WO2005118289A1 - ガスバリア性多層構造物およびその製造法 - Google Patents

ガスバリア性多層構造物およびその製造法 Download PDF

Info

Publication number
WO2005118289A1
WO2005118289A1 PCT/JP2005/010275 JP2005010275W WO2005118289A1 WO 2005118289 A1 WO2005118289 A1 WO 2005118289A1 JP 2005010275 W JP2005010275 W JP 2005010275W WO 2005118289 A1 WO2005118289 A1 WO 2005118289A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stretching
multilayer
gas
resin
Prior art date
Application number
PCT/JP2005/010275
Other languages
English (en)
French (fr)
Inventor
Tomomichi Kanda
Kazunobu Maruo
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to EP20050751408 priority Critical patent/EP1752286B1/en
Priority to AU2005249842A priority patent/AU2005249842B2/en
Priority to US11/628,405 priority patent/US20080069994A1/en
Priority to JP2006514147A priority patent/JP4930054B2/ja
Publication of WO2005118289A1 publication Critical patent/WO2005118289A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/7879Stretching, e.g. stretch rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/087Means for providing controlled or limited stretch ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31736Next to polyester

Definitions

  • the present invention relates to a multilayer structure having excellent gas barrier performance and a method for producing the same.
  • Packaging materials used for packaging of foods and beverages, etc. have high strength, resistance to cracking, heat resistance, as they protect the contents, such as the environment during distribution, storage conditions such as refrigeration, and processing power such as heat sterilization.
  • an oxygen barrier property for preventing invasion of oxygen by an external force in order to suppress food iridescence, and a barrier property function for various flavor components with a change in taste.
  • Thermoplastic resins such as polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, and aliphatic polyamides such as nylon 6 are transparent and have excellent mechanical properties. It is widely used after being processed into molded products such as packaging films, packaging sheets and containers such as bottles. However, the barrier property against gaseous substances such as oxygen is inferior, so that the contents are liable to be oxidized and deteriorated, and the expiration date of the contents is shortened by the permeated aroma components.
  • Polyamide capable of polycondensation reaction between xylylenediamine and aliphatic dicarboxylic acid, for example, metaxylylenediamine and polyamide capable of also obtaining adipic acid have strength, elastic modulus, Excellent barrier properties against gaseous substances such as oxygen and carbon dioxide. Therefore, it is widely used as a gas barrier material for packaging materials for the purpose of improving gas nobility.
  • Polyamide MXD6 has better thermal stability during melting than other gas barrier resins. It can be co-extruded or co-injected with various thermoplastic resins such as nylon 6 and polypropylene, etc., and its use as a gas barrier layer in multilayer structures has been actively promoted recently. .
  • Multi-layered structures having a gas barrier layer that also has a strong effect such as bi-lidene chloride, ethylene-bulcohol copolymer, and poly-bulcohol, are also being used.
  • the multilayer structure including the Shiridani bilidene layer has excellent gas barrier properties irrespective of storage conditions, dioxin is generated when it is burned, and there is a problem of polluting the environment.
  • Ethylene bul alcohol copolymer and poly bul alcohol do not have the above-mentioned environmental pollution problems
  • the multilayer structure having such a powerful gas barrier layer exhibits excellent gas barrier properties in a relatively low humidity environment
  • the stored contents have high water activity or high humidity. If stored in an environment or subjected to heat sterilization after filling the contents, the gas barrier properties will be significantly reduced, and the preservability of the contents will not be good.
  • a film coated with polyvinyl alcohol and a composition capable of forming an inorganic layer is also disclosed (for example, see Patent Document 1 and Patent Document 2). Since the film is mainly made of polyvinyl alcohol, which has excellent gas nori properties under low humidity, the gas barrier property under high humidity is greatly reduced.
  • Patent Document 5 describes a multilayer resin obtained by laminating a thermoplastic resin layer containing no layered silicate on both sides of a polyamide resin composition layer in which the layered silicate is uniformly dispersed, and stretching. It is disclosed that the stretched film exhibits improved transparency.
  • the stretching conditions of the polyamide MXD6 containing the layered silicate nor is there any description of the specific properties of the multilayer structure obtained under the specific stretching conditions.
  • Patent Document 1 JP-A-7-251874
  • Patent Document 2 JP-A-7-304128
  • Patent Document 3 JP-A-2-305828
  • Patent Document 4 JP-A-8-53572
  • Patent Document 5 JP-A-2002-29012
  • An object of the present invention is to provide a multilayer structure having a gas barrier layer, which is excellent in transparency and gas-nolia property, and a method for stretching and blowing a multilayer bottle, stretching a multilayer film, and the like.
  • An object of the present invention is to provide a method for producing the multilayered structure, in which whitening due to cracks and reduction in gas barrier properties are suppressed.
  • the inventors of the present invention have obtained a laminate obtained by laminating a specific composite resin layer and a thermoplastic resin layer, and then performing stretch thermoforming so as to exhibit specific properties under specific conditions.
  • the multi-layer structure was found to be excellent in transparency and gas barrier performance, and completed the present invention.
  • the present invention provides a diamine unit containing at least 70 mol% of a metaxylylenediamine unit and a dicarboxylic unit containing at least 70 mol% of a unit derived from an ex, ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms.
  • Glass transition point from at least one gas nolia layer (1) composed of resin (C) and composite resin (C) A gas barrier obtained by subjecting a multilayer laminate formed from at least one layer (2) made of a thermoplastic resin (D) having a low heat resistance to stretching and thermoforming at a temperature equal to or higher than the glass transition point of the composite resin (C).
  • the maximum stretching stress per unit cross-sectional area of the unstretched film at the time of simultaneous biaxial stretching at a stretching ratio of 3 X 3 should be within the range of 0.2 to 2.OMPa and the preheating time before stretching.
  • the present invention relates to a gas barrier multilayer structure characterized by the following.
  • the present invention relates to a gas-nolia-based multi-layer container using at least a part of the multi-layer structure.
  • the present invention provides at least one gas nolia layer (1) having a composite resin (C) force and at least one layer having a glass transition point lower than that of the composite resin (C) and a thermoplastic resin (D) force.
  • Forming a multilayer laminate comprising the resin layer (2), and stretching and thermoforming the multilayer laminate at a temperature equal to or higher than the glass transition point of the composite resin (C).
  • the polyamide resin (A) used in the present invention can be obtained by melt polycondensation of a diamine component and a dicarboxylic acid component or by solid phase polymerization after melt polycondensation.
  • the diamine units in the polyamide resin (A) must contain at least 70 mol% of metaxylylenediamine units. An excellent gas barrier property can be maintained when the amount of the methaxylylenediamine unit is 70 mol% or more.
  • a diamine component that can be used other than meta-xylylenediamine tetramethylene diamine, Pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, otatamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2 Aliphatic diamines such as 1,2,4 trimethyl-1-hexamethylenediamine and 2,4,4 trimethylhexamethylenediamine; 1,3 bis (aminomethyl) cyclohexane, 1,4 bis (amino Methyl) cyclohexane, 1,3 diaminocyclohexane, 1,4 diaminocyclohexane, bis (4 aminocyclohexyl) methane, 2,2 bis (4-aminocyclohexyl) propane, bis (aminomethyl A) alicyclic diamines such as decalin and bis (aminomethyl) tri
  • the dicarboxylic acid unit in the polyamide resin (A) is preferably at least 70 mol%, more preferably at least 80 mol%, a unit derived from oc, ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms. And more preferably 90 mol% or more.
  • the ⁇ , ⁇ -linear aliphatic dicarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecandioic acid, and dodecandioic acid. However, adipic acid is particularly preferred.
  • ⁇ linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in the dicarboxylic acid unit is 70 mol% or more, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity.
  • the dicarboxylic acid component other than the oc, ⁇ linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • the polyamide resin ( ⁇ ) also contains a small amount of a unit derived from monoamine or monocarboxylic acid used as a molecular weight regulator during polycondensation!
  • the melt polycondensation method is, for example, a method in which a nylon salt as a diamine component and a dicarboxylic acid component is heated under pressure in the presence of water and polymerized in a molten state while removing added water and condensed water. There is. Further, it is also produced by a method in which a diamine component is directly calorified into a dicarboxylic acid component in a molten state and polycondensed. In this case, in order to keep the reaction system in a uniform liquid state, the diamine component is continuously added to the dicarboxylic acid component, and during this time, the reaction system is heated so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide. And Meanwhile, polycondensation proceeds.
  • the relative viscosity of a relatively low molecular weight polyamide obtained by melt polycondensation is usually 2. It is about 28.
  • the relative viscosity after the melt polycondensation is 2.28 or less, a high-quality polyamide resin having a low color tone and a good color tone can be obtained.
  • the relatively low molecular weight polyamide resin obtained by melt polycondensation is then subjected to solid state polymerization.
  • Solid-state polymerization involves pelletizing or powdering the relatively low-molecular-weight polyamide resin and heating it to a temperature of 150 ° C or higher and a melting point of the polyamide resin or lower under reduced pressure or an inert gas atmosphere. More enforced c
  • the relative viscosity of the polyamide resin (A) is preferably from 1.8 to 3.9, more preferably from 2.4 to 3.7, still more preferably from 2.5 to 3.7. .
  • the hollow container, film, and sheet can be formed into a good shape, and the obtained hollow container, film, and sheet have good performance, particularly good mechanical performance.
  • a melt-kneading method may be used.However, if the relative viscosity is less than 1.8, the viscosity of the molten resin is reduced. If it is too low, the layered silicate (B) becomes difficult to disperse, and its agglomerates are formed and the appearance is impaired when the film is immediately formed. Polyamide resin (A) having a relative viscosity of more than 3.9 is difficult to produce and may require special equipment for melt kneading. When the relative viscosity is particularly 1.8 to 3.9, an appropriate pressure is applied to the resin during extrusion kneading, so that the dispersibility of the layered silicate (B) is improved.
  • Polyamide resin (A) includes impact modifiers such as elastomers; crystal nucleating agents; lubricants such as fatty acid amide compounds, fatty acid metal salt compounds, and fatty acid amide compounds; copper compounds , Organic or inorganic halogenated compounds, hindered phenol compounds, hindered amine compounds, hydrazine compounds, sulfur compounds, phosphorus compounds (sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, hypophosphorous acid) Magnesium, etc.), heat stabilizers, coloring inhibitors, benzotriazole-based ultraviolet absorbers, mold release agents, plasticizers, coloring agents, and additives such as flame retardants. Also good.
  • impact modifiers such as elastomers
  • crystal nucleating agents such as fatty acid amide compounds, fatty acid metal salt compounds, and fatty acid amide compounds
  • lubricants such as fatty acid amide compounds, fatty acid metal salt compounds, and fatty acid amide compounds
  • copper compounds Organic
  • the mixing ratio of the polyamide ⁇ (A) is 92 to 99 weight 0/0 of the composite ⁇ (C) (the total of the polyamide ⁇ (A) and layered silicate (B)), preferably 95 98. 5 wt 0/0.
  • the layered silicate used in the present invention is a 2-octahedral or 3-octahedral layered silicate having a charge density of 0.25 to 0.6.
  • Examples include montmorillonite, neuderite, etc., and 3-octahedral types include hectorite, sabonite, and the like. Among these, montmorillonite is preferred.
  • the layered silicate (B) is obtained by bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate.
  • an organic swelling agent such as a polymer compound or an organic compound
  • exchangeable inorganic cations such as sodium potassium and calcium present between the layers of the layered silicate are ion-exchanged with the organic swelling agent.
  • the organic swelling agent include halogen salts of ammonium, phosphonium and sulfodium. Among these, an ammonium salt and a phosphonium salt are preferable, and an ammonium salt is particularly preferably used.
  • ammonium salt any of primary, secondary, tertiary and quaternary ammonium salts may be used, but in order to obtain the effect of interlayer expansion, a substituent having 12 or more carbon atoms is required. An ammonium salt having the same is preferably used.
  • organic swelling agent examples include trimethyl dodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethylhexadecyl ammonium salt, trimethyloctadecyl ammonium salt, trimethyl eicosyl ammonium salt.
  • -Trimethylalkylammonium such as pum salt
  • Dimethyldialkylammonium salt; dimethyldioctadedecammonium salt; dimethyldioctadecadielumammonium salt Dimethyldialkane-ammonium salt such as dimethyl salt; getyldidodecylammonium-pam salt, getylditetradecylammonium-pam salt, getyldihexadecylammonium-pam salt, getyldioctadecylammonium- ⁇ Dibutyl didodecyl ammonium salt such as dimethyl salt; dibutyl didodecyl ammonium salt; dibutyl ditetradecyl ammonium salt; dibutyl dihexadecyl ammonium salt; dibutyl dioctadecyl ammonium salt.
  • Dibenzyldialkylammonium salts such as methyl salts; methylbenzyldialkylammonium salts such as methylbenzyldihexadecylammonium salts; dibenzyldialkylammonium salts such as dibenzyldihexadecylammonium salts.
  • Trialkylethylammonium salts such as trialkylethylammonium salts
  • trialkylethylammonium salts such as tridodecylethylammonium salts
  • trialkylbutylammonium salts such as tridodecylbutylammonium salts.
  • such as 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8-aminocaprylic acid, 10-aminodecanoic acid, 12-aminododecanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid, and 18-aminooctadecanoic acid — Amino acids and the like.
  • polyamides and / or polyamide oligomers in which at least one of the terminals having a diamine and dicarboxylic acid force is an amino group and a ⁇ or ammodime salt can also be used as the organic swelling agent.
  • the diamine include tetramethylene diamine, pentamethylene diamine, 2-methylpentanediamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, and decamethylene diamine.
  • Aliphatic diamines such as dimethylamine, dodecamethylenediamine, 2,2,4 trimethyl-hexamethylenediamine and 2,4,4 trimethylhexamethylenediamine; 1,3 bis (aminomethyl) cyclohexane; 1,4-bis (aminomethyl) cyclohexane, 1,3 diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2 bis (4-aminocyclohexyl) Alicyclic diamines such as propane, bis (aminomethyl) decalin and bis (aminomethyl) tricyclodecane; bis (4-aminophenyl) Ether, Bruno Rafue - Renjiamin, meta-xylylene Amin, Bruno La xylylene ⁇ Min, and a bis Jiamin having an aromatic ring such as (aminomethyl) naphthalene.
  • dicarboxylic acid examples include succinic acid, dataric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, pendecanedioic acid, dodecanedioic acid and the like. , ⁇ -linear aliphatic dicarboxylic acids; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like.
  • the diamine and / or dicarboxylic acid are similar to the constituent components of the polyamide resin ( ⁇ ).
  • an ammonium salt containing a hydroxyl group and a hydroxyl group or an ether group for example, a methyldihydroxicetyl hydrogenated tallow ammonium salt, and a methyldialkyl (PAG) ammonium salt
  • -Pharmadium salt dimethylbis (PAG) ammonium salt, getylbis (PAG) ammonium salt, dibutylbis (PAG) ammonium salt, methylalkylbis (PAG) ammonium salt, ethyl Alkylbis (PAG) ammonium salt, butylalkylbis (PAG) ammonium salt, methyltri (PAG) ammonium salt, ethylethyl (PAG) ammonium salt, butyltri (PAG) ammonium salt Salt, tetra (PAG) ammonium salt (where alkyl represents an alkyl group having 12 or more carbon atoms such as dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, etc.), and PAG is a polyalkylene glycol residue, preferably A quaternary ammonium salt containing at least one alkylene glycol residue, such as a
  • trimethyl dodecyl ammonium salt trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetramethyl salt
  • decyl ammonium salt dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl ditallow ammonium salt, and methyldihydroxyethyl hydrogenated tallow ammonium salt.
  • These organic swelling agents can be used alone or as a mixture of plural kinds.
  • the compounding ratio of the layered silicate ( ⁇ ) is 1 to 8% by weight, preferably 1.5 to 5% by weight of the composite resin (C).
  • the compounding ratio of the layered silicate ( ⁇ ) is within the above range, the effect of improving gas barrier properties can be obtained, and the transparency is not impaired.
  • the layered silicate ( ⁇ ) is uniformly dispersed without local aggregation.
  • Uniform dispersion refers to the layered state of polyamide resin ( ⁇ ). It means that the silicate (B) separates into a plate shape, and 50% or more of them have an interlayer distance of 5 nm or more.
  • the interlayer distance refers to the distance between the centers of gravity of the flat objects. The longer this distance is, the better the dispersion state is, the better the appearance such as the transparency of the molded product such as a bottle or a film, and the better the barrier property against gaseous substances such as oxygen and carbon dioxide gas. .
  • a method for producing the composite resin (C) a method of melt-kneading the polyamide resin (A) and the layered silicate (B) using an ordinary single screw or twin screw extruder or the like, There is a method in which the layered silicate (B) is added during the synthesis of the fat (A) and the mixture is stirred, but there is no particular limitation. Among these, a melt kneading method using a twin screw extruder is preferred.
  • the melt-kneading temperature is set in the range of around the melting point of polyamide resin (A) to the melting point + 60 ° C, and the residence time of the resin in the extruder as much as possible. Should be shortened.
  • the part where the polyamide resin (A) and the layered silicate (B) of the screw installed in the extruder are mixed should use a combination of parts such as a reverse screw element and a minus one disc.
