WO2006049096A1 - 変速装置 - Google Patents

変速装置 Download PDF

Info

Publication number
WO2006049096A1
WO2006049096A1 PCT/JP2005/019884 JP2005019884W WO2006049096A1 WO 2006049096 A1 WO2006049096 A1 WO 2006049096A1 JP 2005019884 W JP2005019884 W JP 2005019884W WO 2006049096 A1 WO2006049096 A1 WO 2006049096A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
input shaft
transmission
speed
Prior art date
Application number
PCT/JP2005/019884
Other languages
English (en)
French (fr)
Inventor
Masahiro Ohkubo
Hiroki Mori
Original Assignee
Exedy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exedy Corporation filed Critical Exedy Corporation
Priority to DE112005002697T priority Critical patent/DE112005002697T5/de
Publication of WO2006049096A1 publication Critical patent/WO2006049096A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H2003/0803Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with countershafts coaxial with input or output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/006Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eight forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • F16H3/0915Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H3/097Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts the input and output shafts being aligned on the same axis

Definitions

  • the present invention relates to a transmission, and more particularly to a transmission corresponding to a double clutch device.
  • an automatic transmission As a means for automatically shifting a vehicle.
  • AT automatic transmission
  • a combination of a torque converter and a plurality of planetary gears and clutches has become the mainstream. Due to the continuously variable speed action of the torque converter and the automatic switching of multiple clutches, the AT does not require clutch operation by the driver when starting, stopping, and shifting as required by the manual transmission (MT).
  • MT manual transmission
  • AT uses a torque converter that uses fluid
  • transmission efficiency is inferior to MT, which mechanically connects the input and output sides directly to transmit torque. Therefore, the AT has the advantage of reducing the driver's labor, but has the disadvantage of reducing the fuel consumption of the vehicle. Therefore, in order to ensure the transmission efficiency of MT and eliminate the need for clutch operation, an automatic transmission (AMT) that has been automated based on the MT structure has been developed.
  • the AMT automates the MT clutch operation and the transmission gear shifting operation, and can eliminate the need for clutch operation while ensuring the same transmission efficiency as the conventional MT.
  • AMT disengages the clutch during the shifting operation, just like MT, so torque transmission is temporarily interrupted. While the torque transmission is interrupted, the vehicle is driven only by inertia without acceleration, so when the gear is shifted, the slight torque loss greatly affects the acceleration of the vehicle, causing the driver to feel uncomfortable. Cheap.
  • AT since multiple clutches are used, torque is not lost during gear shifting.
  • the compound clutch device mainly includes an input shaft, a first output shaft, a second output shaft, a first clutch, and a second clutch.
  • the input shaft is also used to input torque to the double clutch device.
  • the first output shaft is used to output torque to the transmission side and is arranged coaxially with the input shaft. Is placed.
  • the second output shaft is for outputting torque to the transmission side, and is a cylindrical member arranged coaxially on the outer peripheral side of the first output shaft.
  • the first clutch is for transmitting and interrupting the torque input to the input shaft to the first output shaft.
  • the second clutch is for transmitting and interrupting the torque input to the input shaft to the second output shaft, and is disposed on the outer peripheral side of the first clutch (see, for example, Patent Document 1;). .
  • torque can be transmitted alternately to the first and second output shafts by the first and second clutches in order to prevent torque interruption.
  • the first and second output shafts can be selectively connected to different gear pairs.
  • the first clutch is connected and torque is transmitted to the first output shaft.
  • the second output shaft is connected to any one of the gear pairs, and the first clutch is connected.
  • the second clutch can be connected to transmit torque to the second output shaft. The reverse operation is also possible. Therefore, the AMT that employs this dual clutch device does not lose torque during gear shifting, and allows smooth and wasteful gear shifting operations.
  • Patent Document 1 JP 2000-352431 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-217204
  • the AMT described above employs a stepped transmission that is composed of a plurality of gears and the like.
  • a stepped transmission due to the reduction ratio, the engine speed after a shift decreases when shifting up. Therefore, it is necessary to increase the engine speed before shifting by the step of the reduction ratio.
  • fuel consumption is reduced and noise is increased.
  • the transmission installed in the AMT needs to increase the number of shift stages in order to reduce the reduction ratio step compared to the conventional one, and the transmission becomes large.
  • this transmission shifts only one clutch in a half-clutch state at the time of starting, there is a problem that the facing of one clutch is worn compared to the other.
  • the multiple clutch device has a larger axial dimension than a conventional MT clutch due to a plurality of clutches and a mechanism associated therewith.
  • the overall axial dimension of the AMT becomes large, and a reduction in the size of the transmission is desired.
  • the transmission needs as many gear pairs as the number of shift stages for forward movement.
  • four retaining structures are required (see, for example, Patent Document 2;). Since these gear pairs and the switching mechanism are arranged in the axial direction, it is difficult to reduce the size of the transmission.
  • An object of the present invention is to realize a simple and compact transmission with a smaller number of gears and fewer gears.
  • Another object of the present invention is to reduce the wear of the clutch housing when the vehicle starts.
  • the transmission according to claim 1 is mounted on an automatic transmission having a double clutch device that can selectively connect and disconnect the first and second clutches, and the torque from the engine is output to the output side. It is for transmission.
  • the transmission is composed of a first input shaft, a second input shaft, a counter shaft, an output shaft, a first gear pair, a first switching mechanism, and a second switching mechanism.
  • the first input shaft is for inputting torque via the first clutch.
  • the second input shaft is for inputting torque via the second clutch.
  • the secondary axis is arranged in parallel to the first input axis.
  • the output shaft is arranged coaxially with respect to either the first input shaft or the auxiliary shaft.
  • the first gear pair is composed of a first gear fixed to the second input shaft and a second gear fixed to the counter shaft and meshed with the first gear.
  • the first mechanism can selectively connect and disconnect the first input shaft and the sub shaft with at least two different reduction ratios.
  • the second switching mechanism can selectively connect and disconnect either the first input shaft or the sub shaft and the output shaft.
  • the dual clutch device can selectively operate the first and second clutches, torque is input from one of the first and second input shafts to the transmission. it can.
  • the torque transmission path of this speed change device becomes several.
  • the first switching mechanism is capable of selectively connecting and disconnecting the first input shaft and the secondary shaft with two types of reduction ratios, There are the following six torque transmission paths from the second input shaft to the output shaft.
  • this transmission can realize a six-speed transmission. Compared with the conventional six-speed transmission, the conventional transmission requires six gear pairs and four gears, whereas this transmission has four gear pairs and two gear pairs. Only a retaining structure is needed. As a result, this transmission can realize a six-speed transmission corresponding to the double clutch device with fewer components than in the past. As a result, this transmission can be reduced in size in the axial direction as compared with the prior art, and can be downsized. And the enlargement of the whole AMT can be prevented.
  • the transmission according to claim 2 further includes a second gear pair and a third gear pair according to claim 1.
  • the second gear pair includes a third gear fixed to one of the first input shaft and the counter shaft, and a third gear arranged to be rotatable relative to the other of the first input shaft and the counter shaft. It consists of a meshing fourth gear.
  • the third gear pair includes a fifth gear fixed to one of the first input shaft and the counter shaft, and a fifth gear arranged to be rotatable relative to the other of the first input shaft and the counter shaft. It consists of a 6th gear that meshes.
  • the first switching mechanism can connect the first input shaft and the auxiliary shaft via either one of the second and third gear pairs.
  • the transmission includes the second and third gear pairs, by appropriately setting the reduction ratios thereof, a six-stage speed change corresponding to the dual clutch device with fewer components than in the past. Can be realized. As a result, this transmission can reduce the axial dimension as compared with the prior art. And miniaturization can be achieved. And it is possible to prevent the entire AMT from becoming large.
  • the speed change device can reduce the step of the speed reduction ratio of each gear in the low speed range by appropriately setting the speed reduction ratio of the second and third gear pairs. As a result, in this transmission, the vehicle can be started by sliding the second clutch at the second speed before the first clutch finishes sliding at the first speed, for example. As a result, in this speed change device, the wearing of the facing can be reduced by sharing the load at the time of starting with the first and second clutches.
  • the transmission according to claim 3 further includes a fourth gear pair according to claim 1 or 2.
  • the fourth gear pair meshes with the seventh gear fixed to either the countershaft or the output shaft and the seventh gear arranged to be rotatable relative to the other of the countershaft or the output shaft. It consists of the eighth gear.
  • the second switching mechanism selectively switches between the connection of the auxiliary shaft and the output shaft through the fourth gear pair and the connection of the first input shaft and the output shaft without using the fourth gear pair. It is possible to cancel.
  • the second switching mechanism can selectively switch the connection between the auxiliary shaft and the output shaft and the connection between the first input shaft and the output shaft.
  • Torque transmission by connecting the subshaft and the output shaft is performed via the fourth gear pair.
  • this transmission device can reduce the step of the reduction ratio of each gear in the low speed range by appropriately setting the reduction ratio of the fourth gear pair.
  • this transmission can be reduced in size in the axial direction as compared with the prior art, and can be downsized. And it is possible to prevent the overall size of the ATM from being increased.
  • a transmission according to a fourth aspect of the present invention further includes the fourth gear pair according to the first or second aspect.
  • the fourth gear pair is a seventh gear fixed to one of the first input shaft and the output shaft, and a seventh gear disposed so as to be rotatable relative to the other of the first input shaft and the output shaft. It is composed of an 8th gear that meshes with.
  • the second switching mechanism selectively switches between the connection between the first input shaft and the output shaft via the fourth gear pair and the connection between the sub shaft and the output shaft not via the fourth gear pair. It is possible to cancel.
  • the second switching mechanism connects the first input shaft and the output shaft and connects the sub shaft to the output.
  • the connection with the force shaft can be selectively switched.
  • Torque transmission by the connection between the first input shaft and the output shaft is performed via the fourth gear pair.
  • this transmission device can reduce the step of the reduction ratio of each gear in the low speed range by appropriately setting the reduction ratio of the fourth gear pair.
  • the speed change device can be reduced in size in the axial direction and can be downsized. And it is possible to prevent the entire AMT from becoming large.
  • a transmission according to a fifth aspect includes the fifth gear pair and the third switching mechanism according to any one of the first to third aspects.
  • the fifth gear pair includes a ninth gear fixed to one of the first input shaft and the counter shaft, and a ninth gear arranged to be rotatable relative to the other of the first input shaft and the counter shaft. It consists of a tenth gear that meshes.
  • the third switching mechanism can selectively connect and disconnect one of the first input shaft and the counter shaft and the other of the first input shaft and the counter shaft via the fifth gear pair.
  • this transmission device includes the fifth gear pair and the third notch structure, a maximum of eight speeds can be achieved by combining with another gear pair.
  • the first gear is fixed to the second input shaft and the first mechanism allows the first input shaft and the sub shaft to be selectively connected and disconnected by two types of reduction ratios
  • the first and first 2Torque transmission paths from the input shaft to the output shaft are as follows.
  • this transmission can realize an eight-speed shift. .
  • the conventional transmission requires eight gear pairs and at least four gears, which is the same number as the speed stage, whereas this transmission is Only 5 gear pairs and 3 gears are needed.
  • this transmission can achieve an eight-speed transmission corresponding to the dual clutch device with fewer components than in the past.
  • the transmission according to claim 6 is the transmission device according to any one of claims 2 to 5, wherein the reduction ratio from the second input shaft to the sub shaft of the first gear pair is the first input shaft of the second gear pair.
  • the reduction ratio from the first input shaft of the third gear pair to the sub shaft is smaller than the reduction ratio from the first gear to the sub shaft. Smaller than the reduction ratio to /!
  • the reduction gear ratio becomes smaller in the order of the second, first, and third gear pairs, so that the desired number of shift stages can be realized with certainty.
  • the transmission can be reduced in size in the axial direction and can be reduced in size. And it is possible to prevent the entire AMT from becoming large.
  • the reduction ratio means a reduction ratio from the drive side to the driven side.
  • the transmission according to claim 7 is the transmission according to claim 6, wherein the reduction ratio from the first input shaft to the sub shaft of the fifth gear pair is the first input axial force of the second gear pair.
  • the reduction ratio from the first input shaft to the countershaft of the fifth gear pair which is smaller than the ratio, is greater than the reduction ratio from the second input shaft to the subshaft of the first gear pair.
  • the reduction ratio becomes smaller in the order of the second, fifth, first, and third gear pairs, so that it is possible to reliably realize an eight-speed transmission.
  • the transmission can be reduced in size in the axial direction as compared with the prior art, and can be downsized. And it is possible to prevent the entire AMT from becoming large.
  • the reduction ratio means the reduction ratio from the drive side to the driven side.
  • the transmission according to claim 8 is the transmission according to any one of claims 1 to 7, wherein the output shaft is arranged coaxially with respect to the first input shaft.
  • FR vehicle means a rear-wheel drive vehicle (Front Engine Rear Drive) equipped with an engine in front.
  • a transmission according to a ninth aspect is the transmission according to any one of the first to seventh aspects, wherein the output shaft is coaxially arranged with respect to the auxiliary shaft.
  • the output shaft is arranged coaxially with respect to the sub-shaft, this transmission can be used for FF vehicles.
  • the front-wheel drive means a front-wheel drive (Front Engine Front Drive) equipped with an engine in front.
  • a transmission according to a tenth aspect is the cylindrical member according to any one of the first to seventh aspects, wherein the output shaft is coaxially disposed on the outer peripheral side of the auxiliary shaft.
  • this transmission can be used for an FF vehicle.
  • FF vehicles are front-wheel drive with an engine in front (
  • a transmission according to an eleventh aspect is the cylindrical member according to any one of the first to tenth aspects, wherein the second input shaft is coaxially disposed on the outer peripheral side of the first input shaft.
  • a transmission according to a twelfth aspect is the cylindrical member according to any one of the first to tenth aspects, wherein the first input shaft is coaxially disposed on the outer peripheral side of the second input shaft.
  • FIG. 1 is a configuration diagram of an AMT equipped with a double clutch device.
  • FIG. 2 is a configuration diagram of a transmission as a first embodiment of the present invention, and torque transmission of the transmission The schematic diagram of a path
  • FIG. 3 shows the control and reduction ratio of a fastening element at each gear stage of the transmission as the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a transmission as a second embodiment of the present invention, and a schematic diagram of a torque transmission path of the transmission.
  • FIG. 5 shows control and reduction ratio of a fastening element at each gear position of a transmission as a second embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a transmission as a third embodiment of the present invention, and a schematic diagram of a torque transmission path of the transmission.
  • FIG. 7 shows control and reduction ratio of a fastening element at each gear position of a transmission as a third embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a transmission as a fourth embodiment of the present invention, and a schematic diagram of a torque transmission path of the transmission.
  • FIG. 9 is a configuration diagram of a transmission as a fourth embodiment of the present invention, and a schematic diagram of a torque transmission path of the transmission.
  • FIG. 10 is a configuration diagram of a transmission as a fifth embodiment of the present invention, and a schematic diagram of a torque transmission path of the transmission.
  • FIG. 11 Control of a fastening element and a reduction gear ratio at each shift stage of a transmission as a fifth embodiment of the present invention.
  • Figure 1 shows the configuration of an AMT equipped with a dual clutch device.
  • the engine is located on the right side.
  • the AMT is mainly composed of a double clutch device 1, a transmission device 2, and a casing (not shown), and the operation of each device is automatically performed by hydraulic control or the like.
  • the double clutch device 1 mainly includes an input shaft 5, a first output shaft 50, a second output shaft 60, a first clutch C1, and a second clutch C2.
