WO2005116669A1 - 測定誤差の補正方法及び電子部品特性測定装置 - Google Patents

測定誤差の補正方法及び電子部品特性測定装置 Download PDF

Info

Publication number
WO2005116669A1
WO2005116669A1 PCT/JP2005/000018 JP2005000018W WO2005116669A1 WO 2005116669 A1 WO2005116669 A1 WO 2005116669A1 JP 2005000018 W JP2005000018 W JP 2005000018W WO 2005116669 A1 WO2005116669 A1 WO 2005116669A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
line port
electronic component
port
measuring
Prior art date
Application number
PCT/JP2005/000018
Other languages
English (en)
French (fr)
Inventor
Taichi Mori
Gaku Kamitani
Hiroshi Tomohiro
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112005001211.5T priority Critical patent/DE112005001211B4/de
Priority to JP2006513805A priority patent/JP4009876B2/ja
Publication of WO2005116669A1 publication Critical patent/WO2005116669A1/ja
Priority to US11/563,338 priority patent/US7885779B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating

Definitions

  • the present invention relates to a measurement error correction method and an electronic component characteristic measuring device, and more particularly, to a signal line port connected to a signal line related to application or detection of a high-frequency signal, and a non-signal line port other than the signal line port.
  • a reference jig that can measure only the signal line port of the electronic component based on the result of measuring the electrical characteristics of the electronic component having the signal line port and the signal line port and the non-signal line port while mounted on the test jig.
  • the present invention relates to a measurement error correction method and an electronic component characteristic measuring device for calculating an estimated value of an electrical characteristic that would be obtained if the electronic component characteristic is measured by mounting the electronic component on a component.
  • a surface mount electronic component having no coaxial connector such as the above electronic component, is mounted on a jig having a coaxial connector, and the jig and the measuring device are connected via a coaxial cable.
  • electrical characteristics are measured.
  • variations in characteristics of individual jigs and variations in characteristics of individual coaxial cables and measuring devices may cause measurement errors.
  • Coaxial cables and measuring devices are connected to a measuring device via a coaxial cable and a standard device having reference characteristics is measured. An error on the measuring device side can be identified.
  • the correction data acquisition sample is mounted on a plurality of jigs and measured, and a certain jig (this is referred to as a "reference jig”) and another jig are determined based on a variation in measured values among the jigs.
  • a formula for compensating for the relative error between the jig (this is called the “test jig”) is derived in advance, and using this formula, an arbitrary electronic component can be used as a test jig. From the measurement results with the device mounted, It has been proposed to calculate the estimated value of the electrical characteristics that would be obtained if the electronic components were mounted on a reference jig and measured. For example, a reference jig is used to assure electrical characteristics to the user, and a test jig is used for measurement for selecting non-defective products in an electronic component manufacturing process (for example, see Non-Patent Documents 1 and 2).
  • Non-Patent Document 1 GAKU KAMITANI (Murata manufacturing Co., Ltd.) "A METHOD TO CORRECT DIFFERENCE OF IN—FIXTURE MEA SUREMENTS AMONG FIXTURES ON RF DEVICES” APMC Vol. 2, pl094-1097, 2003
  • Non-Patent Document 2 J.P. DUNSMORE, L. BETTS (Agilent Technologies) "NEW METHODS FOR CORRELATING FIXTURED MEASUREME NTS" APMC Vol. 1, p568—571, 2003
  • Such a method is that an electronic component to be measured is connected to a signal line port (a signal line related to application or detection of a high-frequency signal for measuring an arbitrary electrical characteristic of the electronic component using a measuring device). ) Can be handled.
  • the electronic component to be measured is connected to a port other than the signal line port (a port connected to a non-signal line that is not involved in the measurement of electrical characteristics, such as a power supply line or a GND line.
  • a non-signal line port a port connected to a non-signal line that is not involved in the measurement of electrical characteristics, such as a power supply line or a GND line.
  • the electrical characteristics of the electronic component itself change depending on the characteristics of the jig connected to the non-signal line port. Therefore, for example, as shown in Fig. 1, the non-signal line port of the test jig is connected to the measurement device for measurement, and the non-signal line port of the reference jig remains the non-signal line port (i.e., However, when characteristics are guaranteed without connecting to the measurement device, it cannot be handled.
  • the reference jig 4 includes coaxial connectors 4a and 4b connected to the signal line ports of the electronic component 2, and elements 4s connected to the non-signal line ports of the electronic component 2.
  • the test jig 6 is connected to the signal line port of the electronic component 2.
  • Coaxial connectors 6a and 6b, and a coaxial connector 6c connected to a non-signal line port of the electronic component 2.
  • test jig 7 has coaxial connectors 7a and 7b connected to signal line ports of electronic component 3 and coaxial connectors 7c and 7d connected to non-signal line ports. RF measurement is performed not only for signal line ports but also for non-signal line ports.
  • the present invention relates to an electronic component having a non-signal line port in addition to a signal line port, the electrical characteristics of which change depending on the characteristics of a jig connected to the non-signal line port.
  • An object of the present invention is to provide a measurement error correction method and an electronic component characteristic measuring device that can respond with high accuracy.
  • the present invention provides a measurement error correction method configured as follows.
  • This method of correcting a measurement error is based on the electronic component having a signal line port connected to a signal line related to application or detection of a high-frequency signal and a non-signal line port other than the signal line port. From the result of measuring the signal line port and the non-signal line port with the component mounted on a test jig, the signal is measured with the electronic component mounted on a reference jig capable of measuring only the signal line port. An estimated value of the electrical characteristics of the electronic component that would be obtained by measuring the line port is calculated.
  • the method for correcting a measurement error includes first to fifth steps.
  • the first step at least three types of correction data acquisition samples are mounted on the test jig and the reference jig are mounted on each signal of the correction data acquisition samples. Electrical characteristics are measured for at least one of the line ports.
  • the second step at least one of the signal line ports and at least one of the non-signal line ports are provided. Prepare a correction data acquisition through device electrically connected to both of them, and measure the signal line port and the non-signal line port with the correction data acquisition through device mounted on the test jig. The signal line port is measured while the correction data acquisition through device is mounted on the reference jig.
  • the signal line port and the non-contact port are mounted in a state where the electronic component is mounted on the test jig.
  • the signal line port and the non-signal line port are measured for any of the electronic components while being mounted on the test jig.
  • the electronic component is used as the reference jig by using the equation determined in the third step. An estimated value of the electrical characteristics of the electronic component, which would be obtained if the signal line port was measured in the mounted state, is calculated.
  • the relative measurement error between the reference jig and the test jig can be corrected for the signal line port based on the measurement value in the first step. From the correction result of this signal import and the measurement value of the second step, it is possible to correct the relative measurement error between the reference jig and the test jig even for non-signal line ports.
  • the measurement error can be corrected not only for the signal line port but also for the non-signal line port. Therefore, for any electronic component, the signal line port is mounted on the test jig. From the measurement result of the non-signal line port and the measurement result, it is possible to accurately estimate the electric characteristics when the device is mounted on the reference jig.
  • the mathematical expression for the non-signal line port is a state in which the correction data acquisition through device is mounted on the test jig in the second step.
  • the result of the measurement of the signal line port and the non-signal line port in the step (a) is performed using the measurement value obtained in the first step. From the results of measuring A scattering matrix S (each element, which is obtained by substituting into a formula for calculating an estimated value of the electrical characteristics of the electronic component that would be obtained if the signal line port was measured while being mounted on a jig) S, S, S, S) and the correction obtained in the second step
  • the measured value when the through device for acquiring correction data is mounted on the reference
  • the electrical characteristics when the non-signal line port is mounted on a reference jig that does not measure can be accurately estimated.
  • the electronic component has at least two first and second signal line ports and at least two first and second non-signal line ports, and Two Are connected between the non-signal line ports.
  • the first step Electrical characteristics are measured for each signal line port of the correction data acquisition sample corresponding to the first and second signal line ports of the component.
  • the correction data acquisition through device used in the second step includes: a signal line port of the correction data acquisition through device corresponding to the first signal line port of the electronic component; and a first line of the electronic component.
  • the non-signal line port of the correction data acquisition through device corresponding to the non-signal line port is electrically connected to the non-signal line port, and the correction corresponding to the second signal line port of the electronic component is performed.
  • the signal line port of the data acquisition through device and the non-signal line port of the correction data acquisition through device corresponding to the second non-signal line port of the electronic component are electrically connected.
  • the mathematical expression for calculating an estimated value of an electrical characteristic between the first and second signal line ports affected by the first and second non-signal line ports of the electronic component is obtained in the first step.
  • the above-described synthesis is performed on the scattering matrix between the signal line port corresponding to the first signal line port of the electronic component and the non-signal line port corresponding to the first non-signal line port of the electronic component. And the corresponding signal line thru corresponding to the second signal line port of the electronic component.
  • a transmission coefficient matrix (T2) obtained by synthesizing the scattering matrix between the port and the non-signal line port corresponding to the second non-signal line port of the electronic component is determined.
  • the first value of the electronic component in a state where the correction data acquisition through device is mounted on the reference jig is obtained from the measured value obtained when the correction data acquisition through device is mounted on the reference jig.
  • a transmission coefficient matrix (D) between the signal line ports corresponding to the second signal line port is determined.
  • the calculation method includes the step of: For a relative correction adapter having characteristics that change the electrical characteristics measured when mounted on the test jig to the electrical characteristics measured while mounted on the reference jig, the non-signal In the line port, the above equation for the non-signal line port in the third step is estimated as the relative correction adapter.
  • a transfer coefficient between the signal line port and the non-signal line port is ⁇ 10 dB or more.
  • the measurement error can be accurately corrected.
  • a transfer coefficient between the signal line port and the non-signal line port is -20 dB or more in a round trip.
  • the signal measured with respect to the signal input from the signal line port is about one order of magnitude smaller.
  • the relative correction adapter of the non-signal line port can be obtained with high accuracy.
  • the present invention provides an electronic component characteristic measuring device configured as follows in order to solve the above-mentioned problems.
  • the electronic component characteristic measuring apparatus is an electronic component having a signal line port connected to a signal line related to application or detection of a high-frequency signal, and a non-signal line port other than the signal line port.
  • the signal line and the non-signal line port are measured while the electronic component is mounted on a test jig.From the measurement results, the electronic component is mounted on a reference jig capable of measuring only the signal line port. And calculating an estimated value of electrical characteristics of the electronic component which would be obtained if the signal line port was measured.
  • the electronic component characteristic measuring device includes a measuring unit, a storing unit, a mathematical formula determining unit, and an electric characteristic estimating unit.
  • the measuring means may include the signal line port and the non-signal line port while the electronic component is mounted on the test jig. Is measured.
  • the storage means measures at least three types of correction data obtaining electronic components for at least one of the signal line ports in a state where the electronic parts are mounted on the test jig and a state where the electronic parts are mounted on the reference jig.
  • the measurement data of (1) and at least one of the signal line ports and at least one of the non-signal line ports are electrically connected to the correction data acquisition through device.
  • the second measurement data obtained by measuring the port and the non-signal line port and the third measurement data obtained by measuring the signal line port while the correction data acquisition through device is mounted on the reference jig. Store.
  • the mathematical formula determination unit is configured to execute the signal line port and the non-signal line with the electronic component mounted on the test jig based on the first to third measurement data stored in the storage unit.
  • the electrical characteristic estimating means for any of the electronic components, from the measured value obtained by measuring by the measuring means, using the mathematical formula determined by the mathematical formula determining means, the electronic component to the reference jig An estimated value of electrical characteristics of the electronic component, which would be obtained by measuring the signal line port in a mounted state, is calculated.
  • the first measurement data can correct the relative measurement error between the reference jig and the measurement jig for the signal line port. Based on the correction result for the signal line port and the second and third measurement data, it is possible to correct the relative measurement error between the reference jig and the measurement jig for the non-signal line port. Become.
  • the measurement error can be corrected not only for the signal line port but also for the non-signal line port. Therefore, for any electronic component, the signal line port is mounted on the test jig. From the measurement result of the non-signal line port and the measurement result, it is possible to accurately estimate the electric characteristics when the device is mounted on the reference jig.
  • the first to third measurement data are measured by a measuring device of the electronic component characteristic measuring device having the above configuration, but are also measured by a measuring device other than the electronic component characteristic measuring device having the above configuration. You may. In the latter case, the measurement data measured by another measuring device is stored in the storage means of the electronic component characteristic measuring device having the above configuration.
  • the mathematical expression for the non-signal line port determined by the mathematical expression determining means is obtained by converting the second measurement data from the first measurement data to "the electronic component is the test jig." From the result of measuring the signal line port in a state where the electronic component is mounted on the reference jig, an estimated value of an electrical characteristic of the electronic component which will be obtained if the signal line port is measured in a state where the signal is mounted on the reference jig is calculated.
  • the scattering matrix S (each element is S 1, S 2, S 3, S 2) obtained by substituting into the equation for
  • the correction data acquisition through device can be tested
  • the scattering matrix S that estimates the electrical characteristics when only the signal line port is mounted on the reference jig is determined from the measured values in a state where the signal line port is mounted on the tool. Acquisition of correction data, which is the third measurement data
  • the measured value when the gain through device is mounted on the reference jig is the non-signal
  • the electronic component has at least two first and second signal line ports and at least two first and second non-signal line ports, and the first and second signal line ports. Elements are connected between the non-signal line ports.
  • the first measurement data electrical characteristics are measured for each signal line port of the correction data acquisition sample corresponding to the first and second signal line ports of the electronic component.
  • the correction data acquisition through device used when measuring the second and third measurement data is a signal line port of the correction data acquisition through device corresponding to the first signal line port of the electronic component.
  • the mathematical formula indicates that the second measurement data is obtained from the first measurement data as follows: ⁇ From the result of measuring the signal line port with the electronic component mounted on the test jig, The first signal line of the electronic component, which can be obtained by substituting into an expression for calculating an estimated value of the electrical characteristic of the electronic component that would be obtained if the signal line port was measured in the mounted state.
  • Transmission coefficient matrix (T1) T1
  • the above synthesis is performed on the scattering matrix between the signal line port corresponding to the second signal line port of the electronic component and the non-signal line port corresponding to the second non-signal line port of the electronic component.
  • the performed transmission coefficient matrix (T2) is determined.
  • the first and second signal line ports of the electronic component with the correction data acquisition through device mounted on the reference jig are used.
  • the corresponding transmission coefficient matrix (D) between the signal line ports is determined.
  • the electric characteristic estimating means measures electric characteristics of any of the electronic components while being mounted on the test jig while being mounted on the reference jig.
  • the relative correction adapter has a characteristic that changes to the electrical characteristics to be set.