  • the layered silicate (B) is efficiently dispersed.
  • the layered silicate (B) When the layered silicate (B) is added during the synthesis of the polyamide resin (A), a method of promoting polycondensation after addition to the aqueous solution of the nylon salt, a method of adding the diamine to the diamine component and Z or the dicarboxylic acid component and then dissolving the dicarboxylic acid
  • the method includes adding a diamine component to the component to promote polycondensation, or adding it during the polycondensation.
  • the polyamide polycondensation equipment is equipped with sufficient mixing equipment to disperse the layered silicate (B) Since it is difficult to carry out the reaction, it is preferable to add it to the raw material of the polyamide or to the reaction system at the initial stage of polycondensation.
  • the glass transition point of the composite resin (C) is preferably from 60 to 120 ° C.
  • Thermoplastic resins (D) having a lower glass transition point than composite resins (C) include polyethylenes such as low-density polyethylene, medium-density polyethylene, and high-density polyethylene; propylene homopolymer, propylene-ethylene block copolymer, Polypropylenes such as propylene and ethylene random copolymer; ethylene butene copolymer, ethylene-hexene copolymer, ethylene otene copolymer, ethylene butyl acetate copolymer, ethylene methyl methacrylate copolymer, propylene a- olefin copolymer Coalesce, polybutene, polypentene, ionomers, various polyolefins such as fats; polyesters such as polyethylene terephthalate, etc. Fats; polyamide resins such as nylon 6, nylon 66 and nylon
  • the layer (2) includes impact modifiers such as perlastomers; crystal nucleating agents; lubricants such as fatty acid amide compounds, fatty acid metal salt compounds and fatty acid amide compounds; copper compounds and organic compounds.
  • impact modifiers such as perlastomers; crystal nucleating agents; lubricants such as fatty acid amide compounds, fatty acid metal salt compounds and fatty acid amide compounds; copper compounds and organic compounds.
  • Inorganic pigments such as magnesium oxide); thermal stabilizers; color stabilizers; ultraviolet absorbers such as benzotriazole compounds; mold release agents; plasticizers; An additive such as an organic pigment such as a dye may be contained.
  • the multi-layer structure of gasoline of the present invention is mainly composed of a gas layer (composite resin (C)).
  • the number of layers is not limited as long as at least one layer of (1) and at least one layer of thermoplastic resin (D) are laminated. Further, a layer (3) having another material strength may be included. For example, layer (2) layer Z (1) layer Z (2), layer (2) layer Z (1) layer Z (2) layer Z (1) layer Z (2), layer (1) layer Z (2 ) Z layer (
  • each gas barrier layer (1) is preferably between 1 and 150 ⁇ m, and the thickness of each layer (2) is preferably between 20 and 800 ⁇ m.
  • a method for producing the gas barrier multilayer structure of the present invention will be described.
  • a multilayer laminate including at least one layer (1), at least one layer (2), and, if necessary, a layer (3) is produced by a known method.
  • stretching thermoforming means stretching of a film or sheet, stretch blow molding of Norrison or the like, and deep drawing of a film or sheet.
  • stretching thermoforming is performed at a temperature equal to or higher than the glass transition point of the material resin.
  • the stretching thermoforming temperature and the preheating time before stretching of the multilayer laminate are controlled by setting the linear velocity in the stretching axis direction of the single-layer unstretched film made of the composite resin (C) to 60% Z seconds.
  • the temperature and preheating time before stretching are set so that the maximum stretching stress (per unit cross-sectional area of the unstretched film) when simultaneously biaxially stretching to a stretching ratio of 3 X 3 under the conditions is in the range of 0.2 to 2.
  • the stretching thermoforming temperature of the multilayer laminate is preferably above the glass transition point of the composite resin (C).
  • “preheating time before stretching” means the time from the start of heating of the multilayer laminate to the start of stretching thermoforming.
  • the stretchability of the composite resin (C) is largely affected by the polyamide resin (A) and the layered silicate (B) constituting the composite resin (C). Since the glass transition point and the rate of crystallization vary depending on the composition of the constituent units of the polyamide resin (A), it is necessary to appropriately select the stretching thermoforming temperature and the preheating time before stretching. Further, since the layered silicate (B) is contained, the composite resin (C) has a higher stretching stress than the polyamide resin (A), and the crystallization rate is also changed.
  • a single-layer unstretched film made of the composite resin (C) is simultaneously biaxially stretched to a stretching ratio of 3 ⁇ 3 under the condition that the linear velocity in the stretching axis direction is 60% Z seconds.
  • OMPa and the preheating time before stretching are determined.
  • the stretch thermoforming is performed at a temperature at which the maximum elongation stress exceeds 2.OMPa and a preheating time before stretching, the layered silicate (B) and the polyamide resin (A) that can only break the multilayer structure can be obtained. Micro-cracks are formed near the interface of, and gas barrier performance and transparency are reduced. Under the conditions of less than 0.2 MPa, stretch thermoforming is possible, but the stretching effect by the orientation of the resin is not sufficiently obtained. Not so desirable! / ,.
  • the heat of crystallization of the gas barrier layer (1) after stretching and aging measured with a differential scanning calorimeter (DSC) at a heating rate of 10 ° CZmin, is preferably 0 to 20 jZg.
  • DSC differential scanning calorimeter
  • the gas barrier multilayer structure of the present invention preferably has a haze value of 0% or more and less than 10% as measured according to ASTM D-1003.
  • the degree of orientation represented by the following formula (I) of the gas barrier layer (1) after the stretch thermoforming is preferably from 10 to 45.
  • each refractive index was measured at 23 ° C. with an Abbe refractometer at a sodium D line (589 nm).
  • the degree of orientation is within the above range, the orientation of the resin is sufficient by stretch thermoforming, and an effect of improving gas barrier performance and mechanical performance can be obtained.
  • Examples of the form of the gas barrier multilayer structure of the present invention include a multilayer hollow container such as a multilayer bottle, a multilayer stretched film, and a multilayer sheet container.
  • the form is not particularly limited as long as it is a multilayer structure having improved gas barrier performance, transparency, and mechanical performance by stretching and thermoforming according to the production method of the present invention.
  • the end of the film may be fixed, or a blown container may be subjected to a heat setting process in which the blown container is kept at a stretch thermoforming temperature or higher without being deformed by applying an internal pressure in a mold.
  • a heat setting process in which the blown container is kept at a stretch thermoforming temperature or higher without being deformed by applying an internal pressure in a mold.
  • the outermost layer and the innermost layer are layers (2), and an intermediate layer located between the outermost layer and the innermost layer. It is preferred that at least one of the layers is layer (1).
  • the thermoplastic resin (D) constituting the layer (2) preferably 80 mol% or more, more preferably 90 mol% or more of dicarboxylic acid units are terephthalic acid units, and preferably 80 mol% or more of diol units. Polyesters in which at least 90 mol%, more preferably at least 90 mol%, of ethylene glycol units are exemplified.
  • dicarboxylic acid units include isophthalic acid, diphenyl ether 4, 4 dica Units derived from dicarboxylic acids such as rubonic acid, naphthalene 1, 4 or 2, 6 dicarboxylic acid, adipic acid, sebacic acid, decane 1, 10-carboxylic acid, hexahydroterephthalic acid, and other diol units
  • diol units are propylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) prononone, 2,2-bis (4-hydroxyethoxyfur) prone Units derived from diols such as bread can be exemplified.
  • a polyester resin containing a unit derived from an oxyacid such as p-oxybenzoic acid can be exemplified.
  • the intrinsic viscosity of the thermoplastic resin (D) is preferably from 0.55 to: L5 is more preferable, and particularly preferably from 0.65 to: L4. With an intrinsic viscosity of 0.55 or more, it is possible to obtain a multi-layer Norison in a transparent amorphous state, and the obtained multi-layer hollow container has sufficient mechanical strength.
  • a layer (2) formed of polyethylene terephthalate (thermoplastic resin (D)), a composite resin having a polyamide MXD6 (polyamide resin (A)) and a layered silicate (B) are also used.
  • the combination with the gas barrier layer (1) formed from (C) is most preferable. The reason for this is that these resins are excellent in all of transparency, mechanical strength, injection moldability, and stretch blow moldability.
  • the multilayer hollow container includes two injection cylinders (a skin-side injection cylinder for thermoplastic resin (D) and a core-side injection cylinder for resin containing composite resin (C) as a main component). Injecting a thermoplastic resin (D) and a resin containing a composite resin (C) as main components from each injection cylinder into the mold cavity through the mold hot runner using an injection molding machine It can be obtained by further biaxially stretch-blow-molding the obtained multilayer nozzle.
  • a skin-side injection cylinder for thermoplastic resin (D) and a core-side injection cylinder for resin containing composite resin (C) as a main component Injecting a thermoplastic resin (D) and a resin containing a composite resin (C) as main components from each injection cylinder into the mold cavity through the mold hot runner using an injection molding machine It can be obtained by further biaxially stretch-blow-molding the obtained multilayer nozzle.
  • thermoplastic resin (D) is injected, and then, a resin containing a composite resin (C) as a main component and a thermoplastic resin (D) are simultaneously injected.
  • a parison having a three-layer structure of layer (2) Z layer (1) Z layer (2) can be manufactured.
  • thermoplastic resin (D) is injected, and then, the resin mainly composed of the composite resin (C) is injected alone, and finally, the thermoplastic resin (D) is injected.
  • the parison having a five-layer structure of layer (2) Z layer (1) Z layer (2) Z layer (1) Z layer (2) can be manufactured.
  • the method of manufacturing the multilayer semiconductor is not limited to the above method.
  • a multilayer structure obtained by biaxially stretch-blow-molding a multilayer parison exhibits gas nori properties if the gas barrier layer (1) is present at least in the trunk of the multilayer structure.
  • the gas barrier performance is even better when the layer (1) extends to the vicinity of the tip of the plug part of the multilayer structure.
  • a diamidite conjugate which can also obtain a fatty acid having 8 to 30 carbon atoms and a diamine power having 2 to 10 carbon atoms as a whitening inhibitor.
  • Fatty acids having 8 to 30 carbon atoms and 2 to 2 carbon atoms At least one compound selected from diester conjugates capable of obtaining LO and diol can be added to the gas noori layer (1).
  • the fatty acid may have a side chain or a double bond, but is preferably a linear saturated fatty acid.
  • Examples of the fatty acid include stearic acid (C18), eicoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanic acid (C30).
  • Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, bis (aminomethyl) cyclohexane, and the like. One type of diamide compound may be used, or two or more types may be used in combination.
  • a diamide compound obtained by obtaining a diamine having mainly a fatty acid having 8 to 30 carbon atoms and an ethylene diamine power and a diamide compound obtained by obtaining a diamine having mainly a fatty acid having montanic acid and a diamine having 2 to 10 carbon atoms are preferable.
  • Examples of the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, cyclohexanedimethanol and the like.
  • One diester compound may be used, or two or more diester compounds may be used in combination.
  • Particularly preferred are diester compounds obtained mainly from fatty acids mainly containing montanic acid and mainly ethylene glycol and Z or 1,3-butanediol.
  • the amount of the diamide compound and the amount of the Z or diester conjugate to be added is preferably 0.005 to 1.0 part by weight, based on 100 parts by weight of the composite resin (C). It is preferably from 0.05 to 0.5 part by weight, particularly preferably from 0.12 to 0.5 part by weight.
  • a multilayer sheet container obtained by stretching and forming a multilayer stretched film and a multilayer sheet is a multilayer laminate of a layer (1) having a layer (1) as an intermediate layer and a layer (2) obtained by coextrusion. It is manufactured by stretching thermoforming. Known methods such as a T-die method and an inflation method can be used as the co-extrusion method.
  • the layer (1) is not an outer layer but an intermediate layer because the surface roughness of the layer (1) can be reduced and the haze of the multilayer structure can be reduced.
  • thermoforming method a known method such as a tenter method or a blow stretching method can be used.
  • heat fixing by reheating may be performed to prevent deformation due to moisture absorption, increase crystallinity, and further improve barrier performance.
  • thermoplastic resin (D) polyolefin or aliphatic polyamide is preferable.
  • the draft ratio is not extremely increased. If the draft ratio is extremely high, fine voids are formed around the layered silicate (B) in the composite resin (C), and the appearance such as an increase in the haze value, which not only lowers the gas barrier property, but is poor. Tend to.
  • the gas-barrier multilayer structure of the present invention can be used as it is as a gas-barrier multilayer container, or the multilayer structure can be used at least in part to obtain a gas-nolia multilayer container.
  • Multi-layer structures such as multi-layer bottles, multi-layer stretched films, and multi-layer sheet containers manufactured by co-extrusion and co-injection molding followed by stretch thermoforming, as they are, or by bonding with slight heating and heat sealing or other methods to form gas-nolia multilayers It can be used as a container.
  • Various articles can be stored and stored in the gas-nolia-based multilayer container of the present invention.
  • carbonated drinks, juices, water, milk, sake, whiskey, shochu, coffee, tea, jelly drinks liquid drinks such as health drinks, seasonings, sauces, soy sauce, dressings, liquid stocks, mayonnaise, miso, Seasonings such as spices, meat and meat foods such as ham and sausage, pasty foods such as jams, creams, chocolate pastes, and liquid foods such as liquid soups, boiled foods, pickles, and stewed liquids.
  • Raw and boiled rice such as yasoba, udon, ramen, etc., rice before cooking such as polished rice, conditioned rice, unwashed rice, etc., processed rice products such as cooked rice, gomoku rice, red rice, rice porridge, powder Made from high-moisture foods such as soups, soup stock and other powdered seasonings, dried vegetables, coffee beans, coffee powder, tea, and grains Low-moisture foods such as confectionery, other solid and solution chemicals such as pesticides and pesticides, liquid and pasty medicines, lotions, cosmetic creams, milky lotions, hair styling, hair dyes , Shampoo, stone, detergent, etc. can be stored.
  • the multi-layer gas-noble container of the present invention is subjected to a heat sterilization treatment of a packaging container for storing articles having high water activity, a packaging container exposed to high humidity, and a retort or a boiler. It is suitable as a packaging container.
  • Standard material ⁇ -alumina, measured under the following conditions with a flow rate differential scanning calorimeter DSC-50 manufactured by Shimadzu Corporation
  • the haze of the film was measured according to ASTM D1003 using a color difference 'turbidity meter COH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
  • the measuring device used was an oxygen permeability measuring device (model: OX-TRAN 10 / 50A) manufactured by Modern Controls, Inc. The measuring conditions were 23 ° C. and 60% relative humidity.
  • composition (% by weight)
  • the composite resin C1 is used with a small film production equipment (Labo Plastomill manufactured by Toyo Seiki Co., Ltd., screw diameter 20 mm, T die width 200 mm), with a growth temperature of 260 ° C [trowel single layer 180 After forming an unstretched film having a thickness of ⁇ m, the stretching temperature was 100 ° C, the preheating was 30 seconds, the linear velocity in the stretching axis direction was 60% Z seconds, and the stretching was performed using a tenter-type biaxial stretching apparatus (manufactured by Toyo Seiki Co., Ltd.). Simultaneous biaxial stretching was performed at a stretching ratio of 3 ⁇ 3.
  • the maximum stretching stress per unit sectional area during stretching was 0.7 MPa, and the haze value of the obtained film (thickness: 20 m) was 0.5%.
  • Oxygen permeability at 23 ° C, 60% RH is, 0. 05ml - mm / m 2 - day - atm, DSC heating heat of crystallization by the measurement is 9JZg, the degree of orientation was 19.
  • An unstretched film produced in the same manner as in Reference Example 1 except that the composite resin C2 was used was simultaneously stretched at a stretching temperature of 105 ° C, a preheating of 30 seconds, a linear velocity in the stretching axial direction of 60% Z seconds, and a stretching ratio of 3 X 3. It was biaxially stretched.
  • the maximum stretching stress per unit cross-sectional area during stretching was 1. OMPa, and the haze value of the obtained film (thickness: 20 m) was 3.2%.
  • the maximum stretching stress per unit sectional area during stretching was 1.4 MPa, and the haze value of the obtained film (thickness: 20 m) was 3.4%.
  • the oxygen transmission coefficient at 23 ° C. and 60% RH was 0.02 ml-mm / m 2 -day-atm, the heat of crystallization by DSC measurement was 3 JZ g, and the degree of orientation was 29.
  • the maximum stretching stress per unit cross-sectional area during stretching was 1.7 MPa, and the haze value of the obtained film (thickness: 20 m) was 3.5%.
  • the oxygen transmission coefficient at 23 ° C. and 60% RH was 0.02 ml-mm / m 2 -day-atm, and the heat of crystallization was not detected by DSC measurement, and the degree of orientation was 28.
  • An unstretched film prepared in the same manner as in Reference Example 1 except that the composite resin C5 was used was simultaneously stretched at a stretching temperature of 95 ° C, a preheating of 30 seconds, a linear velocity in the stretching axial direction of 60% Z seconds, and a stretching ratio of 3 X 3 It was biaxially stretched.
  • the maximum stretching stress per unit cross-sectional area during stretching was 1.6 MPa, and the haze value of the obtained film (thickness: 20 m) was 5.8%.
  • the oxygen transmission coefficient at 23 ° C and 60% RH was 0.03 ml-mm / m 2 -day-atm, the heat of crystallization by DSC measurement was 17 jZg, and the degree of orientation was 20.
