WO2005095300A1 - コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法 - Google Patents

コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法 Download PDF

Info

Publication number
WO2005095300A1
WO2005095300A1 PCT/JP2005/005771 JP2005005771W WO2005095300A1 WO 2005095300 A1 WO2005095300 A1 WO 2005095300A1 JP 2005005771 W JP2005005771 W JP 2005005771W WO 2005095300 A1 WO2005095300 A1 WO 2005095300A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
water
compound
concrete composition
aggregate
Prior art date
Application number
PCT/JP2005/005771
Other languages
English (en)
French (fr)
Inventor
Kouichi Sato
Seiji Kanamori
Akira Nonaka
Norio Watanabe
Takayuki Aono
Original Assignee
Kumagai Gumi Co., Ltd.
Fatec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004099552A external-priority patent/JP4727161B2/ja
Priority claimed from JP2004099623A external-priority patent/JP2005282212A/ja
Priority claimed from JP2004099509A external-priority patent/JP4744813B2/ja
Priority claimed from JP2004125067A external-priority patent/JP4663250B2/ja
Priority claimed from JP2004214135A external-priority patent/JP2006036547A/ja
Application filed by Kumagai Gumi Co., Ltd., Fatec Co., Ltd. filed Critical Kumagai Gumi Co., Ltd.
Publication of WO2005095300A1 publication Critical patent/WO2005095300A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures

Definitions

  • the present invention provides a concrete composition having excellent early strength, fluidity, and material separation resistance, and also having excellent water resistance and cell leveling properties, a method for producing the same, a method for adjusting the viscosity thereof, and The present invention relates to a method for constructing a cast-in-place concrete pile using the concrete composition.
  • the excavation translation method uses a main cutter 32 provided in front of a skin plate 31 of a shield machine 30, as shown in FIG. While assembling the inner formwork 33, 33, ... at the rear, a pressure jack 35 is inserted between the ground 40 and the above-mentioned inner formwork 33 via the spike form 34 in parallel with the excavation.
  • the concrete is poured while the compressive force is reduced, and the covering concrete 36 is built in close contact with the ground 40, and the concrete used in the above method requires early strength after casting.
  • the ground 40 is a spring formation, water resistance to groundwater is required (for example, see Patent Document 1).
  • the concrete has the required short-term strength (early strength) and The concrete is required to be water-resistant to satisfy the target strength by casting.
  • the above concrete is pumped from a concrete pump (not shown) to a concrete casting pipe 38 through a pipe of about 3 inches in diameter. Therefore, it is necessary to have excellent fluidity, resistance to material separation, and pumpability.
  • concrete used in the above-mentioned construction methods includes, for example, high-fluidity concrete. Concrete and underwater non-separable concrete.
  • High-fluidity concrete is concrete with excellent early-strength, fluidity, and material separation resistance that can be reliably filled into formwork without compaction by vibrators.
  • a concrete admixture such as a high-performance AE water reducing agent is added to increase the fluidity, and various inorganic powders and thickeners are added to improve the material separation resistance.
  • underwater non-separable concrete used for construction of marine structures and underwater tunnels is based on water, non-separable admixture of cement, water, and aggregates containing cellulose-based or acrylic water-soluble polymers as a main component.
  • the agent By mixing the agent, the viscosity and water resistance of the concrete are increased, and even if the concrete is directly poured into water, the material separation is small and the reliability of quality can be improved.
  • permeable concrete which is used for vegetation concrete and concrete for drainage pavement, etc., which is formed by dusting coarse aggregate with a cement paste
  • the adhesion to the above-mentioned coarse aggregate and uniform shape retention are achieved.
  • an additive for permeable concrete for improving the properties for example, see Patent Document 2.
  • the additive is an additive containing a first water-soluble low-molecular compound (A) and a second water-soluble low-molecular compound (B), and contains the compound (A) and the compound (B).
  • the combination include (1) a combination of a compound selected from amphoteric surfactants (A) and a compound (B) selected from an amphoteric surfactant, or (2) a cationic surfactant. Combination of selected compound (A) and compound (B) selected from anionic aromatic compounds, (3) compound selected from cationic surfactant (A) and compound selected from bromine compound ( Combination with B).
  • the compounding amount of the above additives is appropriately selected depending on the desired degree of viscosity and uniformity of the voids, but a preferable compounding amount is cement! /, For water-hardening powder such as blast furnace slag.
  • the sum of the compound (A) and the compound (B) is 0.01 to 1% by weight, particularly preferably 0.1 to 0.5% by weight, whereby the porosity is 20 to 30%. Highly permeable concrete including continuous voids can be obtained.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-327458
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-327458
  • concrete compositions used as shield concrete are excellent in early strength, fluidity, and material separation resistance as described above.
  • it is required to have excellent water resistance.
  • the high strength and the water resistance are characteristics that are difficult to achieve in the past, and the high fluidity concrete has excellent fluidity and material separation resistance, and a chemical admixture for concrete is appropriately selected.
  • the cement can be washed out at the time of driving under ground water pressure, and sufficient function as concrete can be secured. It was difficult.
  • underwater non-separable concrete is excellent in fluidity and material separation resistance in addition to water resistance.Since it has a problem with early strength, it has sufficient initial strength to bear the reaction force of the shield. There was a problem that was not obtained.
  • concrete piles should be installed not only in direct-cast concrete using shield method, construction of offshore structures, underwater tunnels, etc., but also in places where there is underground water or confined groundwater. It can also be used when building.
  • the present invention has been made in view of the above-mentioned conventional problems, and is a concrete composition having excellent early strength, fluidity, and resistance to material separation, and also having excellent water resistance and self-leveling properties. It is an object of the present invention to provide a method for producing the same, a method for adjusting the viscosity thereof, and a method for constructing a cast-in-place concrete pile using the concrete composition.
  • the present inventors have conducted intensive studies and as a result, have found that the above-mentioned water-permeable concrete, which exhibits an excellent effect of adhering to the above-mentioned aggregate and uniform shape retention, as a thickening admixture in a concrete composition.
  • Incorporation of additives for heat resistance provides excellent early strength, fluidity, and resistance to material separation.
  • a concrete composition excellent in water resistance which is a property contrary to the above-mentioned early strength, can be obtained, and the present invention has been accomplished.
  • the invention described in claim 1 of the present application is a concrete thread and a kneaded product obtained by adding a thickening admixture to cement, water, and aggregate, and the first thickening admixture is used as the first thickening admixture.
  • Compound (A) and ionic surfactant A combination of the selected compound (B), or a compound selected from cationic surfactants (A) and ionic aromatic compounds
  • the additive selected from the combination of the selected compound (B) and the cationic surfactant is selected from the combination of the selected compound (A) and the compound (B) selected from the brominated compound. It is characterized by using one of the additives.
  • the invention according to claim 2 is the concrete composition according to claim 1, wherein the thickening admixture is a compound (A) selected from a cationic surfactant and an aionic aromatic compound.
  • the compound (A) and the compound (B) are each used in an amount of 0.5 to 5.0% by weight, based on the unit water amount, while using an admixture containing a compound (B) selected from group III compounds. In the ratio of
  • the invention described in claim 3 is the concrete thread according to claim 1 or claim 2, wherein the ratio of water cement in the concrete thread is 30 to 60%. is there.
  • the invention according to claim 4 provides the concrete composition according to any one of claims 1 to 3, wherein the concrete composition further comprises a concrete admixture for cement with respect to cement. , 0.5 to 5.0% by weight.
  • the invention according to claim 5 is the concrete composition according to claim 4, wherein a carboxyl group-containing polyether-based water reducing agent is used as the chemical admixture for concrete.
  • the invention according to claim 6 provides the concrete composition according to any one of claims 1 to 5, wherein the aggregate comprises coarse aggregate and fine aggregate.
  • the ratio of fine aggregate which is the ratio of fine aggregate contained in the aggregate, is 30-45%. Things.
  • the invention according to claim 7 is the concrete composition according to any one of claims 1 to 5, wherein at least a part or all of the aggregate has a specific gravity smaller than that of the ordinary aggregate. It is characterized in that one or both of aggregate and aggregate having specific gravity larger than that of ordinary aggregate are used.
  • the invention according to claim 8 is a method for producing the concrete composition according to any one of claims 1 to 7, wherein the second water-soluble material is used for cement, water, and aggregate. After adding and kneading the molecular compound (B), the first water-soluble low-molecular-weight compound (A) is added to the kneaded material, and the mixture is kneaded again to produce the concrete composition. And
  • the invention according to claim 9 is a method for adjusting the viscosity of the concrete composition according to any one of claims 1 to 7, wherein the concrete composition further comprises: The viscosity of the concrete composition is adjusted by adding one or both of the water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B). And
  • the initial compounding ratio of the compound (A) and the compound (B) is set to approximately 1: 1. It is characterized by.