  • the formula for the non-signal line port determined by the formula determining means is estimated as the relative correction adapter.
  • the through-device for acquiring correction data for acquiring the second and third measurement data includes a transmission coefficient force S-IOdB or more between the signal line port and the non-signal line port. It is.
  • the output signal between the signal line port and the non-signal line port is about one digit smaller than the input signal, so that the measurement error can be accurately corrected.
  • the correction data acquisition through device for acquiring the second and third measurement data has a transfer coefficient between the signal line port and the non-signal line port of 20 dB or more in a round trip. It is.
  • the signal measured with respect to the signal input from the signal line port is about one order of magnitude smaller.
  • the relative correction adapter of the non-signal line port can be obtained with high accuracy.
  • the present invention provides an electronic component characteristic measuring device configured as follows in order to solve the above problems.
  • the electronic component characteristic measuring apparatus is an electronic component having a signal line port connected to a signal line related to application or detection of a high-frequency signal and a non-signal line port other than the signal line port.
  • the signal line and the non-signal line port are measured while the electronic component is mounted on a test jig.From the measurement results, the electronic component is mounted on a reference jig capable of measuring only the signal line port. And calculating an estimated value of electrical characteristics of the electronic component which would be obtained if the signal line port was measured.
  • the electronic component characteristic measuring device includes a measuring unit, a mathematical expression storage unit, and an electric characteristic estimating unit.
  • the measuring means measures the signal line port and the non-signal line port while the electronic component is mounted on the test jig.
  • the mathematical formula storage means is configured to measure the signal line and the non-signal line port in a state where the electronic component is mounted on the test jig, and to determine the signal in a state where the electronic component is mounted on the reference jig. Before you would get if you measured the line port A mathematical expression for calculating an estimated value of the electrical characteristic of the electronic component is stored. This equation indicates that at least one of the signal line ports of each of the correction data acquisition samples is obtained when at least three types of correction data acquisition samples are mounted on the test jig and when the correction jig is mounted on the reference jig.
  • the first test data obtained by measuring the electrical characteristics and the correction data acquisition through device in which at least one of the signal line ports and at least one of the non-signal line ports are electrically connected to the test jig.
  • the second measurement data obtained by measuring the signal line port and the non-signal line port while the signal line port and the non-signal line port were mounted, and the signal line port was measured while the correction data acquisition through device was mounted on the reference jig. It is determined based on the third measurement data.
  • the electrical characteristic estimating means uses the mathematical formula stored in the mathematical formula storing means for the electronic component based on a measured value obtained by measuring the arbitrary electronic component by the measuring means, and performs the reference treatment. An estimated value of the electrical characteristics of the electronic component, which would be obtained if the signal line port was measured while mounted on the device, was calculated.
  • the relative measurement error between the reference jig and the test jig can be corrected for the signal line port. From the correction result for the signal line port and the second and third measurement data, it is possible to correct the relative measurement error between the reference jig and the test jig for the non-signal line port as well. .
  • a mathematical expression for correcting the measurement error not only for the signal line import but also for the non-signal line port and calculating the estimated value of the electrical characteristic of the electronic component is stored in the mathematical expression storage means, and the mathematical expression is used.
  • the mathematical formula for calculating the estimated value of the electrical property of the electronic component is measured by an electronic component property measuring device or another measuring device using a test jig and a reference jig. And decide in advance.
  • test jig if a mathematical expression is determined in advance for the test jig, the mathematical expression is stored in the mathematical expression storage means of the electronic component characteristic measuring device, so that the test jig can be used. It can be used in any electronic component measuring device. Therefore, test jigs and electronic component measurement equipment Can be used in any combination.
  • the mathematical expression for the non-signal line port stored in the mathematical expression storage means is obtained by converting the second measurement data from the "the electronic component to the test cure" obtained from the first measurement data. From the result of the measurement of the signal line port in a state where the electronic component is mounted on the reference jig, an estimated value of the electrical characteristic of the electronic component which would be obtained if the signal line port was measured in a state where the signal part port was mounted on the reference jig is The scattering matrix S (each element is S 1, S 2, S 3, S 2) obtained by substituting into the “mathematical formula for calculation” and the correction as the third data
  • the correction data acquisition through device can be tested
  • the scattering matrix S that estimates the electrical characteristics when only the signal line port is mounted on the reference jig is determined from the measured values in a state where the signal line port is mounted on the tool. Acquisition of correction data, which is the third measurement data
  • the measured value when the gain through device is mounted on the reference jig is the non-signal
  • the electronic component has at least two first and second signal line ports and at least two first and second non-signal line ports, and the first and second signal line ports. Elements are connected between the non-signal line ports.
  • the first measurement data electrical characteristics are measured for each signal line port of the correction data acquisition sample corresponding to the first and second signal line ports of the electronic component.
  • the correction data acquisition through device used when measuring the second and third measurement data is a signal line port of the correction data acquisition through device corresponding to the first signal line port of the electronic component.
  • the electronic component which can be obtained by measuring the signal line port in a state in which the electronic component is mounted on the electronic component, and calculating the estimated value of the electrical characteristic of the electronic component.
  • Transmission coefficient matrix (T1 ) T1
  • the first and second signal line ports of the electronic component with the correction data acquisition through device mounted on the reference jig are used.
  • the corresponding transmission coefficient matrix (D) between the signal line ports is determined.
  • the electric characteristic estimating means is configured to measure an electric characteristic measured by the measuring means for any of the electronic components while the electric characteristic measured by the measuring means is mounted on the reference jig. Assuming a relative correction adapter having a characteristic to be changed to a characteristic, the relative correction of the mathematical expression for the non-signal line port stored in the mathematical expression storage means is performed at the non-signal line port. Estimate using adapter.
  • the correction data acquisition through device for acquiring the second and third measurement data includes a transmission coefficient force S-IOdB or more between the signal line port and the non-signal line port. It is.
  • the measurement error can be accurately corrected.
  • the correction data acquisition through device for acquiring the second and third measurement data has a transfer coefficient between the signal line port and the non-signal line port of 20 dB or more in a round trip. It is.
  • the signal when the signal is totally reflected at the non-signal line port of the reference jig, the signal measured with respect to the signal input from the signal line port is reduced by one digit.
  • the relative correction adapter of the non-signal line port can be obtained with high accuracy.
  • a non-signal line port is provided in addition to the signal line port, and the electric characteristics of the non-signal line port depend on the characteristics of the jig connected to the non-signal line port. It is possible to respond to changing electronic components with high accuracy.
  • a device using a test jig in a manufacturing process under the same condition as a user-guaranteed state using a reference jig is obtained from a measurement result using a test jig.
  • Characteristics can be estimated, and users can be assured of higher-precision electrical characteristics.
  • the yield rate in the manufacturing process is also improved.
  • the electronic component can be applied without any problem even if the electronic component has a wide bandwidth.
  • the electronic component 10 can be measured using different jigs 20 and 30.
  • One jig 20 (hereinafter, referred to as “reference jig 20”) is used, for example, to guarantee electric characteristics to a user.
  • the other jig 30 (hereinafter referred to as “test jig 30”) is used, for example, for measurement for non-defective selection in an electronic component manufacturing process.
  • a mathematical expression for correcting a relative measurement error between the jigs 20 and 30 is derived in advance. Then, an arbitrary electronic component is mounted on the test jig 30 and measured, and using the derived formula, the electric component that would be obtained if the electronic component was mounted on the reference jig 20 and measured. Estimate characteristics.
  • FIGS. 2a and 2b show an example in which the electronic component 10 has three signal line ports and one non-signal line port.
  • the reference jig 20 is provided with a mounting portion for mounting the electronic component 10 and coaxial connectors 20a, 20b, 20c.
  • connection terminals for crimping the terminals of the electronic component 10 are provided on the mounting portion, and the connection terminals are electrically connected to the coaxial connectors 20a, 20b, and 20c.
  • the three signal line ports of the electronic component 10 are connected to the measuring device 26 via coaxial connectors 20a, 20b, 20c and three coaxial cables 25, respectively. That is, when the electronic component 10 is mounted on the reference jig 20, only the signal line port is measured using the measuring device 26.
  • the test jig 30 is provided with a mounting portion for mounting the electronic component 10 and coaxial connectors 30a, 30b, 30c, 30d.
  • connection terminals for crimping the terminals of the electronic component 10 are provided in the mounting portion, and the connection terminals are electrically connected to the coaxial connectors 30a, 30b, 30c, 30d.
  • the three signal line ports and one non-signal line port of the electronic component 10 are coaxial connectors 30a, 30b, 30c, 30d and four coaxial capes, respectively. It is connected to a measuring device 36 via a file 35.
  • the coaxial cable 25 and the measuring device 26 are calibrated in advance by connecting a standard device having known electric characteristics to the tip of the coaxial cable 25 (the portion connected to the coaxial connectors 20a, 20b, 20c). deep.
  • the coaxial cable 35 and the measuring device 36 are calibrated by connecting a standard device to the end of the coaxial cable 35 (the portion connected to the coaxial connectors 30a, 30b, 30c, 30d).
  • the network analyzer also has a function of calculating and outputting raw data measured by an arbitrarily set program that does not simply measure the electrical characteristics of electronic components that have multiple ports and are used at high frequencies.
  • FIGS. 2a and 2b It can be extended to an n-port pair circuit (n is an integer of 3 or more) such as a 4-port pair circuit shown by.
  • the reference jig 70 on which the electronic component 11 having one signal line port and one non-signal line port is mounted is provided with only the signal line port coaxial connector 70a. I have. Only the signal line port of the electronic component 11 is connected to the measuring device 76 via the coaxial connector 70a and the coaxial cable 75, and only the signal line port is measured.
  • a test jig 80 for mounting an electronic component 11 having one signal line port and one non-signal line port includes a coaxial connector 80a of the signal line port and a non-signal line port. And a coaxial connector 80b.
  • the signal line port and the non-signal line port of the electronic component 11 are connected to the measuring device 86 via the coaxial connectors 80a and 80b and the coaxial cable 85, and the measurement is performed on the signal line port and the non-signal line port.
  • FIG. 5 (a) shows that the reference jig 70 has one signal line port and one non-signal line port.
  • 2 shows a two-terminal pair circuit when an electronic component 11 (hereinafter, also referred to as “sample 11”) having the following is mounted.
  • the error characteristics of one port side 21 (terminal side 00 'side) of the reference jig 70 connected to the signal line port of sample 11 are represented by a scattering matrix (E), and the characteristics of sample 11 are represented by a scattering matrix (S).
  • the error characteristic of the other port side 22 of the reference jig 70 connected to the non-signal line port of the sample 11 is the reflection coefficient ⁇ only.
  • FIG. 5 (b) shows a two-terminal pair circuit when the sample 11 is mounted on the test jig 80.
  • the error characteristic of one port side 31 (terminal pair 11 'side) of the test jig 80 connected to the signal line port of the sample 11 is defined as a scattering matrix (E), and the characteristic of the sample 11 is defined as a scattering matrix (S).
  • E scattering matrix
  • S scattering matrix
  • the measured value S when the sample 11 is mounted on the test jig 80 is obtained from the terminal 1 'on the
  • the calibration of the measuring device 86 corresponds to a coaxial connector connection portion performed at the end of the coaxial cable 85.
  • FIG. 6 (a) shows an adapter for neutralizing the error characteristics (E) and (E) of the test jig 80 on both sides of the circuit of FIG. 5 (b), as indicated by reference numerals 33 and 34.
  • Tl T2 Tl T2 It is obtained by converting to a transmission matrix, finding its inverse, and then converting back to the scattering matrix.
  • calibration surface 38, 39 On the calibration surfaces 38 and 39, measured values S 1 and S 2 when the sample 11 is mounted on the test jig 80 are obtained. In this circuit, the error of test jig 80 is excluded.
  • the circuit of FIG. 6 (a) is equivalent to the sample 11 alone, so that the reference The scattering matrix (E) of the error characteristic on the signal line port side 21 of the jig 70
  • the scattering matrix obtained by combining 11D 11T Dl T1 ⁇ 1 can be obtained.
  • the values S 1, S 2, S 3, and S 2 of the terminals on both sides can be measured directly from the calibration plane.
  • the scattering matrix synthesized for the portion 41 between the terminal pair 00 'and the calibration surface 38 is (C1), and for the portion 42 on the right side of the calibration surface 39, the reflection obtained by combining (E) -1 and ⁇ Coefficient C2 ⁇
  • the determination can be made by preparing at least three correction data acquisition samples having different genders, and measuring them while mounted on the reference jig 70 and the test jig 80, respectively.
  • the scattering coefficients (CI, CI, CI, C1) are the three correction data acquisition samples
  • the measurement value S is obtained by performing measurement while the through device is mounted on the reference jig 70. Also, measure with the through device mounted on the test jig 80.
  • the scattering coefficient (S, S, S, S) in the state mounted on the test jig 80 is obtained by
  • correction adapter (CI, CI, CI, CI, C1
  • the scattering coefficient is determined by measuring the electronic component in a state where the electronic component is mounted on a test jig, and each signal is obtained. Combines relative correction adapters corresponding to line ports and each non-signal line port By doing so, it is possible to calculate a measured value obtained when the electronic component is measured while mounted on a reference jig.
  • the measuring devices 36 and 86 using the test jigs 30 and 80 are configured so as to be able to correct the above-described measurement error for the non-signal line port. Since the measuring devices 26 and 76 using the reference jigs 20 and 70 do not measure the non-signal line port, it is not necessary to have the same configuration as the measuring devices 36 and 86 in particular. However, it can be used even if it has the same configuration as the measuring devices 36 and 86.
  • the measurement devices 36 and 86 include a display unit 52, an operation unit 54, a measurement unit 56, a control unit 58, a storage unit 60, a calculation unit 62, and an interface unit 64.
  • the display unit 52 includes a display panel and the like, and displays the operation status of the measuring devices 36 and 86, operation instructions, and the like.
  • the operation unit 54 includes buttons, switches, and the like, and receives operations from the operator on the electronic component measuring devices 36 and 86.
  • the measuring section 56 is connected to terminals of the electronic components 10 and 11 via coaxial cables 35 and 85 and test jigs 30 and 80. The measuring section 56 appropriately selects the terminals of the electronic components 10 and 11, inputs a signal, and measures an output signal.
  • the control unit 58 controls the overall control of the measuring devices 36 and 86.
  • the storage unit 60 stores a program for operating the control unit 58 ⁇ the operation unit 62, measurement data from the measurement unit 56, operation result data of the operation unit 62, and the like.
  • the operation unit 62 performs an operation according to a predetermined program using data from the measurement unit 56 and data stored in the storage unit 60.
  • the interface unit 64 is an interface for transmitting and receiving data to and from an external device, and accepts data and programs to be stored in the storage unit 60, operation result data from the operation unit 62, and performs input and output.
  • Measuring devices 36 and 86 operate according to a program stored in storage unit 60.
  • the electronic component measuring devices 36 and 86 can be operated in a plurality of operation modes including a calibration mode and a measurement mode.
  • the measuring unit 56 performs measurements sequentially with the data acquisition sample and the through device (standard sample) mounted on the reference jigs 20, 70 and the test jigs 30, 80.
  • the measurement target is displayed on the display unit 52, for example.
  • the operator operates the operation unit 54 when preparation of the displayed measurement target is completed.
  • the measurement unit 56 starts measurement, and the measurement data is stored in the storage unit 60.
  • the calculation unit 62 reads the measurement data stored in the storage unit 60 at an appropriate timing, calculates the above-described correction adapters (C1, C1, C1, CI), C2r, etc., and estimates the electrical characteristics.
