 これらの分散安定剤に限定されるものではない。又、これら分散安定剤は単独使 用だけでなぐ 2種以上を併用することも出来る。
[0021] これらの内、ポリエチレングリコール等の多価アルコール、またはフエノール、ォクチ ルアルコール等との縮合物、分子内にカルボキシル基および zまたはスルホン基お よび Zまたはアミド基を有するものが好ましぐポリ (メタ)アクリル酸、ポリ (メタ)アタリ ル酸ナトリウム、ポリ (メタ)アクリル酸カリウム、ポリ(メタ)アクリル酸リチウム等のポリ (メ タ)アクリル酸およびその塩やカルボキシメチルセルロース、塩酸、硝酸、酢酸等の酸 が好ましい。
[0022] スラリー中の修飾酸ィ匕チタン微粒子の濃度は通常 1〜90重量%、好ましくは 5〜80 重量%である。
[0023] スラリーを塗布した導電性支持体の焼成温度は、おおむね使用されている基板の 融点(又は軟化点)以下の温度で、通常 100〜900°C、好ましくは 100〜600°Cであ る。また、焼成時間は特に限定はされないが、おおむね 4時間以内が好ましい。焼成 後の膜厚は 1〜: LOO μ m程度が好ましぐ 3〜50 μ mがさらに好ましぐ 5〜30 μ mが 特に好ましい。
[0024] こうして得られた半導体含有層の表面平滑性を向上させる目的で 2次処理を施して もよ!/ヽ (非特許文献 1参照)。例えば修飾酸ィ匕チタン微粒子を調製するために用いた 非チタン金属酸化物 (珪素酸化物も含む)の金属と同一の非チタン金属 (珪素も含む )のアルコキサイド、塩化物、硝化物、硫化物、酢酸塩等の溶液に直接、半導体含有 層を有する導電性支持体ごと浸潰して乾燥もしくは再焼成することにより、平滑性を 向上することが出来る。金属アルコキサイドとしてはチタンェトキサイド、チタンイソプ ロポキサイド、チタン tーブトキサイド、 n—ジブチルージァセチルスズ等が挙げられ、 そのアルコール溶液が用いられる。塩ィ匕物の場合には例えば四塩ィ匕チタン、四塩ィ匕 スズ、塩化亜鉛等が挙げられ、その水溶液等が適宜用いられる
[0025] 本発明の修飾酸ィ匕チタン微粒子に増感用の色素が吸着 (担持)することにより、効 率よぐ光エネルギーを吸収して電気エネルギーに変換することができる。増感用の 色素としては金属錯体色素、非金属有機色素等が用いられ、修飾酸化チタン微粒子 と相まって光吸収を増感させるものであれば特に限定はなぐ 1種類の色素でも良い し、数種類の色素を混合して用いても良い。又、混合する場合は有機色素同士でも 良いし、有機色素と金属錯体色素を混合しても良い。特に吸収波長の異なる色素同 士を混合することにより、幅広い吸収波長を利用することが出来、変換効率の高い色 素増感光電変換素子、太陽電池が得られる。用い得る金属錯体色素としては、例え ばルテニウム錯体、フタロシアニン、ポルフィリンなどが挙げられ、同じく有機色素とし ては非金属のフタロシアニン、ポルフィリンゃシァニン、メロシアニン、ォキソノール、ト リフエ-ルメタン系、アクリル酸系色素、などのメチン系色素や、キサンテン系、ァゾ系 、アンスラキノン系、ペリレン系等の色素が挙げられる。好ましくはルテニウム錯体ゃメ ロシアニン、上記アクリル酸系等のメチン系色素等が挙げられる。好ましいものとして は、国際公開特許 WO2002011213号公報、国際公開特許 WO2002071530号 公報、特開 2002— 334729号公報、特開 2003— 007358号公報、特開 2003-017146号 公報、特開 2003-059547号公報、特開 2003-086257号公報、特開 2003-115333号公 報、特開 2003-132965号公報、特開 2003-142172号公報、特開 2003-151649号公報 、特開 2003-157915号公報、特開 2003-282165号公報、特開 2004-014175号公報、 特開 2004-022222号公報、特願 2004-320699号公報、特願 2005-111696号公報、特 願 2005-151422号公報、特願 2005-173429号公報、特願 2005-177087号公報、等に 記載の化合物等が挙げられ、これらの中でも特に好ましいものとしては、例えば下記 の一般式(1)で表される色素が挙げられる。なお、一般式(1)中の各置換基を表 1に 示す。
[0026] [化 1]
Figure imgf000011_0001
[0027] [表 1] 表 1
Figure imgf000012_0001
[0028] その他の具体例としては以下の色素などが挙げられる。
[0029] [化 2]
Figure imgf000013_0001
色素を混合して用いる場合の各色素の比率は特に限定は無ぐそれぞれの色素よ り最適条件が選択されるが、一般的に等モルずつの混合から、 1つの色素につき、 1 0%モル程度以上使用するのが好ましい。 2種以上の色素を溶解もしくは分散した溶 液を用いて、半導体含有層に色素を吸着する場合、溶液中の色素合計の濃度は 1 種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては 下記するような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なつ ていてもよい。