  • the invention according to claim 11 provides the concrete composition according to claim 9 or claim 10, wherein the viscosity of the concrete composition is lower than the viscosity at the time of production.
  • the first water-soluble low molecular compound (A) is added to the concrete composition.
  • the invention according to claim 12 provides a method for adjusting the viscosity of a concrete composition according to claim 9 or claim 10, wherein the viscosity of the concrete composition at the casting site is determined at the time of production.
  • the second water-soluble low molecular weight compound (B) is added to the concrete composition.
  • the invention described in claim 13 is a method for adjusting the viscosity of a concrete composition according to any one of claims 9 to 12, wherein the concrete composition is concreted.
  • the first water-soluble low molecular weight compound (A) is previously added to the concrete composition, and the force is also pumped.
  • a steel bar is inserted into a hole from which the ground is excavated, and a concrete composition is pumped into the hole by passing a concrete composition through a tremy tube.
  • the concrete composition according to any one of claims 1 to 6 is used as the concrete composition.
  • the invention according to claim 15 provides a method for constructing a cast-in-place concrete pile according to claim 14, wherein first, the concrete containing the thickening admixture is poured to a predetermined depth, It is characterized by the fact that concrete piles are constructed by mixing concrete with the above thickening admixtures. The invention's effect
  • the first water-soluble low-molecular compound (A) selected from cationic surfactants is used as an additive to be added as a thickening admixture.
  • a second water-soluble low-molecular-weight compound (B) selected from anionic aromatic compounds, such as an additive is used as an additive to be added as a thickening admixture.
  • the thickening admixture is a cationic surfactant having a compound selected from the group consisting of a compound (A) and a compound selected from an anionic aromatic compound (B). If the compound (B) and the compound (B) are blended at a ratio of 0.5 to 5.0% by weight with respect to the unit water amount, the fluidity, the early strength, and the water resistance can be further improved.
  • the concrete composition is further mixed with a chemical admixture for concrete, such as a lipoxyl group-containing polyether-based water reducing agent, having excellent compatibility with the viscosity increasing admixture, in an amount of 0.5 to 5.0 with respect to cement. If it is blended in a ratio of weight%, fluidity and early strength can be surely developed.
  • coarse aggregates and fine aggregates are used as the aggregates, and fine aggregates contained in the aggregates are used. If the proportion of the material is 30 to 45%, concrete composition that is excellent in early strength and water resistance and excellent in pumpability, which is suitable for shield method, especially shield direct-casting method in spring water formation Things can be manufactured.
  • the aggregate has a large difference in specific gravity from ordinary aggregate, such as a lightweight aggregate having a smaller specific gravity than ordinary aggregate and a heavy aggregate having a specific gravity greater than ordinary aggregate. Even when using aggregates of different specific gravity that can be easily separated from each other, it is possible to uniformly disperse the aggregate of different specific gravity in concrete, so construct a concrete structure in which aggregate of different specific gravity is evenly dispersed. Can be.
  • the second water-soluble low-molecular-weight compound (B) is added to cement, water, and aggregate and kneaded, and then the first kneaded product is added to the kneaded material. Since the concrete composition is produced by adding the water-soluble low molecular compound (A) and kneading again, the concrete composition can be produced efficiently.
  • the first water-soluble low-molecular compound (A) and the second water-soluble Since the viscosity of the concrete composition is adjusted by adding one or both of the molecular compound (B), the concrete yarn can be easily formed without affecting the properties of the concrete composition. Further, the viscosity of the composition can be adjusted to a predetermined viscosity.
  • the concrete composition of the present invention is excellent in self-leveling as well as in flowability and water resistance. Therefore, it is possible to construct a cast-in-place concrete pile using this concrete composition. In addition, muddy water at the time of concrete pouring can be greatly reduced, such as sedimentation of the perforated wall. Even if there is, a highly reliable concrete pile can be constructed.
  • a concrete containing the above-mentioned thickening admixture is poured into the concrete to a predetermined depth, and then the above-mentioned thickening admixture is added, and! /! Concrete is poured and a concrete pile is constructed.
  • FIG. 1 is a diagram showing an outline of a method for producing a concrete composition used in a shield direct driving method according to a second preferred embodiment of the present invention.
  • FIG. 2 is a view showing another method for producing the concrete composition of the present invention.
  • FIG. 3 is a flowchart showing a method for adjusting the viscosity of a concrete composition according to the present invention.
  • FIG. 4 is a construction diagram of a concrete pile by an earth drill method.
  • FIG. 5 is a view showing a method of constructing a cast-in-place concrete pile according to a third preferred embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a conventional excavation translation method.
  • the concrete composition according to the best mode 1 of the present invention comprises a high-strength Portland cement, water, coarse aggregate, and fine aggregate mixed with a chemical admixture for concrete, and a cationic interface admixture as a thickening admixture.
  • a kneaded product was prepared by kneading a chemical admixture for concrete and the second water-soluble low-molecular-weight compound (B) into cement, water, and fine aggregate.
  • the first water-soluble low-molecular compound (A) is added to the kneaded material, and the mixture is kneaded again.
  • coarse aggregate is added and kneaded to obtain a concrete composition.
  • the water cement ratio (WZC) is preferably set to 30 to 60%.
  • the content is preferably 30 to 60%, more preferably 30 to 40%, and particularly preferably about 35%.
  • the fine aggregate is an aggregate that passes through all the 10 mm screen sieves and passes through 85 mm% or more of the 5 mm screen sieve
  • the coarse aggregate is an aggregate that does not pass through 85 mm% or more through the 5 mm screen sieve.
  • the power using the river sand power is also used.
  • the sea sand, mountain sand, crushed stone, etc. may be used.
  • first water-soluble low molecular weight compound (A) used in the present invention a quaternary ammonium salt type cationic surfactant is preferred, and an alkyl ammonium salt as a main component is particularly preferred. Additives are preferred.
  • second water-soluble low molecular weight compound (B) a sulfonate having an aromatic ring is preferred, and in particular, an additive mainly containing an alkylaryl sulfonate is preferred! /,
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are selected from amphoteric surfactants such as amidopropyl betaine dodecanoate (A) and POE.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are mixed into cement at a certain ratio, the first water-soluble low-molecular compound (A)
  • the admixture functions as a thickener and the concrete Ability to improve the early strength and fresh retention of the composition
  • the second water-soluble low molecular weight compound (B) is first added and kneaded, and then the first water-soluble low molecular weight compound (B) is mixed.
  • a low molecular weight compound (A) It is important to add a low molecular weight compound (A). This is because when the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are added simultaneously, the first water-soluble low-molecular compound (A) and the second A water-soluble low molecular weight compound (B) forms a pseudo-polymer in an inhomogeneous state, so long-term kneading is required to form the pseudo-polymer in a homogeneous state and obtain the desired properties. This is because
  • bubbles may be generated at the time of kneading and the amount of air in the concrete increases, which may cause a decrease in strength and a decrease in specific gravity. .
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) were each added in an amount of 0.5 to 5.0% by weight based on the amount of water.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are mixed in a certain ratio (for example, in the range of 2: 5 to 5: 2).
  • the thickening admixture has a thickening effect by forming the pseudo-polymer of the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B).
  • Examples of the chemical admixture for concrete include polyether-based water reducing agents such as lignin-based, polycarboxylic acid-based, melamine-based, naphthalene-based, and aminosulfonic acid-based, AE water-reducing agents, and high-performance AE-reducing agents. It can be appropriately selected from commonly used concrete admixtures for concrete such as water reducing agents. Among them, a lipoxyl group-containing polyether-based water reducing agent having excellent compatibility with the thickening admixture is preferably used at a ratio of 0.5 to 5.0% by weight, particularly preferably, with respect to the above-mentioned high strength cement. By blending at a ratio of 1.0 to 5.0% by weight, it is possible to exhibit early strength while maintaining freshness and high fluidity.
  • polyether-based water reducing agents such as lignin-based, polycarboxylic acid-based, melamine-based, naphthalene-based, and aminosulfonic acid-based,
  • concrete thread and composite obtained by adding a chemical admixture for concrete and a thickening admixture to cement, water, and aggregate, and kneading the cement admixture are as follows:
  • the compound (A) selected from the precipitating agents and the aromatic aromatic compound power The combined power of the selected compound (B) is used as the chemical admixture for concrete and the phase with the thickening admixture.
  • a concrete composition having excellent properties and self-leveling properties can be obtained.
  • FIG. 1 is a diagram showing an outline of a method for producing a concrete composition used in a shield direct-casting method according to a second preferred embodiment of the present invention.
  • the concrete composition of the present invention comprises cement, water, coarse aggregate, fine aggregate,
  • the first water-soluble low molecular weight compound (A) in which a chemical admixture for concrete is blended with the aggregate and a cationic surfactant is also selected as a thickening admixture, and an aromatic aromatic compound
  • This method uses a thickening admixture containing the second water-soluble low molecular weight compound (B) selected.
