WO2005124801A1 - 電気二重層キャパシタ用電極材料およびその製造方法 - Google Patents

電気二重層キャパシタ用電極材料およびその製造方法 Download PDF

Info

Publication number
WO2005124801A1
WO2005124801A1 PCT/JP2005/011274 JP2005011274W WO2005124801A1 WO 2005124801 A1 WO2005124801 A1 WO 2005124801A1 JP 2005011274 W JP2005011274 W JP 2005011274W WO 2005124801 A1 WO2005124801 A1 WO 2005124801A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electric double
double layer
layer capacitor
particles
Prior art date
Application number
PCT/JP2005/011274
Other languages
English (en)
French (fr)
Inventor
Hidekazu Mori
Kazuyo Terada
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2006514820A priority Critical patent/JP5069464B2/ja
Priority to US11/630,203 priority patent/US7567429B2/en
Publication of WO2005124801A1 publication Critical patent/WO2005124801A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Electrode material for electric double layer capacitor and method of manufacturing the same are Electrode material for electric double layer capacitor and method of manufacturing the same
  • the present invention relates to an electrode material for an electric double layer capacitor and a method for producing the same, an electrode for an electric double layer capacitor obtained from the electrode material, and an electric double layer capacitor provided with the electrode.
  • An electric double layer capacitor provided with an electrode obtained from the electrode material of the present invention has characteristics of high capacitance and low internal resistance.
  • Electric double layer capacitors that are small, light in weight, have a high energy density and can be repeatedly charged and discharged are rapidly increasing in demand by virtue of their characteristics. Electric double-layer capacitors can be rapidly charged and discharged, and are therefore used as small memory backup power sources such as non-sound computers. In recent years, it is expected to be used as a large power source for electric vehicles due to environmental problems and resource problems.With the expansion and development of applications, low internal resistance, high capacitance, mechanical properties, etc. There is a need for further performance improvements.
  • the electrode material for an electric double layer capacitor mainly contains an electrode active material such as activated carbon, and, if necessary, a conductive material and a binder for imparting functions such as conductivity, adhesion and flexibility to the electrode. Etc.
  • components other than these electrode active materials may cause a decrease in electrode performance, such as increasing the resistance of the electrode or decreasing the capacitance of the capacitor.
  • Patent Document 1 discloses that powder obtained by pulverizing activated carbon fibers is dispersed in water as an electrode active material, mixed with a latex of chlorosulfonated polyethylene as a thermoplastic binder, and then water is removed. There is disclosed a method in which a solid obtained by removal is pulverized and granulated to obtain an electrode material for an electric double layer capacitor, and the electrode material is pressure-formed to form an electrode for an electric double layer capacitor.
  • Patent Document 2 discloses a method of dissolving and dispersing an activated carbon as an electrode active material and a thermosetting binder in a ketone such as acetone, and then performing spray-drying granulation to form a particulate electric double layer capacitor.
  • a method for producing an electrode for an electric double layer capacitor has been proposed in which an electrode material for an electric double layer capacitor is manufactured after the granulated material is formed into an electrode layer shape, and a thermosetting binder is sintered at a high temperature of 900 ° C. ! Puru.
  • the electrode for an electric double layer capacitor obtained by this method is hard, and depending on the application, the flexibility may be insufficient or the strength of the electrode may be insufficient.
  • Patent Document 1 JP-A-62-179711
  • Patent Document 2 JP-A-9-289142
  • An object of the present invention is to provide an electric double layer capacitor having a small internal resistance S and a high capacitance, having flexibility, high strength, and a uniform electric double layer capacitor. It is an object of the present invention to provide an electrode for an electric double layer capacitor, and to provide an electrode material for an electric double layer capacitor suitable for producing such an electrode for an electric double layer capacitor and a method for producing the same.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, using a thermoplastic binder as a binder, an electrode active material and a mixture containing such a thermoplastic binder. It has been found that an electrode material for an electric double layer capacitor, which is obtained as spherical particles, has excellent moldability. Further, they have found that when an electrode for an electric double layer capacitor is manufactured using the electrode material for an electric double layer capacitor, the electrode active material and the thermoplastic binder are uniformly dispersed in the electrode layer. Further, they have found that this electrode for an electric double layer capacitor has a uniform electrode density, excellent flexibility, high strength, and high internal resistance and high capacitance. The present inventors have completed the present invention based on these findings.o
  • Electrode material for electric double layer capacitors containing spherical particles (A) having a sphericity of 20% or less Fees are provided.
  • a step of mixing and dispersing the electrode active material and the thermoplastic binder in a solvent, and spray-drying the obtained dispersion to form the particles (A)
  • a method for producing an electrode material for an electric double layer capacitor comprising the steps of:
  • a method for manufacturing an electrode for an electric double layer capacitor comprising a step of forming an electrode layer made of the electrode material for an electric double layer capacitor on a current collector.
  • an electrode for an electric double layer capacitor obtained by the above manufacturing method.
  • an electric double layer capacitor having the electric double layer capacitor electrode.
  • an electrode for an electric double layer capacitor in which an electrode active material and a thermoplastic binder are uniformly dispersed in an electrode layer can be manufactured. Further, the electrode for an electric double layer capacitor obtained from the electrode material of the present invention has a uniform electrode density, excellent flexibility, and high strength, and therefore has an internal resistance and a very high capacitance.
  • the electrode material for an electric double layer capacitor of the present invention contains spherical particles (A) containing an electrode active material and a thermoplastic binder.
  • the electrode active material used in the present invention is not limited as long as it can accumulate charges in the electric double layer formed at the interface between the electrode and the electrolytic solution, but the specific surface area is preferably 30 m 2 / g or more. ⁇ Is 500 to 5,000 m 2 Zg, more preferred ⁇ is 1,000 to 3, OOO mg of allotrope of carbon is preferably used.
  • Specific examples of allotropes of carbon include activated carbon, polyacene, carbon whiskers, graphite, and the like. Among them, activated carbon is preferable. Activated carbons include phenolic resin, rayon, acrylic resin, pitch, and charcoal. Activated carbon such as cigarettes can be used.
  • the allotrope of carbon is preferably in the form of powder or fiber. Furthermore, a nanocomposite of these allotropes of carbon and an organic material can also be used.
  • Non-porous carbon having microcrystalline carbon similar to graphite and having an increased interlayer distance between the microcrystalline carbons can be used as the electrode active material.
  • Such non-porous carbon is obtained by dry-distilling easily-graphitized carbonized coal having multi-layered graphite structure microcrystals at 700 to 850 ° C, and then heat-treating with caustic at 800 to 900 ° C. Further, it can be obtained by removing residual alkali components by heating steam as needed.
  • the electrode active material is a powder, it is preferable that the weight average particle diameter is 0.1 to: LOO / zm, because the thin film of the electrode for an electric double layer capacitor can be easily formed and the capacitance can be increased.
  • the weight average particle diameter of the electrode active material is more preferably 1 to 50 ⁇ m, and further preferably 5 to 20 ⁇ m.
  • Electrode active materials are used alone or in combination of two or more.
  • two or more types of electrode active materials having different particle size distributions may be used in combination.
  • the thermoplastic binder used in the present invention is a thermoplastic polymer having a binding force and a material having a transition temperature.
  • the transition temperature of a thermoplastic polymer is usually represented by a glass transition temperature (Tg), but a thermoplastic polymer having a high crystallinity may be represented by a melting point (Tm).
  • Tg glass transition temperature
  • Tm melting point
  • the transition temperature of the thermoplastic binder used in the present invention is usually in the range of 80 ° C to 180 ° C.
  • the transition temperature of the thermoplastic binder is preferably ⁇ 80 ° C. to 20 ° C., and more preferably ⁇ 60 ° C. to 0 ° C. When the transition temperature is in this range, The thermoplastic binder exhibits a higher binding force, and can form an electrode for an electric double layer capacitor at a relatively low temperature. The binder binds the electrode active material and, if necessary, the conductive material to the current collector. The use of a thermoplastic binder increases the strength and flexibility of the electric double layer capacitor electrode. Can be given.
  • thermoplastic binder used in the present invention examples include a gen-based polymer and a (meth) acrylate polymer.
  • the gen-based polymer is a homopolymer of conjugated gen, a copolymer obtained by polymerizing a monomer mixture containing conjugated gen, or a hydrogenated product thereof.
  • the proportion of the conjugated gen in the monomer mixture is usually at least 40% by weight, preferably at least 50% by weight, more preferably at least 60% by weight.
  • the gen-based polymer include conjugated gen homopolymers such as polybutadiene and polyisoprene; aromatic butyls which may be carboxy-modified such as styrene / butadiene copolymer (SBR); And cyanide butyl 'conjugated copolymer such as acrylo-tolyl.
  • conjugated gen homopolymers such as polybutadiene and polyisoprene
  • aromatic butyls which may be carboxy-modified such as styrene / butadiene copolymer (SBR); And cyanide butyl 'conjugated copolymer such as acrylo-tolyl.
  • SBR styrene / butadiene copolymer
  • NBR Butadiene copolymer
  • the (meth) acrylate polymer is a homopolymer of an acrylate ester and Z or a methacrylate ester, or a copolymer obtained by polymerizing a monomer mixture containing these.
  • the proportion of the acrylate and Z or methacrylate in the monomer mixture is usually at least 40% by weight, preferably at least 50% by weight, more preferably at least 60% by weight.
  • Specific examples of the (meth) acrylate polymer include 2-ethylhexyl acrylate, methacrylic acid, acrylonitrile, ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate, and methacrylic acid. -Tolyl.
  • the (meth) acrylate copolymer ethylene'methyl acrylate copolymer, ethylene'methyl methacrylate copolymer, ethylene'ethyl acrylate copolymer, and ethylene'ethyl methacrylate copolymer
  • a copolymer of ethylene and a (meth) acrylate such as a polymer; a graft polymer obtained by grafting a radical polymerizable monomer to the above-mentioned copolymer of ethylene and a (meth) acrylate; Plastic elastomers can also be used.
  • the radical polymerizable monomer used in the graft polymer include methyl methacrylate, acrylonitrile, methacrylic acid, and the like.
  • thermoplastic binder ethylene 'acrylic acid copolymer; ethylene' methacrylic acid copolymer; Fluorinated resins such as bi-lidene fluoride (hereinafter sometimes referred to as PVDF); can also be used as the thermoplastic binder.
  • PVDF bi-lidene fluoride
  • gen-based polymers and crosslinked (meth) acrylate polymers are preferred, and crosslinked (meth) acrylate polymers are particularly preferred.
  • thermoplastic binder an electrode layer having excellent binding properties to the current collector and excellent surface smoothness can be obtained, and an electric double layer capacitor having a high capacitance and a low internal resistance can be obtained. Electrodes can be manufactured.
  • the binder has good binding properties and minimizes the decrease in the capacitance of the produced electrode and the deterioration during use. It is preferable that the particles are in a particulate form.
  • the particulate thermoplastic binder include, for example, latex produced by a known method such as emulsion polymerization, in which particles of the thermoplastic binder are dispersed in water or an organic solvent, and such a thermoplastic binder. Powders obtained by drying the dispersion are mentioned.
  • the average particle size of the particulate thermoplastic binder used in the present invention is not particularly limited, and the power is usually 0.0001 to 100 / ⁇ , preferably 0.001 to 10 ⁇ m, more preferably Is 0.01-1 ⁇ m.
  • the average particle diameter of the particulate thermoplastic binder is within this range, a high binder can be provided to the electrode layer.
  • the average particle diameter is a number average particle diameter calculated by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph and calculating the arithmetic average value.
  • the shape of the particles may be a true sphere or an irregular shape.
  • the thermoplastic binder used in the present invention may have a core-shell structure obtained by stepwise polymerizing a mixture of two or more monomers.
  • the thermoplastic binder having a core-shell structure is obtained by first polymerizing a monomer that gives a first-stage polymer, and using this polymer as seed particles in the same vessel or in a predetermined amount in another polymer. After the addition to the container, it is preferable to produce it by a method of polymerizing a monomer that gives the second-stage polymer.
  • the ratio of the core to the shell of the thermoplastic binder having the core-shell structure is not particularly limited, but the core part: shell part is usually 20:80 to 99: 1, preferably 30:70 to 100 by mass ratio. 9 7: 3, preferably 40:60 to 95: 5.
  • the polymer constituting the core portion and the shell portion any of the above thermoplastic polymers can be used. Its glass transition temperature is 2 points When observed, the Tg on the low temperature side is preferably in the above range, and the Tg force on the low temperature side is less than SO ° C, and the Tg on the high temperature side is more preferably o ° c or more.
  • the difference in glass transition temperature between the core and the shell is usually 20 ° C. or higher, preferably 50 ° C. or higher.
  • thermoplastic binders can be used alone or in combination of two or more.
  • the amount used is usually in the range of 0.001 to 50 parts by weight, preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the electrode active material. If the amount of the thermoplastic binder used is too small, it becomes difficult to form the electrode material for an electric double layer capacitor into a sheet. Conversely, if the amount of the binder is too large, the internal resistance of the obtained electrode for an electric double layer capacitor may increase.
  • the particles (A) may contain a conductive material, a dispersant described below, and other additives as necessary.
  • the conductive material that can be used in the present invention can impart conductivity to the electrode composition for an electric double layer capacitor. It is preferable that the particles (A) include a conductive material, since the conductive material can be uniformly dispersed during electrode formation.
