WO2006046428A1 - マーク位置検出装置及び設計方法及び評価方法 - Google Patents

マーク位置検出装置及び設計方法及び評価方法 Download PDF

Info

Publication number
WO2006046428A1
WO2006046428A1 PCT/JP2005/019049 JP2005019049W WO2006046428A1 WO 2006046428 A1 WO2006046428 A1 WO 2006046428A1 JP 2005019049 W JP2005019049 W JP 2005019049W WO 2006046428 A1 WO2006046428 A1 WO 2006046428A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
mark
center
imaging
imaging optical
Prior art date
Application number
PCT/JP2005/019049
Other languages
English (en)
French (fr)
Inventor
Daisaku Mochida
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/661,396 priority Critical patent/US20070258624A1/en
Publication of WO2006046428A1 publication Critical patent/WO2006046428A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7092Signal processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • the present invention relates to a mark position detection apparatus, a design method, and an evaluation method such as an overlay measurement apparatus for measuring an overlay mark alignment mark on a test substrate such as a semiconductor wafer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-25879
  • the above-described conventional method is a method for determining an optimum visual field position of the overlay measurement apparatus.
  • the mark position detection device of the present invention is formed by an imaging optical system that forms an image of reflected light of a mirror formed by a plurality of stepped parts formed on a substrate, and the imaging optical system.
  • An imaging unit that captures an image; and a detection unit that detects a position of the step based on an output signal from the imaging unit, wherein the imaging optical system determines a wavefront aberration of the imaging optical system as Zernike When represented by a polynomial, the variation force due to the object height of Z4 in the polynomial is a predetermined range due to the position detection accuracy of the mark position detection device.
  • the optical system of the imaging means satisfies the following conditional expression.
  • N.A . Imaging on the object side of the imaging means N.A.
  • ⁇ ⁇ Wavefront aberration at the optical axis center and object height 30 ⁇ m Zernike coefficient ⁇ 4 difference (m) where Z4 is a coefficient applied to the function (2 p 2 — 1)
  • TIS design Design specifications for overlay misalignment when measuring mark with zero overlay misalignment
  • the optical system of the imaging means satisfies the following conditional expression.
  • N.A . Imaging on the object side of the imaging means N.A.
  • ⁇ ⁇ Wavefront aberration at the optical axis center and object height 30 ⁇ m Zernike coefficient ⁇ 4 difference (m) where Z4 is a coefficient applied to the function (2 p 2 — 1)
  • TIS design Design specification of TIS flatness (difference between maximum TIS and minimum TIS) in the field of view of the device
  • the design method of the imaging optical system of the mark position detection apparatus of the present invention is designed so that the imaging optical system satisfies the following conditional expression.
  • the center force of the TIS measurement mark used is also the distance to the outer edge (m)
  • N.A . Imaging on the object side of the imaging means N.A.
  • ⁇ ⁇ Wavefront aberration at the optical axis center and object height 30 ⁇ m Zernike coefficient ⁇ 4 difference (m) where Z4 is a coefficient applied to the function (2 p 2 — 1)
  • TIS design Design specification of overlay misalignment when measuring mark with zero overlay misalignment
  • the design method of the imaging optical system of the mark position detection apparatus of the present invention is designed so that the imaging optical system satisfies the following conditional expression.
  • the center force of the TIS measurement mark used is also the distance to the outer edge (m)
  • N.A . Imaging on the object side of the imaging means N.A.
  • TIS design Design specification of TIS flatness (difference between maximum TIS and minimum TIS) in the field of view of the device
  • the imaging optical system evaluation method of the present invention forms an image of a substrate on which a mark having at least two step sets arranged symmetrically with respect to a predetermined axis is formed by the imaging optical system. Based on this image, the amount of deviation between the center positions of the respective step sets is measured, the amount of deviation between the measured center positions, the amount of true deviation between the center positions, and the imaging Evaluation of the performance of the imaging optical system using the distance between the center position of the mark in the field of the optical system and the optical axis center of the imaging optical system, and the numerical aperture of the imaging optical system as indices. It is.
  • the imaging optical system evaluation method described above based on the measured value information of the mark measured by the imaging optical system, the imaging optical system is based on the value of ⁇ derived from the following relational force. It is preferable to evaluate the characteristics of the optical system.
  • a: Center position force of step set 1 is also the distance to the step ( ⁇ m)
  • N.A . Imaging on the object side of the imaging means N.A.
  • ⁇ ⁇ Distance in the detection direction of the step between the optical axis center and the measurement mark center m)
  • ⁇ Z Wavefront aberration at the optical axis center and object height 30 ⁇ m Zernike coefficient ⁇ 4 Absolute value of difference
  • TIS measurement Measured between the center position measured between symmetrical steps and other symmetrical steps
  • the measurement mark is further scanned in the field of view of the imaging optical system, and the center position of the measurement mark and the connection at a plurality of positions in the field of view are scanned.
  • the distance from the optical axis center of the image optical system and the amount of deviation between the measured center positions are obtained, and the following relationship is obtained based on the measurement value information of the measurement mark in the imaging optical system field of view. It is preferable to evaluate the characteristics of the imaging optical system based on the value of ⁇ Z derived from the equation.
  • ⁇ ⁇ I 830 ⁇ A TIS measurement ⁇ ⁇ . ⁇ . / [L- (a + b)]
  • a: Center position force of step set 1 is also the distance to the step ( ⁇ m)
  • N.A . Imaging on the object side of the imaging means N.A.
  • ⁇ Z Wavefront aberration at the optical axis center and object height of 30 ⁇ m Absolute value of the difference of Zernike coefficient ⁇ 4
  • ⁇ TIS measurement Difference in TIS at both ends of the field of view where the functional force when fitting the TIS variation in the field of view obtained by means of scanning the measurement mark within the field of view with a linear function (nm)
  • the mark position detection device includes an imaging optical system that forms an image of a reflected light of a master composed of a plurality of steps formed on a substrate, and an imaging that captures an image formed by the imaging optical system. And a detecting means for detecting the position of the step based on an output signal from the imaging means, and the imaging optical system has a wavefront aberration of the imaging optical system expressed by a Zernike polynomial The sum total of aberration terms acting so that the position of the step detected by the signal processing means deviates from the true step position in the same direction regardless of the direction of the step is predetermined. It was designed to be within the value of.
  • the imaging optical system design method of the present invention reflected light from a mark composed of a plurality of steps formed on a substrate is imaged by an imaging optical system, and formed by the imaging optical system.
  • the design method of the imaging optical system of the mark position detection device that takes in the captured image into the imaging means and detects the position of the step based on an output signal from the imaging means.
  • the wavefront aberration of the imaging optical system is expressed by a Zernike polynomial, among the terms of the Zernike polynomial, the term acting to shift in a different direction depending on the direction of the step, and the direction of the step
  • a term that acts so as to shift in the same direction regardless of the direction of the step, and a term that works so as to shift in a different direction depending on the direction of the step at least the distribution of the aberration is Said step so that it is uniform within the field of view.
  • the term that acts so as to be shifted in the same direction regardless of the direction of the difference is designed so as to have at least a characteristic of a linear distribution in the field of view of the imaging optical system.
  • the present invention it is possible to provide a mark position detection device that can accurately detect the position of a mark. Furthermore, according to the present invention, it is possible to evaluate the characteristics of the imaging optical system with high sensitivity.
  • FIG. 1 is a configuration diagram of an overlay measurement apparatus.
  • FIG. 2 is a diagram showing measurement marks used in the simulation.
  • FIG. 3 is a diagram showing an intensity distribution obtained from a mark and simulation.
  • FIG. 4 is a diagram showing rays and marks in a focused and defocused state.
