WO2006025462A1 - 炭素繊維構造体 - Google Patents

炭素繊維構造体 Download PDF

Info

Publication number
WO2006025462A1
WO2006025462A1 PCT/JP2005/015935 JP2005015935W WO2006025462A1 WO 2006025462 A1 WO2006025462 A1 WO 2006025462A1 JP 2005015935 W JP2005015935 W JP 2005015935W WO 2006025462 A1 WO2006025462 A1 WO 2006025462A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber structure
carbon
granular
fibers
Prior art date
Application number
PCT/JP2005/015935
Other languages
English (en)
French (fr)
Inventor
Takayuki Tsukada
Jiayi Shan
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005075437A external-priority patent/JP3776111B1/ja
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to CN2005800005822A priority Critical patent/CN1820097B/zh
Priority to EP05781536.7A priority patent/EP1707655B1/en
Priority to CA2576733A priority patent/CA2576733C/en
Publication of WO2006025462A1 publication Critical patent/WO2006025462A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/34Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated alcohols, acetals or ketals as the major constituent

Definitions

  • the present invention relates to a fine carbon fiber structure, and in particular, a carbon fiber structure constituted by a fine carbon fiber cartridge that is a cylindrical laminate of fine carbon sheets having various structures. Therefore, additives suitable for improving physical properties such as electrical properties, mechanical properties, and thermal properties of solid materials such as resin, ceramics, and metals, or electrical properties and thermal properties of liquids such as fuels and lubricants.
  • the present invention relates to a carbon fiber structure that can be used as an additive suitable for improving physical properties such as the above.
  • carbon fibers fine carbon fibers such as carbon nanostructures represented by carbon nanotubes (hereinafter also referred to as “CNT”) are attracting attention in various fields. .
  • CNT carbon nanotubes
  • the graphite layer constituting the carbon nanostructure usually has a regular, six-membered ring arrangement structure, and its unique electrical properties as well as chemically, mechanically and thermally stable properties. It is a substance with Therefore, for example, by dispersing and blending such fine carbon fibers in solid materials such as various types of resin, ceramics, and metals, or liquid materials such as fuel oil and lubricant, the above-described physical properties can be utilized. If it is possible, it can be expected to be used as an additive.
  • Patent Document 1 describes an aggregate in which carbon fibrils having a diameter of 3.5 to 70 nm are entangled with each other, and the longest diameter is 0.25 mm or less and the diameter is 0.10 to 0.25 mm.
  • a rosin composition containing is disclosed.
  • numerical values such as the longest diameter and diameter of the carbon fibril aggregate are characteristic values of the aggregate before blending with the coconut oil.
  • Patent Document 2 discloses an aggregate of carbon fibers having a diameter of 50 to 5000 nm, in which the size of the contact between the fibers fixed by carbonaceous carbide is 5 ⁇ m to 500 ⁇ m.
  • a composite formed by blending a carbon fiber material mainly composed of a carbon fiber material into a matrix is disclosed.
  • the numerical values such as the size of the structure are the characteristic values before blending into the fat.
  • the agglomerate described in Patent Document 1 is a force obtained by dispersing carbon fibrils by applying a shearing force with a vibrating ball mill or the like. Additives that improve conductivity and other properties that improve efficiency are still unsatisfactory.
  • the contact points between the fibers are fixed in a state where the carbon fiber aggregates are compression-molded to form the contact points between the fibers after the carbon fibers are manufactured. It is formed by carbonizing residual organic matter such as pitch or organic matter added as a binder that remains on the carbon fiber surface after heat treatment.
  • the electrical characteristics of the film were not very good. Therefore, when it is blended in a matrix such as rosin, its contact point is easily dissociated, so that the shape of the structure cannot be maintained. For example, good electrical characteristics can be obtained by adding a small amount. It has been difficult to form a good conductive path in the matrix. Furthermore, when carbonization is performed by adding a binder or the like to fix the contact point, it is difficult to attach the noda etc. only to the contact point part, and it adheres to the entire fiber. On the other hand, if the fiber diameter is thick as a whole and the surface properties are inferior, it can be obtained. However, there was a high risk of this happening.
  • Patent Document 1 Japanese Patent No. 2862578
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-119386
  • the present invention provides a carbon fiber structure that can improve physical properties such as electrical properties, mechanical properties, thermal properties and the like, without impairing the properties of the matrix, with a small amount of addition. Is an issue.
  • the present invention for solving the above-mentioned problems is a three-dimensional network-like carbon fiber structure that also has a carbon fiber force of an outer diameter of 15 to LOONm, and the carbon fiber structure includes the carbon In a form in which a plurality of fibers extend, the carbon fiber has a granular part that binds to each other, and the granular part is formed during the growth process of the carbon fiber and has an outer diameter of the carbon fiber. 1.
  • a carbon fiber structure characterized by having a size three times or more.
  • the present invention also shows the carbon fiber structure, wherein the area-based circle-equivalent mean diameter is from 50 to LOO m.
  • the present invention further provides bulk density, and shows the carbon fibrous structure which is a 0. 0001 ⁇ 0. 05gZcm 3.
  • the present invention further relates to an I 2 or less measured by Raman spectroscopy.
  • the characteristic carbon fiber structure is shown.
  • the present invention also shows the above-mentioned carbon fiber structure, wherein the combustion start temperature in air is 750 ° C or higher.
  • the carbon fiber structure according to the invention is characterized in that the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. A structure is shown.
  • the carbon fiber structure is made of carbon fibers having fine diameters arranged in a three-dimensional network as described above, and each of the carbon fiber structures is solidified by the granular portions formed in the carbon fiber growth process.
  • the carbon fiber structure has a sparse structure when blended in a matrix such as greaves because it has a shape in which a plurality of the carbon fibers extend from the granular part. Even when added in a small amount, the fine carbon fibers can be evenly spread in the matrix. In this way, fine carbon fibers can be uniformly dispersed and distributed throughout the matrix.For example, regarding the electrical characteristics, even if a small amount is added, a good conductive path is formed throughout the matrix, and the conductivity is improved. In addition, with respect to mechanical properties, thermal properties, etc., the filler can be evenly distributed throughout the matrix with a small amount of addition, so that the properties can be improved.
  • FIG. 1 is an SEM photograph of an intermediate of a carbon fiber structure according to the present invention.
  • FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure according to the present invention.
  • FIG. 3 is an SEM photograph of a carbon fiber structure according to the present invention.
  • FIG. 4A is a TEM photograph of a carbon fiber structure according to the present invention.
  • FIG. 4B is a TEM photograph of the carbon fiber structure according to the present invention.
  • FIG. 5 is an SEM photograph of a carbon fiber structure according to the present invention.
  • FIG. 6 is an X-ray diffraction chart of a carbon fiber structure according to the present invention and an intermediate of the carbon fiber structure.
  • FIG. 7 is a Raman spectroscopic analysis chart of a carbon fiber structure according to the present invention and an intermediate of the carbon fiber structure.
  • FIG. 8 is an optical micrograph of a composite material using the carbon fiber structure according to the present invention.
  • FIG. 9 Schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention It is drawing which shows.
  • the carbon fiber structure according to the present invention is composed of carbon fibers having an outer diameter of 15 to LOONm, as shown in, for example, the SEM photograph shown in FIG. 3 or the TEM photograph shown in FIGS. 4A and 4B.
  • the carbon fiber structure is a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a granular portion that binds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend.
  • a carbon fiber structure is composed of carbon fibers having an outer diameter of 15 to LOONm, as shown in, for example, the SEM photograph shown in FIG. 3 or the TEM photograph shown in FIGS. 4A and 4B.
  • the carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to: LOOnm.
  • the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later.
  • the smaller the diameter of the carbon fiber the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction and the higher the electrical conductivity, so that the outer diameter exceeding lOOnm can be obtained. It is because it is not suitable as a carbon fiber structure arranged as a modifier or additive in a matrix such as rosin.
  • the outer diameter of the carbon fiber is particularly desirable because it is in the range of 20 to 70 nm.
  • cylindrical graph sheets laminated in the direction perpendicular to the axis are given the ability to return to their original shape even after deformation, ie they are difficult to bend. Therefore, even after the carbon fiber structure is compressed, it is easy to adopt a sparse structure after being arranged in a matrix such as rosin.
  • the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that a kind of anchor effect is produced in the carbon fiber in a matrix such as greaves. When movement occurs, ⁇ dispersion stability becomes higher.
  • fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are used during the growth process of the carbon fibers.
  • the formed granular parts are bonded to each other and have a shape in which a plurality of the carbon fibers extend from the granular parts.
  • the fine carbon fibers are simply entangled with each other, and they are bonded to each other in a granular part that is not solid, so that they are firmly bonded to each other.
  • the structure can be dispersed and blended in the matrix as a bulky structure without being dispersed as a single carbon fiber.
  • the carbon fibers are bonded to each other by the granular portion formed in the growth process of the carbon fiber.
  • the electrical resistance value measured at a constant compression density indicates that the mere entanglement of fine carbon fibers, or the junction between the fine carbon fibers after the synthesis of the carbon fibers.
  • the value of the structure or the like formed by the substance or its carbide it shows a very low value, and when dispersed and blended in the matrix, a good conductive path can be formed.