  • the conductive material includes a carbon-based material and a metal-based material, and a carbon-based conductive material is preferably used.
  • the carbon-based conductive material is a carbon allotrope that has conductivity and does not have pores that can form an electric double layer.
  • carbon blacks such as furnace black, acetylene black, and Ketjen black (registered trademark of Axon Nobel Chemicals Vesroten Fennoutshap); carbon fibers such as vapor-grown carbon fibers; natural graphite; ; And the like.
  • the metal-based conductive material is a metal compound having conductivity, for example, particles of titanium oxide, ruthenium oxide, aluminum, nickel, and the like; metal fibers, and the like. Of these, acetylene black and furnace black are more preferred, where carbon black is preferred.
  • the weight average particle diameter of the conductive material used in the present invention is usually in the range of 0.1 to 100 / ⁇ .
  • These conductive materials can be used alone or in combination of two or more.
  • the amount used is generally in the range of 0 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the electrode active material. When the amount of conductive material used is within this range, the resulting electrode must have a high balance between capacitance and internal resistance. Can do.
  • the particles (A) may contain other additives such as a surfactant!
  • a surfactant examples include nonionic surfactants, and among them, nonionic surfactants which are easily thermally decomposed are preferable among them, including a-one, cation, non-one, and nonionic-one.
  • These additives can be used alone or in combination of two or more.
  • the amount of each additive is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to: LO parts by weight, more preferably 0.5 to 100 parts by weight based on 100 parts by weight of the electrode active material. It is in the range of 5 parts by weight.
  • the short axis diameter 1 and the long axis diameter 1 Preferably 10% or less.
  • the short axis diameter 1 and the long axis diameter 1 Preferably 10% or less.
  • the particle diameter of the particles (A) is usually from 0.1 to 1,000 ⁇ m, preferably from 5 to 500 ⁇ m, more preferably from 10 to 100 m, as measured by the weight classification method. .
  • the angle of repose of the particles (A) is 50 ° or less, preferably 40 ° or less, and more preferably 30 ° or less.
  • the electrode material for an electric double layer capacitor of the present invention may contain non-spherical particles other than the particles (A) as long as the effect of the present invention is not impaired, but the average value of the sphericity of the electrode material is used. Is preferably 20% or less, more preferably 10% or less.
  • the proportion of the particles (A) in the electrode material is usually at least 50% by weight, preferably at least 70% by weight, more preferably at least 90% by weight.
  • the particles (A) are obtained by mixing an electrode active material, a thermoplastic binder, and other components as necessary, and molding the mixture into a spherical shape.
  • the method for producing particles (A) depends on the method used to obtain spherical particles. The method is not particularly limited as long as it is a method.Examples include spray drying granulation, rolling bed granulation, compression granulation, stirring granulation, extrusion granulation, and melt granulation. No. Among them, spray drying granulation, rolling bed granulation and agitation type granulation can be used to achieve high uniformity.
  • V ⁇ is preferable because spherical particles can be obtained, and spray drying granulation is particularly preferable.
  • the spray-drying granulation method comprises a step of mixing an electrode active material, a thermoplastic binder, and other components as necessary in a solvent to form a dispersion, and spraying the dispersion. Drying to form the particles (A). Specifically, in the step of forming the particles (A), the above dispersion is sprayed with an atomizer using a spray drier, and the sprayed dispersion is dried inside a drying tower, so that the dispersion is dispersed in the dispersion. A spherical particle (A) composed of an electrode active material, a binder and other components contained in (A) is formed.
  • the solvent that can be used for preparing the dispersion is appropriately selected according to the type of the thermoplastic binder.
  • an organic solvent that uses water can be used.
  • the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; and getyl formamide; Amides such as dimethylacetamide, N-methyl 2-pyrrolidone (hereinafter referred to as NMP), dimethylimidazolidinone, etc .; and azo-based solvents such as dimethylsulfoxide and sulfolane; .
  • alkyl alcohols are preferred.
  • the drying speed can be increased during fluidized granulation.
  • the dispersibility of the thermoplastic binder or the solubility of the dispersant changes, the viscosity and fluidity of the slurry can be adjusted depending on the amount or type of the solvent, and handling suitability and production efficiency can be improved.
  • These solvents can be used alone or in combination of two or more.
  • the amount used is adjusted so that the solid content concentration is usually in the range of 1 to 50% by weight, preferably 5 to 40% by weight, and more preferably 10 to 30% by weight. When the solid content is in this range, the dispersibility of the thermoplastic binder is highly enhanced, which is preferable.
  • a dispersant may be used together with these solvents.
  • the dispersant that can be used in the present invention has an effect of improving the uniform dispersibility of the electrode active material, the thermoplastic binder, and the like. Dispersant May or may not be present. Further, as long as it is soluble in the solvent to be used, the above-mentioned binder may be used as a dispersant.
  • water-soluble dispersant used when the solvent is water examples include cellulosic polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose, and their ammonium salts and alkali metal salts; acrylic acid, methacrylic acid, Homopolymers of unsaturated carboxylic acids such as fumaric acid, maleic acid and maleic anhydride, or copolymers containing unsaturated carboxylic acid units and vinyl alcohol units, or salts thereof; polybutyl alcohol and modified polybutyl alcohol; Examples include oxide, polyvinylpyrrolidone, polyethylene glycol, oxidized starch, starch phosphate, casein, various modified starches, chitin, and chitosan derivatives.
  • cellulosic polymers such as carboxymethylcellulose, methylcellulose and hydroxypropylcellulose, and their ammonium salts and alkali metal salts
  • acrylic acid, methacrylic acid Homopolymers of unsaturated carboxylic acids such as fuma
  • fluorinated polymers such as PVDF
  • diene polymers such as acrylonitrile'butadiene copolymer and its hydride.
  • solvents are appropriately selected according to the type of the solvent, but are preferably water-soluble dispersants, and more preferably cellulosic polymers and their ammonium salts and alkali metal salts.
  • the amount of the dispersant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to: LO parts by weight, and more preferably 0.5 to 5 parts by weight based on 100 parts by weight of the electrode active material. Range.
  • the mixing method for preparing the dispersion is not particularly limited, and examples thereof include mixing using a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or the like. Equipment can be used.
  • the mixing conditions are appropriately selected depending on the type of the mixture, but the mixing temperature is usually from room temperature to 80 ° C, and the mixing time is from 10 minutes to several hours.
  • the method of spraying the obtained dispersion is not particularly limited, and for example, a commonly used spray dryer (also referred to as a spray dryer) can be used.
  • the spray dryer also has a pulverizing section, a drying section, and a powder collecting section.
  • the fine powder shaving unit is provided with a device (atomizer) for finely shaping the dispersion liquid into fine droplets and spraying the dispersion inside the drying unit.
  • atomizer atomizer
  • the type of the dither is roughly classified into a rotating disk type and a spraying type, and a force rotating disk type that can use both types is preferable.
  • the undiluted solution is introduced almost at the center of the high-speed rotating disk, and when the undiluted solution leaves the disk, the dispersion becomes small droplets.
  • the rotation speed of the disk depends on the size of the disk, and is usually 5,000-30, OOOrpm, preferably 15,000-30, OOOrpm.
  • the spray method the dispersion is sprayed into small droplets with a small nozzle force by pressurization.
  • the temperature of the dispersion to be sprayed is usually about 20 to 250 ° C.
  • hot air circulates inside, and the hot air evaporates and removes the solvent in the droplets of the dispersion micronized by the atomizer, and the solid content contained in the dispersion is dried to form spherical particles. Become a child.
  • the temperature of the hot air is usually 80 to 300 ° C, preferably 100 to 200 ° C.
  • the obtained spherical particles are collected in the powder collecting section.
  • the particles (A) obtained by this method are particles having a substantially uniform spherical shape and particle diameter, which balance the electrode active material and the thermoplastic binder.
  • the dispersion liquid is aggregated by drying, and the force density of the electrode material is improved.
  • the rolling bed granulation method and the stirring granulation method are methods in which a binder is sprayed on a forcibly fluidized electrode active material to perform granulation.
  • the method of flowing the electrode active material is different in each method.
  • the electrode active material and other components are rolled inside a rotating container such as a rotating drum or a rotating dish. Let it.
  • the stirring type granulation method a raw material powder is forcibly given a fluid motion by a stirring blade or the like provided in a container.
  • the components can be flowed together with the electrode active material or can be added to the electrode active material together with the binder. May be sprayed.
  • other components such as a conductive material are attached to the surface of the electrode active material in advance because materials having different specific gravities can be uniformly dispersed.
  • a mechanochemical treatment of mixing the electrode active material and a conductive agent while applying a mechanical external force such as a compressive force or a shear force is used.
  • Apparatuses for performing mechanochemical treatment include kneading machines such as pressurized-single-roll and two-roll mills; and high-speed impact-type dry powders such as a rotary ball mill and a no-bridization system (Nara Machinery Co., Ltd.). Compression-shear type such as body complexing device; Mechanofusion system (manufactured by Hosokawa Micron Corp.) Dry powder compounding device; and the like can be used.
  • a thermoplastic binder, a conductive material, and a dispersant are uniformly mixed in a solvent, and the obtained dispersion is mixed with the fluid of the electrode active material.
  • the layer can be sprayed and granulated.
  • the dispersibility of the electrode active material and the thermoplastic binder is improved.
  • the amount of the thermoplastic binder contained in the electrode for an electric double layer capacitor can be reduced, so that an electrode for an electric double layer capacitor having a low internal resistance and a high capacitance can be manufactured.
  • the method for producing an electrode for an electric double layer capacitor of the present invention includes a step of forming an electrode layer made of the electrode material for an electric double layer capacitor of the present invention on a current collector.
  • the current collector used in the present invention for example, metal, carbon, a conductive polymer, or the like can be used, and a metal is preferably used.
  • a metal is preferably used.
  • the metal for the current collector aluminum, platinum, nickel, tantalum, titanium, stainless steel, other alloys, and the like are usually used. Among them, it is preferable to use aluminum or an aluminum alloy which is conductive and has high withstand voltage. When high voltage resistance is required, high-purity aluminum disclosed in Japanese Patent Application Laid-Open No. 2001-176757 can be suitably used.
  • the current collector is in the form of a film or a sheet.
  • the thickness is a force appropriately selected according to the purpose of use, usually 1 to 200 ⁇ m, preferably 5 to: LOO ⁇ m, more preferably 10 to 50 ⁇ m.
  • the electrode layer may be formed by forming an electrode material for an electric double layer capacitor into a sheet and then laminating the sheet on a current collector, but the electrode layer may be formed directly on the current collector. It may be formed.
  • the electrode layer is directly formed on the current collector, it is preferable to supply the electrode material onto the current collector and then level the thickness of the electrode material with a blade or the like because the electrode density can be easily made uniform during molding.
  • the method of forming the electrode layer of the electrode material for an electric double layer capacitor of the present invention is not particularly limited, for example, a dry molding method such as a pressure molding method, and a wet molding method such as a coating method.
  • a dry molding method such as a pressure molding method
  • a wet molding method such as a coating method.
  • the dry molding method is preferable because the drying step is unnecessary and the production cost is low.
  • the dry molding method is not particularly limited.Specific examples include filling the electrode material for an electric double layer capacitor in a mold, applying pressure, and rearranging and deforming the electrode material to densify the electrode layer.
  • the pressure molding method is preferable because it can be performed with simple equipment.
  • the particles (A) can be sprayed on a current collector using a screw feeder, and pressure molding can be performed using a pressure device.
  • the electrode material quantitatively using a feeder onto the protective film or the current collector, and to continuously form the electrode layer by pressing with a roller or the like.
  • the electrode layer can be formed by supplying the particles (A) to a roll-type pressure forming apparatus having two parallel rolls by a supply device such as a screw feeder.
  • a small amount of a molding aid such as water or alcohol may be added.
  • the temperature during molding is usually in the range of 0 ° C to 200 ° C, which is 20 ° C or more higher than the transition temperature of the thermoplastic binder!
  • an additional post-pressing may be performed as necessary.
  • the method of post-pressing is generally a pressing step using a roll.
  • two cylindrical rolls are arranged up and down in parallel at a narrow interval, and each is rotated in the opposite direction.
  • the temperature of the roll may be adjusted by heating or cooling.
  • the electric double layer capacitor of the present invention has an electric double layer capacitor electrode obtained by the above-described manufacturing method.
  • the electric double layer capacitor can be manufactured according to a conventional method using the above-described electrodes, components such as an electrolytic solution and a separator.
  • components such as an electrolytic solution and a separator.
  • the electrode for an electric double layer capacitor is cut into an appropriate size, then the electrodes are overlapped with one another through a separator, and this is wound into a capacitor shape and placed in a container. It can be manufactured by injecting an electrolytic solution into a container and sealing the container.
  • the electrolytic solution is not particularly limited, but a non-aqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable.