  • the first water-soluble low-molecular compound (A) is added to the kneaded product. And knead again, and finally add coarse aggregate and knead to The door composition to create made.
  • the kneaded mixture is loaded on the truck agitator 3 of the transport vehicle 2, transported to the construction site B while being kneaded, unloaded, loaded into a concrete pump (not shown), and shown in FIG.
  • a concrete casting pipe 38 connected to a pressure jack 35 for placing concrete is pumped to construct a covering concrete 36.
  • Examples of the cement include, but are not particularly limited to, Portland cement such as limestone 'clay' iron oxide and the like, such as ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, and white Portland cement.
  • Portland cement such as limestone 'clay' iron oxide and the like
  • ordinary Portland cement such as ordinary Portland cement
  • early-strength Portland cement such as blast furnace cement, fly ash cement, silica cement, etc.
  • the water-cement ratio (WZC) is preferably 30 to 60%, more preferably 30 to 40%, and particularly preferably about 35%, as in the best mode 1.
  • the unit water volume for obtaining the required slump is small, and it is economical. Need to be considered.
  • the maximum size is too large, there are problems such as difficulty in handling concrete, easy separation of materials, and deterioration of pumpability.Therefore, the maximum size of coarse aggregate should not be too large. It needs to be considered. For example, under conditions such as pumping with 3 inch piping, the water cement ratio should be 40% or less, the maximum size of coarse aggregate should be about 13 mm, and the ratio of fine aggregate (SZa) should be set lower than before. Accordingly, it is possible to produce a concrete having high strength while securing high fluidity, pumping property and resistance to material separation.
  • the fine aggregate is an aggregate that passes through all the 10 mm screen sieves and passes 85% by weight or more of the 5 mm screen sieve
  • the coarse aggregate is an aggregate that does not pass 85% by weight or more through the 5 mm screen sieve.
  • they can be obtained from river sand, sea sand, mountain sand, crushed stone, and the like.
  • polyether-based water reducing agents such as lignin-based, polycarboxylic acid-based, melamine-based, naphthalene-based, or aminosulfonic acid-based, and AE water-reducing agents
  • AE water-reducing agents A high-performance AE water reducing agent and other commonly used chemical admixtures for concrete.
  • carboxyl group-containing polyethers with excellent compatibility with the above thickening admixtures is preferably added to the above-mentioned cement at a rate of 0.5 to 5.0% by weight, particularly preferably at a rate of 1.0 to 5.0% by weight. Sex can be reliably expressed.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) were each added in an amount of 0.5 to 5.0% by weight based on the unit water amount.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are mixed into the cement at a certain ratio.
  • underwater inseparable materials (admixtures) used in conventional underwater inseparable concrete Is caused by the admixture of the thickening admixture with the cement particles, causing a delay in curing.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) have a certain ratio. (For example, in the range of 2: 5 to 5: 2) into the cement, the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are mixed. Since it forms a pseudopolymer by electrically arranging and exhibits a thickening function, it does not affect the cement particles, so that the above-described hardening delay does not occur.
  • the optimal mixing ratio of the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) was 1: 1.
  • a carboxyl group-containing polyether-based water reducing agent which is a chemical admixture for concrete, in cement, water, and fine aggregate
  • a second water-soluble low-molecular compound (B) Sodium alkylaryl sulfonate is added and kneaded to produce a kneaded product.
  • the first water-soluble low molecular weight compound (A), alkylammonium salt is added to the kneaded product. And then kneading again, and finally adding coarse aggregate and kneading to produce a concrete composition.
  • the concrete composition thus obtained is excellent in early strength and fluidity, and also excellent in water resistance as well as easy to work underground or underwater. Since sufficient strength and water resistance can be ensured, it has sufficient properties as a directly-cast concrete lining material for the shield method in the spring formation. In addition, because of its excellent pumping performance and resistance to material separation, it is possible to pump by 3-inch pipes in the pit.
  • the above-described concrete composition is used as a direct concrete lining material in a shield method.
  • the force described above is not limited to this.
  • a high fluidity concrete is used.
  • the present invention is also applicable to the construction of buildings that are difficult to compact with a vibrator and the construction of concrete where water is present, such as offshore structures and underground structures, where underwater inseparable concrete has been used.
  • the concrete composition is fully applicable.
  • a second water-soluble low-molecular compound such as sodium alkylaryl sulfonate ( B)
  • cement, water, fine aggregate, coarse aggregate, and a chemical admixture for concrete are kneaded and mixed in a mixer 1 of a concrete plant A, and the kneaded material is mixed with a vehicle 2 for transportation.
  • the second water-soluble low molecular compound (B) is added at the construction site B, and the mixture is stirred at a high speed with the truck agitator 3 and then
  • the first water-soluble low molecular weight compound (A) may be added to the kneaded material, and the mixture may be further stirred at a high speed to produce the concrete composition.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) have a certain ratio (2 : 5 to 5:
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are electrically arranged and simulated. It forms a polymer and improves the early strength and water resistance of the concrete composition.
  • the mixing ratio is approximately 1: 1, the bonding strength is the strongest and the viscosity is also large, so that the early strength and the water resistance are greatly improved.
  • the above-mentioned early-strength water-resistant concrete composition also has a reduced viscosity at the casting site where the environmental temperature is low. If oil is mixed into the above concrete composition during pumping to the site, The first water-soluble low-molecular compound (A) is adsorbed on the oil, and as a result, the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) The mixing ratio is incorrect! / The viscosity may decrease.
  • the decrease in viscosity occurs even when the mixing ratio of the compound (A) and the compound (B) is changed.
  • a different thickener is added, the properties of the concrete composition are affected, and the desired properties may not be obtained.
  • the viscosity of the concrete composition is increased, if water is easily added, the ratio of the compound (A) and the compound (B) to the unit water amount changes, and the characteristics of the concrete composition are changed. There is a risk of deterioration.
  • the viscosity of the early-strength water-resistant concrete composition varies depending on the blending ratio of the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B). Therefore, when adjusting the viscosity of the concrete composition, if the compound (A) or the compound (B) is added to the concrete composition and the mixing ratio is adjusted, the concrete composition can be adjusted. Viscosity adjustment can be performed easily without deteriorating the characteristics of the device.
  • a concrete composition was prepared by kneading the above-mentioned early-strength Portland cement, water, coarse aggregate, fine aggregate, a chemical admixture for concrete, and the thickening admixture. , And measure its viscosity (initial viscosity r? (0)) (Step Sl).
  • Step S2 the viscosity (viscosity r?) Of the concrete composition transported to the casting site was measured (Step S2), and the measured viscosity 7? And the initial viscosity 7? (0) Then, it is determined whether or not the measured viscosity r? Is lower than the initial viscosity r? (0) (step S3).
  • step S3 If the viscosity r? Is lower than the initial viscosity r? (0) (Yes in step S3), a small amount of the first water-soluble low-molecular compound (A) is added to the above concrete composition. And knead again (step S4). Then, it is checked whether the force has recovered the viscosity (step S5). If it has recovered, the concrete composition is poured as it is.
  • the compounding ratio with the molecular compound (B) is the compounding ratio force that achieves the maximum viscosity of the above-mentioned concrete composition at the in-situ temperature.
  • a small amount of the second water-soluble low-molecular compound (B) is added and kneaded again (step S6). When the viscosity is restored, the concrete composition is poured.
  • step S8 After adding a small amount of the water-soluble low molecular weight compound (B) and kneading again to lower the viscosity to the initial level, the above concrete composition is poured.
  • the viscosity can be reduced by adding the first water-soluble low molecular weight compound (A), but the compound (A) may cause a slight generation of bubbles during kneading. Therefore, addition of the above compound (B) is more advantageous in terms of work because kneading is troublesome.
  • the concrete composition may be poured as it is.
  • the first concrete is pumped by the oil content of the concrete pump. Since it is assumed that the water-soluble low-molecular compound (A) is adsorbed, the above-mentioned first water-soluble low-molecular compound (A) is added to the concrete composition in advance, and then the concrete composition is pumped. If this is the case, the properties of the concrete composition during casting can be reliably maintained at the initial properties.
  • the above viscosity adjustment method is not limited to the direct-strength concrete lining material used in the shield method and the early-strength water-resistant concrete used in the construction method. It can also be applied to concrete compositions used for concrete construction in places where water exists, such as objects and underground structures.
  • Aggregate (density; 2.63 g / cm 3 ) 597 kg / m 3 is kneaded and kneaded, and the kneaded product is an additive containing an alkylammonium salt as a main component (trade name “Kao Corporation” Pisco Top 100FB ”) was added and kneaded again. Finally, 597 kg / m 3 of coarse aggregate (density: 2.56 g / cm 3 ) was added and kneaded to prepare a concrete composition. At this time, a coarse aggregate having a size of 13 mm or less was used as the coarse aggregate.
  • Viscosity test Concrete is poured on a 23-degree slope and the speed is measured.