  • FIG. 5 is a diagram showing the relationship between the defocus amount, N.A., and the detected shift amount of the step position.
  • FIG. 6 is a diagram showing the aberration distribution used in the simulation.
  • FIG. 7 is a schematic diagram of aberration distribution.
  • FIG. 8 is a diagram showing the distribution of mark positions and aberrations.
  • FIG. 9 is a graph plotting the average amount of edge deviation per unit aberration.
  • FIG. 10 A diagram showing the above plot and a function fitted thereto.
  • Figure 1 shows an example of an overlay measurement device.
  • the illumination light beam having a broad wavelength emitted from the light source 1 as shown in FIG. 1 enters the light guide fiber 44 through the collector lens 41 and the light source relay lens 42.
  • the luminous flux emitted from the light guide fiber 44 is limited by the illumination aperture stop 10 and is condensed by the condenser lens 2 to illuminate the field stop 3 uniformly.
  • the field stop 3 has an SI aperture as shown in (a).
  • the shape of the illumination aperture stop 10 has an annular shape as shown in (b).
  • the light beam emitted from the field stop 3 is collimated by the illumination relay lens 4 and branched by the beam splitter 5.
  • the light is condensed by the objective lens 6 and irradiates the wafer 21 vertically.
  • the image of the slit S1 is formed on the wafer 21 through the illumination relay lens 4 and the objective lens 6.
  • the wafer is transported so that the street pattern existing on the wafer forms an angle of 45 degrees with the longitudinal or lateral direction of the field stop. This is to reduce errors in autofocus operation due to pattern effects.
  • the stage is moved so that the measurement mark comes to approximately the center of the position where the image of S 1 is projected.
  • the image of S1 irradiates mark 20 on the wafer.
  • the reflected light with the image power of S1 is L1.
  • the light beam L 1 that also reflects the surface force of the wafer 21 is collimated by the objective lens 6, passes through the beam splitter 5, and is condensed again by the imaging lens 7.
  • the light beam transmitted and branched by the beam splitter 14 is limited in the light beam system by the image forming aperture stop 11, passes through the image forming system parallel plane plate 17 for aberration correction, and then passes through the first relay lens 12 and the second relay lens 13.
  • Image sensor Wafer mark image is formed on the surface of CCD8.
  • the output signal from the image sensor CCD8 is processed by the image processing means 9, and the position of the mark on the wafer is detected, the overlay amount is measured, and the television monitor is used for observation.
  • the light beam reflected and branched by the beam splitter 14 is transmitted through the AF field stop 16, collimated by the AF first relay lens 30, then transmitted through the parallel plane plate 37, and on the pupil division mirror 31.
  • An image of the illumination aperture stop 10 is formed on.
  • the plane parallel plate 37 is used to adjust the position of the illumination aperture stop image at the center of the pupil division mirror, and is configured to allow tilt adjustment.
  • the light beam L1 is separated into two light beams by the pupil division mirror, and is condensed again by the AF second relay lens 32. Further, the light beam L1 is imaged in two positions on the AF sensor 34 via the cylindrical lens 33 in the measurement direction.
  • the cylindrical lens 33 has refractive power in the non-measurement direction, and the L1 light beam forms a light source image on the AF sensor 34.
  • the details of the operating principle of autofocus are described in, for example, Japanese Patent Laid-Open No. 2002-40322, and are therefore omitted in this embodiment.
  • the measurement optical system composed of the plane parallel plate 17, the imaging aperture stop 11, and the second relay lens 13 is designed in the following procedure. First, set the surface shape and internal refractive index of all the optical elements that make up the measurement optical system, and the spacing between the optical elements, and set each parameter again so that the ray aberration becomes a predetermined value. Repeat this procedure until the light aberration is within the desired range.
  • the wavefront aberration of the measurement optical system obtained in the previous design is fitted to the zernike polynomial with the radius P as the parameter and the radial angle as the parameter, with the exit pupil around the optical axis as 1.
  • the fitting to the Zernike polynomial is performed for rays of arbitrary object height in addition to the rays at the center of the optical axis.
  • the wavefront aberration of the entire optical system is evaluated from the fluctuation of the zernike polynomial obtained in this way due to the object height, and if the fluctuation amount does not fall within the specified value, the parameters of each optical element are finely adjusted to obtain the fluctuation amount. Repeat the procedure until is within the desired range.
  • the test mark used is the 10 ⁇ m mouth box in box mark shown in Fig. 2.
  • This mark has two step elbows, el4, and a 10 ⁇ m outer mark with the step direction convex to concave toward the center of the mark, and two steps with the step direction concave to convex toward the mark center. It consists of a 5 m mouth mark that also has step e2 and e3 forces.
  • Imaging simulation was used as the simulation method.
  • the zernike polynomial was used as the wavefront aberration. Table 1 shows the simulation parameters.
  • the wavefront aberration at each object position is obtained as a zernike polynomial from the design value of the overlay deviation measurement optical system (imaging optical system), and fluctuations in each zernike order depending on the object position are investigated. As will be described later, this distribution generates an error TIS (Tool Induced Shift) of the overlay error.
  • TIS Tool Induced Shift
  • a mark is placed at a position where the optical axis force of the measurement optical system is 60 ⁇ m, and a wavefront aberration corresponding to each of the steps el, e2, e3, and e4 shown in Fig. 2 is input to perform an image simulation. .
  • the object position does not have to be 60 m, but the higher the value, In consideration of the increase in TIS, 60 m is adopted here.
  • TIS (x2 + x3) / 2-(xl + x4) / 2... (1 set)
  • the TIS obtained in this way does not become 0, but has some value. Therefore, in order to confirm what zernike order is most effective for this TIS, we extracted only the arbitrary zerni ke order from the wavefront aberration at each edge position, input it as new aberration, and performed imaging simulation again. The degree of contribution of each zernike order was investigated by comparing the TIS based on the specific zernike order obtained and the TIS caused by the total wavefront aberration. As a result, it was found that the zernike order that most affects TIS is Z4.
  • Z4 is a term representing defocus, and the defocus difference between each image plane, that is, the curvature of field affects the TIS.
  • the mark shape and parameters are used, and the wavefront aberration at each object position is considered as the cause of TIS. This is the case.
  • TIS is caused when each step position is shifted due to aberration or the like.
  • Figures 4 (a) and (b) are enlarged views of the stepped portion of the mark.
  • (A) shows no defocus
  • (b) shows the case where the objective lens is defocused in the direction of separating the mark force.
  • Ray A1 shows the diffracted beam at the top of the mark
  • ray A2 shows the stepped portion
  • ray A3 shows the diffracted beam at the bottom of the mark.
  • A1 to A2 are in the same phase, but A2 undergoes a sudden phase change across the step. That For this reason, the intensity in the image formation calculation also changes, and this position is recognized as an edge.
  • Fig. 5 (a) shows the state of light when the defocus amount is different, and (b) shows the state of light when N.A. is different.
  • C2 has a larger defocus due to the large amount of aberration of zernike coefficient Z4 compared to ray C1.
  • D2 has a larger N.A of light than D1.
  • the deviation direction of the detected step position is different. It will be the opposite. That is, when the objective lens is defocused in the direction approaching the mark, the detected step position is observed to be shifted to the concave side of the step.
  • each zernike polynomial It was found that the orders can be classified into two types with respect to the deviation direction of the mark step detected by the measurement optical system.
  • One is a type of aberration that is detected when the amount of aberration is uniform across the entire mark, regardless of the direction of the step, so that all steps are detected with the same amount of displacement in the same direction, and the zernike coefficients Z2, Z7, etc. .
  • the other is a type of aberration that is detected when the deviation amount of the step position detected differs depending on the direction of the step, although the absolute value of the step deviation amount is approximately equal when the amount of aberration is uniform over the entire mark surface.
  • the zernike coefficient Z4, Z5, etc. is equivalent to this.
  • Figures 6 (a) and 6 (b) show the aberration distribution of each zernike order set in the simulation.