  • the electrolyte any of conventionally known electrolytes can be used, such as tetraethylammonium tetrafluoroborate, triethylmonomethylammonium-tetrafluoroborate, and tetraethylammonium-dimethylhexafluorophosphate. Fate and the like.
  • the solvent for dissolving these electrolytes is not particularly limited as long as it is generally used as an electrolyte solvent.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate; ratatanes such as y butyrolataton; sulfolanes; and -tolyls such as acetonitrile. These can be used alone or as a mixture of two or more solvents. Among them, carbonates are preferable.
  • the concentration of the electrolytic solution is generally 0.5 mol ZL or more, preferably 0.8 mol ZL or more.
  • separator for example, a microporous membrane or nonwoven fabric made of polyolefin such as polyethylene or polypropylene, a porous membrane mainly made of pulp generally called electrolytic capacitor paper, or the like can be used. Further, a solid electrolyte or a gel electrolyte may be used instead of the separator.
  • acetylene black denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.
  • an aqueous solution containing 5% carboxymethylcellulose as a dispersant (Cellogen 7A; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 200 parts and 50 parts of water were mixed and dispersed using a planetary mixer to obtain a conductive material dispersion having a solid concentration of 20%.
  • slurry composition (I) 30 parts of the conductive material dispersion liquid, 8 parts of an aqueous solution containing 5% carboxymethylcellulose (cellogen 7A), 100 parts of high-purity activated carbon powder having a specific surface area of 2, OOO mg and an average particle diameter of 5 / zm as an electrode active material, Thermoplastic Dispersion of carboxy-modified styrene'butadiene copolymer (average particle size 0.12 m, glass transition temperature 5 ° C) dispersed in water as a binder (BM400B; manufactured by Nippon Zeon, 40% concentration) 7.5 Parts and water were mixed together and mixed with a planetary mixer to obtain a slurry composition (I).
  • BM400B manufactured by Nippon Zeon, 40% concentration
  • composition (I) is further diluted with water so that the solid content concentration becomes 21%, and a spray disk dryer (OC-16; manufactured by Okawara Kakoki Co., Ltd.) is used. Spray drying and granulation were performed at a rotational speed of 20, OOOrpm with a diameter of 65 mm, hot air temperature of 150 ° C, and a particle recovery outlet temperature of 90 ° C to obtain particles (A-1).
  • a spray disk dryer OC-16; manufactured by Okawara Kakoki Co., Ltd.
  • the weight average particle size was 70 ⁇ m.
  • short axis diameter 1 and long axis diameter s were determined for 20 randomly selected particles in electron micrographs.
  • the sphericity expressed as 1 as 1 Isa was 5% or less for all the particles, and the particles were spherical.
  • the particles (A-1) were filled in a funnel used for measuring bulk specific gravity according to JIS K6720-2, and the damper was immediately pulled out. 1) The funnel mouth fell smoothly.
  • Table 1 shows the results of measuring the angle of repose of the particles (A-1) with a repose angle measuring device (Powder Tester PT-R) and evaluating the fluidity by a four-step method based on the following criteria.
  • the obtained particles (A-1) were sprayed on a 40 ⁇ m-thick aluminum current collector with a screw feeder, and the thickness of the particles on the current collector was made uniform using a blade.
  • An electrode for electric double layer capacitor with an electrode layer thickness of 200 m was obtained by pressure molding at room temperature (25 ° C) using a pressure device. Using the obtained electrode for an electric double layer capacitor, electrode flexibility, electrode strength, electrode density, and uniformity of the electrode density were measured by the following methods. The results are shown in Table 1.
  • the obtained electrode for an electric double layer capacitor was cut into two rectangular pieces each having a length of 100 mm and a width of 50 mm to obtain test pieces, which were measured according to the method described in JIS K5600-5-1.
  • the test device used was a type 1 device, and the diameter of the cylindrical mandrel at the bent part was 25 mm and 32 mm.
  • Electrode strength Cut the electrode obtained by the above method into a rectangle of 2.5 cm width x 10 cm length, and fix it with the electrode layer surface up. A cellophane tape was adhered to the surface of the electrode layer, and the stress (NZcm) when the tape was peeled in the 180 ° direction at a speed of 50 mmZ was measured 10 times, and the average value was obtained. The evaluation was based on the four-step method based on the criteria of
  • the cut-out electrode was further divided into a uniform size of 10 mm ⁇ 10 mm, and the weight of each was measured to calculate the electrode density excluding the current collector portion.
  • the maximum value of the difference between the obtained electrode density after division and the electrode density before division was defined as the electrode density variation, and the uniformity of the electrode density was evaluated by a four-step method based on the following criteria.
  • Two electrodes having a size of 4 cm ⁇ 6 cm were cut out while leaving the lead terminals, the two electrodes were opposed to each other, and a polyethylene separator having a thickness of 25 ⁇ m was sandwiched. This was sandwiched between two polypropylene plates having a thickness of 2 mm, a width of 5 cm, and a height of 7 cm. The thickness between the two propylene plates is 0 It was 68 mm. This was impregnated under reduced pressure with an electrolytic solution in which propylene carbonate was dissolved at a concentration of 1.5 mol ZL of triethylene monomethylammonium ammonium tetrafluoroborate and stored in a polypropylene container to prepare an electric double layer capacitor.
  • the electric double layer capacitor was charged from OV to 2.7 V at a constant current of 10 mA at 25 ° C. for 10 minutes, and thereafter, constant at 1 mA until OV. Discharge was performed with current.
  • the capacitance was obtained from the obtained charge / discharge curve, and the capacitance per unit mass of the electrode layer was obtained by dividing the mass of the current collector by the mass of the electrode layer obtained by subtracting the mass of the current collector from the mass of the electrode.
  • the internal resistance was calculated from the charge / discharge curve in accordance with the calculation method of the standard RC-2377 specified by the Japan Electronics and Information Technology Industries Association. The internal resistance and capacitance were evaluated by a four-step method based on the following criteria.
  • Electrode materials for electric double layer capacitors are Electrode materials for electric double layer capacitors
  • Particles (A-2) were obtained in the same manner as in Example 1.
  • Example 2 When the shape of the obtained particles (A-2) was measured in the same manner as in Example 1, the average particle size was m Met. The sphericity was 5% or less for all the particles, and the particles were spherical. In addition, when the fluidity of the particles (A-2) was confirmed using the funnel used in Example 1, the particles (A-2) also fell smoothly on the funnel rocker. Table 1 shows the results of measuring the angle of repose in the same manner as in Example 1.
  • An electrode for an electric double layer capacitor was prepared at room temperature in the same manner as in Example 1 except that the particles (A-2) were used instead of the particles (A-1).
  • the electrode strength, electrode density, and electrode density uniformity were measured. The results are shown in Table 1.
  • Example 1 an electric double layer capacitor was prepared in the same manner as in Example 1, and the characteristics of the obtained electric double layer capacitor for the same items as in Example 1 were measured. Table 1 shows the results.
  • Electrode materials for electric double layer capacitors are Electrode materials for electric double layer capacitors
  • the slurry-like composition (I) obtained in Example 1 was poured into a vat and dried to obtain an agglomerated mixture, which was pulverized to obtain particles (B-1). Since the size of the obtained particles (B-1) was dissimilar, after passing through a 40-mesh sieve, the particles (B-1) ′ remaining in the 80-mesh sieve were used to obtain Example 1. When the sphericity was evaluated in the same manner as in the above, the sphericity exceeded 40% for all the particles, and the particles were amorphous. When the fluidity of the particles (B-1) ′ was confirmed using the funnel used in Example 1, the particles did not fall smoothly from the funnel opening. Table 1 shows the results of measuring the angle of repose and determining the fluidity in the same manner as in Example 1.
  • the particles (B-1) ' were sprayed on the current collector using a screw feeder, and the thickness of the particles was made uniform using a blade. As a result, traces were formed on the surface.
  • the electrode flexibility, the electrode strength, the electrode density, and the uniformity of the electrode density were determined in the same manner as in Example 1 by using a portion of the obtained electric double layer capacitor electrode with no trace. The results are shown in Table 1. [0078] Electric Double Layer Capacitor
  • An electric double layer capacitor was prepared in the same manner as in Example 1 by using a portion of the obtained electric double layer capacitor electrode without traces. The characteristics of the electric double layer capacitor obtained for the same items as in Example 1 were determined. The results are shown in Table 1.
  • Electrode materials for electric double layer capacitors are Electrode materials for electric double layer capacitors
  • a slurry was prepared by mixing 70 parts of high-purity activated carbon powder with a specific surface area of 2000 m 2 Zg and an average particle size of 5 m as the electrode active material, 30 parts of phenol resin as a thermosetting binder, and 200 parts of acetone with a planetary mixer.
  • a composition ( ⁇ ) was obtained.
  • spray granulation was performed under the same conditions as in Example 1 to obtain particles (B-2).
  • the average particle size was 70 m.
  • the sphericity of all particles was 5% or less, and the particles were spherical.
  • Table 1 shows the results of measuring the angle of repose and determining the fluidity in the same manner as in Example 1.
  • the obtained particles were subjected to pressure molding, and the obtained molded body was subjected to a heat treatment in an electric furnace at 900 ° C. for 2 hours in a nitrogen gas atmosphere to obtain an electrode layer.
  • a conductive adhesive is applied on the current collector to a thickness of 5 m after drying, dried, and the electrode layer obtained above is laminated.
  • An electrode for an electric double layer capacitor with a thickness of 200 m was obtained.
  • the conductive adhesive is 100 parts by weight of acetylene black, 20 parts by weight of a 10% carboxymethyl cellulose aqueous solution (Cellogen 7H; manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and a latex of carboxy-modified styrene Z-butadiene copolymer (BM-400B; Japan 31.3 parts by weight and 10.2 parts by weight of soft water were kneaded with a kneader and further diluted with soft water to produce.
  • the obtained conductive adhesive had an average particle size of acetylene black of 0.5 m measured by a light scattering method and a solid content of 30%.
  • the electrode flexibility, electrode strength, electrode density, and uniformity of the electrode density were determined in the same manner as in Example 1. Table 1 shows the results. [0081] Electric double layer capacitor
  • Example 1 Using the obtained electrode for an electric double layer capacitor, an electric double layer capacitor was prepared in the same manner as in Example 1. The characteristics of the electric double layer capacitors obtained for the same items as in Example 1 were determined. The results are shown in Table 1.
  • Electrode materials for electric double layer capacitors are Electrode materials for electric double layer capacitors
  • Particles (B-3) having an average particle diameter of 48 m were obtained.
  • the same kind of acetylene black, a 5% aqueous solution of carboxymethylcellulose, a 40% aqueous dispersion of an acrylate polymer and activated carbon powder were used as in Example 2.
  • the shape of the particles (B-3) was measured in the same manner as in Example 1, the sphericity of all the particles exceeded 40%, and the particles were irregular.
  • Table 1 shows the results of measuring the angle of repose and determining the fluidity in the same manner as in Example 1.
  • An electrode for an electric double layer capacitor was prepared at room temperature in the same manner as in Example 1 except that the particles (B-3) were used instead of the particles (A-1).
  • the electrode strength, electrode density, and uniformity of the electrode density were measured. The results are shown in Table 1.
  • Example 1 Using the obtained electrode for an electric double layer capacitor, an electric double layer capacitor was prepared in the same manner as in Example 1. The characteristics of the electric double layer capacitors obtained for the same items as in Example 1 were determined. The results are shown in Table 1.
  • a long aluminum current collector with a thickness of 40 ⁇ m is placed on a belt, and the particles (A-1) are sprayed with a screw feeder to make the thickness of the particles on the current collector uniform. Use role Then, pressure molding was continuously performed at room temperature (25 ° C.) to obtain a long electrode for an electric double layer capacitor having a thickness of 200 m (Example 3). Similarly, the use of the particles (A-2) instead of the particles (A-1) stably formed a long electrode for an electric double layer capacitor (Example 4).
  • the properties of the electrodes obtained in Example 3 and Example 4 were evaluated in the same manner as in Example 1, and are shown in Table 1. Using these electrodes, an electric double layer capacitor was prepared in the same manner as in Example 1, and the characteristics of the electric double layer capacitor obtained for the same items as in Example 1 were determined. Table 1 shows the results.
  • the examples using the electrode material of the present invention are excellent in the strength and flexibility of the electrode for an electric double layer capacitor, and the uniformity of the electrode density where the electrode density is high. Further, the electric double layer capacitor of the embodiment has a low internal resistance and a large capacitance. On the other hand, in Comparative Example 1 in which the electrode material particles are irregular and have low fluidity, the electric double layer capacitor using the electrode with low electrode strength, density, and uniformity of density is inferior in internal resistance and capacitance. . In Comparative Example 2 using a thermosetting binder instead of a thermoplastic binder, the electric double layer capacitor using this electrode, which has low strength, flexibility, and low density, has an internal resistance and electrostatic resistance. The result was inferior capacity.
  • the electrode for an electric double layer capacitor obtained from the electrode material of the present invention has characteristics of low internal resistance and high capacitance. Taking advantage of this characteristic, electric double-layer capacitors using the electrodes for electric double-layer capacitors can be used as knock-up power supplies for memories such as personal computers and mobile terminals, power supplies for instantaneous power failure measures such as personal computers, electric vehicles or hybrid vehicles. It is suitable for various applications such as application to paddy cars, solar power generation energy storage system combined with solar cells, and load leveling power supply combined with batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 電極活物質と熱可塑性結着剤とを含み、短軸径をls、長軸径をll、la=(ls+ll)/2とし、(ll-ls)×100/laの値を球形度(%)としたとき、球形度が20%以下である球形の粒子(A)を含む電気二重層キャパシタ用電極材料。粒子(A)は、少なくとも電極活物質および熱可塑性結着剤を溶媒中で混合、分散し、得られた分散液を噴霧乾燥することにより製造することが好ましい。上記電極材料から得られる電極を具えた電気二重層キャパシタは、内部抵抗が小さく高静電容量であるという特性を有する。