[0031] 色素を担持させる方法としては、前記各色素を下記するような溶媒に溶解して得た 溶液、又は溶解性の低 、色素にあっては色素を分散せしめて得た分散液に上記修 飾酸化チタン微粒子又は修飾酸化チタン微粒子からなる半導体含有層の設けられ た導電性支持体を浸漬する方法が挙げられる。色素溶液中に導電性支持体上に作 成した半導体含有層を浸す方法が好まし、。浸漬温度はおおむね常温から溶媒の 沸点迄であり、また浸漬時間は 1時間から 48時間程度である。色素を溶解させるの に使用しうる溶媒としては、例えばメタノール、エタノール、ァセトニトリル、ジメチルス ルホキサイド、ジメチルホルムアミド、 tーブタノール等が挙げられる。溶液の色素濃度 は通常 1 X 10— 6M〜1Mが良ぐ好ましくは 1 X 10— 5M〜1 X 10— である。光電変換 素子の場合、この様にして色素で増感した半導体含有層を配置した導電性支持体 が半導体電極として機能する。
[0032] 半導体含有層に色素を担持する際、色素同士の会合を防ぐために包接化合物の 共存下、色素を担持することが効果的である。ここで包接ィ匕合物としてはコール酸等 のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエ チレンオキサイドなどが挙げられる力 好ましいものとしてはコール酸、デォキシコー ル酸、ケノデォキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコー ル酸類、ポリエチレンオキサイド等である。又、色素を担持させた後、 4一 t—ブチルビ リジン等のアミンィ匕合物で半導体電極表面を処理しても良 、。処理の方法は例えば ァミンのエタノール溶液に色素を担持した半導体含有層の設けられた基板を浸す方 法等が採られる。
[0033] 本発明の光電変換素子は、上記半導体含有層に増感色素を担持させて得られた 半導体電極、これと対畤するように設けられる対極及び両極間に設けられる電荷移 動層を主要な要素として構成される。
電荷移動層としては酸化還元系電解質、正孔輸送材料等を溶媒や常温溶融塩 (ィ オン性液体)中に溶解させた溶液が用いられる。
用いうる酸ィ匕還元系電解質としては、例えばハロゲン分子とハロゲンイオンを対ィォ ンとするハロゲン化合物とからなるハロゲン酸化還元系電解質、フエロシアン酸塩 フェリシアン酸塩、フエ口セン—フエリシ-ゥムイオン、コバルト錯体などの金属錯体等 の金属酸化還元系電解質、アルキルチオール アルキルジスルフイド、ピオロゲン色 素、ヒドロキノンーキノン等の有機酸ィ匕還元系電解質などをあげることができるが、ハ ロゲン酸化還元系電解質が好ましい。ハロゲン分子 ハロゲン化合物力 なるハロゲ ン酸ィ匕還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子 等があげられ、ヨウ素分子が好ましい。又、ハロゲンイオンを対イオンとするハロゲン 化合物としては、例えば Lil、 Nal、 KI、 Csl、 Cal、 Cul等のハロゲン化金属塩あるい
2
はテトラアルキルアンモ-ゥムョーダイド、イミダゾリゥムョーダイド、 1ーメチルー 3 ァ ルキルイミダゾリゥムョーダイド、ピリジニゥムョーダイドなどのハロゲンの有機 4級アン モ-ゥム塩等があげられる力 ヨウ素イオンを対イオンとする塩類が好ましい。ヨウ素ィ オンを対イオンとする塩類としては、例えばヨウ化リチウム、ヨウ化ナトリウム、ヨウ化トリ メチルアンモ-ゥム塩等があげられる。
[0034] 又、電荷移動層が溶液の形で構成されている場合、その溶媒としては電気化学的 に不活性なものが用いられる。例えばァセトニトリル、プロピレンカーボネート、ェチレ ンカーボネート、 3—メトキシプロピオ-トリル、メトキシァセトニトリル、エチレングリコー ル、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジメトキシェ タン、ジェチノレカーボネート、ジェチノレエーテノレ、ジェチノレカーボネート、ジメチノレ力 ーボネート、 1、 2—ジメトキシェタン、ジメチルホルムアミド、ジメチルスルホキサイド、 1、 3 ジォキソラン、メチルフオルメート、 2—メチルテトラヒドロフラン、 3—メトキシー ォキサジリジン 2—オン、 γ ブチロラタトン、スノレフオラン、テトラヒドロフラン、水等 が好ましい例として挙げられ、これらの中でも、特に、ァセトニトリル、プロピレンカーボ ネート、エチレンカーボネート、 3—メトキシプロピオ-トリル、メトキシァセトニトリル、ェ チレングリコール、 3—メトキシォキサジリジン一 2 オン、 y—ブチ口ラタトン等が特に 好ましい。これらは単独もしくは 2種以上組み合わせて用いても良い。酸化還元系電 解質の濃度は通常 0. 01〜99重量%、好ましくは 0. 1〜90重量%である。
[0035] 又、電荷移動層を調製するに当たり、常温溶融液 (イオン性液体)を酸化還元系電 解質の溶媒として用いる方法も採用出来る。用いうる常温溶融液としては、例えば 1 —メチル一 3—アルキルイミダゾリゥムョーダイド、ビュルイミダゾリゥムテトラフルォライ ド、 1ーェチルイミダゾ一ルスルフォネート、アルキルイミダゾリゥムトリフルォロメタンス ルホ-ルアミド、 1 メチルピロリジ -ゥムアイオヨーダイド、 1ーメチルー 3 アルキル イミダゾリゥムビス(トリフルォロメタンスルホ -ル)アミド等が挙げられる。また、光電変 換素子の耐久性向上の目的で電荷移動層に低分子ゲル化剤を溶解させて増粘さ せたり、反応性成分を併用して電荷移動層注入後に反応させてゲル電解質とするこ とちでさる。