  • the electrical characteristics when measured using the reference jigs 20, 70 are estimated from the measurement data using the test jigs 30, 80. That is, the measurement unit 56 performs the measurement in a state where the arbitrary electronic components 10 and 11 are mounted on the test jigs 30 and 80.
  • the calculation unit 62 calculates the estimated values of the electrical characteristics of the electronic components 10 and 11 from the measurement data from the measurement unit 56.
  • the arithmetic unit 62 reads out the mathematical expression determined in the calibration mode from the storage unit 60, and calculates the estimated values of the electrical characteristics of the electronic components 10 and 11 using the mathematical expression.
  • the calculated estimated value is displayed on the display unit 52 or output to an external device from the interface unit 64.
  • a mathematical expression for estimating the separately determined electrical characteristics is stored in advance in the storage unit 60, and the arithmetic unit 62 uses the mathematical expression. It is possible to estimate the electrical characteristics of any of the electronic components 10 and 11 mounted on the jigs 30 and 80. In this case, the combination of the test jigs 30, 80 and the electronic component characteristic measuring device can be freely changed, so that the measuring operation can be performed flexibly.
  • the disconnection detection method is to connect a DC (DC) power supply 304 to the DC port of the DUT 300, and connect a bias T circuit 310 after each of the balanced output ports (ports 2 and 3).
  • DC and RF signals are separated by inductors 312 and 316 and capacitors 314 and 318, and the DC output of bias T circuit 310 is detected.
  • a bypass capacitor 302 of about 100 pF is connected near the DUT 300 at the DC port!
  • the RF characteristics of the Load resistance sample show the same characteristics as the short standard sample, making it difficult to measure the standard sample required for relative correction.
  • a DC power supply and a bias T circuit are also required to check for disconnection, which complicates the management method for assurance of characteristics beyond the system alone.
  • RF measurement is performed using a network analyzer to check for disconnection.
  • a test jig including a non-signal line port (DC port)
  • mount an RF connector on the DC port and make the network analyzer RF-ready.
  • output a low-frequency (one point) RF signal from the DC port measure the transmission characteristics to the balanced output port, and determine the level of the transmission characteristics between the output ports.
  • connectable capacity of Bruno Sukon capacity DC port is preferably not more than 2 P F.
  • test fixture including non-signal line ports
  • disconnection check of output port can be performed without connecting DC power supply.
  • power supply or bias T there is no need to connect a power supply or bias T to the test jig for disconnection check, and disconnection can be checked while maintaining the test jig's correction environment. Therefore, it is possible to guarantee the user with more accurate electric characteristics.
  • the RF signal for the disconnection check uses the lowest frequency of the network analyzer (for example, 300K
  • the frequency is sufficiently low with respect to the guaranteed bandwidth of the device, so that it is possible to make measurements close to DC.Since only one point measurement is required, the time required for disconnection check can be reduced in a short time. It does not hinder the user.
  • the measurement of the signal line port and the check for output disconnection can be performed simultaneously using only a network analyzer. Since a DC power supply and a bias T circuit are not required, the measurement system becomes a simple measurement system and has a great economic effect.
  • a method for detecting a disconnection inside an electronic component in a state where the electrical characteristics of a reference jig mounted on the electronic component can be estimated from the measured values of the test jig.
  • the disconnection of the output port is detected only by the network analyzer without connecting the DC power supply or the bias T circuit, thereby maintaining the same state as the correction environment of the test jig, thereby achieving high accuracy. Electrical characteristics can be guaranteed.
  • the measurement system is simple and the measurement time is short, the economic effect is high.
  • the disconnection detection of the electronic component may be performed prior to the measurement of the electrical characteristics of the electronic component in the test jig mounted state so that the measurement of the electrical characteristics in the test jig mounted state is useless. preferable.
  • an unbalanced input-balanced output 2.4 GHz band LC filter shown in Fig. 9 is used.
  • This device has ports 13 which are signal line ports and DC ports which are non-signal line ports.
  • Port 1 is an unbalanced input port, and ports 2 and 3 are balanced output ports.
  • the DC port is a port for connecting to the multimeter to perform a DC check with the multimeter in the characteristic selection process during manufacturing. Since the DC port is not used as a product, it is open when the user uses it.
  • the test jig 30 includes coaxial connectors 30a, 30b, and 30c for connecting the ports 13 and the measuring device 36, and a coaxial connector for connecting a multimeter to the DC port. It has a connector 30d. That is, the signal line ports (ports 1-3) and the non-signal line ports (DC ports) are measured.
  • the DC port is in the open state, and only the signal line ports (ports 13) are measured as shown in FIG. Imports (DC ports) are not measured. Due to such a difference in the non-signal line port between the jigs 20 and 30, the device measurement value between the test jig 30 and the reference jig 20 changes.
  • Figure 9 shows a simplified circuit diagram of the DUT.
  • Figs. 10-13 show the results of estimating the test jig measured value force and the reference jig measured value using the present invention.
  • the method of the present invention is used to derive a relative correction adapter for a non-signal line port
  • the ⁇ non-RF port correction '' is used.
  • data is indicated as "ignore non-RF ports”.
  • a non-signal line port (DC port) is connected to port 4 of the network analyzer based on the state of the test jig board from which the measured value of the reference jig can be estimated from the measured value of the test jig.
  • the noise capacitance mounted on the DC port line be 2 pF or less.
  • the measurement circuit is shown in FIG. A 300kHz frequency was output from the DC port (port 4), and the transmission characteristics (S, S) level to the balanced output ports (ports 2, 3) were measured.
  • Figure 34 shows the measurement results of the transmission characteristic level. From this result, it can be clearly confirmed that the level at the time of disconnection and non-disconnection has significance, and the disconnection of the output port can be detected by the network analyzer by setting an appropriate threshold value.
  • the electronic component 110 includes two non-signal line ports 116 to which the inductor 100 is connected in parallel, in addition to the signal line ports 112 and 114 (input and output ports 1 and 2). , 118.
  • the electronic component 110 is used by connecting the inductor 100 in order to improve the characteristic (Q value) of the resonance circuit in which the capacitor 111 is coupled in a ⁇ -type.
  • the electronic component 110 is measured using the measuring devices 126 and 136 while being mounted on the reference jig 120 and the test jig 130, respectively, as in the first embodiment. can do.
  • the reference jig 120 includes coaxial connectors 120s, 120t connected to the signal line ports 112, 114 of the electronic component 110, and the non-signal line port 11 of the electronic component 110. 2 and 114 connected between the inductors.
  • Coaxial cables 125 are connected to the coaxial connectors 120s and 120t, respectively, and the measurement device 126 measures the signal line ports 112 and 114 of the electronic component 110.
  • the test jig 130 includes coaxial connectors 130s, 130t connected to the signal line ports 112, 114 of the electronic component 110, and the non-signal line port 11 of the electronic component 110. 6, 118 are provided with coaxial connectors 130m and 130 ⁇ . Coaxial cables 135 are connected to the coaxial connectors 112, 124, 126, and 128, respectively, and the measurement device 136 measures the signal line ports 112 and 114 and the non-signal line ports 116 and 118 of the electronic component 110.
  • the measuring devices 126 and 136 have the same configuration as the measuring devices 26 and 36 of the first embodiment.
  • the tips of the coaxial cables 125, 135 connected to the measuring devices 126, 136 are calibrated using a standard device, as in the first embodiment.
  • FIG. 16 shows a signal when the electronic component 110 is mounted on the reference jig 120 as shown in FIG. It is a reflow diagram.
  • the terminal pairs 11 ′ and 22 ′ correspond to the coaxial connectors 120 s and 120 t of the reference jig 120 (coaxial connector connection portions where the calibration of the measuring device 126 is performed at the end of the coaxial cable 125).
  • the electrical characteristics of the parts 122 and 124 between the coaxial connectors 120s and 120t of the reference jig 120 and the two signal line ports 112 and 114 of the electronic component 110 are expressed as (E) and (F).
  • FIG. 17 is a signal flow diagram when the electronic component 110 is mounted on the test jig 130 as shown in FIG. 15B.
  • the terminal pairs 11 ', 22', 33 ', and 44' are coaxial connectors 130a, 130b, 130c, and 130d of the test jig 130 (the coaxial connector made at the end of the calibrating force shaft cable 135 of the measuring device 136). Connection part).
  • the electrical characteristics of the components 132, 134 between the coaxial connectors 130s, 130t of the test jig 130 and the two signal line ports 112, 114 of the electronic component 110 are (E), (F).
  • FIG. 18 is a signal flow diagram when the through device 140 is mounted on the reference jig 120.
  • the through device 140 has ports 112, 114, 116, 118 of the electronic component 110 [corresponding ports 142, 144, 146, 148] and a signal line port [corresponding to the corresponding ports 142, 144]. These are electrically connected to ports 146 and 148 corresponding to the signal line ports, respectively.
  • the electrical characteristics of the portion 140a between the ports 142 and 146 are ( ⁇ ), and the electrical characteristics of the portion 140b between the other ports 144 and 148 are (T).
  • a value measured in a state where the through device 140 is mounted on the reference jig 120 can be expressed as the following equation (4), where the symbol in the figure is a transmission coefficient matrix.
  • FIG. 19 is a signal flow diagram when the through device 140 is mounted on the test jig 130.
  • the error factor of the port 1 and port 2 of the test jig 130 is determined by using the above-mentioned relative correction adapter for the signal line port to obtain the error of the reference jig 120. Correct the factors (E) and (F). That is, the terminal pairs 11 'and 22'
  • the terminal pairs 33 ′ and 44 ′ shown in FIG. 19 respectively have error characteristics (G),
  • the relative correction adapters (CI) and (C2) shown in FIG. 21 are obtained in advance for the signal line port, and the through device 140 is mounted on the reference jig 120 for the non-signal line port. (D) obtained by measuring with
  • FIG. 22A is an electric circuit diagram assuming an error factor for the reference jig 120.
  • the values of the elements 120a to 120c between the sample mounting portion 120x and the sample mounting portion 120x were set as follows.
  • FIG. 22B is an electric circuit diagram assuming an error factor for the test jig 130. Numerical values of each element 130a-130d between the sample mounting part 130x were set as follows.
  • FIG. 23A is an electric circuit diagram of the through device 140 used for calculating a relative correction adapter for a non-signal line port.
  • Inductors 140a and 140b are connected between ports 1 and 3 and between ports 2 and 4, respectively.
  • the set values are as follows.
  • FIG. 23 (b) is an electric circuit diagram of the electronic component 110 for measuring electric characteristics.
  • Capacitor 1 is an electric circuit diagram of the electronic component 110 for measuring electric characteristics.
  • a ⁇ -type resonator is constructed by 10a-110c.
  • the set values are as follows.
  • Capacitor 110a 0.3 pF
  • Capacitor 110c 0.2pF
  • the value measured by the test jig 130 is converted to a value measured in a state as shown in FIG.
  • the measured values when the port 1 (130s) and port 2 (130t) of the test jig 130 are replaced by the port 1 (120s) and port 2 (120t) of the reference jig 120 due to the effect of the relative correction method can get.
  • the through device 140 is measured by both the reference jig 120 and the test jig 130.
  • relative correction is performed for ports 1 and 2.
  • a measurement result in the state of FIG. 25 is obtained.
  • the transmission coefficient matrix was used in the explanation of the basic principle, it is represented here by a scattering coefficient matrix for intuitive component easiness, and the scattering coefficient matrix between ports 1-2 of the reference jig 120 is (S), Dispersion between ports 1 and 3 of test jig 130
  • the random coefficient matrix is (SI) and the scattering coefficient matrix between ports 2 and 4 of the test jig 130 is (S2).
  • the relative correction adapter (CA) between the non-signal line ports of the “float type” is calculated by the scattering coefficient matrix (SA) ) Is as follows.
  • SA scattering coefficient matrix
  • This scattering coefficient matrix is an estimated value of a measured value when the electronic component 110 is mounted on the reference jig 120 and measured.
  • the scattering coefficient matrix is as follows.
  • FIG. 27 shows a graph of measured values of the electrical characteristics of a duplexer sample and values estimated by the relative correction method of the second embodiment.
  • the test jig was used.
  • the figure shows the estimated value (Corrected.) Obtained by calculating the characteristic value when mounted on the reference jig from the value measured by mounting on the reference jig.
  • FIG. 27A shows a parameter S indicating the reflection characteristic of the duplexer.
  • Figure 27 (b) shows the transmission characteristics.
  • the non-signal line port in a user-guaranteed state, the non-signal line port must estimate the user usage state and guarantee the characteristics. Port RF measurements are not possible. Therefore, a method of estimating the measurement value of the reference jig that cannot perform RF measurement of the non-signal line port from the measurement value of the test jig that can measure the RF of the non-signal line port is necessary. Is satisfied.
  • the present invention it is possible to estimate device characteristics under conditions such as a user-guaranteed state, and it is possible to guarantee user's electrical characteristics with higher accuracy, and to obtain effects such as improvement of non-defective products. .
  • the relative error between the jigs is measured and corrected, adjustment of the jigs is absolutely necessary. Therefore, the bandwidth of the device is wide, and even in such a case, it can be applied without any problem.
  • the present invention relates to a module product having a “shunt type” non-signal line port (in general, active devices having a power supply line, and a device for controlling an operation area by changing a parameter of an external accessory), and a “float type”. It can also be applied to high-frequency devices (filters, duplexers, etc.) having non-signal line ports.
  • a duplexer 210 composed of a plurality of resonators 210s has signal line ports 210a—210c, “shunt type” non-signal line ports 210f and 210g, and “float type” And non-signal line ports 210d, 210e, 210h, and 210i.
  • the present invention is also applicable to such a duplexer 210. In this case, as shown in FIG.
  • FIG. 1 is an explanatory view of a reference jig and a test jig.
  • FIG. 2a is an overall configuration diagram when measurement is performed using a reference jig.
  • FIG. 2b is an overall configuration diagram when measurement is performed using a test jig.
  • FIG. 3a is an overall configuration diagram when measurement is performed using a reference jig.
  • FIG. 3b is an overall configuration diagram when measurement is performed using a test jig.
  • FIG. 4 is a block diagram of a measuring device.
  • FIG. 5 is a two-terminal pair circuit diagram showing the basic principle of error correction according to the present invention.
  • FIG. 6 is a two-terminal pair circuit diagram showing the basic principle of error correction according to the present invention.
  • FIG. 7 is a two-terminal pair circuit diagram showing the basic principle of error correction according to the present invention.
  • FIG. 8 is a two-terminal pair circuit diagram showing the basic principle of error correction according to the present invention.
  • FIG. 9 is a circuit diagram of an electronic component having a non-signal line port.
  • FIG. 10 is an electrical characteristic diagram of the electronic component in FIG. 9.
  • FIG. 11 is an electrical characteristic diagram of the electronic component in FIG. 9.
  • FIG. 12 is an electrical characteristic diagram of the electronic component in FIG. 9.
  • FIG. 13 is an electrical characteristic diagram of the electronic component in FIG. 9.
  • FIG. 14 is a circuit diagram of a “float type” electronic component.
  • FIG. 15 is an overall configuration diagram in a case where measurement is performed using (a) a reference jig and (b) a test jig.
  • FIG. 16 is a signal flow diagram in a case where an electronic component is mounted on a reference jig and measured.
  • FIG. 17 is a signal flow diagram in a case where an electronic component is mounted on a test jig and measured.
  • FIG. 18 is a signal flow diagram when a through device is mounted on a reference jig and measured.
  • FIG. 19 A signal flow diagram when a through device is mounted on a test jig and measured after relative correction of a signal line port.
  • FIG. 20 is a signal flow diagram assuming a relative correction adapter.
  • FIG. 21 is a signal flow diagram assuming a relative correction adapter.
  • FIG. 22 is a circuit diagram of (a) a reference jig and (b) a test jig.
  • FIG. 23 is a circuit diagram of (a) a through device and (b) a subject.
  • FIG. 24 is a circuit diagram of a test jig after a relative correction of a signal line port.
  • FIG. 25 is a circuit diagram when a through device is measured after the relative correction of the signal line port.
  • FIG. 26 is a circuit diagram when measuring a subject.
  • FIG. 27 is an electrical characteristic diagram of the electronic component.
  • FIG. 28 is an electric circuit diagram when a duplexer is mounted on (a) a reference jig and (b) a test jig.
  • FIG. 29 is an explanatory diagram of a reference jig and a test jig used for a “shunt type” electronic component.
  • FIG. 30 is an explanatory view of a reference jig and a test jig used for “float type” electronic components.
  • FIG. 31 is an electric circuit diagram showing a disconnection detection method.
  • FIG. 32 is a graph showing the relationship between DC decap capacitance and RF characteristics.
  • FIG. 33 is a circuit diagram when disconnection is measured.
  • FIG. 34 is a table showing measurement results of disconnection.
  • Measuring part (measuring means)
  • Storage unit storage unit, formula storage unit
  • Operation unit formula determination unit, electrical characteristic estimation unit
  • Measuring device Electronic component characteristics measuring device
  • Inductor element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 非信号ラインポートを有し治具によって電気特性が変化する電子部品について高い精度で対応することができる、測定誤差の補正方法及び電子部品特性測定装置を提供する。  補正データ取得用試料を非信号ラインポートを測定できる試験治具に実装した状態と、非信号ラインポートを測定できない基準治具に実装した状態とで、電気特性を測定する第1のステップと、信号ラインポートと非信号ラインポートとが電気的に接続されたスルーデバイスを、試験治具実装状態と基準治具実装状態とで測定する第2のステップと、試験治具実装状態の測定結果から基準治具実装状態で測定したときの電気特性の推定値を算出するための数式を決定する第3のステップと、任意の電子部品について試験治具実装状態で測定する第4のステップと、決定した数式を用いて、基準治具実装状態での電気特性の推定値を算出する第5のステップとを備える。