  • the input shaft 5 is a member to which torque from the engine is input, and is inertially connected to the flywheel 3 on the engine (not shown) side via the damper mechanism 4 in the rotational direction.
  • the first output shaft 50 starts from the input shaft 5 This is for outputting the input torque to the transmission 2 side.
  • the second output shaft 60 is for outputting torque input from the input shaft 5 to the transmission 2 side.
  • the first clutch C1 is for transmitting and interrupting torque between the input shaft 5 and the first output shaft 50.
  • the second clutch C2 is for transmitting and interrupting torque between the input shaft 5 and the second output shaft 60.
  • the double clutch device 1 can selectively output the torque to the first output shaft 50 or the second output shaft 60 by selectively operating the first and second clutches 50 and 60.
  • the torque transmitted to the first output shaft 50 or the second output shaft 60 is output from the output shaft 40 after being shifted by the transmission 2.
  • the transmission 2 of the present invention employed in the AMT described above the following first to fifth embodiments can be considered.
  • FIG. 2 (a) shows a configuration diagram of the transmission as the first embodiment of the present invention.
  • the transmission 2 includes a first input shaft 10, a second input shaft 20, a counter shaft 30, an output shaft 40, a first gear pair 110, and a second gear pair. 120, a third gear pair 130, a fourth gear pair 140, a first switching mechanism 160, a second shelf structure 170, a casing (not shown), and a force are also configured.
  • the first input shaft 10 is for receiving torque from the double clutch device 1, and is provided so as not to rotate relative to the first output shaft 50 of the first clutch C1.
  • the second input shaft 20 is for receiving torque from the dual clutch device 1, and is provided so as not to rotate relative to the second output shaft 60 of the second clutch C2.
  • the second input shaft 20 is a cylindrical member that is coaxially disposed on the outer peripheral side of the first input shaft 10.
  • the secondary shaft 30 is arranged in parallel to the first input shaft 10.
  • the output shaft 40 is for outputting torque from the transmission 2 and is disposed coaxially with the first input shaft 10.
  • the first input shaft 10, the second input shaft 20, and the output shaft 40 are arranged on the same axis, and the auxiliary shaft 30 is arranged in parallel to these axes. ing.
  • the transmission 2 can be used in FR vehicles.
  • the first gear pair 110 is for connecting the second input shaft 20 and the countershaft 30 with the gear 111 and , And gear 112.
  • the gear 111 is fixed to the second input shaft 20.
  • the gear 112 is fixed to the ⁇ IJ shaft 30.
  • the gear 111 and the gear 112 are intertwined with each other.
  • the second gear pair 120 is for connecting the first input shaft 10 and the countershaft 30, and includes a gear 121 and a gear 122.
  • the gear 121 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 122 is fixed to the countershaft 30. The tooth wheel 121 and the gear 122 are squeezed together.
  • the third gear pair 130 is for connecting the first input shaft 10 and the countershaft 30, and includes a gear 131, a gear 132, and a force.
  • the gear 131 is arranged to be rotatable relative to the first input shaft 10.
  • the gear 132 is fixed to the countershaft 30.
  • the gear 131 and the gear 132 are intertwined with each other.
  • the fourth gear pair 140 is for connecting the output shaft 40 and the countershaft 30 and includes a gear 141 and a gear 142.
  • the gear 141 is disposed so as to be rotatable relative to the output shaft 40.
  • the gear 142 is fixed to the countershaft 30.
  • the gear 141 and the gear 142 are intertwined with each other.
  • the first structure 160 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30 at two different reduction ratios.
  • the gear 161 and the first switching gear S1 And a second switching gear S2 and a first sleeve 162.
  • the gear 161 is fixed to the first input shaft 10.
  • the first switching gear S1 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 121.
  • the second switching gear S2 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 131.
  • the first sleeve 162 is a cylindrical member disposed on the outer peripheral side of the gear 161, and the inner peripheral side thereof meshes with the gear 161.
  • the first sleeve 162 is movable relative to the first input shaft 10 in the axial direction, so that one of the first switching gear S1 and the second switching gear S2 is connected to and disconnected from the gear 161. Can be switched.
  • the second notch structure 170 is for selectively connecting and disconnecting either the first input shaft 10 or the counter shaft 30 and the output shaft 40, and the gear 171 and the third switch.
  • a gear S3, a fourth switching gear S4, and a second sleeve 172 are included.
  • the gear 171 is fixed to the output shaft 40.
  • the third switching gear S3 is provided such that it can rotate relative to the output shaft 40 and cannot rotate relative to the gear 141.
  • the fourth switching gear S4 is connected to the first input shaft 10. On the other hand, it is provided so as not to be able to rotate relatively.
  • the second sleeve 172 is a cylindrical member disposed on the outer peripheral side of the gear 171, and the inner peripheral side thereof meshes with the gear 171. The second sleeve 172 can be moved relative to the output shaft 40 in the axial direction to switch between connection and disconnection of either the third switching gear S3 or the fourth switching gear S4 and the gear 171. It is.
  • the reduction gear ratio is generally the number of teeth on the driven side gear divided by the number of teeth on the driving side gear.
  • each gear pair is switched between the driven side and the driving side.
  • the gears on the first input shaft 10 and the second input shaft 20 side are assumed to be drive gears.
  • the drive side and the driven side are not interchanged, so the gear on the output shaft 40 side is the driven side gear.
  • the reduction ratio of the first to fourth gear pairs is, for example,
  • this transmission 2 can reliably realize a six-speed shift. Specifically, it is sufficient if the condition of ⁇ 2> ⁇ 1> ⁇ 3 is satisfied.
  • FIG. 2 (b) is a schematic diagram of the torque transmission path of the transmission as the first embodiment of the present invention
  • FIG. 3 is a diagram showing the control of the fastening elements at each gear stage of the transmission according to the first embodiment of the present invention. Indicates the reduction ratio.
  • the dotted lines indicate the respective axes, and the solid lines indicate the torque transmission paths at the respective shift stages.
  • the operating clutch is indicated by “C1” or “C2”. Further, in FIG.
  • this transmission 2 can achieve a forward six-speed shift with only four gear pairs and two gears.
  • the transmission 2 can be reduced in axial dimension as compared with the prior art, and can be downsized.
  • the overall size of the bag can be prevented from increasing.
  • the transmission 2 can reduce the step of the reduction ratio between the first forward speed and the second speed as shown in FIG.
  • the forward first speed is You can start by sliding the second clutch C2 at the second speed before the first clutch CI finishes sliding.
  • the wear of the facing can be reduced by sharing the load at the time of starting with the first and second clutches Cl and C2.
  • FIG. 4 (a) shows a configuration diagram of a transmission as a second embodiment of the present invention.
  • the transmission 2 includes a first input shaft 10, a second input shaft 20, a counter shaft 30, an output shaft 40, a first gear pair 210, and a second gear pair. 220, a third gear pair 230, a fourth gear pair 240, a first switching mechanism 260, a second shelf structure 270, a casing (not shown), and a force are also configured.
  • the first input shaft 10 is for receiving torque from the double clutch device 1, and is provided so as not to rotate relative to the first output shaft 50 of the first clutch C1.
  • the second input shaft 20 is for receiving torque from the dual clutch device 1, and is provided so as not to rotate relative to the second output shaft 60 of the second clutch C2.
  • the first input shaft 10 is a cylindrical member that is coaxially disposed on the outer peripheral side of the second input shaft 20.
  • the secondary shaft 30 is arranged in parallel to the second input shaft 20.
  • the output shaft 40 is for outputting torque from the transmission 2 and is arranged coaxially with the subshaft 30.
  • the output shaft 40 is disposed on the engine side with respect to the auxiliary shaft 30.
  • the auxiliary shaft 30 and the output shaft are arranged in parallel to the first and second input shafts 10 and 20. With this configuration, the transmission 2 can be used in a front-wheel drive vehicle.
  • the first gear pair 210 is for connecting the second input shaft 20 and the countershaft 30, and includes a gear 211 and a gear 212.
  • the gear 211 is fixed to the second input shaft 20.
  • the gear 212 is fixed to the ⁇ IJ shaft 30.
  • the gear 211 and the gear 212 are intertwined with each other.
  • the second gear pair 220 is for connecting the first input shaft 10 and the countershaft 30 and includes a gear 221 and a gear 222.
  • the gear 221 is fixed to the first input shaft 10.
  • the gear 222 is disposed so as to be rotatable relative to the countershaft 30.
  • the gear 221 and the gear 222 are intertwined with each other.
  • the third gear pair 130 is for connecting the first input shaft 10 and the subshaft 30 and includes a gear 231, a gear 232, and the like.
  • Gear 2 31 is fixed to the first input shaft 10.
  • the gear 232 is disposed so as to be rotatable relative to the countershaft 30.
  • the gear 231 and the gear 232 are intertwined with each other.
  • the fourth gear pair 240 is for connecting the output shaft 40 and the first input shaft 10, and includes a gear 241 and a gear 242.
  • the gear 241 is fixed to the first input shaft 10.
  • the gear 242 is disposed so as to be rotatable relative to the output shaft 40.
  • the gear 241 and the gear 242 are intertwined with each other.
  • the first mechanism 260 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30 with two different reduction ratios.
  • the gear 261 and the first switching gear S1 And a second switching gear S2 and a first sleeve 262.
  • the gear 261 is fixed to the countershaft 30.
  • the first switching gear S1 is provided such that it can rotate relative to the countershaft 30 and cannot rotate relative to the gear 222.
  • the second switching gear S2 is provided such that it can rotate relative to the countershaft 30 and cannot rotate relative to the gear 232.
  • the first sleeve 262 is a cylindrical member disposed on the outer peripheral side of the gear 261, and the inner peripheral side thereof meshes with the gear 261. The first sleeve 262 can be moved relative to the countershaft 30 in the axial direction to switch between connection and release of either the first switching gear S1 or the second switching gear S2 and the gear 261. It is said.
  • the second cut-off shelf structure 270 is for selectively connecting and disconnecting either the first input shaft 10 or the counter shaft 30 and the output shaft 40, and includes a gear 271 and a third switch.
  • a gear S3, a fourth switching gear S4, and a second sleeve 272 are included.
  • the gear 271 is fixed to the output shaft 40.
  • the third switching gear S3 is provided such that it can rotate relative to the output shaft 40 and cannot rotate relative to the gear 242.
  • the fourth switching gear S4 is provided so as not to rotate relative to the countershaft 30.
  • the second sleeve 272 is a cylindrical member disposed on the outer peripheral side of the gear 271, and the inner peripheral side thereof meshes with the gear 271.
  • the second sleeve 272 is movable relative to the output shaft 40 in the axial direction so that the connection and disconnection of either the third switching gear S3 or the fourth switching gear S4 and the gear 271 can be switched. Yes.
  • the reduction gear ratio is generally the number of teeth on the driven side gear divided by the number of teeth on the driving side gear.
  • each gear pair is switched between the driven side and the driving side.
  • the first input shaft 10 The gear on the second input shaft 20 side is used as the gear on the driving side.
  • the fourth gear pair 140 the drive side and the driven side are not interchanged, so the gear on the output shaft 40 side is the driven side gear.
  • the reduction ratio of the first to fourth gear pairs is, for example,
  • this transmission 2 can reliably realize a six-speed shift. Specifically, the condition of ⁇ 2> ⁇ 1> ⁇ 3 may be satisfied.
  • FIG. 4 (b) is a schematic diagram of the torque transmission path of the transmission according to the second embodiment of the present invention, and FIG. Indicates the reduction ratio.
  • dotted lines indicate the respective axes, and solid lines indicate the torque transmission paths at the respective shift stages.
  • the operating clutch is indicated by “C1” or “C2”.
  • the clutches and the switching gears that are connected at each gear stage are indicated by “ ⁇ ”, and the switching gears that are connected in preparation for upshifting and downshifting are indicated by “( ⁇ )”.
  • the right side of FIG. 5 shows the reduction ratio of the entire transmission 2, the step of the reduction ratio of each shift stage, and the entire range.
  • the transmission 2 can realize a forward six-speed shift with only four gear pairs and two gears. As a result, the transmission 2 can be reduced in axial dimension as compared with the prior art, and can be downsized. In addition, the overall size of the bag can be prevented from increasing. Further, the transmission 2 can reduce the step of the reduction ratio between the first forward speed and the second speed as shown in FIG. As a result, the transmission 2 can start by sliding the second clutch C2 at the second speed before the first clutch C1 finishes sliding at the first forward speed. As a result, in this transmission 2, the wear of the facing can be reduced by sharing the load at the time of starting with the first and second clutches Cl and C2.
  • FIG. 6 (a) shows a configuration diagram of a transmission as a third embodiment of the present invention.
  • the transmission 2 includes a first input shaft 10, a second input shaft 20, a counter shaft 30, an output shaft 40, a first gear pair 310, and a second gear pair. 320, a third gear pair 330, a fourth gear pair 340, a first switching mechanism 360, a second shelf structure 370, a casing (not shown), and a force are also configured.
  • the first input shaft 10 is for receiving torque from the double clutch device 1, and is provided so as not to rotate relative to the first output shaft 50 of the first clutch C1.
  • the second input shaft 20 is for receiving torque from the dual clutch device 1, and is provided so as not to rotate relative to the second output shaft 60 of the second clutch C2.
  • the first input shaft 10 is a cylindrical member that is coaxially disposed on the outer peripheral side of the second input shaft 20.
  • the secondary shaft 30 is arranged in parallel to the second input shaft 20.
  • the output shaft 40 is for outputting torque from the transmission 2 and is arranged coaxially with the subshaft 30.
  • the output shaft 40 is disposed on the engine side with respect to the auxiliary shaft 30.
  • the auxiliary shaft 30 and the output shaft are arranged in parallel to the first and second input shafts 10 and 20. With this configuration, the transmission 2 can be used in a front-wheel drive vehicle.
  • the first gear pair 310 is for connecting the second input shaft 20 and the countershaft 30, and includes a gear 311 and a gear 312.
  • the gear 311 is fixed to the second input shaft 20.
  • the gear 312 is fixed to the IJ shaft 30.
  • the gear 311 and the gear 312 are intertwined with each other.
  • the second gear pair 320 is used to connect the first input shaft 10 and the countershaft 30 and includes a gear 321 and a gear 322.
  • the gear 321 is fixed to the first input shaft 10.
  • the gear 322 is disposed so as to be rotatable relative to the countershaft 30.
  • the gear 321 and the gear 322 are intertwined with each other.
  • the third gear pair 330 is for connecting the first human power shaft 10 and the ij shaft 30 and includes a gear 331, a gear 332, and the like.
  • the gear 331 is fixed to the first input shaft 10.
  • the gear 332 is disposed so as to be rotatable relative to the countershaft 30.
  • the gear 331 and the gear 332 are intertwined with each other.
  • the fourth gear pair 340 is for connecting the output shaft 40 and the first input shaft 10, and includes a gear 341 and a gear 342.
  • the gear 341 is fixed to the first input shaft 10.
  • the gear 342 is disposed so as to be rotatable relative to the output shaft 40.
  • the gear 341 and the gear 342 are intertwined with each other.
  • the first structure 360 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30 at two different reduction ratios.
  • the gear 361 is fixed to the countershaft 30.
  • the first switching gear S1 is rotatable relative to the countershaft 30 and to the gear 322. So that it cannot rotate relative to the other.
  • the second switching gear S2 is provided such that it can rotate relative to the countershaft 30 and cannot rotate relative to the gear 332.
  • the first sleeve 362 is a cylindrical member disposed on the outer peripheral side of the gear 361, and the inner peripheral side thereof meshes with the gear 361. The first sleeve 362 can be moved relative to the countershaft 30 in the axial direction, so that the connection between the first switching gear S1 and the second switching gear S2 and the gear 361 can be switched. It is said.
  • the second cut shelf structure 370 is for selectively connecting and disconnecting either the first input shaft 10 or the counter shaft 30 and the output shaft 40.
  • a gear S3, a fourth switching gear S4, and a second sleeve 372 are included.
  • the gear 371 is fixed to the output shaft 40.
  • the third switching gear S3 is provided such that it can rotate relative to the output shaft 40 and cannot rotate relative to the gear 342.
  • the fourth switching gear S4 is provided so as not to rotate relative to the countershaft 30.
  • the second sleeve 372 is a cylindrical member disposed on the outer peripheral side of the gear 371, and the inner peripheral side of the second sleeve 372 meshes with the gear 371.
  • the second sleeve 372 can be switched between connection and disengagement of one of the third switching gear S3 and the fourth switching gear S4 and the gear 371 by moving relative to the output shaft 40 in the axial direction.
  • the reduction gear ratio is generally the number of teeth on the driven side gear divided by the number of teeth on the driving side gear.
  • each gear pair is switched between the driven side and the driving side.
  • the gears on the first input shaft 10 and the second input shaft 20 side are assumed to be drive gears.
  • the drive side and the driven side are not interchanged, so the gear on the output shaft 40 side is the driven side gear.
  • the reduction ratio of the first to fourth gear pairs is, for example,
  • this transmission 2 can reliably realize a six-speed shift. Specifically, the condition of ⁇ 2> ⁇ 1> ⁇ 3 may be satisfied. [0075] (2) Operation of transmission
  • FIG. 6 (b) is a schematic diagram of a torque transmission path of a transmission as a third embodiment of the present invention, and FIG. Indicates the reduction ratio.
  • the dotted lines indicate the respective axes, and the solid lines indicate the torque transmission paths at the respective shift stages.
  • the clutch to be operated is indicated by “C1” or “C2”.