  • the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter 4A and 4B, at least a part of the dalaphen layer constituting the granular portion is continuous with the darafen layer constituting the fine carbon fiber extending from the granular portion, as shown in FIGS. 4A and 4B.
  • the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter 4A and 4B, at least a part of the dalaphen layer constituting the granular portion is continuous with the darafen layer constituting the fine carbon fiber extending from the granular portion, as shown in FIGS. 4A and 4B.
  • the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. As symbolized by this, it is connected by (at least a part of) the carbon crystal structural bond, and this forms a strong bond between the granular portion and the fine carbon fiber. It is what.
  • the term “extends carbon fiber force ⁇ from the granular part” means the granular part.
  • the carbon fiber and the carbon fiber are not linked to each other by other binders (including carbonaceous ones), but are connected by the carbon crystal structural bonds as described above! This means mainly the state.
  • the granular part is formed in the carbon fiber growth process.
  • at least one catalyst particle, or the catalyst particle is included in the subsequent heat treatment process. It has pores that are generated by volatilization and removal. These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
  • the number of catalyst particles or pores is not particularly limited, but there are about 1 to 1000, more preferably about 3 to 500, per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
  • the size of each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and further preferably 3 to 15 nm.
  • the particle size of the granular part is preferably larger than the outer diameter of the fine carbon fiber.
  • the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times.
  • the above values are average values.
  • the carbon fiber structure Even when a certain amount of elasticity is applied when the carbon fiber structure is arranged in a matrix such as rosin, it is dispersed in the matrix while maintaining the three-dimensional network structure. Can be made. On the other hand, if the size of the granular part is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired. This is not desirable because it may not be suitable as an additive or compounding agent.
  • the “particle size of the granular part” in the present specification is a value measured by regarding the granular part which is a bonding point between carbon fibers as one particle.
  • the specific particle size of the granular part is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure.
  • the average value is 20 to 5000 nm, more preferably It is about 25 to 2000 nm, more preferably about 30 to 500 nm.
  • the granular part is formed in the carbon fiber growth process as described above, it has a relatively nearly spherical shape, and the circularity is 0.2 to ⁇ 1 on average. It is preferably about 0.5 to 0.99, more preferably about 0.7 to 0.98.
  • This granular part is formed in the growth process of carbon fibers as described above.
  • the joints between fine carbon fibers are adhered by a carbonaceous material or a carbide thereof after synthesis of the carbon fibers.
  • the bonds between the carbon fibers in the granular part are very strong, and even under conditions where the carbon fiber breaks in the carbon fiber structure,
  • the part (joint part) is kept stable.
  • the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved.
  • the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what.
  • the carbon fiber structure according to the present invention desirably has an area-based circle-equivalent mean diameter of 50 to: LOO / zm, more preferably about 60 to 90 / ⁇ ⁇ .
  • the area-based circle-equivalent mean diameter means that the outer shape of the carbon fiber structure is photographed using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by a suitable image analysis software such as Using Win Roof (trade name, manufactured by Mitani Shoji Co., Ltd.), the area within the contour was obtained, the equivalent circle diameter of each fiber structure was calculated, and this was averaged.
  • the carbon fiber structure according to the present invention includes a carbon fiber structure according to the present invention in which carbon fibers existing in a three-dimensional network are bonded to each other in a granular portion, If the carbon fiber has a shape that extends multiple times, but a single carbon fiber structure has multiple granular parts that combine the carbon fibers to form a three-dimensional network,
  • the average distance between adjacent granular portions is, for example, 0.5 / ⁇ ⁇ to 300 m, more preferably 0.5 to LOO m, and more preferably about 1 to 50 m.
  • the distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto.
  • the carbon fiber does not sufficiently develop into a three-dimensional network. For example, when dispersed in a matrix, a good conductive path is obtained. On the other hand, if the average distance exceeds 300 / zm, it becomes a factor to increase viscosity when dispersed in the matrix, and the matrix of the carbon fiber structure This is because the dispersibility of the ink may be reduced.
  • the carbon fiber structure according to the present invention has a shape in which the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and a plurality of the carbon fibers extend in the granular portion force. Therefore, the structure has a bulky structure in which carbon fibers are sparsely present.
  • the bulk density is 0.0001 to 0.05 g / cm 3 , more preferably 0.001. -0. 02g / cm 3 is desirable. This is because if the bulk density exceeds 0.05 g / cm 3 , it becomes difficult to improve the physical properties of the matrix such as greaves by adding a small amount.
  • the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion formed during the growth process.
  • the electrical characteristics of the structure itself are very good.
  • the powder resistance value measured at a constant compression density of 0.8 g / cm 3 is less than 0.02 ⁇ 'cm, which is more desirable. Is preferably 0.001-0.010 ⁇ 'cm. If the powder resistance value exceeds 0.02 Q-C m, it becomes difficult to form a good conductive path when blended in a matrix such as resin.
  • the carbon fiber structure according to the present invention has high strength and conductivity, and that it is desirable that there are few defects in the graph sheet constituting the carbon fiber. For example, I measured by Raman spectroscopy, 0.2 or less, more preferably
  • the carbon fiber structure according to the present invention preferably has a combustion start temperature in air of 750 ° C or higher, more preferably 800 to 900 ° C. As described above, since the carbon fiber structure has few defects and the carbon fiber has an intended outer diameter, the carbon fiber structure has such a high thermal stability.
  • the carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows.
  • an organic compound such as a hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further heat-treated.
  • the raw material organic compound hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • CO carbon monoxide
  • “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but one kind of raw material organic compound is used.
  • Such an embodiment includes two or more carbon compounds having different decomposition temperatures.
  • the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Since it varies depending on the gas partial pressure or molar ratio of the compound, a relatively large number of combinations can be used as the carbon compound by adjusting the composition ratio of two or more carbon compounds in the raw material gas. .
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., especially alkanes having about 1 to 7 carbon atoms; ethylene, propylene, butylene Alkenes such as alkenes, pentenes, heptenes, cyclopentenes, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, tonylene, styrene, Aromatic or heteroaromatic hydrocarbons such as xylene, naphthalene, methenolenaphthalene, indene, and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols
  • the carbon fiber structure according to the present invention can be produced efficiently by optimizing the mixing ratio by using the combination and adjusting the residence time in a predetermined temperature range or Z. Can do.
  • the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, more preferably 3 ⁇ : LOO is desirable. This value is the gas composition ratio at the inlet of the reactor.
  • toluene when toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately. For example, if the molar ratio of methane to benzene is 3, add 2 moles of methane to 1 mole of toluene.
  • methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it. By setting the composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which the deviation between the carbon fiber portion and the granular portion is sufficiently developed.
  • an inert gas such as argon, helium, or xenon, or hydrogen can be used.
  • transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene, and metal acetates, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
  • the synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon, which is usually performed, and evaporating the mixed liquid of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C.
  • a plurality of carbon fiber structures having a sparse three-dimensional structure in which the fibers having an outer diameter of 15 to: LOOnm are joined together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate from cm to several tens of centimeters.
  • the thermal decomposition reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles which are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form.
  • the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source.
  • the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction.
  • the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature.
  • the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction. Therefore, by intentionally changing the balance between the thermal decomposition rate and the growth rate, the growth direction of the carbon material as described above is made constant.
  • a three-dimensional structure according to the present invention can be formed in multiple directions under control.
  • the carbon fiber structure is supplied to the reactor in addition to the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio.
  • An approach to generate turbulent flow in the vicinity of its supply port can be given.
  • the turbulent flow here is a turbulent flow that is a vortex and a flow that rushes.
  • metal catalyst fine particles are formed by the decomposition of the transition metal compound as a catalyst in the raw material mixed gas. It is brought about through the following steps. That is, the transition metal compound is first decomposed into metal atoms, and then, cluster formation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3 ⁇ ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
  • the metal catalyst fine particles can be obtained in a high yield in a short time, and the concentration, temperature, etc. can be made uniform by the eddy current to obtain metal catalyst fine particles with uniform particle size.
  • an aggregate of metal catalyst fine particles in which a large number of metal crystalline particles are gathered is formed by vigorous collision due to the vortex.
  • the metal catalyst fine particles are generated promptly in this way, the decomposition of the carbon compound is promoted and sufficient carbon material is supplied, and each metal catalyst fine particle of the aggregate is radially formed as a nucleus.