Description

明 細 書
測定誤差の補正方法及び電子部品特性測定装置
技術分野
[0001] 本発明は、測定誤差の補正方法及び電子部品特性測定装置に関し、詳しくは、高 周波信号の印加または検出に係わる信号ラインに接続される信号ラインポートと、信 号ラインポート以外の非信号ラインポートとを有する電子部品の電気特性を、試験治 具に実装した状態で信号ラインポート及び非信号ラインポートを測定した結果から、 その電子部品を信号ラインポートのみ測定可能である基準治具に実装して測定した ならば得られるであろう電気特性の推定値を算出する、測定誤差の補正方法及び電 子部品特性測定装置に関する。
背景技術
[0002] 従来、上記電子部品のように同軸コネクタを有しない表面実装型電子部品は、同 軸コネクタを有する治具に実装し、治具と測定装置の間を同軸ケーブルを介して接 続して、電気特性が測定されることがある。このような測定においては、個々の治具の 特性のばらつきや、個々の同軸ケーブル及び測定装置の特性のばらつき力 測定 誤差の原因となる。
[0003] 同軸ケーブル及び測定装置につ!/、ては、基準特性を有する標準器を同軸ケープ ルを介して測定装置に接続して測定することにより、標準器を接続した同軸ケーブル 先端よりも測定装置側の誤差を同定することができる。
[0004] しかし、治具については、電子部品を実装する端子と同軸ケーブルに接続する同 軸コネクタとの間の電気特性の誤差を精度よく同定することができない。また、治具間 の特性が一致するように調整することは容易ではない。特に広い帯域幅で、治具間 の特性を一致するように治具を調整することは、極めて困難である。
[0005] そこで、補正データ取得用試料を複数の治具に実装して測定し、治具間における 測定値のばらつきから、ある治具 (これを、「基準治具」と言う。)と他の治具 (これを、「 試験治具」と言う。)との間の相対的な誤差を補正する数式を予め導出しておき、この 数式を用いて、任意の電子部品を試験治具に実装した状態で測定した結果から、そ の電子部品を基準治具に実装して測定したならば得られるであろう電気特性の推定 値を算出することが提案されている。例えば、基準治具はユーザに対して電気特性 を保証するために用い、試験治具は電子部品の製造工程における良品選別のため の測定に用いる (例えば、非特許文献 1、 2参照)。
非特許文献 1 : GAKU KAMITANI (Murata manufacturing Co. , Ltd. ) " A METHOD TO CORRECT DIFFERENCE OF IN— FIXTURE MEA SUREMENTS AMONG FIXTURES ON RF DEVICES" APMC Vol . 2, pl094-1097, 2003
非特許文献 2 :J. P. DUNSMORE, L. BETTS (Agilent Technologies) " NEW METHODS FOR CORRELATING FIXTURED MEASUREME NTS" APMC Vol. 1, p568— 571, 2003
発明の開示
発明が解決しょうとする課題
[0006] このような手法は、測定対象の電子部品が信号ラインポート (測定装置を用いて電 子部品が有する任意の電気特性を測定するための高周波信号の印加または検出に 係わる信号ラインに接続されるポート)のみを有する場合には対応できる。
[0007] しかし、測定対象の電子部品が信号ラインポート以外のポート(電源ラインや GND ライン等、電気特性測定に係わらない非信号ラインに接続されるポート。以下、「非信 号ラインポート」と言う。)を有する場合、非信号ラインポートに接続される治具特性に よって、電子部品そのものの電気特性が変化してしまう。そのため、例えば図 1に示し たように、試験治具では非信号ラインポートについても測定装置に接続して測定を行 い、基準治具では非信号ラインポートは非信号ラインポートのままで (すなわち、測定 装置に接続しな 、で)特性保証を行うような場合には、対応することができな 、。
[0008] 例えば図 29 (a)に示すように、非信号ラインポートが何らかの素子を介して高周波 的なグランドに接続される電子部品 2 (このような電子部品を、以下では「シャントタイ プ」と言う。)の場合、基準治具 4は、電子部品 2の信号ラインポートに接続される同軸 コネクタ 4a, 4bと、電子部品 2の非信号ラインポートに接続される素子 4sとを備える。 一方、図 29 (b)に示すように、試験治具 6は、電子部品 2の信号ラインポートに接続さ れる同軸コネクタ 6a, 6bと、電子部品 2の非信号ラインポートに接続される同軸コネク タ 6cとを備える。
[0009] また、図 30 (a)に示すように、非信号ラインポート間に素子が接続される電子部品 3
(このような電子部品を、以下では「フロートタイプ」と言う。)の場合、基準治具 5は、 電子部品 3の信号ラインポートに接続される同軸コネクタ 5a, 5bと、電子部品 3の非 信号ラインポート間に接続される素子 5sとを備え、非信号ラインポートについては RF 測定を行っていない。一方、図 30 (b)に示すように、試験治具 7は、電子部品 3の信 号ラインポートに接続される同軸コネクタ 7a, 7bと、非信号ラインポートに接続される 同軸コネクタ 7c, 7dとを備え、信号ラインポートのみならず非信号ラインポートについ ても RF測定を行っている。
[0010] 本発明は、上記実情に鑑み、信号ラインポート以外に非信号ラインポートを有しそ の電気特性が非信号ラインポートに接続される治具の特性によって変化してしまう電 子部品について、高い精度で対応することができる、測定誤差の補正方法及び電子 部品特性測定装置を提供しょうとするものである。
課題を解決するための手段
[0011] 本発明は、上記課題を解決するために、以下のように構成した測定誤差の補正方 法を提供する。
[0012] この測定誤差の補正方法は、高周波信号の印加または検出に係わる信号ラインに 接続される信号ラインポートと、該信号ラインポート以外の非信号ラインポートとを有 する電子部品について、前記電子部品を試験治具に実装した状態で前記信号ライ ンポートおよび前記非信号ラインポートを測定した結果から、当該電子部品を前記信 号ラインポートのみ測定可能である基準治具に実装した状態で前記信号ラインポー トを測定したならば得られるであろう前記電子部品の電気特性の推定値を算出するも のである。前記測定誤差の補正方法は、第 1ないし第 5のステップを備える。前記第 1 のステップにお 、て、少なくとも 3種類の補正データ取得用試料を前記試験治具に 実装した状態と前記基準治具に実装した状態とで、前記補正データ取得用試料の 各々の信号ラインポートの少なくとも一つについて、電気特性を測定する。前記第 2 のステップにお 、て、信号ラインポートの少なくとも一つと非信号ラインポートの少なく とも一つとが電気的に接続された補正データ取得用スルーデバイスを用意し、前記 補正データ取得用スルーデバイスを前記試験治具に実装した状態で当該信号ライ ンポート及び当該非信号ラインポートを測定し、かつ、前記補正データ取得用スルー デバイスを前記基準治具に実装した状態で当該信号ラインポートを測定する。前記 第 3のステップにお 、て、前記第 1及び第 2のステップで得られた測定値に基づ 、て 、前記電子部品を前記試験治具に実装した状態で前記信号ラインポートおよび前記 非信号ラインポートを測定した結果から当該電子部品を前記基準治具に実装した状 態で前記信号ラインポートを測定したならば得られるであろう前記電子部品の電気特 性の推定値を算出するための数式を決定する。前記第 4のステップにおいて、任意 の前記電子部品につ 、て、前記試験治具に実装した状態で前記信号ラインポートお よび前記非信号ラインポートを測定する。前記第 5のステップにおいて、前記第 4のス テツプで得られた測定値に基づ 、て、前記第 3のステップで決定した前記数式を用 V、て、当該電子部品を前記基準治具に実装した状態で前記信号ラインポートを測定 したならば得られるであろう前記電子部品の電気特性の推定値を算出する。
[0013] 上記構成において、第 1のステップの測定値により、信号ラインポートについて、基 準治具と試験治具との間の相対的な測定誤差の補正を行うことができる。この信号ラ インポートについての補正結果と、第 2のステップの測定値とから、非信号ラインポー トについても、基準治具と試験治具との間の相対的な測定誤差の補正が可能となる
[0014] 上記構成によれば、信号ラインポートのみならず非信号ラインポートについても測 定誤差を補正することができるので、任意の電子部品について、試験治具に実装し た状態で信号ラインポート及び非信号ラインポートを測定した結果から、基準治具に 実装した場合の電気特性を、精度よく推定することができる。
[0015] 好ましくは、前記第 3のステップにおいて、前記非信号ラインポートに対する前記数 式は、前記第 2のステップにお 、て前記補正データ取得用スルーデバイスを前記試 験治具に実装した状態で当該信号ラインポート及び当該非信号ラインポートを測定 した結果を、前記第 1のステップで得られた測定値力 得られる「前記電子部品を前 記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前記基準 治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう前記 電子部品の電気特性の推定値を算出するための数式」に代入し得られる散乱行列 S (各要素を、 S 、S 、S 、S とする)と、前記第 2のステップで得られる前記補正
I 111 121 211 221
データ取得用スルーデバイスを前記基準治具に実装した状態における当該信号ライ ンポートの測定値 S とを用いて次式
11D
[数 1]
C2r = c * ς - C 110 * C 117 + C * C
°11D ° 22/ °11/ ^22/ ^ 21/ °12/ のように示される。
[0016] すなわち、「シャントタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1のステップで得られた測定値から、前記信号ライ ンポートに関して相対補正アダプタを求める。この相対補正アダプタを第 2のステップ において得られる補正データ取得用スルーデバイスを試験治具に実装した状態で測 定し得られた散乱行列と合成すれば、補正データ取得用スルーデバイスを試験治具 に実装した状態における測定値から、前記信号ラインポートのみを前記基準治具に 実装した場合の電気特性を推定した散乱行列 Sが決まる。第 2のステップにおいて、
I
補正データ取得用スルーデバイスを基準治具に実装した場合の測定値は、前記 S
I
の当該非信号ラインポート側の端子対に対し前記非信号ラインポートに関する相対 補正アダプタを合成した推定値と対応する。このことから、上記の式を導出することが できる。
[0017] 上記の式により導出した非信号ラインポートの相対補正アダプタを用いることにより
、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度よく 推定することができる。
[0018] 好ましくは、前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポート と、少なくとも 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2 の前記非信号ラインポートの間に素子が接続される。前記電子部品の前記第 1及び 第 2の非信号ラインポートにより影響を受ける前記第 1及び第 2の信号ラインポート間 の電気特性の推定値の算出については、前記第 1のステップにおいて、前記電子部 品の前記第 1及び第 2の信号ラインポートに対応する前記補正データ取得用試料の 各々の信号ラインポートについて、電気特性を測定する。前記第 2のステップにおい て用いる前記補正データ取得用スルーデバイスは、前記電子部品の前記第 1の信号 ラインポートに対応する前記補正データ取得用スルーデバイスの信号ラインポートと 前記電子部品の前記第 1の非信号ラインポートに対応する前記補正データ取得用ス ルーデバイスの非信号ラインポートとの間が電気的に接続され、かつ、前記電子部 品の前記第 2の信号ラインポートに対応する前記補正データ取得用スルーデバイス の信号ラインポートと前記電子部品の前記第 2の非信号ラインポートに対応する前記 補正データ取得用スルーデバイスの非信号ラインポートとの間が電気的に接続され る。前記第 3のステップにおいて、前記電子部品の前記第 1及び第 2の非信号ライン ポートにより影響を受ける前記第 1及び第 2の信号ラインポート間の電気特性の推定 値を算出するための前記数式は、前記第 2のステップにお 、て前記補正データ取得 用スルーデバイスを前記試験治具に実装した状態で当該信号ラインポート及び当該 非信号ラインポートを測定した結果を、前記第 1のステップで得られた測定値力 得 られる「前記電子部品を前記試験治具に実装した状態で前記信号ラインポートを測 定した結果から、前記基準治具に実装した状態で前記信号ラインポートを測定した ならば得られるであろう前記電子部品の電気特性の推定値を算出するための数式」 に代入し得られる、前記電子部品の前記第 1の信号ラインポートに対応する当該信 号ラインポートと前記電子部品の前記第 1の非信号ラインポートに対応する当該非信 号ラインポートとの間に対する伝送係数行列 (T1 )及び前記電子部品の前記第 2
thru
の信号ラインポートに対応する当該信号ラインポートと前記電子部品の前記第 2の非 信号ラインポートに対応する当該非信号ラインポートとの間に対する伝送係数行列( T2 )と、前記第 2のステップで得られる前記補正データ取得用スルーデバイスを前 thru
記基準治具に実装した状態における、前記電子部品の前記第 1及び第 2の信号ライ ンポートに対応する当該信号ラインポート間の伝送係数行列(D )とを用いて次式 (CA) = (Tl )"1 - (D ) · (Τ2 )— 1 - - - (a)
thru thru thru
のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 いる。
[0019] すなわち、「フロートタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1のステップで得られた測定値から、前記信号ライ ンポートに関して相対補正アダプタを求める。この相対補正アダプタを第 2のステップ において得られる補正データ取得用スルーデバイスを試験治具に実装した状態で測 定し得られた散乱行列と合成する。すなわち、前記電子部品の第 1の信号ラインポー トに対応する当該信号ラインポートと電子部品の第 1の非信号ラインポートに対応す る当該非信号ラインポートとの間の散乱行列に対して上記合成を行った伝送係数行 列 (T1 )、及び前記電子部品の第 2の信号ラインポートに対応する当該信号ライン thru
ポートと前記電子部品の第 2の非信号ラインポートに対応する当該非信号ラインポー トとの間の散乱行列に対して上記合成を行った伝送係数行列 (T2 )が決まる。第 2
thru
のステップにお 、て、補正データ取得用スルーデバイスを基準治具に実装した場合 の測定値から、補正データ取得用スルーデバイスを基準治具に実装した状態におけ る、前記電子部品の第 1及び第 2の信号ラインポートに対応する当該信号ラインポー ト間の伝送係数行列 (D )が決まる。前記電子部品の第 1及び第 2の非信号ライン
thru
ポートに対応する当該非信号ラインポート間の相対補正アダプタを (CA)とすると、次 式 (b)が成り立つ。
(D ) = (T1 ) - (CA) - (Τ2 ) · · · (b)
thru thru thru
この式 (b)の両辺に左右から、逆行列 (Tl (T2
thru thru Γ1を掛けると、上記の式 (a
)を導出することができる。
[0020] 上記の式 (a)により導出した非信号ラインポートの相対補正アダプタを用いることに より、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度 よく推定することができる。
[0021] 好ましくは、前記第 5のステップにおいて、前記算出方法は、任意の前記電子部品 について、前記試験治具に実装した状態で測定される電気特性を、前記基準治具 に実装した状態で測定される電気特性に変更する特性を有する相対補正アダプタを 想定した上で、前記非信号ラインポートにおいては、前記第 3のステップにおける前 記非信号ラインポートに対する前記数式を前記相対補正アダプタとして用い推定す る。
[0022] 好ましくは、前記第 2のステップにおいて測定する前記補正データ取得用スルーデ バイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達係数が- 10d B以上である。
[0023] この場合、信号ラインポートと非信号ラインポートとの間で、出力信号は入力信号よ り 1桁小さくなる程度であるので、測定誤差の補正を精度よく行うことができる。
[0024] 好ましくは、前記第 2のステップにおいて測定する前記補正データ取得用スルーデ バイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達係数が往復 で— 20dB以上である。
[0025] この場合、例えば前記基準治具における非信号ラインポートにおいて信号を全反 射する場合、前記信号ラインポートから入力される信号に対し測定される信号は 1桁 小さくなる程度であるので、前記非信号ラインポートの相対補正アダプタを精度良く 求めることができる。
[0026] また、本発明は、上記課題を解決するために、以下のように構成した電子部品特性 測定装置を提供する。
[0027] この電子部品特性測定装置は、高周波信号の印加または検出に係わる信号ライン に接続される信号ラインポートと、該信号ラインポート以外の非信号ラインポートとを 有する電子部品について、前記電子部品を試験治具に実装した状態で前記信号ラ インポートおよび前記非信号ラインポートを測定し、その測定結果から、当該電子部 品を前記信号ラインポートのみ測定可能である基準治具に実装した状態で前記信号 ラインポートを測定したならば得られるであろう前記電子部品の電気特性の推定値を 算出するものである。前記電子部品特性測定装置は、測定手段と、記憶手段と、数 式決定手段と、電気特性推定手段とを備える。前記測定手段は、前記電子部品を前 記試験治具に実装した状態で前記信号ラインポートおよび前記非信号ラインポート を測定する。前記記憶手段は、前記試験治具に実装した状態と前記基準治具に実 装した状態とで、前記信号ラインポートの少なくとも一つについて、少なくとも 3種類の 補正データ取得用電子部品を測定した第 1の測定データと、信号ラインポートの少な くとも一つと非信号ラインポートの少なくとも一つとが電気的に接続された補正データ 取得用スルーデバイスを、前記試験治具に実装した状態で当該信号ラインポート及 び当該非信号ラインポートを測定した第 2の測定データと、前記補正データ取得用ス ルーデバイスを前記基準治具に実装した状態で当該信号ラインポートを測定した第 3の測定データとを格納する。前記数式決定手段は、前記記憶手段に格納された前 記第 1ないし第 3の測定データに基づいて、前記電子部品を前記試験治具に実装し た状態で前記信号ラインポートおよび前記非信号ラインポートを測定した結果から当 該電子部品を前記基準治具に実装した状態で前記信号ラインポートを測定したなら ば得られるであろう前記電子部品の電気特性の推定値を算出するための数式を決 定する。前記電気特性推定手段は、任意の前記電子部品について、前記測定手段 で測定して得られた測定値から、前記数式決定手段が決定した前記数式を用いて、 当該電子部品を前記基準治具に実装した状態で前記信号ラインポートを測定したな らば得られるであろう前記電子部品の電気特性の推定値を算出する。
[0028] 上記構成において、第 1の測定データにより、信号ラインポートについて基準治具と 測定治具との間の相対的な測定誤差の補正を行うことができる。この信号ラインポー トについての補正結果と、第 2及び第 3の測定データとから、非信号ラインポートにつ いても基準治具と測定治具との間の相対的な測定誤差の補正が可能となる。
[0029] 上記構成によれば、信号ラインポートのみならず非信号ラインポートについても測 定誤差を補正することができるので、任意の電子部品について、試験治具に実装し た状態で信号ラインポート及び非信号ラインポートを測定した結果から、基準治具に 実装した場合の電気特性を、精度よく推定することができる。
[0030] なお、第 1ないし第 3の測定データは、上記構成の電子部品特性測定装置の測定 手段によって測定されても、上記構成の電子部品特性測定装置以外の他の測定装 置によって測定されてもよい。後者の場合には、他の測定装置によって測定された測 定データは、上記構成の電子部品特性測定装置の記憶手段に格納される。 [0031] 好ましくは、前記数式決定手段が決定する前記非信号ラインポートに対する前記数 式は、前記第 2の測定データを、前記第 1の測定データから得られる「前記電子部品 を前記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前記 基準治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう 前記電子部品の電気特性の推定値を算出するための数式」に代入し得られる散乱 行列 S (各要素を、 S 、 S 、 S 、 S とする)と、前記第 3のデータである前記補正
I 111 121 211 221
データ取得用スルーデバイスを前記基準治具に実装した状態における当該信号ライ ンポートの測定値 S とを用いて次式
11D
[数 2]
C2r = c * c — 11D * ς 117 + *
° 11D ° 227 22/ ^ 21/ ° 12/ のように示される。
[0032] すなわち、「シャントタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1の測定データから、前記信号ラインポートに関して 相対補正アダプタを求める。この相対補正アダプタを第 2の測定データ力も得られる 補正データ取得用スルーデバイスを試験治具に実装した状態で測定し得られた散 乱行列と合成すれば、補正データ取得用スルーデバイスを試験治具に実装した状 態における測定値から、前記信号ラインポートのみを前記基準治具に実装した場合 の電気特性を推定した散乱行列 Sが決まる。第 3の測定データである補正データ取
I
得用スルーデバイスを基準治具に実装した場合の測定値は、前記 sの当該非信号
I
ラインポート側の端子対に対し前記非信号ラインポートに関する相対補正アダプタを 合成した推定値と対応する。このことから、上記の式を導出することができる。