  • the clutches and the switching gears that are connected at each gear stage are indicated by “ ⁇ ”, and the switching gears that are connected in preparation for upshifting and downshifting are indicated by “( ⁇ )”.
  • the right side of FIG. 7 shows the reduction ratio of the entire transmission 2, the step of the reduction ratio of each shift stage, and the entire range.
  • the first clutch C1 is disengaged so that torque is not input to the first input shaft 10.
  • the gear 361 and the second switching gear S2 are connected in advance by the first sleeve 362 of the first Kiriura structure 360. Then, the connection of the first clutch C1 is released and the second clutch C2 is connected. At this time, similarly to the second speed, the connection between the gear 371 and the third switching gear S3 is maintained by the second sleeve 372 of the second cutting mechanism 370.
  • the torque input to the second input shaft 20 via the second clutch C2 is the first gear pair 310, the countershaft 30, the second gear pair 320, the second gear
  • the vehicle travels at the third speed by being transmitted to the output shaft 40 via the input shaft and the fourth gear pair 340.
  • the first sleeve 362 of the first cutting mechanism 360 is used in advance.
  • the helical gear 361 and the second switching gear S2 are connected.
  • the connection of the second clutch C2 is released and the first clutch C1 is connected.
  • the connection of the fourth switching gear S4 in the second shelf structure 370 is maintained.
  • the torque input to the first input shaft 10 via the first clutch C1 is transmitted to the output shaft 40 via the third gear pair 330 and the countershaft 30.
  • this transmission 2 can realize a forward six-speed shift with only four gear pairs and two gears. As a result, the transmission 2 can be reduced in axial dimension as compared with the prior art, and can be downsized. In addition, the overall size of the bag can be prevented from increasing. Further, the transmission 2 can reduce the step of the reduction ratio between the first forward speed and the second speed as shown in FIG. As a result, the transmission 2 can start by sliding the second clutch C2 at the second speed before the first clutch C1 finishes sliding at the first forward speed. As a result, in this transmission 2, the wear of the facing can be reduced by sharing the load at the time of starting with the first and second clutches Cl and C2.
  • FIG. 8 (a) shows a configuration diagram of a transmission as a fourth embodiment of the present invention.
  • the transmission 2 includes a first input shaft 10, a second input shaft 20, a counter shaft 30, an output shaft 40, a first gear pair 410, and a second gear pair.
  • 420, the third gear pair 430, the fourth gear pair 440, the first switching mechanism 460, the second shelf structure 470, the third shelf structure 480, the casing (not shown) and the force are also configured. ing
  • the first input shaft 10 is for receiving torque from the double clutch device 1, and is provided so as not to rotate relative to the first output shaft 50 of the first clutch C1.
  • the second input shaft 20 is for receiving torque from the dual clutch device 1, and is provided so as not to rotate relative to the second output shaft 60 of the second clutch C2.
  • the second input shaft 20 is a cylindrical member that is coaxially disposed on the outer peripheral side of the first input shaft 10.
  • the secondary shaft 30 is arranged in parallel to the first input shaft 10.
  • the output shaft 40 outputs torque from the transmission 2. And is arranged coaxially with the countershaft 30.
  • the output shaft 40 is disposed on the engine side with respect to the auxiliary shaft 30.
  • the auxiliary shaft 30 and the output shaft are arranged in parallel to the first and second input shafts 10 and 20. With this configuration, the transmission 2 can be used in a front-wheel drive vehicle.
  • the first gear pair 410 is used to connect the second input shaft 20 and the countershaft 30 and includes a gear 411 and a gear 412.
  • the gear 411 is fixed to the second input shaft 20.
  • the gear 412 is fixed to the IJ shaft 30.
  • the gear 411 and the gear 412 are intertwined with each other.
  • the second gear pair 420 is for connecting the first input shaft 10 and the countershaft 30, and includes a gear 421 and a gear 422.
  • the gear 421 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 422 is fixed to the countershaft 30.
  • the gear wheel 421 and the gear wheel 422 are intertwined with each other.
  • the third gear pair 430 is for connecting the first input shaft 10 and the countershaft 30, and is also configured with a gear 431, a gear 432, and a force.
  • the gear 431 is arranged to be rotatable relative to the first input shaft 10.
  • the gear 432 is fixed to the countershaft 30.
  • the gear 431 and the gear 432 are intertwined with each other.
  • the fourth gear pair 440 is for connecting the output shaft 40 and the countershaft 30, and includes a gear 441 and a gear 442.
  • the gear 441 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 442 is fixed to the output shaft 40. And the gears 441 and 442 are mixed with each other!
  • the first structure 460 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30 at two different reduction ratios.
  • the gear 461 and the first switching gear S1 And a second switching gear S2 and a first sleeve 462.
  • the gear 461 is fixed to the first input shaft 10.
  • the first switching gear S1 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 421.
  • the second switching gear S2 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 431.
  • the first sleeve 462 is a cylindrical member disposed on the outer peripheral side of the gear 461, and the inner peripheral side thereof meshes with the gear 461.
  • the first sleeve 462 is movable relative to the first input shaft 10 in the axial direction, so that one of the first switching gear S1 and the second switching gear S2 is connected to and disconnected from the gear 461. Can be switched.
  • the second switching mechanism 470 is for selectively connecting and disconnecting the first input shaft 10 and the output shaft 40.
  • the second switching mechanism 470 includes a gear 471, a third switching gear S3, a second sleeve 472, and the like. It consists of The gear 471 is fixed to the first input shaft 10.
  • the third switching gear S3 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 441.
  • the second sleeve 472 is a cylindrical member disposed on the outer peripheral side of the gear 471, and the inner peripheral side thereof meshes with the gear 471.
  • the second sleeve 472 is movable relative to the output shaft 40 in the axial direction so that the connection and release of the connection between the third switching gear S3 and the gear 471 can be switched.
  • the third switching mechanism 480 is for selectively connecting and disconnecting the sub-shaft 30 and the output shaft 40.
  • the third switching mechanism 480 is provided with a gear 481, a fourth switching gear S4, a third sleeve 482, and a force. It is configured .
  • the gear 481 is fixed to the countershaft 30.
  • the fourth switching gear S4 is provided so as not to rotate relative to the output shaft 40.
  • the third sleeve 482 is a cylindrical member disposed on the outer peripheral side of the gear 481, and the inner peripheral side thereof meshes with the gear 481. The third sleeve 482 can move relative to the output shaft 40 in the axial direction so that the connection and disconnection of the fourth switching gear S4 and the gear 481 can be switched.
  • the reduction gear ratio is generally the number of teeth on the driven side gear divided by the number of teeth on the driving side gear.
  • each gear pair is switched between the driven side and the driving side.
  • the gears on the first input shaft 10 and the second input shaft 20 side are assumed to be drive gears.
  • the fourth gear pair 140 the drive side and the driven side are not interchanged, so the gear on the output shaft 40 side is the driven side gear.
  • the reduction ratio of the first to fourth gear pairs is, for example,
  • this transmission 2 can reliably realize a six-speed shift. Specifically, the condition of ⁇ 2> ⁇ 1> ⁇ 3 may be satisfied. [0091] (2) Operation of transmission
  • FIG. 8 (b) is a schematic diagram of the torque transmission path of the transmission as the fourth embodiment of the present invention, and FIG. Indicates the reduction ratio.
  • the dotted lines indicate the respective axes, and the solid lines indicate the torque transmission paths at the respective shift stages.
  • the operating clutch is indicated by “C1” or “C2”.
  • the clutches and the switching gears connected at the respective speeds are indicated by “ ⁇ ”, and the switching gears connected in preparation for upshifting and downshifting are indicated by “( ⁇ )”.
  • the right side of FIG. 9 shows the reduction ratio of the entire transmission 2, the step of the reduction ratio of each shift stage, and the entire range.
  • the connection of the first clutch C1 is released, the connection of the fourth switching gear S4 of the third switching mechanism 480 is released, and the third switching mechanism 470 The switching gear S3 is connected. Then, the second clutch C2 is connected. At this time, as in the third speed, the connection of the second switching gear S2 in the first switching mechanism 460 is maintained.
  • the torque input to the first input shaft 10 via the first clutch C1 is the first gear pair 410, the countershaft 30, the third gear pair 430, and the first gear shaft 430. This is transmitted to the output shaft 40 via the four-gear pair 440, and the vehicle travels at the fourth speed.
  • this transmission 2 can realize a forward six-speed shift with only four gear pairs and two gears.
  • the transmission 2 can be reduced in axial dimension as compared with the prior art, and can be downsized.
  • the overall size of the bag can be prevented from increasing.
  • the transmission 2 can reduce the step of the reduction ratio between the first forward speed and the second speed as shown in FIG.
  • the transmission 2 can start by sliding the second clutch C2 at the second speed before the first clutch C1 finishes sliding at the first forward speed.
  • the wear of the facing can be reduced by sharing the load at the time of starting with the first and second clutches Cl and C2.
  • FIG. 10 (a) shows a configuration diagram of a transmission as a fifth embodiment of the present invention.
  • the transmission 2 includes a first input shaft 10, a second input shaft 20, a counter shaft 30, an output shaft 40, a first gear pair 510, and a second gear pair.
  • the first input shaft 10 is for receiving torque from the double clutch device 1, and is provided so as not to rotate relative to the first output shaft 50 of the first clutch C1.
  • the second input shaft 20 is for receiving torque from the dual clutch device 1, and is provided so as not to rotate relative to the second output shaft 60 of the second clutch C2.
  • the second input shaft 20 is a cylindrical member that is coaxially disposed on the outer peripheral side of the first input shaft 10.
  • the secondary shaft 30 is arranged in parallel to the first input shaft 10.
  • the output shaft 40 is for outputting torque from the transmission 2 and is disposed coaxially with the first input shaft 10.
  • the first gear pair 510 is for connecting the second input shaft 20 and the countershaft 30, and includes a gear 511 and a gear 512.
  • the gear 511 is fixed to the second input shaft 20.
  • the gear 512 is fixed to the ⁇ IJ shaft 30.
  • the gear 511 and the gear 512 are intertwined with each other.
  • the second gear pair 520 is for connecting the first input shaft 10 and the countershaft 30 and includes a gear 521 and a gear 522.
  • the gear 521 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 522 is fixed to the countershaft 30.
  • the tooth wheel 521 and the gear 522 are intertwined with each other.
  • the third gear pair 530 is used to connect the first input shaft 10 and the countershaft 30 and includes a gear 531, a gear 532, and the like.
  • the gear 531 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 532 is fixed to the countershaft 30.
  • the gear 531 and the gear 532 are intertwined with each other.
  • the fourth gear pair 540 is used to connect the output shaft 40 and the countershaft 30 and includes a gear 541 and a gear 542.
  • the gear 541 is disposed so as to be rotatable relative to the output shaft 40.
  • the gear 542 is fixed to the countershaft 30.
  • the gear 541 and the gear 542 are intertwined with each other.
  • the fifth gear pair 550 is for connecting the first input shaft 10 and the countershaft 30, and includes a gear 551 and a gear 552.
  • the gear 551 is disposed so as to be rotatable relative to the first input shaft 10.
  • the gear 552 is fixed to the countershaft 30.
  • the gear 551 and the gear 552 are intertwined with each other.
  • the first structure 560 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30 with two different reduction ratios.
  • the gear 561 and the first switching gear S1 And a second switching gear S2 and a first sleeve 562.
  • the gear 561 is fixed to the first input shaft 10.
  • the first switching gear S1 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 521.
  • the second switching gear S2 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 531.
  • the first sleeve 562 is a cylindrical member disposed on the outer peripheral side of the gear 561, and the inner peripheral side thereof meshes with the gear 561.
  • the first sleeve 562 is movable relative to the first input shaft 10 in the axial direction, so that one of the first switching gear S1 and the second switching gear S2 is connected to and disconnected from the gear 561. Can be switched.
  • the second shelf structure 570 includes either the first input shaft 10 or the auxiliary shaft 30 and the output shaft 40. This is for selectively connecting and disconnecting, and comprises a gear 571, a third switching gear S3, a fourth switching gear S4, and a second sleeve 572.
  • the gear 571 is fixed to the output shaft 40.
  • the third switching gear S3 is provided such that it can rotate relative to the output shaft 40 and cannot rotate relative to the gear 541.
  • the fourth switching gear S4 is provided so as not to rotate relative to the first input shaft 10.
  • the second sleeve 572 is a cylindrical member disposed on the outer peripheral side of the gear 571, and the inner peripheral side thereof meshes with the gear 571. The second sleeve 5 72 can be moved relative to the output shaft 40 in the axial direction, so that the connection and release of either the third switching gear S3 or the fourth switching gear S4 and the gear 571 can be switched. It is.
  • the third cutting mechanism 580 is for selectively connecting and disconnecting the first input shaft 10 and the countershaft 30, and includes a gear 581, a fifth switching gear S5, a third sleeve 582, and the like. It consists of The gear 581 is fixed to the first input shaft 10. The fifth switching gear S5 is provided such that it can rotate relative to the first input shaft 10 and cannot rotate relative to the gear 551.
  • the third sleeve 582 is a cylindrical member disposed on the outer peripheral side of the gear 581, and the inner peripheral side thereof meshes with the gear 581. The third sleeve 582 is movable relative to the first input shaft 10 in the axial direction, so that the connection between the fifth switching gear S5 and the gear 581 can be switched.
  • the reduction gear ratio is generally the number of teeth on the driven side gear divided by the number of teeth on the driving side gear.
  • each gear pair is switched between the driven side and the driving side.
  • the gears on the first input shaft 10 and the second input shaft 20 side are assumed to be drive gears.
  • the fourth gear pair 140 the drive side and the driven side are not interchanged, so the gear on the output shaft 40 side is the driven side gear.
  • the reduction ratio of the first to fifth gear pairs is, for example,
  • the transmission 2 can surely achieve an eight-speed shift. Specifically, it is only necessary to satisfy the following conditions: 0; 2> 0; 5> 0; 1> 0;
  • FIG. 10 (b) is a schematic diagram of the torque transmission path of the transmission according to the fifth embodiment of the present invention, and FIG. And the reduction ratio.
  • the dotted line indicates each axis
  • the solid line indicates the torque transmission path at each gear stage.
  • the clutch to be operated is indicated by “C 1” or “C 2”.
  • the clutches and the switching gears connected at each gear stage are indicated by “ ⁇ ”, and the switching gears connected in preparation for upshifting and downshifting are indicated by “( ⁇ )”.
  • the right side of FIG. 11 shows the reduction ratio of the entire transmission device 2, the step of the reduction ratio of each shift stage, and the entire range.
  • the second clutch C2 is disconnected and the first clutch C1 is connected.
  • the connection of the fourth switching gear S4 in the second Kiriura structure 570 is maintained.
  • the torque input to the first input shaft 10 via the first clutch C1 is transmitted to the output shaft 40 via the second Kiriura structure 570, and The vehicle runs at the fifth speed.
  • the second clutch C2 connection is released, and the first switching gear S1 of the first switching mechanism 560 and the fourth switching gear S4 of the second switching mechanism 570 are disengaged. Each is connected. Thereafter, the second clutch C2 is engaged again.
  • the torque input to the second input shaft 20 via the second clutch C2 is transmitted via the first gear pair 510, the countershaft 30, and the second gear pair 520. Is transmitted to the output shaft 40, and the vehicle travels at the seventh speed.
  • the speed change device 2 in this embodiment can further provide one shift speed (first forward speed 1 ′) between the first speed and the second speed in addition to the above seventh forward speed.
  • first forward speed 1 ′ first forward speed
  • the third switching gear S3 of the second switching mechanism 570 and the fifth switching gear S5 of the third switching mechanism 580 are connected, and the first clutch Connect C1 gradually.
  • the torque input to the first input shaft 10 via the first clutch C1 becomes the fifth gear pair 550, the countershaft 30, and the fourth gear pair 540.
  • this transmission 2 can realize a forward six-speed shift with only four gear pairs and two switching mechanisms. As a result, the transmission 2 can be reduced in axial dimension as compared with the prior art, and can be downsized. In addition, the overall size of the bag can be prevented from increasing. In addition, this transmission 2 reduces the forward first speed and the second speed as shown in FIG. The speed ratio step can be reduced. As a result, the transmission 2 can start by sliding the second clutch C2 at the second speed before the first clutch C1 finishes sliding at the first forward speed. As a result, in this transmission 2, the wearing of the facing can be reduced by sharing the load at the time of starting with the first and second clutches Cl and C2. In this gearbox 2, by selecting two starting speeds, it is possible to run with an emphasis on acceleration and fuel efficiency.
  • the reduction ratio is exemplified, but the reduction ratio is not limited thereto. Other numerical values may be used as long as certain conditions are satisfied.
  • the operation of the transmission 2 is described, but this does not limit the speed change operation of the transmission 2. Therefore, the transmission 2 can perform other speed change operations.
  • each switching mechanism may be switched, or the fixed side and the relative rotation side of the gear may be switched.
  • the above-described embodiment may adopt a conventional mechanism (such as a synchro mechanism) that does not specifically limit the type of the switching mechanism.
  • the present invention can be used in a transmission, particularly a transmission corresponding to a double clutch device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