  • the maximum stretching stress per unit sectional area during stretching was 0.3 MPa, and the haze value of the obtained film (thickness: 20 m) was 3.4%.
  • the DSC measurement showed no heat generation crystallization exotherm, and the degree of orientation was 16.
  • An unstretched film produced in the same manner as in Reference Example 1 except that the composite resin C3 was used was simultaneously stretched at a stretching temperature of 95 ° C, a preheating of 30 seconds, a linear velocity in the stretching axial direction of 60% Z seconds, and a stretching ratio of 3 X 3 It was biaxially stretched.
  • the maximum stretching stress per unit cross-sectional area during stretching was 2.2 MPa, and the haze value of the obtained film (thickness: 20 m) was 13.1%.
  • the oxygen transmission coefficient at 23 ° C and 60% RH was 0.06 ml-mm / m 2 -day-atm, the heat of crystallization by DSC measurement was 35 JZg, and the degree of orientation was 23.
  • An unstretched film produced in the same manner as in Reference Example 1 except that the composite resin C2 was used was simultaneously stretched at a stretching temperature of 135 ° C, a preheating of 15 seconds, a linear velocity in the stretching axial direction of 60% Z seconds, and a stretching ratio of 3 X 3 It was biaxially stretched.
  • the maximum stretching stress per unit cross-sectional area during stretching was 0. IMPa, and the haze value of the obtained film (thickness: 20 m) was 8.2%.
  • the oxygen transmission coefficient at 23 ° C and 60% RH was 0.05 ml-mm / m 2 -day-atm, DSC measurement showed no increase in heat of crystallization, and the degree of orientation was 7.
  • An unstretched film prepared in the same manner as in Reference Example 1 except that the composite resin C5 was used was simultaneously stretched at a stretching temperature of 135 ° C, a preheating of 15 seconds, a linear velocity in the stretching axial direction of 60% Z seconds, and a stretching ratio of 3 X 3 It was biaxially stretched.
  • the maximum stretching stress per unit sectional area during stretching was 2.5 MPa, and the haze value of the obtained film (thickness: 20 m) was 18.9%.
  • the oxygen permeation coefficient at 23 ° C and 60% RH was 0.08 ml-mm / m 2 -day-atm, and the heat of crystallization was not detected by DSC measurement, and the degree of orientation was 25.
  • the maximum stretching stress per unit sectional area during stretching was 0.3 MPa, and the haze value of the obtained film (thickness: 20 m) was 0.2%.
  • 60% RH The oxygen permeability coefficient was 0.08 ml-mm / m 2 -day-atm, the heat of crystallization by DSC measurement was 12 jZg, and the degree of orientation was 17.
  • composite resin C1 100 parts by weight of the composite resin C1 was mixed with 0.05 parts by weight of ethylenebisstearylamide (trade name: Alflow H-50T) (composite resin Cl ′).
  • composite resin Cl ′ ethylenebisstearylamide
  • Resin temperature in injection cylinder b 270 ° C
  • Mold flow path in mold 280 ° C
  • the multilayer parison obtained by injection molding had a total length of 110 mm, an outer shape of 26.5 mm, and a wall thickness of 4.5 mm.
  • 3 Sono Rison obtained had a composite ⁇ C1 7 wt 0/0 contained.
  • a stretch blow molding machine manufactured by KRUPP CORPO PLAST, model: LB-01
  • the above multilayer parison was biaxially stretch-blown at the same temperature and preheating time as in Reference Example 1.
  • the obtained multilayer bottle had a total length of 223 mm, an outer shape of 65 ⁇ , an inner volume of 500 ml (surface area: 0.04 m 2 ), and a bottom shape of a petaloid type.
  • the haze value of the obtained multilayer bottle, the heat of crystallization of the gas barrier layer, and the degree of orientation of the gas barrier layer were measured at the bottle neck (at a height of 150 mm from the bottom) and at the body (at a height of 80 mm above the bottom).
  • the haze was 1.9% at the neck (288 / zm thickness) and 1.3% at the trunk (325 m thickness).
  • Rise The heat of crystallization was 8jZg at the neck and 5jZg at the trunk, and the degree of orientation was 14 at the neck and 21 at the trunk.
  • the oxygen permeability of the multilayer bottle was 0.1 Olml / bottle-day O. 21 atm.
  • the obtained multilayer bottle had sufficiently enhanced crystallization and orientation of the gas barrier layer, and was excellent in transparency and barrier performance.
  • a multilayered Norison was prepared in the same manner as in Example 1 except that the composite resin C2 was used in place of the composite resin C1, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 2 to obtain a multilayer bottle. Got.
  • the resulting multilayer bottle had a haze value of 5.4% (thickness of 293 m) at the neck and 2.9% (thickness of 331 m) at the body.
  • the heat-up crystallization heat of the gas barrier layer was 3jZg at the neck and 2jZg at the trunk, and the orientation of the gas noria layer was 17 at the neck and 22 at the trunk.
  • the oxygen permeability of the multi-layer bottle was 0.007 ml / bottle-day 0.21 atm.
  • the obtained multi-layer bottle had sufficiently enhanced crystal barrier and orientation of the gas barrier layer, and was excellent in transparency and barrier performance.
  • a multilayered Norison was prepared in the same manner as in Example 1 except that the composite resin C3 was used in place of the composite resin C1, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 3 to obtain a multilayer bottle. Got.
  • the resulting multilayer bottle had a haze value of 5.8% (thickness: 284 m) at the neck and 2.8% (thickness: 312 / zm) at the body.
  • the heat-up crystallization calorie of the gas barrier layer was 2jZg at the neck and UZg at the body, and the degree of orientation of the gas noria layer was 27 at the neck and 33 at the body.
  • the oxygen permeability of the multilayer bottle was 0.005 ml / bottle-day 0.21 atm.
  • the resulting multilayer bottle In addition, the crystal barrier and the orientation of the gas barrier layer were sufficiently enhanced, and were excellent in transparency and gas barrier performance.
  • a multilayered Norison was prepared in the same manner as in Example 1 except that the composite resin C4 was used in place of the composite resin C1, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 4 to obtain a multilayer bottle. Got.
  • the resulting multilayer bottle had a haze value of 6.7% (thickness of 283 m) at the neck and 3.6% (thickness of 322 m) at the body.
  • Heat generation due to temperature-induced crystallization of the gas noria layer was not detected at the neck or the torso, and the degree of orientation of the gas noria layer was 28 at the neck and 31 at the torso.
  • the oxygen permeability of the multi-layer bottle was 0.004 ml / bottle ⁇ day ⁇ 0.21 atm.
  • the obtained multi-layer bottle had sufficiently enhanced crystallization and orientation of the gas barrier layer, and was excellent in transparency and gas barrier performance.
  • a multilayer parison was prepared in the same manner as in Example 2, and biaxially stretch blow-molded under the same temperature and preheating time conditions (see below) as in Reference Example 5 to obtain a multilayer bottle.
  • the obtained multilayer bottle had a haze value of 9.2% (thickness of 281 m) at the neck and 5.4% (thickness of 308 / zm) at the body.
  • the heating crystallization heat of the gas barrier layer was 16 jZg at the neck and 13 JZg at the trunk, and the degree of orientation of the gas noria layer was 19 at the neck and 23 at the trunk.
  • the oxygen permeability of the multilayer bottle was 0.006 ml / bottle -day 0.21 atm.
  • the obtained multilayer bottle had sufficiently enhanced crystallization and orientation of the gas barrier layer, and was excellent in transparency and gas barrier performance.
  • Example 6 A multilayer parison was prepared in the same manner as in Example 2, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 6 to obtain a multilayer bottle.
  • the resulting multilayer bottle had a haze value of 4.7% (thickness of 297 m) at the neck and 3.3% (thickness of 314 m) at the body.
  • the heat generated by the temperature-induced crystallization of the gas noria layer was not detected at the neck or the torso, and the degree of orientation of the gas noria layer was 14 at the neck and 19 at the torso.
  • the oxygen transmission rate of the multilayer bottle was 0.007 ml / bottle ⁇ day ⁇ 0.21 atm.
  • the obtained multi-layer bottle had sufficiently enhanced crystallization and orientation of the gas barrier layer, and was excellent in transparency and gas barrier performance.
  • a multilayer parison was prepared in the same manner as in Example 3, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 7 to obtain a multilayer bottle.
  • the resulting multilayer bottle had a haze value of 28.5% (thickness: 281 m) at the neck and 21.4% (thickness: 311 m) at the trunk.
  • the heating crystallization calorie of the gas barrier layer was 3 jZg at the neck and 28 JZg at the body, and the degree of orientation of the gas noria layer was 20 at the neck and 25 at the body.
  • the oxygen permeability of the multilayer bottle was 0.014 ml / bottle -day 0.21 atm.
  • the obtained multi-layer bottle was inferior in transparency and gas barrier performance so that crystallization of the gas barrier layer was insufficient.
  • a multilayer parison was prepared in the same manner as in Example 2, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 8 to obtain a multilayer bottle.
  • the resulting multilayer bottle had a haze value of 12.9% (thickness of 292 m) at the neck and 10.5% (thickness of 334 m) at the body. No heat was generated due to the temperature rise crystallization of the gas barrier layer, and the degree of orientation of the gas barrier layer was 7 at the neck and 9 at the trunk.
  • the oxygen permeability of the multilayer bottle was 0.012 ml / bottle-day 0.21 atm.
  • the obtained multilayer bottle was inferior in transparency and gas barrier performance in which the orientation of the gas barrier layer was not sufficient.
  • a multi-layer Norison was prepared in the same manner as in Example 1 except that the composite resin C5 was used instead of the composite resin C1, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 9 to obtain a multi-layer bottle. Got.
  • the resulting multilayer bottle had a haze value of 34.5% (thickness: 283 m) at the neck and 29.7% (thickness: 324 m) at the trunk. No heat was generated due to the temperature rise crystallization of the gas barrier layer, and the degree of orientation of the gas barrier layer was 21 at the neck and 28 at the trunk.
  • the oxygen permeability of the multilayer bottle was 0.015 ml / bottle-dayO. 21 atm.
  • the obtained multilayer bottle was inferior in transparency and gas barrier performance.
  • a multilayer Norison was prepared in the same manner as in Example 1 except that polyamide MXD6 was used in place of the composite resin C1, and biaxially stretch blow-molded under the same temperature and preheating time conditions as in Reference Example 10 to form a multilayer bottle. Obtained.
  • the obtained multilayer bottle had a haze value of 1.3% (thickness of 282 m) at the neck and 1.0% (thickness of 310 m) at the body.
  • the heating crystallization calorie of the gas noria layer was 9 jZg at the neck and 8 jZg at the trunk, and the degree of orientation of the gas noria layer was 15 at the neck and 19 at the trunk.
  • the oxygen permeability was 0.017 ml / bottle-day 0.21 atm.
  • the first extruder power Nylon 6 (hereinafter abbreviated as N6; 1024B manufactured by Ube Industries) is produced by using three extruders, a feed block, a T-die, a cooling roll, a multi-layer film production device having a pulling machine and the like.
  • the second extruder also extrudes the above composite resin (C1)
  • the third extruder also extrudes N6.
  • N6 layer (45 ⁇ m) Z gas barrier layer (composite resin layer, 45 ⁇ m) ZN6 layer A multilayer unstretched film of two and three layers having a layer configuration of 45 ⁇ m) was produced.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) at the same temperature as in Reference Example 1, a preheating time (100 ° C, 30 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3%.
  • X3 produced a multilayer stretched film.
  • the thickness of each layer is N6 layer (5 / ⁇ ) ⁇ composite resin layer (5 / ⁇ ) ⁇ 6 layers (5 / zm), haze value is 0.3%, and temperature crystallization of gas noria layer
  • the calorific value was 7 jZg, and the oxygen permeability was 9.7 ml / m 2 -day / at m.
  • the obtained multi-layer stretched film was excellent in transparency and gas nori performance o
  • a multilayer unstretched film of two and three layers was produced in the same manner as in Example 7, except that composite resin C2 was used instead of composite resin C1.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature, preheating time (105 ° C, 30 seconds) as in Reference Example 2, simultaneous stretching speed 60% Z seconds, stretching ratio 3 X
  • a multilayer stretched film was prepared.
  • the thickness of each layer is N6 layer (5 ⁇ m) Z composite resin layer m) ZN6 layer (5 m)
  • haze value is 1.2%
  • heat of crystallization is 5j / g
  • oxygen the transmittance was 6. 3mlZm 2 'dayZatm.
  • the obtained multi-layer stretched film was excellent in transparency and gas nori performance.
  • a multilayer unstretched film of two and three layers was produced in the same manner as in Example 7, except that composite resin C3 was used instead of composite resin C1.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature as in Reference Example 3, a preheating time (110 ° C, 30 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3X.
  • a multilayer stretched film was prepared.
  • each layer is N6 layer (5 ⁇ m) Z composite resin layer m) ZN6 layer (5 m), haze value is 1.3%, temperature rise of gas barrier layer, heat of crystallization is 3j / g, oxygen
  • the transmittance was 4.7 mlZm 2 'dayZatm. Many obtained The layer-stretched film was excellent in transparency and gas nori performance.
  • a multilayer unstretched film of two and three layers was produced in the same manner as in Example 7, except that composite resin C4 was used instead of composite resin C1.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature as in Reference Example 4, a preheating time (120 ° C, 20 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3X.
  • a multilayer stretched film was prepared.
  • the thickness of each layer is N6 layer (5 ⁇ m) Z composite resin layer m) ZN6 layer (5 m)
  • haze value is 1.5%
  • temperature of gas barrier layer is increased
  • heat of crystallization is U / g
  • oxygen transmittance was 4. 5mlZm 2 'dayZatm.
  • the obtained multi-layer stretched film was excellent in transparency and gas nolia performance.
  • Example 8 In the same manner as in Example 8, a multilayer unstretched film of two and three layers was produced.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature as in Reference Example 5, a preheating time (95 ° C, 30 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3X.
  • a multilayer stretched film was produced.
  • each layer is N6 layer (5 ⁇ m) Z composite resin layer (5 ⁇ m) ZN6 layer (5 ⁇ m), the haze value is 3.2%, and the heat generation crystallization heat of the gas barrier layer is 16 jZg
  • the oxygen permeability was 6.9 ml / m 2 • dayZatm.
  • the obtained multilayer stretched film was excellent in transparency and gasnolia performance.
  • Example 8 In the same manner as in Example 8, a multilayer unstretched film of two and three layers was produced.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) at the same temperature as in Reference Example 6, a preheating time (120 ° C., 20 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3%.
  • X3 produced a multilayer stretched film.
  • each layer is N6 layer (5 ⁇ m) Z composite resin layer (5 ⁇ m) ZN6 layer (5 ⁇ m), haze value is 1.2%, and heat generation due to temperature rise crystallization of gas barrier layer is No detection, and the oxygen transmission rate was 5.9 mlZm 2 'day Zatm.
  • the obtained multilayer stretched film was excellent in transparency and gas barrier performance.
  • Example 9 In the same manner as in Example 9, two or three types of multilayer unstretched films were produced.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature and preheating time (95%) as in Reference Example 7. (° C., 30 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3 ⁇ 3 to produce a multilayer stretched film.
  • a biaxial stretching machine manufactured by Toyo Seiki
  • each layer is N6 layer (5 ⁇ m) Z composite resin layer (5 ⁇ m) ZN6 layer (5 ⁇ m), the haze value is 13.0%, and the heat generation crystallization heat of the gas barrier layer is 3 It was jZg, and the oxygen transmission rate was 13.9 mlZm 2 'day Zatm.
  • the obtained multilayer stretched film was inferior in transparency and gas barrier performance.
  • Example 8 In the same manner as in Example 8, a multilayer unstretched film of two and three layers was produced.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) under the same temperature and preheating time conditions as in Reference Example 8 (135 ° C, 15 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio.
  • a 3 ⁇ 3 multilayer stretched film was prepared.
  • the thickness of each layer is N6 layer (5 ⁇ m) Z composite resin layer (5 ⁇ m) ZN6 layer (5 ⁇ m).
  • Haze value is 11.1%. It was not detected, and the oxygen transmission rate was 11.3 mlZm 2 'dayZatm.
  • the obtained multilayer stretched film was inferior in transparency and gasoline performance.
  • a multilayer unstretched film of two and three layers was produced in the same manner as in Example 7, except that composite resin C5 was used instead of composite resin C1.
  • the obtained multilayer unstretched film was subjected to a biaxial stretching machine (manufactured by Toyo Seiki) at the same temperature as in Reference Example 9, a preheating time (135 ° C, 15 seconds), a simultaneous stretching speed of 60% Z seconds, and a stretching ratio of 3X.
  • a multilayer stretched film was prepared.
  • each layer is N6 layer (5 ⁇ m) Z composite resin layer m) ZN6 layer (5 m), haze value is 18.9%, temperature rise of gas barrier layer Heat generation due to crystallization is not detected, The oxygen permeability was 15.8 ml / m 2 'dayZatm. The obtained multilayer stretched film was inferior in transparency and gasnolia performance.
  • a multilayer unstretched film having two and three layers was produced in the same manner as in Example 7, except that polyamide MXD6 was used instead of the composite resin C1.
  • the obtained multilayer unstretched film was subjected to biaxial stretching (manufactured by Toyo Seiki Co., Ltd.) at the same temperature as in Reference Example 10, preheating time (95 ° C., 30 seconds), simultaneous stretching speed 60% Z seconds, stretching ratio 3 X3 produced a multilayer stretched film.
  • the thickness of each layer is N6 layer (5 ⁇ m) Z composite resin layer (5 ⁇ m) ZN6 layer (5 ⁇ m), the haze value is 0.2%, and the heating crystallization heat of the gas barrier layer is 1
  • the oxygen permeability was 14. OmlZm 2 'dayZatm. Industrial applicability
  • the gas-barrier multilayer structure of the present invention is excellent in appearance such as gas-barrier properties, mechanical properties and transparency, and is very useful as a packaging material for foods, beverages, drugs, electronic components, etc. The value is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 少なくとも1層のガスバリア層と少なくとも1層の樹脂層からなるガスバリア性多層構造物。ガスバリア層は、メタキシリレンジアミンとα,ω-直鎖脂肪族ジカルボン酸を重縮合して得られたポリアミド樹脂と有機膨潤化剤で処理した層状珪酸塩とからなる複合樹脂(C)からなり、樹脂層は、複合樹脂(C)よりガラス転移点の低い熱可塑性樹脂(D)からなる。ガスバリア性多層構造物は、特定の条件下で未延伸積層体を延伸熱成形することにより得られる。特定の条件下での延伸熱成形により、樹脂内部の微小な亀裂による白化、ガスバリア性低下が抑制され、透明性、ガスバリア性に優れた多層構造物が得られる。