  • Tables 3 and 4 show the measurement results of the compressive strength and fresh properties of the above test results
  • Table 5 shows the properties of each concrete composition of the present invention with those of the conventional high fluidity concrete and underwater concrete. The result of the comparison is shown.
  • the high fluid concrete used as a comparative example was prepared based on the "High fluid concrete construction guidelines” and the underwater concrete was prepared based on the "underwater non-separable concrete design and construction guidelines (draft)".
  • the force described for the direct-strength concrete lining material of the shield method and the early-strength water-resistant concrete to be used is used.
  • the concrete composition of the present invention has a water-resistant property as shown in the above examples.
  • it since it is excellent in self-leveling property, it can be suitably used for construction of cast-in-place concrete piles.
  • Fig. 4 is a construction procedure diagram of the earth drilling method. In this method, as shown in Figs. 4 (a) and (b), the ground is first ground using a ground drill 21 while pouring a stable liquid 22 such as bentonite liquid. Drill 20 to form borehole 23. Then, as shown in FIGS.
  • the concrete composition is introduced into the above-mentioned excavation hole 23 through the tremee pipe 25 from a concrete pump (not shown).
  • Buildings are reinforced concrete piles (concrete piles) 26.
  • the tremy tube 25 is removed after the concrete pile 26 is constructed.
  • the concrete when the above concrete is poured, if the self-leveling property of the concrete composition to be poured is low, the concrete may involve muddy water, earth and sand on the perforated wall. It is conceivable that the quality of the resin is reduced. Therefore, it is necessary to add extra height to the specified concrete top height in consideration of safety. Above must The required depth of the extra embankment 26k generally depends on the method of construction, but it is required to be about 80cm for the earth drill method or reverse method that stabilizes the borehole wall with muddy water, and about 50cm for the all casing method. After the concrete is cast, a pile head treatment is required to cut through the extra 26k where the layance (mud layer) and muddy sediment are mixed.
  • concrete when cast in place with gravel or gravel layers, concrete may be washed away by underground water or pressurized groundwater, and concrete used in such places may be cement, water, aggregate, or the like.
  • concrete admixtures such as inorganic admixtures such as silica gel and bentonite and AE water reducing agents.
  • the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (A) similar to the above-described best modes 1 and 2 (When a concrete composition containing a thickening admixture containing B) is used, both the water resistance and self-leveling property of the concrete composition can be improved, and there are underground water and pressurized groundwater. It is thought that a reliable concrete pile can be constructed even in this case.
  • concrete with the above-mentioned thickening admixture is poured into the concrete to a predetermined depth, and then concrete without the above-mentioned thickening admixture is poured to construct a concrete pile. If so, the amount of expensive concrete containing the above thickening admixture can be reduced, and material costs can be significantly reduced.
  • Figs. 5 (a) to 5 (c) are diagrams showing a method of constructing a cast-in-place concrete pile according to the third best mode of the present invention.
  • the ground 20 is drilled using a drilling machine such as an earth drill.
  • a reinforcing bar 24 is inserted into the excavation hole 23 and concrete is poured.
  • concrete with high self-leveling property and excellent water resistance hereinafter referred to as high self-leveling water-resistant concrete
  • Concrete piles 12 are kneaded with concrete and aggregates to construct concrete piles 10.
  • the high self-leveling water-resistant concrete is selected from cement, water, coarse aggregate, and fine aggregate, in which, in addition to a chemical admixture for concrete, a cationic surfactant is also selected as a thickening admixture. It contains a water-soluble low-molecular compound (A) and a second water-soluble low-molecular compound (B) selected from anionic aromatic compounds (B).
  • a kneaded material is prepared by kneading a chemical admixture for concrete and the second water-soluble low-molecular compound (B) into cement, water, and fine aggregate, and then adding the kneaded material to the kneaded material.
  • the first water-soluble low-molecular-weight compound (A) is added and kneaded again, and finally the coarse aggregate is mixed and kneaded to produce the concrete composition.
  • the above-mentioned chemical admixture for concrete can be appropriately selected from commonly used chemical admixtures for concrete. Among them, a carboxyl group-containing admixture excellent in compatibility with the above-mentioned thickening admixture is particularly preferred.
  • a carboxyl group-containing admixture excellent in compatibility with the above-mentioned thickening admixture is particularly preferred.
  • Examples of the cement include, but are not particularly limited to, Portland cements such as limestone 'clay' iron oxide and other raw materials such as ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, and white Portland cement. And the ability to use mixed cement such as blast furnace cement, fly ash cement, silica cement, etc. In particular, it is preferable to use early-strength Portland cement.
  • the water-cement ratio is preferably 30 to 60%, more preferably 30 to 40%, and particularly preferably about 35%. preferable.
  • the kneading method is the same as in the first and second embodiments, and the description is omitted.
  • the high self-leveling waterproof concrete has high self-leveling properties because the high self-leveling waterproof concrete 11 has high self-leveling properties, as shown in FIG. 5 (a).
  • the concrete surface after casting is flatter than that of ordinary concrete. Therefore, entrapment of muddy water, pore wall sediment, etc. at the time of pouring concrete can be significantly reduced.
  • the high self-leveling waterproof concrete has excellent water resistance, it is possible to prevent a decrease in strength due to substantial addition of water due to muddy water even in the ground where underground water or pressurized groundwater is present, and to prevent the use of muddy water. This can prevent the quality from being deteriorated due to the outflow of cement particles.
  • the high self-leveling water-resistant concrete has excellent pumpability and fluidity, and material separation resistance, so that material separation during pumping and filling can be effectively reduced only. The occurrence of breathing can also be reduced.
  • the ordinary concrete 12 is pressure-fed from the tremy tube 25 while gradually pulling up the tremy tube 25.
  • the high self-leveling waterproof concrete 11 having excellent water resistance and self-leveling property always exists on the surface of the poured concrete, the concrete surface remains flat. No muddy water or sediment on the wall. Therefore, since the amount of the extra pile 10k of the concrete pile 10 can be extremely reduced, the pile head treatment can be simplified.
  • lightweight concrete such as structural lightweight concrete to reduce the weight of building slabs, floors, and roof slabs, and non-structural concrete mainly for heat insulation, covering, or sound absorption.
  • structural lightweight concrete for example, as disclosed in JP-A-2001-261413 and JP-A-8-26853, a volcano having a smaller specific gravity than ordinary aggregate is used.
  • Artificial lightweight aggregates such as gravel and other natural lightweight aggregates such as mesalite and asanolite (these are also trade names) are used.
  • a shield wall provided in a facility may be made by crushing natural rock such as magnetite, or by shot blasting.
  • the material separation is smaller than that in the case where the ordinary aggregate is combined.
  • distribution of the above-mentioned aggregate becomes uneven because of easy occurrence.
  • the strength of concrete decreases in the case of lightweight concrete.
  • the lightweight concrete is placed in a dry state, the shrinkage of the concrete becomes large due to an increase in drying shrinkage, so that the bending strength and the durability tend to be remarkably reduced.
  • the concrete composition containing an aggregate of different specific gravity mixes cement and water with an aggregate that also has an artificial lightweight aggregate power, and a chemical admixture for concrete (water reducing agent) and a thickening agent.
  • a first water-soluble low-molecular-weight compound (A) selected from cationic surfactants, and an aromatic aromatic compound are used as the above-mentioned thickening admixture.
  • Compound An additive containing a second water-soluble low molecular weight compound (B) selected from the group was used.
  • the production method is as follows.
  • a kneaded material is prepared by kneading a cement admixture for cement, water, and fine aggregate with the chemical admixture for concrete and the second water-soluble low-molecular compound (B). Then, the first water-soluble low-molecular compound (A) is added to the kneaded material and kneaded again, and finally, coarse aggregate is added and kneaded to produce a concrete composition. This makes it possible to uniformly disperse the artificial lightweight aggregate in concrete while ensuring sufficient fluidity.
  • a raw material such as expansive shale, expansive viscosity, or fly ash is prepared into a fine powder and then granulated and calcined, or a calcareous or siliceous material.
  • the type, particle size, fine aggregate ratio, and compounding amount are appropriately determined depending on the application such as the gas used for the non-structural material.
  • the chemical composition of these artificial lightweight aggregates is mainly silica (SiO
  • Metals such as iron oxide (FeO, FeO), calcium oxide (CaO), and magnesium oxide (MgO)
  • the absolute dry gravity is, for example, less than 2.3 for fine aggregate and less than 2.0 for coarse aggregate in the case of structural lightweight concrete aggregate (according to JIS A 5002).
  • Examples of the chemical admixture for concrete added to increase the fluidity of the concrete composition include lignin-based, polycarboxylic acid-based, melamine-based, naphthalene-based, and aminosulfonic acid-based polyadmixtures. It can be appropriately selected from commonly used concrete admixtures for concrete, such as an ether type water reducing agent, a carboxyl group-containing polyether type water reducing agent, an AE water reducing agent, and a high performance AE water reducing agent.