  • the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular part around the aggregate And forming a carbon fiber structure having a desired three-dimensional structure efficiently.
  • the aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction.
  • This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
  • the specific means for generating turbulent flow in the raw material gas flow near the raw material gas supply port of the reaction furnace is not particularly limited.
  • the raw material gas is introduced into the reaction furnace from the raw material gas supply port.
  • a means such as providing some collision part at a position where it can interfere with the flow of the source gas.
  • the shape of the collision part is not limited in any way as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part.
  • various shapes of baffle plates If one or more paddles, taper tubes, umbrellas, etc. are used alone or in combination, a plurality of forms can be adopted.
  • the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with a patch-like sheet piece that also contains carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when it is analyzed by Raman spectroscopy, there are many defects that are very large. Further, the produced intermediate contains unreacted raw materials, non-fibrous carbides, tar content and catalytic metal.
  • this intermediate is heated at 800 to 1200 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C.
  • the desired structure is prepared, and at the same time, the catalyst metal contained in the fiber is removed by evaporation.
  • a reducing gas or a trace amount of carbon monoxide or carbon dioxide may be added to the inert gas atmosphere.
  • a step of crushing the average equivalent circle diameter of the carbon fiber structure to several centimeters, and a circle equivalent average diameter of the crushed carbon fiber structure Through a process of pulverizing to 50 m: LOO m to obtain a carbon fiber structure having a desired circle equivalent average diameter.
  • annealing is further performed in a state where the bulk density is low (a state in which fibers are stretched as much as possible and a porosity is large). Effective for imparting conductivity to fat.
  • the fine carbon fiber structure according to the present invention comprises:
  • It can be used in a wide range as a composite filler for solid materials such as resin, ceramics, and metals, or as an additive for liquids such as fuels and lubricants.
  • inorganic materials especially ceramics, metals, etc. The same effect can be expected in the composite material added to the material.
  • TG-DTA Mac Science TG-DTA
  • the temperature was increased at a rate of 10 ° CZ while flowing air at a flow rate of 0.1 liters Z, and the combustion behavior was measured.
  • TG shows a weight loss
  • DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
  • the carbon fiber structure after annealing was examined using a powder X-ray diffractometer CiDX3532, manufactured by JEOL Ltd.). ⁇ ⁇ -rays generated at 40 kV and 30 mA in a Cu tube are used, and the surface spacing is measured in accordance with the Gakushin method (latest carbon materials experimental technology (analysis and analysis), carbon materials society edition). Was used as an internal standard.
  • the granular part which is the bonding point between carbon fibers, is regarded as one particle, and its contour is converted into image analysis software WinRoof (trade name, manufactured by Mitani Corporation) ), The area within the contour was obtained, the equivalent circle diameter of each granular part was calculated, and this was averaged to obtain the average particle diameter of the granular part. Also, the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. The degree was obtained and averaged.
  • the outer diameter of the fine carbon fiber in each target carbon fiber structure is obtained, and the size of the granular part in each carbon fiber structure is obtained from this and the equivalent circle diameter of the granular part in each carbon fiber structure. was obtained as a ratio to fine carbon fibers and averaged.
  • each target carbon fiber structure find all the places where the granular parts are connected by the fine carbon fibers, and the distance between adjacent granular parts connected by the fine carbon fibers in this way (the center of the granular object at one end Part force The length of the fine carbon fiber including the center of the granular material at the other end was measured and averaged.
  • a carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
  • the dispersion sample of the carbon fiber structure thus obtained was subjected to ultrasonic using an ultrasonic cleaner with a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SNUD Co., Ltd.). And the change of the carbon fiber structure in the dispersion sample was observed over time.
  • the 50 50 average diameter was determined in the same manner as described above.
  • the D average diameter of the granular portion at the time was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
  • Fine carbon fibers were synthesized using toluene as a raw material by the CVD method.
  • a catalyst was used as a catalyst.
  • the reaction was carried out in a reducing atmosphere of hydrogen gas.
  • Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
  • Fig. 9 shows the schematic configuration of the production furnace used to produce this carbon fiber structure (first intermediate).
  • the production furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the production furnace 1 at its upper end.
  • a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2.
  • the feed gas introduction rate into the reactor was 1850 NLZmin and the pressure was 1.03 atm.
  • the first intermediate synthesized as described above was calcined at 900 ° C. in argon, and hydrocarbons such as tar were separated to obtain a second intermediate.
  • the R value of this second intermediate measured by Raman spectroscopy was 0.98.
  • Figures 1 and 2 show the SEM and TEM photographs observed after the first intermediate was dispersed in toluene and the sample was prepared for an electron microscope.
  • this second intermediate was heat treated at 2600 ° C in argon at high temperature, and the resulting carbon fiber structure aggregate was pulverized with an airflow pulverizer to obtain the carbon fiber structure according to the present invention. It was.
  • FIGS. 3 and 4 show SEM and TEM photographs of the obtained carbon fiber structure that was observed after preparation of a sample for an electron microscope by dispersing the carbon fiber structure in toluene with ultrasonic waves.
  • Fig. 5 shows the SEM photograph of the obtained carbon fiber structure as it was placed on the electron microscope sample holder, and Table 1 shows the particle size distribution.
  • the obtained carbon fiber structure had an equivalent circular average diameter of 72.8 m, a bulk density of 0.003 2 g / cm 3 , a Raman I / 1 ratio value of 0.090, and a TG combustion temperature of 786 ° C, surface spacing 3.383 °
  • the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the circularity of the granular part was 0.67 (SD 0.14) on average.
  • the initial average fiber length (D) after 30 minutes of ultrasonic application was 12.8 m, but 500 minutes after application of ultrasonic waves.
  • the average fiber length (D) of 6.7 m is almost half of 6.7 m. It was shown that many cuts occurred in the fine carbon fibers.
  • the average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
  • 0.2 g of the carbon fiber structure was added to epoxy resin (Adeka Resin EP4100E, epoxy equivalent 190, Asahi Denki Kogyo Co., Ltd.) so that the content of the obtained carbon fiber structure was 2% by mass. 10 g), a curing agent (Ade force Hardener EH3636-AS, manufactured by Asahi Denka Kogyo Co., Ltd.), kneaded for 10 minutes, and then formed into a film using a doctor blade with a gap of 200 m. It was measured 30 minutes after curing surface electric resistance 170 ° C, was filed in 276 ⁇ « ⁇ 2.
  • epoxy resin Alka Resin EP4100E, epoxy equivalent 190, Asahi Denki Kogyo Co., Ltd.
  • Table 2 summarizes various physical properties measured in Example 1.
  • Fine carbon fibers are synthesized by CVD using a part of the exhaust gas from the generator furnace as a circulating gas and using a carbon compound such as methane contained in this circulating gas as a carbon source together with fresh toluene. did.
  • the synthesis was performed in a reducing atmosphere of hydrogen gas, using a mixture of pheocene and thiophene as a catalyst.
  • fresh raw material gas toluene and catalyst were heated to 380 ° C in a preheating furnace together with hydrogen gas.
  • a part of the exhaust gas taken out from the lower end of the production furnace is used as a circulating gas, and its temperature is adjusted to 380 ° C, and then mixed in the supply path of the above-mentioned fresh raw material gas. Supplied.
  • composition ratio in the used circulating gas is CH 7.5% in terms of volume-based molar ratio
  • the amount was very small and practically negligible as a carbon source.
  • the carbon fiber structure (first intermediate) was obtained by pyrolysis at 1250 ° C. in the production furnace.
  • the first intermediate synthesized as described above was calcined at 900 ° C. in argon, and hydrocarbons such as tar were separated to obtain a second intermediate.
  • the R value of this second intermediate measured by Raman spectroscopy was 0.83. Further, when the first intermediate was dispersed in toluene and observed after preparing a sample for an electron microscope, the SEM and TEM photographs thereof were almost the same as those in Example 1 shown in FIGS.
  • this second intermediate was heat treated at 2600 ° C in argon at high temperature, and the aggregate of the obtained carbon fiber structure was pulverized with an airflow pulverizer to obtain the carbon fiber structure according to the present invention. It was.
  • the obtained carbon fiber structure had an equivalent circular average diameter of 75.8 m, a bulk density of 0.004 g / cm 3 , a Raman I / 1 ratio value of 0.086, and a TG combustion temperature of 807 ° C, spacing is 3.386 on
  • the dust resistance and the powder resistance value were 0.0075 ⁇ -cm, and the density after restoration was 0.26 gZcm 3 .
  • the average particle size of the granular part in the carbon fiber structure is 349.5 nm (SD180. In m), which is 5.8 times the outer diameter of the fine carbon fiber in the carbon fiber structure. .
  • the circularity of the granular part was 0.69 (SD 0.15) on average.
  • the initial average fiber length (D) after 30 minutes of ultrasonic application was 12.4 m, but 500 minutes after application of ultrasonic waves.
  • the average fiber length (D) of 6.3 m is almost half the length of 6.3 m. It was shown that many cuts occurred in the fine carbon fibers.
  • the average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
  • 0.2 g of the carbon fiber structure was added to epoxy resin (Adeka Resin EP4100E, epoxy equivalent 190, Asahi Denki Kogyo Co., Ltd.) so that the content of the obtained carbon fiber structure was 2% by mass. 10 g), a curing agent (Ade force Hardener EH3636-AS, manufactured by Asahi Denka Kogyo Co., Ltd.), kneaded for 10 minutes, and then formed into a film using a doctor blade with a gap of 200 m. When the surface electrical resistance was measured after curing at 170 ° C. for 30 minutes, it was 280 ⁇ 2 .
  • epoxy resin Alka Resin EP4100E, epoxy equivalent 190, Asahi Denki Kogyo Co., Ltd.