  • typel is an aberration distribution that is proportional to the object position with a difference of 0 ⁇ ⁇ at the center of the mark, and an aberration distribution that is proportional to the object position.
  • 3 is the same as type2 at the left outer edge position—SOm A, and an aberration distribution with twice the slope of typel, which is 40m ⁇ at both ends.
  • type4 is a curved aberration distribution with the amount of aberration changed by 3m ⁇ to the positive side at the edge positions on both outer sides of type2, type5 is the edge position on the left outer side of type2, + 3 ⁇ ⁇ , outer right This aberration distribution is symmetric with respect to the center of the edge position of -3m ⁇ .
  • Table 2 shows the steps el, e2, e3, and e4 detected by zernike coefficient ⁇ 4 being measured in the measurement optical system having the aberration distribution, and Table 3 being detected in the measurement optical system having Z7 being the aberration distribution.
  • the travel distance xl to x4 the average travel distance of the inner step, the outer step, and the TIS are listed together.
  • Type 1 9.9 2.0 One 2.0 -9.9 0.0 0.0 0.0
  • the TIS increases as the aberration variation at the object position increases. There is an almost proportional relationship between the amount of fluctuation and TIS.
  • TIS hardly occurs if the aberration variation at the object position is linear. Even if the linear distribution force deviates, if the aberration distribution is point-symmetric with respect to the mark center, TIS will hardly occur! /. In other words, the TIS increases as the aberration deviates from the center of the mark.
  • the original aberration distribution is the aberration distribution 1 in FIG. 7 (a).
  • x4 a (a> 0).
  • TIS2 [(a + b) + (one a c)] / 2 a + (a + d)] / 2
  • TIS3 (one b— c) / 2 (one a— d) / 2
  • TIS4 ( ⁇ b-c) / 2-[(-a + e) + (-d + l)] / 2
  • the difference between e and! ⁇ That is, the deviation of the linear distribution of aberrations is in the opposite direction.
  • the aberration distribution is required to be close to point symmetry with respect to the mark center.
  • the aberration must be as flat as possible over the entire mark.
  • Z4 defocus
  • Z5 pass
  • TIS occurs when using a box in box mark with an actual measurement device.
  • Z4 in order to generate TIS of 2.5 (nm), Z4 requires a linear component of aberration that is about 3 (m ⁇ ) difference at both ends of the mark, while ⁇ 7 has a deviation from the linear distribution of 3 ( A swell component of m ⁇ ) is required.
  • Design value of the measurement optical system Force When calculating the wavefront aberration distribution, the zernike orders have different magnitudes, such as the direction of the waviness of the distribution. Is also dominant. In fact, as described above, in the simulation using the wavefront aberration of the design value, TIS occurs almost only at Z4.
  • TIS becomes 0 when a mark is placed on the optical axis.
  • the zernike component Z4 has symmetry with respect to the optical axis. This is because even when the aberration distribution is not completely flat, the aberration amounts are equal between the inner stepped positions and the outer stepped positions.
  • the contribution ratio of Z4 force is considered to be small.
  • Fig. 8 shows the distribution of the zernike coefficient Z4 and how the marks are arranged in the center. Since the distribution of Z4 is well divided by the quadratic function based on the study of the design value, the quadratic function distribution was also used in this simulation. In addition, as an index representing the distribution of Z4, the difference between the aberration amount of Z4 at the center of the optical axis and the aberration amount of ⁇ 4 at a position 30 ⁇ m away from the center of the optical axis in the step detection direction ⁇ Z (m ⁇ ) Value was adopted.
  • the difference of ⁇ 4 at the optical axis center position and a position shifted by 30 m in the optical axis central force step detection direction is used as an indicator of the Z4 distribution, but the same discussion is possible at any object position. Yes, and of course, a function fitted to the Z4 distribution can be used as an index.
  • the mark to be measured is a box in box mark with a distance 2 & (m) between the outer steps and a distance 2b (; zm) between the inner steps, and the measurement direction of the step between the center position of the optical axis and the center position of the mark
  • the amount of displacement at is ⁇ (/ ⁇ ).
  • the aberration difference ⁇ (outside) and ⁇ (inside) between the outer step and the inner step are expressed by the following equations.
  • the average deviation of the step position per unit aberration and the measurement optical system Have the following relationship (described later).
  • TIS (-4 ⁇ ⁇ ⁇ -b I 900 X 0.27 / N.A.)
  • the aberration used is the zernike coefficient Z4.
  • This Z4 distribution is linear, and the three aberration types are linear distributions with a difference of 5, 20, and 40 meters between the value of aberration at one end of the mark and the value at the other end.
  • the simulation was performed.
  • the mark shape shown in Fig. 2 is used.
  • simulation was performed under the conditions of NA 0.3, 0.5, 0.6, and 0.7, and the average amount of movement at the inner and outer step positions was determined.
  • Figure 9 is a plot of this value divided by the difference in aberration at each step.
  • the horizontal axis represents NA
  • the vertical axis represents the average edge movement ⁇ per unit aberration.
  • FIG. 10 shows the data obtained by inverting the sign of the outer step data, the measurement data including the inner step data, and the above function plotted. This result shows that it is inversely proportional to N.A. This is discussed below.
  • zernike coefficient Z4 is 2 p 2 - 1 (p is approximately equivalent to NA) is expressed as, p is is normalized at the maximum NA.
  • NA0.5 is the displacement force S5m from the ideal wavefront at NA
  • NA0.7 is the displacement force 5 m from the ideal wavefront at that time.
  • the defocus amount is proportional to 1 I NA2.
  • the edge shift amount is proportional to both the defocus amount and N.A. as already described with reference to FIGS. 5a and 5b. Therefore, when the aberration amount of zernike coefficient Z4 is equal,
  • the force derived from the amount of aberration at a predetermined image height of the measurement optical system to determine how much Z4 should be suppressed according to the TIS specification value of the apparatus is derived. This will be described below.
  • TIS measurements are sequentially performed while moving the mark shown in Fig. 2 within the field of view of the measurement optical system, and the change characteristics of TIS are examined in the field of view. If you have, make adjustments. This makes it possible to bring the aberration close to a nearly symmetrical distribution in the field of view with respect to the center of the field of view.
  • This tilt component can be improved to some extent by optical adjustment, but there is a limit that can be improved by adjustment, and it cannot be reduced below a certain value.
  • the main cause of this is the Szernike coefficient Z4.
  • the flatness of the TIS has a standard that matches the specifications of the device.As shown in the first embodiment, the amount of fluctuation of the zernike coefficient Z4 in the design of this standard force device is reduced by Can be derived.
  • Equation 3 the distance between the optical axis center and the mark center ⁇ and TIS are constants, and the relationship between ⁇ and TIS is shown as follows.
  • TIS (-0.0012 ⁇ AZ- (a + b) / N.A.) ⁇ ⁇ ... (5 formulas)
  • ATIS I (-0.0012 ⁇ AZ- (a + b) / ⁇ . ⁇ .) ⁇ (-L / 2)
  • NA 0.5
  • the mark to be measured is the mark shown in Fig. 2
  • the distance between the outer steps is 10 ⁇ m
  • the distance between the inner steps is 5 ⁇ m
  • the field size is 50 ⁇ m.
  • the specification of TIS flatness in the field of view is 2
  • the fluctuation of the zernike coefficient ⁇ 4 at a position 30 ⁇ m away from the optical axis must be less than 2 m ⁇ .
  • TIS measurement is caused by various factors.
  • this factor is mainly ⁇ 4
  • the size of ⁇ 4 can be expressed as follows by transforming equation (3).
  • Eq. 8 is when the TIS factor is mainly Z4, and can be used particularly effectively when the entire mark deviates from the center of the optical axis, that is, ⁇ > a.
  • the design stage force should also be configured so that the aberration distribution is a linear distribution even for aberration terms where the detected deviation of the step position does not depend on the step direction. Therefore, the TIS of the measurement optical system can be further suppressed to a small value.
  • the mark used for the force described using the box in box mark as an example is not limited to this.
  • the shape is not limited as long as it is composed of at least two sets of steps arranged symmetrically, such as a plurality of convex lines and concave lines, combinations thereof, and combinations of line marks and box marks.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 本発明は、測定精度の高いマーク位置検出装置を構成することを目的とする。さらには、結像光学系の特性を、感度よく評価することができる評価方法を提供することを目的とする。そのため、基板に形成された複数の段差から構成されるマークからの反射光を結像させる結像光学系と、前記結像光学系によって形成された像を取り込む撮像手段と、前記撮像手段からの出力信号に基づいて前記段差の位置を検出する検出手段とを有し、前記結像光学系は、前記結像光学系の波面収差をZernike多項式で表したとき、該多項式のうちZ4の物体高による変化量が、前記マーク位置検出装置の位置検出精度により所定の範囲になっている。                                                                             