 変速段数より少ないギヤ数でシンプルかつコンパクトな変速機を実現する。車両の発進時におけるクラッチフェーシングの摩耗を低減させる。この変速装置(2)は、第1クラッチC(1)を介してトルクが入力される第1入力軸(10)と、第2クラッチC(2)を介してトルクが入力される第2入力軸(20)と、第1入力軸(10)に対して並行に配置された副軸(30)と、第1入力軸(10)及び副軸(30)のいずれか一方に対して同軸上に配置された出力軸(40)と、第2入力軸(20)に対して固定された歯車(111)と副軸(30)に固定され歯車(111)と噛み合う第2歯車(112)とから構成される第1歯車対(110)と、第1入力軸(10)と副軸(30)とを少なくとも2以上の異なる減速比により選択的に連結及び連結解除可能な第1切換機構(160)と、第1入力軸(10)及び副軸(30)のいずれか一方と出力軸(40)とを選択的に連結及び連結解除可能な第2切換機構(170)とを備えている。

Description

変速装置
技術分野
[0001] 本発明は、変速装置、特に複式クラッチ装置に対応した変速装置に関する。
背景技術
[0002] 車両の変速を自動的に行う手段として自動変速機 (AT)がある。近年の ATは、例 えばトルクコンバータと複数の遊星ギヤ及びクラッチを組み合わせたものが主流とな つている。 ATは、トルクコンバータの無段変速作用及び複数のクラッチの自動切換 により、手動変速機 (MT)で必要とされている発進時、停止時、及び変速時のドライ バーによるクラッチ操作が不要になる。一方、 ATは、流体を介するトルクコンバータ を用いるため、入力側と出力側とを機械的に直接連結しトルクを伝達する MTに比べ て伝達効率が劣る。したがって、 ATは、ドライバーの労力が軽減されるという利点を 有している反面、車両の燃費が低下するという欠点を有している。そこで、 MTの伝達 効率を確保しつつクラッチ操作を不要とするため、 MTの構造をベースに自動化した 自動変速機 (AMT)が開発されて ヽる。
[0003] AMTは、 MTのクラッチ操作及びトランスミッションの変速操作を自動化しており、 従来の MTと同様の伝達効率を確保しつつ、クラッチ操作を不要とすることができる。 しかし、 AMTは、変速操作をする間は MTと同様にクラッチの連結を解除するため、 トルク伝達が一時的に遮断される。トルク伝達が遮断される間は、車両が加速するこ となく慣性のみで走行する状態となるため、変速時の 、わゆるトルク切れは車両の加 速に大きく影響し、ドライバーに不快感を与えやすい。一方、 ATの場合は、複数のク ラッチを用いるため、変速時のトルク切れがな 、。
[0004] 以上に述べたトルク切れの問題を解決するため、 AMTのクラッチ装置として複式ク ラッチ装置を採用しているものが開発されている。複式クラッチ装置は、主に、入力軸 と、第 1出力軸と、第 2出力軸と、第 1クラッチと、第 2クラッチとから構成される。入力 軸は、エンジン力も複式クラッチ装置へトルクを入力するためのものである。第 1出力 軸は、トランスミッション側へトルクを出力するためのものであり、入力軸と同軸上に配 置されている。第 2出力軸は、トランスミッション側へトルクを出力するためのものであ り、第 1出力軸の外周側に同軸上に配置された筒状の部材である。第 1クラッチは、 入力軸に入力されたトルクを第 1出力軸へ伝達及び遮断するためのものである。第 2 クラッチは、入力軸に入力されたトルクを第 2出力軸へ伝達及び遮断するためのもの であり、第 1クラッチの外周側に配置されている(例えば、特許文献 1を参照。;)。
[0005] この複式クラッチ装置は、トルク切れを防止するため、第 1及び第 2クラッチにより第 1及び第 2出力軸へ交互にトルクを伝達可能としている。また、第 1及び第 2出力軸は 、それぞれ異なる歯車対に選択的に連結可能となっている。この複式クラッチ装置は 、第 1クラッチを連結して第 1出力軸へトルクを伝達している状態で第 2出力軸をいず れかの歯車対に連結しておき、第 1クラッチの連結を解除すると同時に第 2クラッチを 連結し第 2出力軸へトルクを伝達することができる。また、その逆の動作も可能となつ ている。したがって、この複式クラッチ装置を採用した AMTは、変速時にトルク切れ が発生せず、スムーズかつ無駄のな 、変速操作が可能となる。
特許文献 1 :特開 2000— 352431号公報
特許文献 2:特開 2004— 217204号公報
発明の開示
[0006] く発明が解決しょうとする課題〉
以上に述べた AMTには、複数の歯車等で構成される有段変速装置が採用される 。有段変速装置は、減速比の関係上、シフトアップ時においては変速後のエンジン 回転数が下がる。したがって、減速比のステップ分だけ変速前のエンジン回転数を 上げておく必要がある。特に前述の AMTの場合、シフトアップ及びシフトダウンのハ ンチング防止のため、シフトアップ及びシフトダウン時の車速に一定の余裕を設ける 必要があり、変速前のエンジン回転数を MTよりも上げなければならない。この結果、 AMTに従来の有段変速装置を用いると、燃費の低下及び騒音の増大を招く。した がって、 AMTに搭載する変速装置は、従来より減速比のステップを小さくするため、 変速段数を増やす必要があり、変速装置が大型化してしまう。力 tlえて、この変速装置 は、発進時において一方のクラッチのみ半クラッチ状態で滑らせているため、一方の クラッチのフエ一シングが他方に比べて摩耗するという問題も発生する。 [0007] また、複式クラッチ装置は、複数のクラッチとそれに付随する機構とにより軸方向寸 法が従来の MT用クラッチよりも大きくなる。この結果、 AMT全体の軸方向寸法が大 きくなるため、変速装置の小型化が望まれる。しかし、変速装置は、例えば 6段変速 の場合、前進用として変速段の数だけ歯車対が必要となる。また、それに伴い、例え ば 4つの切擁構が必要となる (例えば、特許文献 2を参照。;)。これらの歯車対及び 切換機構が軸方向に配置されるため、変速装置の小型化は困難である。
[0008] 本発明の課題は、変速段数より少な 、ギヤ数でシンプルかつコンパクトな変速機を 実現することにある。
[0009] 本発明の別の課題は、車両の発進時におけるクラッチフ ーシングの摩耗を低減さ せることにある。
<課題を解決するための手段 >
請求項 1に記載の変速装置は、第 1及び第 2クラッチを選択的に連結及び遮断可 能な複式クラッチ装置を備えた自動変速装置に搭載されており、エンジンからのトル クを出力側に伝達するためのものである。この変速装置は、第 1入力軸と、第 2入力 軸と、副軸と、出力軸と、第 1歯車対と、第 1切換機構と、第 2切換機構とから構成され ている。第 1入力軸は、第 1クラッチを介してトルクが入力されるためのものである。第 2入力軸は、第 2クラッチを介してトルクが入力されるためのものである。副軸は、第 1 入力軸に対して並行に配置されている。出力軸は、第 1入力軸及び副軸のいずれか 一方に対して同軸上に配置されている。第 1歯車対は、第 2入力軸に対して固定され た第 1歯車と、副軸に対して固定され第 1歯車と嚙み合う第 2歯車とから構成されてい る。第 1切 構は、第 1入力軸と副軸とを少なくとも 2以上の異なる減速比により選 択的に連結及び連結解除可能である。第 2切換機構は、第 1入力軸及び副軸のい ずれか一方と出力軸とを選択的に連結及び連結解除可能である。
[0010] 前述のように複式クラッチ装置は、第 1及び第 2クラッチを選択的に作動させること ができるため、変速装置に対して第 1及び第 2入力軸のいずれか一方からトルクを入 力できる。また、第 1及び第 2切 構の連結パターンを変更することにより、この変 速装置のトルク伝達経路は数通りとなる。例えば、第 1切換機構が第 1入力軸と副軸 とを 2種類の減速比により選択的に連結及び連結解除可能としている場合、第 1及び 第 2入力軸から出力軸へのトルク伝達経路としては以下の 6通りとなる。
[0011] 1)第 1入力軸→第 1切換機構 (第 1の減速比)→副軸→第 2切換機構→出力軸
2)第 1入力軸→第 1切換機構 (第 2の減速比)→副軸→第 2切換機構→出力軸
3)第 1入力軸→第 2切換機構→出力軸
4)第 2入力軸→第 1歯車対→副軸→第 1切棚構 (第 1の減速比)→第 1入力軸→ 第 2切換機構→出力軸
5)第 2入力軸→第 1歯車対→副軸→第 1切棚構 (第 2の減速比)→第 1入力軸→ 第 2切換機構→出力軸
6)第 2入力軸→第 1歯車対→副軸→第 2切換機構→出力軸
したがって、減速比の設定を適切に行い、第 1及び第 2クラッチの動作に応じて第 1 及び第 2切 構を適切に切り換えることで、この変速装置は 6段変速を実現するこ とができる。そして、従来の 6段変速の変速装置と比較すると、従来の変速装置が 6 つの歯車対と 4つの切 «構を必要としているのに対して、この変速装置は 4つの歯 車対と 2つの切擁構しか必要としない。この結果、この変速装置は、従来より少な い構成要素により複式クラッチ装置に対応した 6段変速を実現できる。これにより、こ の変速装置は、従来より軸方向寸法を短縮することができ、小型化を図ることができ る。そして、 AMT全体の大型化を防止することができる。
[0012] 請求項 2に記載の変速装置は、請求項 1において、第 2歯車対と、第 3歯車対とをさ らに備えている。第 2歯車対は、第 1入力軸及び副軸のいずれか一方に対して固定 された第 3歯車と、第 1入力軸及び副軸の他方に対して相対回転可能に配置され第 3歯車と嚙み合う第 4歯車とから構成されている。第 3歯車対は、第 1入力軸及び副軸 のいずれか一方に対して固定された第 5歯車と、第 1入力軸及び副軸の他方に対し て相対回転可能に配置され第 5歯車と嚙み合う第 6歯車とから構成されている。また 、第 1切換機構は、第 2及び第 3歯車対のいずれか一方を介して第 1入力軸と副軸と を連結可能としている。
[0013] この変速装置は、第 2及び第 3歯車対を備えているため、それらの減速比の設定を 適切に行うことで、従来より少ない構成要素により複式クラッチ装置に対応した 6段変 速を実現できる。これにより、この変速装置は、従来より軸方向寸法を短縮することが でき、小型化を図ることができる。そして、 AMT全体の大型化を防止することができる 。また、この変速装置は、第 2及び第 3歯車対の減速比の設定をより適切に行うことで 、低速域における各変速段の減速比のステップを小さくすることができる。この結果、 この変速装置では、発進時において例えば第 1速で第 1クラッチが滑り終える前に第 2速で第 2クラッチを滑らせて車両を発進させることができる。これにより、この変速装 置では、第 1及び第 2クラッチに発進時の負荷を分担することでフエ一シングの摩耗 を低減させることができる。
[0014] 請求項 3に記載の変速装置は、請求項 1又は 2において、第 4歯車対をさらに備え ている。第 4歯車対は、副軸及び出力軸のいずれか一方に対して固定された第 7歯 車と、副軸及び出力軸の他方に対して相対回転可能に配置され第 7歯車と嚙み合う 第 8歯車とから構成されている。また、第 2切換機構は、副軸と出力軸との第 4歯車対 を介した連結と、第 1入力軸と出力軸との第 4歯車対を介さない連結とを選択的に切 換及び解除可能である。
[0015] この変速装置では、第 2切換機構により副軸と出力軸との連結及び第 1入力軸と出 力軸との連結をそれぞれ選択的に切り換えられる。そして、副軸と出力軸との連結に よるトルク伝達は、第 4歯車対を介して行われる。この結果、この変速装置は、従来よ り少ない構成要素により複式クラッチ装置に対応した 6段変速を実現できる。また、こ の変速装置は、第 4歯車対の減速比の設定をより適切に行うことで、低速域における 各変速段の減速比のステップを小さくすることができる。これにより、この変速装置は 、従来より軸方向寸法を短縮することができ、小型化を図ることができる。そして、 AM T全体の大型化を防止することができる。
[0016] 請求項 4に記載の変速装置は、請求項 1又は 2において、第 4歯車対をさらに備え ている。第 4歯車対は、第 1入力軸及び出力軸のいずれか一方に対して固定された 第 7歯車と、第 1入力軸及び出力軸の他方に対して相対回転可能に配置され第 7歯 車と嚙み合う第 8歯車とから構成されている。また、第 2切換機構は、第 1入力軸と出 力軸との第 4歯車対を介した連結と、副軸と出力軸との第 4歯車対を介さない連結と を選択的に切換及び解除可能である。
[0017] この変速装置では、第 2切換機構により第 1入力軸と出力軸との連結及び副軸と出 力軸との連結をそれぞれ選択的に切り換えられる。そして、第 1入力軸と出力軸との 連結によるトルク伝達は、第 4歯車対を介して行われる。この結果、この変速装置は、 従来より少ない構成要素により複式クラッチ装置に対応した 6段変速を実現できる。 また、この変速装置は、第 4歯車対の減速比の設定をより適切に行うことで、低速域 における各変速段の減速比のステップを小さくすることができる。これにより、この変 速装置は、従来より軸方向寸法を短縮することができ、小型化を図ることができる。そ して、 AMT全体の大型化を防止することができる。
[0018] 請求項 5に記載の変速装置は、請求項 1から 3のいずれかにおいて、第 5歯車対と 、第 3切換機構とを備えている。第 5歯車対は、第 1入力軸及び副軸のいずれか一方 に対して固定された第 9歯車と、第 1入力軸及び副軸の他方に対して相対回転可能 に配置され第 9歯車と嚙み合う第 10歯車とから構成されている。第 3切換機構は、第 1入力軸及び副軸のいずれか一方と第 1入力軸及び副軸の他方とを第 5歯車対を介 して選択的に連結及び連結解除可能としている。
[0019] この変速装置は、第 5歯車対及び第 3切擁構を備えているため、他の歯車対と組 み合わせることで最大 8段階の変速が可能となる。例えば、第 1歯車が第 2入力軸に 固定され、第 1切 構が第 1入力軸と副軸とを 2種類の減速比により選択的に連結 及び連結解除可能としている場合、第 1及び第 2入力軸から出力軸へのトルク伝達 経路としては以下の 8通りとなる。
[0020] 1)第 1入力軸→第 1切換機構 (第 1の減速比)→副軸→第 2切換機構→出力軸
2)第 1入力軸→第 1切換機構 (第 2の減速比)→副軸→第 2切換機構→出力軸
3)第 1入力軸→第 3切換機構→副軸→第 2切換機構→出力軸
4)第 1入力軸→第 2切換機構→出力軸
5)第 2入力軸→第 1歯車対→副軸→第 1切棚構 (第 1の減速比)→第 1入力軸→ 第 2切換機構→出力軸
6)第 2入力軸→第 1歯車対→副軸→第 1切棚構 (第 2の減速比)→第 1入力軸→ 第 2切換機構→出力軸
7)第 2入力軸→第 1歯車対→副軸→第 3切換機構→第 1入力軸→第 2切換機構→ 出力軸 8)第 2入力軸→第 1歯車対→副軸→第 2切換機構→出力軸
したがって、減速比の設定を適切に行い、第 1及び第 2クラッチの動作に応じて第 1 及び第 2切 構を適切に切り換えることで、この変速装置は 8段変速を実現するこ とができる。そして、従来の 8段変速の変速装置と比較すると、従来の変速装置が変 速段と同数である 8つの歯車対と少なくとも 4つの切 «構を必要としているのに対し て、この変速装置は 5つの歯車対と 3つの切 «構しか必要としない。この結果、この 変速装置は、従来より少ない構成要素により複式クラッチ装置に対応した 8段変速を 実現できる。
[0021] 請求項 6に記載の変速装置は、請求項 2から 5のいずれかにおいて、第 1歯車対の 第 2入力軸から副軸への減速比は、第 2歯車対の第 1入力軸から副軸への減速比よ りも小さぐ第 3歯車対の第 1入力軸から副軸への減速比は、第 1歯車対の第 1及び 第 2入力軸の 、ずれか一方から副軸への減速比よりも小さ!/、。
[0022] この変速装置は、第 2、第 1、及び第 3歯車対の順番で減速比が小さくなつているた め、確実に所望の変速段数を実現することができる。これにより、この変速装置は、従 来より軸方向寸法を短縮することができ、小型化を図ることができる。そして、 AMT全 体の大型化を防止することができる。
[0023] ここで、減速比とは、駆動側から従動側への減速比を意味して 、る。例えば、第 1入 力軸から副軸への減速比とは、第 1入力軸側の歯車の歯数を Nl、副軸側の歯車の 歯数を N2とすると、 a =N2ZN1のことをいう。
[0024] 請求項 7に記載の変速装置は、請求項 6において、第 5歯車対の第 1入力軸から副 軸への減速比が第 2歯車対の第 1入力軸力 副軸への減速比よりも小さぐ第 5歯車 対の第 1入力軸から副軸への減速比が第 1歯車対の第 2入力軸から副軸への減速 比よりも大きい。
[0025] この変速装置は、第 2、第 5、第 1及び第 3歯車対の順番で減速比が小さくなつてい るため、確実に 8段変速を実現するとができる。これにより、この変速装置は、従来より 軸方向寸法を短縮することができ、小型化を図ることができる。そして、 AMT全体の 大型化を防止することができる。
[0026] ここで、減速比とは、駆動側から従動側への減速比を意味して 、る。例えば、第 1入 力軸から副軸への減速比とは、第 1入力軸側の歯車の歯数を Nl、副軸側の歯車の 歯数を N2とすると、 a =N2ZN1のことをいう。
[0027] 請求項 8に記載の変速装置は、請求項 1から 7のいずれかにおいて、出力軸が第 1 入力軸に対して同軸上に配置されて 、る。
[0028] この変速装置は、出力軸が第 1入力軸に対して同軸上に配置されているため、 FR 車用として採用可能となる。ここで、 FR車とは、前方にエンジンを搭載した後輪駆動 車 (Front Engine Rear Drive)を意味して ヽる。
[0029] 請求項 9に記載の変速装置は、請求項 1から 7のいずれかにおいて、出力軸が副 軸に対して同軸上に配置されて 、る。
[0030] この変速装置は、出力軸が副軸に対して同軸上に配置されているため、 FF車用と して採用可能となる。ここで、 FF車とは、前方にエンジンを搭載した前輪駆動 (Front Engine Front Drive)を意味している。
[0031] 請求項 10に記載の変速装置は、請求項 1から 7のいずれかにおいて、出力軸が副 軸の外周側に同軸上に配置された筒状部材である。
[0032] この変速装置は、出力軸が第 1入力軸に対して同軸上に配置されているため、 FF 車用として採用可能となる。ここで、 FF車とは、前方にエンジンを搭載した前輪駆動(
Front Engine Front Drive)を意味して ヽる。
[0033] 請求項 11に記載の変速装置は、請求項 1から 10のいずれかにおいて、第 2入力軸 が第 1入力軸の外周側に同軸上に配置された筒状の部材である。
[0034] 請求項 12に記載の変速装置は、請求項 1から 10のいずれかにおいて、第 1入力軸 が第 2入力軸の外周側に同軸上に配置された筒状の部材である。
<発明の効果 >
本発明に係る変速装置では、変速段数より少な 、ギヤ数でシンプルかつコンパクト な変速機が実現できる。また、本発明にかかる変速装置では、車両の発進時におけ るクラッチフエ一シングの摩耗を低減させることができる。
図面の簡単な説明
[0035] [図 1]複式クラッチ装置を搭載した AMTの構成図。
[図 2]本発明の第 1実施形態としての変速装置の構成図、及び変速装置のトルク伝達 経路の模式図。
[図 3]本発明の第 1実施形態としての変速装置の各変速段における締結要素の制御 及び減速比。
[図 4]本発明の第 2実施形態としての変速装置の構成図、及び変速装置のトルク伝達 経路の模式図。
[図 5]本発明の第 2実施形態としての変速装置の各変速段における締結要素の制御 及び減速比。
[図 6]本発明の第 3実施形態としての変速装置の構成図、及び変速装置のトルク伝達 経路の模式図。
[図 7]本発明の第 3実施形態としての変速装置の各変速段における締結要素の制御 及び減速比。
[図 8]本発明の第 4実施形態としての変速装置の構成図、及び変速装置のトルク伝達 経路の模式図。
[図 9]本発明の第 4実施形態としての変速装置の構成図、及び変速装置のトルク伝達 経路の模式図。
[図 10]本発明の第 5実施形態としての変速装置の構成図、及び変速装置のトルク伝 達経路の模式図。
[図 11]本発明の第 5実施形態としての変速装置の各変速段における締結要素の制 御及び減速比。
符号の説明
1 複式クラッチ装置
2 変速装置
3 フライホイ一ノレ
4 ダンパー機構
5 入力軸
10 第 1入力軸
20 第 2入力軸 40 出力軸
50 第 1出力軸
60 第 2出力軸
110、 210、 310、 410、 510 第 1困'車对
120、 220、 320、 420、 520 第 2歯車対
130、 230、 330、 430、 530 第 3歯車対
140、 240、 340、 440、 540 第 4歯車対
150、 250、 350、 450、 550 第 5困'車对
160、 260、 360、 460、 560 第 1切換機構
170、 270、 370、 470、 570 第 2切換機構
480、 580 第 3切換機構
CI 第 1クラッチ
C2 第 2クラッチ
SI 第 1切換歯車
S2 第 2切換歯車
S3 第 3切換歯車
S4 第 4切換歯車
S5 第 5切換歯車
発明を実施するための最良の形態
[0037] 本発明の実施形態を図面を参照しながら説明する。
[0038] 1. AMTの構成