一方、本発明の光電変換素子においては、固体型として、酸化還元系電解質の代 わりに正孔輸送材料や P型半導体を用いることもできる。用いうる正孔輸送材料とし ては、例えばァミン誘導体やポリアセチレン、ポリア-リン、ポリチォフェンなどの導電 性高分子やディスコティック液晶などが挙げられ、また、 P型半導体としては、例えば Cul、 CuSCN等が挙げられる。
[0036] 本発明の光電変換素子における対向電極としては、前記 FTO導電性ガラス等の 導電性支持体の表面に、酸化還元系電解質が担う還元反応に触媒的に作用する白 金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子前駆体を塗布、焼 成したもの等それ自体公知のものが用いられる。塗布、焼成した後の白金、カーボン 、ロジウム、ルテニウム等の膜厚は 10〜50θΑが好ましい。
[0037] 本発明の色素増感素子は、導電性支持体表面に色素で増感させた半導体含有層 を配した半導体電極に対向電極を所定の間隔に対向配置し、周囲をシール剤でシ ールし、その間隙に前記電荷移動層を封入したものである。その製法としては、例え ば、一方の導電性支持体の周囲にシール部分を考慮して、色素で増感された半導 体含有層を配し半導体電極とする。次ぎに、例えば紫外線硬化型の光電変換素子 用のシール剤に、グラスファイバー等のスぺーサーを添加後、この半導体電極の周 囲に電荷移動層の注入口を残してスクリーン印刷もしくはディスペンサーによりシー ル剤を塗布した後、例えば 100°C10分間の加熱で溶剤を蒸発させ、ついでもう一方 の導電性支持体の上に白金等を配したものをそれらの導電面が対面するように重ね 合わせ、プレスにてギャップ出しを行い、高圧水銀灯にて UV光を、例えば、 3000mJ Zcm2照射して硬化させる。必要により、例えば 120°Cで 10分間、後硬化させること ちでさる。
[0038] 両導電性支持体間の間隙に電荷移動層を注入した後、その電荷移動層注入口を 封止剤で封止して光電変換素子を得ることができる。尚、前記において、シ―ル剤と しては、エポキシ榭脂、エポキシ (メタ)アタリレート榭脂、架橋剤、重合開始剤等を主 要な成分として調製される。又は封止剤はポリイソブチレン系榭脂を主要な成分とし て調製される。これらはそれぞれ市販品をそのまま使用することも出来る。このように して得られた本発明の光電変換素子は接着性、耐湿熱性等の耐久性に優れたもの で、その正極と負極にリード線を配し、その間に抵抗成分を挿入する事により色素増 感型太陽電池を得ることが出来る。
[0039] 図 1 (第 1図)は本発明による修飾酸化チタン微粒子から調製された光電変換素子 を用いた色素増感型太陽電池の構造を説明する要部断面模式図であって、 1は導 電性物質、 2は色素によって増感された半導体含有層をそれぞれ示す。 1と 2を併せ て半導体電極という。又、 3は基板の内側の導電面の上に白金等を配した対向電極 、 4は対向する導電性支持体に挟まれるように配されている電荷移動層、 5はシール 剤、 6は基板をそれぞれ示す。 1と 6を併せて導電性支持体という。
実施例
[0040] 以下に実施例により、本発明を更に詳細に説明する。
[0041] 実施例 1
チタンアルコキシドとしてチタンイソプロポキシド 7. 32gと、ジルコユアアルコキシドと してジルコユアイソプロポキサイド 24. 23gを用い、それらの混合物(TiZZr原子比 = 1Z3)を溶媒としての 1, 4—ブタンジオール 130ml中に懸濁して、容量 300mlの オートクレープ内に入れて密封した。オートクレープ中を窒素にて置換後、 300°Cに 昇温して 2時間の加熱処理を行った。反応終了後、 300°Cに保ったままオートクレー ブのバルブを開き、溶媒を除去することで、反応生成物をキセロゲルとして回収し、 修飾酸化チタン微粒子 11. 4gを得た。
[0042] 実施例 2
チタンアルコキシドとしてチタンイソプロポキシド 25gと、ジルコユアアルコキシドとし てジルコ-ァイソプロポキサイド 18. 2gを用い、それらの混合物 (TiZZr原子比 = 1 /0. 3)を溶媒としての 1, 4 ブタンジオール 130ml中に懸濁して、容量 300mlの オートクレープ内に入れて密封した。オートクレープ中を窒素にて置換後、 300°Cに 昇温して 2時間の加熱処理を行った。反応終了後、自然冷却して、修飾酸化チタン 微粒子 13. 7gを含む懸濁液 150mlを得た。
[0043] 実施例 3
チタンアルコキシドとしてチタンイソプロポキシド 25gと、ジルコユアアルコキシドとし てジアルコ-ァイソプロポキサイド 25gを用い、それらの混合物 (TiZZr原子比 = 1Z 1)を溶媒としての 1, 4 ブタンジオール 260ml中に懸濁して、容量 300mlのオート クレープ内に入れて密封した。オートクレープ中を窒素にて置換後、 300°Cに昇温し て 2時間の加熱処理を行った。反応終了後、自然冷却して、修飾酸化チタン微粒子 16. 3gを含む懸濁液 300mlを得た。
[0044] 実施例 4
チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 2と同様にして、修飾酸ィ匕チタン微粒子 11. Igを含む懸濁液 150ml を得た。
[0045] 実施例 5
チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 2と同様にして、修飾酸ィ匕チタン微粒子 11. Igを含む懸濁液 150ml を得た。
[0046] 実施例 6