Abstract

 外径15~100nmの炭素繊維から構成される3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであって前記炭素繊維外径の1.3倍以上の大きさを有するものであることを特徴とする炭素繊維構造体である。この炭素繊維構造体は、少量の添加にて、マトリックスの特性を損なわずに電気的特性、機械的特性、熱特性等の物理特性を向上させることができる。

Description

明 細 書
炭素繊維構造体
技術分野
[0001] 本発明は、微細な炭素繊維構造体に関し、特に多様な構造を持つ微細な炭素シ ートの筒状積層体力ゝらなる微細な炭素繊維カゝら構成される炭素繊維構造体であって 、榭脂、セラミックス、金属等の固体材料の電気特性、機械的特性、熱特性等の物理 特性の向上に適した添加剤、あるいは、燃料、潤滑剤等の液体の電気特性、熱特性 等の物理特性向上に適した添加剤として利用可能な炭素繊維構造体に関するもの である。
背景技術
[0002] 炭素繊維は、従来より、その優れた力学特性や高い導電性などの特性を有するた め、各種複合材料に用いられている。
[0003] 一方、近年においては、各種材料に一段と高い機能性が求められるようになつてお り、榭脂、セラミックス、金属等の固体材料力もなるマトリックスの特性を損なわずに電 気特性、機械的特性、熱特性等の物性を大きく改良できる添加剤が求められており、 また、燃料油、潤滑剤等の液体の物性を向上する添加剤等も求められている。
[0004] ところで、炭素繊維としては、カーボンナノチューブ (以下、「CNT」とも記する。)に 代表されるカーボンナノ構造体などの微細炭素繊維が、各種の分野にぉ 、て注目を 集めている。
[0005] カーボンナノ構造体を構成するグラフアイト層は、通常では、規則正し 、六員環配 列構造を有し、その特異な電気的性質とともに、化学的、機械的および熱的に安定 した性質を持つ物質である。従って、例えば、各種榭脂、セラミックス、金属等の固体 材料、あるいは燃料油、潤滑剤等の液体材料中に、このような微細炭素繊維を分散 配合することにより、前記したような物性を生かすことができれば、その添加剤として の用途が期待されることとなる。
[0006] し力しながら、一方で、このような微細炭素繊維は、生成時点で既に塊となってしま い、これをそのまま使用すると、マトリックス中において分散が進まず性能不良をきた すおそれがある。従って、榭脂等のマトリックスに導電性等の所定の特性を発揮させ ようとする場合には、かなりの添加量を必要とするものであった。
[0007] 特許文献 1には、 3. 5〜70nmの直径の炭素フィブリルが互いに絡み合った凝集 体で、その最長径が 0. 25mm以下で、径が 0. 10-0. 25mmの凝集体を含有する 榭脂組成物が開示されている。なお、特許文献 1における実施例等の記載から明ら かなように、この炭素フィブリル凝集体の最長径、直径等の数値は、榭脂へ配合する 前の凝集体の特性値である。また、特許文献 2には 50〜5000nmの直径の炭素繊 維の凝集体であって、その繊維同士の接点が炭素質物の炭化物によって固着され た大きさが 5 μ m〜500 μ mの構造体を主体とする炭素繊維材料をマトリックス中に 配合してなる複合体が開示されている。この特許文献 2においても、構造体の大きさ 等の数値は、榭脂へ配合する前の特性値である
[0008] このような炭素繊維凝集体を用いることにより、榭脂マトリックスへの分散性の向上 は、より大きな塊で混合した場合よりもある程度期待される。し力しながら、特許文献 1 に記載される凝集体は、例えば、炭素フィブリルを振動ボールミル等でせん断力をか けて分散処理することによって得られるものである力 嵩密度は高いため、少量の添 加にて効率良ぐ導電性等の特性を改善する添加剤としては、未だ満足のいくもので はなかった。また、特許文献 2において示される炭素繊維構造体においては、繊維 同士の接触点の固着が、炭素繊維の製造後に、この炭素繊維集合体を圧縮成形し て繊維同士の接触点と形成した状態において熱処理し、炭素繊維表面に残留する ピッチ等の残留有機物あるいはバインダーとして添加された有機物を炭化することに よって形成されるものであることから、接触点の固着力が弱ぐまた、その構造体自体 の電気的特'性はあまり良好なものとはいえないものであった。従って、榭脂等のマトリ ックス中に配合された場合に、容易にその接触点が解離してしまうためその構造体形 状を保持できないものとなり、例えば、少量添加にて、良好な電気的特性を発揮する 上での、良好な導電パスをマトリックス中に形成することが困難であった。さらに、接 触点の固着のためにバインダー等を添加して炭化すると、その接触点の部位のみに ノインダ一等を付着させることが困難であり、繊維全体にも付着するため、得られる 構造体にお ヽては、繊維径が全体として太くかつ表面特性に劣るようなものしカゝ得ら れな 、こととなる虞れが高 、ものであった。
特許文献 1 :日本国特許第 2862578号公報
特許文献 2 :日本国特開 2004— 119386号公報
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明は、少量の添加にて、マトリックスの特性を損なわずに電気的特性、 機械的特性、熱特性等の物理特性を向上させることのできる炭素繊維構造体を提供 することを課題とする。
課題を解決するための手段
[0010] 上記課題を解決するために、本発明者らは鋭意検討の結果、その添加量が少なく ても十分な特性向上を発揮させるためには、可能な限り微細な炭素繊維を用い、さら にこれら炭素繊維が一本一本ばらばらになることなく互いに強固に結合し、疎な構造 体で榭脂中に保持されるものであること、また炭素繊維自体の一本一本が極力欠陥 の少な 、ものであることが有効であることを見出し、本発明に到達したものである。
[0011] すなわち、上記課題を解決する本発明は、外径 15〜: LOOnmの炭素繊維力も構成 される 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前 記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有し ており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるもので あって前記炭素繊維外径の 1. 3倍以上の大きさを有するものであることを特徴とする 炭素繊維構造体である。
[0012] 本発明はまた、面積基準の円相当平均径が 50〜: LOO mであることを特徴とする 前記炭素繊維構造体を示すものである。
[0013] 本発明はさらに、嵩密度が、 0. 0001〜0. 05gZcm3であることを特徴とする前記 炭素繊維構造体を示すものである。
[0014] 本発明はさらに、ラマン分光分析法で測定される I 2以下であることを
D /\比が、 0.
G
特徴とする前記炭素繊維構造体を示すものである。
[0015] 本発明はまた、空気中での燃焼開始温度が 750°C以上であることを特徴とする前 記炭素繊維構造体を示すものである。 [0016] 本発明はさらに、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なく とも 2つ以上の炭素化合物を用いて、生成されたものであることを特徴とする前記炭 素繊維構造体を示すものである。
発明の効果
[0017] 本発明においては、炭素繊維構造体が、上記したように 3次元ネットワーク状に配さ れた微細径の炭素繊維が、前記炭素繊維の成長過程において形成された粒状部に よって互いに強固に結合され、該粒状部から前記炭素繊維が複数延出する形状を 有するものであるために、榭脂等のマトリックス中に配合した場合に、当該炭素繊維 構造体は、疎な構造を残したまま容易に分散し、少量の添加量においても、マトリック ス中に、微細な炭素繊維を均一な広がりをもって配置することができる。このように、 マトリックス全体に微細な炭素繊維を均一に分散分布させ得るため、例えば、電気的 特性に関しては、少量添加にぉ ヽてもマトリックス全体に良好な導電性パスが形成さ れ、導電性を向上させることができ、また機械的特性、熱特性等に関しても、少量添 加においてマトリックス全体に微細炭素繊維力もなるフィラーが満遍なく配されること で、特性向上が図れるものである。
図面の簡単な説明
[0018] [図 1]本発明に係る炭素繊維構造体の中間体の SEM写真である。
[図 2]本発明に係る炭素繊維構造体の中間体の TEM写真である。
[図 3]それぞれ本発明に係る炭素繊維構造体の SEM写真である。
[図 4A]本発明に係る炭素繊維構造体の TEM写真である。
[図 4B]本発明に係る炭素繊維構造体の TEM写真である。
[図 5]本発明に係る炭素繊維構造体の SEM写真である。
[図 6]本発明に係る炭素繊維構造体および該炭素繊維構造体の中間体の X線回折 チャートである。
[図 7]本発明に係る炭素繊維構造体および該炭素繊維構造体の中間体のラマン分 光分析チャートである。
[図 8]本発明に係る炭素繊維構造体を用いた複合材料の光学顕微鏡写真である。
[図 9]本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成 を示す図面である。
発明を実施するための最良の形態
[0019] 以下、本発明を好ましい実施形態に基づき詳細に説明する。
[0020] 本発明に係る炭素繊維構造体は、例えば、図 3に示す SEM写真または図 4Aな ヽ し 4Bに示す TEM写真に見られるように、外径 15〜: LOOnmの炭素繊維から構成さ れる 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前 記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有す ることを特徴とする炭素繊維構造体である。
[0021] 炭素繊維構造体を構成する炭素繊維の外径を、 15〜: LOOnmの範囲のものとする のは、外径が 15nm未満であると、後述するように炭素繊維の断面が多角形状となら ず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに 、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、 lOOnmを越 える外径を有することは、榭脂等のマトリックスへ改質剤、添加剤として配される炭素 繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に、 20 〜70nmの範囲内にあること力 より望ましい。この外径範囲のもので、筒状のグラフ エンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくぐ 弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊維 構造体がー且圧縮された後においても、榭脂等のマトリックスに配された後において 、疎な構造を採りやすくなる。
[0022] なお、 2400°C以上でァニール処理すると、積層したグラフエンシートの面間隔が狭 まり真密度が 1. 89g/cm3から 2. lg/cm3に増加するとともに、炭素繊維の軸直交 断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成す る筒状のグラフエンシートの面方向の両方において緻密で欠陥の少ないものとなるた め、曲げ剛性 (EI)が向上する。
[0023] カロえて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが 望ましい。このように炭素繊維の外径が軸方向に沿って一定でなぐ変化するもので あると、榭脂等のマトリックス中において当該炭素繊維に一種のアンカー効果が生じ るものと思われ、マトリックス中における移動が生じに《分散安定性が高まるものとな る。
そして本発明に係る炭素繊維構造体にぉ 、ては、このような所定外径を有する微 細炭素繊維が 3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭素繊維 の成長過程にお 、て形成された粒状部にぉ 、て互いに結合され、該粒状部から前 記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭素繊維 同士が単に絡合して 、るものではなぐ粒状部にぉ 、て相互に強固に結合されて!ヽ るものであることから、榭脂等のマトリックス中に配した場合に当該構造体が炭素繊維 単体として分散されることなぐ嵩高な構造体のままマトリックス中に分散配合されるこ とができる。また、本発明に係る炭素繊維構造体においては、当該炭素繊維の成長 過程にお 、て形成された粒状部によって炭素繊維同士が互 、に結合されて 、ること から、その構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧 縮密度において測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは 微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化 物によって付着させてなる構造体等の値と比較して、非常に低い値を示し、マトリック ス中に分散配合された場合に、良好な導電パスを形成できることができる。
当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであ るため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明ら かではないが、 sp2結合および sp3結合の混合状態を含むと思われる。そして、生成 後 (後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原 子力もなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後 の高温熱処理後においては、図 4A、図 4Bに示されるように、粒状部を構成するダラ フェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成するダラ フェン層に連続するものとなる。本発明に係る炭素繊維構造体において、粒状部と微 細炭素繊維との間は、上記したような粒状部を構成するグラフ ン層が微細炭素繊 維を構成するグラフ ン層と連続していることに象徴されるように、炭素結晶構造的な 結合によって (少なくともその一部が)繋がっているものであって、これによつて粒状部 と微細炭素繊維との間の強固な結合が形成されているものである。