図 1に複式クラッチ装置を搭載した AMTの構成図を示す。図 1では、エンジンは右 側に配置されている。 AMTは、主に、複式クラッチ装置 1と、変速装置 2と、図示しな ぃケーシングとから構成されており、各装置の動作は、油圧制御等により自動的に行 われる。複式クラッチ装置 1は、主に、入力軸 5と、第 1出力軸 50と、第 2出力軸 60と、 第 1クラッチ C1と、第 2クラッチ C2とから構成されている。入力軸 5は、エンジンからの トルクが入力される部材であり、ダンパー機構 4を介してエンジン(図示せず)側のフラ ィホイール 3に回転方向へ弹性的に連結されている。第 1出力軸 50は、入力軸 5から 入力されたトルクを変速装置 2側へ出力するためのものである。第 2出力軸 60は、第 1出力軸 50と同様に入力軸 5から入力されたトルクを変速装置 2側へ出力するための ものである。第 1クラッチ C1は、入力軸 5と第 1出力軸 50との間でトルクを伝達及び遮 断するためのものである。第 2クラッチ C2は、入力軸 5と第 2出力軸 60との間でトルク を伝達及び遮断するためのものである。このような構成により、複式クラッチ装置 1は、 第 1及び第 2クラッチ 50、 60を選択的に作動させて第 1出力軸 50又は第 2出力軸 60 にトルクを出力可能としている。そして、第 1出力軸 50又は第 2出力軸 60に伝達され たトルクは、変速装置 2により変速された後、出力軸 40から出力される。以上に述べ た AMTに採用される本発明の変速装置 2としては、以下の第 1〜第 5実施形態が考 えられる。
[0039] 2.第 1実施形態
(1)変速装置の構造
本発明の第 1実施形態としての変速装置 2について説明する。図 2 (a)に本発明の 第 1実施形態としての変速装置の構成図を示す。変速装置 2は、図 2 (a)に示すよう に、第 1入力軸 10と、第 2入力軸 20と、副軸 30と、出力軸 40と、第 1歯車対 110と、 第 2歯車対 120と、第 3歯車対 130と、第 4歯車対 140と、第 1切換機構 160と、第 2 切棚構 170と、ケーシング(図示せず)と力も構成されている。
[0040] 第 1入力軸 10は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 1 クラッチ C1の第 1出力軸 50に対して相対回転不能に設けられて 、る。第 2入力軸 20 は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 2クラッチ C2の第 2出力軸 60に対して相対回転不能に設けられている。また、第 2入力軸 20は、第 1入 力軸 10の外周側に同軸上に配置された筒状の部材である。副軸 30は、第 1入力軸 10に対して並行に配置されている。出力軸 40は、変速装置 2からトルクを出力するた めのものであり、第 1入力軸 10に対して同軸上に配置されている。以上の構成から明 らかなように、第 1入力軸 10、第 2入力軸 20、及び出力軸 40は、同軸上に配置され ており、それらの軸に対して並行に副軸 30が配置されている。この構成により、この 変速装置 2は FR車に採用可能となる。
[0041] 第 1歯車対 110は、第 2入力軸 20と副軸 30とを連結するためのもので、歯車 111と 、歯車 112とから構成されている。歯車 111は、第 2入力軸 20に固定されている。歯 車 112は、畐 IJ軸 30に固定されている。そして、歯車 111と歯車 112とは、互いに嚙み 合っている。第 2歯車対 120は、第 1入力軸 10と副軸 30とを連結するためのもので、 歯車 121と、歯車 122とから構成されている。歯車 121は、第 1入力軸 10に対して相 対回転可能に配置されている。歯車 122は、副軸 30に固定されている。そして、歯 車 121と歯車 122とは、互いに嚙み合っている。第 3歯車対 130は、第 1入力軸 10と 副軸 30とを連結するためのもので、歯車 131と、歯車 132と力も構成されている。歯 車 131は、第 1入力軸 10に対して相対回転可能に配置されている。歯車 132は、副 軸 30に固定されている。そして、歯車 131と歯車 132とは、互いに嚙み合っている。 第 4歯車対 140は、出力軸 40と副軸 30とを連結するためのもので、歯車 141と、歯 車 142とから構成されている。歯車 141は、出力軸 40に対して相対回転可能に配置 されている。歯車 142は、副軸 30に固定されている。そして、歯車 141と歯車 142と は、互いに嚙み合っている。
[0042] 第 1切 構 160は、第 1入力軸 10と副軸 30とを 2種類の異なる減速比で選択的 に連結及び連結解除するためのもので、歯車 161と、第 1切換歯車 S1と、第 2切換 歯車 S2と、第 1スリーブ 162とから構成されている。歯車 161は、第 1入力軸 10に固 定されている。第 1切換歯車 S1は、第 1入力軸 10に対して相対回転可能にかつ歯 車 121に対して相対回転不能に設けられている。第 2切換歯車 S2は、第 1入力軸 10 に対して相対回転可能にかつ歯車 131に対して相対回転不能に設けられている。第 1スリーブ 162は、歯車 161の外周側に配置された筒状の部材であり、その内周側が 歯車 161と嚙み合っている。第 1スリーブ 162は、第 1入力軸 10に対して軸方向に相 対移動可能することで、第 1切換歯車 S1及び第 2切換歯車 S2のいずれか一方と歯 車 161との連結及び連結解除を切換可能としている。
[0043] 第 2切擁構 170は、第 1入力軸 10及び副軸 30のいずれか一方と出力軸 40とを 選択的に連結及び連結解除するためのもので、歯車 171と、第 3切換歯車 S3と、第 4切換歯車 S4と、第 2スリーブ 172とから構成されている。歯車 171は、出力軸 40に 固定されている。第 3切換歯車 S3は、出力軸 40に対して相対回転可能にかつ歯車 141に対して相対回転不能に設けられている。第 4切換歯車 S4は、第 1入力軸 10に 対して相対回転不能に設けられている。第 2スリーブ 172は、歯車 171の外周側に配 置された筒状の部材であり、その内周側が歯車 171と嚙み合っている。第 2スリーブ 1 72は、出力軸 40に対して軸方向に相対移動可能することで、第 3切換歯車 S3及び 第 4切換歯車 S4のいずれか一方と歯車 171との連結及び連結解除を切換可能とし ている。
[0044] ここで、各歯車対の減速比について説明する。減速比とは、一般的に従動側の歯 車の歯数を駆動側の歯車の歯数で除したものである。しかし、この実施形態におい ては、各歯車対は従動側と駆動側とが入れ替わる。ここでは便宜上、第 1入力軸 10 及び第 2入力軸 20側の歯車を駆動側の歯車とする。また、第 4歯車対 140に関して は、駆動側と従動側が入れ替わらないため、出力軸 40側の歯車を従動側の歯車と する。
[0045] この実施形態では、第 1〜第 4歯車対の減速比は、例えば、
α 1 = 2. 1
« 2 = 2. 9
α 3 = 1. ο
α 4= 1. 8
としている。この減速比の設定により、この変速装置 2では 6段変速を確実に実現でき る。具体的には、 α 2 > α 1 > α 3の条件を満たしていればよい。
[0046] (2)変速装置の動作
次に図 2及び図 3を参照しながら変速装置 2の動作について説明する。ここでは、 第 1速力 第 6速までのシフトアップ時の動作について説明する。図 2 (b)に本発明に 第 1実施形態としての変速装置のトルク伝達経路の模式図、及び図 3に本発明の第 1実施形態としての変速装置の各変速段における締結要素の制御及び減速比を示 す。図 2 (b)では、点線が各軸を、実線が各変速段におけるトルク伝達経路をそれぞ れ示している。そして、図 2 (b)の右側には、作動するクラッチが「C1」又は「C2」によ り示されている。また、図 3では、各変速段において連結されているクラッチ及び切換 歯車が「〇」で、シフトアップ及びシフトダウンに備えて連結される切換歯車を「(〇)」 でそれぞれ示している。また、図 3の右側には、変速装置 2全体での減速比と各変速 段の減速比のステップと全体のレンジとがそれぞれ示されている。
[0047] <停止〜前進第 1速 >
車両の停止状態では、第 1クラッチ C1及び第 2クラッチ C2は遮断されている。その 状態で、図 3に示すように、第 1切換機構 160の第 1スリーブ 162により歯車 162と第 1切換歯車 S 1とが連結されるとともに、第 2切浦構 170の第 2スリーブ 172により歯 車 171と第 3切換歯車 S3とが連結される。そして、第 1クラッチ C1が徐々に連結され る。これにより、図 2 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力さ れたトルクは、第 2歯車対 120、副軸 30、及び第 4歯車対 140を介して出力軸 40〖こ 伝達され、車両は第 1速で走行する。この場合、変速装置 2全体の減速比 α θは、 oc 0= α 2 Χ « 4 = 2. 9 X 1. 8 = 5. 22となる。
[0048] <前進第 1速〜前進第 2速 >
第 1速走行時に、図 3に示すように、第 1クラッチ C1の連結が解除されるとともに、第 2クラッチ C2が連結される。このとき、第 1速と同様に、第 2切 構 170の第 2スリー ブ 172により歯車 171と第 3切換歯車 S3との連結は保持しておく。これにより、図 2 (b )に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯 車対 110、副軸 30、及び第 4歯車対 140を介して出力軸 40に伝達され、車両は第 2 速で走行する。この場合、変速装置 2全体の減速比《0は、 Q; 0 = Q; 1 X Q; 4 = 2. 1 X I. 8 = 3. 78となる。
[0049] <前進第 2速〜前進第 3速 >
第 2速走行時に、図 3に示すように、第 1切換機構 160の第 1スリーブ 162により歯 車 161と第 2切換歯車 S2とが連結される。そして、第 2クラッチ C2の連結が解除され るとともに、第 1クラッチ C1が連結される。このとき、第 2速と同様に、第 2切擁構 17 0の第 2スリーブ 172により歯車 171と第 3切換歯車 S3とを連結しておく。これにより、 図 2 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、 第 3歯車対 130、副軸 30、及び第 4歯車対 140を介して出力軸 40に伝達され、車両 は第 3速で走行する。この場合、変速装置 2全体の減速比 α 0は、ひ ニ ひ ひ = 1. 35 X 1. 8 = 2. 43となる。
[0050] <前進第 3速〜前進第 4速 > 第 3速走行時に、図 3に示すように、第 1クラッチ C1の連結を解除するとともに、第 2 切換機構 170での連結部分を第 3切換歯車 S3から第 4切換歯車 S4へ切り換える。 その後、第 2クラッチ C2が連結される。このとき、第 3速と同様に、第 1切 構 160 の第 1スリーブ 162により歯車 161と第 2切換歯車 S2とを連結しておく。これにより、 図 2 (b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、 第 1歯車対 1 10、副軸 30、第 3歯車対 130、及び第 1入力軸 10を介して出力軸 40に 伝達され、車両は第 4速で走行する。この場合、変速装置 2全体の減速比 α θは、 oc 0 = α 1/ α 3 = 2. 1/1. 35 = 1. 56となる。
[0051] <前進第 4速〜前進第 5速 >
第 4速走行時に、図 3に示すように、第 2クラッチ C2の連結が解除されるとともに、第 1クラッチ C1が連結される。このとき、第 4速と同様に、第 2切 構 170の第 2スリー ブ 172により歯車 171と第 4切換歯車 S4との連結は保持しておく。これにより、図 2 (b )に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 2切 構 170を介して出力軸 40に伝達され、車両は第 5速で走行する。この場合、変 速装置 2全体の減速比《0は、《0 = 1となる。
[0052] <前進第 5速〜前進第 6速 >
第 5速走行時に、図 3に示すように、第 1切換機構 160の第 1スリーブ 162により歯 車 161と第 1切換歯車 S 1とが連結される。そして、第 1クラッチ C1の連結が解除され るとともに、第 2クラッチ C2が連結される。このとき、第 5速と同様に、第 2切 構 17 0の第 4切換歯車 S4の連結は保持しておく。これにより、図 2 (b)に示すように、第 2ク ラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 110、副軸 30、及 び第 2歯車対 120を介して出力軸 40に伝達され、車両は第 6速で走行する。この場 合、変速装置 2全体の減速 it α θは、 α Ο = α 1/ α 2 = 2. 1/2. 9 = 0. 72となる。
[0053] 以上に述べたように、この変速装置 2は、 4つの歯車対と 2つの切 «構のみで、前 進 6段変速を実現できる。これにより、この変速装置 2は、従来より軸方向寸法を短縮 することができ、小型化を図ることができる。そして、 ΑΜΤ全体の大型化を防止する ことができる。また、この変速装置 2は、図 3に示すように前進第 1速と第 2速との減速 比のステップを小さくすることができる。この結果、この変速装置 2では、前進第 1速で 第 1クラッチ CIが滑り終える前に第 2速で第 2クラッチ C2を滑らせて発進することがで きる。これにより、この変速装置 2では、第 1及び第 2クラッチ Cl、 C2に発進時の負荷 を分担することでフエ一シングの摩耗を低減することができる。
[0054] 3.第 2実施形態
(1)変速装置の構造
本発明の第 2実施形態としての変速装置 2について説明する。図 4 (a)に本発明の 第 2実施形態としての変速装置の構成図を示す。変速装置 2は、図 4 (a)に示すよう に、第 1入力軸 10と、第 2入力軸 20と、副軸 30と、出力軸 40と、第 1歯車対 210と、 第 2歯車対 220と、第 3歯車対 230と、第 4歯車対 240と、第 1切換機構 260と、第 2 切棚構 270と、ケーシング(図示せず)と力も構成されている。
[0055] 第 1入力軸 10は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 1 クラッチ C1の第 1出力軸 50に対して相対回転不能に設けられて 、る。第 2入力軸 20 は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 2クラッチ C2の第 2出力軸 60に対して相対回転不能に設けられている。また、第 1入力軸 10は、第 2入 力軸 20の外周側に同軸上に配置された筒状の部材である。副軸 30は、第 2入力軸 20に対して並行に配置されている。出力軸 40は、変速装置 2からトルクを出力するた めのものであり、副軸 30に対して同軸上に配置されている。この実施形態では、出力 軸 40は、副軸 30に対してエンジン側に配置されている。以上の構成から明らかなよ うに、副軸 30及び出力軸は、第 1及び第 2入力軸 10、 20に対して並行に配置されて いる。この構成により、この変速装置 2は FF車に採用可能となる。
[0056] 第 1歯車対 210は、第 2入力軸 20と副軸 30とを連結するためのもので、歯車 211と 、歯車 212とから構成されている。歯車 211は、第 2入力軸 20に固定されている。歯 車 212は、畐 IJ軸 30に固定されている。そして、歯車 211と歯車 212とは、互いに嚙み 合っている。第 2歯車対 220は、第 1入力軸 10と副軸 30とを連結するためのもので、 歯車 221と、歯車 222とから構成されている。歯車 221は、第 1入力軸 10に固定され ている。歯車 222は、副軸 30に対して相対回転可能に配置されている。そして、歯車 221と歯車 222とは、互いに嚙み合っている。第 3歯車対 130は、第 1入力軸 10と副 軸 30とを連結するためのもので、歯車 231と、歯車 232とカゝら構成されている。歯車 2 31は、第 1入力軸 10に固定されている。歯車 232は、副軸 30に対して相対回転可 能に配置されている。そして、歯車 231と歯車 232とは、互いに嚙み合っている。第 4 歯車対 240は、出力軸 40と第 1入力軸 10とを連結するためのもので、歯車 241と、 歯車 242とから構成されている。歯車 241は、第 1入力軸 10に固定されている。歯車 242は、出力軸 40に対して相対回転可能に配置されている。そして、歯車 241と歯 車 242とは、互いに嚙み合っている。
[0057] 第 1切 構 260は、第 1入力軸 10と副軸 30とを 2種類の異なる減速比で選択的 に連結及び連結解除するためのもので、歯車 261と、第 1切換歯車 S1と、第 2切換 歯車 S2と、第 1スリーブ 262とから構成されている。歯車 261は、副軸 30に固定され ている。第 1切換歯車 S1は、副軸 30に対して相対回転可能にかつ歯車 222に対し て相対回転不能に設けられている。第 2切換歯車 S2は、副軸 30に対して相対回転 可能にかつ歯車 232に対して相対回転不能に設けられて 、る。第 1スリーブ 262は、 歯車 261の外周側に配置された筒状の部材であり、その内周側が歯車 261と嚙み合 つている。第 1スリーブ 262は、副軸 30に対して軸方向に相対移動可能することで、 第 1切換歯車 S 1及び第 2切換歯車 S2のいずれか一方と歯車 261との連結及び連結 解除を切換可能としている。
[0058] 第 2切棚構 270は、第 1入力軸 10及び副軸 30のいずれか一方と出力軸 40とを 選択的に連結及び連結解除するためのもので、歯車 271と、第 3切換歯車 S3と、第 4切換歯車 S4と、第 2スリーブ 272とから構成されている。歯車 271は、出力軸 40に 固定されている。第 3切換歯車 S3は、出力軸 40に対して相対回転可能にかつ歯車 242に対して相対回転不能に設けられている。第 4切換歯車 S4は、副軸 30に対して 相対回転不能に設けられている。第 2スリーブ 272は、歯車 271の外周側に配置され た筒状の部材であり、その内周側が歯車 271と嚙み合っている。第 2スリーブ 272は 、出力軸 40に対して軸方向に相対移動することで、第 3切換歯車 S3及び第 4切換歯 車 S4のいずれか一方と歯車 271との連結及び連結解除を切換可能としている。
[0059] ここで、各歯車対の減速比について説明する。減速比とは、一般的に従動側の歯 車の歯数を駆動側の歯車の歯数で除したものである。しかし、この実施形態におい ては、各歯車対は従動側と駆動側とが入れ替わる。ここでは便宜上、第 1入力軸 10 及び第 2入力軸 20側の歯車を駆動側の歯車とする。また、第 4歯車対 140に関して は、駆動側と従動側が入れ替わらないため、出力軸 40側の歯車を従動側の歯車と する。
[0060] この実施形態では、第 1〜第 4歯車対の減速比は、例えば、
α 1 = 1. 85
« 2 = 2. 49
« 3 = 1. 375
« 4 = 0. 76
としている。この減速比の設定により、この変速装置 2では 6段変速を確実に実現でき る。具体的には、 α 2> α 1 > α 3の条件を満たしていればよい。
[0061] (2)変速装置の動作
次に図 4及び図 5を参照しながら変速装置 2の動作について説明する。図 4 (b)に 本発明に第 2実施形態としての変速装置のトルク伝達経路の模式図、及び図 5に本 発明の第 2実施形態としての変速装置の各変速段における締結要素の制御及び減 速比を示す。図 4 (b)では、点線が各軸を、実線が各変速段におけるトルク伝達経路 をそれぞれ示している。そして、図 4 (b)の右側には、作動するクラッチが「C1」又は「 C2」により示されている。また、図 5では、各変速段において連結されているクラッチ 及び切換歯車が「〇」で、シフトアップ及びシフトダウンに備えて連結される切換歯車 を「(〇)」でそれぞれ示している。また、図 5の右側には、変速装置 2全体での減速比 と各変速段の減速比のステップと全体のレンジとがそれぞれ示されている。
[0062] <停止〜前進第 1速 >
車両の停止状態では、第 1クラッチ C1及び第 2クラッチ C2は遮断されている。その 状態で、図 5に示すように、第 1切浦構 260の第 1スリーブ 262により歯車 261と第 1切換歯車 S1とが連結されるとともに、第 2切浦構 270の第 2スリーブ 272により歯 車 271と第 4切換歯車 S4とが連結される。そして、第 1クラッチ C1が連結される。これ により、図 4 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたト ルクは、第 2歯車対 220、副軸 30を介して出力軸 40に伝達され、車両は第 1速で走 行する。この場合、変速装置 2全体の減速比《0は、《0= « 2 = 2. 49となる。 [0063] <前進第 1速〜前進第 2速 >
第 1速走行時に、図 5に示すように、第 1クラッチ C1の連結が解除されるとともに、第 2クラッチ C2が連結される。このとき、第 1速と同様に、第 2切 構 270の第 2スリー ブ 272により歯車 271と第 4切換歯車 S4との連結は保持しておく。これにより、図 4 (b )に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯 車対 210、副軸 30を介して出力軸 40に伝達され、車両は第 2速で走行する。この場 合、変速装置 2全体の減速比《0は、《0= 0: 1 = 1. 85となる。
[0064] <前進第 2速〜前進第 3速 >
第 2速走行時に、図 5に示すように、予め第 1切 «構 260の第 1スリーブ 262によ り歯車 261と第 2切換歯車 S2とが連結される。そして、第 2クラッチ C2の連結が解除 されるとともに、第 1クラッチ C1が連結される。このとき、第 2速と同様に、第 2切棚 構 270の第 2スリーブ 272により歯車 271と第 4切換歯車 S4との連結は保持しておく 。これにより、図 4 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力され たトルクは、第 3歯車対 230、副軸 30を介して出力軸 40に伝達され、車両は第 3速で 走行する。この場合、変速装置 2全体の減速比《0は、《0= 0: 3 = 1. 375となる。