  • the first water-soluble low molecular weight compound (A) selected by the cationic surfactant force is added to the kneaded product, and the mixture is kneaded again.
  • the concrete aggregate is mixed and kneaded to produce a concrete composition.Therefore, sufficient fluidity is ensured even when an artificial lightweight aggregate having a specific gravity lighter than ordinary aggregate is used as the aggregate.
  • the artificial lightweight aggregate can be uniformly distributed in the concrete while maintaining the same. Therefore, workability can be improved and lightweight concrete with uniform strength can be produced.
  • the force using artificial lightweight aggregate as the lightweight aggregate is not limited to the present invention.
  • the present invention is not limited to natural lightweight aggregate such as volcanic debris and by-products such as coal shell. It is needless to say that the present invention can be applied to a case where a lightweight aggregate is used, or a case where a lightweight aggregate obtained by combining the above-mentioned natural lightweight aggregate or by-product lightweight aggregate with an artificial lightweight aggregate is used!
  • a concrete composition containing a lightweight aggregate is used for a hydraulic structure such as a 1S embankment or a substructure of a building, which has a specific gravity of 4.0 or more.
  • a first water-soluble low-molecular compound (A) selected from cationic surfactants in addition to water, cement, aggregate, a first water-soluble low-molecular compound (A) selected from cationic surfactants,
  • B) selected from an anionic aromatic compound is blended as a thickening admixture, the above-mentioned heavy aggregate can be uniformly distributed in the concrete. Can be.
  • heavy aggregate for example, iron ore such as magnetite or sand iron, metal such as iron, or pearlite can be used. Further, these heavy aggregates may be blended together with ordinary aggregates as fine aggregates or coarse aggregates, or may be used for both fine aggregates and coarse aggregates.
  • the present invention is not limited to heavy concrete used for hydraulic structures and substructures of buildings, and is also applicable to shielding concrete for shielding radiation.
  • a first water-soluble low-molecular compound (A) selected from cationic surfactants and a second water-soluble low-molecular compound selected from anionic aromatic compounds are used. If the admixture containing the compound (B) is blended as a thickening admixture, the heavy aggregate can be uniformly distributed in the concrete without performing stratification or the like. Therefore, since there is no structural weak portion due to stratification, the durability of the shielding concrete can be improved, and since the heavy aggregate is homogeneously distributed in the concrete, the dispersion of the radiation shielding effect is eliminated. And the shielding effect can be improved.
  • the present invention relates to, for example, construction waste materials ⁇ copper slag aggregate and the like.
  • the present invention can also be applied to the case of using aggregates in which both lightweight aggregates and heavy aggregates are mixed.
  • the above aggregate can be uniformly dispersed in the concrete. Can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 セメント、水、骨材に増粘性混和剤を添加して混練したコンクリート組成物を製造する際に、上記増粘性混和剤として、第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とを含有する添加剤であり、上記化合物(A)と化合物(B)とが、両性界面活性剤から選ばれる化合物(A)とアニオン性界面活性剤から選ばれる化合物(B)との組み合わせ、または、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)との組み合わせ、カチオン性界面活性剤から選ばれる化合物(A)と臭素化合物から選ばれる化合物(B)との組み合わせ、から選択される添加剤のうちのいずれかの添加剤を用いることにより、シールド工法の直打ちコンクリートライニング材などに使用される、早強性に優れるとともに、耐水性にも優れたコンクリート組成物を得ることができる。

Description

明 細 書
コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリー ト組成物を用いた場所打ちコンクリート杭の構築方法
技術分野
[0001] 本発明は、早強性、流動性、及び、材料分離抵抗性に優れるとともに、耐水性ゃセ ルフレベリング性にも優れたコンクリート組成物とその製造方法と粘性調整方法、及 び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法に関するもの である。
背景技術
[0002] トンネル工法の一つである掘肖 1 覆ェ並進工法は、図 6に示すように、シールド掘進 機 30のスキンプレート 31の前面に設けられたメインカッター 32により、地山 40を掘削 しながらその後部で内型枠 33, 33, · · · ·を組み立て、掘削と併行して地山 40と上記 内型枠 33との間に、妻枠 34を介して、加圧ジャッキ 35により圧縮力をカ卩えながらコン クリートを打設し、上記地山 40に密着した覆ェコンクリート 36を構築するもので、上記 工法に用いられるコンクリートに対しては、打設後の早期強度が必要とされるとともに 、特に、上記地山 40が湧水地層である場合には、地下水に対する耐水性が要求さ れている(例えば、特許文献 1参照)。
すなわち、上記シールド掘進機 30を推進ジャッキ 37により推進させる際には、シー ルドの反力を上記コンクリートが打設された内型枠 33に負担させていることから、上 記内型枠 33と上記覆ェコンクリート 36面との間に、打設初期においても所要の付着 強度が必要であり、そのため、上記コンクリートには、所要の短期強度の発現性 (早 強性)と、地下水中での打込みで目標強度を満足するための耐水性とが要求される また、上記コンクリートは、一般に、図示しないコンクリートポンプから、 3インチ程度 の径の配管を通って、コンクリート打設管 38まで、圧送されるため、流動性、材料分 離抵抗性、及び、ポンプ圧送性にも優れている必要がある。
[0003] 現状において、上記工法で用いられているコンクリートとしては、例えば、高流動コ ンクリートや水中不分離性コンクリートなど挙げられる。