なお、本願明細書において、粒状部から炭素繊維力 ^延出する」するとは、粒状部 と炭素繊維とが他の結着剤 (炭素質のものを含む)によって、単に見かけ上で繋がつ ているような状態をさすものではなぐ上記したように炭素結晶構造的な結合によって 繋がって!/、る状態を主として意味するものである。
また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、 その痕跡として粒状部の内部には、少なくとも 1つの触媒粒子、あるいはその触媒粒 子がその後の熱処理工程にぉ 、て揮発除去されて生じる空孔を有して 、る。この空 孔 (ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成され る中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連 続してしまったものも観察される。;)。
この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部 1つ当 りに 1〜1000個程度、より望ましくは 3〜500個程度存在する。このような範囲の数の 触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大きさ の粒状部とすることができる。
また、この粒状部中に存在する触媒粒子ないし空孔の 1つ当りの大きさとしては、例 えば、 1〜: LOOnm、より好ましくは 2〜40nm、さらに好ましくは 3〜15nmである。 この粒状部の粒径は、図 2に示すように、前記微細炭素繊維の外径よりも大きいこと が望ましい。具体的には、例えば、前記微細炭素繊維の外径の 1. 3〜250倍、より 好ましくは 1. 5〜: LOO倍、さらに好ましくは 2. 0〜25倍である。なお、前記値は平均 値である。このように炭素繊維相互の結合点である粒状部の粒径が微細炭素繊維外 径の 1. 3倍以上と十分に大きなものであると、当該粒状部より延出する炭素繊維に 対して高い結合力がもたらされ、榭脂等のマトリックス中に当該炭素繊維構造体を配 した場合に、ある程度のせん弾力を加えた場合であっても、 3次元ネットワーク構造を 保持したままマトリックス中に分散させることができる。一方、粒状部の大きさが微細炭 素繊維の外径の 250倍を超える極端に大きなものとなると、炭素繊維構造体の繊維 状の特性が損なわれる虞れがあり、例えば、各種マトリックス中への添加剤、配合剤と して適当なものとならない虞れがあるために望ましくない。なお、本明細書でいう「粒 状部の粒径」とは、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして測 定した値である。 その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の 微細炭素繊維の外径にも左右される力 例えば、平均値で 20〜5000nm、より好ま しくは 25〜2000nm、さらに好ましくは 30〜500nm程度である。
さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるもの であるため、比較的球状に近い形状を有しており、その円形度は、平均値で 0. 2〜 < 1、好ましく ίま 0. 5〜0. 99、より好ましく ίま 0. 7〜0. 98程度である。
カロえて、この粒状部は、前記したように炭素繊維の成長過程において形成されるも のであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質 物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部に おける、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における 炭素繊維の破断が生じるような条件下においても、この粒状部 (結合部)は安定に保 持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維 構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて 、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒 径の変化率は、 10%未満、より好ましくは 5%未満であって、粒状部、すなわち、繊維 同士の結合部は、安定に保持されているものである。
[0026] また、本発明に係る炭素繊維構造体は、面積基準の円相当平均径が 50〜: LOO /z m、より好ましくは 60〜90 /ζ πι程度であることが望ましい。ここで面積基準の円相当 平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮影し、この撮影画 像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフトウェア、例えば Win Roof (商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊 維構造体の円相当径を計算し、これを平均化したものである。
[0027] 複合ィ匕される榭脂等のマトリックス材の種類によっても左右されるため、全ての場合 において適用されるわけではないが、この円相当平均径は、榭脂等のマトリックス中 に配合された場合における当該炭素繊維構造体の最長の長さを決める要因となるも のであり、概して、円相当平均径が 50 m未満であると、導電性が十分に発揮され ないおそれがあり、一方、 100 mを越えるものであると、例えば、マトリックス中へ混 練等によって配合する際に大きな粘度上昇が起こり混合分散が困難あるいは成形性 が劣化する虞れがあるためである。
また本発明に係る炭素繊維構造体は、上記したように、本発明に係る炭素繊維構 造体は、 3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合さ れ、該粒状部力 前記炭素繊維が複数延出する形状を呈しているが、 1つの炭素繊 維構造体にぉ 、て、炭素繊維を結合する粒状部が複数個存在して 3次元ネットヮー クを形成している場合、隣接する粒状部間の平均距離は、例えば、 0. 5 /ζ πι〜300 m、より好ましくは 0. 5〜: LOO m、さら〖こ好ましくは 1〜50 m程度となる。なお、こ の隣接する粒状部間の距離は、 1つの粒状体の中心部からこれに隣接する粒状部 の中心部までの距離を測定したものである。粒状体間の平均距離が、 0. 未満 であると、炭素繊維が 3次元ネットワーク状に十分に発展した形態とならないため、例 えば、マトリックス中に分散配合された場合に、良好な導電パスを形成し得ないものと なる虞れがあり、一方、平均距離が 300 /z mを越えるものであると、マトリックス中に分 散配合させる際に、粘性を高くさせる要因となり、炭素繊維構造体のマトリックスに対 する分散性が低下する虞れがあるためである。
さらに、本発明に係る炭素繊維構造体は、上記したように、 3次元ネットワーク状に 存在する炭素繊維が粒状部において互いに結合され、該粒状部力 前記炭素繊維 が複数延出する形状を呈しており、このため当該構造体は炭素繊維が疎に存在した 嵩高な構造を有するが、具体的には、例えば、その嵩密度が 0. 0001〜0. 05g/c m3、より好ましくは 0. 001-0. 02g/cm3であることが望ましい。嵩密度が 0. 05g/ cm3を超えるものであると、少量添加によって、榭脂等のマトリックスの物性を改善す ることが難しくなるためである。
また、本発明に係る炭素繊維構造体は、 3次元ネットワーク状に存在する炭素繊維 がその成長過程にお 、て形成された粒状部にお 、て互 ヽに結合されて 、ることから 、上記したように構造体自体の電気的特性等も非常に優れたものであるが、例えば、 一定圧縮密度 0. 8g/cm3において測定した粉体抵抗値力 0. 02 Ω 'cm以下、より 望ましくは、 0. 001-0. 010 Ω 'cmであることが好ましい。粉体抵抗値が 0. 02 Q - C mを超えるものであると、榭脂等のマトリックスに配合された際に、良好な導電パスを 形成することが難しくなるためである。 [0029] また、本発明に係る炭素繊維構造体は、高!ヽ強度および導電性を有する上から、 炭素繊維を構成するグラフエンシート中における欠陥が少ないことが望ましぐ具体 的には、例えば、ラマン分光分析法で測定される I 、 0. 2以下、より好ましく
D Λ比が
G
は 0. 1以下であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒 鉛では 1580cm— 1付近のピーク(Gバンド)しか現れな 、。結晶が有限の微小サイズ であることや格子欠陥により、 1360cm— 1付近にピーク(Dバンド)が出現する。このた め、 Dバンドと Gバンドの強度比 (R=I
1360 /\ =1
1580 D Zl G )が上記したように所定値以 下であると、グラフエンシート中における欠陥量が少ないことが認められるためである
[0030] 本発明に係る前記炭素繊維構造体はまた、空気中での燃焼開始温度が 750°C以 上、より好ましくは 800〜900°Cであることが望ましい。前記したように炭素繊維構造 体が欠陥が少なぐかつ炭素繊維が所期の外径を有するものであることから、このよう な高 、熱的安定性を有するものとなる。
[0031] 上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではな いが、例えば、次のようにして調製することができる。
[0032] 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を CVD法 で化学熱分解して繊維構造体 (以下、中間体という)を得、これをさらに高温熱処理 する。
[0033] 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭 素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけでは ないが、本発明に係る繊維構造体を得る上においては、炭素源として、分解温度の 異なる少なくとも 2つ以上の炭素化合物を用いることが好ましい。なお、本明細書に おいて述べる「少なくとも 2つ以上の炭素化合物」とは、必ずしも原料有機化合物とし て 2種以上のものを使用するというものではなぐ原料有機化合物としては 1種のもの を使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエン ゃキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その 後の熱分解反応系にお 、ては分解温度の異なる 2つ以上の炭素化合物となって 、る ような態様も含むものである。 なお、熱分解反応系にお 、て炭素源としてこのように 2種以上の炭素化合物を存在 させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなぐ 原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものである ため、原料ガス中における 2種以上の炭素化合物の組成比を調整することにより、炭 素化合物として比較的多くの組み合わせを用いることができる。
例えば、メタン、ェタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン 類、シクロプロパン、シクロへキサンなどといったアルカンないしシクロアルカン、特に 炭素数 1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテ ン類、シクロペンテンなどといったアルケンないしシクロォレフイン、特に炭素数 1〜7 程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数 1〜7程度のアルキ ン;ベンゼン、トノレェン、スチレン、キシレン、ナフタレン、メチノレナフタレン、インデン、 フ ナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数 6〜18程度の芳 香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭 素数 1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中 力も選択した 2種以上の炭素化合物を、所期の熱分解反応温度域にぉ 、て異なる分 解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および Zま たは、所定の温度領域における滞留時間を調整することで可能であり、その混合比 を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。 このような 2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンと の組み合わせにおいては、メタン/ベンゼンのモル比が、 > 1〜600、より好ましくは 1. 1〜200、さらに好ましくは 3〜: LOOとすることが望ましい。なお、この値は、反応炉 の入り口におけるガス組成比であり、例えば、炭素源の 1つとしてトルエンを使用する 場合には、反応炉内でトルエンが 100%分解して、メタンおよびベンゼンが 1: 1で生 じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタ ン Zベンゼンのモル比を 3とする場合には、トルエン 1モルに対し、メタン 2モルを添 加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新 鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含 まれる未反応のメタンを循環使用することにより用いることも可能である。 このような範囲内の組成比とすることで、炭素繊維部および粒状部の 、ずれもが十 分を発達した構造を有する炭素繊維構造体を得ることが可能となる。
なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い ることがでさる。
[0034] また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフエ口セン、 酢酸金属塩などの遷移金属化合物と硫黄あるいはチォフェン、硫化鉄などの硫黄化 合物の混合物を使用する。