Description

明 細 書
ガスバリア性多層構造物およびその製造法
技術分野
[0001] 本発明は、優れたガスバリア性能を有する多層構造物およびその製造法に関する
。詳しくは、ガスバリア層を有する未延伸積層体の延伸ブローおよび延伸等の延伸 熱成形時に白化、ガスバリア性の低下を起こすことなぐ透明性、ガスバリア性に優れ た多層構造物を製造することができる製造方法および該方法によって製造された多 層構造物に関する。
背景技術
[0002] 食品や飲料等の包装に用いられる包装材料は、流通時の環境、冷蔵等の保存条 件、加熱殺菌などの処理等力も内容物を保護するため、高強度、割れにくさ、耐熱性 といった機能ば力りでなぐ内容物を確認できるよう透明性に優れるなど多岐に渡る 機能が要求されている。さらに、近年では、食品の酸ィ匕を抑えるため外部力もの酸素 の侵入を防ぐ酸素バリア性や、嗜好の変化に伴い各種香気成分等に対するバリア性 機能も要求されている。
[0003] ポリエチレンやポリプロピレン等のポリオレフイン、ポリエチレンテレフタレート等のポ リエステル、ナイロン 6等の脂肪族ポリアミド等の熱可塑性榭脂は、透明で機械物性 に優れるば力りでなぐ扱い易ぐ加工し易いので、包装フィルム、包装シート、ボトル などの容器等の成形体に加工されて広く用いられている。しかし、酸素等のガス状物 質に対するバリア性が劣るため、内容物が酸化劣化され易ぐまた、透過した香気成 分により内容物の賞味期限が短くなる欠点があった。
[0004] キシリレンジァミンと脂肪族ジカルボン酸との重縮合反応力 得られるポリアミド、例 えばメタキシリレンジァミンとアジピン酸力も得られるポリアミド(以下ポリアミド MXD6 という)は、強度、弾性率、および酸素、炭酸ガス等のガス状物質に対するバリア性に 優れている。それ故、ガスノ リア性を向上させる目的で、包装材料のガスバリア材料 としてとして広く利用されている。また、ポリアミド MXD6は、その他のガスバリア性榭 脂と比べて溶融時の熱安定性が良好であることから、ポリエチレンテレフタレート(以 下 PETと省略する)、ナイロン 6およびポリプロピレンなど種々の熱可塑性榭脂との共 押出や共射出成形等が可能であり、多層構造物のガスバリア層としての利用が最近 積極的に進められている。
[0005] 塩化ビ-リデン、エチレン ビュルアルコール共重合体、ポリビュルアルコール等 力もなるガスバリア層を有する多層構造物の利用も進んでいる。しかしながら、塩ィ匕ビ ユリデン層を含む多層構造物は、保存条件によらずガスバリア性に優れるものの、燃 焼させた際にダイォキシンが発生し、環境を汚染する問題がある。エチレン ビュル アルコール共重合体やポリビュルアルコールは前述のような環境汚染の問題はない
。しかし、これら力 なるガスバリア層を有する多層構造物は、比較的湿度の低い環 境下では優れたガスバリア性を発揮するものの、保存される内容物が水分活性の高 いものであったり、高湿度の環境下で保存されたり、さらに内容物を充填後に加熱殺 菌処理を施されるとガスバリア性は大幅に低下するので、内容物の保存性が良くな い。ガスノ リア性を改善するために、ポリビニルアルコールと無機層状ィ匕合物力もな る組成物をコーティングしたフィルムが開示されている(例えば、特許文献 1、特許文 献 2参照)。該フィルムは、低湿度下ではガスノ リア性に優れている力 ポリビニルァ ルコールを主原料としているため、高湿度下でのガスバリア性の低下は大きい。また エチレン ビュルアルコール共重合体やポリビュルアルコールは、高温での熱安定 性に乏しぐ該榭脂より溶融加工温度の高い樹脂との組み合わせによる多層構造物 の製造が困難である。
[0006] キシリレンジァミンと脂肪族ジカルボン酸との重縮合反応力 得られるキシリレン基 含有ポリアミド、特にポリアミド MXD6は、上述のように酸素、炭酸ガス等のガス状物 質に対して高いバリア性を示す。しかし、上述のエチレン ビュルアルコール共重合 体やポリビニルアルコールと比較した場合、高湿度下でのガスノ リア性は優れるもの の、低中湿度下ではややガスノ リア性に劣る欠点があった。
[0007] ポリアミド MXD6のガスノ リア性を改良する方法の一つとして、ポリアミド榭脂と層状 珪酸塩を、押出機等を用いて混練する方法が知られている (例えば、特許文献 3、特 許文献 4参照)。ポリアミド MXD6中に実質的にガス状物質を透過させな ヽ層状珪酸 塩を分散させることでガスノ リア性が改善され、ポリアミド MXD6の欠点であった低中 湿度下でのガスバリア性もエチレン ビュルアルコール共重合体やポリビュルアルコ ールと遜色無いものとなった。また、ポリアミド MXD6を延伸熱成形することにより、ガ スノリア性や強度などが向上することが知られている。しかし、従来の方法で層状珪 酸塩を含むフィルムを延伸すると、表面に微細な荒れや内部に亀裂が発生するなど の原因により、透明性が低下しガスノリア性能が不十分になる問題があった。特許文 献 5には、層状珪酸塩が均一に分散されたポリアミド榭脂組成物層の両面に層状珪 酸塩を含有しな ヽ熱可塑性榭脂層を積層し、延伸して得られた多層延伸フィルムは 、改善された透明性を示すことが開示されている。しかし、層状珪酸塩を含むポリアミ ド MXD6の延伸条件の詳細は記載されておらず、特定の延伸条件により得られる多 層構造物の特定の性状に関する記載もない。
特許文献 1 :特開平 7— 251874号公報
特許文献 2:特開平 7— 304128号公報
特許文献 3:特開平 2— 305828号公報
特許文献 4:特開平 8— 53572号公報
特許文献 5 :特開 2002— 29012号公報
発明の開示
[0008] 本発明の目的は、透明性、ガスノリア性に優れた、ガスバリア層を有する多層構造 物、および、多層ボトルの延伸ブロー時、多層フィルムの延伸時等において、榭脂内 部の微小な亀裂による白化およびガスバリア性の低下が抑制された、該多層構造物 の製造法を提供することにある。
[0009] 本発明者等は、鋭意検討した結果、特定の複合榭脂層と熱可塑性榭脂層を積層し た後に、特定の条件にて特定の性状を示すように延伸熱成形して得た多層構造物 力 透明性、ガスバリア性能に優れる事を見出し、本発明を完成させた。
[0010] すなわち、本発明は、メタキシリレンジアミン単位を 70モル%以上含むジァミン単位 と、炭素数 4〜20の ex , ω—直鎖脂肪族ジカルボン酸由来の単位を 70モル%以上 含むジカルボン酸単位カゝらなるポリアミド榭脂 (Α) 92〜99重量%と、層状珪酸塩を 有機膨潤化剤で処理して得られた層状珪酸塩 (B) 8〜l重量%とからなる複合榭脂( C)からなる少なくとも 1層のガスノリア層(1)、および、複合榭脂 (C)よりガラス転移点 の低い熱可塑性榭脂 (D)からなる少なくとも 1層の層(2)から形成された多層積層体 を、複合榭脂 (C)のガラス転移点以上の温度で延伸熱成形して得られるガスバリア 性多層構造物であって、該延伸熱成形時の温度および延伸前予熱時間が、複合榭 脂(C)力 なる単層未延伸フィルムを延伸軸方向の線速度が 60%Z秒の条件で延 伸倍率 3 X 3に同時二軸延伸した際の、前記未延伸フィルムの単位断面積当りの最 大延伸応力が 0. 2〜2. OMPaの範囲となる温度および延伸前予熱時間であること を特徴とするガスバリア性多層構造物に関するものである。
また、本発明は、前記多層構造物を少なくとも一部に使用してなるガスノリア性多 層容器に関する。
更に本発明は、複合榭脂 (C)力もなる少なくとも 1層のガスノリア層(1)および複合 榭脂 (C)よりガラス転移点の低 、熱可塑性榭脂 (D)力もなる少なくとも 1層の榭脂層( 2)からなる多層積層体を形成する工程、および、該多層積層体を、複合榭脂 (C)の ガラス転移点以上の温度で延伸熱成形する工程力 なり、該複合樹脂 (C)は、メタキ シリレンジァミン単位を 70モル%以上含むジァミン単位と、炭素数 4〜20の α , ω— 直鎖脂肪族ジカルボン酸由来の単位を 70モル%以上含むジカルボン酸単位力 な るポリアミド榭脂 (Α) 92〜99重量%と、層状珪酸塩を有機膨潤化剤で処理して得ら れた層状珪酸塩 (B) 8〜l重量%とからなり、および、該延伸熱成形時の温度および 延伸前予熱時間が、複合榭脂 (C)力 なる単層未延伸フィルムを延伸軸方向の線速 度が 60%Ζ秒の条件で延伸倍率 3 X 3に同時二軸延伸した際の、前記未延伸フィ ルムの単位断面積当りの最大延伸応力が 0. 2〜2. OMPaの範囲となる温度および 延伸前予熱時間であることを特徴とするガスバリア性多層構造物の製造法に関する 発明を実施するための最良の形態
本発明に用いられるポリアミド榭脂 (A)は、ジァミン成分とジカルボン酸成分とを溶 融重縮合し、又は溶融重縮合後更に固相重合して得られる。ポリアミド榭脂 (A)中の ジァミン単位はメタキシリレンジアミン単位を 70モル%以上含むことが必要である。メ タキシリレンジァミン単位が 70モル%以上であると、優れたガスバリア性が維持できる 。メタキシリレンジァミン以外に使用できるジァミン成分として、テトラメチレンジァミン、 ペンタメチレンジァミン、 2—メチルペンタンジァミン、へキサメチレンジァミン、ヘプタ メチレンジァミン、オタタメチレンジァミン、ノナメチレンジァミン、デカメチレンジァミン 、ドデカメチレンジァミン、 2, 2, 4 トリメチル一へキサメチレンジァミン、 2, 4, 4 ト リメチルへキサメチレンジァミン等の脂肪族ジァミン; 1 , 3 ビス (アミノメチル)シクロ へキサン、 1 , 4 ビス(アミノメチル)シクロへキサン、 1 , 3 ジアミノシクロへキサン、 1 , 4 ジアミノシクロへキサン、ビス(4 アミノシクロへキシル)メタン、 2, 2 ビス(4 —アミノシクロへキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリ シクロデカン等の脂環族ジァミン;ビス(4 -ァミノフエ-ル)エーテル、ノ ラフエ-レン ジァミン、パラキシリレンジァミン、ビス(アミノメチル)ナフタレン等の芳香環を有する ジァミン類等が例示できる力 これらに限定されるものではない。
[0012] ポリアミド榭脂 (A)中のジカルボン酸単位は、炭素数 4〜20の oc , ω—直鎖脂肪族 ジカルボン酸由来の単位を好ましくは 70モル%以上、より好ましくは 80モル%以上、 さらに好ましくは 90モル%以上含む。 α , ω—直鎖脂肪族ジカルボン酸としてはコハ ク酸、グルタル酸、ピメリン酸、スベリン酸、ァゼライン酸、アジピン酸、セバシン酸、ゥ ンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示できるが、特にアジピン 酸が好ましい。ジカルボン酸単位中の炭素数 4〜20の α , ω 直鎖脂肪族ジカルボ ン酸由来の単位が 70モル%以上であると、ガスバリア性の低下や結晶性の過度の 低下を避けることができる。炭素数 4〜20の oc , ω 直鎖脂肪族ジカルボン酸以外 のジカルボン酸成分としては、テレフタル酸、イソフタル酸、 2, 6 ナフタレンジカル ボン酸等の芳香族ジカルボン酸類等が挙げられる。
また、ポリアミド榭脂 (Α)は、重縮合時に分子量調節剤として使用されたモノアミン、 モノカルボン酸由来の単位を少量含んで!/、てもよ!/、。
[0013] 溶融重縮合法としては、例えばジァミン成分とジカルボン酸成分力 なるナイロン塩 を水の存在下に、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で 重合させる方法がある。また、ジァミン成分を溶融状態のジカルボン酸成分に直接カロ えて、重縮合する方法によっても製造される。この場合、反応系を均一な液状状態に 保っために、ジァミン成分をジカルボン酸成分に連続的に加え、その間、反応温度 が生成するオリゴアミドおよびポリアミドの融点よりも下回らないように反応系を昇温し つつ、重縮合が進められる。
[0014] 溶融重縮合により得られた比較的低分子量のポリアミドの相対粘度 (ポリアミド榭脂 lgを 96%硫酸水溶液 100mlに溶解し、 25°Cで測定した値、以下同じ)は通常、 2. 28程度である。溶融重縮合後の相対粘度が 2. 28以下であると、ゲル状物の生成が 少なぐ色調が良好な高品質のポリアミド榭脂が得られる。溶融重縮合により得られた 比較的低分子量のポリアミド榭脂は次いで固相重合される。固相重合は、該比較的 低分子量のポリアミド榭脂をペレットあるいは粉末にし、これを減圧下あるいは不活性 ガス雰囲気下に、 150°C以上、ポリアミド榭脂の融点以下の温度に加熱することによ り実施される c
[0015] ポリアミド榭脂 (A)の相対粘度は、 1. 8〜3. 9であることが好ましぐ 2. 4〜3. 7が より好ましぐ 2. 5〜3. 7が更に好ましい。この範囲であると、中空容器、フィルム、シ ートへの成形が良好で、且つ得られた中空容器、フィルム、シートの性能、特に機械 的性能が良好である。溶融重縮合後の比較的低分子量のポリアミド榭脂によっても 本発明の効果は一部得られるが、機械的強度、特に耐衝撃性が十分ではなぐ中空 容器、フィルム、シート用材料として実用的ではない。また、ポリアミド榭脂 (A)中に層 状珪酸塩 (B)を分散させる際は、溶融混練法が用いられる場合があるが、相対粘度 が 1. 8未満であると、溶融樹脂の粘度が低すぎて層状珪酸塩 (B)が分散しづらくなり 、その凝集体が生じやすぐフィルム化した際に外観が損なわれる。相対粘度が 3. 9 を越えるポリアミド榭脂 (A)は製造が困難であり、また溶融混練を行う際に特別な装 置を必要とすることがある。相対粘度が特に 1. 8〜3. 9であると、押出混練時に榭脂 に適度な圧力が力かるため層状珪酸塩 (B)の分散性が向上する。
[0016] ポリアミド榭脂 (A)には、エラストマ一類などの耐衝撃性改質剤;結晶核剤;脂肪酸 アミド系化合物、脂肪酸金属塩系化合物、脂肪酸アマイド系化合物等の滑剤;銅化 合物、有機もしくは無機ハロゲンィ匕合物、ヒンダードフエノール系化合物、ヒンダード アミン系化合物、ヒドラジン系化合物、硫黄化合物、リン化合物 (次亜リン酸ナトリウム 、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムなど)等の酸ィ匕 防止剤;熱安定剤;着色防止剤;ベンゾトリアゾール系等の紫外線吸収剤;離型剤; 可塑剤;着色剤;難燃剤などの添加剤が含まれて 、ても良 、。 [0017] ポリアミド榭脂 (A)の配合割合は、複合榭脂 (C) (ポリアミド榭脂 (A)と層状珪酸塩 ( B)の合計)の 92〜99重量0 /0、好ましくは 95〜98. 5重量0 /0である。
[0018] 本発明で使用される層状珪酸塩は、 0. 25〜0. 6の電荷密度を有する 2—八面体 型や 3—八面体型の層状珪酸塩であり、 2—八面体型としては、モンモリロナイト、ノ イデライト等、 3—八面体型としてはへクトライト、サボナイト等が挙げられる。これらの 中でも、モンモリロナイトが好ましい。
[0019] 層状珪酸塩 (B)は、高分子化合物や有機系化合物等の有機膨潤化剤を層状珪酸 塩に接触させて得られる。この接触処理により、層状珪酸塩の層間に存在するナトリ ゥムゃカリウム、カルシウム等の交換性無機陽イオンが有機膨潤化剤とイオン交換し 、層状珪酸塩の層間が拡がり、かつ高分子化合物との親和性が増す。有機膨潤化 剤としては、アンモ-ゥム、ホスホ-ゥム、スルホ -ゥムのハロゲン塩等が挙げられる。 これらの中でもアンモ-ゥム塩、ホスホ-ゥム塩が好ましく、特にアンモ-ゥム塩が好 ましく使用される。アンモ-ゥム塩としては、第 1級、第 2級、第 3級、第 4級アンモ-ゥ ム塩の何れでもよいが、層間拡張の効果を得るために炭素数 12以上の置換基を有 するアンモニゥム塩が好ましく用いられる。
[0020] 有機膨潤化剤の具体例として、トリメチルドデシルアンモ -ゥム塩、トリメチルテトラ デシルアンモ -ゥム塩、トリメチルへキサデシルアンモ -ゥム塩、トリメチルォクタデシ ルアンモ -ゥム塩、トリメチルエイコシルアンモ-ゥム塩等のトリメチルアルキルアンモ