Description

電気二重層キャパシタ用電極材料およびその製造方法
技術分野
[0001] 本発明は、電気二重層キャパシタ用電極材料およびその製造方法、ならびに該電極 材料から得られる電気二重層キャパシタ用電極、および該電極を具えた電気二重層 キャパシタに関する。
本発明の電極材料から得られる電極を具えた電気二重層キャパシタは、高静電容量 で、かつ低内部抵抗であるという特性を有する。
背景技術
[0002] 小型で軽量、かつエネルギー密度が高ぐさらに繰り返し充放電が可能な電気二重 層キャパシタは、その特性を活力して急速に需要を拡大している。電気二重層キャパ シタは、急激な充放電が可能なので、ノソコンなどのメモリバックアップ小型電源とし て利用されている。また、近年では環境問題や資源問題から電気自動車用大型電 源としての応用が期待され、用途の拡大や発展に伴い、低内部抵抗化、高静電容量 ィ匕、機械的特性の向上など、より一層の性能の改善が求められている。
[0003] これらの性能を向上させるために、電極層を形成するための材料についても様々な 改善が行われている。この電気二重層キャパシタ用電極材料は、活性炭などの電極 活物質を主成分とし、必要に応じて、導電性、密着性、柔軟性などの機能を電極に 付与するために導電材ゃ結着剤などを含有する。しかしながらこれらの電極活物質 以外の成分は、電極の抵抗を上げる、キャパシタの容量を下げるなど、電極の性能を 低下させる原因となる場合がある。
[0004] 特許文献 1には、活性炭繊維を粉砕して得られた粉末を電極活物質として水に分 散し、熱可塑性結着剤であるクロロスルホン化ポリエチレンのラテックスと混合した後 、水分を除去して得られた固体を粉砕造粒して電気二重層キャパシタ用電極材料を 得、該電極材料を加圧成形して電気二重層キャパシタ用電極を成形する方法が開 示されている。しカゝしながら、この方法で得られる電極材料は、成形カ卩ェ性が低ぐ均 一な電極を得ることは容易ではなカゝつた。 [0005] 特許文献 2には、電極活物質としての活性炭と熱硬化性結着剤とをアセトンなどの ケトンに溶解、分散し、次いで噴霧乾燥造粒を行って粒子状の電気二重層キャパシ タ用電極材料を製造し、この造粒物を電極層の形状に成形後、熱硬化性結着剤を 9 00°Cの高温で燒結し、電気二重層キャパシタ用電極を得る方法が提案されて!ヽる。 しかしながらこの方法で得られる電気二重層キャパシタ用電極は硬質で、用途によつ ては柔軟性が不十分な場合や、電極の強度が不足する場合があった。
[0006] 特許文献 1:特開昭 62— 179711号公報
特許文献 2:特開平 9 - 289142号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、内部抵抗力 S小さぐかつ高静電容量を有する電気二重層キャパ シタを与えることができ、柔軟性があり、強度が高ぐ密度の均一な電気二重層キャパ シタ用電極を提供すること、およびそのような電気二重層キャパシタ用電極を製造す るのに適した電気二重層キャパシタ用電極材料およびその製造方法を提供すること にある。
[0008] 本発明者らは、上記目的を達成するために鋭意検討を行った結果、結着剤として 熱可塑性結着剤を用い、電極活物質およびそのような熱可塑性結着剤を含む混合 物を球形の粒子として得られる電気二重層キャパシタ用電極材料は、成形加工性に 優れることを見出した。また、該電気二重層キャパシタ用電極材料を用いて電気二重 層キャパシタ用電極を製造すると、電極活物質や熱可塑性結着剤が電極層中に均 一に分散することを見出した。また、この電気二重層キャパシタ用電極は、電極密度 が均一で、柔軟性に優れ、強度が高いこと、および、内部抵抗力 、さぐ高静電容量 であることを見出した。本発明者らはこれらの知見に基づいて本発明を完成するに至 つた o
課題を解決するための手段
[0009] カゝくして本発明の第一によれば、 電極活物質と熱可塑性結着剤とを含み、短軸径 を 1、長軸径を 1、 1 = (1 +1) Z2とし、(1— 1 ) X 100/1の値を球形度(%)としたとき s l a s i I s a
、球形度が 20%以下である球形の粒子 (A)を含む電気二重層キャパシタ用電極材 料が提供される。
本発明の第二によれば、電極活物質および熱可塑性結着剤を溶媒中で混合し、 分散する工程、および、得られた分散液を噴霧乾燥して前記の粒子 (A)を形成する 工程を有する前記の電気二重層キャパシタ用電極材料の製造方法が提供される。 本発明の第三によれば、前記の電気二重層キャパシタ用電極材料カゝらなる電極層 を集電体上に形成する工程を有する電気二重層キャパシタ用電極の製造方法が提 供される。
本発明の第四によれば、前記の製造方法により得られる電気二重層キャパシタ用 電極が提供される。
本発明の第五によれば、前記の電気二重層キャパシタ用電極を有する電気二重層 キャパシタが提供される。
発明の効果
[0010] 本発明の電気二重層キャパシタ用電極材料を用いると、電極活物質や熱可塑性結 着剤が電極層中に均一に分散した電気二重層キャパシタ用電極を製造することがで きる。また、本発明の電極材料から得られる電気二重層キャパシタ用電極は、電極密 度が均一で、柔軟性に優れ、強度が高いので、内部抵抗力 、さぐ高静電容量であ る。
発明を実施するための最良の形態
[0011] 以下に本発明を詳細に説明する。
本発明の電気二重層キャパシタ用電極材料は、電極活物質と熱可塑性結着剤とを 含む球形の粒子 (A)を含む。
1.電極活物質
本発明で用いる電極活物質は、電極と電解液との界面に形成される電気二重層に 電荷を蓄積させることができるものであれば限定されないが、比表面積が 30m2/g 以上、好まし <は 500〜5, 000m2Zg、より好まし <は 1, 000〜3, OOOm gの炭 素の同素体が好適に使用される。炭素の同素体の具体例としては活性炭、ポリアセ ン、カーボンウイスカおよびグラフアイトなどが挙げられ、この中でも活性炭が好ましい 。活性炭としてはフエノール榭脂系、レーヨン系、アクリル榭脂系、ピッチ系、またはャ シガラ系などの活性炭を使用することができる。また、これらの炭素の同素体は粉末 状または繊維状のものが好ましい。さらに、これらの炭素の同素体と有機材料とのナ ノコンポジットも用いることができる。
[0012] また、黒鉛類似の微結晶炭素を有しその微結晶炭素の層間距離が拡大された非 多孔性炭素を電極活物質として用いることができる。このような非多孔性炭素は、多 層グラフアイト構造の微結晶が発達した易黒鉛ィ匕炭を 700〜850°Cで乾留し、次い で苛性アルカリと共に 800〜900°Cで熱処理し、さらに必要に応じ加熱水蒸気により 残存アルカリ成分を除くことで得られる。電極活物質が粉末の場合は、その重量平均 粒子径が 0. 1〜: LOO /z mであると、電気二重層キャパシタ用電極の薄膜ィ匕が容易で 、静電容量も高くできるので好ましい。電極活物質の重量平均粒子径は、より好ましく は 1〜50 μ m、さらに好ましくは 5〜20 μ mである。
[0013] これらの電極活物質は、単独または二種類以上を組み合わせて使用する。電極活 物質を組み合わせて使用する場合は、粒径分布の異なる二種類以上の電極活物質 を組み合わせて使用してもょ 、。
[0014] 2.熱可塑性結着剤
本発明に使用される熱可塑性結着剤は、結着力を有する熱可塑性高分子であり、 転移温度を有する材料である。熱可塑性高分子の転移温度は、通常、ガラス転移温 度 (Tg)で表されるが、結晶性の高い熱可塑性高分子の場合は、融点 (Tm)で表さ れる場合がある。本発明に使用される熱可塑性結着剤の転移温度は、通常 80°C 〜180°Cの範囲である。
[0015] また、熱可塑性結着剤の転移温度は、好ましくは— 80°C〜20°C、より好ましくは、― 60°C〜0°Cであり、転移温度がこの範囲であると、熱可塑性結着剤は、より高い結着 力を示し、電気二重層キャパシタ用電極を比較的低温で成形することが可能である。 結着剤は、電極活物質、および必要に応じて導電材と、集電体とを結着するが、熱 可塑性結着剤を使用することにより電気二重層キャパシタ用電極に強度と柔軟性を 付与できる。
[0016] 本発明に用いられる熱可塑性結着剤としては、ジェン系重合体や (メタ)アタリレート 重合体などが挙げられる。 [0017] ジェン系重合体は、共役ジェンの単独重合体もしくは共役ジェンを含む単量体混 合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体 混合物における共役ジェンの割合は通常 40重量%以上、好ましくは 50重量%以上 、より好ましくは 60重量%以上である。ジェン系重合体の具体例としては、ポリブタジ ェンゃポリイソプレンなどの共役ジェン単独重合体;カルボキシ変性されていてもよい スチレン ·ブタジエン共重合体(SBR)などの芳香族ビュル ·共役ジェン共重合体;ァ クリロ-トリル.ブタジエン共重合体(NBR)などのシアン化ビュル'共役ジェン共重合 体;および水素化 SBR、水素化 NBRなどが挙げられる。
[0018] (メタ)アタリレート重合体は、アクリル酸エステルおよび Zまたはメタクリル酸エステ ルの単独重合体またはこれらを含む単量体混合物を重合して得られる共重合体であ る。前記単量体混合物におけるアクリル酸エステルおよび Zまたはメタクリル酸エステ ルの割合は通常 40重量%以上、好ましくは 50重量%以上、より好ましくは 60重量% 以上である。 (メタ)アタリレート重合体の具体例としては、アクリル酸 2—ェチルへキシ ル.メタクリル酸.アクリロニトリル.エチレングリコールジメタタリレート共重合体、アタリ ル酸 2—ェチルへキシル 'メタクリル酸'メタタリ口-トリル.ジエチレングリコールジメタ タリレート共重合体、アクリル酸 2—ェチルへキシル ·スチレン'メタクリル酸 ·エチレン グリコールジメタタリレート共重合体、アクリル酸ブチル.アクリロニトリル.ジエチレング リコールジメタタリレート共重合体、およびアクリル酸ブチル.アクリル酸 'トリメチロール プロパントリメタタリレート共重合体などの架橋型 (メタ)アタリレート重合体が挙げられ る。
[0019] また、(メタ)アタリレート重合体として、エチレン'アクリル酸メチル共重合体、ェチレ ン 'メタクリル酸メチル共重合体、エチレン 'アクリル酸ェチル共重合体、およびェチレ ン 'メタクリル酸ェチル共重合体などのエチレンと (メタ)アクリル酸エステルとの共重 合体;上記エチレンと (メタ)アクリル酸エステルとの共重合体にラジカル重合性単量 体をグラフトさせたグラフト重合体;などの熱可塑性エラストマ一も用いることができる 。上記グラフト重合体に用いられるラジカル重合性単量体としては、例えば、メタタリ ル酸メチル、アクリロニトリル、メタクリル酸などが挙げられる。
[0020] さらに、エチレン 'アクリル酸共重合体;エチレン 'メタクリル酸共重合体;およびポリ フッ化ビ-リデン (以下、 PVDFと 、うことがある)などのフッ素榭脂;も熱可塑性結着 剤として使用できる。
[0021] これらの中でも、ジェン系重合体および架橋型 (メタ)アタリレート重合体が好ましぐ 架橋型 (メタ)アタリレート重合体が特に好ま ヽ。これらを熱可塑性結着剤として使 用すると、集電体との結着性や表面平滑性に優れた電極層が得られ、また、高静電 容量でかつ低内部抵抗の電気二重層キャパシタ用電極が製造できる。
[0022] 粒子 (A)の製造に用いる熱可塑性結着剤の形状に特に制限はないが、結着性が 良ぐまた、作成した電極の静電容量の低下や使用中の劣化を最小限に抑えること ができるため、粒子状であることが好ましい。粒子状の熱可塑性結着剤には、例えば 乳化重合などの公知の方法で製造されるラテックスなどの、熱可塑性結着剤の粒子 が水または有機溶媒に分散した状態のものや、このような分散液を乾燥して得られる 粉末状のものが挙げられる。本発明に使用される粒子状の熱可塑性結着剤の平均 粒子径は、格另 IJな限定はない力 通常 0. 0001〜100 /ζ πι、好ましくは 0. 001〜10 μ m、より好ましくは 0. 01〜1 μ mである。