高流動コンクリートは、バイブレータによる締め固めなしに型枠内へ確実に充填す ることが可能な、早強性、流動性、材料分離抵抗性に優れたコンクリートで、セメント、 水、骨材に、高性能 AE減水剤などのコンクリート用化学混和剤を添加して流動性を 高めるとともに、各種無機粉体や増粘剤を添加して材料分離抵抗性を向上させるよう にしている。
一方、海洋構造物や水中トンネルなどの構築に用いられる水中不分離性コンクリー トは、セメント、水、骨材に、セルロース系またはアクリル系の水溶性高分子を主成分 とする水中不分離性混和剤を配合することにより、コンクリートの粘性及び耐水性を 高めるようにしたもので、水中に直接打込んでも材料分離が少なく品質の信頼性を 向上させることができる。
一方、植生コンクリートや排水性舗装用のコンクリートなどに用いられる、セメントぺ 一ストで粗骨材をまぶして成形した透水性コンクリートにお 、て、上記粗骨材への付 着性と均一保型性とを向上させるための透水性コンクリート用添加剤が提案されてい る (例えば、特許文献 2参照)。
上記添加剤は、第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B) とを含有する添加剤であり、上記化合物 (A)と上記化合物(B)との組み合わせとして は、 (1)両性界面活性剤カゝら選ばれる化合物 (A)とァ-オン性界面活性剤カゝら選ば れる化合物(B)との組み合わせ、または、(2)カチオン性界面活性剤力 選ばれる化 合物 (A)とァニオン性芳香族化合物から選ばれる化合物(B)との組み合わせ、(3) カチオン性界面活性剤から選ばれる化合物 (A)と臭素化合物から選ばれる化合物( B)との組み合わせ、の中から選択される。上記添加剤の配合量は、目的とする粘性 及び空隙の均一性の程度により適宜選択されるが、好ましい配合量としては、セメン トある!/、は高炉スラグなどの水硬化性粉体に対して、上記化合物 (A)と上記化合物( B)の合計が 0. 01〜1重量%、特に好ましくは 0. 1〜0. 5重量%であり、これにより、 空隙率が 20〜30%の連続した空隙を含む強度の高い透水性コンクリートを得ること ができる。
特許文献 1:特開 2003 - 327458号公報 特許文献 2:特開 2003 - 327458号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、シールド工法、特に、湧水地層におけるシールド工法の直打ちコンクリー トとして使用されるコンクリート組成物には、上記のように、早強性、流動性、材料分 離抵抗性に優れるとともに、耐水性にも優れていることが要求されている。この早強 性と耐水性とは、従来、両立が困難な特性であって、上記高流動コンクリートでは流 動性、材料分離抵抗性に優れており、また、コンクリート用化学混和剤を適宜選択す るなどして、早強性を発揮させることも可能である力 耐水性に問題があるため、地下 水圧中での打込みにおいてはセメントが洗い出され、コンクリートとしての十分な機能 を確保することが困難であった。
また、水中不分離性コンクリートは、耐水性に加えて、流動性、材料分離抵抗性に は優れている力 早強性に問題があるため、シールドの反力を負担するだけの十分 な初期強度が得られないといった問題点があった。
[0006] そこで、上記高流動コンクリートの早強性と水中不分離性コンクリートの耐水性を併 せ持つとともに、流動性、材料分離抵抗性、更には、セルフレべリング性にも優れた 高流動耐水コンクリート組成物の開発が望まれている。
上記のような高流動耐水コンクリート組成物が得られれば、シールド工法の直打ち コンクリートや海洋構造物や水中トンネルなどの構築などに限らず、伏流水や被圧地 下水がある箇所にコンクリート杭を構築する場合にも使用することができる。
[0007] 本発明は、上記従来の問題点に鑑みてなされたもので、早強性、流動性、材料分 離抵抗性に優れるとともに、耐水性やセルフレべリング性にも優れたコンクリート組成 物とその製造方法と粘性調整方法、及び、このコンクリート組成物を用いた場所打ち コンクリート杭の構築方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、鋭意検討した結果、コンクリート組成物において、増粘性混和剤とし て、上記骨材への付着性と均一保型性に優れた効果を発揮する上記透水性コンクリ ート用添加剤を配合することにより、早強性、流動性、材料分離抵抗性に優れるととも に、上記早強性とは相反する特性である耐水性にも優れたコンクリート組成物を得る ことができることを見 、だし、本発明に到ったものである。
すなわち、本願の請求の範囲 1に記載の発明は、セメント、水、骨材に増粘性混和 剤を添加して混練したコンクリート糸且成物であって、上記増粘性混和剤として、第 1の 水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B)とを含有する添加剤で あり、上記化合物 (A)と上記化合物 (B)とが、両性界面活性剤力も選ばれる化合物( A)とァ-オン性界面活性剤力 選ばれる化合物(B)の組み合わせ、または、カチォ ン性界面活性剤カゝら選ばれる化合物 (A)とァ-オン性芳香族化合物カゝら選ばれる化 合物 (B)との組み合わせ、カチオン性界面活性剤力 選ばれる化合物 (A)と臭素化 合物から選ばれる化合物(B)との組み合わせ、から選択される添加剤のうちのいず れかの添加剤を用いたことを特徴とするものである。
[0009] 請求の範囲 2に記載の発明は、請求の範囲 1に記載のコンクリート組成物において 、上記増粘性混和剤として、カチオン性界面活性剤から選ばれる化合物 (A)とァ- オン性芳香族化合物から選ばれる化合物 (B)とを含有する混和剤を用いるとともに、 上記化合物 (A)と上記化合物(B)とを、単位水量に対して、それぞれ 0. 5〜5. 0重 量%の割合で配合したものである。
請求の範囲 3に記載の発明は、請求の範囲 1または請求の範囲 2に記載のコンクリ 一ト糸且成物において、上記コンクリート糸且成物における水セメント比を 30〜60%とし たものである。
請求の範囲 4に記載の発明は、請求の範囲 1〜請求の範囲 3のいずれかに記載の コンクリート組成物において、上記コンクリート組成物に、更に、コンクリート用化学混 和剤を、セメントに対して、 0. 5〜5. 0重量%の割合で配合したものである。
請求の範囲 5に記載の発明は、請求の範囲 4に記載のコンクリート組成物において 、上記コンクリート用化学混和剤として、カルボキシル基含有ポリエーテル系減水剤 を用いたものである。
[0010] 請求の範囲 6に記載の発明は、請求の範囲 1〜請求の範囲 5のいずれかに記載の コンクリート組成物において、上記骨材として粗骨材と細骨材とを用いるとともに、上 記骨材に含まれる細骨材の割合である細骨材率を 30〜45%としたことを特徴とする ものである。
また、請求の範囲 7に記載の発明は、請求の範囲 1〜請求の範囲 5のいずれかに 記載のコンクリート組成物において、骨材の少なくとも一部または全部に、普通骨材 よりも比重の小さな骨材、及び、普通骨材よりも比重の大きな骨材のいずれか一方ま たは両方を用いたことを特徴とするものである。
請求の範囲 8に記載の発明は、請求の範囲 1〜請求の範囲 7のいずれかに記載の コンクリート組成物を製造する方法であって、セメント、水、骨材に上記第 2の水溶性 低分子化合物 (B)を添加して混練した後、上記混練物に上記第 1の水溶性低分子 化合物 (A)を添加して再度混練して上記コンクリート組成物を製造するようにしたこと を特徴とする。
また、請求の範囲 9に記載の発明は、請求の範囲 1〜請求の範囲 7のいずれかに 記載のコンクリート組成物の粘性を調整する方法であって、上記コンクリート組成物に 、更に、上記第 1の水溶性低分子化合物 (A)及び上記第 2の水溶性低分子化合物( B)のいずれか一方または両方を添加して、上記コンクリート組成物の粘性を調整す るようにしたことを特徴とする。
請求の範囲 10に記載の発明は、請求の範囲 9に記載のコンクリート組成物の粘性 調整方法において、上記化合物 (A)と上記化合物 (B)との初期配合比率を略 1: 1と したことを特徴とする。
請求の範囲 11に記載の発明は、請求の範囲 9または請求の範囲 10に記載のコン クリート組成物の粘性調整方法にぉ ヽて、上記コンクリート組成物の粘性が製造時の 粘度よりも低下している場合には、上記コンクリート組成物に上記第 1の水溶性低分 子化合物 (A)を添加するようにしたことを特徴とする。
請求の範囲 12に記載の発明は、請求の範囲 9または請求の範囲 10に記載のコン クリート組成物の粘性調整方法にぉ ヽて、上記コンクリート組成物の打設現場におけ る粘性が製造時の粘度よりも高くなつている場合には、上記コンクリート組成物に上 記第 2の水溶性低分子化合物 (B)を添加するようにしたことを特徴とする。
請求の範囲 13に記載の発明は、請求の範囲 9〜請求の範囲 12のいずれかに記載 のコンクリート組成物の粘性調整方法において、上記コンクリート組成物をコンクリー トポンプで圧送して打設する場合には、上記コンクリート組成物に予め、上記第 1の 水溶性低分子化合物 (A)を添加して力も圧送するようにしたことを特徴とする。
[0012] また、請求の範囲 14に記載の発明は、地盤を掘削した孔の内部に鉄筋力ごを挿入 し、上記孔内にトレミー管を通してコンクリート組成物を圧送して打設し、コンクリート 杭を構築する場所打ちコンクリート杭の構築方法において、上記コンクリート組成物と して、請求の範囲 1〜請求の範囲 6のいずれかに記載のコンクリート組成物を用いた ことを特徴とする。
請求の範囲 15に記載の発明は、請求の範囲 14に記載の場所打ちコンクリート杭の 構築方法にぉ 、て、最初に上記増粘性混和剤を配合したコンクリートを所定深さだ け打設した後、上記増粘性混和剤を配合して ヽな ヽコンクリートを打設してコンクリー ト杭を構築するようにしたことを特徴とする。 発明の効果
[0013] 本発明によれば、コンクリート組成物を製造する際に、増粘性混和剤として配合す る添加剤に、カチオン性界面活性剤カゝら選ばれる第 1の水溶性低分子化合物 (A)と ァニオン性芳香族化合物化合物から選ばれる第 2の水溶性低分子化合物 (B)とを組 合わせた添加剤などのような、 2種類の特定の水溶性低分子化合物を組合わせから 選択される添加剤を用いたので、水セメント比が 30〜60%の広い範囲において、早 強性、流動性、材料分離抵抗性に優れるとともに、耐水性やセルフレべリング性にも 優れたコンクリート組成物を得ることができる。