[0065] <前進第 3速〜前進第 4速 >
第 3速走行時に、図 5に示すように、第 1クラッチ C1の連結が解除されるとともに、第 2切換機構 270における連結部分が第 4切換歯車 S4から第 3切換歯車 S3へ切り換 えられる。その後、第 2クラッチ C2が連結される。このとき、第 3速と同様に、第 1切換 機構 260の第 1スリーブ 262により歯車 261と第 2切換歯車 S2との連結は保持してお く。これにより、図 4 (b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力さ れたトルクは、第 1歯車対 210、副軸 30、第 3歯車対 230、第 1入力軸 10、及び第 4 歯車対 240を介して出力軸 40に伝達され、車両は第 4速で走行する。この場合、変 速装置 2全体の減速比 α θは、 α Ο= α 1/ α 3 Χ « 4= 1. 85/1. 375 X 0. 76 = 1. 023となる。
[0066] <前進第 4速〜前進第 5速 >
第 4速走行時に、図 5に示すように、第 2クラッチ C2の連結が解除されるとともに、第 1クラッチ C1が連結される。このとき、第 4速と同様に、第 2切 構 270における第 3 切換歯車 S3の連結は保持しておく。これにより、図 4 (b)に示すように、第 1クラッチ C 1を介して第 1入力軸 10に入力されたトルクは、第 4歯車対 240を介して出力軸 40に 伝達され、第 5速で走行する。この場合、変速装置 2全体の減速比《0は、《0= « 4 =0. 76となる。
[0067] <前進第 5速〜前進第 6速 >
第 5速走行時に、図 5に示すように、予め第 1切 «構 260の第 1スリーブ 262によ り歯車 261と第 1切換歯車 S1とが連結される。そして、第 1クラッチ C1の連結が解除 されるとともに、第 2クラッチ C2が連結される。このとき、第 5速と同様に、第 2切 構 270における第 4切換歯車 S4の連結は保持しておく。これにより、図 4 (b)に示す ように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 210 、第 2歯車対 220、第 3歯車対 230、及び第 2切換機構 270を介して出力軸 40に伝 達され、車両は第 6速で走行する。この場合、変速装置 2全体の減速比《0は、《0 = α 1/ α 2 Χ « 4= 1. 85/2. 49 X 0. 76 = 0. 565となる。
[0068] 以上に述べたように、この変速装置 2は、 4つの歯車対と 2つの切 «構のみで、前 進 6段変速を実現できる。これにより、この変速装置 2は、従来より軸方向寸法を短縮 することができ、小型化を図ることができる。そして、 ΑΜΤ全体の大型化を防止する ことができる。また、この変速装置 2は、図 5に示すように前進第 1速と第 2速との減速 比のステップを小さくすることができる。この結果、この変速装置 2では、前進第 1速で 第 1クラッチ C1が滑り終える前に第 2速で第 2クラッチ C2を滑らせて発進することがで きる。これにより、この変速装置 2では、第 1及び第 2クラッチ Cl、 C2に発進時の負荷 を分担することでフエ一シングの摩耗を低減することができる。
[0069] 4.第 3実施形態
(1)変速装置の構造
本発明の第 3実施形態としての変速装置 2について説明する。図 6 (a)に本発明の 第 3実施形態としての変速装置の構成図を示す。変速装置 2は、図 6 (a)に示すよう に、第 1入力軸 10と、第 2入力軸 20と、副軸 30と、出力軸 40と、第 1歯車対 310と、 第 2歯車対 320と、第 3歯車対 330と、第 4歯車対 340と、第 1切換機構 360と、第 2 切棚構 370と、ケーシング(図示せず)と力も構成されている。 第 1入力軸 10は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 1ク ラッチ C1の第 1出力軸 50に対して相対回転不能に設けられて 、る。第 2入力軸 20 は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 2クラッチ C2の第 2出力軸 60に対して相対回転不能に設けられている。また、第 1入力軸 10は、第 2入 力軸 20の外周側に同軸上に配置された筒状の部材である。副軸 30は、第 2入力軸 20に対して並行に配置されている。出力軸 40は、変速装置 2からトルクを出力するた めのものであり、副軸 30に対して同軸上に配置されている。この実施形態では、出力 軸 40は、副軸 30に対してエンジン側に配置されている。以上の構成から明らかなよ うに、副軸 30及び出力軸は、第 1及び第 2入力軸 10、 20に対して並行に配置されて いる。この構成により、この変速装置 2は FF車に採用可能となる。
[0070] 第 1歯車対 310は、第 2入力軸 20と副軸 30とを連結するためのもので、歯車 311と 、歯車 312とから構成されている。歯車 311は、第 2入力軸 20に固定されている。歯 車 312は、畐 IJ軸 30に固定されている。そして、歯車 311と歯車 312とは、互いに嚙み 合っている。第 2歯車対 320は、第 1入力軸 10と副軸 30とを連結するためのもので、 歯車 321と、歯車 322とから構成されている。歯車 321は、第 1入力軸 10に固定され ている。歯車 322は、副軸 30に対して相対回転可能に配置されている。そして、歯車 321と歯車 322とは、互いに嚙み合っている。第 3歯車対 330は、第 1人力軸 10と畐 ij 軸 30とを連結するためのもので、歯車 331と、歯車 332とカゝら構成されている。歯車 3 31は、第 1入力軸 10に固定されている。歯車 332は、副軸 30に対して相対回転可 能に配置されている。そして、歯車 331と歯車 332とは、互いに嚙み合っている。第 4 歯車対 340は、出力軸 40と第 1入力軸 10とを連結するためのもので、歯車 341と、 歯車 342とから構成されている。歯車 341は、第 1入力軸 10に固定されている。歯車 342は、出力軸 40に対して相対回転可能に配置されている。そして、歯車 341と歯 車 342とは、互いに嚙み合っている。
[0071] 第 1切 構 360は、第 1入力軸 10と副軸 30とを 2種類の異なる減速比で選択的 に連結及び連結解除するためのもので、歯車 361と、第 1切換歯車 S1と、第 2切換 歯車 S2と、第 1スリーブ 362とカゝら構成されている。歯車 361は、副軸 30に固定され ている。第 1切換歯車 S1は、副軸 30に対して相対回転可能にかつ歯車 322に対し て相対回転不能に設けられている。第 2切換歯車 S2は、副軸 30に対して相対回転 可能にかつ歯車 332に対して相対回転不能に設けられて 、る。第 1スリーブ 362は、 歯車 361の外周側に配置された筒状の部材であり、その内周側が歯車 361と嚙み合 つている。第 1スリーブ 362は、副軸 30に対して軸方向に相対移動可能することで、 第 1切換歯車 S 1及び第 2切換歯車 S2のいずれか一方と歯車 361との連結及び連結 解除を切換可能としている。
[0072] 第 2切棚構 370は、第 1入力軸 10及び副軸 30のいずれか一方と出力軸 40とを 選択的に連結及び連結解除するためのもので、歯車 371と、第 3切換歯車 S3と、第 4切換歯車 S4と、第 2スリーブ 372とから構成されている。歯車 371は、出力軸 40に 固定されている。第 3切換歯車 S3は、出力軸 40に対して相対回転可能にかつ歯車 342に対して相対回転不能に設けられている。第 4切換歯車 S4は、副軸 30に対して 相対回転不能に設けられている。第 2スリーブ 372は、歯車 371の外周側に配置され た筒状の部材であり、その内周側が歯車 371と嚙み合っている。第 2スリーブ 372は 、出力軸 40に対して軸方向に相対移動することで、第 3切換歯車 S3及び第 4切換歯 車 S4の 、ずれか一方と歯車 371との連結及び連結解除を切換可能として 、る。
[0073] ここで、各歯車対の減速比について説明する。減速比とは、一般的に従動側の歯 車の歯数を駆動側の歯車の歯数で除したものである。しかし、この実施形態におい ては、各歯車対は従動側と駆動側とが入れ替わる。ここでは便宜上、第 1入力軸 10 及び第 2入力軸 20側の歯車を駆動側の歯車とする。また、第 4歯車対 140に関して は、駆動側と従動側が入れ替わらないため、出力軸 40側の歯車を従動側の歯車と する。
[0074] この実施形態では、第 1〜第 4歯車対の減速比は、例えば、
α 1 = 0. 900
« 2= 1. 269
« 3 = 0. 638
« 4 = 2. 523
としている。この減速比の設定により、この変速装置 2では 6段変速を確実に実現でき る。具体的には、 α 2> α 1 > α 3の条件を満たしていればよい。 [0075] (2)変速装置の動作
次に図 6及び図 7を参照しながら変速装置 2の動作について説明する。図 6 (b)に 本発明に第 3実施形態としての変速装置のトルク伝達経路の模式図、及び図 7に本 発明の第 3実施形態としての変速装置の各変速段における締結要素の制御及び減 速比を示す。図 6 (b)では、点線が各軸を、実線が各変速段におけるトルク伝達経路 をそれぞれ示している。そして、図 6 (b)の右側には、作動するクラッチが「C1」又は「 C2」により示されている。また、図 7では、各変速段において連結されているクラッチ 及び切換歯車が「〇」で、シフトアップ及びシフトダウンに備えて連結される切換歯車 を「(〇)」でそれぞれ示している。また、図 7の右側には、変速装置 2全体での減速比 と各変速段の減速比のステップと全体のレンジとがそれぞれ示されている。
[0076] <停止〜前進第 1速 >
車両の停止状態では、第 1クラッチ C1及び第 2クラッチ C2は遮断されている。その 状態で、図 7に示すように、第 1切浦構 360の第 1スリーブ 362により歯車 361と第 2切換歯車 S2とが連結されるとともに、第 2切浦構 370の第 2スリーブ 372により歯 車 371と第 3切換歯車 S3とが連結される。そして、第 2クラッチ C2が連結される。これ により、図 6 (b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたト ルクは、第 1歯車対 310、第 3歯車対 330、第 1入力軸 10、及び第 4歯車対 340を介 して出力軸 40に伝達され、車両は第 1速で走行する。このとき、第 1入力軸 10にトル クが入力されないよう、第 1クラッチ C1は連結を解除した状態としている。この場合、 変速装置 2全体の減速比 α θは、 α Ο= α 1/ α 3 Χ « 4 = 0. 900/0. 638 X 2. 5 23 = 3. 557となる。
[0077] <前進第 1速〜前進第 2速 >
第 1速走行時に、図 7に示すように、第 2クラッチ C2の連結が解除されるとともに、第 1クラッチ C1が連結される。このとき、第 1速と同様に、第 2切 構 370の第 2スリー ブ 372により歯車 371と第 3切換歯車 S3との連結は保持しておく。これにより、図 6 (b )に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 4歯 車対 340を介して出力軸 40に伝達され、車両は第 2速で走行する。この場合、変速 装置 2全体の減速 it α θは、 « 0= « 4 = 2. 523となる。 [0078] <前進第 2速〜前進第 3速 >
第 2速走行時に、図 7に示すように、予め第 1切浦構 360の第 1スリーブ 362によ り歯車 361と第 2切換歯車 S2とが連結される。そして、第 1クラッチ C1の連結が解除 されるとともに、第 2クラッチ C2が連結される。このとき、第 2速と同様に、第 2切 構 370の第 2スリーブ 372により歯車 371と第 3切換歯車 S3との連結は保持しておく 。これにより、図 6 (b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力され たトルクは、第 1歯車対 310、副軸 30、第 2歯車対 320、第 2入力軸、及び第 4歯車 対 340を介して出力軸 40に伝達され、車両は第 3速で走行する。この場合、変速装 置 2全体の減速比 α θは、 α Ο= α 1/ α 2 Χ « 4 = 0. 900/1. 269 X 2. 523 = 1 . 789となる。
[0079] <前進第 3速〜前進第 4速 >
第 3速走行時に、図 7に示すように、第 2クラッチ C2の連結が解除されるとともに、第 2切換機構 370での連結部分が第 3切換歯車 S3から第 4切換歯車 S4へ切り換えら れる。そして、第 1クラッチ C1が連結される。このとき、第 3速と同様に、第 1切浦構 360の第 1スリーブ 362により歯車 361と第 1切換歯車 S1との連結は保持しておく。こ れにより、図 6 (b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力された トルクは、第 2歯車対 320、及び副軸 30を介して出力軸 40に伝達され、車両は第 4 速で走行する。この場合、変速装置 2全体の減速比 α 0は、 α 0= α 2 = 1. 269とな る。
[0080] <前進第 4速〜前進第 5速 >
第 4速走行時に、図 7に示すように、第 1クラッチ C1の連結が解除されるとともに、第 2クラッチ C2が連結される。このとき、第 4速と同様に、第 2切 構 370における第 4 切換歯車 S4の連結は保持しておく。これにより、図 6 (b)に示すように、第 2クラッチ C 2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 310、副軸 30を介して出 力軸 40に伝達され、車両は第 5速で走行する。この場合、変速装置 2全体の減速比 α θは、 α Ο= α 1 = 0. 900となる。
[0081] <前進第 5速〜前進第 6速 >
第 5速走行時に、図 7に示すように、予め第 1切 «構 360の第 1スリーブ 362によ り歯車 361と第 2切換歯車 S2とが連結される。そして、第 2クラッチ C2の連結が解除 されるとともに、第 1クラッチ C1が連結される。このとき、第 4速と同様に、第 2切棚 構 370における第 4切換歯車 S4の連結は保持しておく。これにより、図 6 (b)に示す ように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 3歯車対 330 、副軸 30を介して出力軸 40に伝達され、車両は第 6速で走行する。この場合、変速 装置 2全体の減速 it α θは、 « 0= « 3 = 0. 638となる。
[0082] 以上に述べたように、この変速装置 2は、 4つの歯車対と 2つの切 «構のみで、前 進 6段変速を実現できる。これにより、この変速装置 2は、従来より軸方向寸法を短縮 することができ、小型化を図ることができる。そして、 ΑΜΤ全体の大型化を防止する ことができる。また、この変速装置 2は、図 7に示すように前進第 1速と第 2速との減速 比のステップを小さくすることができる。この結果、この変速装置 2では、前進第 1速で 第 1クラッチ C1が滑り終える前に第 2速で第 2クラッチ C2を滑らせて発進することがで きる。これにより、この変速装置 2では、第 1及び第 2クラッチ Cl、 C2に発進時の負荷 を分担することでフエ一シングの摩耗を低減することができる。
[0083] 5.第 4実施形態
(1)変速装置の構造
本発明の第 4実施形態としての変速装置 2について説明する。図 8 (a)に本発明の 第 4実施形態としての変速装置の構成図を示す。変速装置 2は、図 8 (a)に示すよう に、第 1入力軸 10と、第 2入力軸 20と、副軸 30と、出力軸 40と、第 1歯車対 410と、 第 2歯車対 420と、第 3歯車対 430と、第 4歯車対 440と、第 1切換機構 460と、第 2 切棚構 470と、第 3切棚構 480と、ケーシング(図示せず)と力も構成されている
[0084] 第 1入力軸 10は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 1 クラッチ C1の第 1出力軸 50に対して相対回転不能に設けられて 、る。第 2入力軸 20 は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 2クラッチ C2の第 2出力軸 60に対して相対回転不能に設けられている。また、第 2入力軸 20は、第 1入 力軸 10の外周側に同軸上に配置された筒状の部材である。副軸 30は、第 1入力軸 10に対して並行に配置されている。出力軸 40は、変速装置 2からトルクを出力するた めのものであり、副軸 30に対して同軸上に配置されている。この実施形態では、出力 軸 40は、副軸 30に対してエンジン側に配置されている。以上の構成から明らかなよ うに、副軸 30及び出力軸は、第 1及び第 2入力軸 10、 20に対して並行に配置されて いる。この構成により、この変速装置 2は FF車に採用可能となる。
[0085] 第 1歯車対 410は、第 2入力軸 20と副軸 30とを連結するためのもので、歯車 411と 、歯車 412とから構成されている。歯車 411は、第 2入力軸 20に固定されている。歯 車 412は、畐 IJ軸 30に固定されている。そして、歯車 411と歯車 412とは、互いに嚼み 合っている。第 2歯車対 420は、第 1入力軸 10と副軸 30とを連結するためのもので、 歯車 421と、歯車 422とから構成されている。歯車 421は、第 1入力軸 10に対して相 対回転可能に配置されている。歯車 422は、副軸 30に固定されている。そして、歯 車 421と歯車 422とは、互いに嚙み合っている。第 3歯車対 430は、第 1入力軸 10と 副軸 30とを連結するためのもので、歯車 431と、歯車 432と力も構成されている。歯 車 431は、第 1入力軸 10に対して相対回転可能に配置されている。歯車 432は、副 軸 30に固定されている。そして、歯車 431と歯車 432とは、互いに嚙み合っている。 第 4歯車対 440は、出力軸 40と副軸 30とを連結するためのもので、歯車 441と、歯 車 442とから構成されている。歯車 441は、第 1入力軸 10に対して相対回転可能に 配置されている。歯車 442は、出力軸 40に固定されている。そして、歯車 441と歯車 442とは、互!ヽに嚼み合って! /、る。
[0086] 第 1切 構 460は、第 1入力軸 10と副軸 30とを 2種類の異なる減速比で選択的 に連結及び連結解除するためのもので、歯車 461と、第 1切換歯車 S1と、第 2切換 歯車 S2と、第 1スリーブ 462とから構成されている。歯車 461は、第 1入力軸 10に固 定されている。第 1切換歯車 S1は、第 1入力軸 10に対して相対回転可能にかつ歯 車 421に対して相対回転不能に設けられている。第 2切換歯車 S2は、第 1入力軸 10 に対して相対回転可能にかつ歯車 431に対して相対回転不能に設けられている。第 1スリーブ 462は、歯車 461の外周側に配置された筒状の部材であり、その内周側が 歯車 461と嚙み合っている。第 1スリーブ 462は、第 1入力軸 10に対して軸方向に相 対移動可能することで、第 1切換歯車 S1及び第 2切換歯車 S2のいずれか一方と歯 車 461との連結及び連結解除を切換可能として 、る。 [0087] 第 2切換機構 470は、第 1入力軸 10と出力軸 40とを選択的に連結及び連結解除 するためのもので、歯車 471と、第 3切換歯車 S3と、第 2スリーブ 472とから構成され ている。歯車 471は、第 1入力軸 10に固定されている。第 3切換歯車 S3は、第 1入力 軸 10に対して相対回転可能にかつ歯車 441に対して相対回転不能に設けられてい る。第 2スリーブ 472は、歯車 471の外周側に配置された筒状の部材であり、その内 周側が歯車 471と嚙み合っている。第 2スリーブ 472は、出力軸 40に対して軸方向 に相対移動可能することで、第 3切換歯車 S3と歯車 471との連結及び連結解除を切 換可能としている。
[0088] 第 3切換機構 480は、副軸 30と出力軸 40とを選択的に連結及び連結解除するた めのもので、歯車 481と、第 4切換歯車 S4と、第 3スリーブ 482と力 構成されている 。歯車 481は、副軸 30に固定されている。第 4切換歯車 S4は、出力軸 40に対して相 対回転不能に設けられている。第 3スリーブ 482は、歯車 481の外周側に配置された 筒状の部材であり、その内周側が歯車 481と嚙み合っている。第 3スリーブ 482は、 出力軸 40に対して軸方向に相対移動可能することで、第 4切換歯車 S4と歯車 481と の連結及び連結解除を切換可能として ヽる。
[0089] ここで、各歯車対の減速比について説明する。減速比とは、一般的に従動側の歯 車の歯数を駆動側の歯車の歯数で除したものである。しかし、この実施形態におい ては、各歯車対は従動側と駆動側とが入れ替わる。ここでは便宜上、第 1入力軸 10 及び第 2入力軸 20側の歯車を駆動側の歯車とする。また、第 4歯車対 140に関して は、駆動側と従動側が入れ替わらないため、出力軸 40側の歯車を従動側の歯車と する。
[0090] この実施形態では、第 1〜第 4歯車対の減速比は、例えば、
α 1 = 2. 2
« 2 = 2. 9
α 3 = 1. 5
« 4 = 0. 7
としている。この減速比の設定により、この変速装置 2では 6段変速を確実に実現でき る。具体的には、 α 2> α 1 > α 3の条件を満たしていればよい。 [0091] (2)変速装置の動作