[0033] 上記の式により導出した非信号ラインポートの相対補正アダプタを用いることにより 、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度よく 推定することができる。 好ましくは、前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポート と、少なくとも 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2 の前記非信号ラインポートの間に素子が接続される。前記第 1の測定データは、前記 電子部品の前記第 1及び第 2の信号ラインポートに対応する前記補正データ取得用 試料の各々の信号ラインポートについて、電気特性を測定される。前記第 2及び第 3 の測定データを測定するときに用いる前記補正データ取得用スルーデバイスは、前 記電子部品の前記第 1の信号ラインポートに対応する前記補正データ取得用スルー デバイスの信号ラインポートと前記電子部品の前記第 1の非信号ラインポートに対応 する前記補正データ取得用スルーデバイスの非信号ラインポートとの間が電気的に 接続され、かつ、前記電子部品の前記第 2の信号ラインポートに対応する前記補正 データ取得用スルーデバイスの信号ラインポートと前記電子部品の前記第 2の非信 号ラインポートに対応する前記補正データ取得用スルーデバイスの非信号ラインポ ートとの間が電気的に接続される。前記数式決定手段が決定する、前記電子部品の 前記第 1及び第 2の非信号ラインポートにより影響を受ける前記第 1及び第 2の信号 ラインポート間の電気特性の推定値を算出するための前記数式は、前記第 2の測定 データを、前記第 1の測定データから得られる「前記電子部品を前記試験治具に実 装した状態で前記信号ラインポートを測定した結果から、前記基準治具に実装した 状態で前記信号ラインポートを測定したならば得られるであろう前記電子部品の電気 特性の推定値を算出するための数式」に代入し得られる、前記電子部品の前記第 1 の信号ラインポートに対応する当該信号ラインポートと前記電子部品の前記第 1の非 信号ラインポートに対応する当該非信号ラインポートとの間に対する伝送係数行列( T1 )及び前記電子部品の前記第 2の信号ラインポートに対応する当該信号ライン thru
ポートと前記電子部品の前記第 2の非信号ラインポートに対応する当該非信号ライン ポートとの間に対する伝送係数行列 (T2 )と、前記第 3の測定データから得られる
thru
、前記補正データ取得用スルーデバイスを前記基準治具に実装した状態における、 前記電子部品の前記第 1及び第 2の信号ラインポートに対応する当該信号ラインポ ート間の伝送係数行列(D )とを用いて次式
thru
(CA) = (Tl )_1 - (D ) · (Τ2 )— 1 - - - (a) のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 いる。
[0035] すなわち、「フロートタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1の測定データから、前記信号ラインポートに関して 相対補正アダプタを求める。この相対補正アダプタを、第 2の測定力も得られる補正 データ取得用スルーデバイスを試験治具に実装した状態で測定し得られた散乱行 列と合成する。すなわち、前記電子部品の第 1の信号ラインポートに対応する当該信 号ラインポートと電子部品の第 1の非信号ラインポートに対応する当該非信号ライン ポートとの間の散乱行列に対して上記合成を行った伝送係数行列 (T1 )、及び前
thru
記電子部品の第 2の信号ラインポートに対応する当該信号ラインポートと前記電子部 品の第 2の非信号ラインポートに対応する当該非信号ラインポートとの間の散乱行列 に対して上記合成を行った伝送係数行列 (T2 )が決まる。第 3の測定データであ
thru
る補正データ取得用スルーデバイスを基準治具に実装した場合の測定値から、補正 データ取得用スルーデバイスを基準治具に実装した状態における、前記電子部品の 第 1及び第 2の信号ラインポートに対応する当該信号ラインポート間の伝送係数行列 (D )が決まる。前記電子部品の第 1及び第 2の非信号ラインポートに対応する当 thru
該非信号ラインポート間の相対補正アダプタを (CA)とすると、次式 (b)が成り立つ。
(D ) = (T1 ) - (CA) - (Τ2 ) · · · (b)
thru thru thru
この式 (b)の両辺に左右から、逆行列 (Tl (T2
thru thru Γ1を掛けると、上記の式 (a
)を導出することができる。
[0036] 上記の式 (a)により導出した非信号ラインポートの相対補正アダプタを用いることに より、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度 よく推定することができる。
[0037] 好ましくは、前記電気特性推定手段は、任意の前記電子部品につ!、て、前記試験 治具に実装した状態で測定される電気特性を、前記基準治具に実装した状態で測 定される電気特性に変更する特性を有する相対補正アダプタを想定した上で、前記 非信号ラインポートにぉ 、ては、前記数式決定手段が決定した前記非信号ラインポ ートに対する前記数式を前記相対補正アダプタとして用い推定する。
[0038] 好ましくは、前記第 2及び第 3の測定データを取得するための前記補正データ取得 用スルーデバイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達 係数力 S-lOdB以上である。
[0039] この場合、信号ラインポートと非信号ラインポートとの間で、出力信号は入力信号よ り 1桁小さくなる程度であるので、測定誤差の補正を精度よく行うことができる。
[0040] 好ましくは、前記第 2及び第 3の測定データを取得するための前記補正データ取得 用スルーデバイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達 係数が往復で 20dB以上である。
[0041] この場合、例えば前記基準治具における非信号ラインポートにおいて信号を全反 射する場合、前記信号ラインポートから入力される信号に対し測定される信号は 1桁 小さくなる程度であるので、前記非信号ラインポートの相対補正アダプタを精度良く 求めることができる。
[0042] また、本発明は、上記課題を解決するために、以下のように構成した電子部品特性 測定装置を提供する。
[0043] この電子部品特性測定装置は、高周波信号の印加または検出に係わる信号ライン に接続される信号ラインポートと、該信号ラインポート以外の非信号ラインポートとを 有する電子部品について、前記電子部品を試験治具に実装した状態で前記信号ラ インポートおよび前記非信号ラインポートを測定し、その測定結果から、当該電子部 品を前記信号ラインポートのみ測定可能である基準治具に実装した状態で前記信号 ラインポートを測定したならば得られるであろう前記電子部品の電気特性の推定値を 算出するものである。前記電子部品特性測定装置は、測定手段と、数式記憶手段と 、電気特性推定手段とを備える。前記測定手段は、前記電子部品を前記試験治具 に実装した状態で前記信号ラインポートおよび前記非信号ラインポートを測定する。 前記数式記憶手段は、前記電子部品を前記試験治具に実装した状態で前記信号ラ インポートおよび前記非信号ラインポートを測定した結果から当該電子部品を前記基 準治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう前 記電子部品の電気特性の推定値を算出するための数式を格納する。この数式は、 少なくとも 3種類の補正データ取得用試料を前記試験治具に実装した状態と前記基 準治具に実装した状態とで、前記補正データ取得用試料の各々の信号ラインポート の少なくとも一つについて、電気特性を測定した第 1の測定データと、信号ラインポ ートの少なくとも一つと非信号ラインポートの少なくとも一つとが電気的に接続された 補正データ取得用スルーデバイスを、前記試験治具に実装した状態で当該信号ライ ンポート及び当該非信号ラインポートを測定した第 2の測定データと、前記補正デー タ取得用スルーデバイスを前記基準治具に実装した状態で当該信号ラインポートを 測定した第 3の測定データとに基づいて決定される。前記電気特性推定手段は、任 意の前記電子部品について、前記測定手段で測定して得られた測定値から、前記 数式記憶手段に格納された前記数式を用いて、当該電子部品を前記基準治具に実 装した状態で前記信号ラインポートを測定したならば得られるであろう前記電子部品 の電気特性の推定値を算出する。
[0044] 第 1の測定データにより、信号ラインポートについて基準治具と試験治具との間の 相対的な測定誤差の補正を行うことができる。この信号ラインポートについての補正 結果と、第 2及び第 3の測定データとから、非信号ラインポートについても、基準治具 と試験治具との間の相対的な測定誤差の補正が可能となる。上記構成では、信号ラ インポートのみならず非信号ラインポートについても測定誤差を補正して電子部品の 電気特性の推定値を算出するための数式が数式記憶手段に格納されており、その 数式を用いることにより、任意の電子部品について、試験治具に実装した状態で信 号ラインポート及び非信号ラインポートを測定した結果から、基準治具に実装した場 合の電気特性を、精度よく推定することができる。
[0045] 上記構成にぉ 、て、電子部品の電気特性の推定値を算出するための数式は、電 子部品特性測定装置又は他の測定装置で、試験治具及び基準治具を用いて測定 を行って、予め決めておく。
[0046] 上記構成によれば、試験治具につ!、て予め数式を決定しておけば、その数式を電 子部品特性測定装置の数式記憶手段に格納することにより、その試験治具を任意の 電子部品測定装置で用いることができる。したがって、試験治具と電子部品測定装 置とを自由に組み合わせて用いることができる。
[0047] 好ましくは、前記数式記憶手段に格納される前記非信号ラインポートに対する前記 数式は、前記第 2の測定データを、前記第 1の測定データから得られる「前記電子部 品を前記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前 記基準治具に実装した状態で前記信号ラインポートを測定したならば得られるであろ う前記電子部品の電気特性の推定値を算出するための数式」に代入し得られる散乱 行列 S (各要素を、 S 、 S 、 S 、 S とする)と、前記第 3のデータである前記補正
I 111 121 211 221
データ取得用スルーデバイスを前記基準治具に実装した状態における当該信号ライ ンポートの測定値 S とを用いて次式
11D
[数 3]
C2r = c * c - c 11D * ς 117 + c *
°11D ° 227 22/ ° 21/ °12/ のように示される。
[0048] すなわち、「シャントタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1の測定データから、前記信号ラインポートに関して 相対補正アダプタを求める。この相対補正アダプタを第 2の測定データ力も得られる 補正データ取得用スルーデバイスを試験治具に実装した状態で測定し得られた散 乱行列と合成すれば、補正データ取得用スルーデバイスを試験治具に実装した状 態における測定値から、前記信号ラインポートのみを前記基準治具に実装した場合 の電気特性を推定した散乱行列 Sが決まる。第 3の測定データである補正データ取
I
得用スルーデバイスを基準治具に実装した場合の測定値は、前記 sの当該非信号
I
ラインポート側の端子対に対し前記非信号ラインポートに関する相対補正アダプタを 合成した推定値と対応する。このことから、上記の式を導出することができる。
[0049] 上記の式により導出した非信号ラインポートの相対補正アダプタを用いることにより 、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度よく 推定することができる。
好ましくは、前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポート と、少なくとも 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2 の前記非信号ラインポートの間に素子が接続される。前記第 1の測定データは、前記 電子部品の前記第 1及び第 2の信号ラインポートに対応する前記補正データ取得用 試料の各々の信号ラインポートについて、電気特性を測定される。前記第 2及び第 3 の測定データを測定するときに用いる前記補正データ取得用スルーデバイスは、前 記電子部品の前記第 1の信号ラインポートに対応する前記補正データ取得用スルー デバイスの信号ラインポートと前記電子部品の前記第 1の非信号ラインポートに対応 する前記補正データ取得用スルーデバイスの非信号ラインポートとの間が電気的に 接続され、かつ、前記電子部品の前記第 2の信号ラインポートに対応する前記補正 データ取得用スルーデバイスの信号ラインポートと前記電子部品の前記第 2の非信 号ラインポートに対応する前記補正データ取得用スルーデバイスの非信号ラインポ ートとの間が電気的に接続される。前記数式記憶手段に格納される、前記電子部品 の前記第 1及び第 2の非信号ラインポートにより影響を受ける前記第 1及び第 2の信 号ラインポート間の電気特性の推定値を算出するための前記数式は、前記第 2の測 定データを、前記第 1の測定データから得られる「前記電子部品を前記試験治具に 実装した状態で前記信号ラインポートを測定した結果から、前記基準治具に実装し た状態で前記信号ラインポートを測定したならば得られるであろう前記電子部品の電 気特性の推定値を算出するための数式」に代入し得られる、前記電子部品の前記第 1の信号ラインポートに対応する当該信号ラインポートと前記電子部品の前記第 1の 非信号ラインポートに対応する当該非信号ラインポートとの間に対する伝送係数行 列 (T1 )及び前記電子部品の前記第 2の信号ラインポートに対応する当該信号ラ thru
インポートと前記電子部品の前記第 2の非信号ラインポートに対応する当該非信号ラ インポートとの間に対する伝送係数行列 (T2 )と、前記第 3の測定データから得ら
thru
れる、前記補正データ取得用スルーデバイスを前記基準治具に実装した状態におけ る、前記電子部品の前記第 1及び第 2の信号ラインポートに対応する当該信号ライン ポート間の伝送係数行列(D )とを用いて次式 (CA) = (Tl )"1 - (D ) · (Τ2 )— 1 - - - (a)
thru thru thru
のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 いる。
[0051] すなわち、「フロートタイプ」の非信号ラインポートを有する電子部品の場合、任意の 前記電子部品について、前記試験治具に実装した状態で測定される電気特性を、 前記基準治具に実装した状態で測定される電気特性に変更する特性を有する相対 補正アダプタを想定した上で、第 1の測定データから、前記信号ラインポートに関して 相対補正アダプタを求める。この相対補正アダプタを、第 2の測定力も得られる補正 データ取得用スルーデバイスを試験治具に実装した状態で測定し得られた散乱行 列と合成する。すなわち、前記電子部品の第 1の信号ラインポートに対応する当該信 号ラインポートと電子部品の第 1の非信号ラインポートに対応する当該非信号ライン ポートとの間の散乱行列に対して上記合成を行った伝送係数行列 (T1
thru )、及び前 記電子部品の第 2の信号ラインポートに対応する当該信号ラインポートと前記電子部 品の第 2の非信号ラインポートに対応する当該非信号ラインポートとの間の散乱行列 に対して上記合成を行った伝送係数行列 (T2 )が決まる。第 3の測定データであ
thru
る補正データ取得用スルーデバイスを基準治具に実装した場合の測定値から、補正 データ取得用スルーデバイスを基準治具に実装した状態における、前記電子部品の 第 1及び第 2の信号ラインポートに対応する当該信号ラインポート間の伝送係数行列 (D )が決まる。前記電子部品の第 1及び第 2の非信号ラインポートに対応する当 thru
該非信号ラインポート間の相対補正アダプタを (CA)とすると、次式 (b)が成り立つ。
(D ) = (T1 ) - (CA) - (Τ2 ) · · · (b)
thru thru thru
この式 (b)の両辺に左右から、逆行列 (Tl (T2
thru thru Γ1を掛けると、上記の式 (a
)を導出することができる。
[0052] 上記の式 (a)により導出した非信号ラインポートの相対補正アダプタを用いることに より、非信号ラインポートを測定しない基準治具に実装した場合の電気特性を、精度 よく推定することができる。
[0053] 好ましくは、前記電気特性推定手段は、任意の前記電子部品につ!、て、前記測定 手段により測定される電気特性を、前記基準治具に実装した状態で測定される電気 特性に変更する特性を有する相対補正アダプタを想定した上で、前記非信号ライン ポートにお 1、ては、前記数式記憶手段に格納された前記非信号ラインポートに対す る前記数式を前記相対補正アダプタとして用い推定する。
[0054] 好ましくは、前記第 2及び第 3の測定データを取得するための前記補正データ取得 用スルーデバイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達 係数力 S-lOdB以上である。
[0055] この場合、信号ラインポートと非信号ラインポートとの間で、出力信号は入力信号よ り 1桁小さくなる程度であるので、測定誤差の補正を精度よく行うことができる。
[0056] 好ましくは、前記第 2及び第 3の測定データを取得するための前記補正データ取得 用スルーデバイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達 係数が往復で 20dB以上である。
[0057] この場合、例えば前記基準治具における非信号ラインポートにおいて信号を全反 射する場合、前記信号ラインポートから入力される信号に対し測定される信号は 1桁 小さくなる程度であるので、前記非信号ラインポートの相対補正アダプタを精度良く 求めることができる。
発明の効果
[0058] 本発明の測定誤差の補正方法及び電子部品特性測定装置によれば、信号ライン ポート以外に非信号ラインポートを有しその電気特性が非信号ラインポートに接続さ れる治具の特性によって変化してしまう電子部品について、高い精度で対応すること ができる。
[0059] これにより、例えば、信号ラインポート及び非信号ラインポートを有する電子部品に ついて、製造工程における試験治具を用いた測定結果から、基準治具を用いるユー ザ保証状態と等しい条件でデバイス特性の推定が可能になり、より高精度な電気特 性のユーザ保証が可能となる。また、良否判定精度が高くなるので、製造工程におけ る良品率も向上する。さらに、基準治具や試験治具の調整は不要であるので、電子 部品の帯域幅が広 、場合にぉ 、ても、問題なく適用できる。
発明を実施するための最良の形態
[0060] 以下、本発明の実施の形態について、図 2a—図 28を参照しながら説明する。 [0061] (第 1の実施形態)
「シャントタイプ」の非信号ラインポートを有する電子部品について、図 2a—図 13、 図 30—図 34を参照しながら説明する。
[0062] まず、測定誤差の補正方法にっ 、て説明する。
[0063] 図 2a及び図 2bに示すように、電子部品 10は、異なる治具 20, 30を用いて測定す ることができる。一方の治具 20 (以下、「基準治具 20」と言う。)は、例えばユーザに対 して電気特性を保証するために用いる。他方の治具 30 (以下、「試験治具 30」と言う 。)は、例えば電子部品の製造工程における良品選別のための測定に用いる。
[0064] 詳しくは後述するが、予め、治具 20, 30間の相対的な測定誤差を補正する数式を 導出しておく。そして、任意の電子部品について、試験治具 30に実装して測定を行 い、導出した数式を用いて、その電子部品を基準治具 20に実装して測定したならば 得られるであろう電気特性を推定する。
[0065] 図 2a及び図 2bは、電子部品 10が 3つの信号ラインポートと 1つの非信号ラインポー トを有する場合の例を示して 、る。
[0066] 図 2aに示したように、基準治具 20には、電子部品 10を実装する実装部と、同軸コ ネクタ 20a, 20b, 20cとが設けられている。図示していないが、実装部には電子部品 10の端子に圧着する接続端子が設けられ、接続端子と同軸コネクタ 20a, 20b, 20c とが電気的に接続されている。電子部品 10の 3つの信号ラインポートは、それぞれ、 同軸コネクタ 20a, 20b, 20c及び 3本の同軸ケーブル 25を介して、測定装置 26に接 続される。つまり、電子部品 10を基準治具 20に実装したときには、測定装置 26を用 いて、信号ラインポートのみを測定する。
[0067] 図 2bに示したように、電子部品 10を他方の治具 30、すなわち試験治具 30に実装 したときには、測定装置 36を用いて信号ラインポート及び非信号ラインポートの測定 を行う。試験治具 30には、電子部品 10を実装する実装部と、同軸コネクタ 30a, 30b , 30c, 30dとが設けられている。図示していないが、実装部には電子部品 10の端子 に圧着する接続端子が設けられ、接続端子と同軸コネクタ 30a, 30b, 30c, 30dとが 電気的に接続されている。電子部品 10の 3つの信号ラインポート及び一つの非信号 ラインポー卜は、それぞれ、同軸コネクタ 30a, 30b, 30c, 30d及び 4本の同軸ケープ ル 35を介して、測定装置 36に接続される。
[0068] 同軸ケーブル 25及び測定装置 26は、予め、同軸ケーブル 25の先端(同軸コネクタ 20a, 20b, 20cと接続する部分)に、既知の電気特性を有する標準器を接続して校 正しておく。同様に、同軸ケーブル 35及び測定装置 36は、同軸ケーブル 35の先端 (同軸コネクタ 30a, 30b, 30c, 30dと接続する部分)に標準器を接続して校正して おく。
[0069] 測定装置 26, 36には、例えばネットワークアナライザを用いる。ネットワークアナライ ザは、複数のポートを有し高周波で用いられる電子部品の電気特性を単に測定する だけでなぐ任意に設定したプログラムにより測定した生データを演算して出力する 機能も備えている。
[0070] 次に、電子部品を試験治具に実装したときの測定結果から、基準治具に実装したと きの電気特性を推定する方法の基本原理について、説明する。