-ゥム塩;トリメチルォクタデセ-ルアンモ -ゥム塩、トリメチルォクタデカジエ-ルアン モ-ゥム塩等のトリメチルァルケ-ルアンモ -ゥム塩;トリエチルドデシルアンモ -ゥム 塩、トリェチルテトラデシルアンモ -ゥム塩、トリェチルへキサデシルアンモ -ゥム塩、 トリェチルォクタデシルアンモ-ゥム塩等のトリェチルアルキルアンモ-ゥム塩;トリブ チルドデシルアンモ -ゥム塩、トリブチルテトラデシルアンモ -ゥム塩、トリブチルへキ サデシルアンモ -ゥム塩、トリブチルォクタデシルアンモ-ゥム塩等のトリブチルアル キルアンモ-ゥム塩;ジメチルジドデシルアンモ -ゥム塩、ジメチルジテトラデシルアン モ -ゥム塩、ジメチルジへキサデシルアンモ -ゥム塩、ジメチルジォクタデシルアンモ ニゥム塩、ジメチルジタロウアンモ-ゥム塩等のジメチルジアルキルアンモ-ゥム塩; ジメチルジォクタデセ-ルアンモ -ゥム塩、ジメチルジォクタデカジエ-ルアンモ-ゥ ム塩等のジメチルジァルケ-ルアンモ-ゥム塩;ジェチルジドデジルアンモ -ゥム塩、 ジェチルジテトラデシルアンモ -ゥム塩、ジェチルジへキサデシルアンモ -ゥム塩、 ジェチルジォクタデシルアンモ-ゥム塩等のジェチルジアルキルアンモ-ゥム塩;ジ ブチルジドデシルアンモ -ゥム塩、ジブチルジテトラデシルアンモ -ゥム塩、ジブチル ジへキサデシルアンモ -ゥム塩、ジブチルジォクタデシルアンモ-ゥム塩等のジブチ ルジアルキルアンモ-ゥム塩;メチルベンジルジへキサデシルアンモ-ゥム塩等のメ チルベンジルジアルキルアンモ-ゥム塩;ジベンジルジへキサデシルアンモ-ゥム塩 等のジベンジルジアルキルアンモ-ゥム塩;トリドデシルメチルアンモ -ゥム塩、トリテ トラデシルメチルアンモ -ゥム塩、トリオクタデシルメチルアンモ-ゥム塩等のトリアル キルメチルアンモ-ゥム塩;トリドデシルェチルアンモ-ゥム塩等のトリアルキルェチル アンモ-ゥム塩;トリドデシルブチルアンモ-ゥム塩等のトリアルキルブチルアンモ-ゥ ム塩; 4 アミノー n—酪酸、 6 アミノー n—カプロン酸、 8 アミノカプリル酸、 10— ァミノデカン酸、 12 アミノドデカン酸、 14 アミノテトラデカン酸、 16 ァミノへキサ デカン酸、 18 アミノォクタデカン酸等の ω—アミノ酸などが挙げられる。
またジァミンとジカルボン酸力もなる少なくとも末端の一つがアミノ基および Ζまたは アンモ-ゥム塩であるポリアミドおよび Ζまたはポリアミドオリゴマーも有機膨潤ィ匕剤と して使用できる。前記ジァミンとしては、テトラメチレンジァミン、ペンタメチレンジァミン 、 2—メチルペンタンジァミン、へキサメチレンジァミン、ヘプタメチレンジァミン、ォクタ メチレンジァミン、ノナメチレンジァミン、デカメチレンジァミン、ドデカメチレンジァミン 、 2, 2, 4 トリメチルーへキサメチレンジァミン、 2, 4, 4 トリメチルへキサメチレンジ ァミン等の脂肪族ジァミン; 1, 3 ビス(アミノメチル)シクロへキサン、 1, 4 ビス(アミ ノメチル)シクロへキサン、 1, 3 ジアミノシクロへキサン、 1, 4ージアミノシクロへキサ ン、ビス(4 -アミノシクロへキシル)メタン、 2, 2 ビス(4 -アミノシクロへキシル)プロ パン、ビス (アミノメチル)デカリン、ビス (アミノメチル)トリシクロデカン等の脂環族ジァ ミン;ビス(4—ァミノフエ-ル)エーテル、ノ ラフエ-レンジァミン、メタキシリレンジアミ ン、ノ ラキシリレンジァミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジァミン が挙げられる。前記ジカルボン酸としては、コハク酸、ダルタル酸、ピメリン酸、スベリ ン酸、ァゼライン酸、アジピン酸、セバシン酸、ゥンデカン二酸、ドデカン二酸等の , ω—直鎖脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、 2, 6—ナフタレンジ力 ルボン酸等の芳香族ジカルボン酸類等が挙げられる。ポリアミド榭脂 (Α)との親和性 を増すために、ポリアミド榭脂 (Α)の構成成分と類似のジァミン及び/又はジカルボ ン酸であることがより好まし 、。
[0022] また、水酸基及び Ζ又はエーテル基含有のアンモ-ゥム塩、例えば、メチルジヒドロ キシェチル水素化牛脂アンモ-ゥム塩、および、メチルジアルキル(PAG)アンモ-
-ゥム塩、ジメチルビス(PAG)アンモ-ゥム塩、ジェチルビス(PAG)アンモ-ゥム塩 、ジブチルビス(PAG)アンモ-ゥム塩、メチルアルキルビス(PAG)アンモ-ゥム塩、 ェチルアルキルビス(PAG)アンモ-ゥム塩、ブチルアルキルビス(PAG)アンモ-ゥム 塩、メチルトリ(PAG)アンモ-ゥム塩、ェチルトリ(PAG)アンモ-ゥム塩、ブチルトリ( PAG)アンモ-ゥム塩、テトラ(PAG)アンモ-ゥム塩(ただし、アルキルはドデシル、 テトラデシル、へキサデシル、ォクタデシル、エイコシルなどの炭素数 12以上のアル キル基を表し、 PAGはポリアルキレングリコール残基、好ましくは、炭素数 20以下の ポリエチレングリコール残基またはポリプロピレングリコール残基を表す)などの少なく とも一のアルキレングリコール残基を含有する 4級アンモ-ゥム塩も有機膨潤化剤とし て使用することができる。
[0023] 中でもトリメチルドデシルアンモニゥム塩、トリメチルテトラデシルアンモニゥム塩、トリ メチルへキサデシルアンモ -ゥム塩、トリメチルォクタデシルアンモ -ゥム塩、ジメチル ジドデシルアンモ -ゥム塩、ジメチルジテトラデシルアンモ -ゥム塩、ジメチルジへキ サデシルアンモ -ゥム塩、ジメチルジォクタデシルアンモ -ゥム塩、ジメチルジタロウ アンモニゥム塩、メチルジヒドロキシェチル水素化牛脂アンモ-ゥム塩が好ましい。な お、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。
[0024] 層状珪酸塩 (Β)の配合割合は、複合榭脂(C)の 1〜8重量%、好ましくは 1. 5〜5 重量%である。層状珪酸塩 (Β)の配合割合が上記範囲内であれば、ガスバリア性の 向上効果を得ることができ、かつ透明性を損なうことはない。
[0025] 複合榭脂 (C)において、層状珪酸塩 (Β)は局所的に凝集することなく均一に分散 していることが好ましい。ここでいう均一分散とは、ポリアミド榭脂 (Α)中において層状 珪酸塩 (B)が平板状に分離し、それらの 50%以上が 5nm以上の層間距離を有する ことをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大き い程分散状態が良好となり、ボトルやフィルムなどの成形体の透明性等の外観が良 好で、かつ酸素、炭酸ガス等のガス状物質に対するバリア性を向上させることができ る。
[0026] 複合榭脂 (C)を製造する方法としては、通常の単軸もしくは二軸押出機等を用いて ポリアミド榭脂 (A)と層状珪酸塩 (B)を溶融混練する方法やポリアミド榭脂 (A)の合 成時に層状珪酸塩 (B)を添加し攪拌するする方法が挙げられるが、特に制限はない 。これらのなかでも、二軸押出機を用いた溶融混練法が好ましい。二軸押出機を使 用して溶融混練する場合の溶融混練温度は、ポリアミド榭脂 (A)の融点付近〜融点 + 60°Cの範囲に設定し、できるだけ押出機内での榭脂の滞留時間を短くするのがよ い。また、押出機内に設置されるスクリューのポリアミド榭脂 (A)と層状珪酸塩 (B)を 混合する部位には、逆目スクリューエレメントや-一デイングディスク等の部品を組み 合わせたものを使用すると層状珪酸塩 (B)が効率良く分散する。ポリアミド榭脂 (A) の合成時に層状珪酸塩 (B)を添加する場合、ナイロン塩水溶液に添加した後に重縮 合を進める方法、ジァミン成分および Zまたはジカルボン酸成分に添加した後に溶 融ジカルボン酸成分にジァミン成分を加えて重縮合を進める方法、または重縮合途 中で添加する方法等が挙げられるが、ポリアミド重縮合装置には、層状珪酸塩 (B)の 分散に充分な混合設備を附帯し難いことから、ポリアミド原料中もしくは重縮合初期 の反応系に添加することが好まし 、。
[0027] 複合榭脂 (C)のガラス転移点は、 60〜120°Cであるのが好ま 、。複合榭脂 (C)よ りガラス転移点の低い熱可塑性榭脂(D)としては、低密度ポリエチレン、中密度ポリ エチレン、高密度ポリエチレン等のポリエチレン類;プロピレンホモポリマー、プロピレ ンーエチレンブロックコポリマー、プロピレン エチレンランダムコポリマー等のポリプ ロピレン類;エチレンーブテン共重合体、エチレン一へキセン共重合体、エチレン オタテン共重合体、エチレン 酢酸ビュル共重合体、エチレン メチルメタタリレート 共重合体、プロピレン aーォレフイン共重合体、ポリブテン、ポリペンテン、アイオノ マー榭脂等の各種ポリオレフイン類;ポリエチレンテレフタレート等のポリエステル榭 脂;ナイロン 6、ナイロン 66、ナイロン 666等のポリアミド榭脂;イージーピール性を有 する熱可塑性榭脂等が例示できるが、これらに限定されるものではない。層(2)は、 上述の榭脂を単独または 2種以上用いて形成される。
[0028] 層(2)には、ヱラストマー類などの耐衝撃性改質剤;結晶核剤;脂肪酸アミド系化合 物、脂肪酸金属塩系化合物、脂肪酸アマイド系化合物等の滑剤;銅化合物、有機も しくは無機ハロゲンィ匕合物、ヒンダードフエノール系化合物、ヒンダードアミン系化合 物、ヒドラジン系化合物、硫黄化合物、リンィ匕合物(次亜リン酸ナトリウム、次亜リン酸 カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムなど)等の酸ィ匕防止剤;熱安 定剤;着色防止剤;ベンゾトリアゾール系化合物等の紫外線吸収剤;離型剤;可塑剤 ;着色剤;難燃剤;酸化チタン等の無機顔料;染料等の有機顔料などの添加剤が含 まれていても良い。
[0029] 本発明のガスノ リア性多層構造物は、主として複合榭脂(C)力らなるガスノ リア層(
1)と熱可塑性榭脂 (D)からなる層(2)がそれぞれ少なくとも 1層積層されていれば、 積層数は限定されない。また他の材料力もなる層(3)を含んでも良い。例えば、層(2 ) Z層(1) Z層 (2)、層 (2) Z層 (1) Z層 (2) Z層 (1) Z層 (2)、層(1) Z層(2) Z層 (
2)、層(2) Z層(1)Z層(2) Z層(2)となる構成が挙げられる。また、必要に応じて変 性ポリオレフイン榭脂等カゝらなる接着性榭脂層を少なくとも 1つの層間に積層しても良 い。さらに機械物性の向上や商品性を高めるための目的で、本発明の多層構造物に ポリエステル、ポリアミド、ポリプロピレン等力 なる無延伸又は延伸フィルムを押出ラ ミネートやドライラミネート等により積層しても良い。各ガスバリア層(1)の厚さは好まし くは 1〜150 μ mであり、各層(2)の厚さは好ましくは 20〜800 μ mである。
[0030] 次に、本発明のガスバリア性多層構造物の製造法について説明する。まず、公知 の方法により、少なくとも 1層の層(1)と少なくとも 1層の層(2)、および、必要に応じて 層(3)を含む多層積層体を製造する。
[0031] 次いで、該多層積層体を特定条件下で延伸熱成形し、層(1)の結晶化度、配向度 を高めてガスノ リア性能を向上させる。本発明において、「延伸熱成形」は、フィルム 又はシートの延伸、ノ リソンなどの延伸ブロー成形、フィルム又はシートの深絞り成形 を意味する。一般に延伸熱成形は、材料樹脂のガラス転移点以上で行われる。ガラ ス転移点は榭脂によって異なり、吸湿状態によっても変化するので、複合榭脂材料 では組成によってガラス転移点以上での熱成形性も大きく異なる。また材料樹脂が 結晶性を有する場合、予熱時間が長過ぎると結晶化して延伸熱成形が困難となる場 合がある。従って、多層積層体の延伸熱成形は、各層を構成する榭脂の組み合わせ 等を配慮して行う必要がある。本発明の製造方法では、多層積層体の延伸熱成形温 度および延伸前予熱時間を、複合榭脂 (C)からなる単層未延伸フィルムを延伸軸方 向の線速度が 60%Z秒の条件で延伸倍率 3 X 3に同時二軸延伸した際の最大延伸 応力(前記未延伸フィルムの単位断面積当り)が 0. 2〜2. OMPaの範囲となる温度 および延伸前予熱時間に設定する。多層積層体の延伸熱成形温度は、複合榭脂( C)のガラス転移点以上であるのが好ま U、。本発明にお 、て、「延伸前予熱時間」と は、多層積層体の加熱開始から延伸熱成形開始までの時間を意味する。
延伸熱成形する際、最もガラス転移点の高 ヽ複合樹脂 (C)からなる層(1)の延伸 応力に留意する必要がある。複合榭脂 (C)の延伸性は、複合榭脂 (C)を構成するポリ アミド榭脂 (A)および層状珪酸塩 (B)におおいに影響を受ける。ポリアミド榭脂 (A) の構成単位組成によりガラス転移点や結晶化する速度が異なるので、延伸熱成形温 度と延伸前予熱時間を適切に選択する必要がある。また層状珪酸塩 (B)を含むので 、複合榭脂 (C)はポリアミド榭脂 (A)よりも延伸応力が増大し、結晶化速度も変化す る。それ故、適切な延伸熱成形温度と延伸前予熱時間が得られるように、層状珪酸 塩 (B)の添加量を選択する必要がある。本発明においては、予め複合榭脂 (C)から なる単層未延伸フィルムを、延伸軸方向の線速度が 60%Z秒の条件で延伸倍率 3 X 3に同時二軸延伸し、その際の最大延伸応力(前記未延伸フィルムの単位断面積 当り)が 0. 2〜2. OMPaの範囲となる温度および延伸前予熱時間を決定する。決定 された温度および延伸前予熱時間にて多層積層体を延伸熱成形することにより、目 的とする優れたガスバリア性能と透明性を示す多層構造物が得られる。前記最大延 伸応力が 2. OMPaを超える温度と延伸前予熱時間で延伸熱成形した場合、多層構 造物が破断することがあるだけでなぐ層状珪酸塩 (B)とポリアミド榭脂 (A)との界面 付近に微小な亀裂が生じ、ガスバリア性能と透明性が低下する。 0. 2MPa未満とな る条件では、延伸熱成形は可能であるが榭脂の配向による延伸効果が充分に得ら れな ヽので好ましくな!/、。
[0033] 示差熱走査熱量計 (DSC)で昇温速度 10°CZmin条件にて測定した、延伸熟成 形後のガスバリア層(1)の結晶化熱量は 0〜20jZgであることが好ましい。結晶化熱 量が上記範囲内であれば、ガスバリア層(1)の結晶化が充分に進行しており、ガスバ リア性能の向上効果が得られる。
[0034] 本発明のガスバリア性多層構造物は、 ASTM D— 1003に準じて測定した曇価が 0%以上、 10%未満であることが好ましい。
[0035] 延伸熱成形後のガスバリア層(1)の、下記式 (I)で示される配向度は 10〜45であ ることが好ましい。
配向度 = (面内方向屈折率—厚み方向屈折率) X 1000 · · ·α)
式 (I)において、各屈折率は、アッベ屈折計にて 23°C、ナトリウム D線 (589nm)で 測定したものである。配向度が上記範囲内であると、延伸熱成形により樹脂の配向が 十分であり、ガスバリア性能や機械的性能の向上効果を得ることができる。
[0036] 本発明のガスバリア性多層構造物の形態としては、多層ボトル等の多層中空容器、 多層延伸フィルム、多層シート容器が挙げられる。本発明の製造方法に従って延伸 熱成形することでガスバリア性能、透明性、機械的性能が向上した多層構造物であ れば、特に形態を限定するものではない。
[0037] 延伸熱成形後にフィルムの端部を固定したり、ブローした容器を金型内で内圧をか けて変形しない状態で、延伸熱成形温度以上に保持する熱固定処理を施すことによ り、延伸熱成形時の残留応力を緩和しつつ、結晶化を更に進行させて、多層構造物 の強度、ガスバリア性能、機械的性能を更に向上させることも出来る。
[0038] 本発明のガスバリア性多層構造物が多層中空容器 (射出延伸ブロー中空容器)の 場合、最外層および最内層が層(2)であり、最外層と最内層との間に位置する中間 層の少なくとも 1層が層(1)であることが好ましい。また、層(2)を構成する熱可塑性 榭脂(D)としては、ジカルボン酸単位の好ましくは 80モル%以上、より好ましくは 90 モル%以上がテレフタル酸単位であり、ジオール単位の好ましくは 80モル%以上、よ り好ましくは 90モル%以上がエチレングリコール単位であるポリエステルが例示され る。他のジカルボン酸単位としては、イソフタル酸、ジフエ-ルエーテル 4、 4ージカ ルボン酸、ナフタレン 1、 4又は 2, 6 ジカルボン酸、アジピン酸、セバシン酸、デ カン 1、 10—力ルボン酸、へキサヒドロテレフタル酸等のジカルボン酸に由来する 単位、又他のジオール単位としては、プロピレングリコール、 1, 4 ブタンジオール、 ネオペンチルグリコール、ジエチレングリコール、シクロへキサンジメタノール、 2, 2- ビス(4 ヒドロキシフエ-ル)プロノ ン、 2, 2—ビス(4 ヒドロキシエトキシフル)プロ パン等のジオールに由来する単位を例示することが出来る。更に、 p—ォキシ安息香 酸等のォキシ酸に由来する単位を含有するポリエステル榭脂を例示することができる
[0039] 本発明のガスノ リア性多層構造物が多層中空容器である場合、熱可塑性榭脂 (D) の固有粘度は 0. 55〜: L 5が好ましぐ特に好ましくは 0. 65〜: L 4である。固有粘 度が 0. 55以上で、多層ノ リソンを透明な非晶状態で得ることが可能となるほか、得ら れる多層中空容器の機械的強度も十分なものとなる。本発明においては、ポリエチレ ンテレフタレート (熱可塑性榭脂 (D) )から形成された層 (2)と、ポリアミド MXD6 (ポリ アミド榭脂 (A) )と層状珪酸塩 (B)力もなる複合榭脂 (C)から形成されたガスバリア層 (1)との組み合わせが最も好ましい。その理由としては、これらの榭脂が、透明性、機 械的強度、射出成形性、延伸ブロー成形性の全てにおいて優れているためである。