次に図 8及び図 9を参照しながら変速装置 2の動作について説明する。図 8 (b)に 本発明に第 4実施形態としての変速装置のトルク伝達経路の模式図、及び図 9に本 発明の第 4実施形態としての変速装置の各変速段における締結要素の制御及び減 速比を示す。図 8 (b)では、点線が各軸を、実線が各変速段におけるトルク伝達経路 をそれぞれ示している。そして、図 8 (b)の右側には、作動するクラッチが「C1」又は「 C2」により示されている。また、図 9では、各変速段において連結されているクラッチ 及び切換歯車が「〇」で、シフトアップ及びシフトダウンに備えて連結される切換歯車 を「(〇)」でそれぞれ示している。また、図 9の右側には、変速装置 2全体での減速比 と各変速段の減速比のステップと全体のレンジとがそれぞれ示されている。
[0092] <停止〜前進第 1速 >
車両の停止状態では、第 1クラッチ C1及び第 2クラッチ C2は遮断されている。その 状態で、図 9に示すように、第 1切換機構 460の第 1スリーブ 462により歯車 461と第 1切換歯車 S1とが連結されるとともに、第 3切浦構 480の第 3スリーブ 482により歯 車 481と第 4切換歯車 S4とが連結される。そして、第 1クラッチ C1が連結される。これ により、図 8 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたト ルクは、第 2歯車対 420、及び副軸 30を介して出力軸 40に伝達され、車両は第 1速 で走行する。この場合、変速装置 2全体の減速比《0は、《0= 0: 2 = 2. 9となる。
[0093] <前進第 1速〜前進第 2速 >
第 1速走行時に、図 9に示すように、第 1クラッチ C1の連結が解除されるとともに、第 2クラッチ C2が連結される。このとき、第 1速と同様に、第 3切 構 480における第 4 切換歯車 S4の連結は保持しておく。これにより、図 8 (b)に示すように、第 2クラッチ C 2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 410、及び副軸 30を介し て出力軸 40に伝達され、車両は第 2速で走行する。この場合、変速装置 2全体の減 速 it a Oは、 α 0= α 1 = 2. 2となる。
[0094] <前進第 2速〜前進第 3速 >
第 2速走行時に、図 9に示すように、予め第 1切換機構 460の第 1スリーブ 462によ り歯車 461と第 2切換歯車 S2とが連結される。そして、第 2クラッチ C2の連結が解除 されるとともに、第 1クラッチ C Iが連結される。このとき、第 2速と同様に、第 2切棚 構 470における第 4切換歯車 S4の連結は保持しておく。これにより、図 8 (b)に示す ように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 3歯車対 430 、及び副軸 30を介して出力軸 40に伝達され、車両は第 3速で走行する。この場合、 変速装置 2全体の減速比 α θは、 α Ο = α 3 = 1. 5となる。
[0095] <前進第 3速〜前進第 4速 >
第 3速走行時に、図 9に示すように、第 1クラッチ C1の連結が解除されるとともに、第 3切換機構 480の第 4切換歯車 S4の連結が解除され、第 2切換機構 470の第 3切換 歯車 S3が連結される。そして、第 2クラッチ C2が連結される。このとき、第 3速と同様 に、第 1切換機構 460における第 2切換歯車 S2の連結は保持しておく。これにより、 図 8 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、 第 1歯車対 410、副軸 30、第 3歯車対 430、及び第 4歯車対 440を介して出力軸 40 に伝達され、車両は第 4速で走行する。この場合、変速装置 2全体の減速比《0は、 α Ο = α 1/ α 3 Χ « 4 = 2. 2/1. 5 X 0. 7 = 1. 03となる。
[0096] <前進第 4速〜前進第 5速 >
第 4速走行時に、図 9に示すように、第 2クラッチ C2の連結が解除されるとともに、第 1クラッチ C1が連結される。このとき、第 4速と同様に、第 2切 構 470における第 3 切換歯車 S3の連結を維持しておく。これにより、図 8 (b)に示すように、第 1クラッチ C 1を介して第 1入力軸 10に入力されたトルクは、第 4歯車対 440を介して出力軸 40に 伝達され、車両は第 5速で走行する。この場合、変速装置 2全体の減速比 α θは、 oc 0 = « 3 = 0. 7となる。
[0097] <前進第 5速〜前進第 6速 >
第 5速走行時に、図 9に示すように、予め第 1切換機構 460の第 1スリーブ 462によ り歯車 461と第 1切換歯車 S 1とが連結される。そして、第 1クラッチ C1の連結が解除 されるとともに第 2クラッチ C2が連結される。このとき、第 4速と同様に、第 2切 構 470における第 3切換歯車 S3の連結は保持しておく。これにより、図 8 (b)に示すよう に、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 410、副 軸 30、第 2歯車対 420、及び第 4歯車対 440を介して出力軸 40に伝達され、車両は 第 6速で走行する。この場合、変速装置 2全体の減速比 α 0は、 α 0= ο; ΐΖ α 2 Χ « 4 = 2. 2/2. 9 X 0. 7 = 0. 53となる。
[0098] 以上に述べたように、この変速装置 2は、 4つの歯車対と 2つの切 «構のみで、前 進 6段変速を実現できる。これにより、この変速装置 2は、従来より軸方向寸法を短縮 することができ、小型化を図ることができる。そして、 ΑΜΤ全体の大型化を防止する ことができる。また、この変速装置 2は、図 9に示すように前進第 1速と第 2速との減速 比のステップを小さくすることができる。この結果、この変速装置 2では、前進第 1速で 第 1クラッチ C1が滑り終える前に第 2速で第 2クラッチ C2を滑らせて発進することがで きる。これにより、この変速装置 2では、第 1及び第 2クラッチ Cl、 C2に発進時の負荷 を分担することでフエ一シングの摩耗を低減することができる。
[0099] 6.第 5実施形態
(1)変速装置の構造
以上に述べた AMTに搭載される本発明の第 5実施形態としての変速装置 2につい て説明する。図 10 (a)に本発明の第 5実施形態としての変速装置の構成図を示す。 変速装置 2は、図 10 (a)に示すように、第 1入力軸 10と、第 2入力軸 20と、副軸 30と 、出力軸 40と、第 1歯車対 510と、第 2歯車対 520と、第 3歯車対 530と、第 4歯車対 540と、第 5歯車対 550と、第 1切換機構 560と、第 2切換機構 570と、第 3切換機構 580と、ケーシング(図示せず)とから構成されている。
[0100] 第 1入力軸 10は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 1 クラッチ C1の第 1出力軸 50に対して相対回転不能に設けられて 、る。第 2入力軸 20 は、複式クラッチ装置 1からトルクが入力されるためのものであり、第 2クラッチ C2の第 2出力軸 60に対して相対回転不能に設けられている。また、第 2入力軸 20は、第 1入 力軸 10の外周側に同軸上に配置された筒状の部材である。副軸 30は、第 1入力軸 10に対して並行に配置されている。出力軸 40は、変速装置 2からトルクを出力するた めのものであり、第 1入力軸 10に対して同軸上に配置されている。以上の構成から明 らかなように、第 1入力軸 10、第 2入力軸 20、及び出力軸 40は、同軸上に配置され ており、それらの軸に対して並行に副軸 30が配置されている。この構成により、この 変速装置 2は FF車に採用可能となる。 [0101] 第 1歯車対 510は、第 2入力軸 20と副軸 30とを連結するためのもので、歯車 511と 、歯車 512とから構成されている。歯車 511は、第 2入力軸 20に固定されている。歯 車 512は、畐 IJ軸 30に固定されている。そして、歯車 511と歯車 512とは、互いに嚙み 合っている。第 2歯車対 520は、第 1入力軸 10と副軸 30とを連結するためのもので、 歯車 521と、歯車 522とから構成されている。歯車 521は、第 1入力軸 10に対して相 対回転可能に配置されている。歯車 522は、副軸 30に固定されている。そして、歯 車 521と歯車 522とは、互いに嚙み合っている。第 3歯車対 530は、第 1入力軸 10と 副軸 30とを連結するためのもので、歯車 531と、歯車 532とカゝら構成されている。歯 車 531は、第 1入力軸 10に対して相対回転可能に配置されている。歯車 532は、副 軸 30に固定されている。そして、歯車 531と歯車 532とは、互いに嚙み合っている。 第 4歯車対 540は、出力軸 40と副軸 30とを連結するためのもので、歯車 541と、歯 車 542とから構成されている。歯車 541は、出力軸 40に対して相対回転可能に配置 されている。歯車 542は、副軸 30に固定されている。そして、歯車 541と歯車 542と は、互いに嚙み合っている。第 5歯車対 550は、第 1入力軸 10と副軸 30とを連結す るためのもので、歯車 551と、歯車 552と力ら構成されている。歯車 551は、第 1入力 軸 10に対して相対回転可能に配置されている。歯車 552は、副軸 30に固定されて いる。そして、歯車 551と歯車 552とは、互いに嚙み合っている。
[0102] 第 1切 構 560は、第 1入力軸 10と副軸 30とを 2種類の異なる減速比で選択的 に連結及び連結解除するためのもので、歯車 561と、第 1切換歯車 S1と、第 2切換 歯車 S2と、第 1スリーブ 562とから構成されている。歯車 561は、第 1入力軸 10に固 定されている。第 1切換歯車 S1は、第 1入力軸 10に対して相対回転可能にかつ歯 車 521に対して相対回転不能に設けられている。第 2切換歯車 S2は、第 1入力軸 10 に対して相対回転可能にかつ歯車 531に対して相対回転不能に設けられている。第 1スリーブ 562は、歯車 561の外周側に配置された筒状の部材であり、その内周側が 歯車 561と嚙み合っている。第 1スリーブ 562は、第 1入力軸 10に対して軸方向に相 対移動可能することで、第 1切換歯車 S1及び第 2切換歯車 S2のいずれか一方と歯 車 561との連結及び連結解除を切換可能として 、る。
[0103] 第 2切棚構 570は、第 1入力軸 10及び副軸 30のいずれか一方と出力軸 40とを 選択的に連結及び連結解除するためのもので、歯車 571と、第 3切換歯車 S3と、第 4切換歯車 S4と、第 2スリーブ 572とから構成されている。歯車 571は、出力軸 40に 固定されている。第 3切換歯車 S3は、出力軸 40に対して相対回転可能にかつ歯車 541に対して相対回転不能に設けられている。第 4切換歯車 S4は、第 1入力軸 10に 対して相対回転不能に設けられている。第 2スリーブ 572は、歯車 571の外周側に配 置された筒状の部材であり、その内周側が歯車 571と嚙み合っている。第 2スリーブ 5 72は、出力軸 40に対して軸方向に相対移動可能することで、第 3切換歯車 S3及び 第 4切換歯車 S4のいずれか一方と歯車 571との連結及び連結解除を切換可能とし ている。
[0104] 第 3切 構 580は、第 1入力軸 10と副軸 30とを選択的に連結及び連結解除する ためのもので、歯車 581と、第 5切換歯車 S5と、第 3スリーブ 582とから構成されてい る。歯車 581は、第 1入力軸 10に固定されている。第 5切換歯車 S5は、第 1入力軸 1 0に対して相対回転可能にかつ歯車 551に対して相対回転不能に設けられている。 第 3スリーブ 582は、歯車 581の外周側に配置された筒状の部材であり、その内周側 が歯車 581と嚙み合っている。第 3スリーブ 582は、第 1入力軸 10に対して軸方向に 相対移動可能することで、第 5切換歯車 S5と歯車 581との連結及び連結解除を切換 可能としている。
[0105] ここで、各歯車対の減速比について説明する。減速比とは、一般的に従動側の歯 車の歯数を駆動側の歯車の歯数で除したものである。しかし、この実施形態におい ては、各歯車対は従動側と駆動側とが入れ替わる。ここでは便宜上、第 1入力軸 10 及び第 2入力軸 20側の歯車を駆動側の歯車とする。また、第 4歯車対 140に関して は、駆動側と従動側が入れ替わらないため、出力軸 40側の歯車を従動側の歯車と する。
[0106] この実施形態では、第 1〜第 5歯車対の減速比は、例えば、
« 1 = 1. 19
« 2= 1. 85
« 3 = 0. 84
« 4 = 2. 41 « 5 = 1. 52
としている。この減速比の設定により、この変速装置 2では 8段変速を確実に実現でき る。具体的には、 0;2> 0;5 > 0;1 > 0; 3の条件を満たしていればよい。
[0107] (2)変速装置の動作
次に図 10及び図 11を参照しながら変速装置 2の動作について説明する。図 10 (b )に本発明に第 5実施形態としての変速装置のトルク伝達経路の模式図、及び図 11 に本発明の第 5実施形態としての変速装置の各変速段における締結要素の制御及 び減速比を示す。図 10 (b)では、点線が各軸を、実線が各変速段におけるトルク伝 達経路をそれぞれ示している。そして、図 10 (b)の右側には、作動するクラッチが「C 1」又は「C2」により示されている。また、図 11では、各変速段において連結されてい るクラッチ及び切換歯車が「〇」で、シフトアップ及びシフトダウンに備えて連結される 切換歯車を「(〇)」でそれぞれ示している。また、図 11の右側には、変速装置 2全体 での減速比と各変速段の減速比のステップと全体のレンジとがそれぞれ示されてい る。
[0108] <停止〜前進第 1速 >
車両の停止状態では、第 1クラッチ C1及び第 2クラッチ C2は遮断されている。その 状態で、図 11に示すように、第 1切換機構 560の第 1スリーブ 562により歯車 561と 第 1切換歯車 S1とが連結されるとともに、第 2切擁構 570の第 2スリーブ 572により 歯車 571と第 4切換歯車 S4とが連結される。そして、第 1クラッチ C1が連結される。こ れにより、図 10 (b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力され たトルクは、第 2歯車対 520、副軸 30、及び第 4歯車対 540を介して出力軸 40に伝 達され、車両は第 1速で走行する。この場合、変速装置 2全体の減速比《0は、《0 = α 2 Χ « 4 = 1. 85 X 2. 41 =4. 46となる。
[0109] <前進第 1速〜前進第 2速 >
第 1速走行時に、図 11に示すように、第 1クラッチ C1の連結が解除されるとともに、 第 2クラッチ C2が連結される。このとき、第 1速と同様に、第 2切 構 570における 第 3切換歯車 S3の連結は保持しておく。これにより、図 10 (b)に示すように、第 2クラ ツチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯車対 510、副軸 30、及 び第 4歯車対 540を介して出力軸 40に伝達され、第 2速で走行する。この場合、変 速装置 2全体の減速 it αθは、 αΟ= αΙΧ «4=1.19X2.41 = 2.87となる。
[0110] <前進第 2速〜前進第 3速 >
第 2速走行時に、図 11に示すように、予め第 1切換機構 560の第 1スリーブ 562に より歯車 561と第 2切換歯車 S2とが連結される。そして、第 2クラッチ C2の連結が解 除されるとともに、第 1クラッチ C1が連結される。このとき、第 2速と同様に、第 2切換 機構 570における第 3切換歯車 S3の連結は保持しておく。これにより、図 10(b)に示 すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 3歯車対 5 30、副軸 30、及び第 4歯車対 540を介して出力軸 40に伝達され、車両は第 3速で走 行する。この場合、変速装置 2全体の減速 it αθは、 αΟ= α3Χ «4 = 0.84X2.4 1 = 2.02となる。
[0111] <前進第 3速〜前進第 4速 >
第 3速走行時に、図 11に示すように、第 1クラッチ C1の連結が解除されるとともに、 第 2切換機構 570での連結部分が第 3切換歯車 S3から第 4切換歯車 S4へ切り換え られる。そして、第 2クラッチ C2が連結される。このとき、第 3速と同様に、第 1切 構 560における第 2切換歯車 S2の連結は保持しておく。これにより、図 10(b)に示す ように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルクは、第 1歯車対 510 、副軸 30、及び第 3歯車対 530を介して出力軸 40に伝達され、車両は第 4速で走行 する。この場合、変速装置 2全体の減速比 αθは、 αΟ=αΐΖ α3 = 1.19/0.84 =1.42となる。
[0112] <前進第 4速〜前進第 5速 >
第 4速走行時に、図 11に示すように、第 2クラッチ C2の連結が解除されるとともに、 第 1クラッチ C1が連結される。このとき、第 4速と同様に、第 2切浦構 570における 第 4切換歯車 S4の連結は保持しておく。これにより、図 10(b)に示すように、第 1クラ ツチ C1を介して第 1入力軸 10に入力されたトルクは、第 2切浦構 570を介して出 力軸 40に伝達され、車両は第 5速で走行する。この場合、変速装置 2全体の減速比 αθは、 α 0=1となる。
[0113] <前進第 5速〜前進第 6速 > 第 5速走行時に、図 11に示すように、第 1クラッチ C1の連結が解除されるとともに、 第 2切換機構 570の第 4切換歯車 S4の連結が解除される。そして、第 3切換機構 58 0の第 5切換歯車 S5が連結された後、第 2クラッチ C2が連結される。これにより、図 1 0(b)に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1 歯車対 510、及び第 5歯車対 550を介して出力軸 40に伝達され、車両は第 6速で走 行する。この場合、変速装置 2全体の減速比《0は、《0=0:170; 5 = 1. 19/1. 5 2 = 0. 78となる。
[0114] <前進第 6速〜前進第 7速 >
第 6速走行時に、図 11に示すように、第 2クラッチ C2連結が解除されるとともに、第 1切換機構 560の第 1切換歯車 S1、及び第 2切換機構 570の第 4切換歯車 S4がそ れぞれ連結される。その後、再度第 2クラッチ C2が連結される。これにより、図 10(b) に示すように、第 2クラッチ C2を介して第 2入力軸 20に入力されたトルクは、第 1歯車 対 510、副軸 30、及び第 2歯車対 520を介して出力軸 40に伝達され、車両は第 7速 で走行する。この場合、変速装置 2全体の減速比 α 0は、 α0= ο;ΐΖα2=1. 19 /1. 85 = 0. 64となる。
<停止〜前進第 1'速 >
この実施形態における変速装置 2は、以上の前進 7速に加えて第 1速と第 2速との 間にさらに 1つの変速段 (前進第 1'速)を設けることができる。具体的には、車両の停 止状態で、図 11に示すように、第 2切換機構 570の第 3切換歯車 S3及び第 3切換機 構 580の第 5切換歯車 S5を連結させ、第 1クラッチ C1を徐々に連結させる。これによ り、図 10(b)に示すように、第 1クラッチ C1を介して第 1入力軸 10に入力されたトルク は、第 5歯車対 550、副軸 30、及び第 4歯車対 540を介して出力軸 40に伝達され、 車両は第 1 '速で走行する。この場合、変速装置 2全体の減速比 oc 0は、 αΟ= α5Χ «4=1. 52X2.41 = 3. 66となる。
[0115] 以上に述べたように、この変速装置 2は、 4つの歯車対と 2つの切換機構のみで、前 進 6段変速を実現できる。これにより、この変速装置 2は、従来より軸方向寸法を短縮 することができ、小型化を図ることができる。そして、 ΑΜΤ全体の大型化を防止する ことができる。また、この変速装置 2は、図 11に示すように前進第 1速と第 2速との減 速比のステップを小さくすることができる。この結果、この変速装置 2では、前進第 1速 で第 1クラッチ C1が滑り終える前に第 2速で第 2クラッチ C2を滑らせて発進することが できる。これにより、この変速装置 2では、第 1及び第 2クラッチ Cl、 C2に発進時の負 荷を分担することでフエ一シングの摩耗を低減することができる。カロえて、この変速装 置 2では、発進段を 2段選定することにより、加速及び燃費重視の走行が可能となる。
[0116] 7.その他の実施形態
本発明は力かる上記実施形態に限定されるものではなぐ本発明の範囲を逸脱す ることなく種々の変形又は修正が可能である。
[0117] (1)減速比
前述の実施形態では、減速比を例示しているが、それらの減速比に限定されるもの ではない。一定の条件を満たしていれば、他の数値を用いてもよい。
[0118] (2)変速動作
前述の実施形態では、変速装置 2の動作を説明しているが、これは変速装置 2の変 速動作を限定するものではない。したがって、変速装置 2は他の変速動作も可能であ る。
[0119] (3)切 構
前述の実施形態では、切 構の配置を例示しているが、それらの配置に限定さ れるものではない。各切換機構の軸方向の配置が入れ替わってもよいし、歯車の固 定側と相対回転側とが入れ替わってもよい。また、前述の実施形態は、切換機構の 種類を特に限定するものではなぐ従来の機構 (シンクロ機構等)を採用したものであ ればよい。
産業上の利用可能性
[0120] 本発明は、変速装置、特に複式クラッチ装置に対応した変速装置に利用可能であ る。