チタンイソプロボキシドとアルミニウムテトライソプロポキサイドを表 2に示されるような 原子比で使用し、実施例 2と同様にして、修飾酸ィ匕チタン微粒子 11. Ogを含む懸濁 液 150mlを得た。
[0047] 実施例 7
チタンイソプロポキシド、オルトケィ酸ェチル及びジルコ-ァイソプロポキサイドを表 2に示されるような原子比で使用し、実施例 2と同様にして、修飾酸ィ匕チタン微粒子 1 4. 2gを含む懸濁液 150mlを得た。
[0048] 実施例 8 チタンアルコキシドとしてチタンイソプロポキシド 25gと、ジルコユアアルコキシドとし てジルコ-ァイソプロポキサイド 1. 82gを用い、それらの混合物 (TiZZr原子比 = 1 /0. 03)を溶媒としての 1, 4—ブタンジオール 130ml中に懸濁して、容量 300mlの オートクレープ内に入れて密封した。オートクレープ中を窒素にて置換後、 300°Cに 昇温して 2時間の加熱処理を行なった。反応終了後、自然冷却して、修飾酸化チタ ン微粒子 7. 5gを含む懸濁液 150mlを得た。
[0049] 実施例 9
チタンイソプロポキシドとジルコニァイソプロポキサイドを表 2に示されるような原子比 で使用し、実施例 8と同様にして、修飾酸化チタン微粒子 8. 5gを含む懸濁液 150ml を得た。
[0050] 実施例 10
チタンイソプロポキシドとジルコニァイソプロポキサイドを表 2に示されるような原子比 で使用し、それらの混合物を溶媒としてのトルエン 130ml中に懸濁して、その他の条 件は実施例 8と同様にして、修飾酸ィ匕チタン微粒子 13. lgを含む懸濁液 150mlを 得た。
[0051] 実施例 11
チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 8と同様にして、修飾酸化チタン微粒子 8. lgを含む懸濁液 150mlを 得た。
[0052] 実施例 12
チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 8と同様にして、修飾酸化チタン微粒子 8. lgを含む懸濁液 150mlを 得た。
[0053] 実施例 13
チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒子 10. 3gを含む懸濁液 150ml を得た。
[0054] 実施例 14 チタンイソプロボキシドとオルトケィ酸テトラエチルを表 2に示されるような原子比で 使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒子 17. lgを含む懸濁液 150ml を得た。
[0055] 実施例 15
チタンイソプロボキシドとアルミニウムテトライソプロポキサイドを表 2に示されるような 原子比で使用し、それらの混合物を溶媒としてのへキサン 130ml中に懸濁して、そ の他の条件は実施例 8と同様にして、修飾酸化チタン微粒子 8. 2gを含む懸濁液 15 Omlを得た。
[0056] 実施例 16
チタンイソプロボキシドとアルミニウムテトライソプロポキサイドを表 2に示されるような 原子比で使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒子 10. 5gを含む懸濁 液 150mlを得た。
[0057] 実施例 17
チタンイソプロボキシドとアルミニウムテトライソプロポキサイドを表 2に示されるような 原子比で使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒子 17. 5gを含む懸濁 液 150mlを得た。
[0058] 実施例 18
チタンイソプロポキシド、オルトケィ酸テトラェチル及びジルコ-ァイソプロポキサイド を表 2に示されるような原子比で使用し、それらの混合物を溶媒としての n—オタタノ ール 130ml中に懸濁して、その他の条件は実施例 8と同様にして、修飾酸化チタン 微粒子 14. 2gを含む懸濁液 150mlを得た。
[0059] 実施例 19
チタンイソプロポキシド、オルトケィ酸テトラェチル及びジルコ-ァイソプロポキサイド を表 2に示されるような原子比で使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒 子 16. 5gを含む懸濁液 150mlを得た。
[0060] 実施例 20
チタンイソプロボキシドとニオブブトキシドを表 2に示されるような原子比で使用し、 実施例 8と同様にして、修飾酸化チタン微粒子 7. 6gを含む懸濁液 150mlを得た。 [0061] 実施例 21
チタンイソプロボキシドとニオブブトキシドを表 2に示されるような原子比で使用し、 実施例 8と同様にして、修飾酸化チタン微粒子 8. 8gを含む懸濁液 150mlを得た。
[0062] 実施例 22
チタンイソプロボキシドとニオブブトキシドを表 2に示されるような原子比で使用し、 実施例 8と同様にして、修飾酸ィ匕チタン微粒子 14. 6gを含む懸濁液 150mlを得た。
[0063] 実施例 23
チタンイソプロボキシドと酢酸マグネシウム四水和物を表 2に示されるような原子比 で使用し、それらの混合物を溶媒としての n—ォクタノール 130ml中に懸濁して、そ の他の条件は実施例 8と同様にして、修飾酸化チタン微粒子 7. 7gを含む懸濁液 15 Omlを得た。
[0064] 実施例 24
チタンイソプロボキシドと酢酸マグネシウム四水和物を表 2に示されるような原子比 で使用し、実施例 8と同様にして、修飾酸化チタン微粒子 9. 3gを含む懸濁液 150ml を得た。