[0040] 多層中空容器は、 2つの射出シリンダー (熱可塑性榭脂(D)用のスキン側射出シリ ンダ一と複合榭脂 (C)を主成分とする榭脂用のコア側射出シリンダー)を有する射出 成形機を使用して、熱可塑性榭脂 (D)と複合榭脂 (C)を主成分とする樹脂とをそれ ぞれの射出シリンダーから金型ホットランナーを通して金型キヤビティー内に射出し、 得られた多層ノ^ソンを更に二軸延伸ブロー成形することにより得られる。
[0041] 例えば、先ず、熱可塑性榭脂 (D)を射出し、次 ヽで複合榭脂 (C)を主成分とする 榭脂と熱可塑性榭脂 (D)とを同時に射出し、次に熱可塑性榭脂 (D)を必要量射出し て金型キヤビティーを満たすことにより層(2) Z層(1) Z層(2)の 3層構造を有するパ リソンが製造できる。
[0042] 同様に、先ず熱可塑性榭脂 (D)を射出し、次 ヽで複合榭脂 (C)を主成分とする榭 脂を単独で射出し、最後に熱可塑性榭脂 (D)を射出して金型キヤビティーを満たす ことにより、層(2) Z層(1) Z層(2) Z層(1) Z層(2)の 5層構造を有するパリソンが 製造できる。なお、多層ノ^ソンを製造する方法は、上記方法だけに限定されるもの ではない。
[0043] 多層パリソンを二軸延伸ブロー成形して得られる多層構造物は、ガスバリア層(1) が少なくとも多層構造物の胴部に存在して 、ればガスノ リア性を発揮するが、ガスバ リア層(1)が多層構造物のロ栓部先端付近まで延びている方がガスバリア性能は更 に良好である。
[0044] 本発明のガスノ リア性多層構造物が多層中空容器である場合、白化防止剤として 、炭素数 8〜30の脂肪酸と炭素数 2〜10のジァミン力も得られるジアミドィ匕合物およ び炭素数 8〜30の脂肪酸と炭素数 2〜: LOのジオール力も得られるジエステルイ匕合物 力も選ばれた少なくとも一種の化合物をガスノ リア層(1)に添加することができる。前 記脂肪酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪酸が好ましい。
[0045] 前記脂肪酸として、ステアリン酸 (C18)、エイコ酸 (C20)、ベヘン酸 (C22)、モンタ ン酸 (C28)、トリアコンタン酸 (C30)が例示できる。また、前記ジァミンとして、ェチレ ンジァミン、ブチレンジァミン、へキサンジァミン、キシリレンジァミン、ビス(アミノメチ ル)シクロへキサン等が例示できる。ジアミド化合物は 1種類でも良いし、 2種類以上 を併用してもよい。炭素数 8〜30の脂肪酸と主としてエチレンジァミン力も成るジアミ ン力 得られるジアミド化合物、および主としてモンタン酸力 なる脂肪酸と炭素数 2 〜 10のジァミン力 得られるジアミドィ匕合物が好ましい。
[0046] 前記ジオールとして、エチレングリコール、プロパンジオール、ブタンジオール、へ キサンジオール、キシリレングリコール、シクロへキサンジメタノール等が例示できる。 ジエステル化合物は 1種類でも良いし、 2種以上を併用しても良い。特に好ましくは主 としてモンタン酸力 なる脂肪酸と主としてエチレングリコールおよび Zまたは 1, 3- ブタンジオール力 得られるジエステル化合物である。
[0047] 本発明にお 、て、前記ジアミド化合物および Zまたはジエステルイ匕合物の添加量 は、複合榭脂(C) 100重量部に対して好ましくは 0. 005〜1. 0重量部、より好ましく は 0. 05-0. 5重量部、特に好ましくは 0. 12-0. 5重量部である。
添加量が上記範囲内であると、ポリアミド榭脂 (A)の結晶化による白化が抑制され、 多層構造物の曇価を低くすることができる。 [0048] 多層延伸フィルムおよび多層シートを延伸熱成形してなる多層シート容器は、共押 出しにより得た、層(1)を中間層として有する層(1)と層(2)の多層積層体を延伸熱 成形することにより製造される。共押出法としては Tダイ法、インフレーション法等公知 の方法を利用することができる。特に層(1)を外層ではなく中間層とすることで、層(1 )の表面粗れが低減し、多層構造物の曇価を低くできるため好ましい。延伸熱成形方 法については、テンター法やブロー延伸方法など公知の方法を利用することができ る。また、延伸熱成形後、吸湿による変形を防止し、結晶化度を高めてバリア性能を より向上させるために、再度加熱すること〖こよる熱固定もできる。尚、熱可塑性榭脂( D)としては、ポリオレフインまたは脂肪族ポリアミドが好ましい。
[0049] また、前記多層延伸フィルムを共押出法で製造する工程においては、ドラフト比を 極端に大きくしないことが好ましい。ドラフト比が極端に高いと複合榭脂 (C)中の層状 珪酸塩 (B)の周辺で微細な空隙が生じ、ガスバリア性が低下するだけでなぐ曇価が 上昇するなどの外観が悪ィ匕する傾向がある。
[0050] 本発明のガスバリア性多層構造物は、そのままでガスバリア性多層容器として使用 することもできるし、該多層構造物を少なくとも一部に使用してガスノリア性多層容器 を得ることもできる。共押出、共射出成形後に延伸熱成形して製造した多層ボトル、 多層延伸フィルム、多層シート容器等の多層構造物はそのまま、又は若干の加熱お よびヒートシールその他の方法により接着してガスノリア性多層容器として使用するこ とが可能である。
[0051] 本発明のガスノリア性多層容器には様々な物品を収納、保存することができる。例 えば、炭酸飲料、ジュース、水、牛乳、日本酒、ウィスキー、焼酎、コーヒー、茶、ゼリ 一飲料、健康飲料等の液体飲料、調味液、ソース、醤油、ドレッシング、液体だし、マ ヨネーズ、味噌、すり下ろし香辛料等の調味料、ハム、ソーセージ等の畜肉食品、ジ ャム、クリーム、チョコレートペースト等のペースト状食品、液体スープ、煮物、漬物、 シチュー等の液体加工食品に代表される液体系食品やそば、うどん、ラーメン等の 生麵及びゆで麵、精米、調湿米、無洗米等の調理前の米類や調理された炊飯米、 五目飯、赤飯、米粥等の加工米製品類、粉末スープ、だしの素等の粉末調味料等に 代表される高水分食品、乾燥野菜、コーヒー豆、コーヒー粉、お茶、穀物を原料とし たお菓子等に代表される低水分食品、その他農薬や殺虫剤等の固体状や溶液状の 化学薬品、液体及びペースト状の医薬品、化粧水、化粧クリーム、化粧乳液、整髪料 、染毛剤、シャンプー、石鹼、洗剤等、種々の物品を収納することができる。
[0052] 特に、本発明のガスノ リア性多層容器は、水分活性の高い物品を収納する包装容 器、高湿度下に曝される包装容器、さらにはレトルトやボイル等の加熱殺菌処理が施 される包装容器として適したものである。
実施例
[0053] 以下に実施例および比較例を示し、本発明を具体的に説明する力 本発明はこれ ら実施例に限定されるものではない。以下に実施例等における評価方法について記 す。
(1)ポリマー融点、ガラス転移点、昇温結晶化熱量
(株)島津製作所製流速示差走査熱量計 DSC-50により、以下の条件にて測定した 標準物質: α—アルミナ
試料量: lOmg
昇温速度: 10°CZ分
測定温度範囲: 25〜300°C
雰囲気:窒素ガス 30mlZ分
(2)曇価
日本電色工業 (株)製、色差 '濁度測定器 COH— 300Aを使用し、 ASTM D100 3に準じてフィルムの曇価を測定した。
(3)酸素透過率
JIS K- 7126 (ASTM D3985)に準じて測定した。使用した測定機器は、モダ ンコントロールズ社製酸素透過率測定装置(型式: OX— TRAN 10/50A)であり 、測定条件は、 23°C、相対湿度 60%で行った。
(4)配向度
アッベ屈折計 (ァタゴ (株)製 DR— M2)にて 23°C、ナトリウム D線 (589nm)で面内 方向および厚み方向の複屈折率を測定し、下記式 (I)により計算した。 配向度 = (面内方向屈折率 厚み方向屈折率) X 1000 (I)
[0054] 複合榭脂 C1〜C5の製造
ポリアミド MXD6 (三菱ガス化学製 MXナイロン S6007)および層状珪酸塩 (B) ( 白石工業 (株)製「オルベン」、膨潤ィ匕剤としてトリメチルォクタデシルアンモ-ゥムを 3 4wt%含有)をドライブレンドした後、逆エレメントによる滞留部を設けたスクリューを 設置したシリンダー径 20mm φの同方向回転型二軸押出機に 6kgZhrの速度で供 給し、シリンダー温度 270°Cの条件で溶融混練を行い、押出機ヘッドからストランド押 し出し、冷却後、ペレタイズィ匕して複合榭脂 (C1〜C5)を得た。第 1表に複合樹脂の 組成と融点、ガラス転移点を示す。
[0055] [表 1]
第 1表
C 1 C 2 C 3 C 4 C 5
組成 (重量%)
ポリアミ ド M X D 6 99 97 95 93 90 層状珪酸塩 (B ) 1 3 5 7 10 融点 ( ) 239 239 239 239 239 ガラス転移点 C) 86 86 86 86 86
[0056] 参考例 1
複合榭脂 C1を、小型フィルム製造装置 (東洋精機 (株)製ラボプラストミル、スクリュ 一径 φ 20mm, Tダイ幅 200mm)を用!ヽ、 260°Cの成开温度【こて単層 180 μ m厚 みの未延伸フィルムにした後、テンター式二軸延伸装置 (東洋精機 (株)製)にて、延 伸温度 100°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2 軸延伸した。延伸時の単位断面積当りの最大延伸応力は 0. 7MPaであり、得られた フィルム(厚み 20 m)の曇価は 0. 5%であった。 23°C、 60%RHにおける酸素透過 係数は、 0. 05ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量は 9jZg であり、配向度は 19であった。
[0057] 参考例 2
複合榭脂 C2を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 105°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 1. OMPaであり、得られ たフィルム(厚み 20 m)の曇価は 3. 2%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 03ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量は 5JZ gであり、配向度は 20であった。
[0058] 参考例 3
複合榭脂 C3を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 110°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 1. 4MPaであり、得られ たフィルム(厚み 20 m)の曇価は 3. 4%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 02ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量は 3JZ gであり、配向度は 29であった。
[0059] 参考例 4
複合榭脂 C4を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 120°C、予熱 20秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 1. 7MPaであり、得られ たフィルム(厚み 20 m)の曇価は 3. 5%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 02ml -mm/m2- day -atm, DSC測定による昇温結晶化発熱は検出 されず、配向度は 28であった。
[0060] 参考例 5
複合榭脂 C5を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 95°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2 軸延伸した。延伸時の単位断面積当りの最大延伸応力は 1. 6MPaであり、得られた フィルム(厚み 20 m)の曇価は 5. 8%であった。 23°C、 60%RHにおける酸素透過 係数は、 0. 03ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量は 17jZg であり、配向度は 20であった。
[0061] 参考例 6
複合榭脂 C2を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 120°C、予熱 20秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 0. 3MPaであり、得られ たフィルム(厚み 20 m)の曇価は 3. 4%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 03ml - mm/m2 - day - atm, DSC測定による昇温結晶化発熱は検出 されず、配向度は 16であった。
[0062] 参考例 7
複合榭脂 C3を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 95°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2 軸延伸した。延伸時の単位断面積当りの最大延伸応力は 2. 2MPaであり、得られた フィルム(厚み 20 m)の曇価は 13. 1%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 06ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量は 35J Zgであり、配向度は 23であった。
[0063] 参考例 8
複合榭脂 C2を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 135°C、予熱 15秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 0. IMPaであり、得られ たフィルム(厚み 20 m)の曇価は 8. 2%であった。 23°C、 60%RHにおける酸素透 過係数は、 0. 05ml - mm/m2 - day - atm, DSC測定による昇温結晶化発熱は検出 されず、配向度は 7であった。
[0064] 参考例 9
複合榭脂 C5を使用した以外は参考例 1と同様にして作製した未延伸フィルムを、 延伸温度 135°C、予熱 15秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 2. 5MPaであり、得られ たフィルム(厚み 20 m)の曇価は 18. 9%であった。 23°C、 60%RHにおける酸素 透過係数は、 0. 08ml - mm/m2 - day - atm, DSC測定による昇温結晶化発熱は検 出されず、配向度は 25であった。
[0065] 参考例 10
ポリアミド MXD6のみを使用した以外は参考例 1と同様にして作製した未延伸フィ ルムを、延伸温度 95°C、予熱 30秒、延伸軸方向線速度 60%Z秒、延伸倍率 3 X 3 で同時 2軸延伸した。延伸時の単位断面積当りの最大延伸応力は 0. 3MPaであり、 得られたフィルム(厚み 20 m)の曇価は 0. 2%であった。 23°C、 60%RHにおける 酸素透過係数は、 0. 08ml - mm/m2 - day - atm, DSC測定による昇温結晶化熱量 は 12jZgであり、配向度は 17であった。
実施例 1
100重量部の複合榭脂 C1にエチレンビスステアリルアミド(商品名:アルフロー H— 50T)を 0. 05重量部配合した (複合榭脂 Cl ' )。複合榭脂 C1 'および熱可塑性榭脂 としてポリエチレンテレフタレート(以下 PETと略す。 日本ュ-ペット製 RT543C、固 有粘度 0. 75)を積層してなる多層ノ^ソンを以下の方法により作製した。
名機製作所 (株)製、射出成形機 (型式: M200、 4個取り)を使用し、最内外層を構 成する PETを射出シリンダー aに、中間層を構成する複合榭脂 C1 'を射出シリンダー bに充填した。以下の条件で先ず PET榭脂を射出し、所定量の PET榭脂を射出した 後、 PET榭脂と同時に複合榭脂 C1を射出し、ついで PET榭脂を射出して 3層ノリソ ンを成形した。
射出シリンダー a内の榭脂温度: 280°C