Claims

請求の範囲
[1] 第 1及び第 2クラッチを選択的に連結及び遮断可能な複式クラッチ装置を備えた自 動変速装置に搭載され、エンジン力 のトルクを出力側に伝達するための変速装置 であって、
前記第 1クラッチを介してトルクが入力される第 1入力軸と、
前記第 2クラッチを介してトルクが入力される第 2入力軸と、
前記第 1入力軸に対して並行に配置された副軸と、
前記第 1入力軸及び前記副軸のいずれか一方に対して同軸上に配置された出力 軸と、
前記第 2入力軸に対して固定された第 1歯車と、前記副軸に対して固定され前記第 1歯車と嚙み合う第 2歯車とから構成される第 1歯車対と、
前記第 1入力軸と前記副軸とを少なくとも 2以上の異なる減速比により選択的に連 結及び連結解除可能な第 1切換機構と、
前記第 1入力軸及び副軸のいずれか一方と前記出力軸とを選択的に連結及び連 結解除可能な第 2切換機構とを備えた、変速装置。
[2] 前記第 1入力軸及び副軸のいずれか一方に対して固定された第 3歯車と、前記第 1入力軸及び副軸の他方に対して相対回転可能に配置され前記第 3歯車と嚙み合う 第 4歯車とから構成される第 2歯車対と、
前記第 1入力軸及び副軸のいずれか一方に対して固定された第 5歯車と、前記第 1入力軸及び副軸の他方に対して相対回転可能に配置され前記第 5歯車と嚙み合う 第 6歯車とから構成される第 3歯車対とをさらに備え、
前記第 1切換機構は、前記第 2及び第 3歯車対のいずれか一方を介して前記第 1 入力軸と前記副軸とを連結可能である、
請求項 1に記載の変速装置。
[3] 前記副軸及び出力軸のいずれか一方に対して固定された第 7歯車と、前記副軸及 び出力軸の他方に対して相対回転可能に配置され前記第 7歯車と嚙み合う第 8歯車 とから構成される第 4歯車対をさらに備え、
前記第 2切換機構は、前記副軸と前記出力軸との前記第 4歯車対を介した連結と、 前記第 1入力軸と前記出力軸との前記第 4歯車対を介さない連結とを選択的に切換 及び解除可能である、
請求項 1又は 2に記載の変速装置。
[4] 前記第 1入力軸及び出力軸のいずれか一方に対して固定された第 7歯車と、前記 第 1入力軸及び出力軸の他方に対して相対回転可能に配置され前記第 7歯車と嚙 み合う第 8歯車とから構成される第 4歯車対をさらに備え、
前記第 2切換機構は、前記第 1入力軸と前記出力軸との前記第 4歯車対を介した 連結と、前記副軸と前記出力軸との前記第 4歯車対を介さない連結とを選択的に切 換及び解除可能である、
請求項 1又は 2に記載の変速装置。
[5] 前記第 1入力軸及び副軸のいずれか一方に対して固定された第 9歯車と、前記第
1入力軸及び副軸の他方に対して相対回転可能に配置され前記第 9歯車と嚙み合う 第 10歯車とから構成される第 5歯車対と、
前記第 1入力軸及び副軸のいずれか一方と前記第 1入力軸及び副軸の他方とを前 記第 5歯車対を介して選択的に連結及び連結解除可能な第 3切換機構とを備えた、 請求項 1から 3のいずれかに記載の変速装置。
[6] 前記第 1歯車対の前記第 2入力軸から前記副軸への減速比は、前記第 2歯車対の 前記第 1入力軸から前記副軸への減速比よりも小さぐ
前記第 3歯車対の前記第 1入力軸から前記副軸への減速比は、前記第 1歯車対の 前記第 2入力軸から前記副軸への減速比よりも小さい、
請求項 2から 5のいずれかに記載の変速装置。
[7] 前記第 5歯車対の前記第 1入力軸から前記副軸への減速比は、前記第 2歯車対の 前記第 1入力軸から前記副軸への減速比よりも小さぐ
前記第 5歯車対の前記第 1入力軸から前記副軸への減速比は、前記第 1歯車対の 前記第 2入力軸から前記副軸への減速比よりも大きい、
請求項 6に記載の変速装置。
[8] 前記出力軸は、前記第 1入力軸に対して同軸上に配置される、
請求項 1から 7のいずれかに記載の変速装置。
[9] 前記出力軸は、前記副軸に対して同軸上に配置される、
請求項 1から 7のいずれかに記載の変速装置。
[10] 前記出力軸は、前記副軸の外周側に同軸上に配置された筒状部材である、
請求項 1から 7のいずれかに記載の変速装置。
[11] 前記第 2入力軸は、前記第 1入力軸の外周側に同軸上に配置された筒状の部材で ある、
請求項 1から 10のいずれかに記載の変速装置。
[12] 前記第 1入力軸は、前記第 2入力軸の外周側に同軸上に配置された筒状の部材で ある、
請求項 1から 10のいずれかに記載の変速装置。
PCT/JP2005/019884 2004-11-02 2005-10-28 変速装置 WO2006049096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005002697T DE112005002697T5 (de) 2004-11-02 2005-10-28 Getriebevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-319208 2004-11-02
JP2004319208A JP2006132572A (ja) 2004-11-02 2004-11-02 変速装置

Publications (1)

Publication Number Publication Date
WO2006049096A1 true WO2006049096A1 (ja) 2006-05-11

Family

ID=36319107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019884 WO2006049096A1 (ja) 2004-11-02 2005-10-28 変速装置

Country Status (3)

Country Link
JP (1) JP2006132572A (ja)
DE (1) DE112005002697T5 (ja)
WO (1) WO2006049096A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000414A3 (de) * 2007-06-26 2009-03-19 Daimler Ag Zahnräderwechselgetriebe
DE102007026405B4 (de) * 2006-06-28 2015-02-05 Ford Global Technologies, Llc Mehrganggetriebe
CN106884935A (zh) * 2017-03-06 2017-06-23 同济大学 一种轻量化dct传动结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034553A1 (de) * 2007-07-21 2009-01-22 GM Global Technology Operations, Inc., Detroit Stufengetriebe mit Doppelkupplung
JP5147544B2 (ja) * 2008-05-27 2013-02-20 アイシン・エーアイ株式会社 変速機と変速機の制御方法
SE1350392A1 (sv) * 2013-03-27 2014-09-28 Scania Cv Ab Växellåda, fordon med en sådan växellåda, förfarande för attstyra en sådan växellåda, datorprogram för att styra en sådan växellåda, samt en datorprogramprodukt innefattande programkod
SE540700C2 (en) * 2017-02-08 2018-10-16 Scania Cv Ab A gearbox for vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274144A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JPS62204036A (ja) * 1986-02-28 1987-09-08 Hino Motors Ltd 車輛の制動装置
JP2002340112A (ja) * 2001-05-16 2002-11-27 Aisin Seiki Co Ltd 同期噛合い式歯車変速機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921687C5 (de) 1999-05-12 2016-06-09 Borgwarner Inc. Mehrfach-Kupplungssystem für ein Getriebe
DE10360075A1 (de) 2003-01-09 2004-07-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Parallelschaltgetriebe für Allradantrieb und Parallelschaltgetriebe für Quereinbau in ein Frontalantriebsfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274144A (ja) * 1985-05-28 1986-12-04 Mazda Motor Corp 歯車式変速装置
JPS62204036A (ja) * 1986-02-28 1987-09-08 Hino Motors Ltd 車輛の制動装置
JP2002340112A (ja) * 2001-05-16 2002-11-27 Aisin Seiki Co Ltd 同期噛合い式歯車変速機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026405B4 (de) * 2006-06-28 2015-02-05 Ford Global Technologies, Llc Mehrganggetriebe
WO2009000414A3 (de) * 2007-06-26 2009-03-19 Daimler Ag Zahnräderwechselgetriebe
CN106884935A (zh) * 2017-03-06 2017-06-23 同济大学 一种轻量化dct传动结构
CN106884935B (zh) * 2017-03-06 2019-04-02 同济大学 一种轻量化dct传动结构

Also Published As

Publication number Publication date
DE112005002697T5 (de) 2010-04-15
JP2006132572A (ja) 2006-05-25

Similar Documents

Publication Publication Date Title
US7070534B2 (en) Power transmission with preselected ratios and a preselected output splitter
EP1959161B1 (en) Gear type transmission apparatus
JP4973487B2 (ja) 複数クラッチ式変速機
JP2007332991A (ja) 歯車変速装置
EP1837554A2 (en) Dual clutch transmission apparatus
WO2008018477A1 (fr) Transmission à double embrayage du type à reduction de vitesse d&#39;arbre de sortie
JP3733893B2 (ja) ツインクラッチ変速機
JP5622014B2 (ja) 変速装置
WO2006049096A1 (ja) 変速装置
KR20130114816A (ko) 자동화 수동 변속기
KR20200014571A (ko) 듀얼클러치 변속기
JP2001295898A (ja) 自動車用多段変速機
JP5276272B2 (ja) 産業車両用変速機
JPH0874949A (ja) 歯車変速装置
JP2016053412A (ja) 変速機
JP5332735B2 (ja) ダブルクラッチ自動変速機
WO2008018475A1 (fr) Transmission à double embrayage
JP4336447B2 (ja) 舶用推進装置
JP5522409B2 (ja) 変速装置
US8359948B2 (en) Transmission for industrial vehicle
KR101836508B1 (ko) 자동화 수동변속기
JPH02275148A (ja) ツインクラッチ式変速機
JPS61274150A (ja) 歯車式変速装置
JP2016188678A (ja) 変速装置
WO2017082280A1 (ja) デュアルクラッチ式変速機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050026973

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799069

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112005002697

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607