[0065] 実施例 25
チタンイソプロボキシドと酢酸マグネシウム四水和物を表 2に示されるような原子比 で使用し、実施例 8と同様にして、修飾酸ィ匕チタン微粒子 15. 7gを含む懸濁液 150 mlを得た。
[0066] 実施例 26
チタンイソプロポキシドとストロンチウムイソプロポキシドを表 2に示されるような原子 比で使用し、実施例 8と同様にして、修飾酸化チタン微粒子 9. 6gを含む懸濁液 150 mlを得た。
[0067] 実施例 27
チタンイソプロポキシドとインジウムイソプロポキシドを表 2に示されるような原子比で 使用し、実施例 8と同様にして、修飾酸化チタン微粒子 9. 8gを含む懸濁液 150mlを 得た。
[0068] 実施例 28 チタンイソプロボキシドとタングステンイソプロボキシドを表 2に示されるような原子比 で使用し、実施例 8と同様にして、修飾酸化チタン微粒子 9. 5gを含む懸濁液 150ml を得た。
[0069] 実施例 29
チタンイソプロボキシドと亜鉛イソプロボキシドを表 2に示されるような原子比で使用 し、実施例 8と同様にして、修飾酸化チタン微粒子 9. 6gを含む懸濁液 150mlを得た
[0070] 比較例 1
チタンイソプロボキシドを使用し、実施例 8と同様にして酸ィ匕チタン微粒子 7. Ogを 含む懸濁液 150mlを得た。
[0071] 試験例 1
上記各実施例 1〜29で得られた本発明の各修飾酸ィ匕チタン微粒子について、比 表面積を測定し、次の式より粒子径 (r)を求め、表 2にまとめた。
式:比表面積 = (2x4 7u r2) Z (r3x真比重)
なお、真比重は酸ィ匕チタン (アナタース)の真比重値 4. 15を用いて求めた。
また、比表面積の測定は、前記でえられた各懸濁液を乾燥し、 450°Cで 30分焼成し た後、ゼミ- 2735 (商品名 自動比表面積測定装置 (株)島津製作所製)を用いて行 つた o
[0072] [表 2]
表 2 修飾酸化チタン微粒子
Figure imgf000023_0001
[0073] 実施例 30〜70
光電変換素子の例 (第 1図)に示すように、色素増感型太陽電池の導電性支持体 である導電性ガラス支持体 (ガラス =基板 6)の導電性物質 FTO (1)上に実施例 1〜 7で得られた各修飾酸化チタン微粒子をタービネオールでペースト状にしたものを塗 布して、 450°C、 30分焼成した後、下記の色素(1)、色素(2)、色素(3)の何れかの 若しくは 2種類の色素を混合した 3 X 10—4Μエタノール溶液に 24時間浸漬して色素 で増感された半導体電極 (2)を作成した。
[0074] [化 3]
Figure imgf000024_0001
Figure imgf000024_0002
[0075] 次に、同じく導電性ガラス支持体の導電性物質 FTO上に Ptを 200A蒸着させて対 向電極(3)を作成した。これらをシール剤(5)で貼り合わせ、両極間の電荷移動層(4 )の注入口(図示せず)カゝらヨウ素系の電荷移動層 4a (ヨウ素 Zヨウ化リチウム Zメチ ルへキシルイミダゾリゥムアイオダイド(四国化成工業製) /\ ブチルピリジンをそれ ぞれ 0. 1M/0. 1M/0. 6MZ1Mとなるように 3—メトキシプロキォ-トリル中で調 整)をセル内に充填した後、注入ロカ 紫外線硬化型の封止剤で封止して紫外線を 照射することにより硬化させてそれぞれ本発明の光電変換素子を得た。
[0076] 下記表 3には、各実施例にお!ヽて使用した修飾酸ィ匕チタン微粒子、色素、修飾酸 化チタン微粒子層の焼成後の膜厚、使用した電荷移動層をそれぞれ示した。尚、表 3において電荷移動層 4bはヨウ素 Zヨウ化テトラー n—プロピルアンモ-ゥムをそれ ぞれ 0. 05M/0. 5Mとなるようにエチレンカーボネート Zァセトニトリル(6Z4)で調 製した。 [0077] 実験例:本発明の光電変換素子を用いた色素増感型太陽電池の性能試験 実施例 30〜70で得られた各光電変換素子について、測定すべき光電変換素子の 実行部分を 0. 5 X 0. 5cm2とした。光源は IkWキセノンランプ (ヮコム電創 (株)(株) 製)を用いて、 AM (エアマス) 1. 5フィルターを通して lOOmWZcm2とし色素増感型 太陽電池を得た。各太陽電池をソーラシユミレータ((株)渡辺商行製)に接続し、開 放電圧 (V)を測定した。
開放電圧 (V)の測定結果を表 3に纏めた。
[0078] [表 3]
表 3 開放電圧 (V ) の測定結果
Figure imgf000026_0001
表 3から明らかなように、本発明の光電変換素子を用いた色素增感型太陽電池は、 開放電圧が 0. 71以上という高い電圧を発生するものである。特に、ジルコニウムや アルミニウムで修飾した修飾酸ィ匕チタン微粒子を使用したものは、開放電圧が 1以上 というより高い電圧を発生する。このように、本発明の光電変換素子を用いた色素増 感型太陽電池は、開放電圧が大きいので、電卓、携帯電話など一定以上の電圧と最 小限の電流だけで機能するような小型の電気製品等に組み込んだ場合、電池の直 列枚数が少なくてすみ、電気製品等の製作コストが低くなる。
図面の簡単な説明
[0080] [図 1]本発明の色素増感型光電変換素子の一例の要部断面模式図である。
符号の説明
[0081] 1は導電性物質を、 2は半導体金属層を、 3は対向電極を、 4は電荷移動層を、 5は シール剤、 6は基板 (ガラス支持体)をそれぞれ示す。