射出シリンダー b内の榭脂温度: 270°C
金型内榭脂流路温度 :280°C
金型冷却水温度 : 15°C
射出成形して得られた多層パリソンは全長 110mm、外形 26. 5mm φ、肉厚 4. 5 mmであった。尚、得られた 3層ノ リソンは、複合榭脂 C1を 7重量0 /0含有していた。上 記多層パリソンを延伸ブロー成形機(クルップ コーポプラスト社 (KRUPP CORPO PLAST社)製、型式: LB— 01)を用いて、参考例 1と同じ温度、予熱時間でニ軸延 伸ブロー成形して、多層ボトルを得た。得られた多層ボトルは全長 223mm、外形 65 πιπι φ、内容積 500ml (表面積: 0. 04m2)、底部形状はぺタロイドタイプであった。
ノ リソン加熱温度 :100。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルの曇価、ガスバリア層の昇温結晶化熱量、ガスバリア層の配向 度を、ボトル首部 (底から 150mm高さ部位)、胴部 (底力ゝら 80mm高さ部位)で測定し た。曇価は首部で 1. 9% (厚み 288 /z m)、胴部で 1. 3% (厚み 325 m)であった。昇 温結晶化熱量は、首部が 8jZg、胴部が 5jZgであり、配向度は、首部で 14、胴部で 21であった。また多層ボトルの酸素透過率は 0. Ol lml/bottle - day O. 21atmで あった。得られた多層ボトルは、ガスバリア層の結晶化、配向が充分高められており、 透明性、バリア性能に優れるものであった。
[0067] 実施例 2
複合榭脂 C1に代えて複合榭脂 C2を用いた他は実施例 1と同様に多層ノ リソンを 作製し、参考例 2と同じ温度、予熱時間条件で二軸延伸ブロー成形して、多層ボトル を得た。
ノ リソン加熱温度 :105。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 5. 4% (厚み 293 m)、胴部で 2. 9% (厚み 331 m)であった。ガスバリア層の昇温結晶化熱量は、首部が 3jZg、胴部が 2jZg であり、ガスノ リア層の配向度は、首部で 17、胴部で 22であった。また多層ボトルの 酸素透過率は 0. 007ml/bottle - day 0. 21atmであった。得られた多層ボトルは 、ガスバリア層の結晶ィ匕、配向が充分高められており、透明性、バリア性能に優れる ものであった。
[0068] 実施例 3
複合榭脂 C1に代えて複合榭脂 C3を用いた他は実施例 1と同様に多層ノ リソンを 作製し、参考例 3と同じ温度、予熱時間条件で二軸延伸ブロー成形して、多層ボトル を得た。
ノ リソン加熱温度 :110。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 5. 8% (厚み 284 m)、胴部で 2. 8% (厚み 312 /z m)であった。ガスバリア層の昇温結晶化熱量は、首部が 2jZg、胴部が UZg であり、ガスノ リア層の配向度は、首部で 27、胴部で 33であった。また多層ボトルの 酸素透過率は 0. 005ml/bottle - day 0. 21atmであった。得られた多層ボトルは 、ガスバリア層の結晶ィ匕、配向が充分高められており、透明性、ガスバリア性能に優 れるものであった。
[0069] 実施例 4
複合榭脂 C1に代えて複合榭脂 C4を用いた他は実施例 1と同様に多層ノ リソンを 作製し、参考例 4と同じ温度、予熱時間条件で二軸延伸ブロー成形して、多層ボトル を得た。
ノ リソン加熱温度 :120。C
予熱時間 :20秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 6. 7% (厚み 283 m)、胴部で 3. 6% (厚み 322 m)であった。ガスノ リア層の昇温結晶化による発熱は首部、胴部とも検出され ず、ガスノ リア層の配向度は、首部で 28、胴部で 31であった。また多層ボトルの酸素 透過率は 0. 004ml/bottle · day · 0. 21atmであった。得られた多層ボトルは、ガス バリア層の結晶化、配向が充分高められており、透明性、ガスバリア性能に優れるも のであった。
[0070] 実施例 5
実施例 2と同様に多層パリソンを作製し、参考例 5と同じ温度、予熱時間条件 (下記 参照)で二軸延伸ブロー成形して、多層ボトルを得た。
ノ リソン加熱温度 :95。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 9. 2% (厚み 281 m)、胴部で 5. 4% (厚み 308 /z m)であった。ガスバリア層の昇温結晶化熱量は、首部が 16jZg、胴部が 13J Zgであり、ガスノ リア層の配向度は、首部で 19、胴部で 23であった。また多層ボト ルの酸素透過率は 0. 006ml/bottle -day0. 21atmであった。得られた多層ボト ルは、ガスバリア層の結晶化、配向が充分高められており、透明性、ガスバリア性能 に優れるものであった。
[0071] 実施例 6 実施例 2と同様に多層パリソンを作製し、参考例 6と同じ温度、予熱時間条件で二 軸延伸ブロー成形して、多層ボトルを得た。
ノ リソン加熱温度 :120。C
予熱時間 :20秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 4. 7% (厚み 297 m)、胴部で 3. 3% (厚み 314 m)であった。ガスノ リア層の昇温結晶化による発熱は首部、胴部とも検出され ず、ガスノ リア層の配向度は、首部で 14、胴部で 19であった。また多層ボトルの酸素 透過率は 0. 007ml/bottle · day · 0. 21atmであった。得られた多層ボトルは、ガス バリア層の結晶化、配向が充分高められており、透明性、ガスバリア性能に優れるも のであった。
[0072] 比較例 1
実施例 3と同様に多層パリソンを作製し、参考例 7と同じ温度、予熱時間条件で二 軸延伸ブロー成形して、多層ボトルを得た。
ノ リソン加熱温度 :95。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 28. 5% (厚み 281 m)、胴部で 21. 4% (厚 み 311 m)であった。ガスバリア層の昇温結晶化熱量は首部が 3 jZg、胴部が 28J Zgであり、ガスノ リア層の配向度は、首部で 20、胴部で 25であった。また多層ボト ルの酸素透過率は 0. 014ml/bottle -day0. 21atmであった。得られた多層ボト ルは、ガスバリア層の結晶化が充分でなぐ透明性、ガスバリア性能に劣るものであつ た。
[0073] 比較例 2
実施例 2と同様に多層パリソンを作製し、参考例 8と同じ温度、予熱時間条件で二 軸延伸ブロー成形して、多層ボトルを得た。
ノ リソン加熱温度 :135。C
予熱時間 :15秒 ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 12. 9% (厚み 292 m)、胴部で 10. 5% (厚 み 334 m)であった。ガスバリア層の昇温結晶化による発熱は検出されず、ガスバリ ァ層の配向度は、首部で 7、胴部で 9であった。また多層ボトルの酸素透過率は 0. 0 12ml/bottle-day0. 21atmであった。得られた多層ボトルは、ガスバリア層の配 向が充分でなぐ透明性、ガスバリア性能に劣るものであった。
[0074] 比較例 3
複合榭脂 C1に代えて複合榭脂 C5を用いた他は実施例 1と同様に多層ノ リソンを 作製し、参考例 9と同じ温度、予熱時間条件で二軸延伸ブロー成形して、多層ボトル を得た。
ノ リソン加熱温度 :135。C
予熱時間 :15秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 34. 5% (厚み 283 m)、胴部で 29. 7% (厚 み 324 m)であった。ガスバリア層の昇温結晶化による発熱は検出されず、ガスバリ ァ層の配向度は、首部で 21、胴部で 28であった。また多層ボトルの酸素透過率は 0 . 015ml/bottle -dayO. 21atmであった。得られた多層ボトルは、透明性、ガスバ リア性能に劣るものであった。
[0075] 比較例 4
複合榭脂 C1に代えてポリアミド MXD6を用いた他は実施例 1と同様に多層ノ リソン を作製し、参考例 10と同じ温度、予熱時間条件で二軸延伸ブロー成形して、多層ボ トルを得た。
ノ リソン加熱温度 :95。C
予熱時間 :30秒
ブロー圧力 :3. OMPa
得られた多層ボトルは、曇価が首部で 1. 3% (厚み 282 m)、胴部で 1. 0% (厚み 310 m)であった。ガスノ リア層の昇温結晶化熱量は首部が 9jZg、胴部が 8jZg であり、ガスノ リア層の配向度は、首部で 15、胴部で 19であった。また多層ボトルの 酸素透過率は 0. 017ml/bottle-day0. 21atmであった。
[0076] 実施例 7
3台の押出機、フィードブロック、 Tダイ、冷却ロール、引き取り機等力 なる多層フィ ルム製造装置を用いて、第 1の押出機力 ナイロン 6 (以下 N6と略す。宇部興産製 1024B)を、第 2の押出機力も上記複合榭脂 (C1)を、第 3の押出機力も N6を共押 出し、 N6層(45 μ m) Zガスバリア層(複合榭脂層、 45 μ m) ZN6層(45 μ m)の層 構成を有する 2種 3層の多層未延伸フィルムを製造した。得られた多層未延伸フィル ムをニ軸延伸装置 (東洋精機製)にて、参考例 1と同じ温度、予熱時間(100°C、 30秒 )、同時延伸速度 60%Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の 厚みは、 N6層(5 /ζ πι) Ζ複合榭脂層(5 /ζ πι) ΖΝ6層(5 /z m)であり、曇価は 0. 3 %、ガスノ リア層の昇温結晶化熱量は 7jZg、酸素透過率は 9. 7ml/m2 - day/at mであった。得られた多層延伸フィルムは透明性、ガスノ リア性能に優れるものであ つた o
[0077] 実施例 8
複合榭脂 C1に代えて複合榭脂 C2を用いた他は実施例 7と同様にして 2種 3層の 多層未延伸フィルムを製造した。得られた多層未延伸フィルムを二軸延伸装置 (東洋 精機製)にて、参考例 2と同じ温度、予熱時間(105°C、 30秒)、同時延伸速度 60% Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層 m) ZN6層(5 m)であり、曇価は 1. 2%、ガスバリア層の昇温 結晶化熱量は 5j/g、酸素透過率は 6. 3mlZm2' dayZatmであった。得られた多 層延伸フィルムは透明性、ガスノ リア性能に優れるものであった。
[0078] 実施例 9
複合榭脂 C1に代えて複合榭脂 C3を用いた他は実施例 7と同様にして 2種 3層の 多層未延伸フィルムを製造した。得られた多層未延伸フィルムを二軸延伸装置 (東洋 精機製)にて、参考例 3と同じ温度、予熱時間(110°C、 30秒)、同時延伸速度 60% Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層 m) ZN6層(5 m)であり、曇価は 1. 3%、ガスバリア層の昇温 結晶化熱量は 3j/g、酸素透過率は 4. 7mlZm2' dayZatmであった。得られた多 層延伸フィルムは透明性、ガスノ リア性能に優れるものであった。
[0079] 実施例 10
複合榭脂 C1に代えて複合榭脂 C4を用いた他は実施例 7と同様にして 2種 3層の 多層未延伸フィルムを製造した。得られた多層未延伸フィルムを二軸延伸装置 (東洋 精機製)にて、参考例 4と同じ温度、予熱時間(120°C、 20秒)、同時延伸速度 60% Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層 m) ZN6層(5 m)であり、曇価は 1. 5%、ガスバリア層の昇温 結晶化熱量は U/g、酸素透過率は 4. 5mlZm2' dayZatmであった。得られた多 層延伸フィルムは透明性、ガスノリア性能に優れるものであった。
[0080] 実施例 11
実施例 8と同様にして 2種 3層の多層未延伸フィルムを製造した。得られた多層未 延伸フィルムを二軸延伸装置 (東洋精機製)にて、参考例 5と同じ温度、予熱時間(95 °C、 30秒)、同時延伸速度 60%Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製し た。各層の厚みは、 N6層(5 μ m) Z複合榭脂層(5 μ m) ZN6層(5 μ m)であり、曇 価は 3. 2%、ガスバリア層の昇温結晶化熱量は 16jZg、酸素透過率は 6. 9ml/m2 •dayZatmであった。得られた多層延伸フィルムは透明性、ガスノリア性能に優れる ものであった。
[0081] 実施例 12
実施例 8と同様にして 2種 3層の多層未延伸フィルムを製造した。得られた多層未 延伸フィルムを二軸延伸装置 (東洋精機製)にて、参考例 6と同じ温度、予熱時間(12 0°C、 20秒)、同時延伸速度 60%Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製し た。各層の厚みは、 N6層(5 μ m) Z複合榭脂層(5 μ m) ZN6層(5 μ m)であり、曇 価は 1. 2%、ガスバリア層の昇温結晶化による発熱は検出されず、酸素透過率は 5. 9mlZm2' day Zatmであった。得られた多層延伸フィルムは透明性、ガスバリア性 能に優れるものであった。
[0082] 比較例 5
実施例 9と同様にして 2種 3層の多層未延伸フィルムを製造した。得られた多層未 延伸フィルムを二軸延伸装置 (東洋精機製)にて、参考例 7と同じ温度、予熱時間(95 °C、 30秒)、同時延伸速度 60%Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製し た。各層の厚みは、 N6層(5 μ m) Z複合榭脂層(5 μ m) ZN6層(5 μ m)であり、曇 価は 13. 0%、ガスバリア層の昇温結晶化熱量は 3 jZgであり、酸素透過率は 13. 9mlZm2' day Zatmであった。得られた多層延伸フィルムは透明性、ガスバリア性 能に劣るものであった。
[0083] 比較例 6
実施例 8と同様にして 2種 3層の多層未延伸フィルムを製造した。得られた多層未 延伸フィルムを二軸延伸装置 (東洋精機製)にて、参考例 8と同じ温度、予熱時間条 件(135°C、 15秒)、同時延伸速度 60%Z秒、延伸倍率 3 X 3で多層延伸フィルムを 作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層(5 μ m) ZN6層(5 μ m)で あり、曇価は 11. 1%、ガスバリア層の昇温結晶化による発熱は検出されず、酸素透 過率は 11. 3mlZm2'dayZatmであった。得られた多層延伸フィルムは透明性、ガ スノ リア性能に劣るものであった。
[0084] 比較例 7
複合榭脂 C1に代えて複合榭脂 C5を用いた他は実施例 7と同様にして 2種 3層の 多層未延伸フィルムを製造した。得られた多層未延伸フィルムを二軸延伸装置 (東洋 精機製)にて、参考例 9と同じ温度、予熱時間(135°C、 15秒)、同時延伸速度 60% Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層 m) ZN6層(5 m)であり、曇価は 18. 9%、ガスバリア層の昇温 結晶化による発熱は検出されず、酸素透過率は 15. 8ml/m2'dayZatmであった 。得られた多層延伸フィルムは透明性、ガスノリア性能に劣るものであった。
[0085] 比較例 8
複合榭脂 C1に代えてポリアミド MXD6を用いた他は実施例 7と同様にして 2種 3層 の多層未延伸フィルムを製造した。得られた多層未延伸フィルムを二軸延伸装置 (東 洋精機製)にて、参考例 10と同じ温度、予熱時間(95°C、 30秒)、同時延伸速度 60 %Z秒、延伸倍率 3 X 3で多層延伸フィルムを作製した。各層の厚みは、 N6層(5 μ m) Z複合榭脂層(5 μ m) ZN6層(5 μ m)であり、曇価は 0. 2%、ガスバリア層の昇 温結晶化熱量は 1 jZgであり、酸素透過率は 14. OmlZm2'dayZatmであった。 産業上の利用可能性
本発明のガスバリア性多層構造物は、ガスバリア性、機械物性および透明性等の 外観に優れており、食品、飲料、薬品、電子部品等の包装材料として非常に有用な ものであり、その工業的価値は高い。