[0071] 以下では、簡単のため、一つの信号ラインポートと一つの非信号ラインポートとを有 する 2ポートの試料 (DUT)についての 2端子対回路を例に説明する力 図 2a及び 図 2bで示した 4端子対回路のような n端子対回路 (nは、 3以上の整数)に対しても拡 張することができる。
[0072] 図 3aに示すように、一つの信号ラインポートと一つの非信号ラインポートとを有する 電子部品 11を実装する基準治具 70には、信号ラインポートの同軸コネクタ 70aのみ が設けられている。電子部品 11の信号ラインポートのみ力 同軸コネクタ 70a及び同 軸ケーブル 75を介して測定装置 76に接続され、信号ラインポートについてのみ測定 される。
[0073] 図 3bに示すように、一つの信号ラインポートと一つの非信号ラインポートとを有する 電子部品 11を実装する試験治具 80には、信号ラインポートの同軸コネクタ 80aと非 信号ラインポートの同軸コネクタ 80bとが設けられている。電子部品 11の信号ライン ポート及び非信号ラインポートは、同軸コネクタ 80a, 80b及び同軸ケーブル 85を介 して測定装置 86に接続され、信号ラインポート及び非信号ラインポートについて測定 される。
[0074] 図 5 (a)は、基準治具 70に、一つの信号ラインポートと一つの非信号ラインポートと を有する電子部品 11 (以下、「試料 11」とも言う。)を実装したときの 2端子対回路を 示す。試料 11の信号ラインポートに接続される基準治具 70の一方のポート側 21 (端 子対 00'側)の誤差特性を散乱行列 (E )、試料 11の特性を散乱行列 (S )で表
Dl DUT す。端子対 00'は、基準治具 70の同軸コネクタに相当する。信号ラインポート側の端 子 0'からは、基準治具 70に試料 11を実装したときの測定値 S が得られる。試料 1
11D
1を基準治具 70に実装したときには、信号ラインポートのみの測定を行うため、試料 1 1の非信号ラインポートに接続される基準治具 70の他方のポート側 22の誤差特性は 、反射係数 Γ のみとなる。
D2
[0075] 図 5 (b)は、試験治具 80に試料 11を実装したときの 2端子対回路を示す。試料 11 の信号ラインポートに接続される試験治具 80の一方のポート側 31 (端子対 11 '側)の 誤差特性を散乱行列 (E )、試料 11の特性を散乱行列 (S )とする。信号ラインポ
Tl DUT
ート側の端子 1'からは、試験治具 80に試料 11を実装したときの測定値 S が得られ
11T
る。試料 11を試験治具 80に実装したときには、非信号ラインポートについても測定を 行うため、試料 11の非信号ラインポートに接続される試験治具 80の他方のポート側 32の誤差特性を、散乱行列 (E )で表す。非信号ラインポート側の端子 2からは、試
T2
験治具 80に試料 11を実装したときの測定値 S が得られる。端子対 11'、 22'は、そ
21T
れぞれ、測定装置 86の校正が同軸ケーブル 85の先端で行われた同軸コネクタ接続 部に相当する。
[0076] 図 6 (a)は、図 5 (b)の回路の両側に、符号 33, 34で示すように、試験治具 80の誤 差特性 (E ) , (E )を中和するアダプタ (E (E
Tl T2 Γ1を接続した状態を示す。こ
Tl T2
のアダプタ (E (E Γ1は、理論上は、誤差特性の散乱行列 (E ) , (E )を伝
Tl T2 Tl T2 送行列に変換し、その逆行列を求め、再度散乱行列に変換することにより得られる。 誤差特性 (E ) , (E )とアダプタ (E (E Γ1との間の境界部分 38, 39を、以
Tl T2 Tl T2
下、「校正面 38, 39」と言う。校正面 38, 39においては、試験治具 80に試料 11を実 装したときの測定値 S , S が得られる。この回路では、試験治具 80の誤差は除
11T 21T
去されるので、回路の両側の端子からは、試料 11そのものの測定値 S , S
11DUT 21DUT が得られる。
[0077] 図 6 (a)の回路は、試料 11のみと等価であるので、図 5 (a)と同様に、両側に、基準 治具 70の信号ラインポート側 21の誤差特性の散乱行列 (E )と、基準治具 70の非
D1
信号ラインポート側 22の誤差特性である反射係数 Γ を接続すると、図 6 (b)のよう
D2
になる。
[0078] 図 6 (b)において、回路全体の散乱行列は、端子 0'の値 S が既知であるので、求
11D
めることができる。端子対 00'と校正面 38の間の部分 41の 2端子対回路を考えると、 両側の端子の値 S , S が既知であるので、(E )と (E
11D 11T Dl T1 Γ1とを合成した散乱行 列を求めることができる。校正面 38, 39の間の部分の 2端子対回路を考えると、両側 の端子の値 S , S , S , S が校正面から直接測定できるので、その散乱行列
11T 21T 12T 22T
を求めることができる。端子対 00'と校正面 38の間の部分 41の散乱行列と、校正面 3 8, 39の間の部分の散乱行列とを合成することにより、端子対 00'から校正面 39まで の散乱行列を求めることができる。残った部分、すなわち校正面 39よりも右側の部分 42について、(E )— 1と Γ とを合成した散乱行列は、図 6 (b)に示した回路全体の
T2 D2
散乱行列と、端子対 00'と校正面 39との間の合成した散乱行列とから、求めることが できる。
[0079] つまり、端子対 00'と校正面 38の間の部分 41について合成した散乱行列を (C1)、 校正面 39よりも右側の部分 42について (E )— 1と Γ とを合成した反射係数を C2 Γ
T2 D2
とすると、図 7に示すようになる。
[0080] この(C1)は、いわゆる「相対補正アダプタ」であり、ポート毎に独立して求めることが できる。(C1)の各要素を C1 , C1 , C1 , C1 とすると、ネ目反定理により CI =c
00 01 10 11 01
1 となる。したがって、相対補正アダプタ (C1)は、対象となるポートについて電気特
10
性の異なる少なくとも 3つの補正データ取得用試料を用意し、それぞれ、基準治具 7 0と試験治具 80に実装した状態で測定することにより、決定することができる。
[0081] すなわち、散乱係数 (CI , CI , CI , C1 )は、 3つの補正データ取得用試料
00 01 10 11
について、試験治具 80に実装したときの S 、基準治具 70に実装したときの S の
11T 11D 測定値を、それぞれ、 S 、 S (1= 1, 2, 3)とすると、次の式(1)により求めること
l lTi HDi
ができる。
[数 4] ((
_、ggg)„-cc!,cco pllu-slp..zallpll.pKnlllllpll【l-- *****ssss*ss S ( ss++El§Esp一-_- -l--ll-t-5二- s* S* ss ss* S s* s*s s* ( s)+t-s一一。ps≡一-ーヒ -sー5一ヒーs一一pl-=-一一 l一----- ) ( I s****ss s**s s*** s*S s)/ (s s*s s s s* s S s++: ·ーES"ヒls-l ltp一一 §二ss一一pE二-一i一トコ一-一一p二p一一-一----
Figure imgf000025_0001
号ラインポートの相対補正アダプタ C2 Γについては、このようにして求めた散 乱係数 (CI , CI , CI , CI )と、信号ラインポートと非信号ラインポートが接続
00 01 10 11
されたスルーデバイスの測定値とから求める。
[0083] すなわち、スルーデバイスを基準治具 70に実装した状態で測定することにより、測 定値 S を求める。また、スルーデバイスを試験治具 80に実装した状態で測定する
11D
ことにより、試験治具 80に実装した状態の散乱係数 (S , S , S , S )を求め
11T 12T 21T 22T る。そして、図 7において校正面 39より左側の部分について、図 8に示すように、散乱 係数 (C1 , C1 , C1 , C1 )と散乱係数 (S , S , S , S )とを合成した散
00 01 10 11 11T 12T 21T 22T 乱係数 (S , S , S , S )を求める。
111 121 211 221
[0084] C2 rは、測定値 S 及び散乱係数 (S , S , S , S )とを用いて、次の式(2)
11D 111 121 211 221
により求める。
[数 5]
C2T SllD … )
^ HD ύ 22/ ύ \ 1Ι " 22/ " 21/ ^ 12/
[0085] 以上のようにして決定した信号ラインポートの補正アダプタ(CI , CI , CI , C1
00 01 10
)と、非信号ラインポートの相対補正アダプタ C2 Γは、任意の電子部品の電気特性
11
を推定するため、後述する式(3)において用いる。
[0086] 一つの信号ラインポートと一つの非信号ラインポートを有する 2ポートの試料 11に ついては、試験治具 80に実装した状態で測定を行い、試験治具 80に電子部品を実 装した状態での散乱係数 (S , S , S , S )を求め、次の(3)式を用いて、基
11T 12T 21T 22T
準治具 70に実装した状態で測定したならば得られる測定値 S を算出することがで
11D
きる。
[数 6]
UD 00 1 - ΓΊ * 一 C T * S + C\ * Τ'? *^ * + ΓΊ * Γ"? * ^ * ^ ^ '
11 3πτ ^22 Lii ^ HT °ητ ^Ln °22τ
[0087] 任意の Μポートの非信号ラインポートを持つ Νポートの電子部品(Μく Ν)について も、前記電子部品を試験治具に実装した状態で測定を行い散乱係数を求め、各信 号ラインポート、各非信号ラインポートにそれぞれ対応する相対補正アダプタを合成 することによって、前記電子部品を基準治具に実装した状態で測定したならば得られ る測定値を算出することができる。
[0088] 試験治具 30, 80を用いる測定装置 36, 86は、非信号ラインポートについて上述し たような測定誤差の補正を行うことができるように構成されている。基準治具 20, 70 を用いる測定装置 26, 76は、非信号ラインポートについて測定を行わないので、特 に測定装置 36, 86と同じ構成とする必要はない。もっとも、測定装置 36, 86と同じ構 成のものであっても、使用可能である。
[0089] 次に、非信号ラインポートについて測定可能な測定装置 36, 86の構成について、 図 4のブロック図を参照しながら説明する。
[0090] 測定装置 36, 86は、表示部 52と、操作部 54と、測定部 56と、制御部 58と、記憶部 60と、演算部 62と、インターフェース部 64とを備える。
[0091] 表示部 52は、表示パネル等を含み、測定装置 36, 86の動作状況や操作指示など を表示する。操作部 54は、ボタンやスィッチなどを含み、オペレータからの電子部品 測定装置 36, 86に対する操作を受け付ける。測定部 56は、同軸ケーブル 35, 85及 び試験治具 30, 80を介して、電子部品 10, 11の端子に接続される。測定部 56は、 電子部品 10, 11の端子を適宜に選択して信号を入力し出力信号を測定する。制御 部 58は、測定装置 36, 86全体の制御を統括する。記憶部 60には、制御部 58ゃ演 算部 62を動作させるためのプログラム、測定部 56からの測定データ、演算部 62の演 算結果データなどが格納される。演算部 62は、測定部 56からのデータや記憶部 60 に格納されたデータを用い、所定のプログラムに従って演算を行う。インターフェース 部 64は、外部機器とデータを送受信するためのインターフェースであり、記憶部 60 に格納するためのデータやプログラムや、演算部 62からの演算結果データなどを受 け付け、入出力を行う。
[0092] 測定装置 36, 86は、記憶部 60に格納されたプログラムに従って動作する。電子部 品測定装置 36, 86は、校正モードと測定モードを含む複数の動作モードで動作させ ることがでさる。
[0093] 校正モードでは、基準治具 20, 70と試験治具 30, 80との間の相対的な測定誤差 を補正するためのデータを取得し、電気特性を推定するための数式を決定する。す なわち、測定部 56は、基準治具 20, 70や試験治具 30, 80にデータ取得用試料や スルーデバイス (標準試料)が実装された状態で、順次、測定を行う。このとき、例え ば表示部 52に測定対象が表示される。オペレータは、表示された測定対象の準備 が完了すると、操作部 54を操作する。この操作を操作部 54が受け付けると、測定部 56は測定を開始し、測定データは記憶部 60に格納される。演算部 62は、記憶部 60 に格納された測定データを、適宜なタイミングで読み出して、前述した補正アダプタ( C1 , C1 , C1 , CI )、C2 rなどを演算し、電気特性を推定するための数式を
00 01 10 11
決定する。このようにして決定されて数式は、記憶部 60に格納される。
[0094] 測定モードでは、試験治具 30, 80を用いた測定データから、基準治具 20, 70を用 いて測定した場合の電気特性を推定する。すなわち、測定部 56は、試験治具 30, 8 0に任意の電子部品 10, 11が実装された状態で測定を行う。演算部 62は、測定部 5 6からの測定データから、電子部品 10, 11の電気特性の推定値を算出する。このと き、演算部 62は、校正モードで決定された数式を記憶部 60から読み出し、その数式 を用いて、電子部品 10, 11の電気特性の推定値を算出する。算出された推定値は 、表示部 52に表示されたり、インターフェース部 64から外部機器に出力されたりする
[0095] なお、記憶部 60に、別途決定した電気特性を推定するための数式を予め格納して おき、演算部 62がその数式を用いるようにすれば、校正モードを省略しても、試験治 具 30, 80に実装した任意の電子部品 10, 11の電気特性の推定を行うことが可能で ある。この場合、試験治具 30, 80と電子部品特性測定装置との組み合わせを自由 に変えることができるので、柔軟に測定作業を行うことができる。
[0096] 次に、 RF測定を利用した断線検出方法について説明する。
[0097] セラミックの多層を利用した LCチップバンドパスフィルターのように、能動素子のバ ランス出力(2ポート)の断線チェック用として、非信号ラインポート(DC電源ポート)が 内蔵されている電子部品が主流になりつつある。断線検出方法としては、図 31に示 すように、 DUT300の DCポートに直流(DC)電源 304を接続し、バランス出力ポート (ポート 2, 3)の後にそれぞれバイアス T回路 310を接続して、インダクタ 312, 316と キャパシタ 314, 318で、 DCと RF信号を分離し、バイアス T回路 310の DC出力を検 出することで、ノランス出力ポートの断線チェックを行っている。また、 DCポートに接 続される DC電源 304の影響を無くすために、 DCポートにおいて DUT300の近傍に lOOpF程度のパスコン 302を接続して!/、る。
[0098] 現在、ユーザーに対しては、 DCポートがない治具 (基準治具)で保証し、実際のェ 程では DCポートを使用した試験治具で測定を行っている。試験治具測定値から基 準治具測定値を推定するために、 DCポートを RF測定し、非特許文献 1等に開示さ れた相対補正法を応用することが考えられる。その場合、先行技術をそのまま使用す ると、 DCポートを RF測定し試験治具を補正した後、電源を接続することで、補正特 性に散乱誤差が生じたり、 DCポートラインの容量によって、 DCポートの RF測定自体 が困難になり、基準治具と試験治具の補正ができなくなったりする。 DCポートライン のパスコン容量の影響として、 DCポートからの RF信号が DUTに到達することなくパ スコンで全反射するために、 RF測定が困難になるためである。 DCポートのパスコン 容量と Load標準試料の特性 (S )は、例えば図 32に示したようになる。ノ スコン容
44
量 4pFでは、 Load抵抗試料の RF特性が short標準試料と同一特性を示してしま ヽ 、相対補正に必要な標準試料の測定が困難になる。また、断線チェックのために、 D C電源やバイアス T回路も必要になり、システムだけでなぐ特性保証のための管理 方法も複雑になる。
[0099] そこで、ネットワークァアナライザを用いて RF測定を行 、、断線を検査する。非信号 ラインポート (DCポート)を含む試験治具において、 DCポートに RFコネクタを実装し 、ネットワークアナライザにおいて RF測定可能な状態とする。デバイスを試験治具に 実装した状態で、 DCポートから低周波(1点)の RF信号を出力し、バランス出力ポー トへの伝送特性を測定して、伝送特性レベルの大きさで出力ポート間の断線、非断 線を判断する。ただし、高周波領域で相対補正を行うためには、 DCポートに接続可 能なノ スコン容量は 2PF以下であることが望ましい。
[0100] 基準治具と試験治具の間の補正を行うために、試験治具では非信号ラインポート の RF測定を行うが、試験治具が補正されたままの状態で、 DUTの出力断線チェック を行うことができる。つまり、非信号ラインポートを有さないユーザー保証状態と等しい 条件で測定可能な試験治具 (非信号ラインポートを含む)において、試験治具の補 正環境と同一状態で、 DC電源を接続せずに出力ポートの断線チェックを行うことが できる。試験治具に断線チェックのための電源やバイアス Tの接続が不要となり、試 験治具の補正環境を保ったまま、断線チェックができる。そのため、より高精度な電 気特性のユーザー保証を可能にすることができる。
[0101] 断線チェック用の RF信号は、ネットワークアナライザの最低周波数 (例えば、 300K
Hz)にすればデバイスの保証帯域に対して十分低 、周波数となるので DCに近 ヽ測 定が可能であり、 1点測定でよいために、断線チェック時問も短時間で済み、タクトダ ゥンの障害とはならない。
[0102] ネットワークアナライザのみで信号ラインポートの測定と出力断線チェックを両立す ることができ、 DC電源やバイアス T回路が不要となるために、シンプルな測定システ ムとなり、経済性効果も大きい。
[0103] また、 DCポートに不可欠なバスコン容量を必要としな 、ため、基準治具と試験治具 間の補正も適切に行うことができる。
[0104] この断線検出方法を一般ィ匕して記載すると次のようになる。
[0105] 電子部品の試験治具測定値から基準治具実装時の電気特性が推定可能な状態 で、電子部品内部の断線検出を行う方法であって、
試験治具の DCポートから電子部品に低周波の RF信号を入力する第 1のステップ と、
DCポートと出力ポート間の伝送特定を測定する第 2のステップと、
前記第 2のステップで得られた伝送特性と予め設定した閾値とを比較することにより
、出力ポートの断線検出を行う第 3のステップとを備えることを特徴とする、電子部品 の断線検出方法。
[0106] 上記方法によれば、 DC電源やバイアス T回路を接続せず、ネットワークアナライザ のみで出力ポートの断線検出を行うことにより、試験治具の補正環境と同一状態が維 持され、高精度の電気特性保証を行うことができる。また、シンプルな測定系であり、 測定時間も短くて済むため、経済的な効果も高い。
[0107] 上記電子部品の断線検出は、試験治具実装状態での電気特性の測定が無駄にな らなよう、電子部品の試験治具実装状態での電気特性の測定に先立って行うことが 好ましい。
[0108] 次に、本発明の実施例について説明する。
[0109] 電子部品 10には、図 9に示す不平衡入力—平衡出力 2. 4GHz帯 LCフィルタを用 いる。このデバイスは、信号ラインポートであるポート 1一 3と、非信号ラインポートであ る DCポートを備えている。ポート 1は不平衡入力ポート、ポート 2及び 3は平衡出力ポ ートである。 DCポートは、製造時の特性選別工程においてマルチメータで直流的な チェックを行うため、マルチメータに接続するためのポートである。 DCポートは、製品 としては使用されないため、ユーザ使用時には開放状態となる。
[0110] 図 2bに示すように、試験治具 30は、ポート 1一 3と測定装置 36とを接続する同軸コ ネクタ 30a, 30b, 30c以外に、 DCポートにマルチメータを接続するための同軸コネ クタ 30dを有している。つまり、信号ラインポート (ポート 1一 3)と非信号ラインポート( DCポート)が測定される。
[0111] 一方、ユーザ保証状態となる基準治具 20において、 DCポートは開放状態となって いて、図 2aに示すように、信号ラインポート (ポート 1一 3)のみが測定され、非信号ラ インポート(DCポート)は測定されない。このような治具 20, 30間の非信号ラインポー トの違いにより、試験治具 30と基準治具 20とでデバイス測定値が変化する。
[0112] 具体的な実験条件は、次の通りである。
•DUT 不平衡入カー平衡出力 2. 4GHz帯 LCフィルタ
'測定器 ADVANTEST R3767CG (8GHz 4ポートネックワークアナライザ) •周波数範囲 500MHz— 3. 5GHz
•データ点数 801点
•IF帯域幅 1kHz
•基準治具 DCポートを省いた 3ポート治具
•試験治具 DCポートに SMAコネクタを取り付け、ポート 1 (不平衡入力)、ポート 2 (平衡出力)に 3dBのアツテネータ、ポート 3 (平衡出力)にディレイを取り付けた 4ポー ト治具
•標準試料 非信号ラインポートに対する標準試料として、ポート 1、ポート 4間をス ルーする標準試料を 1つ用意した。真値は不明である。 •評価内容 S 、S 、S 、S 、S ZS 、 Phase Differential
DS21 SS22 DD22 CS21 21 31
•DUTの簡易的な回路図を図 9に示す。
[0113] 図 10— 13に、本発明を用いて試験治具測定値力も基準治具測定値を推定した結 果を示す。図中、本発明の手法を用い非信号ラインポートの相対補正アダプタを導 出した場合については「非 RFポート補正」、従来の手法を用い非信号ラインポートの 相対補正アダプタを導出しな力つた場合にっ 、ては「非 RFポート無視」としてデータ を示している。
[0114] 図 10及び図 11では平衡度のよい試料を使用しているため、 S 、S 、S で
DS21 SS11 DD22 は、非信号ラインポートの補正アダプタの効果が見えてきて ヽな 、。
[0115] 図 11及び図 12から平衡度の違いに大きく影響されるパラメータ S 、S ZS 、
CS21 21 31
Phase Differentialにお!/、てはその効果が確認できる。
[0116] S 、S ZS では、 DUTのバランスが取れていない低周波側でその効果が確
CS21 21 31