Description

明 細 書
マーク位置検出装置及び設計方法及び評価方法
技術分野
[0001] 本発明は、半導体ウェハ等の被検基板上の重ね合わせマークゃァライメント用マ ークなどを計測する重ね合わせ測定装置などのマーク位置検出装置及び設計方法 及び評価方法に関するものである。
背景技術
[0002] 半導体製造工程のフォトリソグラフィー工程において、その工程を管理するため形 成されたレジストパターンと下地パターンとの重ね合わせずれ量を測定する必要があ る。この測定に用いられるのが重ね合わせ測定装置である。この種の装置は被検マ ークに対して照明光を照射し、マークからの反射光を結像して CCDカメラ等で撮像し 、画像処理を経て重ね合わせずれ量を測定する。近年、半導体デバイスの微細化に 伴い、ウェハァライメント精度や、露光時の重ね合わせずれ量の精度も向上させる必 要があり、重ね合わせ測定装置などのマーク位置検出装置の測定精度に対する要 求仕様も厳しくなつている。そこで従来は例えば特許文献 1などに開示された調整方 法を用いてできる限り装置の精度を上げる工夫をしてきた。
特許文献 1:特開 2002— 25879号公報
発明の開示
発明が解決しょうとする課題
[0003] 上記従来の手法は重ね合わせ測定装置の最適な視野位置を定める方法である。
この方法を使用することで、製造された装置の最高のパフォーマンスを引き出すこと が可能となる。し力しこれらの調整方法はあくまでもその装置が潜在的にもつパフォ 一マンスを引き出すに過ぎず、装置そのものの出来が悪い場合にはいかに調整しよ うとも精度を向上できないという限界があった。また装置そのものの出来をよくするた めには、設計段階で予め収差を抑えるとともに、製造時に仕様値以内に製造公差を 抑える必要がある力 マーク位置検出の精度を低下させる全ての要因を完全に克服 することは非常に困難である。 [0004] 本発明では上記問題を解決するために、マーク位置検出装置にぉ 、てマーク位置 検出の精度に最も影響する収差は何力 また、その収差がどのような分布を有する 時に最も影響するかを突き止め、この収差および収差分布に着目して、測定精度の 高いマーク位置検出装置を構成することを目的とする。さらには、結像光学系の特性 を、感度よく評価することができる評価方法を提供することを目的とする。
課題を解決するための手段
[0005] 本発明のマーク位置検出装置は、基板に形成された複数の段差カゝら構成されるマ 一タカ の反射光を結像させる結像光学系と、前記結像光学系によって形成された 像を取り込む撮像手段と、前記撮像手段からの出力信号に基づいて前記段差の位 置を検出する検出手段とを有し、前記結像光学系は、前記結像光学系の波面収差 を Zernike多項式で表したとき、該多項式のうち Z4の物体高による変化量力 前記マ ーク位置検出装置の位置検出精度により所定の範囲になっているものである。
[0006] また、上記のマーク位置検出装置において、前記結像手段の光学系が以下の条 件式を満たすものである。
I -0.0012 Δ Χ- A Z-(a + b) / N.A. |く TIS設計
a:使用する TIS測定マークの中心力 外エッジまでの距離( m)
b :使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ:製造誤差等による光軸中心と測定マーク中心との段差の検出方向でのずれ ( At m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS設計:重ね合せずれ量がゼロの測定マークを測定したときの、重ね合せずれ量 の設計仕様
また、上記のマーク位置検出装置において、前記結像手段の光学系が以下の条 件式を満たすものである。
[0007] I 0.0012 -L- A Z-(a + b) / N.A. | < A TIS設計 a:使用する TIS測定マークの中心力 外エッジまでの距離( m)
b :使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
L:視野のサイズ m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
Δ TIS設計:装置の視野内における TIS平坦度 (最大の TISと最小の TISの差)の 設計仕様 (應)
本発明のマーク位置検出装置の結像光学系の設計方法は、前記結像光学系が以 下の条件式を満たすように設計されるものである。
[0008] I -0.0012 Δ Χ- A Z-(a + b) / N.A. | < TIS設計
a:使用する TIS測定マークの中心力も外エッジまでの距離( m)
b:使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ:製造誤差等による光軸中心と測定マーク中心との段差の検出方向でのずれ ( At m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS設計:重ね合せずれ量がゼロの測定マークを測定したときの、重ね合せずれ量 の設計仕様 (應)
本発明のマーク位置検出装置の結像光学系の設計方法は、前記結像光学系が以 下の条件式を満たすように設計されるものである。
[0009] I 0.0012 -L- A Z-(a + b) / N.A. | < A TIS設計
a:使用する TIS測定マークの中心力も外エッジまでの距離( m)
b:使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
L:視野のサイズ m) Δ Ζ :光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
Δ TIS設計:装置の視野内における TIS平坦度 (最大の TISと最小の TISの差)の 設計仕様
本発明の結像光学系の評価方法は、前記結像光学系によって、所定の軸に対して 対称に配置された少なくとも 2つの段差組を有するマークが形成された基板の像を形 成して、この像に基づ 、て前記それぞれの段差組の中心位置どうしのずれ量を計測 し、前記計測された中心位置どうしのずれ量と、前記中心位置どうしの真のずれ量と 、前記結像光学系の視野でのマークの中心位置と前記結像光学系の光軸中心との 距離と、前記結像光学系の開口数とを指標にして、前記結像光学系の性能を評価 するものである。
また、上記の結像光学系の評価方法において、前記結像光学系で測定されたマー クの計測値情報をもとに、以下の関係式力 導かれる Δ Ζの値に基づいて前記結像 光学系の特性を評価することが好まし 、。
Δ Ζ = I 830 'TIS測定 ·Ν.Α. / [ A X ' ( a + b )] I
a:段差組 1の中心位置力も段差までの距離 ( μ m)
b:段差組 2の中心位置力 段差までの距離 ( μ m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ :光軸中心と測定マーク中心との段差の検出方向に対する距離 m) Δ Z:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差の絶対値
(m l ) ,ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS測定:対称な段差間で測定された中心位置と、これ以外の対称な段差間で測 定
された中心位置との測定値の差 (nm)
また、上記の結像光学系の評価方法において、さらに、前記結像光学系の視野内 で測定マークを走査して、前記視野内の複数の位置での前記測定マークの中心位 置と前記結像光学系の光軸中心との距離と、前記計測された中心位置どうしのずれ 量とを求め、前記結像光学系視野内の測定マークの計測値情報をもとに、以下の関 係式から導かれる Δ Zの値に基づ 、て前記結像光学系の特性を評価することが好ま しい。
[0011] Δ Ζ = I 830 · A TIS測定 ·Ν.Α. / [L- ( a + b )] |
a:段差組 1の中心位置力も段差までの距離 ( μ m)
b:段差組 2の中心位置力 段差までの距離 ( μ m)
N.A.:結像手段の物体側の結像 N.A.
L :視野のサイズ m)
Δ Z:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差の絶対値
(m l ) ,ここで Z4は関数 (2 2— 1)に掛力る係数である
Δ TIS測定:測定マークを視野内で走査する手段により求めた視野内の TIS変動 を、一次関数でフィッティングした時の関数力も求めた視野両端で の TISの差 (nm)
本発明のマーク位置検出装置は、基板に形成された複数の段差から構成されるマ 一タカ の反射光を結像させる結像光学系と、前記結像光学系によって形成された 像を取り込む撮像手段と、前記撮像手段からの出力信号に基づいて前記段差の位 置を検出する検出手段とを有し、前記結像光学系は、前記結像光学系の波面収差 を Zernike多項式で表したとき、前記信号処理手段によって検出される前記段差の位 置が真の前記段差位置よりもずれる方向が、前記段差の向きに拠らず同じ方向にず れるように作用する収差の項の総和が所定の値に収まる様に設計されたものである。
[0012] 本発明の結像光学系の設計方法は、基板に形成された複数の段差から構成され るマークからの反射光を結像光学系によって結像させ、前記結像光学系によって形 成された像を撮像手段に取り込んで、前記撮像手段からの出力信号に基づいて前 記段差の位置を検出するマーク位置検出装置の前記結像光学系の設計方法にお いて、前記結像光学系は、前記結像光学系の波面収差を Zernike多項式で表したと き、前記 Zernike多項式の各項のうち、前記段差の向きに応じて異なる方向にずれる ように作用する項と、前記段差の向き拠らず同じ方向にずれるように作用する項とを 選択し、前記段差の向きに応じて異なる方向にずれるように作用する項は、少なくと も前記収差の分布が、前記結像光学系の視野内において均一になるように、前記段 差の向きに拠らず同じ方向にずれるように作用する項は、少なくとも前記収差の分布 力 前記結像光学系の視野内において直線分布となる特性を有するように、設計さ れるものである。
発明の効果
[0013] 本発明によれば、マークの位置を精度よく検出することができるマーク位置検出装 置を提供することができる。また本発明によれば、結像光学系の特性を、感度よく評 価することが可能になる。
図面の簡単な説明
[0014] [図 1]重ね合わせ測定装置の構成図である。
[図 2]シミュレーションで使用した測定マークを示す図である。
[図 3]マーク及びシミュレーションから求めた強度分布を示す図である。
[図 4]フォーカス及びデフォーカス状態の光線とマークを示す図である。
[図 5]デフォーカス量、 N.A.と検出される段差位置のずれ量との関係を示す図である
[図 6]シミュレーションで使用した収差の分布を示す図である。
[図 7]収差分布の模式図である。
[図 8]マーク位置と収差の分布を示す図である。
[図 9]単位収差あたりのエッジの平均ずれ量をプロットした図である。