Claims

請求の範囲
[1] 周期表 IB族酸化物、 ΠΑ族酸化物、 ΠΒ族酸化物、 ΙΠΑ族酸化物、 ΠΙΒ族酸化物、チ タン酸化物以外の IVA族酸化物、 IVB族酸化物、 VIA族酸化物、 VIII族酸化物及び バナジウム酸ィ匕物力 なる群力 選ばれる一種類又は二種類以上の非チタン金属酸 化物 (珪素酸化物も含む)と酸化チタンから成る修飾酸化チタン微粒子。
[2] 非チタン金属酸化物 (珪素酸化物も含む)がマグネシウム酸ィ匕物、カルシウム酸ィ匕 物、ストロンチウム酸化物、ジルコニウム酸化物、タンタル酸化物、クロム酸化物、モリ ブデン酸化物、ニオブ酸化物、スカンジウム酸化物、バナジウム酸化物、鉄酸化物、 ニッケル酸ィ匕物、タングステン酸化物、亜鉛酸化物、アルミニウム酸ィ匕物、インジウム 酸ィ匕物、珪素酸ィ匕物及びスズ酸ィ匕物力 なる群力 選ばれる一種又は二種である請 求項 1に記載の修飾酸化チタン微粒子。
[3] 酸ィ匕チタンがアナタース型である請求項 1または 2に記載の修飾酸ィ匕チタン微粒子
[4] 酸化チタンに対する酸化チタン以外の非チタン金属酸化物 (珪素酸化物も含む)の 割合が、チタン Z非チタン金属原子 (珪素原子も含む)の原子比で、 I/O. 02〜0. 5である請求項 1乃至 3のいずれか 1項に記載の修飾酸ィ匕チタン微粒子。
[5] 周期表 ΠΑ族金属、 ΠΒ族金属、 ΠΙΑ族金属、腿族金属、チタン以外の IVA族金属 、IVB族金属及び VA族金属からなる群力 選ばれる一種類又は二種類以上の非チ タン金属 (珪素も含む)のアルコキサイドを有機溶媒中でチタンアルコキサイドと反応 させることを特徴とする非チタン金属酸化物 (珪素酸化物も含む)と酸化チタンから成 る修飾酸化チタン微粒子の製造方法。
[6] 有機溶媒がアルコール溶媒であることを特徴とする請求項 5に記載の修飾酸ィ匕チタ ン微粒子の製造方法。
[7] アルコール溶媒が、 1価アルコール又は多価アルコールであることを特徴とする請 求項 6に記載の修飾酸化チタン微粒子の製造方法。
[8] 多価アルコール力 1, 4 ブタンジオールであることを特徴とする請求項 7に記載 の修飾酸化チタン微粒子の製造方法。
[9] 色素によって増感された半導体含有層を有する導電性支持体と、対向電極を有す る導電性支持体を所定の間隔で対向配置し、当該両支持体の間隙に電荷移動層を 挟持してなる光電変換素子において、該半導体含有層が請求項 1乃至 4のいずれか 1項に記載の修飾酸化チタン微粒子を含有することを特徴とする色素増感光電変換 素子。
[10] 修飾酸化チタン微粒子の一次粒子の平均粒子径が 1〜: LOOOnmの範囲である請 求項 9記載の色素増感光電変換素子。
[11] 色素カ^チン系色素であることを特徴とする、請求項 9又は 10記載の色素増感光 電変換素子。
[12] 色素がメチン系色素及び金属錯体系色素であることを特徴とする、請求項 9又は 1 0記載の色素増感光電変換素子。
[13] 色素によって増感された半導体含有層を有する導電性支持体と、対向電極を有す る導電性支持体を所定の間隔で対向配置し、当該両支持体の間隙に電荷移動層を 挟持してなる光電変換素子において、該半導体含有層が請求項 5乃至 8のいずれか 1項に記載の方法により得られたニオブ酸ィ匕物又はタンタル酸ィ匕物と酸ィ匕チタンから 成る修飾酸化チタン微粒子を含有することを特徴とする色素増感光電変換素子。
[14] 色素カ^チン系色素であることを特徴とする、請求項 13記載の色素増感光電変換 素子。
[15] 色素がメチン系色素及び金属錯体系色素であることを特徴とする、請求項 13記載 の色素増感光電変換素子。
PCT/JP2006/301199 2005-01-27 2006-01-26 修飾酸化チタン微粒子及びそれを用いた光電変換素子 WO2006080384A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007500563A JP4909256B2 (ja) 2005-01-27 2006-01-26 修飾酸化チタン微粒子及びそれを用いた光電変換素子
KR1020077016916A KR101290894B1 (ko) 2005-01-27 2006-01-26 수식 산화 티탄 미립자 및 그것을 사용한 광전 변환 소자
CA002594857A CA2594857A1 (en) 2005-01-27 2006-01-26 Modified titanium oxide microparticle and photoelectric transducer making use of the same
EP06712381A EP1858108A4 (en) 2005-01-27 2006-01-26 MODIFIED TITANIUM OXIDE PARTICLE AND THIS USING PHOTOELECTRIC CONVERTER
AU2006209496A AU2006209496B2 (en) 2005-01-27 2006-01-26 Modified titanium oxide microparticle and photoelectric transducer making use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005019178 2005-01-27
JP2005-019178 2005-01-27

Publications (1)

Publication Number Publication Date
WO2006080384A1 true WO2006080384A1 (ja) 2006-08-03

Family

ID=36740411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301199 WO2006080384A1 (ja) 2005-01-27 2006-01-26 修飾酸化チタン微粒子及びそれを用いた光電変換素子

Country Status (9)