[0023] 粒子状の熱可塑性結着剤の平均粒子径カこの範囲であるときに、高い結着カを電 極層に与えることができる。ここで、平均粒子径は、透過型電子顕微鏡写真で無作為 に選んだポリマー粒子 100個の径を測定し、その算術平均値として算出される個数 平均粒子径である。粒子の形状は真球、異形、どちらでもかまわない。
[0024] 本発明に使用される熱可塑性結着剤は、 2種以上の単量体混合物を段階的に重 合することにより得られるコアシェル構造を有して 、てもよ 、。コアシェル構造を有す る熱可塑性結着剤は、第一段目の重合体を与える単量体をまず重合し、この重合体 をシード粒子として、同一容器内で、または所定量を別の重合容器に添加した後、第 二段目となる重合体を与える単量体を重合する方法などにより製造することが好まし い。
[0025] 上記コアシェル構造を有する熱可塑性結着剤のコアとシェルの割合は、特に限定 されないが、質量比でコア部:シェル部が通常 20 : 80〜99 : 1、好ましくは 30 : 70〜9 7 : 3、ょり好ましくは40 : 60〜95 : 5でぁる。コア部およびシェル部を構成する重合体 としては、前記の熱可塑性高分子をいずれも使用できる。そのガラス転移温度が 2点 観測される場合は、低温側の Tgが前記範囲にあることが好ましぐまた、低温側の Tg 力 SO°C未満、高温側の Tgが o°c以上であることがより好ましい。また、コア部とシェル 部とのガラス転移温度の差は、通常 20°C以上、好ましくは 50°C以上である。
[0026] これらの熱可塑性結着剤は、それぞれ単独でまたは 2種以上を組み合わせて用い ることができる。その使用量は電極活物質 100重量部に対して、通常 0. 001〜50重 量部、好ましくは 0. 01〜10重量部、より好ましくは 0. 1〜5重量部の範囲である。熱 可塑性結着剤の使用量が少なすぎると、電気二重層キャパシタ用電極材料をシート 状に成形することが困難になる。逆に結着剤の使用量が多すぎると、得られる電気二 重層キャパシタ用電極の内部抵抗が大きくなる場合がある。
[0027] 3.その他の成分
粒子 (A)は、必要に応じて導電材、後述する分散剤、およびその他の添加剤を含 んでいてもよい。
[0028] 本発明に使用できる導電材は、電気二重層キャパシタ用電極組成物に導電性を付 与できるものである。粒子 (A)が導電材を含むことで、電極形成時に導電材を均一に 分散できるため好ましい。導電材には、炭素系と金属系があるが、好適には炭素系 導電材が用いられる。炭素系導電材は、導電性を有し、電気二重層を形成し得る細 孔を有さない炭素の同素体である。具体的には、ファーネスブラック、アセチレンブラ ック、ケッチェンブラック(ァクゾノーベル ケミカルズ ベスローテン フェンノートシヤ ップ社の登録商標)などのカーボンブラック;気相法炭素繊維などの炭素繊維;天然 黒鉛;人造黒鉛;などが挙げられる。金属系導電材は、導電性を有する金属化合物 であり、例えば酸ィ匕チタン、酸化ルテニウム、アルミニウム、ニッケルなどの粒子;金属 ファイバなどが挙げられる。これらの中でも、カーボンブラックが好ましぐアセチレン ブラックおよびファーネスブラックがより好まし 、。本発明に使用される導電材の重量 平均粒子径は、通常 0. 1〜100 /ζ πιの範囲である。
[0029] これらの導電材は、それぞれ単独でまたは 2種以上を組み合わせて用いることがで きる。その使用量は、電極活物質 100重量部に対して通常 0〜50重量部、好ましく は 0. 5〜15重量部、より好ましくは 1〜5重量部の範囲である。導電材の使用量がこ の範囲にあると、得られる電極の静電容量と内部抵抗とを高度にバランスさせること ができる。
[0030] 粒子 (A)は、界面活性剤などのその他の添加剤を含んでもよ!、。使用できる界面 活'性剤の例としては、ァ-オン、カチオン、ノ-オン、ノ-ォニックァ-オンなどが挙げ られる力 中でもノニオン界面活性剤で熱分解しやすいものが好ましい。これらの添 加剤は、それぞれ単独であるいは 2種以上を組み合わせて用いることができる。各添 加剤の配合量は、格別な限定はないが、電極活物質 100重量部に対して 0〜50重 量部、好ましくは 0. 1〜: LO重量部、より好ましくは 0. 5〜5重量部の範囲である。
[0031] 4.粒子 (A)の特性
本発明の電気二重層キャパシタ用電極材料に含まれる粒子 (A)は実質的に球形 である。すなわち、粒子 (A)の形状は、粒子 (A)の短軸径を 1、長軸径を 1、 1 = (1 +1
s l a s
) Z2とし、(1 1 ) X 100/1の値を球形度(%)としたとき、球形度が 20%以下であり
1 I s a
、好ましくは 10%以下である。ここで、短軸径 1および長軸径 1は、透過型電子顕微鏡
s 1
写真像より測定される値である。粒子 (A)の粒子径は、重量分級法により測定された 平均粒子径力 通常 0. 1〜1, 000 μ m、好ましく ίま 5〜500 μ m、より好ましく ίま 10 〜 100 mである。また、粒子 (A)の安息角は 50° 以下、好ましくは 40° 以下、さら に好ましくは 30° 以下である。
[0032] 粒子 (A)の形状が上記要件を満足するときに、粒子 (A)の流動性が向上し、電極 材料を成形する際に電極材料が広がりやすぐ電極の厚みを均一にならすことが容 易になるため、得られる電気二重層キャパシタ用電極の電極密度の均一性が高度に 向上する。
本発明の電気二重層キャパシタ用電極材料は、本発明の効果を損なわない範囲 で、粒子 (A)以外の非球状の粒子を含んでいてもよいが、該電極材料の球形度の平 均値が 20%以下であることが好ましぐより好ましくは 10%以下である。また、該電極 材料中の粒子 (A)の割合は、通常 50重量%以上、好ましくは 70%重量以上、さらに 好ましくは 90重量%以上である。
[0033] 5.粒子 (A)の製造方法
粒子 (A)は、電極活物質と、熱可塑性結着剤と、必要に応じてその他の成分とを混 合し、球状に成形して得られる。粒子 (A)の製造方法は、球状の粒子が得られる方 法であれば特に制限はなぐその例としては、噴霧乾燥造粒法、転動層造粒法、圧 縮型造粒法、攪拌型造粒法、押出し造粒法および溶融造粒法などが挙げられる。中 でも噴霧乾燥造粒法、転動層造粒法および攪拌型造粒法を使用すると均一性の高
Vヽ球状の粒子を得られるため好ましく、噴霧乾燥造粒法が特に好ま 、。
[0034] 噴霧乾燥造粒法は、電極活物質と、熱可塑性結着剤と、必要に応じてその他の成分 とを溶媒中で混合して分散液とする工程、および、該分散液を噴霧乾燥して前記の 粒子 (A)を形成する工程を含む。具体的には、粒子 (A)の形成工程で、上記分散液 を噴霧乾燥機を使用してアトマイザ力ゝら噴霧し、噴霧された分散液を乾燥塔内部で 乾燥することで、分散液中に含まれる電極活物質、結着剤およびその他の成分から なる球状の粒子 (A)が形成される。
[0035] 分散液の調製に使用できる溶媒は、熱可塑性結着剤の種類に応じて適宜選択され る。溶媒としては、最も好適には水が用いられる力 有機溶媒を用いることもできる。 有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコー ルなどのアルキルアルコール類;アセトン、メチルェチルケトンなどのアルキルケトン 類;テトラヒドロフラン、ジォキサン、ジグライムなどのエーテル類;ジェチルホルムアミ ド、ジメチルァセトアミド、 N—メチル 2—ピロリドン(以下、 NMPということ力 Sある。)、 ジメチルイミダゾリジノンなどのアミド類;ジメチルスルホキサイド、スルホランなどのィ ォゥ系溶剤;などが挙げられる。中でも、アルキルアルコール類が好ましい。水よりも 沸点の低い有機溶媒を併用すると、流動造粒時に、乾燥速度を速くすることができる 。また、熱可塑性結着剤の分散性または分散剤の溶解性が変わるので、スラリーの 粘度や流動性を溶媒の量または種類によって調整でき、取扱適正および生産効率 を向上させることができる。
[0036] これらの溶媒は、それぞれ単独でまたは 2種以上を組み合わせて用いることができ る。その使用量は固形分濃度が通常 1〜50重量%、好ましくは 5〜40重量%、より好 ましくは 10〜30重量%の範囲となるように調整される。固形分濃度がこの範囲にある ときに、熱可塑性結着剤の分散性が高度に高められ好適である。
[0037] これらの溶媒と共に、分散剤を使用してもよい。本発明に使用できる分散剤は、電 極活物質、熱可塑性結着剤などの均一分散性を向上させる作用を有する。分散剤 の結着力はあってもなくてもよい。また、使用する溶媒に溶解するものであれば、前 記の結着剤で挙げたィ匕合物を分散剤として用いてもよい。溶媒が水の場合に使用す る水溶性分散剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシ プロピルセルロースなどのセルロース系ポリマー並びにこれらのアンモ-ゥム塩およ びアルカリ金属塩;アクリル酸、メタクリル酸、フマル酸、マレイン酸および無水マレイ ン酸などの不飽和カルボン酸の単独重合体もしくは不飽和カルボン酸単位とビニル アルコール単位を含む共重合体またはその塩;ポリビュルアルコールおよび変性ポリ ビュルアルコール;ポリエチレンォキシド、ポリビュルピロリドン、ポリエチレングリコー ル、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘 導体などが挙げられる。
[0038] 溶媒が有機溶剤の場合に使用する有機溶媒溶解性分散剤としては、 PVDFなどの 含フッ素重合体、アクリロニトリル 'ブタジエン共重合体およびその水素化物などのジ ェン系重合体などが挙げられる。
これらは、溶剤の種類に応じて適宜選択されるが、好ましくは水溶性分散剤であり、 より好ましくは、セルロース系ポリマー並びにこれらのアンモ-ゥム塩およびアルカリ 金属塩である。
[0039] これらの分散剤は、それぞれ単独であるいは 2種以上を組み合わせて使用できる。
分散剤の配合量は、格別な限定はないが、電極活物質 100重量部に対して 0〜50 重量部、好ましくは 0. 1〜: LO重量部、より好ましくは 0. 5〜5重量部の範囲である。
[0040] 前記分散液を調製するための混合手法には、特に制限はないが、例えば、ボールミ ル、サンドミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリ 一ミキサーなどの混合機器を使用することができる。混合条件は混合物の種類によつ て適宜選択されるが、通常、混合温度は室温〜 80°Cで行われ、混合時間は 10分〜 数時間である。
[0041] 得られた分散液を噴霧する方法は、特に限定はなぐ例えば、一般的に利用されて いるスプレー乾燥機 (スプレードライヤとも言う)を用いることができる。スプレー乾燥 機は、微粉化部、乾燥部、および粉末回収部力もなる。微粉ィ匕部は、分散液を微小 の液滴状に微粉ィ匕し、乾燥部内部に噴霧する装置 (アトマイザ)を備えている。アトマ ィザの種類は、大きく分けて回転円盤方式とスプレー方式に分けられ、どちらも使用 できる力 回転円盤方式が好ましい。回転円盤方式は、高速回転する円盤のほぼ中 央に原液を導入し、原液が円盤を離れる際、分散液が微小の液滴となる。円盤の回 転速度は円盤の大きさにもよる力 通常 5, 000-30, OOOrpm、好ましくは 15, 000 〜30, OOOrpmである。スプレー方式は、加圧により分散液をノズル力も微小の液滴 状に噴霧する。噴霧される分散液の温度は、通常 20〜250°C程度である。乾燥部は 、内部を熱風が流通しており、熱風によってアトマイザにより微小化された分散液の 液滴中の溶媒が蒸発して取り除かれ、分散液に含まれる固形分が乾燥して球形の粒 子になる。熱風の温度は、通常 80〜300°C、好ましくは 100〜200°Cである。
[0042] 得られた球形の粒子は、粉末回収部で回収される。この方法で得られる粒子 (A)は 、電極活物質、熱可塑性結着剤のバランスがよぐほぼ均一な球形状と粒子径を持 つ粒子となる。また、分散液が乾燥することで凝集し、電極材料の力さ密度が向上す る。