[0035] 中間体の合成は、通常行われている炭化水素等の CVD法を用い、原料となる炭 化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に 導入し、 800〜1300°Cの温度で熱分解する。これにより、外径が 15〜: LOOnmの繊 維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元 構造を有する炭素繊維構造体(中間体)が複数集まった数 cmから数十センチの大き さの集合体を合成する。
[0036] 原料となる炭化水素の熱分解反応は、主として触媒粒子な 、しこれを核として成長 した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒 子ないし粒状体より一定方向に進むことで、繊維状に成長する。し力しながら、本発 明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度と のノ ランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異 なる少なくとも 2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質 を成長させることなぐ粒状体を中心として三次元的に炭素物質を成長させる。もちろ ん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスに のみ依存するものではなぐ触媒粒子の結晶面選択性、反応炉内における滞留時間 、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバラ ンスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によつ ても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、 炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素 物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバラン スを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とす ることなく、制御下に多方向として、本発明に係るような三次元構造を形成することが できるものである。なお、生成する中間体において、繊維相互が粒状体により結合さ れた前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内 における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。 なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したよ うな分解温度の異なる 2つ以上の炭素化合物を最適な混合比にて用いるアプローチ 以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせ るアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦 卷、ヽて流れるような流れを ヽぅ。
反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後にお いて、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子 が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移 金属化合物が分解され金属原子となり、次いで、複数個、例えば、約 100原子程度 の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では 、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集 合し、約 3ηπ!〜 lOnm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造 用の金属触媒微粒子として利用されることとなる。
この触媒形成過程にぉ 、て、上記したように激し 、乱流による渦流が存在すると、 ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可 能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高 収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイ ズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成され る過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒 微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成される ため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前 記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一 方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも 速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を 形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前 記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低 ヽな ヽしは反 応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体 として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集 合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短 い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭 素繊維構造体の粒状部を形成しているものとも思われる。
反応炉の原料ガス供給口近傍にぉ ヽて、原料ガスの流れに乱流を生じさせる具体 的手段としては、特に限定されるものではなぐ例えば、原料ガス供給口より反応炉 内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の 手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなぐ 衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるもの であれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独 であるいは複数組み合わせて 1な 、し複数個配置すると 、つた形態を採択することが できる。
[0037] このようにして、触媒および炭化水素の混合ガスを 800〜1300°Cの範囲の一定温 度で加熱生成して得られた中間体は、炭素原子力もなるパッチ状のシート片を貼り合 わせたような (生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、 ンドが非常に大きぐ欠陥が多い。また、生成した中間体は、未反応原料、非繊維状 炭化物、タール分および触媒金属を含んでいる。
[0038] 従って、このような中間体力 これら残留物を除去し、欠陥が少ない所期の炭素繊 維構造体を得るために、適切な方法で 2400〜3000°Cの高温熱処理する。
[0039] すなわち、例えば、この中間体を 800〜1200°Cで加熱して未反応原料やタール分 などの揮発分を除去した後、 2400〜3000°Cの高温でァニール処理することによつ て所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。 なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の 一酸ィ匕炭素ガスを添加してもよ ヽ。
[0040] 前記中間体を 2400〜3000°Cの範囲の温度でァニール処理すると、炭素原子か らなるパッチ状のシート片は、それぞれ結合して複数のグラフエンシート状の層を形 成する。
[0041] また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当 平均径を数 cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当 平均径を 50〜: LOO mに粉砕処理する工程とを経ることで、所望の円相当平均径を 有する炭素繊維構造体を得る。なお、解砕処理を経ることなぐ粉砕処理を行っても 良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、 大きさ、嵩密度に造粒する処理を行っても良い。さら〖こ好ましくは、反応時に形成さ れた上記構造を有効に活用するために、嵩密度が低い状態 (極力繊維が伸びきつた 状態でかつ空隙率が大きい状態)で、ァニール処理するとさらに榭脂への導電性付 与に効果的である。
[0042] 本発明に係る微細炭素繊維構造体は、
A)嵩密度が低い、
B)榭脂等のマトリックスに対する分散性が良い、
C)導電性が高い、
D)熱伝導性が高い、
E)摺動性が良い、
F)化学的安定性が良い、
G)熱的安定性が高い、
などの特性があり、これらを活力して榭脂、セラミックス、金属等の固体材料に対する 複合材フイラ一として、あるいは、燃料、潤滑剤等の液体に対する添加剤として広い 範囲に利用できる。
[0043] これを機能別に具体例を示すと、次のようなものが例示されるが、もちろん、これら に何ら限定されるものではな 、。
[0044] 1)導電性を利用するもの
榭脂に混合することによる、導電性榭脂及び導電性榭脂成型体として,例えば包 装材、ガスケット、容器、抵抗体、導電性繊維、電線、接着剤、インク、塗料等に好適 に用いられる。また、榭脂との複合材に加え、無機材料、特にセラミックス、金属等の 材料に添加した複合材においても同様の効果が期待できる。
[0045] 2)熱伝導性を利用するもの
上記導電性の利用の場合と同様の態様に加え、熱伝導性を高めるために燃料に 添加することも可能である。
[0046] 3)電磁波遮蔽性を利用するもの
榭脂に混合することにより、電磁波遮蔽性塗料や成形して電磁波遮蔽材等として好 適である。
[0047] 4)物理的特性を利用するもの
摺動性を高めるために榭脂、金属に混合してロール、ブレーキ部品、タイヤ、ベアリ ング、潤滑油、歯車、パンタグラフ等に利用する。
[0048] また、軽量で強靭な特性を活かして電線、家電 '車輛'飛行機等のボディ、機械の ハウジングに利用できる。
[0049] このほか、従来の炭素繊維、ビーズの代替としても使用でき、例えば電池の極材、 スィッチ、防振材に応用する。
[0050] 5)熱的安定性を利用するもの
燃料、潤滑剤等の可燃性液体の貯蔵ないし運搬時における安全性を高めるために
、これら可燃性液体へと配合する。
実施例
[0051] 以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何 ら限定されるものではない。
[0052] なお、以下において、各物'性値は次のようにして測定した。
[0053] <面積基準の円相当平均径>
まず、炭素繊維構造体の写真を SEMで撮影する。得られた SEM写真において、 炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れてい るようなものは輪郭が不明瞭であるために対象としな力 た。 1視野で対象とできる炭 素繊維構造体 (60〜80個程度)はすべて用い、 3視野で約 200個の炭素繊維構造 体を対象とした。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、 各繊維構造体の円相当径を計算し、これを平均化した。
[0054] <嵩密度の測定 >
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. IMpa、容量 1. 3リツ トルの空気を分散板下部力 送り粉体を吹出し、自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。
[0055] <ラマン分光分析 >
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。
[0056] <TG燃焼温度 >
マックサイエンス製 TG— DTAを用い、空気を 0. 1リットル Z分の流速で流通させ ながら、 10°CZ分の速度で昇温し、燃焼挙動を測定した。燃焼時に TGは減量を示 し、 DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義し た。
[0057] <X線回折 >
粉末 X線回折装置 CiDX3532、 日本電子製)を用いて、ァニール処理後の炭素繊 維構造体を調べた。 Cu管球で 40kV、 30mAで発生させた Κ α線を用いることとし、 面間隔の測定は学振法 (最新の炭素材料実験技術 (分析 ·解析編)、炭素材料学会 編)に従い、シリコン粉末を内部標準として用いた。
[0058] CNT粉体 lgを秤取り、榭脂製ダイス(内寸 40L、 10W、 80Hmm)に充填圧縮し、 変位および荷重を読み取る。 4端子法で定電流を流して、そのときの電圧を測定し、 0. 9gZcm3の密度まで測定したら、圧力を解除し復元後の密度を測定した。粉体抵 抗については、 0. 5、0. 8および 0. 9gZcm3に圧縮したときの抵抗を測定することと する。
<粒状部の平均粒径、円形度、微細炭素繊維との比 >
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。
対象とされた各炭素繊維構造体にお!、て、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷 商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計 算し、これを平均化して粒状部の平均粒径とした。また、円形度 (R)は、前記画像解 析ソフトウェアを用いて測定した輪郭内の面積 (A)と、各粒状部の実測の輪郭長さ (L) より、次式により各粒状部の円形度を求めこれを平均化した。
R=A*4 π /L2
さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これ と前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒 状部の大きさを微細炭素繊維との比として求め、これを平均化した。