このとき、上記増粘性混和剤を、カチオン性界面活性剤力も選ばれる化合物 ( と ァニオン性芳香族化合物から選ばれる化合物 (B)とを含有する混和剤とするとともに 、上記化合物 (A)と上記化合物 (B)とを、単位水量に対して、それぞれ 0. 5〜5. 0重 量%の割合で配合すれば、流動性、早強性、耐水性を更に向上させることができる。 また、上記コンクリート組成物に、更に、上記増粘性混和剤との相溶性に優れた力 ルポキシル基含有ポリエーテル系減水剤などのコンクリート用化学混和剤を、セメント に対して、 0. 5〜5. 0重量%の割合で配合すれば、流動性や早強性を確実に発現 させることがでさる。
[0014] また、上記骨材として粗骨材と細骨材とを用いるとともに、上記骨材に含まれる細骨 材の割合を 30〜45%とすれば、シールド工法、特に、湧水地層におけるシールド直 打ち工法に好適に用いられる、早強性及び耐水性に優れるとともに、ポンプ圧送性 にも優れたコンクリート組成物を製造することができる。
更には、骨材の少なくとも一部または全部に、普通骨材よりも比重の小さな軽量骨 材、及び、普通骨材よりも比重の大きな重量骨材などの、普通骨材との比重差が大き ぐ材料分離し易い異比重骨材を用いた場合でも、上記異比重骨材をコンクリート中 に均一に分散させることができるので、異比重骨材が均一に分散されたコンクリート 構造物を構築することができる。
[0015] また、上記コンクリート組成物を製造する際に、セメント、水、骨材に上記第 2の水溶 性低分子化合物 (B)を添加して混練した後、上記混練物に上記第 1の水溶性低分 子化合物 (A)を添加して再度混練してコンクリート組成物を製造するようにしたので、 上記コンクリート組成物を効率よく製造することができる。
また、上記コンクリート組成物の粘性を調整する際に、上記コンクリート組成物に、 周知の増粘剤や減水剤ではなぐ上記第 1の水溶性低分子化合物 (A)及び上記第 2の水溶性低分子化合物(B)の 、ずれか一方または両方を添加して、上記コンクリ ート組成物の粘性を調整するようにしたので、コンクリート組成物の特性に影響を与 えることなぐ容易に上記コンクリート糸且成物の粘性を所定の粘性に調整することがで きる。
[0016] また、本発明のコンクリート組成物は、流動性や耐水性にカ卩えてセルフレべリング性 にもに優れているので、このコンクリート組成物を用いて場所打ちコンクリート杭を構 築すれば、コンクリートの打込み時における泥水ゃ孔壁の土砂などの巻き込みを大 幅に低減することができるので、余盛りをほとんど行うことなくコンクリート杭を構築す ることができるだけでなぐ伏流水や被圧地下水がある場合でも信頼性の高いコンク リート杭を構築することができる。このとき、最初に上記増粘性混和剤を配合したコン クリートを所定深さだけ打設した後、上記増粘性混和剤を配合して!/ヽな ヽコンクリート を打設してコンクリート杭を構築するようにすれば、上記増粘性混和剤を配合した高 価なコンクリートの使用量を少なくでき、材料コストを大幅に低減することができる。 図面の簡単な説明 [0017] [図 1]本発明の最良の形態 2に係るシールド直打ち工法に用いられるコンクリート組成 物の製造方法の概要を示す図である。
[図 2]本発明のコンクリート組成物の他の製造方法を示す図である。
[図 3]本発明のコンクリート組成物の粘性調整方法を示すフローチャートである。
[図 4]アースドリル工法によるコンクリート杭の施工要領図である。
[図 5]本発明の最良の形態 3に係る場所打ちコンクリート杭の構築方法を示す図であ る。
[図 6]従来の掘肖 ij ·覆ェ並進工法の一例を示す図である。
符号の説明
[0018] 1 ミキサー、 2 運搬車輛、 3 トラックアジテータ、
10 コンクリート杭、 10k 余盛り部、
11 高セルフレべリング耐水コンクリート、 12 普通コンクリート、
20 地盤、 21 アースドリル、 22 安定液、 23 掘削孔、
24 鉄筋かご、 25 トレミー管、 30 シールド掘進機、
31 スキンプレート、 32 メインカッター、 33 内型枠、 34 妻枠、
35 カロ圧ジャッキ、 36 覆ェコンクリート、 37 推進ジャッキ、
40 地山、 A コンクリートプラント、 B 工事現場。
発明を実施するための最良の形態
[0019] 以下、本発明の最良の形態について説明する。
最良の形態 1.
本発明の最良の形態 1に係るコンクリート組成物は、早強ポルトランドセメント、水、 粗骨材、細骨材に、コンクリート用化学混和剤を配合するとともに、増粘性混和剤とし て、カチオン性界面活性剤力も選ばれる第 1の水溶性低分子化合物 (A)と、ァ-ォ ン性芳香族化合物から選ばれる第 2の水溶性低分子化合物 (B)とを含有する混和 剤を配合したもので、その製造方法としては、はじめに、セメント、水、細骨材に、コン クリート用化学混和剤と、上記第 2の水溶性低分子化合物 (B)とを練り混ぜて混練物 を作製した後、この混練物に上記第 1の水溶性低分子化合物 (A)を添加して再度混 練し、最後に粗骨材を加えて混練し、コンクリート組成物を得る。 このとき、水セメント比 (WZC)としては、 30〜60%とすることが好ましい。水セメン ト比が 30%未満であると粘性が高くなり流動性が低下するだけでなぐセメントの割 合が多くなるため水和発熱が大きくなり、温度ひび割れが発生し易くなる。また、 60 %を超えると、同じ粘性を得るためには上記第 1の水溶性低分子化合物 (A)と第 2の 水溶性低分子化合物 (B)とを余分に入れる必要があるが、そうすると早強性が低下 してしまうので、 30〜60%とすること力 子ましく、更に好ましくは、 30〜40%であり、 3 5%前後とすることが特に好ましい。
また、上記細骨材は、 10mm網ふるいを全て通過し、 5mm網ふるいを 85重量%以 上通過する骨材であり、粗骨材は、 5mm網ふるいを 85重量%以上通過しない骨材 であって、本例では、いずれも川砂力も得られたものを用いている力 海砂,山砂, 砕石など力も得られたものであってもよ 、。
[0020] 本発明に用いられる第 1の水溶性低分子化合物 (A)としては、 4級アンモ-ゥム塩 型カチオン性界面活性剤が好ましぐ特に、アルキルアンモニゥム塩を主成分とする 添加剤が好ましい。また、第 2の水溶性低分子化合物 (B)としては、芳香環を有する スルフォン酸塩が好ましぐ特に、アルキルァリルスルホン酸塩を主成分とする添加剤 が好まし!/、が、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物( B)としては、ドデカン酸アミドプロピルべタインなどの両性界面活性剤カゝら選ばれる 化合物 (A)と POE (3)ドデシルエーテル硫酸エステル塩などのァ-オン性界面活性 剤から選ばれる化合物(B)の組み合わせ、または、上記カチオン性界面活性剤から 選ばれる化合物 (A)と臭化ナトリウムなどの臭素化合物から選ばれる化合物 (B)との 組み合わせであってもよ!/、。
[0021] ところで、上記第 1の水溶性低分子化合物 (A)と上記第 2の水溶性低分子化合物( B)とがある一定の割合でセメント中に混入されると、上記第 1の水溶性低分子化合物 (A)と上記第 2の水溶性低分子化合物 (B)とが電気的に配列して擬似ポリマーを形 成することにより、上記混和剤は増粘剤として機能し、上記コンクリート組成物の早強 性やフレッシュ保持性を向上させる力 このためには、上記のように、第 2の水溶性低 分子化合物 (B)を先に添加して混練した後、上記第 1の水溶性低分子化合物 (A)を 添加するようにすることが肝要である。 これは、上記第 1の水溶性低分子化合物 (A)と上記第 2の水溶性低分子化合物 (B )とを同時に添加すると、上記第 1の水溶性低分子化合物 (A)と上記第 2の水溶性低 分子化合物 (B)とが不均質な状態で擬似ポリマーを形成してしまうので、擬似ポリマ 一を均質な状態で形成させて所望の特性を得るためには長時間の混練が必要とな るためである。
また、上記第 1の水溶性低分子化合物 (A)を先に加えると、混練の際に泡が発生し てコンクリートの空気量が多くなり、強度の低下や比重の減少等が起こる場合がある。
[0022] 本例では、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B) とを単位水量に対して、それぞれ 0. 5〜5. 0重量%の割合で配合するとともに、上 記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B)とをある一定の 割合 (例えば、 2 : 5〜5 : 2の範囲)でセメント中に混入するようにしている。上記増粘 性混和剤は、上述したように、第 1の水溶性低分子化合物 (A)と第 2の水溶性低分 子化合物 (B)とが擬似ポリマーを形成することで増粘作用を発揮するとともに、通常 使用されるセルロース系またはアクリル系の水溶性高分子を主成分とする水中不分 離性混和剤とは異なり、水和の阻害が認められないので、水中不分離性、フレッシュ 保持性に優れるとともに、早強性にも優れたコンクリート組成物を得ることができる。 なお、実験の結果では、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分 子化合物(B)との配合の割合が 1: 1の場合が最適であった。
[0023] また、上記コンクリート用化学混和剤としては、リグニン系、ポリカルボン酸系、メラミ ン系、ナフタリン系、あるいは、アミノスルホン酸系などのポリエーテル系減水剤、 AE 減水剤、高性能 AE減水剤などの、通常使用されているコンクリート用化学混和剤の 中から適宜選択することができる。中でも、上記増粘性混和剤との相溶性に優れた力 ルポキシル基含有ポリエーテル系減水剤を、上記早強セメントに対して、好ましくは 0 . 5〜5. 0重量%の割合、特に好ましくは 1. 0〜5. 0重量%の割合で配合することに より、フレッシュ保持性、高流動性を有しつつ、早強性を発現させることができる。
[0024] このように、本最良の形態 1によれば、セメント、水、骨材に、コンクリート用化学混和 剤と増粘性混和剤を添加して混練したコンクリート糸且成物にぉ 、て、セメントとして早 強ポルトランドセメントを用いるとともに、上記増粘性混和剤として、カチオン性界面活 性剤から選ばれる化合物 (A)とァ-オン性芳香族化合物力 選ばれる化合物 (B)と の組み合わせ力 成る添加剤を用い、上記コンクリート用化学混和剤として、上記増 粘性混和剤との相溶性に優れたカルボキシル基含有ポリエーテル系減水剤を用い、 更に水セメント比が 30%〜60%となるように調整したので、早強性、流動性、材料分 離抵抗性に優れるとともに、耐水性やセルフレべリング性にも優れたコンクリート組成 物を得ることができる。
[0025] 最良の形態 2.