認でき、また Phase Differentialでは通過域においてもその効果が確認できる。
[0117] また、本発明の実施例の説明で用いた DUTについて、ポート 2, 3と DCポート(ポ ート 4)間の断線検出を行った。そのためには、試験治具測定値から基準治具測定値 を推定可能な試験治具基板状態にぉ 、て、非信号ラインポート (DCポート)をネット ワークアナライザのポート 4に接続する。このとき、 DCポートラインに実装されるノスコ ン容量は 2pF以下であることが望ましい。測定回路を、図 33に示す。 300kHzの周 波数を DCポート(ポート 4)から出力し、バランス出力ポート(ポート 2, 3)への伝送特 性 (S , S )レベルを測定した。
24 34
[0118] 出力ポート 2, 3が断線している場合 (不良)と、非断線の場合(良品)の S , S の
24 34 伝送特性レベルを測定した結果を、図 34に示す。この結果から、明らかに、断線、非 断線時のレベルに有意性があり、適宜な閾値を設定することによりネットワークアナラ ィザで出力ポートの断線を検出できることが確認できる。
[0119] 非信号ラインポート (DCポート)にバスコンや電源を接続せずに信号ラインポートと して扱うことで、試験治具の補正環境を維持したままで、出力ポートの断線チェックが 可能となる。試験 RF信号 300kHzは、デバイスの周波数帯域 2. 4GHzに比べて十 分に低い周波数のため、略 DCとして扱うことができる。 [0120] (第 2の実施形態)
「フロートタイプ」の非信号ラインポートを有する電子部品について、図 14一図 27を 参照しながら説明する。
[0121] 例えば図 14に示すように、電子部品 110は、信号ラインポート 112, 114 (入出力 用のポート 1、ポート 2)以外に、インダクタ 100を並列接続する 2つの非信号ラインポ ート 116, 118を有する。電子部品 110は、キャパシタ 111を π型に結合した共振回 路の特性 (Q値)を改善するため、インダクタ 100を接続して使用される。
[0122] 図 15に示すように、電子部品 110は、第 1の実施形態と同様に、基準治具 120及 び試験治具 130にそれぞれ実装した状態で、測定装置 126, 136を用いて測定する ことができる。
[0123] 図 15 (a)に示すように、基準治具 120は、電子部品 110の信号ラインポート 112, 1 14に接続される同軸コネクタ 120s, 120tと、電子部品 110の非信号ラインポート 11 2, 114間に接続されるインダクタ 121とを備える。同軸コネクタ 120s, 120tには、そ れぞれ同軸ケーブル 125が接続され、電子部品 110の信号ラインポート 112, 114 について測定装置 126で測定する。
[0124] 図 15 (b)に示すように、試験治具 130は、電子部品 110の信号ラインポート 112, 1 14に接続される同軸コネクタ 130s, 130tと、電子部品 110の非信号ラインポート 11 6, 118に接続される同軸コネクタ 130m, 130ηとを備える。同軸コネクタ 112, 124, 126, 128には、それぞれ同軸ケーブル 135が接続され、電子部品 110の信号ライ ンポート 112, 114及び非信号ラインポート 116, 118について、測定装置 136で測 定する。
[0125] 測定装置 126, 136は、第 1実施形態の測定装置 26, 36と同様に構成する。測定 装置 126, 136に接続された同軸ケーブル 125, 135の先端は、第 1の実施形態と 同様に、標準器を用いて校正しておく。
[0126] 次に、電子部品 110を試験治具 130に実装した状態で測定した結果から、その電 子部品 110を基準治具 120に実装した状態で測定したならば得られるであろう電気 特性を推定する基本原理につ!ヽて説明する。
[0127] 図 16は、図 15 (a)のように、電子部品 110を基準治具 120に実装したときのシグナ ルフローダイヤグラムである。端子対 11', 22'は、基準治具 120の同軸コネクタ 120s , 120t (測定装置 126の校正が同軸ケーブル 125の先端で行われた同軸コネクタ接 続部)に対応する。基準治具 120の同軸コネクタ 120s, 120tと電子部品 110の 2つ の信号ラインポート 112, 114との間の部分 122, 124の電気特性を、(E ) , (F )と
D D
する。インダクタ 121が接続されて!、る電子部品 110の 2つの非信号ラインポート 116 , 118間の部分の電気特性を (L)とする。
[0128] 図 17は、図 15 (b)のように、電子部品 110を試験治具 130に実装したときのシグナ ルフローダイヤグラムである。端子対 11', 22', 33', 44'は、試験治具 130の同軸コ ネクタ 130a, 130b, 130c, 130d (測定装置 136の校正力洞軸ケーブル 135の先 端で行われた同軸コネクタ接続部)に対応する。試験治具 130の同軸コネクタ 130s , 130tと、電子咅品 110の 2つの信号ラインポート 112, 114との間の咅分 132, 13 4の電気特性を (E ) , (F )とする。電子部品 110の 2つの非信号ラインポート 116, 1
T T
18と、試験治具 130の同軸コネクタ 130m, 130ηとの間の部分 136, 138の電気特 性を (G ) , (Η )とする。
Τ Τ
[0129] 図 18は、スルーデバイス 140を基準治具 120に実装したときのシグナルフローダイ ャグラムである。スルーデバイス 140は、電子部品 110のポー卜 112, 114, 116, 11 8【こ対応するポー卜 142, 144, 146, 148を有し、信号ラインポー卜【こ対応するポー卜 142, 144と非信号ラインポートに対応するポート 146, 148との間力 それぞれ電気 的に接続されたものである。一方のポート 142, 146間の部分 140aの電気特性を (Τ )、他方のポート 144, 148間の部分 140bの電気特性を (T )とする。
1 2
[0130] スルーデバイス 140を基準治具 120に実装した状態で測定される値は、図中の符 号を伝送係数行列であるとすると、次式 (4)のように表すことができる。
(D ) = (E ) · (T ) · (L) · (T ) · (F ) · ' · (4)
thru D 1 2 D
[0131] 図 19は、スルーデバイス 140を試験治具 130に実装したときのシグナルフローダイ ャグラムである。ここで、簡単のため、試験治具 130のポート 1、ポート 2の誤差要因に っ 、ては、前述した信号ラインポートにっ 、ての相対補正アダプタを用いることにより 、基準治具 120の誤差要因 (E ) , (F )に補正しておく。つまり、端子対 11', 22'は、
D D
基準治具 120の同軸コネクタ 120s, 120tに相当する。 [0132] スルーデバイス 140を試験治具 130に実装した状態で測定される値は、図中の符 号を伝送係数行列であるとすると、端子対 11'-33'間については、次式(5)のように 表すことができる。
(T1 ) = (Ε ) · (T ) · (G ) ·'·(5)
thru D 1 T
[0133] また、端子対 22'— 44'間については、次式 (6)のように表すことができる。
(Τ2 ) = (Η ) · (Τ ) · (F ) ·'·(6)
thru T 2 D
[0134] 図 19に示した端子対 33', 44'に、図 20に示すように、それぞれ、誤差特性 (G )、
T
(H )を中和するアダプタ (G )~ (H )— 1を接続し、その先にインダクタ 121を接続
T T T
する場合を考える。これは、図 18に示したスルーデバイス 140を基準治具 120に実 装した状態と等価となる。基準治具 120の非信号ラインポート間の相対補正アダプタ を (CA)とすると、次式 (7), (8)が成り立つ。
(CA) = (G )-1-(L)-(H )"1 ·'·(7)
τ τ
(D ) = (Τ1 ) - (CA) - (T2 ) ·'·(8)
thru thru thru
式 (8)の両辺に、左右力 逆行列 (Tl (T2
thru thru Γ1を掛けると、
(CA) = (Tl )_1-(D )·(Τ2 )— 1 ·'·(9)
thru thru thru
となる。
[0135] この式(9)に、式 (4)一 (6)を代入すると、
(CA) = { (E ) · (T ) · (G )-(T)-(L)-(T)-(F ) } · { (H ) · (T ) ·
D 1 Τ D 1 2 D T 2
(F )厂1
D
= (G )— (T (E )— (E ) · (T ) · (L) · (T ) · (F · (F )— (T )— (H )— 1
T l D D I 2 D D 2 T
=(G )-1-(L)-(H )— 1 ·'·(10)
T T
となり、式 (7)と一致する。
[0136] つまり、信号ラインポートについて、図 21に示す相対補正アダプタ(CI), (C2)を 予め求めておき、非信号ラインポートについては、スルーデバイス 140を基準治具 12 0に実装した状態で測定して求めた (D )と、スルーデバイス 140を試験治具 130
thru
に実装した状態で測定して求めた (Tl ), (T2 )とを用いて、非信号ラインポート
thru thru
につ 、ての相対補正アダプタ(CA)を決めることができる。
[0137] 任意の電子部品 110を試験治具 130に実装した状態で測定すると、図 21に示した ように、試験治具 130と相対補正アダプタ (CI) , (C2) , (CA)との境界における値 が得られる。相対補正アダプタ (CI) , (C2) , (CA)の値が決まれば、基準治具 120 の同軸コネクタ 120s, 120tに相当する端子対 11', 22'の値を算出することができる 。つまり、任意の電子部品 110を試験治具 130に実装した状態で測定した結果から、 その電子部品 110を基準治具 120に実装したならば得られるであろうその電子部品 110の電気特性の推定値を算出することができる。
[0138] 次に、上記方法の実施例として、数値解析を示す。
[0139] 図 22 (a)は、基準治具 120について誤差要因を想定した電気回路図である。試料 実装部 120xとの間の各素子 120a— 120cの値を次の通り設定した。
,キヤノ シタ 120a: 0. lpF
•ィンダクタ 120b : 0. InH
•ィンダクタ 120c : 1. OnH
[0140] 図 22 (b)は、試験治具 130について誤差要因を想定した電気回路図である。試料 実装部 130xとの間の各素子 130a— 130dの数値を次の通り設定した。
•ィンダクタ 130a: 0. 2nH
,キヤノシタ 130b : 0. 2pF
•ィンダクタ 130c : 0. InH
•ィンダクタ 130d: 0. InH
[0141] 図 23 (a)は、非信号ラインポートについて相対補正アダプタを算出するために用い るスルーデバイス 140の電気回路図である。ポート 1, 3間と、ポート 2, 4間とに、それ ぞれ、インダクタ 140a, 140bが接続されている。設定した数値は次の通りである。
'インダクタ 140a: 0. 05nH
•ィンダクタ 140b : 0. 075nH
[0142] 図 23 (b)は、電気特性を測定する電子部品 110の電気回路図である。キャパシタ 1
10a— 110cにより π型共振子を構成している。設定した数値は次の通りである。
•キャパシタ 110a: 0. 3pF
•キャパシタ 110b : 0. 3pF
•キャパシタ 110c : 0. 2pF [0143] 以上のように数値を設定した基準治具 120及び試験治具 130に、スルーデバイス 1 40及び電子部品 110を実装して測定した場合について、測定周波数を 10GHzとし て電気特性を計算した。
[0144] まず、ポート 1、ポート 2の相対補正アダプタを求めると、試験治具 130での測定値 は、図 24のような状態で測定した値に変換される。つまり、試験治具 130のポート 1 ( 130s)、ポート 2 (130t)が相対補正法の効果によって基準治具 120のポート 1 (120 s)、ポート 2 (120t)に置き換わった場合の測定値が得られる。
[0145] 次に、スルーデバイス 140を基準治具 120と試験治具 130の両方で測定する。試 験治具 130の測定結果のうち、ポート 1、ポート 2については、相対補正を行う。これ によって、図 25の状態の測定結果が得られる。基本原理の説明では伝送係数行列 を用いたが、ここでは直感的な分力りやすさのために散乱係数行列で表し、基準治 具 120のポート 1—2間の散乱係数行列を (S )、試験治具 130のポート 1—3間の散
thru
乱係数行列を (SI )、試験治具 130のポート 2— 4間の散乱係数行列を (S2 )と
thru thru すると、それぞれの状態の測定値は、次のようになる。
[数 7]
0.524 0.168 i 0.529 -0.646 i I
Figure imgf000037_0001
0.529 ■0.646 i 0.268 0.480 jj
[数 8a]
0.013 -0.068 i 0.966 一 0.250 i
Figure imgf000037_0002
0.966 -0.250 i -0.044 -0.053 i
[数 8b]
0.053 0.223 i 0.947 -0.223 ΤΊ
Figure imgf000037_0003
0.947 - 0.223 i 0.053 0.223 i I 以上の結果から、式(7)を用いると、「フロートタイプ」の非信号ラインポート間につ V、ての相対補正アダプタ (CA)は、散乱係数行列(SA)で表すと、次のようになる。 [数 9]
Figure imgf000038_0001
このようにして求めた相対補正アダプタを用いて、電子部品 110を試験治具 130に 実装したときの測定値から、基準治具 120に実装したときの測定値を推定する。図 2 6 (b)は、電子部品 110を試験治具 130に実装して測定した状態を示す。この測定結 果に、ポート 1、ポート 2の相対補正を行うと、次の散乱係数行列が得られる。
[数 10]
-0.418 -0.455 i 0.198 0.044 i 0.516 -0.520 i 0.197 0.020 i
0.198 0.044! -0.348 -0.331 i 0.200 0.019 i 0.534 -0.635 i
0.516 - 0.520 i 0.200 0.01 9 i -0.525 - 0.329 i 0.196 -0.005 i
Figure imgf000038_0002
0.197 0.020 i 0.534 -0.635 i 0.1 96 —0.005 i -0.438 -0.206 i この散乱係数行列に、(数 9)のフロート相対補正アダプタ (SA)を接続した状態を計 算した結果は、次のようになる。
[数 11]
-0.072 -0.979 i -0.190 - 0.009 i I
1 )
Figure imgf000038_0003
-0.190 -0.009 i 0.168 -0.967 i I ( 1
この散乱係数行列が、電子部品 110を基準治具 120に実装して測定した場合の測 定値の推定値である。
[0148] 次に、図 26 (a)に示すように、同じ電子部品 110を基準治具 120に接続して測定し た場合について計算すると、散乱係数行列は次のようになる。
[数 12]
-0.072 -0.979 i -0.190 -0.009 i j
Figure imgf000038_0004
-0.190 一 0.009 i 0.168 -0.967 i I ■( 12)
[0149] 上記の散乱係数行列(11) , (12)を比較すると、推定値と測定値とは完全に一致し ており、フロートタイプの電子部品にも相対補正法が適用できることが確認できる。
[0150] 次に、図 27に、デュプレクサの試料について、その電気特性の実測値と、第 2の実 施形態の相対補正法による推定値のグラフを示す。デュプレクサの試料を試験治具 に実装して測定した値 (Prod. )と、基準治具に実装して測定した値 (Std. )と、第 2 の実施形態の手法を用いて、試験治具に実装して測定した値から基準治具に実装 した場合の特性値を計算した推定値 (Corrected. )とを示している。図 27 (a)は、デ ュプレクサの反射特性を示すパラメータ S につ 、て示して 、る。図 27 (b)は透過特
11
性を示すパラメータ S , S について示している。
21 31
[0151] 図 27から、反射特性についても、透過特性についても、推定値 (Corrected. )は 実測値 (Prod. )と略一致しており、「フロートタイプ」についても相対補正の効果が確 認できる。
[0152] (まとめ)
以上に説明したように、非信号ラインポートを有するデバイスは、ユーザ保証状態に おいて非信号ラインポートはユーザ使用状態を推定して特性保証しなければならな いため、基準治具における非信号ラインポートの RF測定は不可能である。そのため 、非信号ラインポートも RF測定可能な試験治具の測定値から、非信号ラインポートの RF測定ができない基準治具の測定値を推定する手法が必要であるが、本発明はこ の要求を満足するものである。
[0153] 本発明によれば、ユーザ保証状態と等 、条件でのデバイス特性の推定が可能に なり、より高精度な電気特性のユーザ保証を可能になり、良品の向上などの効果も得 られる。また、治具間の相対的な誤差を測定して補正するため、治具の調整は全く必 要な ヽので、デバイスの帯域幅が広!、場合にぉ ヽても問題なく適用できる。
[0154] 本発明は、「シャントタイプ」の非信号ラインポートを有するモジュール商品(電源ラ インを有する能動素子全般、外部付属部品のパラメータ変化により動作領域を制御 するデバイス)に加え、「フロートタイプ」の非信号ラインポートを有する高周波デバイ ス (フィルタ、デュプレクサ等)にも適用することができる。
[0155] さらには、「シャントタイプ」と「フロートタイプ」とが混成された電子部品についても、 前述した基本原理を組み合わせることにより、本発明を適用可能である。 [0156] 例えば図 28に示すように、複数の共振子 210sで構成したデュプレクサ 210は、信 号ラインポート 210a— 210cと、「シャントタイプ」の非信号ラインポート 210f, 210gと 、「フロートタイプ」の非信号ラインポート 210d, 210e, 210h, 210iとを有する。この ようなデュプレクサ 210についても、本発明を適用可能である。この場合、図 28 (a)に 示すように、デュプレクサ 210を基準治具 220に実装した状態では、非信号ラインポ 一卜 210d— 210iに ίま基準、冶具 220の素子 222, 224, 226, 228力 S接続され、信号 ラインポート 210a— 210c、すなわちポート 1一ポート 3についてのみ測定を行う。図 2 8 (b)に示すように、デュプレクサ 210を試験治具 230に実装した状態では、ポート 1 一ポート 9、すなわち信号ラインポート 210a— 210c及び非信号ラインポート 210d— 210iの測定を行う。
[0157] なお、本発明は、上記実施形態や実施例に限定されるものではなぐ種々の変形 をカロえて実施することができる。
図面の簡単な説明
[0158] [図 1]基準治具と試験治具の説明図である。
[図 2a]基準治具を用いて測定する場合の全体構成図である。
[図 2b]試験治具を用いて測定する場合の全体構成図である。
[図 3a]基準治具を用いて測定する場合の全体構成図である。
[図 3b]試験治具を用いて測定する場合の全体構成図である。
[図 4]測定装置のブロック図である。
[図 5]本発明の誤差補正の基本原理を示す 2端子対回路図である。
[図 6]本発明の誤差補正の基本原理を示す 2端子対回路図である。
[図 7]本発明の誤差補正の基本原理を示す 2端子対回路図である。
[図 8]本発明の誤差補正の基本原理を示す 2端子対回路図である。
[図 9]非信号ラインポートを有する電子部品の回路図である。
[図 10]図 9の電子部品の電気特性図である。
[図 11]図 9の電子部品の電気特性図である。
[図 12]図 9の電子部品の電気特性図である。
[図 13]図 9の電子部品の電気特性図である。 [図 14]「フロートタイプ」の電子部品の回路図である。
[図 15] (a)基準治具、 (b)試験治具を用いて測定する場合の全体構成図である。
[図 16]電子部品を基準治具に実装して測定する場合のシグナルフローダイヤグラム である。
[図 17]電子部品を試験治具に実装して測定する場合のシグナルフローダイヤグラム である。
[図 18]スルーデバイスを基準治具に実装して測定する場合のシグナルフローダイヤ グラムである。
[図 19]信号ラインポート相対補正後においてスルーデバイスを試験治具に実装して 測定する場合のシグナルフローダイヤグラムである。
[図 20]相対補正アダプタを想定したときのシグナルフローダイヤグラムである。
[図 21]相対補正アダプタを想定したときのシグナルフローダイヤグラムである。
[図 22] (a)基準治具、(b)試験治具の回路図である。
[図 23] (a)スルーデバイス、(b)被検体の回路図である。
[図 24]信号ラインポートの相対補正後の試験治具の回路図である。
[図 25]信号ラインポート相対補正後のスルーデバイス測定時の回路図である。
[図 26]被検体測定時の回路図である。
[図 27]電子部品の電気特性図である。
[図 28] (a)基準治具、 (b)試験治具にデュプレクサを実装したときの電気回路図であ る。
[図 29]「シャントタイプ」の電子部品に用いる基準治具と試験治具の説明図である。
[図 30]「フロートタイプ」の電子部品に用いる基準治具と試験治具の説明図である。
[図 31]断線検出方法を示す電気回路図である。
[図 32]DCパスコン容量と RF特性の関係を示すグラフである。
[図 33]断線測定時の回路図である。
[図 34]断線測定結果の表である。
符号の説明
10, 11 電子部品 基準治具
測定装置
試験治具
測定装置 (電子部品特性測定装置) 表示部
操作部
測定部 (測定手段)
制御部
記憶部 (記憶手段、数式記憶手段) 演算部 (数式決定手段、電気特性推定手段) インターフェース §
測定装置
測定装置 (電子部品特性測定装置) インダクタ(素子)
電子部品
ポート (第 1の信号ラインポート)
ポート (第 2の信号ラインポート)
ポート (第 1の非信号ラインポート) ポート (第 2の非信号ラインポート) 基準治具
測定装置
試験治具
測定装置 (電子部品特性測定装置) スルーデバイス
電子部品
基準治具
試験治具 (電子部品特性測定装置)