Country Link
US (1) US20080110497A1 (ja)
EP (1) EP1858108A4 (ja)
JP (2) JP4909256B2 (ja)
KR (1) KR101290894B1 (ja)
CN (1) CN100521249C (ja)
AU (1) AU2006209496B2 (ja)
CA (1) CA2594857A1 (ja)
TW (1) TWI386372B (ja)
WO (1) WO2006080384A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278023A (ja) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd 半導体微粒子ペースト及びその製造方法、並びに光電変換素子
JP2007026994A (ja) * 2005-07-20 2007-02-01 Sumitomo Osaka Cement Co Ltd スクリーン印刷用の酸化物光半導体ペースト、そのペーストを用いた酸化物光半導体多孔質薄膜電極及び光電変換素子、並びにスクリーン印刷用の酸化物光半導体ペーストの製造方法
EP2037528A1 (en) * 2006-07-05 2009-03-18 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2009148706A (ja) * 2007-12-20 2009-07-09 Showa Denko Kk 電極触媒およびその用途、ならびに電極触媒の製造方法
WO2011145551A1 (ja) 2010-05-17 2011-11-24 日本化薬株式会社 熱硬化型光電変換素子用シール剤を用いた光電変換素子
JP2012521622A (ja) * 2009-03-26 2012-09-13 バンガー ユニバーシティ 色素増感太陽電池の低温焼結
JP2013046913A (ja) * 2012-11-22 2013-03-07 Showa Denko Kk 電極触媒およびその用途、ならびに電極触媒の製造方法
WO2014084296A1 (ja) 2012-11-30 2014-06-05 日本化薬株式会社 色素増感太陽電池
JP2015201510A (ja) * 2014-04-07 2015-11-12 積水化学工業株式会社 酸化物ナノ粒子分散液及び薄膜太陽電池の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635203B (zh) * 2008-07-27 2011-09-28 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
AU2009283460B2 (en) * 2008-08-22 2014-12-04 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photovoltaic device
JP5428555B2 (ja) * 2009-06-08 2014-02-26 ソニー株式会社 色素増感光電変換素子の製造方法
US20120180850A1 (en) * 2011-01-13 2012-07-19 Kim Sung-Su Photoelectric conversion module and method of manufacturing the same
CN103619963B (zh) 2011-06-28 2015-04-22 纳幕尔杜邦公司 具有降低的光活性和改善的抗微生物特性的经过处理的无机颜料以及它们在涂料组合物中的用途
US9587090B2 (en) 2011-06-28 2017-03-07 The Chemours Company Tt, Llc Treated inorganic pigments having reduced photoactivity and improved anti-microbial properties and their use in polymer compositions
AU2012275783B2 (en) 2011-06-28 2016-02-04 E. I. Du Pont De Nemours And Company Treated inorganic particle
US9545625B2 (en) * 2012-11-09 2017-01-17 Arizona Board Of Regents On Behalf Of Arizona State University Ionic liquid functionalized reduced graphite oxide / TiO2 nanocomposite for conversion of CO2 to CH4
JP6654871B2 (ja) * 2014-11-21 2020-02-26 三菱ケミカル株式会社 複合光触媒の製造方法、及び、複合光触媒
CN106622209B (zh) * 2016-12-30 2019-12-31 佛山市国汉科技有限公司 一种光触媒粉及其制备方法
JP6906210B2 (ja) * 2019-10-08 2021-07-21 Jfeスチール株式会社 積層体、有機薄膜太陽電池、積層体の製造方法および有機薄膜太陽電池の製造方法
CN112582183B (zh) * 2020-02-18 2022-04-08 宿州学院 一种Fe3O4/Ni/N-RGO太阳能电池高效电极的复合材料及其制备方法
US11906157B2 (en) * 2020-08-07 2024-02-20 Pure-Light Te chnologies, Inc. Photocatalyst formulations and coatings
US11964739B2 (en) 2020-08-07 2024-04-23 Roger K. Young Coatings that reduce or prevent barnacle attachment to a marine structure
US11819824B2 (en) 2020-08-07 2023-11-21 Pure-Light Technologies, Inc. Surface coatings for self-decontamination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249279A (ja) * 2002-02-26 2003-09-05 Sharp Corp 多孔質半導体層の作製方法及び色素増感型太陽電池
JP2003251194A (ja) * 2002-02-28 2003-09-09 Japan Science & Technology Corp 光機能物品
JP2003272723A (ja) * 2002-03-15 2003-09-26 Toshiba Corp 色素増感型太陽電池及び色素増感型太陽電池用酸化物半導体の製造方法
JP2004047264A (ja) * 2002-07-11 2004-02-12 Sharp Corp 色素増感型太陽電池およびその製造方法
JP2005019124A (ja) * 2003-06-25 2005-01-20 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子および太陽電池
JP2005019130A (ja) * 2003-06-25 2005-01-20 Nippon Kayaku Co Ltd 色素増感光電変換素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (ja) * 1988-02-12 1990-06-15 Sulzer Ag
DE4235996A1 (de) * 1992-10-24 1994-04-28 Degussa Flammenhydrolytisch hergestelltes Titandioxid-Mischoxid, Verfahren zu seiner Herstellung und Verwendung
CN1241287C (zh) * 2000-06-29 2006-02-08 日本化药株式会社 染料敏化的光电转化器
DE60123714T2 (de) * 2000-08-15 2007-10-04 FUJI PHOTO FILM CO., LTD., Minamiashigara Photoelektrische Zelle und Herstellungsmethode
JP4392741B2 (ja) * 2002-04-17 2010-01-06 日揮触媒化成株式会社 光電気セル
JP2004210586A (ja) * 2002-12-27 2004-07-29 Showa Denko Kk 嵩密度の高いチタニア−シリカ混晶粒子の製造方法と得られるチタニア−シリカ混晶粒子及びその用途
JP4119267B2 (ja) * 2003-01-23 2008-07-16 株式会社東芝 光増感型太陽電池
KR100578798B1 (ko) * 2003-12-12 2006-05-11 삼성에스디아이 주식회사 염료감응 태양전지 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249279A (ja) * 2002-02-26 2003-09-05 Sharp Corp 多孔質半導体層の作製方法及び色素増感型太陽電池
JP2003251194A (ja) * 2002-02-28 2003-09-09 Japan Science & Technology Corp 光機能物品
JP2003272723A (ja) * 2002-03-15 2003-09-26 Toshiba Corp 色素増感型太陽電池及び色素増感型太陽電池用酸化物半導体の製造方法
JP2004047264A (ja) * 2002-07-11 2004-02-12 Sharp Corp 色素増感型太陽電池およびその製造方法
JP2005019124A (ja) * 2003-06-25 2005-01-20 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子および太陽電池
JP2005019130A (ja) * 2003-06-25 2005-01-20 Nippon Kayaku Co Ltd 色素増感光電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1858108A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278023A (ja) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd 半導体微粒子ペースト及びその製造方法、並びに光電変換素子
JP2007026994A (ja) * 2005-07-20 2007-02-01 Sumitomo Osaka Cement Co Ltd スクリーン印刷用の酸化物光半導体ペースト、そのペーストを用いた酸化物光半導体多孔質薄膜電極及び光電変換素子、並びにスクリーン印刷用の酸化物光半導体ペーストの製造方法
EP2037528A1 (en) * 2006-07-05 2009-03-18 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
EP2037528A4 (en) * 2006-07-05 2009-08-19 Nippon Kayaku Kk SOLAR CELL SENSITIVE TO COLORING
JP2009148706A (ja) * 2007-12-20 2009-07-09 Showa Denko Kk 電極触媒およびその用途、ならびに電極触媒の製造方法
JP2012521622A (ja) * 2009-03-26 2012-09-13 バンガー ユニバーシティ 色素増感太陽電池の低温焼結
WO2011145551A1 (ja) 2010-05-17 2011-11-24 日本化薬株式会社 熱硬化型光電変換素子用シール剤を用いた光電変換素子
JP2013046913A (ja) * 2012-11-22 2013-03-07 Showa Denko Kk 電極触媒およびその用途、ならびに電極触媒の製造方法
WO2014084296A1 (ja) 2012-11-30 2014-06-05 日本化薬株式会社 色素増感太陽電池
JP2015201510A (ja) * 2014-04-07 2015-11-12 積水化学工業株式会社 酸化物ナノ粒子分散液及び薄膜太陽電池の製造方法