[0043] 転動層造粒法および攪拌型造粒法は、強制的に流動させた電極活物質に結着剤 を散布し造粒を行う方法である。それぞれの方法では、電極活物質を流動させる方 法が異なり、転動層造粒法では、回転ドラムあるいは回転皿型などの回転容器内部 で電極活物質および必要に応じてその他の成分を転動させる。攪拌型造粒法では、 容器内に設けられた攪拌翼などで強制的に原料粉体に流動運動を与える。
[0044] これらの造粒方法にお 、て、導電材、分散剤などのその他の成分を使用する場合 、それらの成分は、電極活物質と共に流動させても、結着剤と共に電極活物質に散 布してもよい。その他の成分を電極活物質と共に流動させる場合は、電極活物質の 表面に導電材などのその他の成分を予め付着させておくと、比重の異なる材料同士 が均一に分散することができるため好ましい。導電材などを電極活物質の表面に付 着させる方法としては、例えば、電極活物質と導電剤などとを、圧縮力やせん断力な どの機械的外力をカ卩えつつ混合するメカノケミカル処理がある。メカノケミカル処理を 行う装置としては、加圧-一ダーゃ二本ロールなどの混練機;回転ボールミルやノヽィ ブリダィゼーシヨンシステム( (株)奈良機械製作所製)などの高速衝撃式乾式粉体複 合ィ匕装置;メカノフュージョンシステム(ホソカワミクロン (株)製)などの圧縮せん断式 乾式粉体複合化装置;などを使用することができる。また、その他の成分を結着剤と 共に散布する場合は、例えば熱可塑性結着剤、導電材および分散剤を溶剤中で均 一に混合し、得られた分散液を、電極活物質の流動層に噴霧し造粒を行うことができ る。
[0045] これらの方法により製造される粒子 (A)を用いることで、電極活物質と熱可塑性結 着剤の分散性が向上する。分散性が向上することで、電気二重層キャパシタ用電極 に含まれる熱可塑性結着剤の量を少なくできるため、内部抵抗が低ぐ高静電容量 の電気二重層キャパシタ用電極を製造できる。
[0046] 6.電極の製造方法
本発明の電気二重層キャパシタ用電極の製造方法は、上記本発明の電気二重層 キャパシタ用電極材料からなる電極層を集電体上に形成する工程を有する。
[0047] 本発明に使用される集電体としては、例えば、金属、炭素、導電性高分子などを用い ることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミ-ゥ ム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他の合金などが使用される 。これらの中で、導電性、耐電圧性の面カゝらアルミニウムまたはアルミニウム合金を使 用するのが好ましい。また、高い耐電圧性が要求される場合には特開 2001— 1767 57号公報などで開示される高純度のアルミニウムを好適に用いることができる。 集電体は、フィルムまたはシート状である。その厚みは、使用目的に応じて適宜選択 される力 通常 1〜200 μ m、好ましくは 5〜: LOO μ m、より好ましくは 10〜50 μ mで ある。
[0048] 電極層は、電気二重層キャパシタ用電極材料をシート状に成形し、次いで該シートを 集電体上に積層することにより形成してもよいが、集電体上に直接電極層を形成して もよい。集電体上に電極層を直接形成する場合は、電極材料を集電体上に供給した 後、電極材料の厚みをブレードなどでならすと、成形時に電極密度を容易に均一に できるため好ましい。
[0049] 本発明の電気二重層キャパシタ用電極材料カゝら電極層を形成する方法としては、特 に制限はなぐ例えば加圧成形法などの乾式成形方法、および塗布方法などの湿式 成形方法があるが、乾燥工程が不要で製造コストが低いので乾式成形法が好ましい 。乾式成形法には、特に制限はなぐその具体例としては、電気二重層キャパシタ用 電極材料を金型に充填し、圧力を加えることで電極材料の再配列、変形により緻密 化を行い電極層を成形する加圧成形法;成形機から押し出されるとき該電気二重層 キャパシタ用電極材料がペースト状になることからペースト押出しとも呼ばれる、フィ ルム、シートなどのようなエンドレスの長尺物として電極層を連続成形する押出し成形 法;などが挙げられる。
[0050] これらの中でも、簡略な設備で行えることから、加圧成形法が好ましい。粒子 (A)を 使用して加圧成形を行うには、例えばスクリューフィーダ一にて粒子 (A)を集電体上 に散布し、加圧装置を使用し加圧成形を行うことができる。また、保護フィルムまたは 集電体上にフィーダ一を用いて定量的に電極材料を供給し、ローラーなどで加圧し て電極層を連続的に成形することも可能である。さらに、粒子 (A)をスクリューフィー ダーなどの供給装置で 2本の平行ロールを具備したロール式加圧成形装置に供給し 、電極層を成形することもできる。
[0051] 乾式成形法にお!、ても、水やアルコールなどの少量の成形助剤をカ卩えてもょ 、。成 形時の温度としては、通常 0°C〜200°Cの範囲で、熱可塑性結着剤の転移温度より 20°C以上高!、温度が好まし!/、。
[0052] 成形した電極の厚みのばらつきを無くし、電極層の密度を上げて高容量ィ匕をはか るために、必要に応じてさらに後加圧を行ってもよい。
後加圧の方法は、ロールによるプレス工程が一般的である。プレス工程では、 2本 の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回 転させて、その間に電極をかみこませ加圧する。ロールは加熱または冷却などにより 、温度調節してもよい。
[0053] 7.電気二重層キャパシタ
本発明の電気二重層キャパシタは、上記の製造方法で得られる電気二重層キャパ シタ用電極を有するものである。電気二重層キャパシタは、上記の電極と、電解液、 セパレーターなどの部品を用いて、常法に従って製造することができる。具体的には
、例えば、電気二重層キャパシタ用電極を適切な大きさに切断し、次いでセパレータ 一を介して電極を重ね合わせ、これをキャパシタ形状に巻ぐ折るなどして容器に入 れ、容器に電解液を注入して封口して製造できる。
[0054] 電解液は、特に限定されな ヽが、電解質を有機溶媒に溶解した非水電解液が好ま しい。電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモ 二ゥムテトラフルォロボレート、トリェチルモノメチルアンモ-ゥムテトラフルォロボレ一 ト、テトラエチルアンモ -ゥムへキサフルオロフォスフェートなどが挙げられる。
[0055] これらの電解質を溶解させる溶媒 (電解液溶媒)は、一般的に電解液溶媒として用い られるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレン カーボネート、ブチレンカーボネートなどのカーボネート類; y ブチロラタトンなどの ラタトン類;スルホラン類;ァセトニトリルなどの-トリル類;が挙げられる。これらは単独 または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が 好ましい。
電解液の濃度は通常 0. 5モル ZL以上、好ましくは 0. 8モル ZL以上である。
[0056] セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフイン製 の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする 多孔質膜などを用いることができる。また、セパレーターに代えて固体電解質または ゲル電解質を用いてもよい。
実施例
[0057] 以下、実施例および比較例を示し、本発明をさらに具体的に説明する力 本発明 は下記の実施例に制限されるものではない。また、部および%は、特に記載のない 限り重量基準である。
[0058] 実施例 1
電気二重層キャパシタ用電極材料の製造
導電材として平均粒径 7 μ mのアセチレンブラック(デンカブラック粉状;電気化学 工業社製) 50部と、分散剤としてカルボキシメチルセルロースを 5%含む水溶液 (セロ ゲン 7A;第一工業製薬社製) 200部と、水 50部とをプラネタリーミキサーを用いて混 合分散し、固形分濃度 20%の導電材分散液を得た。次いで、該導電材分散液 30部 、カルボキシメチルセルロースを 5%含む水溶液(セロゲン 7A) 8部、電極活物質とし て比表面積 2, OOOm g,平均粒径 5 /z mの高純度活性炭粉末 100部、熱可塑性 結着剤としてカルボキシ変性スチレン'ブタジエン共重合体 (平均粒子径 0. 12 m、 ガラス転移温度 5°C)を水に分散した分散液 (BM400B;日本ゼオン製、 40%濃 度) 7. 5部および水をカ卩えてプラネタリーミキサーで混合してスラリー状の組成物 (I) を得た。
[0059] この組成物 (I)をさらに固形分濃度が 21%となるように水で希釈し、スプレー乾燥 機 (OC— 16;大河原化工機社製)を使用し、回転円盤方式のアトマイザ (直径 65m m)の回転数 20, OOOrpm、熱風温度 150°C、粒子回収出口の温度が 90°Cで噴霧 乾燥造粒を行 ヽ、粒子 (A— 1)を得た。
[0060] 粒子 (A— 1)の特性
得られた粒子 (A— 1)の粒子径を粒径測定装置 (バウダテスタ PT—R;ホソカワミク ロン社製)を用いて重量分級法により測定したところ、重量平均粒子径は 70 μ mであ つた。また、電子顕微鏡写真で無作為に選んだ粒子 20個について短軸径 1、長軸径 s
1を測定し、 1 = (1 +1) Z2を計算して、球形度を評価したころ、(1— 1 ) X 100/1で
1 a s 1 I s a 表される球形度が全ての粒子について 5%以下で、粒子は球状であった。
[0061] 粒子 (A— 1)の流動性を測定するために、これを JIS K6720— 2でかさ比重の測 定に使用される漏斗に充填し、速やかにダンパーを引き抜いたところ、粒子 (A— 1) は漏斗口力 スムーズに落下した。
[0062] また、粒子 (A— 1)の安息角を安息角測定装置 (パウダテスタ PT— R)で測定し、 流動性を以下の基準に基づく 4段階法で評価した結果を表 1に示す。
安息角が 30° 未満: A
30° 以上 50° 未満: B
50° 以上 60° 未満: C
60° 以上: D [0063]
実施例 比較例
1 2 3 4 1 2 3 粒子の性質
平均粒子径( m) 70 70 70 70 - 70 48 粒子形状 球状 球状 球状 球状 不定形 球状 不定形 流動性 A A A A D B C 電気二重層キャパシタ用電極
柔軟性 B A B A B D D 強度 B A B A C D D 密度 B A B A D D C 密度の均一性 A A A A D B C 電気二重層キャパシタ
内部抵抗 B A B A D B C 静電容量 B A B A C D C
[0064] 電気二重層キャパシタ用電極
得られた粒子 (A— 1)をスクリューフィーダ一にて厚みが 40 μ mのアルミ集電体上 に散布し、ブレードを使用して集電体上の粒子の厚みを均一にならした後、加圧装 置を使用し室温(25°C)で加圧成形して電極層の厚みが 200 mの電気二重層キヤ パシタ用電極を得た。得られた電気二重層キャパシタ用電極を使用して、下記に示 す方法により電極柔軟性、電極強度、電極密度、および電極密度の均一性を測定し た。結果を表 1に示す。
[0065] 電極柔軟性
得られた電気二重層キャパシタ用電極を、長さ 100mm、幅 50mmの長方形に 2枚 切り出して試験片とし、 JIS K5600— 5—1に記載の方法に準じて測定した。試験装 置はタイプ 1の装置を用い、折り曲げ部分の円筒状マンドレルの直径は、 25mmと 32 mmの 2つを使用した。試験片を試験装置に取り付け、ちょうつがいを水平の状態か ら 180° 折り曲げた後、ルーペで電極のクラックを観察し、以下の基準に基づく 4段 階法で評価した。
25mm, 32mm共にクラックが見られない: A
25mmにはクラックが見られる力 32mmにはクラックは見られない: B
25mm, 32mm共にクラックが見られる: C
マンドレル部分で破断してしまう: D