[図 10]上記のプロットとこれにフィットした関数を示す図である。
発明を実施するための最良の形態
[0015] 以下図面を用いて本発明の実施形態を詳細に説明する。
(第 1実施形態)
図 1は重ね合わせ測定装置の例である。本装置における光路の詳細に関しては図 1に示す如ぐ光源 1から射出した広帯域波長の照明光束はコレクタレンズ 41、光源 リレーレンズ 42を経て、ライトガイドファイバー 44に入射する。ライトガイドファイバー 4 4から出射した光束は照明開口絞り 10によって光束径が制限され、コンデンサーレン ズ 2によって集光され視野絞り 3を均一に照明する。視野絞り 3は(a)に示すように SI の開口を有する。照明開口絞り 10の形状は (b)に示すような輪帯形状を有している。 視野絞り 3を射出した光束は照明リレーレンズ 4によってコリメートされ、ビームスプリツ ター 5により分岐される。さらに、対物レンズ 6によって集光されウェハ 21を垂直に照 射する。ここで視野絞り 3とウェハ 21とは共役な位置にある為、スリット S1の像は照明 リレーレンズ 4、対物レンズ 6を介してウェハ 21上に結像する。
[0016] ウェハ上に存在するストリートパターンが視野絞りの長手もしくは短手方向と 45度の 角度を成すようにウェハを搬送する。これはパターンの影響によるオートフォーカス動 作の誤差を低減するためである。前記 S 1の像が投影されて 、る位置のほぼ中心に 測定マークが来るようにステージを移動する。 S1の像はウェハ上のマーク 20を照射 する。ここで、 S1の像力もの反射光を L1とする。この時、ウェハ 21表面力も反射する 光束 L1は対物レンズ 6によってコリメートされ、ビームスプリツター 5を透過し、結像レ ンズ 7によって再び集光される。ビームスプリツター 14によって透過分岐される光束は 、結像開口絞り 11により光束系を制限され、収差補正用の結像系平行平面板 17を 経て、第 1リレーレンズ 12及び第 2リレーレンズ 13によって撮像素子 CCD8表面にゥ ェハマークの像を結像する。撮像素子 CCD8からの出力信号は画像処理手段 9によ り処理され、ウェハ上のマークの位置検出や重ね合わせ量の計測及びテレビモニタ 一による観察を行う。
[0017] 一方、ビームスプリツター 14を反射分岐された光束は AF系視野絞り 16を透過し、 AF第一リレーレンズ 30によってコリメートされた後、平行平面板 37を透過し、瞳分割 ミラー 31上に照明開口絞り 10の像を結像する。平行平面板 37は照明開口絞り像を 瞳分割ミラーの中心に位置調整するためのものであり、チルト調整が可能に構成され ている。光束 L1は瞳分割ミラーによって二光束に分離され、 AF第二リレーレンズ 32 により再び集光される。さらに、シリンドリカルレンズ 33を介して AFセンサー 34上の 2 個所に光束 L1を計測方向に関して結像する。また、非計測方向に関してはシリンドリ カルレンズ 33が屈折力を持ち、 L1の光束は AFセンサー 34上に光源像を結像する 。オートフォーカスの動作原理は例えば特開 2002— 40322にその詳細が記載され て 、るので本実施形態では省略する。
[0018] 次に、測定光学系の設計手順の概略について説明する。物体側から、対物レンズ 6、ビームスプリツター 5、結像レンズ 7、ビームスプリツター 14、第 1リレーレンズ 12、 平行平面板 17、結像開口絞り 11、第 2リレーレンズ 13から構成される測定光学系の 設計は以下の手順で行われる。まず、測定光学系を構成する全ての光学素子のそ れぞれの面形状と内部屈折率、及び光学素子間の間隔を設定し、光線収差が所定 の値になるように各パラメータを再度設定し直して、光線収差が所望の範囲に収まる まで同手順を繰り返す。次に先の設計で得られた測定光学系の波面収差を、光軸周 りの射出瞳を 1として規格ィ匕した半径 Pと、動径角 をパラメータとする zernike多項 式にフィッティングさせる。 Zernike多項式へのフィッティングは光軸中心の光線に加 えて、任意の物体高の光線に対しても行う。このようにして求められた zernike多項式 の物体高による変動から光学系全体の波面収差を評価し、変動量が所定の値に収 まっていなければ、各光学素子のパラメータを微調整し、変動量が所望の範囲に収 まるまで同手順を繰り返す。
[0019] 次に、本発明を導くために発明者が行った重ね合わせ測定シミュレーションについ て説明する。使用した被検マークは図 2に示す 10 μ m口の box in boxマークである。 本マークは段差の向きがマーク中心に向かって凸から凹となる 2つの段差 el、e4から なる 10 μ m口の外マークと、段差の向きがマーク中心に向かって凹から凸となる 2つ の段差 e2、 e3力もなる 5 m口の内マークとで構成されている。シミュレーション手法 には結像シミュレーションを用いた。また、波面収差として、 zernike多項式を用いた。 シミュレーションの各パラメータは表 1に示すとおりである。
[0020] [表 1]
Figure imgf000010_0001
まず重ね合わせずれの測定光学系(結像光学系)の設計値から各物***置におけ る波面収差を zernike多項式として求め、物***置による各 zernike次数の変動を調 ベる。後述するが、この分布が重ね合わせずれ量の誤差 TIS (Tool Induced Shift)を 発生させる。シミュレーション上で測定光学系の光軸力 60 μ mの位置にマークを配 置し、図 2で示す各段差 el, e2, e3, e4それぞれに対応する波面収差を入力して結 像シミュレーションを行う。なお物***置は 60 mである必要はないが、値が大きいほ ど TISが大きくなることをふまえて、ここでは 60 mを採用する。
[0021] このシミュレーションの結果、図 3に示すような強度分布が得られた。それぞれの段 差位置に対応する信号強度のボトム位置を検出することで、設定した収差による各 段差の移動量を求め、これらの値から、 1式を用いて TISを求めることができる。なお 図 3はエッジの移動量を誇張して描いており、実際の移動量は應のオーダーである
TIS = (x2 + x3) /2 - (xl + x4) /2 … (1式)
xl: 段差 elの移動量
x2: 段差 e2の移動量
x3: 段差 e3の移動量
x4: 段差 e4の移動量
このようにして求めた TISは 0にはならず、何らかの値を持つ。そこでこの TISに最も 効く zernike次数は何かを確かめるため、各エッジ位置での波面収差から任意の zerni ke次数のみを抜き出して、それを新たな収差として入力し再び結像シミュレーション を行った。そこで得られた特定の zernike次数による TISと全波面収差による TISを見比 ベて、各 zernike次数がどの程度寄与しているのかを調べた。この結果、 TISに最も影 響を及ぼす zernike次数は Z4であることが判明した。 Z4はデフォーカスを表す項であり 、各像面によるデフォーカス差すなわち像面湾曲が TISに影響を及ぼすのである。こ こで TISの発生には様々な光学的な要因が考えられる力 本実施形態においては前 記マーク形状、及びパラメータを用いた場合であり、各物***置における波面収差を TISの発生要因として考えた場合である。
[0022] TISは各段差位置が収差等によりずれることにより生じる。以下で zernike係数 Z4 (デ フォーカス)がある場合に各段差位置がずれることをシミュレーション結果を元に立て た仮説を用いて説明する。図 4 (a)、(b)はそれぞれマークの段差部分を拡大したも ので、(a)はデフォーカスがない場合、(b)は対物レンズをマーク力 離す方向にデ フォーカスした場合を示している。光線 A1はマークの上部、光線 A2は段差部分、光 線 A3はマーク下部でそれぞれ回折した光線を示している。(a)では、 A1から A2まで は同じ位相状態であるが、 A2で段差部分をまたぎ急激に位相の変化が生じる。その ため結像計算での強度にも変化が起こり、この位置がエッジとして認識される。
[0023] 一方 (b)では、光線 B2が示すように段差より手前側で光線の一部が段差にかかり 始める。そのため光線の位相に変化が生じ始め、結像計算での強度にも変化が起こ る。シミュレーションによると回折光線の概ね 2 I 5が段差部分から出たところで信号 強度は最小値となり、ここがエッジとして認識される。即ちエッジ位置が段差の手前側 にずれて観察される。
[0024] 図 5 (a)にデフォーカス量が異なる場合、 (b)に N.A.が異なる場合の光の様子を示 す。光線 C1に対して C2は zernike係数 Z4の収差量が多ぐデフォーカスが大きくなつ ている。また光線 D1に対して D2は光線の N.Aが大きくなつている。光線 C2、 D2共に 光線の一部が段差にかかる位置がより段差の手前側(凸側)に移り、強度のボトムか ら見積もった段差位置はより段差の手前側(凸側)にずれて観察される。シミュレーシ ヨン結果力 エッジ位置のずれ量はほぼデフォーカス量、 N.A.に比例することが確認 されている。図 5では図面左から、凸から凹への段差について説明したが、凹から凸 への段差でも同様に説明することができ、凹力も凸にずれる場合には検出される段 差位置がずれる方向は図 5に示す方向とちょうど正反対の方向になる。
[0025] また、対物レンズがマーク力も遠ざ力る方向にデフォーカスされた場合と、対物レン ズがマークに近づく方向にデフォーカスされた場合とでは、検出される段差位置のず れ方向が反対になる。すなわち、対物レンズがマークに近づく方向にデフォーカスさ れた場合、検出される段差位置は段差の凹側にずれて観察される。
マークの全ての段差位置が同じデフォーカス量、即ち zemike係数 Z4の収差量が等 しければ、 1式で xl = -x2 = x3 = x4となり、それぞれのエッジ位置のずれが相殺 して TISは 0となる。しかし各エッジの位置で zernike係数 Z4が変化して!/、れば相殺す ることができず TISが発生する。これが像面湾曲があるときの TISの発生メカニズムであ る。
[0026] 以上、測定光学系の設計値から求めた波面収差にお!、て、 zernike係数 Z4力 測 定に影響を及ぼすことを説明した。
次に波面収差の物***置による変動を仮定して、どのような分布のときに TISが出 やす 、のかにっ 、て検討結果の説明を行う。この検討の過程で zernike多項式の各 次数は、測定光学系で検出されるマークの段差のずれ方向に関して 2つのタイプに 分類できることが分かった。 1つはマーク全面で均一の収差量のときに、段差の向き によらずどの段差も同じ方向にほぼ同じ量ずれて検出されるタイプの収差で、 zernike 係数 Z2、 Z7などがこれに相当する。もう 1つはマーク全面で均一の収差量のときに、 段差のずれ量の絶対値はほぼ等しいが、段差の向きによって検出される段差位置の ずれ方向が異なって検出されるタイプの収差で、 zernike係数 Z4、 Z5など力これに相 当する。