<粒状部の間の平均距離 >
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。
対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれ ている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状 部間の距離 (一端の粒状体の中心部力 他端の粒状体の中心部までを含めた微細 炭素繊維の長さ)をそれぞれ測定し、これを平均化した。
<炭素繊維構造体の破壊試験 >
蓋付バイアル瓶中に入れられたトルエン 100mlに、 30 gZmlの割合で炭素繊維 構造体を添加し、炭素繊維構造体の分散液試料を調製した。
このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数 38kHz 、出力 150wの超音波洗浄器((株)エスェヌディ製、商品名: USK-3)を用いて、超音 波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。 まず超音波を照射し、 30分経過後において、瓶中から一定量 2mlの分散液試料を 抜き取り、この分散液中の炭素繊維構造体の写真を SEMで撮影する。得られた SE M写真の炭素繊維構造体中における微細炭素繊維 (少なくとも一端部が粒状部に 結合している微細炭素繊維)をランダムに 200本を選出し、選出された各微細炭素繊 維の長さを測定し、 D 平均値を求め、これを初期平均繊維長とした。
50
一方、得られた SEM写真の炭素繊維構造体中における炭素繊維相互の結合点で ある粒状部をランダムに 200個を選出し、選出された各粒状部をそれぞれ 1つの粒子 とみなしてその輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷商事株式会 社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、この D
5 平均値を求めた。そして得られた D 平均値を粒状部の初期平均径とした。
0 50
その後、一定時間毎に、前記と同様に瓶中力 一定量 2mlの分散液試料を抜き取 り、この分散液中の炭素繊維構造体の写真を SEMで撮影し、この得られた SEM写 真の炭素繊維構造体中における微細炭素繊維の D 平均長さおよび粒状部の D
50 50 平均径を前記と同様にして求めた。
そして、算出される微細炭素繊維の D 平均長さが、初期平均繊維長の約半分とな
50
つた時点 (本実施例においては超音波を照射し、 500分経過後)における、粒状部の D 平均径を、初期平均径と対比しその変動割合 (%)を調べた。
50
[0059] (実施例 1)
CVD法によって、トルエンを原料として微細炭素繊維を合成した。
[0060] 触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °Cで熱分解して、炭素繊維構造体 (第一中間体)を得た。
なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の概 略構成を図 9に示す。図 9に示すように、生成炉 1は、その上端部に、上記したような トルエン、触媒および水素ガスからなる原料混合ガスを生成炉 1内へ導入する導入ノ ズル 2を有している力 さらにこの導入ノズル 2の外側方には、円筒状の衝突部 3が設 けられている。この衝突部 3は、導入ノズル 2の下端に位置する原料ガス供給口 4より 反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実 施例において用いられた生成炉 1では、導入ノズル 2の内径 a、生成炉 1の内径 b、筒 状の衝突部 3の内径 c、生成炉 1の上端カゝら原料混合ガス導入口 4までの距離 d、原 料混合ガス導入口 4から衝突部 3の下端までの距離 e、原料混合ガス導入口 4から生 成炉 1の下端までの距離を fとすると、各々の寸法比は、おおよそ a :b : c : d: e :f=l . 0 : 3. 6 : 1. 8 : 3. 2 : 2. 0 : 21. 0に形成されていた。また、反応炉への原料ガス導入速 度は、 1850NLZmin、圧力は 1. 03atmとした。
上記のようにして合成された第一中間体をアルゴン中で 900°Cで焼成して、タール などの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0. 98であった。また、第一中間体をトルエン中に分散して電子顕微鏡用試料 調製後に観察した SEMおよび TEM写真を図 1、 2に示す。
[0061] さらにこの第二中間体をアルゴン中で 2600°Cで高温熱処理し、得られた炭素繊維 構造体の集合体を気流粉砕機にて粉砕し、本発明に係る炭素繊維構造体を得た。
[0062] 得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調 製後に観察した SEMおよび TEM写真を図 3、 4に示す。
[0063] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察した SEM写真を図 5に、またその粒度分布を表 1に示した。
[0064] さらに高温熱処理前後において、炭素繊維構造体の X線回折およびラマン分光分 析を行い、その変化を調べた。結果を図 6および 7に示す。
[0065] また、得られた炭素繊維構造体の円相当平均径は、 72. 8 m、嵩密度は 0. 003 2g/cm3、ラマン I /1 比値は 0. 090、 TG燃焼温度は 786°C、面間隔は 3. 383ォ
D G
ングストローム、粉体抵抗値は 0. 0083 Ω - cm,復元後の密度は 0. 25gZcm3であ つた o
さらに炭素繊維構造体における粒状部の粒径は平均で、 443nm (SD207nm)で あり、炭素繊維構造体における微細炭素繊維の外径の 7. 38倍となる大きさであった 。また粒状部の円形度は、平均値で 0. 67(SD0. 14)であった。
また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 12. 8 mであったが、超音波印加 500分後
50
の平均繊維長(D )は、6. 7 mとほぼ半分の長さとなり、炭素繊維構造体において 微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期初期平均径 (D )と対
50 50 比したところ、その変動 (減少)割合は、わずか 4. 8%であり、測定誤差等を考慮する と、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとん ど破壊されることなぐ繊維相互の結合点として機能していることが明らかとなった。
[0066] さらに、得られた炭素繊維構造体の含有量が 2質量%となるように、 0. 22gの炭素 繊維構造体を、エポキシ榭脂(アデカレジン EP4100E、エポキシ当量 190、旭電 化工業 (株)製) 10g、硬化剤 (アデ力ハードナー EH3636— AS、旭電化工業 (株) 製)に配合し、 10分間混練後、 200 mのギャップでドクターブレードを用いて製膜 した。 170°Cで 30分間硬化後表面電気抵抗を測定したところ、 276 ΩΖ«η2であつ た。
[0067] また、炭素繊維構造体の含有量が 0. 5質量%となるようにして、同様にエポキシ榭 脂被膜を製膜した。得られた被膜の光学顕微鏡写真を図 8に示す。この写真から明 らかなように、榭脂マトリックス中において炭素繊維構造体が良好な分散性を示して いる。
[0068] なお、実施例 1で測定した各種物性値を、表 2にまとめた。
[0069] [表 1]
Figure imgf000023_0001
[0070] [表 2] 実施例 1
円相当平均径 72. 8 μ m
嵩密度 0.0032g/cm3
1 D/ I G比 0. 090
TG燃焼温度 786ΐ)
(002) 面間隔 3. 383 A
粉体抵抗値 (at0.5g/cm3) 0. 0 1 73 Ω · cm
粉体抵抗値 (at0.8g/cm3) 0. 0096 Ω · c m
粉体抵抗値 (at0.9g/cm3) 0. 0083 Ω · c m
復元後の密度 0. 25 g/c ma
[0071] (実施例 2)
生成炉カ の排ガスの一部を循環ガスとして使用し、この循環ガス中に含まれるメタ ン等の炭素化合物を、新鮮なトルエンと共に、炭素源として使用して、 CVD法により 微細炭素繊維を合成した。
[0072] 合成は、触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元 雰囲気で行った。新鮮な原料ガスとして、トルエン、触媒を水素ガスとともに予熱炉に て 380°Cに加熱した。一方、生成炉の下端より取り出された排ガスの一部を循環ガス とし、その温度を 380°Cに調整した上で、前記した新鮮な原料ガスの供給路途中に て混合して、生成炉に供給した。
なお、使用した循環ガスにおける組成比は、体積基準のモル比で CH 7. 5%、 C
4
H 0. 3%、 C H 0. 7%、 C H 0. 1%、 CO 0. 3%、 N 3. 5%、 H 87. 6
6 6 2 2 2 6 2 2
%であり、新鮮な原料ガスとの混合によって、生成炉へ供給される原料ガス中におけ るメタンとベンゼンとの混合モル比 CH /C H (なお、新鮮な原料ガス中のトルエン
4 6 6
は予熱炉での加熱によって、 CH: C H =1:1に 100%分解したものとして考慮した
4 6 6
。;)が、 3.44となるように、混合流量を調整された。
なお、最終的な原料ガス中には、混合される循環ガス中に含まれていた、 C H、 C
2 2
Hおよび COも炭素化合物として当然に含まれている力 これらの成分は、いずれも
2 6
ごく微量であり、実質的に炭素源としては無視できるものであった。
そして、実施例 1と同様に、生成炉において、 1250°Cで熱分解して、炭素繊維構 造体 (第一中間体)を得た。
なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の構 成は、円筒状の衝突部 3がない以外は、図 9に示す構成と同様のものであり、また反 応炉への原料ガス導入速度は、実施例 1と同様に、 1850NLZmin、圧力は 1. 03a tmとした。
上記のようにして合成された第一中間体をアルゴン中で 900°Cで焼成して、タール などの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0. 83であった。また、第一中間体をトルエン中に分散して電子顕微鏡用試料 調製後に観察したところ、その SEMおよび TEM写真は図 1、 2に示す実施例 1のも のとほぼ同様のものであった。
[0073] さらにこの第二中間体をアルゴン中で 2600°Cで高温熱処理し、得られた炭素繊維 構造体の集合体を気流粉砕機にて粉砕し、本発明に係る炭素繊維構造体を得た。
[0074] 得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調 製後に観察した SEMおよび TEM写真は、図 3、 4に示す実施例 1のものとほぼ同様 のものであった。
[0075] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察し粒度分布を調べた。得られた結果を表 3に示す。
[0076] さらに高温熱処理前後において、炭素繊維構造体の X線回折およびラマン分光分 析を行い、その変化を調べたところ、図 6および 7に示す実施例 1の結果とほぼ同様 のものであった。
[0077] また、得られた炭素繊維構造体の円相当平均径は、 75. 8 m、嵩密度は 0. 004 g/cm3、ラマン I /1比値は 0. 086、 TG燃焼温度は 807°C、面間隔は 3. 386オン
D G
ダストローム、粉体抵抗値は 0. 0077 Ω - cm,復元後の密度は 0. 26gZcm3であつ た。
さらに炭素繊維構造体における粒状部の粒径は平均で、 349. 5nm (SD180. In m)であり、炭素繊維構造体における微細炭素繊維の外径の 5. 8倍となる大きさであ つた。また粒状部の円形度は、平均値で 0. 69(SD0. 15)であった。
また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 12. 4 mであったが、超音波印加 500分後
50
の平均繊維長(D )は、 6. 3 mとほぼ半分の長さとなり、炭素繊維構造体において 微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期初期平均径 (D )と対
50 50 比したところ、その変動 (減少)割合は、わずか 4. 2%であり、測定誤差等を考慮する と、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとん ど破壊されることなぐ繊維相互の結合点として機能していることが明らかとなった。
[0078] さらに、得られた炭素繊維構造体の含有量が 2質量%となるように、 0. 22gの炭素 繊維構造体を、エポキシ榭脂(アデカレジン EP4100E、エポキシ当量 190、旭電 化工業 (株)製) 10g、硬化剤 (アデ力ハードナー EH3636— AS、旭電化工業 (株) 製)に配合し、 10分間混練後、 200 mのギャップでドクターブレードを用いて製膜 した。 170°Cで 30分間硬化後表面電気抵抗を測定したところ、 280 ΩΖ«η2であつ た。
[0079] また、炭素繊維構造体の含有量が 0. 5質量%となるようにして、同様にエポキシ榭 脂被膜を製膜した。得られた被膜の光学顕微鏡写真を調べたところ、図 8に示す実 施例 1におけるものと同様に、榭脂マトリックス中において炭素繊維構造体が良好な 分散性を示していた。
[0080] なお、実施例 2で測定した各種物性値を、表 3にまとめた。
[0081] [表 3]
Figure imgf000026_0001
[0082] [表 4] 実施例 2 円相当平均径 75. 8 μ m 密度 0.004 g/cm 3
I D/l G比 0. 086
TG燃焼温度 807。C
(002) 面間隔 3. 386 A 粉体抵抗値 (atO.Sg/cm3) 0. 0161 Ω · cm 粉体抵抗値 (at0.8g/cms) 0. 0089 Ω · cm 粉体抵抗値 (at 0.9g/cm3) 0. 0077 Ω · cm 復元後の密度 0. 26 g/c m3