[0066] 電極強度 上記の方法で得た電極を幅 2. 5cm X長さ 10cmの矩形に切り、電極層面を上にし て固定する。電極層の表面にセロハンテープを貼り付け、テープを 50mmZ分の速 度で 180° 方向に剥離したときの応力(NZcm)を 10回測定し、その平均値を求め てこれを電極強度とし、以下の基準に基づく 4段階法で評価した。
0. 8NZcm以上: A
0. 6N/cm以上、 0. 8NZcm未満: B
0. 4NZcm以上、 0. 6未満 NZcm: C
0. 4未満: D
[0067] 電極密度と電極密度の均一性
得られた電気二重層キャパシタ用電極から、 40mm X 60mmの電極を切り抜き、重 量と体積を測定し、集電体部分を除いた電極密度を計算し、以下の基準で判断した 電極密度が 0. 60gZcm3以上: A
0. 55gZcm3以上、0. 60gZcm3未満: B
0. 50gZcm3以上、0. 55gZcm3未満; C
0. 5g/cm3未満: D
[0068] また、上記切り抜いた電極をさらに lOmm X 10mmの均一な大きさに分割し、各々 の重量を測定して集電体部分を除!ヽた電極密度を計算した。得られた分割後の電 極密度と、分割前の電極密度との差の最大値を電極密度のばらつきとし、以下の基 準に基づく 4段階法で電極密度の均一性を評価した。
ばらつきが 0. lgZcm3未満: A
0. lgZcm3以上、 0. 15gZcm3未満: B
0. 15gZcm3以上、0. 2gZcm3未満: C
0. 2gZcm3以上: D
[0069] 電気二重層キャパシタ
リード端子を残し 4cm X 6cmの大きさの電極を 2枚切り抜き、 2枚の電極を対向させ 、厚さ 25 μ mのポリエチレンセパレータを挟んだ。これを厚さ 2mm、幅 5cm、高さ 7c mの 2枚のポリプロピレン製の板で挟持した。 2枚のプロピレン製の板の間の厚みは 0 . 68mmであった。これにプロピレンカーボネートに 1. 5molZLの濃度でトリエチレ ンモノメチルアンモ-ゥムテトラフロロボーレートを溶解した電解液を減圧下で含浸さ せ、ポリプロピレン製容器に収納し電気二重層キャパシタを作成した。
[0070] 得られた電気二重層キャパシタを使用して、電気二重層キャパシタについて、 25°C において、 10mAの定電流で OVから 2. 7Vまで 10分間充電を行い、その後 OVまで 、 1mAの一定電流で放電を行った。得られた充放電曲線より静電容量を求め、電極 の質量から集電体の質量を引いて得られる電極層の質量で除して、電極層の単位 質量あたりの静電容量を求めた。また、内部抵抗は、充放電曲線より社団法人電子 情報技術産業協会が定める規格 RC— 2377の計算方法に従って算出した。内部抵 抗と静電容量を以下の基準に基づく 4段階法で評価した。
[0071] 内部抵抗
4 Q F未満: A
4 Q F以上、 5 Q F未満: B
5 Q F以上、 6 Q F未満: C
6 Q F以上: D
[0072] 静電容量
58FZg以上: A
55FZg以上、 58FZg未満: B
45FZg以上、 55FZg未満: C
45FZg未満: D
[0073] 実施例 2
電気二重層キャパシタ用電極材料
カルボキシ変性スチレン 'ブタジエン共重合体の水分散物(BM400B) 7. 5部に代 えて、熱可塑性結着剤として、共重合組成がアクリル酸 2—ェチルへキシル Zスチレ ン Zメタクリル酸 Zエチレングリコールジメタタリレート = 80Z14Z4Z2(重量比)で あるアタリレート重合体 (粒子径 0. 15 m、ガラス転移温度 40°C)の水分散物 (40 %濃度) 7. 5部を使用した以外は、実施例 1と同様にして粒子 (A— 2)を得た。得ら れた粒子 (A— 2)の形状を実施例 1と同様に測定したところ、平均粒子径は m であった。また、球形度が全ての粒子について 5%以下で、粒子は球状であった。ま た、粒子 (A— 2)を実施例 1で使用した漏斗を使用し流動性を確認したところ、粒子( A- 2)は漏斗ロカもスムーズに落下した。また、実施例 1と同様に安息角を測定した 結果を表 1に示す。
[0074] 電気二重層キャパシタ用電極
粒子 (A— 1)に代えて、粒子 (A— 2)を使用する以外は実施例 1と同様に室温で電 気二重層キャパシタ用電極を作成し、実施例 1と同様に電極柔軟性、電極強度、電 極密度、および電極密度の均一性を測定した。結果を表 1に示す。
[0075] 電気二重層キャパシタ
得られた電極を使用し実施例 1と同様に電気二重層キャパシタを作成し、実施例 1 と同じ項目について得られた電気二重層キャパシタの特性を測定した。結果を表 1に 示す。
[0076] 比較例 1
電気二重層キャパシタ用電極材料
実施例 1で得られたスラリー状の組成物 (I)をバットに流し込んで乾燥させ、凝集状 の混合物を得、これを粉砕して粒子 (B— 1)を得た。得られた粒子 (B— 1)の大きさは ばらばらであったので、 40メッシュの篩を通した後、 80メッシュの篩にかけて残った粒 子 (B—1) 'を使用して実施例 1と同様に球形度を評価したところ、全ての粒子につい て球形度が 40%を超えており、粒子は不定形であった。粒子 (B— 1) 'を実施例 1で 使用した漏斗を使用し流動性を確認したところ、漏斗口からスムーズに落下しなかつ た。また、実施例 1と同様に安息角を測定し、流動性を判断した結果を表 1に示す。
[0077] 電気二重層キャパシタ用電極
粒子 (B— 1) 'を、スクリューフィーダ一を使用して集電体上に散布し、ブレードを使 用して粒子の厚みを均一にならしたところ、表面に筋跡ができた。これを実施例 1と同 様に加圧成形し、電極厚み 200 mの電気二重層キャパシタ用電極を得た。得られ た電気二重層キャパシタ用電極の筋跡のな ヽ部分を使用し、実施例 1と同様に電極 柔軟性、電極強度、電極密度、および電極密度の均一性を判断した。結果を表 1〖こ 示す。 [0078] 電気二重層キャパシタ
得られた電気二重層キャパシタ用電極の筋跡のな!ヽ部分を使用し、実施例 1と同 様に電気二重層キャパシタを作成した。実施例 1と同じ項目について得られた電気 二重層キャパシタの特性を判断した。結果を表 1に示す。
[0079] 比較例 2
電気二重層キャパシタ用電極材料
電極活物質として比表面積 2000m2Zg、平均粒径 5 mの高純度活性炭粉末 70 部、熱硬化性結着剤としてフエノール榭脂を 30部、およびアセトン 200部をプラネタリ 一ミキサーで混合してスラリー状の組成物 (Π)を得た。この組成物 (Π)を用いて実施 例 1と同条件でスプレー造粒を行い、粒子 (B— 2)を得た。得られた粒子 (B— 2)の 形状を実施例 1と同様に測定したところ、平均粒子径は 70 mであった。また、全て の粒子について球形度が 5%以下で、粒子は球状であった。粒子 (B— 2)を実施例 1 で使用した漏斗を使用し流動性を確認したところ、粒子 (B— 2)は漏斗口からスムー ズに落下した。また、実施例 1と同様に安息角を測定し、流動性を判断した結果を表 1に示す。
[0080] 電気二重層キャパシタ用電極
得られた粒子を、加圧成形し、得られた成形体を電気炉によって窒素ガス雰囲気 中 900°Cで 2時間熱処理することにより、電極層を得た。集電体上に導電性接着剤を 乾燥後の厚さが 5 mになるよう塗布し、乾燥し、上記で得られた電極層を積層後、 実施例 1と同様にロールで加圧し、電極厚み 200 mの電気二重層キャパシタ用電 極を得た。導電性接着剤は、アセチレンブラック 100重量部、 10%カルボキシメチル セルロース水溶液 (セロゲン 7H ;第一工業製薬社製) 20重量部、カルボキシ変性ス チレン Zブタジエン共重合体のラテックス(BM— 400B ;日本ゼオン製、 40%水分 散体) 31. 3重量部、軟水 10. 2重量部をニーダ一にて混練した後、さらに軟水で希 釈して製造した。得られた導電性接着剤は、光散乱法で測定したアセチレンブラック の平均粒子径が 0. 5 mで固形分濃度 30%であった。得られた電気二重層キャパ シタ用電極を使用し、実施例 1と同様に電極柔軟性、電極強度、電極密度、および 電極密度の均一性を判断した。結果を表 1に示す。 [0081] 電気二重層キャパシタ
得られた電気二重層キャパシタ用電極を使用し、実施例 1と同様に電気二重層キヤ パシタを作成した。実施例 1と同じ項目について得られた電気二重層キャパシタの特 性を判断した。結果を表 1に示す。
[0082] 比較例 3
電気二重層キャパシタ用電極材料
導電材としてアセチレンブラック 5部、分散剤としてカルボキシメチルセルロースの 5 %水溶液 30部、結着剤として実施例 2で用いたものと同じアタリレート重合体の 40% 水分散物 15部および水をカ卩えて、プラネタリーミキサーで混合してスラリー状の組成 物 (III) 135部を得た。次に、電極活物質として活性炭粉末 100部を流動層造粒機( ァグロマスタ;ホソカワミクロン社製)に供給し、 120°Cの気流中で前記組成物 (III)を 10分かけて噴霧し、重量平均粒子径 48 mの粒子(B— 3)を得た。なお、ァセチレ ンブラック、カルボキシメチルセルロースの 5%水溶液、アタリレート重合体の 40%水 分散物および活性炭粉末は、いずれも実施例 2と同種のものを用いた。粒子 (B— 3) の形状を実施例 1と同様に測定したところ、全ての粒子について球形度が 40%を超 えており、粒子は不定形であった。また、実施例 1と同様に安息角を測定し、流動性 を判断した結果を表 1に示す。
[0083] 電気二重層キャパシタ用電極
粒子 (A— 1)に代えて、粒子 (B— 3)を使用する以外は実施例 1と同様に室温で電 気二重層キャパシタ用電極を作成し、実施例 1と同様に電極柔軟性、電極強度、電 極密度、および電極密度の均一性を測定した。結果を表 1に示す。
[0084] 電気二重層キャパシタ
得られた電気二重層キャパシタ用電極を使用し、実施例 1と同様に電気二重層キヤ パシタを作成した。実施例 1と同じ項目について得られた電気二重層キャパシタの特 性を判断した。結果を表 1に示す。
[0085] 実施例 3. 4
厚みが 40 μ mの長尺状のアルミ集電体をベルト上に載せ、スクリューフィーダ一に て粒子 (A— 1)を散布し、集電体上の粒子の厚みを均一にならした後、ロールを使用 し室温(25°C)で加圧成形を連続して行い、電極層の厚みが 200 mの長尺状の電 気二重層キャパシタ用電極を得た(実施例 3)。同様に、粒子 (A—1)の代わりに、粒 子 (A— 2)を使用しても長尺状の電気二重層キャパシタ用電極が安定して形成され た (実施例 4)。実施例 3および実施例 4で得られた電極の性質を実施例 1と同様に評 価し表 1に示す。また、これらの電極を使用し実施例 1と同様に電気二重層キャパシ タを作成し、実施例 1と同じ項目について得られた電気二重層キャパシタの特性を判 断した。結果を表 1に示す。
[0086] 以上より、本発明の電極材料を用いた実施例は、電気二重層キャパシタ用電極の強 度、柔軟性、および電極密度が高ぐ電極密度の均一性に優れる。また、実施例の 電気二重層キャパシタは、内部抵抗が低ぐ静電容量も大きい。一方、電極材料粒 子が異形で、流動性の低い比較例 1は、電極の強度、密度、密度の均一性が低ぐこ の電極を使用した電気二重層キャパシタは内部抵抗、静電容量に劣る。また、熱可 塑性結着剤に代えて、熱硬化性結着剤を使用した比較例 2は、強度、柔軟性および 密度が低ぐこの電極を使用した電気二重層キャパシタは内部抵抗、静電容量に劣 る結果となった。
産業上の利用可能性
[0087] 本発明の電極材料から得られる電気二重層キャパシタ用電極は、低内部抵抗でか つ高静電容量であるという特性をもつ。この特性を活力ゝして、この電気二重層キャパ シタ用電極を使用した電気二重層キャパシタは、パソコンや携帯端末などのメモリの ノ ックアップ電源、パソコンなどの瞬時停電対策用電源、電気自動車またはハイプリ ッド自動車への応用、太陽電池と併用したソーラー発電エネルギー貯蔵システム、電 池と組み合わせたロードレべリング電源などの様々な用途に好適である。