[0027] 以下に、上記 2タイプの収差の代表として Z4、 Z7に注目してシミュレーションを行つ た結果を示す。 '
シミュレーションで設定した各 zernike次数の収差分布を図 6 (a)、 (b)に示す。
(a)において、 typelはマークの中心で収差量 0、両端で 20ιη λの差となる物***置に 比例する収差分布、 type2は中心で一 30m ;i、 typelと同じ傾きをもつ収差分布、 Type 3は左外側のエッジ位置で type2と同じ—SOm A 、両端で 40m λの差となる typelの 2 倍の傾きをもつ収差分布である。また、(b)において、 type4は type2の両外側のエツ ジ位置で収差量をプラス側に 3m λ変化させた湾曲した収差分布、 type5は type2の左 外側のエッジ位置を +3ιη λ、右外側のエッジ位置を— 3m λ変化させた中心に対して 点対称となる収差分布である。
[0028] 表 2に zernike係数 Ζ4が上記収差分布となる測定光学系、表 3に Z7が上記収差分布 となる測定光学系にぉレ、て検出される各段差 el、 e2、 e3、 e4の移動量 xl〜x4、内 側段差、外側段差の平均移動量、 TISをまとめて記す。
[0029] [表 2]
Figure imgf000013_0001
[0030] [表 3]
差替え用紙 (規則 26) 収差: x 1 x 2 x 3 x 4 内側段差外側段差 TIS
Figure imgf000014_0001
Z7 (nm) (mn) (nm) (nm) 平均移動平均移動 \srnj
璗 (nm) 菌 (nm)
Type 1 9.9 2.0 一 2.0 -9.9 0.0 0.0 0.0
Type 2 - 13.8 -21.8 -26.0 -33.6 -23.9 -23.7 一 0.2
Type 3 -13.8 -25.7 一 38.1 -49.5 -3L9 一 31.7 -0.2
Type 4 - 11.4 -21.8 -26.0 -31.2 一 23.9 一 21.3 一 2.6
Type 5 — 11.4 -21.8 -26.0 -36.0 -23.9 -23.7 -0.2 この結果から次のことが分かる。
1.収差がない場合にも各段差位置はわずかにずれて観察され、 xl = 2、 x2 =— 2、 X 3 = 2、 x4 =— 2nmとなる。これは隣り合う段差からの干渉によるものである。初期状態 でのこのずれ量を考慮すると収差量と検出される段差位置のずれ量にはほぼ比例の 関係が見られる。即ち xl ' = xl— 2、χ2' = χ2 + 2、χ3' = χ3— 2、 χ4' = χ4 + 2とすると 、 2式となる。
[0031] χΐ ' χ2, χ3' χ4' (各段差位置での収差量) …(2式)
2. Zemike係数 Ζ4を代表とする、段差の向きにより検出される段差の移動方向が逆に なるタイプの収差では、物***置での収差変動が大きいほど TISも大きくなる。変動 量と TISにはほぼ比例の関係が見られる。
3. Zemike係数 Z7を代表とする、段差の向きによらず検出される段差の移動方向が 同じタイプの収差では、物***置での収差変動が直線的であれば TISはほぼ発生し ない。また直線的な分布力も外れても、マーク中心に対して点対称となる収差分布で あれば TISはほぼ発生しな!/、。つまりマーク中心に対して収差が点対称な分布力 外 れるほど TISは大きく発生する。
[0032] 以下で上記の事実を 1式を用いて説明する。まず段差の向きにより検出される段差 の移動方向が逆になるタイプの収差に関して、もとの収差分布が図 7 (a)の収差分布 1であったとする。このとき各段差の移動量は xl =— a、 x2 = a x3 =— a、 x4 = a (a > 0 )となり 1式を用いて、次の式となる。
TIS1= (a -a) /2 - (一 a + a) /2 = 0
この分布 1から分布 2への変化を考えると、マークのエッジ位置 e2、 e3、 e4での収 差の絶対値がどれも増加する方向になる。収差が大きレ、ほど段差の移動量は大きく
差替え周紙 (規則 26) なるため、各エッジの移動量は xl =— a、 x2 = a + b、 x3 = a— c、 x4 = a + d (a〉 0 、 d〉 c〉 b〉 0)と書け、 1式を用いて、次の式となる。
[0033] TIS2 = [(a + b) + (一 a c)] / 2 a + (a + d)] / 2
= (b - c) / 2 - d / 2
(b— c) / 2く 0 (内側段差平均) , d / 2 > 0 (外側段差平均)より内側、外側段差 平均で移動量の符号が逆になり、より大きな TISが発生することが分かる。このような 収差タイプのときに TISを小さく抑えるためには (b— c)、 dの両方を 0に近づけることが 必要であり、内エッジ間、外エッジ間の収差変動を共に小さくすることが必要となる。 即ちマーク全域にわたって収差力 Sフラットであることが要求される。
[0034] 次に段差の向きによらず検出される段差の移動方向が同じタイプの収差に関して、 もとの収差分布が図 7 (b)の分布 3であったとする。このとき各段差の移動量を xl = a、 x2 =— b、 x3 = cゝ x4 = d (a、 b、 c、 d〉 0 )として、 1式を用いて、次の式とな る。
TIS3 = (一 b— c) /2 (一 a— d) / 2
=[(-b + 2) + (-c -2)] I 2 - [(-a - 2) + (一 d + 2)] / 2
収差なしでのずれ量を考慮すると、各段差のずれ量と収差量にはほぼ比例の関系 があるため、 2式を用いて ( a— 2) (elでの収差量)、(—b + 2) ^ (e2での収差 量)、 (- C - 2) c (e3での収差量)、 (-d + 2) c (e4での収差量)とそれぞれ書ける 。従って収差の分布が物***置に対して直線であることを考慮すると、次の式となり、 直線的な分布では TISがほとんど発生しないことが分かる。
[0035] TIS3∞ [(e2での収差量) + (e3での収差量)] / 2
[(elでの収差量) + (e4での収差量)] I 2
= (マーク中心での収差量) (マーク中心での収差量)
= 0
この分布 3から分布 4への変化を考える。図 7 (b)ではマークの段差位置 el、 e4で 収差の絶対値が共に減少する方向を示している力 増加する方向であってもよい。 検出される各段差の移動量は xl =— a+e、 x2 = b、 x3 = c、 x4 = -d + f(a、 b、 c 、 d〉 0、 e、 f;〉 0(図の変化時)、く 0(図と逆向きの変化時))と書け、 1式を用いて、次 の式となり、 TISが発生する。
[0036] TIS4 = (― b - c) /2 -[(-a + e) + (-d + l)] / 2
= (一 b— c) /2 - (-a - d) / 2 - (e + i) / 2
= TIS3- (e + D / 2 = - (e + D / 2
このような収差タイプのときに TISを小さく抑えるためには、 eと!^異符合になる、す なわち収差の直線的な分布力もの外れ方が逆方向であることが必要である。つまり 収差の分布がマーク中心に対して点対称に近いことが要求される。
[0037] 以上をまとめると、 TISを小さく抑えるためには次のことが要求される。
1. Zernike係数 Z4を代表とする、段差の向きにより検出される段差の移動方向が逆に なるタイプの収差では、マーク全域にわたって収差ができる限りフラットでなければな らない。また表には示していないが、このタイプの収差では同じ収差分布のとき Z4 (デ フォーカス)が最も TISを発生させ、ついで Z5(ァス)がその 5割ほどの TISを発生させる という結果が得られている。
2. Zernike係数 Z7を代表とする、段差の向きによらず検出される段差の移動方向が 同じタイプの収差では、マークの中心に対して収差の分布が点対称に近くなければ ならない。し力 現実的には点対称に制御することは困難であるため、収差分布にう ねりが起こらないように設計、製造及び調整を行う。またこのタイプの収差では同じ収 差分布のとき Z2(横ずれ)が最も TISを発生させ、ついで Z7 (コマ)がその 6割ほどの TIS を発生させると 、う結果が得られて 、る。
[0038] 以上の結果を踏まえて、実際の測定装置で box in boxマークを使用する際に TISが 発生する様子を考察する。シミュレーションによると TISが 2.5 (nm)発生するには Z4で はマークの両端で約 3 (m λ )の差となる収差の直線成分が必要であり、一方 Ζ7では 直線分布からのずれが 3 (m λ )となるうねり成分が必要である。測定光学系の設計値 力 波面収差の分布を求めると zernikeの各次数で値の大小、分布のうねり方など傾 向は異なる力 マークスケールで見ると収差分布はほぼ直線成分の方がうねり成分よ りも支配的である。事実、先に述べたとおり設計値の波面収差を用いたシミュレーショ ンでは TISはほぼ Z4のみで発生している。なおシミュレーションでは光軸上にマークを 配置すると TISは 0になる。これは zernike成分 Z4が光軸に関して対称性を有するため 、収差の分布が完全にフラットでない場合であっても内側段差位置どうし、外側段差 位置どうしでそれぞれ収差量が等しくなるためである。し力 実機では、製造誤差等 により望ましい視野の中心力 ずれた位置において測定する可能性があるため、少 なくとも Z4の収差成分による TISへの影響は必ず存在する。また前述したように、 TIS に対する収差のうねり成分の影響はあまり支配的でないことを考慮しても、 Z4力 の 寄与の割合は少なくはな 、と考えられる。
[0039] そこで、ある zernike係数 Z4の分布のときに、視野位置にずれが起こると、 TISがいく ら発生するかをシミュレーションにより求めた。この結果により、ある TISの仕様を達成 するためには、少なくとも Z4の収差量、及び視野位置のずれ量をいくら以下に抑えて 設計すればよ!、かがわかる。
以下に検討結果を説明する。図 8に zernike係数 Z4の分布と中心カゝらずれてマーク が配置されて ヽる様子を示す。 Z4の分布は設計値の検討から 2次関数でよくフィット できることが分力つているので、本シミュレーションでも 2次関数分布とした。また、 Z4 の分布を表す指標として光軸中心での Z4の収差量と、光軸中心から段差の検出方 向に 30 μ mずれた位置での Ζ4の収差量との差 Δ Z(m λ )の値を採用した。なお、ここ では光軸中心位置と、光軸中心力 段差の検出方向に 30 mずれた位置での Ζ4の 差分を Z4の分布の指標としたが、任意の物***置でも同様の議論が可能であり、ま た Z4の分布にフィッティングさせた関数を指標として用いてもょ 、ことは 、うまでもな い。