Claims

請求の範囲
[1] 外径 15〜: LOOnmの炭素繊維カゝら構成される 3次元ネットワーク状の炭素繊維構造 体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該 炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維 の成長過程において形成されてなるものであって前記炭素繊維外径の 1. 3倍以上 の大きさを有するものであることを特徴とする炭素繊維構造体。
[2] 前記炭素繊維構造体は、面積基準の円相当平均径が 50〜: LOO /z mであることを 特徴とする請求項 1に記載の炭素繊維構造体。
[3] 前記炭素繊維構造体は、嵩密度が、 0. 0001〜0. 05gZcm3であることを特徴と する請求項 1または 2に記載の炭素繊維構造体。
[4] 前記炭素繊維構造体は、ラマン分光分析法で測定される I 0. 2
D Λ G力 以下であ ることを特徴とする請求項 1〜3のいずれか 1つに記載の炭素繊維構造体。
[5] 前記炭素繊維構造体は、空気中での燃焼開始温度が 750°C以上であることを特徴 とする請求項 1〜4のいずれ力 1つに記載の炭素繊維構造体。
[6] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 1〜5のいずれか 1つに記載の炭素 繊維構造体。
PCT/JP2005/015935 2004-08-31 2005-08-31 炭素繊維構造体 WO2006025462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800005822A CN1820097B (zh) 2004-08-31 2005-08-31 碳纤维结构体
EP05781536.7A EP1707655B1 (en) 2004-08-31 2005-08-31 Carbon fiber structure
CA2576733A CA2576733C (en) 2004-08-31 2005-08-31 Carbon fibrous structure

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-252601 2004-08-31
JP2004252601 2004-08-31
JP2004347385 2004-11-30
JP2004-347385 2004-11-30
JP2005-075437 2005-03-16
JP2005075437A JP3776111B1 (ja) 2004-08-31 2005-03-16 炭素繊維構造体
US11/147,742 US20060078730A1 (en) 2004-08-31 2005-06-08 Carbon fibrous structure
US11/147,742 2005-06-08

Publications (1)

Publication Number Publication Date
WO2006025462A1 true WO2006025462A1 (ja) 2006-03-09

Family

ID=36000111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015935 WO2006025462A1 (ja) 2004-08-31 2005-08-31 炭素繊維構造体

Country Status (4)

Country Link
EP (1) EP1707655B1 (ja)
KR (1) KR100719421B1 (ja)
CA (1) CA2576733C (ja)
WO (1) WO2006025462A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049588A1 (ja) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. 導電性コーティング材料
WO2007102575A1 (ja) * 2006-03-09 2007-09-13 Mitsui & Co., Ltd. 微細炭素繊維構造体
US8883308B2 (en) 2010-03-02 2014-11-11 King Abdullah University Of Science And Technology High surface area fibrous silica nanoparticles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720044B1 (ja) 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 複合材料
JP3850427B2 (ja) 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 炭素繊維結合体およびこれを用いた複合材料
JP2007112885A (ja) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc 熱可塑性エラストマー組成物
JP4847106B2 (ja) * 2005-11-18 2011-12-28 保土谷化学工業株式会社 炭素繊維構造体
JP4570553B2 (ja) * 2005-11-18 2010-10-27 保土谷化学工業株式会社 複合材料
JP5054915B2 (ja) * 2005-11-21 2012-10-24 保土谷化学工業株式会社 炭素繊維構造体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2862578B2 (ja) 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド 樹脂組成物
JPH11107052A (ja) * 1997-09-30 1999-04-20 Nikkiso Co Ltd 気相成長炭素繊維の連続製造装置及び気相成長炭素繊維の連続製造方法
JP2002266170A (ja) * 2000-12-20 2002-09-18 Showa Denko Kk 分岐状気相法炭素繊維、透明導電性組成物及びその用途
WO2003040445A1 (en) * 2001-11-07 2003-05-15 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
JP2003201630A (ja) * 2001-12-26 2003-07-18 Nikkiso Co Ltd カーボンナノファイバーの後処理方法及び黒鉛化カーボンナノファイバーの製造方法
JP2004119386A (ja) 2003-10-09 2004-04-15 Showa Denko Kk 炭素繊維材料及びその複合材
WO2004044289A1 (en) * 2002-11-11 2004-05-27 Showa Denko K.K. Vapor grown carbon fiber, and production method and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970123A (en) * 1987-10-29 1990-11-13 Exxon Research And Engineering Company Isotropically reinforced net-shape microcomposites
EP1414744A1 (en) * 2001-07-27 2004-05-06 University Of Surrey Production of carbon nanotubes
DE60231881D1 (en) * 2001-08-03 2009-05-20 Showa Denko Kk Us
FR2844510B1 (fr) * 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
JP3964381B2 (ja) * 2002-11-11 2007-08-22 昭和電工株式会社 気相法炭素繊維、その製造方法及び用途
WO2004048263A1 (en) * 2002-11-26 2004-06-10 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof
JP4454353B2 (ja) * 2003-05-09 2010-04-21 昭和電工株式会社 直線性微細炭素繊維及びそれを用いた樹脂複合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2862578B2 (ja) 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド 樹脂組成物
JPH11107052A (ja) * 1997-09-30 1999-04-20 Nikkiso Co Ltd 気相成長炭素繊維の連続製造装置及び気相成長炭素繊維の連続製造方法
JP2002266170A (ja) * 2000-12-20 2002-09-18 Showa Denko Kk 分岐状気相法炭素繊維、透明導電性組成物及びその用途
WO2003040445A1 (en) * 2001-11-07 2003-05-15 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
JP2003201630A (ja) * 2001-12-26 2003-07-18 Nikkiso Co Ltd カーボンナノファイバーの後処理方法及び黒鉛化カーボンナノファイバーの製造方法
WO2004044289A1 (en) * 2002-11-11 2004-05-27 Showa Denko K.K. Vapor grown carbon fiber, and production method and use thereof
JP2004119386A (ja) 2003-10-09 2004-04-15 Showa Denko Kk 炭素繊維材料及びその複合材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707655A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049588A1 (ja) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. 導電性コーティング材料
WO2007102575A1 (ja) * 2006-03-09 2007-09-13 Mitsui & Co., Ltd. 微細炭素繊維構造体
US8173261B2 (en) 2006-03-09 2012-05-08 Hodogaya Chemical Co., Ltd Fine carbon fibrous structure
US8883308B2 (en) 2010-03-02 2014-11-11 King Abdullah University Of Science And Technology High surface area fibrous silica nanoparticles

Also Published As

Publication number Publication date
EP1707655A4 (en) 2008-10-22
EP1707655B1 (en) 2013-07-31
CA2576733A1 (en) 2006-03-09
CA2576733C (en) 2010-12-14
KR20060060658A (ko) 2006-06-05
KR100719421B1 (ko) 2007-05-18
EP1707655A1 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP3776111B1 (ja) 炭素繊維構造体
KR100682445B1 (ko) 복합 재료
WO2010002004A1 (ja) 炭素繊維及び複合材料
WO2006025462A1 (ja) 炭素繊維構造体
JP4847106B2 (ja) 炭素繊維構造体
WO2007049590A1 (ja) 導電性シート
JP4570553B2 (ja) 複合材料
WO2007058298A1 (ja) リサイクル複合材料
WO2007049748A1 (ja) 複合材料
JP4847164B2 (ja) 微細炭素繊維構造体
WO2007058299A1 (ja) 複合材料
JP2006183227A (ja) 炭素繊維構造体
WO2007049592A1 (ja) 合成繊維
RU2354763C2 (ru) Структура из углеводородных волокон
JP2007119522A (ja) ふっ素樹脂成形体
WO2007052616A1 (ja) 着色高分子組成物
JP2007124789A (ja) パンタグラフ用すり板
JP5054915B2 (ja) 炭素繊維構造体の製造方法
JP2007139668A (ja) 原子炉用制御棒およびその製造方法
WO2007046413A1 (ja) 電子放出源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000582.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067000827

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005781536

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 1020067000827

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005781536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2576733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007107591

Country of ref document: RU

Ref document number: 877/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWG Wipo information: grant in national office

Ref document number: 1020067000827

Country of ref document: KR