Claims

請求の範囲
[1] 電極活物質と熱可塑性結着剤とを含み、短軸径を 1 s、長軸径を 1、
l 1a = (1 s +1i ) Z2と し、(1— 1 ) X 100/1の値を球形度(%)としたとき、球形度が 20%以下である球形
I s a
の粒子 (A)を含む電気二重層キャパシタ用電極材料。
[2] 粒子 (A)がさらに導電材を含む請求項 1に記載の電気二重層キャパシタ用電極材 料。
[3] 粒子 (A)がさらに分散剤を含む請求項 1に記載の電気二重層キャパシタ用電極材 料。
[4] 熱可塑性結着剤の転移温度が 80°C〜20°Cである請求項 1に記載の電気二重 層キャパシタ用電極材料。
[5] 熱可塑性結着剤が粒子状である請求項 1に記載の電気二重層キャパシタ用電極 材料。
[6] 電極活物質および熱可塑性結着剤を溶媒中で混合し、分散する工程、および、得 られた分散液を噴霧乾燥して粒子 (A)を形成する工程を有する請求項 1に記載の電 気二重層キャパシタ用電極材料の製造方法。
[7] 請求項 1に記載の電気二重層キャパシタ用電極材料力もなる電極層を集電体上に 形成する工程を有する電気二重層キャパシタ用電極の製造方法。
[8] 請求項 7に記載の製造方法により得られる電気二重層キャパシタ用電極。
[9] 請求項 8に記載の電気二重層キャパシタ用電極を有する電気二重層キャパシタ。
PCT/JP2005/011274 2004-06-22 2005-06-20 電気二重層キャパシタ用電極材料およびその製造方法 WO2005124801A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006514820A JP5069464B2 (ja) 2004-06-22 2005-06-20 電気二重層キャパシタ用電極材料およびその製造方法
US11/630,203 US7567429B2 (en) 2004-06-22 2005-06-20 Electrode material for electric double layer capacitor and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004183890 2004-06-22
JP2004-183890 2004-06-22

Publications (1)

Publication Number Publication Date
WO2005124801A1 true WO2005124801A1 (ja) 2005-12-29

Family

ID=35509973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011274 WO2005124801A1 (ja) 2004-06-22 2005-06-20 電気二重層キャパシタ用電極材料およびその製造方法

Country Status (3)

Country Link
US (1) US7567429B2 (ja)
JP (1) JP5069464B2 (ja)
WO (1) WO2005124801A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116718A1 (ja) * 2006-03-30 2007-10-18 Zeon Corporation 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極
JP2008140809A (ja) * 2006-11-30 2008-06-19 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
US20090301764A1 (en) * 2008-03-14 2009-12-10 Murata Manufacturing Co., Ltd. Method for smoothing electrode, method for manufacturing ceramic substrate, and ceramic substrate
JP2010171212A (ja) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極およびその製造方法
CN101410915B (zh) * 2006-03-30 2011-04-13 日本瑞翁株式会社 电化学元件电极用复合粒子、电化学元件电极用复合粒子的制造方法及电化学元件电极
WO2015019947A1 (ja) * 2013-08-06 2015-02-12 日本バルカー工業株式会社 電気二重層キャパシタ用電極膜の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107223B2 (en) * 1999-06-11 2012-01-31 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
WO2004084245A1 (ja) * 2003-03-18 2004-09-30 Zeon Corporation 電気二重層キャパシタ電極用バインダー組成物
US7914704B2 (en) * 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode
CN101147222A (zh) * 2005-03-30 2008-03-19 日本瑞翁株式会社 双电层电容器用电极材料、制造方法、双电层电容器用电极以及双电层电容器
WO2006132141A1 (ja) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology 電解コンデンサ素子及びその製造方法
JP4594987B2 (ja) * 2005-09-22 2010-12-08 本田技研工業株式会社 分極性電極および電気二重層キャパシタ
FR2927727B1 (fr) * 2008-02-19 2017-11-17 Batscap Sa Ensemble de stockage d'energie electrique multibobines.
EP2271582A4 (en) 2008-04-02 2014-01-22 Cedar Ridge Research Llc REUSABLE ALUMINUM ALKALI HYDROXIDE HYDROGEN GENERATOR
CN103400705A (zh) * 2013-06-07 2013-11-20 山东精工电子科技有限公司 超级电容器浆料的制备方法
CN105247708B (zh) * 2013-06-27 2017-09-22 日本瑞翁株式会社 锂离子电池用电极的制造方法
WO2015029829A1 (ja) * 2013-08-26 2015-03-05 日本ゼオン株式会社 電気化学素子用造粒粒子の製造方法、電気化学素子用電極及び電気化学素子
MY183214A (en) * 2013-09-30 2021-02-18 Zeon Corp Dip-forming composition and dip-formed article
CN115512980A (zh) 2016-05-20 2022-12-23 京瓷Avx元器件公司 超级电容器用的非水电解质
KR102635455B1 (ko) 2016-05-20 2024-02-13 교세라 에이브이엑스 컴포넌츠 코포레이션 고온용 울트라커패시터
CN109155204B (zh) 2016-05-20 2020-12-22 阿维科斯公司 用于超级电容器的电极构造体
EP3507843A1 (en) 2016-09-01 2019-07-10 Maxwell Technologies, Inc. Methods and apparatuses for energy storage device electrode fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179711A (ja) * 1986-02-03 1987-08-06 株式会社村田製作所 電気二重層コンデンサ
JPH09289142A (ja) * 1996-04-23 1997-11-04 Nec Corp 活性炭電極およびその製造方法並びに電気二重層コンデンサ
JP2003003078A (ja) * 2000-09-19 2003-01-08 Nisshinbo Ind Inc イオン導電性組成物、ゲル電解質、及び非水電解質電池並びに電気二重層キャパシタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652902A (en) * 1969-06-30 1972-03-28 Ibm Electrochemical double layer capacitor
JP2545216B2 (ja) * 1986-12-16 1996-10-16 太陽誘電株式会社 電気二重層コンデンサ
JPS63232308A (ja) * 1987-03-20 1988-09-28 太陽誘電株式会社 電気二重層コンデンサ
JP3339553B2 (ja) * 1996-12-09 2002-10-28 エヌイーシートーキン株式会社 電気二重層コンデンサ
JP2000340468A (ja) * 1999-05-31 2000-12-08 Kyocera Corp 固形状活性炭質構造体およびその製造方法、並びにこれを用いた電気二重層コンデンサ
US6449139B1 (en) * 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
US6643119B2 (en) * 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179711A (ja) * 1986-02-03 1987-08-06 株式会社村田製作所 電気二重層コンデンサ
JPH09289142A (ja) * 1996-04-23 1997-11-04 Nec Corp 活性炭電極およびその製造方法並びに電気二重層コンデンサ
JP2003003078A (ja) * 2000-09-19 2003-01-08 Nisshinbo Ind Inc イオン導電性組成物、ゲル電解質、及び非水電解質電池並びに電気二重層キャパシタ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116718A1 (ja) * 2006-03-30 2007-10-18 Zeon Corporation 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極
CN101410915B (zh) * 2006-03-30 2011-04-13 日本瑞翁株式会社 电化学元件电极用复合粒子、电化学元件电极用复合粒子的制造方法及电化学元件电极
US7972535B2 (en) 2006-03-30 2011-07-05 Zeon Corporation Composite particles for electrochemical device electrode, method of production of composite particles for electrochemical device electrode, and electrochemical device electrode
JP2008140809A (ja) * 2006-11-30 2008-06-19 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
US20090301764A1 (en) * 2008-03-14 2009-12-10 Murata Manufacturing Co., Ltd. Method for smoothing electrode, method for manufacturing ceramic substrate, and ceramic substrate
US8756775B2 (en) * 2008-03-14 2014-06-24 Murata Manufacturing Co., Ltd. Method for smoothing a surface of an electrode
JP2010171212A (ja) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極およびその製造方法
WO2015019947A1 (ja) * 2013-08-06 2015-02-12 日本バルカー工業株式会社 電気二重層キャパシタ用電極膜の製造方法
JP2015032769A (ja) * 2013-08-06 2015-02-16 日本バルカー工業株式会社 電気二重層キャパシタ用電極膜の製造方法
US10373768B2 (en) 2013-08-06 2019-08-06 Valqua, Ltd. Method for producing electrode film for electric double layer capacitors

Also Published As

Publication number Publication date
US7567429B2 (en) 2009-07-28
US20080030924A1 (en) 2008-02-07
JP5069464B2 (ja) 2012-11-07
JPWO2005124801A1 (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5069464B2 (ja) 電気二重層キャパシタ用電極材料およびその製造方法
JP4840358B2 (ja) 電気化学素子電極
JP4978467B2 (ja) 電気化学素子電極材料および複合粒子
JP4839669B2 (ja) 電気化学素子電極用複合粒子
JP4840357B2 (ja) 電気化学素子電極用複合粒子
JP5141002B2 (ja) 電気化学素子電極用複合粒子の製造方法
WO2007116718A1 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極
JP5311706B2 (ja) 電気化学素子電極用複合粒子の製造方法
WO2010024327A1 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JPWO2007072815A1 (ja) 電気二重層キャパシタ
JP2006339184A (ja) 電気化学素子電極用複合粒子の製造方法
JP4985404B2 (ja) 電気化学素子電極の製造方法、電気化学素子電極材料及び電気化学素子電極
JP2008098590A (ja) 電気化学素子用電極およびこれを用いてなる電気化学素子
KR20160146737A (ko) 전기 화학 소자 전극용 복합 입자의 제조 방법
JP5767431B2 (ja) 電気化学素子電極形成用材料、その製造方法および電気化学素子電極
JP4899354B2 (ja) 複合粒子の製造方法、電気化学素子用電極材料、電気化学素子用電極の製造方法及び電気化学素子用電極
JP4839726B2 (ja) 電気二重層キャパシタ用電極
WO2010016567A1 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2010171212A (ja) 電気二重層キャパシタ用電極およびその製造方法
WO2009119553A1 (ja) ハイブリッドキャパシタ用電極の製造方法
JP5651470B2 (ja) リチウムイオンキャパシタ用バインダー、リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2016024986A (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極用複合粒子、電気化学素子電極、および電気化学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11630203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11630203

Country of ref document: US