[0040] 測定するマークは、外側段差間の距離 2&( m)、内側段差間の距離 2b (; z m)の box i n boxマークとし、光軸中心位置と対するマーク中心位置との段差の測定方向でのず れ量を ΔΧ(/ζπι)とする。外側段差どうし、内側段差どうしの収差量の差 Δζ (外)、 Δζ( 内)は、次の式となる。
Δζ (外) = ΔΖ X [(a + ΔΧ) / 30]2] ΔΖ X [(— a + ΔΧ) / 30]2]
= -4ΔΧ· AZ-a/ 900 (ml)
Δζ (内) = [-ΔΖ X [(b + ΔΧ) I 30]2] ΔΖ X [(— b + ΔΧ) I 30]2]
= -4ΔΧ· ΔΖ-b I 900 (ml)
シミュレーションによると単位収差量あたりの段差位置の平均ずれ量と測定光学系 の開口数とには、次の関係(後述)がある。
[0041] 外側段差間: 0.27/ N.A (nm/ml)
内側段差間: 0.27/ N.A. (nm/ml)
このため、 3式となる。
TIS = (-4ΔΧ· ΔΖ-b I 900 X 0.27/ N.A.)
- [-4ΔΧ· ΔΖ-a I 900 X (-0.27/ N.A)]
= -0.0012 ΔΧ- AZ-(a + b) / N.A. (nm) … 式)
装置における TISの設計仕様 TIS設計を満足するためには、少なくともここで求めた Z4による TISが設計仕様内に収まる必要があるため、 ΔΖは、以下の条件式を満たさ なければならない。
[0042] I -0.0012 ΔΧ- AZ-(a + b) / N.A. | < TIS設計(nm) ·'·(4式)
例として Ν.Α.=0.5、通常よく用いる外エッジ幅 30 m)、内エッジ幅 15 m)の box i n boxマークを仮定して計算すると I—0.054 ΔΧ· ΔΖ | < TIS設計(nm)であり、 TIS の設計仕様が 3 (nm)のとき、 I ΔΧ·ΔΖ | 〈 56 ( m'm )となる。これよりマーク位 置が 25 μ mずれる可能性があるとき、光軸から 30 ( μ m)離れた位置での zernike係数 Z4の変動は 2 (m λ )未満でなければならな!/、。
[0043] シミュレーションから、単位収差量あたりの検出される段差位置の平均ずれ量 Xave と収差量の差には N.A.を用いて、以下の関係があることが分力つた。
Xave (^) = - 0.27/ N.A (nm / m λ )
Xave (内) =0.27/ N.A. (nm / m )
以下でこれを説明する。
[0044] 使用した収差は zernike係数 Z4である。この Z4の分布が直線的であり、かつマーク の一方の端での収差の値ともう一方の端での値との差が 5、 20、 40mえとなる直線的 な分布の 3つの収差タイプを用いてシミュレーションを行った。マーク形状は図 2に示 したものを用いている。この収差タイプそれぞれについて N.A.0.3、 0.5、 0.6、 0.7の条 件でシミュレーションを行い、内、外側段差位置の平均移動量を求めた。この値を各 段差位置での収差量の差で割ったものをプロットしたものが図 9である。横軸は N.A. 、縦軸は単位収差あたりのエッジの平均移動量 δを表す。このデータを δ = aX(N.A -) bの関数を用いてフィッティングした結果、内、外マークともほぼ近い値が得られたた めこれらを平均し、 a = 0.27、 b= 1.0の値を得た。尚、図 9のデータは、図 2のマーク の上下が反転したマークを用いた場合、すなわちマークの中心に向力つて外側段差 が凹から凸に向かい、内側段差が凸から凹に向力うマークの場合には内マークと外 マークとで符号が逆転する。
[0045] 図 10に外側段差データの符号を反転したものと内側段差データからなる測定デー タと上記関数をプロットしたものを示す。この結果は N.Aに反比例することを示して ヽ る。以下でこれについて考察する。
zernike係数 Z4は 2 p 2 - 1( pは N.A.とほぼ等価)と表され、最大の N.A.で pは規格 化されている。つまり 5mえの収差量というとき N.A.0.5ではこの N.A.での理想波面から のずれ量力 S5m ということで、 N.A.0.7ではそのときの理想波面からのずれ量力 5m ということになる。 N.A.が大きいほど pも大きくなるので、ある N.A.で見たときには N.A. 0.5での 5mえの方が N.A.0.7での 5mえよりもデフォーカスへの効きは大きいことになる 。具体的には /0 2の項が効いて、 zernike係数 Z4が等量のときデフォーカス量は 1 I N. A.2に比例する。
[0046] またエッジのずれ量は図 5a、 5bを用いて既に説明したとおり、デフォーカス量、 N.A. の両方に比例する。したがって zernike係数 Z4の収差量が等しいとき、次の関係となる
(デフォーカス量) oc 1 I N.A.2
(検出される段差位置のずれ量) cc (デフォーカス量) X N.A.
このため、次の関係となり、 N.A.の一乗に反比例する結果となる。
[0047] (検出される段差位置のずれ量) cc 1 I N.A.2 X N.A.= 1 / N.A.
(第 2実施形態)
上記の第 1実施形態では測定光学系の所定の像高における収差量から、装置の TI Sの仕様値に応じて Z4をどのくらいの値に抑えるべきかを導いた力 本実施形態では 、前記 3式の関係を用いて、視野内における TIS平坦度 (TISの最大値と最小値の差) の仕様力も満たすべき zernike係数 Z4の許容変動量を導く。以下、説明する。
[0048] 重ね合わせ測定装置で使用するマークには様々な大きさのものがあり、これらのマ ークを視野内のどの位置で測定してもできる限り小さい TISとなることが望ましい。その ため図 2に示すようなマークを測定光学系の視野内で動かしながら順次 TISの測定を 行い、視野領域で TISの変化特性を調べ、この特性を手がかりに TISが良好な位置を 視野中心に持つて 、く調整が行われて 、る。これにより視野の中心に対して収差を 視野内でほぼ対称な分布に近づけることができる力 完全にフラットにはならず必ず 傾斜成分が残る。この傾斜成分は光学調整によりある程度は改善できるが、調整に よって改善できる限界があり、ある値以下に小さくすることは出来ない。この主な原因 力 Szernike係数 Z4である。 TISの平坦度には装置の仕様に見合った基準が設けられる 1S 第 1実施形態に示したように、 3式を用いることでこの基準力 装置の設計におい て zernike係数 Z4の変動量をいくら以下に抑えなければならないかを導出することが できる。
[0049] 今、式 3において、光軸中心とマーク中心の距離 ΔΧと TIS以外は定数とし、 ΔΧと TI Sとの関係を示すと以下のようになる。
TIS = (-0.0012· AZ-(a + b) / N.A.) · ΔΧ …(5式)
これはマークを視野位置で動力して 、くときの TISの値、すなわち TISの変化特性を 表している。この式力も変化量は一次関数になり、視野の両端でもっとも大きな TIS差 が出ることがわかる。そこで視野サイズを U/zm)とすると TISの平坦度 ATIS(nm)は、 6 式となる。
[0050] ATIS = I (-0.0012· AZ-(a + b) / Ν.Α.)· (-L / 2)
- (-0.0012· AZ-(a + b) / N.A.) · (L / 2) |
= I 0.0012-L-AZ-(a + b)/N.A | (nm) --(6式)
TISの平坦度の設計仕様 Δ TIS設計を満足するためには、少なくともここで求めた Δ TISが設計仕様内に収まる必要があるので、 ΔΖが以下の条件式を満たさなければな らない。
[0051] I 0.0012·い AZ'(a + b)/N.A. I < ATIS設計(nm) "-(7式)
例えば N.A. =を 0.5とし、測定するマークを図 2に示す形状のマークであって外側段 差間の距離 10 μ m、内側段差間の距離 5 μ mのマークとし、視野サイズを 50 μ mとする と、 I 0.9 ΔΖ Iく ATIS設計 (nm)となる。この場合、視野内の TIS平坦度の仕様を 2應 とすると、光軸から 30 μ m離れた位置での zernike係数 Ζ4の変動は 2m λ未満でなけ ればならない。
(第 3実施形態)
また実際の装置にお!、て任意の視野位置に測定マークを配置し、 TISの測定値 TIS 測定を得たとする。この TIS測定は様々な要因により生じている力 この要因が主に Ζ 4である場合〖こは Ζ4の大きさは、 3式を変形して、以下のように表せる。
| ΔΖ | = | —830-TIS測定 ·Ν.Α. / [AX-(a + b)] | (πιλ)···(8式)
この式カゝら直接測定が困難な物***置による zernike係数 Ζ4の変動を推定すること が可能であり、光学系の特性を評価することが出来る。 8式は、 TISの要因が主に Z4 である場合であり、マーク全体が光軸中心からはずれる、すなわち ΔΧ > aである場 合には特に有効に用いることができる。
(第 4実施形態)
上記評価方法をさらに信頼性高く行うためには、視野位置で小型の測定マークを 走査して視野内での TISの変動を調べる方法が有効である。以下にこの方法を説明 する。
視野内で小型の測定マークを走査し順次 TISを測定して、視野内における TISの変 動を求める。この変動の原因が主に Z4である。次にこの変動を一次関数でフイツティ ングし、この関数から求めた視野両端での TISの差を ATIS測定とすると 6式を変形し 、次の式となる。
| ΔΖ | = | 830· ATIS測定 ·Ν.Α. / [L-(a + b)] | (ml) ·'·(9式)
この式を用いることにより直接測定が困難な物***置による zernike係数 Ζ4の変動 を推定することが可能であり、光学系の特性を評価することが出来る。
(第 5実施形態)
以上の第 2実施形態力 第 4実施形態では zernike多項式のうち、 Z4に注目して、説 明したが、これらの説明は、 zernike多項式の収差の項のうち、段差の向きによって検 出される段差の位置のずれ方向が異なる全ての収差の項を適用できることは言うま でもない。設計時の指標として、上記特性を示す全ての収差の項を指標として用いて もよいし、また、 TISのずれ量に対して影響の大きい項をいくつか選択して指標として 用いてもよい。
第 1実施形態で述べたように、さらに、検出される段差の位置のずれ方向が段差の 向きによらない収差項についても、その収差分布が直線分布となるように設計の段階 力も構成することによって、更にその測定光学系の TISを小さい値に抑えることができ る。
また、本実施形態では box in boxマークを例にとって説明を行った力 使用するマ ークはこれにとらわれない。複数の凸ラインや凹ライン、それらの組合せ、またライン マークと boxマークとの組合せ等、少なくとも対称に配置された少なくとも 2組の段差で 構成されていれば形状は問わない。ただし、光学系を設計する場合や、光学系の評 価を行う場合には、収差によって発生する TIS量の大きい、すなわち収差に対する感 度の高 、マークを用いることが好まし 、。