Claims

請求の範囲
[1] メタキシリレンジアミン単位を 70モル0 /0以上含むジァミン単位と、炭素数 4〜20の (X , ω—直鎖脂肪族ジカルボン酸由来の単位を 70モル%以上含むジカルボン酸単位 力もなるポリアミド榭脂 (Α) 92〜99重量%と、層状珪酸塩を有機膨潤化剤で処理し て得られた層状珪酸塩 (Β) 8〜1重量%とからなる複合榭脂 (C)カゝらなる少なくとも 1 層のガスバリア層(1)、および、複合榭脂 (C)よりガラス転移点の低い熱可塑性榭脂 (D)カゝらなる少なくとも 1層の層(2)から形成された多層積層体を、複合榭脂 (C)のガ ラス転移点以上の温度で延伸熱成形して得られるガスバリア性多層構造物であって 、該延伸熱成形時の温度および延伸前予熱時間が、複合榭脂 (C)からなる単層未 延伸フィルムを延伸軸方向の線速度が 60%Ζ秒の条件で延伸倍率 3 X 3に同時二 軸延伸した際の、前記未延伸フィルムの単位断面積当りの最大延伸応力が 0. 2〜2 . OMPaの範囲となる温度および延伸前予熱時間であることを特徴とするガスノリア 性多層構造物。
[2] 示差熱走査熱量計 (DSC)で昇温速度 10°CZmin条件にて測定した、延伸熱成形 後のガスバリア層(1)の結晶化熱量力^〜 20jZgである請求項 1に記載のガスバリア 性多層構造物。
[3] ASTM D— 1003に準じて測定した多層構造物の曇価が 0%以上 10%未満である 請求項 1または 2に記載のガスバリア性多層構造物。
[4] 下記式 (I) :
配向度 = (面内方向屈折率 厚み方向屈折率) X 1000 (I)
(式 (I)において、各屈折率は、アッベ屈折計にて 23°C、ナトリウム D線 (589nm)で測 定したものである)
力も計算した、延伸熱成形後のガスバリア層(1)の配向度が 10〜45である請求項 1 〜3の 、ずれかに記載のガスバリア性多層構造物。
[5] 最外層および最内層が層(2)であり、最外層と最内層との間に位置する中間層の少 なくとも 1層がガスノリア層(1)である多層中空容器であって、層(2)を構成する熱可 塑性榭脂(D)力 テレフタル酸単位を 80モル%以上含むジカルボン酸単位、および エチレングリコール単位を 80モル0 /0以上含むジオール単位力もなる熱可塑性ポリエ ステル榭脂を主成分とするものである請求項 1〜4のいずれかに記載のガスノリア性 多層構造物。
[6] 前記ガスバリア性多層構造物が、層(2) Z層(1) Z層(2)の 3層構造を有する延伸ブ ロー成形多層中空容器である請求項 1〜5のいずれかに記載のガスバリア性多層構 造物。
[7] 前記ガスバリア性多層構造物が、層(2) Z層(1) Z層(2) Z層(1) Z層(2)の 5層構 造を有する延伸ブロー成形多層中空容器である請求項 1〜5のいずれかに記載のガ スバリア性多層構造物。
[8] 層(1)が複合榭脂 (C) 100重量部に対し、炭素数 8〜30の脂肪酸と炭素数 2〜10の ジァミン力も得られたジアミド化合物および炭素数 8〜30の脂肪酸と炭素数 2〜10の ジオール力 得られたジエステルイ匕合物からなる群より選ばれた少なくとも 1種の白 化防止剤を 0. 005〜1. 0重量部含むことを特徴とする請求項 1〜7のいずれかに記 載のガスバリア性多層構造物。
[9] 少なくとも 1層の層(1)と少なくとも 1層の層(2)からなる共押出し積層体を延伸熟成 形して得られた、多層延伸フィルムまたは多層シート容器である請求項 1〜4の 、ず れかに記載のガスバリア性多層構造物。
[10] 層(2)に用いる熱可塑性榭脂(D)がポリオレフインである請求項 9に記載のガスバリ ァ性多層構造物。
[11] 層(2)に用いる熱可塑性榭脂 (D)が脂肪族ポリアミドである請求項 9に記載のガスバ リア性多層構造物。
[12] 多層構造物の少なくとも 1つの層間に、接着性榭脂層が積層されてなる請求項 1〜1
1に記載のガスバリア性多層構造物。
[13] 請求項 1〜12のいずれかに記載のガスバリア性多層構造物を少なくとも一部に使用 してなるガスノリア性多層容器。
[14] 複合榭脂 (C)力らなる少なくとも 1層のガスノリア層(1)および複合榭脂 (C)よりガラ ス転移点の低い熱可塑性榭脂 (D)からなる少なくとも 1層の榭脂層(2)からなる多層 積層体を形成する工程、および
該多層積層体を、複合榭脂 (C)のガラス転移点以上の温度で延伸熱成形する工程 からなり、
該複合樹脂 (C)は、メタキシリレンジァミン単位を 70モル0 /0以上含むジァミン単位と、 炭素数 4〜20の oc , ω—直鎖脂肪族ジカルボン酸由来の単位を 70モル%以上含 むジカルボン酸単位カゝらなるポリアミド榭脂 (Α) 92〜99重量%と、層状珪酸塩を有 機膨潤化剤で処理して得られた層状珪酸塩 (B) 8〜l重量%とからなり;
該延伸熱成形時の温度および延伸前予熱時間が、複合榭脂 (C)からなる単層未延 伸フィルムを延伸軸方向の線速度が 60%Ζ秒の条件で延伸倍率 3 X 3に同時二軸 延伸した際の、前記未延伸フィルムの単位断面積当りの最大延伸応力が 0. 2〜2. 0 MPaの範囲となる温度および延伸前予熱時間であることを特徴とするガスノ リア性 多層構造物の製造法。
PCT/JP2005/010275 2004-06-04 2005-06-03 ガスバリア性多層構造物およびその製造法 WO2005118289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20050751408 EP1752286B1 (en) 2004-06-04 2005-06-03 Gas-barrier multilayer structure and process for producing the same
AU2005249842A AU2005249842B2 (en) 2004-06-04 2005-06-03 Gas-barrier multilayer structure and process for producing the same
US11/628,405 US20080069994A1 (en) 2004-06-04 2005-06-03 Gas-Barrier Multilayer Structure and Process for Producing the Same
JP2006514147A JP4930054B2 (ja) 2004-06-04 2005-06-03 ガスバリア性多層構造物およびその製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004167033 2004-06-04
JP2004-167033 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005118289A1 true WO2005118289A1 (ja) 2005-12-15

Family

ID=35462799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010275 WO2005118289A1 (ja) 2004-06-04 2005-06-03 ガスバリア性多層構造物およびその製造法

Country Status (6)

Country Link
US (1) US20080069994A1 (ja)
EP (1) EP1752286B1 (ja)
JP (1) JP4930054B2 (ja)
CN (1) CN100564028C (ja)
AU (1) AU2005249842B2 (ja)
WO (1) WO2005118289A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007649A1 (ja) * 2005-07-08 2007-01-18 Mitsubishi Gas Chemical Company, Inc. 多層ボトル
WO2008126745A1 (ja) * 2007-04-05 2008-10-23 Toyo Seikan Kaisha, Ltd. 多層ポリエステル容器及びその製造方法
US20100116707A1 (en) * 2007-04-05 2010-05-13 Toyo Seikan Kaisha, Ltd. Pressure-resistant polyester container and process for producing the same
US20110155309A1 (en) * 2008-09-08 2011-06-30 Basf Se Method for manufacturing flat molded members or films
JP2011126552A (ja) * 2009-12-16 2011-06-30 Dainippon Printing Co Ltd 多層プラスチック容器
CN102672947A (zh) * 2011-03-16 2012-09-19 中本包装株式会社 制造多层容器的方法
JP2016175390A (ja) * 2015-03-23 2016-10-06 住友ベークライト株式会社 多層フィルムおよび包装体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039666A (zh) * 2009-10-18 2011-05-04 刘伟民 一种输出稳定吹塑容器的制作方法及产品和制作设备
US8840826B2 (en) 2011-03-03 2014-09-23 Nakamoto Packs Co., Ltd. Method of making multilayer container
EP2497620B1 (en) * 2011-03-07 2014-01-15 Nakamoto Packs Co., Ltd. Method of making multilayer container
JP6011929B2 (ja) * 2012-10-31 2016-10-25 株式会社吉野工業所 2軸延伸ブロー成形容器及びその製造方法
DE102014014895A1 (de) * 2014-10-13 2016-04-14 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199024A (ja) * 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc 多層容器
JP2002226612A (ja) * 2001-02-01 2002-08-14 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルム
JP2004002777A (ja) * 2002-04-03 2004-01-08 Mitsubishi Gas Chem Co Inc 二軸延伸フィルム及びその製造方法
JP2004098454A (ja) * 2002-09-09 2004-04-02 Mitsubishi Gas Chem Co Inc 多層フィルム、及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2389478B1 (ja) * 1977-05-04 1980-11-28 Rhone Poulenc Ind
US6376591B1 (en) * 1998-12-07 2002-04-23 Amcol International Corporation High barrier amorphous polyamide-clay intercalates, exfoliates, and nanocomposite and a process for preparing same
EP1350806B1 (en) * 2002-04-03 2006-09-27 Mitsubishi Gas Chemical Company, Inc. Nylon MXD6 based biaxially stretched polyamide film of low permeability to gases and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199024A (ja) * 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc 多層容器
JP2002226612A (ja) * 2001-02-01 2002-08-14 Mitsubishi Gas Chem Co Inc ポリアミド延伸フィルム
JP2004002777A (ja) * 2002-04-03 2004-01-08 Mitsubishi Gas Chem Co Inc 二軸延伸フィルム及びその製造方法
JP2004098454A (ja) * 2002-09-09 2004-04-02 Mitsubishi Gas Chem Co Inc 多層フィルム、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1752286A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007649A1 (ja) * 2005-07-08 2007-01-18 Mitsubishi Gas Chemical Company, Inc. 多層ボトル
US8124204B2 (en) 2005-07-08 2012-02-28 Mitsubishi Gas Chemical Company, Inc. Multi-layered bottle
WO2008126745A1 (ja) * 2007-04-05 2008-10-23 Toyo Seikan Kaisha, Ltd. 多層ポリエステル容器及びその製造方法
US20100116707A1 (en) * 2007-04-05 2010-05-13 Toyo Seikan Kaisha, Ltd. Pressure-resistant polyester container and process for producing the same
US20100206762A1 (en) * 2007-04-05 2010-08-19 Toyo Seikan Kaisha, Ltd. Multilayer polyester container and process for producing the same
KR101509828B1 (ko) * 2007-04-05 2015-04-06 도요세이칸 그룹 홀딩스 가부시키가이샤 다층 폴리에스테르 용기 및 그 제조 방법
US20110155309A1 (en) * 2008-09-08 2011-06-30 Basf Se Method for manufacturing flat molded members or films
JP2011126552A (ja) * 2009-12-16 2011-06-30 Dainippon Printing Co Ltd 多層プラスチック容器
CN102672947A (zh) * 2011-03-16 2012-09-19 中本包装株式会社 制造多层容器的方法
JP2016175390A (ja) * 2015-03-23 2016-10-06 住友ベークライト株式会社 多層フィルムおよび包装体

Also Published As

Publication number Publication date
EP1752286A4 (en) 2008-10-15
AU2005249842B2 (en) 2010-04-22
AU2005249842A1 (en) 2005-12-15
JPWO2005118289A1 (ja) 2008-04-03
EP1752286B1 (en) 2012-03-21
EP1752286A1 (en) 2007-02-14
CN100564028C (zh) 2009-12-02
JP4930054B2 (ja) 2012-05-09
US20080069994A1 (en) 2008-03-20
CN101001749A (zh) 2007-07-18

Similar Documents

Publication Publication Date Title
JP4930054B2 (ja) ガスバリア性多層構造物およびその製造法
JP5104318B2 (ja) 多層ボトル
JP5024050B2 (ja) 多層ボトル
EP1475308B1 (en) Multilayer container
WO2008047902A1 (en) Injection molded body having excellent barrier property
WO2011132622A1 (ja) 多層容器、多層容器用金型及び多層容器の製造方法
WO2007007649A1 (ja) 多層ボトル
JP5315599B2 (ja) 樹脂組成物および多層構造物
JP4821353B2 (ja) 多層ボトル
JP2004160987A (ja) ガスバリア性多層構造物
JP5673010B2 (ja) 多層ボトル
JP5256615B2 (ja) 多層ボトルの製造方法
JP4720102B2 (ja) 多層容器
JP2007211159A (ja) 樹脂組成物および多層構造物
JP4830677B2 (ja) 多層ボトル
JP2004338163A (ja) 層間剥離の改良された多層容器
JP4561965B2 (ja) 多層容器
JP4214390B2 (ja) ガスバリア性多層構造物
JP4826369B2 (ja) 多層ボトル
JP4711040B2 (ja) 多層容器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005751408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006514147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005249842

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11628405

Country of ref document: US

Ref document number: 200580018052.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005249842

Country of ref document: AU

Date of ref document: 20050603

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005249842

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005751408

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628405

Country of ref document: US