Also Published As

Publication number Publication date
CA2594857A1 (en) 2006-08-03
JP2012067009A (ja) 2012-04-05
TWI386372B (zh) 2013-02-21
KR20070091359A (ko) 2007-09-10
CN100521249C (zh) 2009-07-29
JP4909256B2 (ja) 2012-04-04
KR101290894B1 (ko) 2013-07-29
AU2006209496B2 (en) 2010-08-19
CN101111969A (zh) 2008-01-23
JPWO2006080384A1 (ja) 2008-06-19
EP1858108A1 (en) 2007-11-21
AU2006209496A1 (en) 2006-08-03
TW200642960A (en) 2006-12-16
US20080110497A1 (en) 2008-05-15
EP1858108A4 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2006080384A1 (ja) 修飾酸化チタン微粒子及びそれを用いた光電変換素子
JP5029015B2 (ja) 色素増感型金属酸化物半導体電極及びその製造方法並びに色素増感型太陽電池
TWI389371B (zh) 光電變換元件用電解液組成物及使用其之光電變換元件
JP5572029B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP5285062B2 (ja) 光増感素子及びそれを用いた太陽電池
JP2008016442A (ja) 光電変換素子
JP5620469B2 (ja) 光電変換素子の製造方法、光電変換素子及び光電気化学電池
WO2013179706A1 (ja) 色素増感太陽電池
JP2007265776A (ja) フレキシブル色素増感型太陽電池
JP2010009786A (ja) 色素増感型太陽電池および色素増感型太陽電池モジュール
JP2009076369A (ja) 色素増感太陽電池
JP2008258011A (ja) 色素増感型太陽電池
JP2006260991A (ja) チタニアナノアレイ電極の製造方法およびそれを用いた光電変換素子
JP2008186669A (ja) 色素増感型太陽電池の製造方法
CA2879197C (en) Photoelectric conversion layer composition and photoelectric conversion element
JP2006324111A (ja) フレキシブル色素増感太陽電池
JP2006286534A (ja) フレキシブル色素増感太陽電池
JP2012051952A (ja) 色素、光電変換素子及び光電気化学電池
JP2007200714A (ja) 色素増感型太陽電池及びその製造方法
JP4849844B2 (ja) 色素増感太陽電池
JP2013191273A (ja) 光電極、その製造方法、およびそれを用いた色素増感太陽電池
JP2009252727A (ja) 色素増感型太陽電池の製造方法及び色素増感型太陽電池
US20130118570A1 (en) Dye for photoelectric conversion, semiconductor electrode, photoelectric conversion element, solar cell, and novel pyrroline-based compound
TW201422595A (zh) 氧化還原對及使用其之光電轉換元件
JP2012218996A (ja) 密閉容器内での気相硫化処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500563

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006712381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2594/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11795180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2594857

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006209496

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077016916

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680003411.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006209496

Country of ref document: AU

Date of ref document: 20060126

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006209496

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006712381

Country of ref document: EP