Claims

請求の範囲
[1] 高周波信号の印加または検出に係わる信号ラインに接続される信号ラインポートと 、該信号ラインポート以外の非信号ラインポートとを有する電子部品について、前記 電子部品を試験治具に実装した状態で前記信号ラインポートおよび前記非信号ライ ンポートを測定した結果から、当該電子部品を前記信号ラインポートのみ測定可能で ある基準治具に実装した状態で前記信号ラインポートを測定したならば得られるであ ろう前記電子部品の電気特性の推定値を算出する、測定誤差の補正方法であって、 少なくとも 3種類の補正データ取得用試料を前記試験治具に実装した状態と前記 基準治具に実装した状態とで、前記補正データ取得用試料の各々の信号ラインポー トの少なくとも一つについて、電気特性を測定する第 1のステップと、
信号ラインポートの少なくとも一つと非信号ラインポートの少なくとも一つとが電気的 に接続された補正データ取得用スルーデバイスを用意し、前記補正データ取得用ス ルーデバイスを前記試験治具に実装した状態で当該信号ラインポート及び当該非信 号ラインポートを測定し、かつ、前記補正データ取得用スルーデバイスを前記基準治 具に実装した状態で当該信号ラインポートを測定する第 2のステップと、
前記第 1及び第 2のステップで得られた測定値に基づ 、て、前記電子部品を前記 試験治具に実装した状態で前記信号ラインポートおよび前記非信号ラインポートを 測定した結果から当該電子部品を前記基準治具に実装した状態で前記信号ライン ポートを測定したならば得られるであろう前記電子部品の電気特性の推定値を算出 するための数式を決定する第 3のステップと、
任意の前記電子部品について、前記試験治具に実装した状態で前記信号ライン ポートおよび前記非信号ラインポートを測定する第 4のステップと、
前記第 4のステップで得られた測定値に基づ 、て、前記第 3のステップで決定した 前記数式を用いて、当該電子部品を前記基準治具に実装した状態で前記信号ライ ンポートを測定したならば得られるであろう前記電子部品の電気特性の推定値を算 出する第 5のステップとを備えたことを特徴とする、測定誤差の補正方法。
[2] 前記第 3のステップにお 、て、前記非信号ラインポートに対する前記数式は、前記 第 2のステップにおいて前記補正データ取得用スルーデバイスを前記試験治具に実 装した状態で当該信号ラインポート及び当該非信号ラインポートを測定した結果を、 前記第 1のステップで得られた測定値から得られる「前記電子部品を前記試験治具 に実装した状態で前記信号ラインポートを測定した結果から、前記基準治具に実装 した状態で前記信号ラインポートを測定したならば得られるであろう前記電子部品の 電気特性の推定値を算出するための数式」に代入し得られる散乱行列 s (各要素を
I
、S 、S 、S 、S とする)と、前記第 2のステップで得られる前記補正データ取得
111 121 211 221
用スルーデバイスを前記基準治具に実装した状態における当該信号ラインポートの 測定値 s とを用いて次式
11D
[数 1]
C2r = c * c — 11D * ς 117 + *
°11D ° 227 22/ ^ 21/ °12/ のように示されることを特徴とする、請求項 1に記載の測定誤差の補正方法。
前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポートと、少なくと も 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2の前記非信 号ラインポートの間に素子が接続され、
前記電子部品の前記第 1及び第 2の非信号ラインポートにより影響を受ける前記第
1及び第 2の信号ラインポート間の電気特性の推定値の算出については、 前記第 1のステップにおいて、前記電子部品の前記第 1及び第 2の信号ラインポー トに対応する前記補正データ取得用試料の各々の信号ラインポートについて、電気 特性を測定し、
前記第 2のステップにおいて、前記補正データ取得用スルーデバイスは、前記電子 部品の前記第 1の信号ラインポートに対応する前記補正データ取得用スルーデバイ スの信号ラインポートと前記電子部品の前記第 1の非信号ラインポートに対応する前 記補正データ取得用スルーデバイスの非信号ラインポートとの間が電気的に接続さ れ、かつ、前記電子部品の前記第 2の信号ラインポートに対応する前記補正データ 取得用スルーデバイスの信号ラインポートと前記電子部品の前記第 2の非信号ライン ポートに対応する前記補正データ取得用スルーデバイスの非信号ラインポートとの間 が電気的に接続され、
前記第 3のステップにお 、て、前記電子部品の前記第 1及び第 2の非信号ラインポ ートにより影響を受ける前記第 1及び第 2の信号ラインポート間の電気特性の推定値 を算出するための前記数式は、前記第 2のステップにお 、て前記補正データ取得用 スルーデバイスを前記試験治具に実装した状態で当該信号ラインポート及び当該非 信号ラインポートを測定した結果を、前記第 1のステップで得られた測定値力 得ら れる「前記電子部品を前記試験治具に実装した状態で前記信号ラインポートを測定 した結果から、前記基準治具に実装した状態で前記信号ラインポートを測定したなら ば得られるであろう前記電子部品の電気特性の推定値を算出するための数式」に代 入し得られる、前記電子部品の前記第 1の信号ラインポートに対応する当該信号ライ ンポートと前記電子部品の前記第 1の非信号ラインポートに対応する当該非信号ライ ンポートとの間に対する伝送係数行列 (T1 )及び前記電子部品の前記第 2の信号
thru
ラインポートに対応する当該信号ラインポートと前記電子部品の前記第 2の非信号ラ インポートに対応する当該非信号ラインポートとの間に対する伝送係数行列 (T2 )
thru と、前記第 2のステップで得られる前記補正データ取得用スルーデバイスを前記基準 治具に実装した状態における、前記電子部品の前記第 1及び第 2の信号ラインポー トに対応する当該信号ラインポート間の伝送係数行列 (D )とを用いて次式
thru
(CA) = (Tl )-1 · (D ) · (Τ2 )— 1
thru thru thru
のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 V、ることを特徴とする、請求項 1に記載の測定誤差の補正方法。
[4] 前記第 5のステップにおいて、前記算出方法は、任意の前記電子部品について、 前記試験治具に実装した状態で測定される電気特性を、前記基準治具に実装した 状態で測定される電気特性に変更する特性を有する相対補正アダプタを想定した上 で、前記非信号ラインポートにおいては、前記第 3のステップにおける前記非信号ラ インポートに対する前記数式を前記相対補正アダプタとして用い推定することを特徴 とする、請求項 1、 2又は 3に記載の測定誤差の補正方法。
[5] 前記第 2のステップにお 、て測定する前記補正データ取得用スルーデバイスは、 当該信号ラインポートと当該非信号ラインポートとの間の伝達係数カ 10dB以上で あることを特徴とする、請求項 1乃至 4のいずれか一つに記載の測定誤差の補正方 法。
高周波信号の印加または検出に係わる信号ラインに接続される信号ラインポートと 、該信号ラインポート以外の非信号ラインポートとを有する電子部品について、前記 電子部品を試験治具に実装した状態で前記信号ラインポートおよび前記非信号ライ ンポートを測定し、その測定結果から、当該電子部品を前記信号ラインポートのみ測 定可能である基準治具に実装した状態で前記信号ラインポートを測定したならば得 られるであろう前記電子部品の電気特性の推定値を算出する、電子部品特性測定 装置であって、
前記電子部品を前記試験治具に実装した状態で前記信号ラインポートおよび前記 非信号ラインポートを測定する測定手段と、
少なくとも 3種類の補正データ取得用試料を前記試験治具に実装した状態と前記 基準治具に実装した状態とで、前記補正データ取得用試料の各々の信号ラインポー トの少なくとも一つについて、電気特性を測定した第 1の測定データと、信号ラインポ ートの少なくとも一つと非信号ラインポートの少なくとも一つとが電気的に接続された 補正データ取得用スルーデバイスを、前記試験治具に実装した状態で当該信号ライ ンポート及び当該非信号ラインポートを測定した第 2の測定データと、前記補正デー タ取得用スルーデバイスを前記基準治具に実装した状態で当該信号ラインポートを 測定した第 3の測定データとを格納する、記憶手段と、
前記記憶手段に格納された前記第 1な 、し第 3の測定データに基づ 、て、前記電 子部品を前記試験治具に実装した状態で前記信号ラインポートおよび前記非信号ラ インポートを測定した結果から当該電子部品を前記基準治具に実装した状態で前記 信号ラインポートを測定したならば得られるであろう前記電子部品の電気特性の推定 値を算出するための数式を決定する、数式決定手段と、
任意の前記電子部品について、前記測定手段で測定して得られた測定値から、前 記数式決定手段が決定した前記数式を用いて、当該電子部品を前記基準治具に実 装した状態で前記信号ラインポートを測定したならば得られるであろう前記電子部品 の電気特性の推定値を算出する、電気特性推定手段とを備えたことを特徴とする、 電子部品特性測定装置。
前記数式決定手段が決定する前記非信号ラインポートに対する前記数式は、 前記第 2の測定データを、前記第 1の測定データから得られる「前記電子部品を前 記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前記基準 治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう前記 電子部品の電気特性の推定値を算出するための数式」に代入し得られる散乱行列 S (各要素を、 S 、S 、S 、S とする)と、前記第 3のデータである前記補正データ
I 111 121 211 221
取得用スルーデバイスを前記基準治具に実装した状態における当該信号ラインポー トの測定値 s とを用いて次式
11D
[数 2]
C2r = c * c - c 11D * ς 117 + c *
°11D ° 227 22/ ° 21/ °12/ のように示されることを特徴とする、請求項 6に記載の電子部品特性測定装置。 前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポートと、少なくと も 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2の前記非信 号ラインポートの間に素子が接続され、
前記第 1の測定データは、前記電子部品の前記第 1及び第 2の信号ラインポートに 対応する前記補正データ取得用試料の各々の信号ラインポートについて、電気特性 を測定され、
前記第 2及び第 3の測定データを測定するときに用いる前記補正データ取得用ス ルーデバイスは、前記電子部品の前記第 1の信号ラインポートに対応するデータ取 得用スルーデバイスの信号ラインポートと前記電子部品の前記第 1の非信号ラインポ ートに対応するデータ取得用スルーデバイスの非信号ラインポートとの間が電気的に 接続され、かつ、前記電子部品の前記第 2の信号ラインポートに対応するデータ取 得用スルーデバイスの信号ラインポートと前記電子部品の前記第 2の非信号ラインポ ートに対応するデータ取得用スルーデバイスの非信号ラインポートとの間が電気的に 接続され、 前記数式決定手段が決定する、前記電子部品の前記第 1及び第 2の非信号ライン ポートにより影響を受ける前記第 1及び第 2の信号ラインポート間の電気特性の推定 値を算出するための前記数式は、
前記第 2の測定データを、前記第 1の測定データから得られる「前記電子部品を前 記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前記基準 治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう前記 電子部品の電気特性の推定値を算出するための数式」に代入し得られる、前記電子 部品の前記第 1の信号ラインポートに対応する当該信号ラインポートと前記電子部品 の前記第 1の非信号ラインポートに対応する当該非信号ラインポートとの間に対する 伝送係数行列 (T1 )及び前記電子部品の前記第 2の信号ラインポートに対応する
thru
当該信号ラインポートと前記電子部品の前記第 2の非信号ラインポートに対応する当 該非信号ラインポートとの間に対する伝送係数行列 (T2 )
thruと、前記第 3の測定デー タから得られる、前記補正データ取得用スルーデバイスを前記基準治具に実装した 状態における、前記電子部品の前記第 1及び第 2の信号ラインポートに対応する当 該信号ラインポート間の伝送係数行列 (D )
thruとを用いて次式
(CA) = (Tl )-1 · (D ) · (Τ2 )— 1
thru thru thru
のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 いることを特徴とする、請求項 6に記載の電子部品特性測定装置。
[9] 前記電気特性推定手段は、任意の前記電子部品について、前記試験治具に実装 した状態で測定される電気特性を、前記基準治具に実装した状態で測定される電気 特性に変更する特性を有する相対補正アダプタを想定した上で、前記非信号ライン ポートにおいては、前記数式決定手段が決定した前記非信号ラインポートに対する 前記数式を前記相対補正アダプタとして用い推定することを特徴とする、請求項 6、 7 又は 8に記載の電子部品特性測定装置。
[10] 前記第 2及び第 3の測定データを取得するための前記補正データ取得用スルーデ バイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達係数が- 10d B以上であることを特徴とする、請求項 6乃至 9のいずれか一つに記載の電子部品特 性測定装置。 [11] 高周波信号の印加または検出に係わる信号ラインに接続される信号ラインポートと
、該信号ラインポート以外の非信号ラインポートとを有する電子部品について、前記 電子部品を試験治具に実装した状態で前記信号ラインポートおよび前記非信号ライ ンポートを測定し、その測定結果から、当該電子部品を前記信号ラインポートのみ測 定可能である基準治具に実装した状態で前記信号ラインポートを測定したならば得 られるであろう前記電子部品の電気特性の推定値を算出する、電子部品特性測定 装置であって、
前記電子部品を前記試験治具に実装した状態で前記信号ラインポートおよび前記 非信号ラインポートを測定する測定手段と、
少なくとも 3種類の補正データ取得用試料を前記試験治具に実装した状態と前記 基準治具に実装した状態とで、前記補正データ取得用試料の各々の信号ラインポー トの少なくとも一つについて、電気特性を測定した第 1の測定データと、信号ラインポ ートの少なくとも一つと非信号ラインポートの少なくとも一つとが電気的に接続された 補正データ取得用スルーデバイスを、前記試験治具に実装した状態で当該信号ライ ンポート及び当該非信号ラインポートを測定した第 2の測定データと、前記補正デー タ取得用スルーデバイスを前記基準治具に実装した状態で当該信号ラインポートを 測定した第 3の測定データとに基づいて決定された「前記電子部品を前記試験治具 に実装した状態で前記信号ラインポートおよび前記非信号ラインポートを測定した結 果から当該電子部品を前記基準治具に実装した状態で前記信号ラインポートを測定 したならば得られるであろう前記電子部品の電気特性の推定値を算出するための数 式」を格納する、数式記憶手段と、
任意の前記電子部品について、前記測定手段で測定して得られた測定値から、前 記数式記憶手段に格納された前記数式を用いて、当該電子部品を前記基準治具に 実装した状態で前記信号ラインポートを測定したならば得られるであろう前記電子部 品の電気特性の推定値を算出する、電気特性推定手段とを備えたことを特徴とする 、電子部品特性測定装置。
[12] 前記数式記憶手段に格納される前記非信号ラインポートに対する前記数式は、前 記第 2の測定データを、前記第 1の測定データから得られる「前記電子部品を前記試 験治具に実装した状態で前記信号ラインポートを測定した結果から、前記基準治具 に実装した状態で前記信号ラインポートを測定したならば得られるであろう前記電子 部品の電気特性の推定値を算出するための数式」に代入し得られる散乱行列 S (各
I
要素を、 S 、S 、S 、S とする)と、前記第 3のデータである前記補正データ取
111 121 211 221
得用スルーデバイスを前記基準治具に実装した状態における当該信号ラインポート の測定値 s とを用いて次式
11D
[数 3]
C2r = * ς - c 110 * ς 117 + c * c
°11D ° 22/ °11/ 22/ ^ 21/ °12/ のように示されることを特徴とする、請求項 11に記載の電子部品特性測定装置。 前記電子部品は、少なくとも 2つの第 1及び第 2の前記信号ラインポートと、少なくと も 2つの第 1及び第 2の前記非信号ラインポートとを有し、該第 1及び第 2の前記非信 号ラインポートの間に素子が接続され、
前記第 1の測定データは、前記電子部品の前記第 1及び第 2の信号ラインポートに 対応する前記補正データ取得用試料の各々の信号ラインポートについて、電気特性 を測定され、
前記第 2及び第 3の測定データを測定するときに用いる前記補正データ取得用ス ルーデバイスは、前記電子部品の前記第 1の信号ラインポートに対応する前記補正 データ取得用スルーデバイスの信号ラインポートと前記電子部品の前記第 1の非信 号ラインポートに対応する前記補正データ取得用スルーデバイスの非信号ラインポ ートとの間が電気的に接続され、かつ、前記電子部品の前記第 2の信号ラインポート に対応する前記補正データ取得用スルーデバイスの信号ラインポートと前記電子部 品の前記第 2の非信号ラインポートに対応する前記補正データ取得用スルーデバイ スの非信号ラインポートとの間が電気的に接続され、
前記数式記憶手段に格納される、前記電子部品の前記第 1及び第 2の非信号ライ ンポートにより影響を受ける前記第 1及び第 2の信号ラインポート間の電気特性の推 定値を算出するための前記数式は、 前記第 2の測定データを、前記第 1の測定データから得られる「前記電子部品を前 記試験治具に実装した状態で前記信号ラインポートを測定した結果から、前記基準 治具に実装した状態で前記信号ラインポートを測定したならば得られるであろう前記 電子部品の電気特性の推定値を算出するための数式」に代入し得られる、前記電子 部品の前記第 1の信号ラインポートに対応する当該信号ラインポートと前記電子部品 の前記第 1の非信号ラインポートに対応する当該非信号ラインポートとの間に対する 伝送係数行列 (T1 )及び前記電子部品の前記第 2の信号ラインポートに対応する
thru
当該信号ラインポートと前記電子部品の前記第 2の非信号ラインポートに対応する当 該非信号ラインポートとの間に対する伝送係数行列 (T2 )と、前記第 3の測定デー
thru
タから得られる、前記補正データ取得用スルーデバイスを前記基準治具に実装した 状態における、前記電子部品の前記第 1及び第 2の信号ラインポートに対応する当 該信号ラインポート間の伝送係数行列 (D )
thruとを用いて次式
(CA) = (Tl )-1 · (D ) · (Τ2 )— 1
thru thru thru
のように示される伝送係数行列又は該伝送係数行列を変換した散乱係数行列を用 V、ることを特徴とする、請求項 11に記載の電子部品特性測定装置。
[14] 前記電気特性推定手段は、任意の前記電子部品について、前記測定手段により 測定される電気特性を、前記基準治具に実装した状態で測定される電気特性に変 更する特性を有する相対補正アダプタを想定した上で、前記非信号ラインポート〖こ ぉ 、ては、前記数式記憶手段に格納された前記非信号ラインポートに対する前記数 式を前記相対補正アダプタとして用い推定することを特徴とする、請求項 11、 12又 は 13に記載の電子部品特性測定装置。
[15] 前記第 2及び第 3の測定データを取得するための前記補正データ取得用スルーデ バイスは、当該信号ラインポートと当該非信号ラインポートとの間の伝達係数が- 10d B以上であることを特徴とする、請求項 11乃至 14のいずれか一つに記載の電子部 品特性測定装置。
PCT/JP2005/000018 2004-05-25 2005-01-05 測定誤差の補正方法及び電子部品特性測定装置 WO2005116669A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001211.5T DE112005001211B4 (de) 2004-05-25 2005-01-05 Messfehlerkorrekturverfahren und zwei Elektronikkomponentencharakteristik-Messvorrichtungen
JP2006513805A JP4009876B2 (ja) 2004-05-25 2005-01-05 測定誤差の補正方法及び電子部品特性測定装置
US11/563,338 US7885779B2 (en) 2004-05-25 2006-11-27 Measurement error correcting method and electronic component characteristic measurement device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004155172 2004-05-25
JP2004-155172 2004-05-25
JP2004-192561 2004-06-30
JP2004192561 2004-06-30
JP2004-291990 2004-10-04
JP2004291990 2004-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/563,338 Continuation US7885779B2 (en) 2004-05-25 2006-11-27 Measurement error correcting method and electronic component characteristic measurement device

Publications (1)

Publication Number Publication Date
WO2005116669A1 true WO2005116669A1 (ja) 2005-12-08

Family

ID=35451002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000018 WO2005116669A1 (ja) 2004-05-25 2005-01-05 測定誤差の補正方法及び電子部品特性測定装置

Country Status (6)

Country Link
US (1) US7885779B2 (ja)
JP (1) JP4009876B2 (ja)
CN (1) CN100549705C (ja)
DE (1) DE112005001211B4 (ja)
TW (1) TWI279557B (ja)
WO (1) WO2005116669A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057416A (ja) * 2005-08-25 2007-03-08 Murata Mfg Co Ltd 測定誤差の補正方法
CN102520258A (zh) * 2006-11-30 2012-06-27 株式会社村田制作所 电子部件的高频特性误差修正方法
JP2013206618A (ja) * 2012-03-27 2013-10-07 Tokyo Electron Ltd ヒータ素線検査方法、加熱装置、及びこれを備える基板処理装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152046B1 (ko) * 2008-02-05 2012-07-03 가부시키가이샤 무라타 세이사쿠쇼 측정오차의 보정방법 및 전자부품특성 측정장치
CN102901943B (zh) * 2011-12-24 2015-01-07 许继电气股份有限公司 一种基于区域电网的采样数据异常检测及过电流保护方法
JP6281726B2 (ja) 2014-03-04 2018-02-21 株式会社村田製作所 測定誤差の補正方法及び電子部品特性測定装置
CN106062572B (zh) 2014-03-04 2018-10-30 株式会社村田制作所 电路网的s参数导出方法
CN104111435B (zh) * 2014-07-21 2017-03-15 福建火炬电子科技股份有限公司 一种测试夹具误差剔除方法
CN104297597B (zh) * 2014-10-20 2017-01-18 中国电子科技集团公司第四十一研究所 一种移除双端口网络中测试夹具效应的新方法
TW202115413A (zh) * 2019-09-30 2021-04-16 日商愛德萬測試股份有限公司 維護裝置、維護方法及記錄有維護程式之記錄媒體

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162257A (ja) * 1998-11-30 2000-06-16 Advantest Corp マルチポ―トデバイス解析装置及び解析方法
JP2003294820A (ja) * 2002-03-29 2003-10-15 Agilent Technologies Japan Ltd 測定装置、測定装置の校正方法および記録媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065134B2 (en) * 2001-08-27 2006-06-20 Gennum Corporation Adaptive equalizer with large data rate range
JP3558074B2 (ja) 2001-12-10 2004-08-25 株式会社村田製作所 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
US6876935B2 (en) * 2002-09-24 2005-04-05 Murata Manufacturing Co., Ltd. Method for correcting measurement error, method of determining quality of electronic component, and device for measuring characteristic of electronic component
WO2004111768A2 (en) * 2003-06-11 2004-12-23 Agilent Technologies, Inc. Correcting test system calibration and transforming device measurements when using multiple test fixtures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162257A (ja) * 1998-11-30 2000-06-16 Advantest Corp マルチポ―トデバイス解析装置及び解析方法
JP2003294820A (ja) * 2002-03-29 2003-10-15 Agilent Technologies Japan Ltd 測定装置、測定装置の校正方法および記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057416A (ja) * 2005-08-25 2007-03-08 Murata Mfg Co Ltd 測定誤差の補正方法
JP4670549B2 (ja) * 2005-08-25 2011-04-13 株式会社村田製作所 測定誤差の補正方法
CN102520258A (zh) * 2006-11-30 2012-06-27 株式会社村田制作所 电子部件的高频特性误差修正方法
CN102520258B (zh) * 2006-11-30 2015-04-29 株式会社村田制作所 电子部件的高频特性误差修正方法
JP2013206618A (ja) * 2012-03-27 2013-10-07 Tokyo Electron Ltd ヒータ素線検査方法、加熱装置、及びこれを備える基板処理装置

Also Published As

Publication number Publication date
CN100549705C (zh) 2009-10-14
JP4009876B2 (ja) 2007-11-21
DE112005001211T5 (de) 2009-05-28
TWI279557B (en) 2007-04-21
US20070084035A1 (en) 2007-04-19
TW200600802A (en) 2006-01-01
JPWO2005116669A1 (ja) 2008-04-03
DE112005001211B4 (de) 2017-07-13
CN101006350A (zh) 2007-07-25
US7885779B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
US7107170B2 (en) Multiport network analyzer calibration employing reciprocity of a device
US7034548B2 (en) Balanced device characterization including test system calibration
US7885779B2 (en) Measurement error correcting method and electronic component characteristic measurement device
US10042029B2 (en) Calibration of test instrument over extended operating range
US10969421B2 (en) Integrated vector network analyzer
US11927661B2 (en) Integrated vector network analyzer
US7652484B2 (en) Self calibration apparatus and methods
JP2001521153A (ja) 改善された精度を有する自動マイクロ波試験システム
KR101152046B1 (ko) 측정오차의 보정방법 및 전자부품특성 측정장치
US20060182231A1 (en) Apparatus and method for processing acquired signals for measuring the impedance of a device under test
US20130317767A1 (en) Measurement error correction method and electronic component characteristic measurement apparatus
US10203361B2 (en) Method and apparatus for electrical impedance measurements
US6965241B1 (en) Automated electronic calibration apparatus
KR20040078877A (ko) 측정 오차의 보정 방법 및 전자부품 특성 측정 장치
TWI463147B (zh) Calibration method of radio frequency scattering parameters with two correctors
US6861846B2 (en) Distortion measurements with a vector network analyzer
US7834641B1 (en) Phase-gain calibration of impedance/admittance meter
JP3558080B2 (ja) 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
JP4670549B2 (ja) 測定誤差の補正方法
JPWO2006030547A1 (ja) 測定誤差の補正方法及び電子部品特性測定装置
JP5458817B2 (ja) 電子部品の電気特性測定誤差の補正方法及び電子部品特性測定装置
JP2006242799A (ja) 測定誤差の補正方法及び電子部品特性測定装置
JP4478879B2 (ja) 測定誤差の補正方法及び電子部品特性測定装置
Estrada The vector network analyzer-an essential tool in modern ate measurements
JP2016532132A (ja) ネットワーク・アナライザの較正のためにシステム誤差及びパワー値を求める方法、較正ユニット及びシステム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513805

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11563338

Country of ref document: US

Ref document number: 200580016960.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050012115

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11563338

Country of ref document: US

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112005001211

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607