Claims

請求の範囲
[1] 基板に形成された複数の段差から構成されるマークからの反射光を結像させる結 像光学系と、
前記結像光学系によって形成された像を取り込む撮像手段と、
前記撮像手段からの出力信号に基づいて前記段差の位置を検出する検出手段と を有し、
前記結像光学系は、前記結像光学系の波面収差を Zernike多項式で表したとき、 該多項式のうち Z4の物体高による変化量が、前記マーク位置検出装置の位置検出 精度により所定の範囲になっている
ことを特徴とするマーク位置検出装置。
[2] 請求項 1に記載のマーク位置検出装置において、
前記結像手段の光学系が以下の条件式を満たす
I -0.0012 Δ Χ- A Z-(a + b) / N.A. |く TIS設計
a:使用する TIS測定マークの中心力 外エッジまでの距離( m)
b :使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ:製造誤差等による光軸中心と測定マーク中心との段差の検出方向でのずれ ( At m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS設計:重ね合せずれ量がゼロの測定マークを測定したときの、重ね合せずれ量 の設計仕様
ことを特徴とするマーク位置検出装置。
[3] 請求項 1に記載のマーク位置検出装置において、
前記結像手段の光学系が以下の条件式を満たす
I 0.0012 -L- A Z-(a + b) / N.A. | < A TIS設計
a:使用する TIS測定マークの中心力 外エッジまでの距離( m) b :使用する TIS測定マークの中心から内エッジまでの距離( m) N.A.:結像手段の物体側の結像 N.A.
L:視野のサイズ m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 2— 1)に掛力る係数である
Δ TIS設計:装置の視野内における TIS平坦度 (最大の TISと最小の TISの差)の 設計仕様 (應)
ことを特徴とするマーク位置検出装置。
[4] マーク位置検出装置の結像光学系の設計方法において、
前記結像光学系が以下の条件式を満たすように設計される
I -0.0012 Δ Χ- A Z-(a + b) / N.A. |く TIS設計
a:使用する TIS測定マークの中心力も外エッジまでの距離( m)
b:使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ:製造誤差等による光軸中心と測定マーク中心との段差の検出方向でのずれ ( At m)
Δ Ζ:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS設計:重ね合せずれ量がゼロの測定マークを測定したときの、重ね合せずれ量 の設計仕様 (應)
ことを特徴とする結像光学系の設計方法。
[5] マーク位置検出装置の結像光学系の設計方法において、
前記結像光学系が以下の条件式を満たすように設計される
I 0.0012 -L- A Z-(a + b) / N.A. | < A TIS設計
a:使用する TIS測定マークの中心力も外エッジまでの距離( m)
b:使用する TIS測定マークの中心から内エッジまでの距離( m)
N.A.:結像手段の物体側の結像 N.A. L :視野のサイズ m)
Δ Ζ :光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差(m ) ここで Z4は関数 (2 p 2— 1)に掛力る係数である。
Δ TIS設計:装置の視野内における TIS平坦度 (最大の TISと最小の TISの差)の 設計仕様
ことを特徴とする結像光学系の設計方法。
[6] 結像光学系の評価方法において、
前記結像光学系によって、所定の軸に対して対称に配置された少なくとも 2つの段 差組を有するマークが形成された基板の像を形成して、この像に基づ!、て前記それ ぞれの段差組の中心位置どうしのずれ量を計測し、
前記計測された中心位置どうしのずれ量と、前記中心位置どうしの真のずれ量と、 前記結像光学系の視野でのマークの中心位置と前記結像光学系の光軸中心との距 離と、前記結像光学系の開口数とを指標にして、前記結像光学系の性能を評価する ことを特徴とする結像光学系の評価方法。
[7] 請求項 6に記載の結像光学系の評価方法にお 、て、
前記結像光学系で測定されたマークの計測値情報をもとに、以下の関係式から導 かれる Δ Zの値に基づ 、て前記結像光学系の特性を評価する
Δ Ζ = I 830 'TIS測定 ·Ν.Α. / [ A X ' ( a + b )] I
a:段差組 1の中心位置力も段差までの距離 ( μ m)
b:段差組 2の中心位置力 段差までの距離 ( μ m)
N.A.:結像手段の物体側の結像 N.A.
Δ Χ :光軸中心と測定マーク中心との段差の検出方向に対する距離 m) Δ Z:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差の絶対値
(m l ) ,ここで Z4は関数 (2 p 2— 1)に掛力る係数である
TIS測定:対称な段差間で測定された中心位置と、これ以外の対称な段差間で測 定
された中心位置との測定値の差 (nm)
ことを特徴とする結像光学系の評価方法。
[8] 請求項 6に記載の結像光学系の評価方法にお 、て、
さらに、前記結像光学系の視野内で測定マークを走査して、前記視野内の複数の 位置での前記測定マークの中心位置と前記結像光学系の光軸中心との距離と、前 記計測された中心位置どうしのずれ量とを求め、前記結像光学系視野内の測定マー クの計測値情報をもとに、以下の関係式力 導かれる Δ Ζの値に基づいて前記結像 光学系の特性を評価する
Δ Ζ = I 830 · A TIS測定 ·Ν.Α. / [L- ( a + b )] |
a:段差組 1の中心位置力も段差までの距離 ( μ m)
b:段差組 2の中心位置力 段差までの距離 ( μ m)
N.A.:結像手段の物体側の結像 N.A.
L:視野のサイズ m)
Δ Z:光軸中心と物体高 30 μ mでの波面収差 Zernike係数 Ζ4の差の絶対値
(m l ) ,ここで Z4は関数 (2 p 2— 1)に掛力る係数である
Δ TIS測定:測定マークを視野内で走査する手段により求めた視野内の TIS変動 を、一次関数でフィッティングした時の関数力も求めた視野両端で の TISの差 (nm)
ことを特徴とする結像光学系の評価方法。
[9] 基板に形成された複数の段差から構成されるマークからの反射光を結像させる結 像光学系と、
前記結像光学系によって形成された像を取り込む撮像手段と、
前記撮像手段からの出力信号に基づいて前記段差の位置を検出する検出手段と を有し、
前記結像光学系は、前記結像光学系の波面収差を Zernike多項式で表したとき、 前記信号処理手段によって検出される前記段差の位置が真の前記段差位置よりも ずれる方向が、前記段差の向きに拠らず同じ方向にずれるように作用する収差の項 の総和が所定の値に収まる様に設計された
ことを特徴とするマーク位置検出装置。
[10] 基板に形成された複数の段差から構成されるマークからの反射光を結像光学系に よって結像させ、前記結像光学系によって形成された像を撮像手段に取り込んで、 前記撮像手段からの出力信号に基づいて前記段差の位置を検出するマーク位置検 出装置の前記結像光学系の設計方法において、
前記結像光学系は、前記結像光学系の波面収差を Zernike多項式で表したとき、 前記 Zernike多項式の各項のうち、前記段差の向きに応じて異なる方向にずれるよう に作用する項と、前記段差の向き拠らず同じ方向にずれるように作用する項とを選択 し、
前記段差の向きに応じて異なる方向にずれるように作用する項は、少なくとも前記 収差の分布が、前記結像光学系の視野内において均一になるように、前記段差の向 きに拠らず同じ方向にずれるように作用する項は、少なくとも前記収差の分布が、前 記結像光学系の視野内にぉ 、て直線分布となる特性を有するように、設計される ことを特徴とする結像光学系の設計方法。
PCT/JP2005/019049 2004-10-29 2005-10-17 マーク位置検出装置及び設計方法及び評価方法 WO2006046428A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/661,396 US20070258624A1 (en) 2004-10-29 2005-10-17 Mark Position Detection Device, Design Method, and Evaluation Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316642A JP2006126078A (ja) 2004-10-29 2004-10-29 マーク位置検出装置及び設計方法及び評価方法
JP2004-316642 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046428A1 true WO2006046428A1 (ja) 2006-05-04

Family

ID=36227671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019049 WO2006046428A1 (ja) 2004-10-29 2005-10-17 マーク位置検出装置及び設計方法及び評価方法

Country Status (4)

Country Link
US (1) US20070258624A1 (ja)
JP (1) JP2006126078A (ja)
TW (1) TW200625404A (ja)
WO (1) WO2006046428A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661333B2 (ja) * 2005-05-09 2011-03-30 株式会社ニコン 結像光学系の評価方法および位置検出装置
US7589832B2 (en) 2006-08-10 2009-09-15 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device method
EP3155483A1 (en) * 2014-06-12 2017-04-19 ASML Netherlands B.V. Lithographic apparatus and exposure method
WO2017145155A1 (en) 2016-02-22 2017-08-31 Real View Imaging Ltd. A method and system for displaying holographic images within a real object
US10795316B2 (en) 2016-02-22 2020-10-06 Real View Imaging Ltd. Wide field of view hybrid holographic display
US11663937B2 (en) * 2016-02-22 2023-05-30 Real View Imaging Ltd. Pupil tracking in an image display system
JP7506756B2 (ja) * 2020-04-05 2024-06-26 ケーエルエー コーポレイション 位置ずれ測定値に対するウェハ傾斜の影響の補正のためのシステムおよび方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951366B2 (ja) * 1990-06-08 1999-09-20 オリンパス光学工業株式会社 干渉測定装置とそのアライメント検出方法
JP2000146528A (ja) * 1998-09-10 2000-05-26 Fujitsu Ltd 位置ずれ検査装置の光学的収差測定方法並びに位置ずれ検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725822B2 (ja) * 2000-07-10 2011-07-13 株式会社ニコン 光学的位置ずれ検出装置
JP2002175964A (ja) * 2000-12-06 2002-06-21 Nikon Corp 観察装置およびその製造方法、露光装置、並びにマイクロデバイスの製造方法
CN100346150C (zh) * 2000-12-28 2007-10-31 株式会社尼康 成象状态调节法、曝光法及设备以及器件制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951366B2 (ja) * 1990-06-08 1999-09-20 オリンパス光学工業株式会社 干渉測定装置とそのアライメント検出方法
JP2000146528A (ja) * 1998-09-10 2000-05-26 Fujitsu Ltd 位置ずれ検査装置の光学的収差測定方法並びに位置ずれ検査方法

Also Published As

Publication number Publication date
JP2006126078A (ja) 2006-05-18
TW200625404A (en) 2006-07-16
US20070258624A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US6674511B2 (en) Evaluation mask, focus measuring method and aberration measuring method
US7456967B2 (en) Mark position detection apparatus
US7746479B2 (en) Wavefront-aberration measuring device and exposure apparatus including the device
WO2006046428A1 (ja) マーク位置検出装置及び設計方法及び評価方法
US8665416B2 (en) Exposure apparatus and method of manufacturing device
KR20190041525A (ko) 위치 센서, 리소그래피 장치 및 디바이스 제조 방법
JP5361322B2 (ja) 露光装置及びデバイスの製造方法
US20090220872A1 (en) Detecting apparatus, exposure apparatus, and device manufacturing method
JP2007520755A (ja) マスク検査装置及び方法
TW201945830A (zh) 度量衡方法及裝置、電腦程式及微影系統
CN110088683B (zh) 用于监测来自量测装置的照射的特性的方法
CN110716395B (zh) 曝光装置和物品制造方法
JP2002372406A (ja) 位置検出装置及び方法、位置検出装置の収差測定方法及び調整方法、露光装置、並びにマイクロデバイスの製造方法
JP2007066926A (ja) 計測方法及び装置、露光装置、並びに、デバイス製造方法
JP2008215833A (ja) 光学特性測定装置および光学特性測定方法
JP2005030963A (ja) 位置検出方法
US8400612B2 (en) Wavefront aberration measurement apparatus, exposure apparatus, and method of manufacturing device
JP2009053066A (ja) 波面測定干渉計のフォーカス調整方法、波面測定干渉計および投影光学系の製造方法
JP4666982B2 (ja) 光学特性測定装置、露光装置及びデバイス製造方法
JP5451232B2 (ja) 評価方法、測定方法、プログラム、露光方法、デバイスの製造方法、測定装置、調整方法、露光装置、処理装置及び処理方法
JP4677183B2 (ja) 位置検出装置、および露光装置
JPH11297615A (ja) 投影露光装置および該装置を用いた半導体デバイスの製造方法
JP2010034319A (ja) 波面収差の測定方法
KR20210142731A (ko) 애플러내틱 대물 싱글렛을 포함하는 계측 툴
JP4891040B2 (ja) 計測装置、計測方法、露光装置及びデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11661396

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11661396

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05793499

Country of ref document: EP

Kind code of ref document: A1