図 1は、本発明の最良の形態 2に係るシールド直打ち工法に用いられるコンクリート 組成物の製造方法の概要を示す図で、本発明のコンクリート組成物は、セメント、水、 粗骨材、細骨材に、コンクリート用化学混和剤を配合するとともに、増粘性混和剤とし て、カチオン性界面活性剤力も選ばれる第 1の水溶性低分子化合物 (A)と、ァ-ォ ン性芳香族化合物力 選ばれる第 2の水溶性低分子化合物 (B)とを含有する増粘 性混和剤を用いたもので、その製造方法としては、まず、コンクリートプラント Aのミキ サー 1にて、セメント、水、細骨材に、コンクリート用化学混和剤と、上記第 2の水溶性 低分子化合物 (B)とを練り混ぜた後、この混練物に上記第 1の水溶性低分子化合物 (A)を添加して再度混練し、最後に粗骨材を加えて混練してコンクリート組成物を作 製する。この混練された混練物を運搬車輛 2のトラックアジテータ 3に積み込んで混 練しながら工事現場 Bに運搬して荷卸しし、これを図示しないコンクリートポンプに装 填して、上記図 6に示したコンクリートを打設するための加圧ジャッキ 35に連結された コンクリート打設管 38に圧送して覆ェコンクリート 36を構築する。
[0026] 上記セメントとしては、特に限定されるものではなぐ石灰石 '粘土'酸化鉄などを原 料とした普通ポルトランドセメント,早強ポルトランドセメント, 中庸熱ポルトランドセメン ト, 白色ポルトランドセメントなどのポルトランドセメントや、高炉セメント,フライアッシュ セメント,シリカセメントなどの混合セメントを用いることができる力 特に、早強ポルトラ ンドセメントを用いることが好まし 、。
このとき、水セメント比 (WZC)としては、上記最良の形態 1と同様に、 30〜60%と することが好ましぐ更に好ましくは 30〜40%で、 35%前後とすることが特に好まし い。 また、流動性、材料分離抵抗性、及び、ポンプ圧送性を向上させるためには、上記 骨材 (粗骨材と細骨材)に含まれる細骨材の割合である細骨材率 (SZa)を、 (S/a) = 30〜45%とすることが好ましい。細骨材率が 30%未満もしくは 45%を超えた場合 には、セメントペーストの粘性が低下するとともに、耐水性が低下する。
また、粗骨材としては、径の大きな粗骨材を用いた場合には、所用のスランプを得 るための単位水量が小さくなり経済的ではある力 その最大寸法については、鉄筋 間隔、かぶり厚さを考慮する必要がある。また、最大寸法が過大であるとコンクリート の扱いが困難となる、材料が分離し易くなる、ポンプ圧送性が低下する、などの問題 点があるので、粗骨材の最大寸法は過大とならないよう考慮する必要がある。例えば 、 3インチ配管で圧送するような条件であれば、水セメント比を 40%以下、粗骨材の 最大寸法を 13mm程度とし、細骨材の割合 (SZa)を従来よりも低く設定することによ り、高流動性やポンプ圧送性及び材料分離抵抗性を確保しつつ、早強性を有するコ ンクリートの作製が可能である。
なお、上記細骨材は、 10mm網ふるいを全て通過し、 5mm網ふるいを 85重量% 以上通過する骨材で、粗骨材は、 5mm網ふるいを 85重量%以上通過しない骨材で あって、一般には、いずれも川砂,海砂,山砂,砕石など力 得られる。
また、上記コンクリート用化学混和剤としては、上記最良の形態 1と同様に、リグニン 系、ポリカルボン酸系、メラミン系、ナフタリン系、あるいは、アミノスルホン酸系などの ポリエーテル系減水剤、 AE減水剤、高性能 AE減水剤などの、通常使用されている コンクリート用化学混和剤の中から適宜選択することができるが、中でも、上記増粘性 混和剤との相溶性に優れたカルボキシル基含有ポリエーテル系減水剤を、上記早強 セメントに対して、好ましくは 0. 5〜5. 0重量%の割合、特に好ましくは 1. 0〜5. 0重 量%の割合で配合することにより、早強性を確実に発現させることができる。
また、本例では、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合 物(B)とを単位水量に対して、それぞれ 0. 5〜5. 0重量%の割合で配合するととも に、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B)とをある 一定の割合でセメント中に混入するようにして 、る。
また、従来の水中不分離コンクリートで使用されていた水中不分離材料 (混和剤) は、増粘性混和剤がセメント粒子に吸着するために硬化遅延を起こすが、上記第 1 の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B)とがある一定の割合( 例えば、 2 : 5〜5: 2の範囲)でセメント中に混入されると、上記第 1の水溶性低分子化 合物 (A)と第 2の水溶性低分子化合物 (B)とが電気的に配列して擬似ポリマーを形 成して増粘機能を発揮することから、セメント粒子に影響を与えないので、上記のよう な硬化遅延を起こさない。
したがって、シールド直打ち工法のコンクリートとして最適に用いられる、早強性に 優れるとともに、優れた耐水性を有するコンクリート組成物を得ることができる。なお、 実験の結果では、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合 物(B)との配合の割合は、 1: 1の場合が最適であった。
[0028] なお、混練においては、まず、セメント、水、細骨材にコンクリート用化学混和剤であ るカルボキシル基含有ポリエーテル系減水剤と、第 2の水溶性低分子化合物(B)で あるアルキルァリルスルホン酸ナトリウムとを添加して混練して混練物を作製し、しか る後、上記混練物に第 1の水溶性低分子化合物 (A)であるアルキルアンモ-ゥム塩 を添加して再度混練し、最後に粗骨材を加えて混練してコンクリート組成物を製造す る。
このようにして得られたコンクリート組成物は、早強性や流動性に優れて 、るだけで なぐ耐水性にも優れているので、地中や水中などでの施工が容易であるとともに、 初期強度と耐水性とを十分に確保することができるので、湧水地層におけるシールド 工法の直打ちコンクリートライニング材として十分な特性を有している。また、優れた ポンプ圧送性や材料分離抵抗性を有することから、坑内での 3インチの配管による圧 送も可能である。
[0029] なお、上記最良の形態 2では、上記コンクリート組成物を、シールド工法の直打ちコ ンクリートライニング材として使用する場合について説明した力 これに限るものでは なぐ従来高流動コンクリートが用いられていた、バイブレータによる締め固めが困難 な建築物の施工や、従来水中不分離性コンクリートが用いられていた、海洋構造物 や地中構造物などの水が存在する場所でのコンクリート施工にも本発明のコンクリー ト組成物は十分に適用可能である。 [0030] また、上記例では、コンクリートプラントのミキサーにて、セメント、水、細骨材、コンク リート用化学混和剤、及び、アルキルァリルスルホン酸ナトリウムなどの第 2の水溶性 低分子化合物 (B)を練り混ぜ、更に、上記混練物に上記第 1の水溶性低分子化合 物 (A)を添加して再度練り混ぜた後、最後に粗骨材を加えて混練し、この混練物を 工事現場 Bに運搬した力 図 2 (a)に示すように、コンクリートプラント Aのミキサー 1に て、セメント、水、細骨材、粗骨材、コンクリート用化学混和剤、及び、上記第 2の水溶 性低分子化合物 (B)を練り混ぜた後、この混練物を運搬車輛 2のトラックアジテータ 3 に積み込んで低速攪拌しながら工事現場 Bに運搬し、工事現場 Bにて、上記混練物 に上記第 1の水溶性低分子化合物 (A)を添加して、上記トラックアジテータ 3にて高 速攪拌してコンクリート組成物を作製するようにしてもょ 、。
あるいは、図 2 (b)に示すように、コンクリートプラント Aのミキサー 1にて、セメント、水 、細骨材、粗骨材、コンクリート用化学混和剤を練り混ぜ、この混練物を運搬車輛 2の トラックアジテータ 3に積み込んで低速攪拌しながら工事現場 Bに運搬し、工事現場 Bにて上記第 2の水溶性低分子化合物(B)を添加して上記トラックアジテータ 3で高 速攪拌した後、上記混練物に上記第 1の水溶性低分子化合物 (A)を添加して更に 高速攪拌して上記コンクリート組成物を製造するようにしてもょ 、。
[0031] ところで、上記コンクリート組成物では、上記のように、上記第 1の水溶性低分子化 合物 (A)と第 2の水溶性低分子化合物(B)とがある一定の割合(2: 5〜5: 2)でコンク リート中に混入されると、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子 化合物(B)とが電気的に配列して擬似ポリマーを形成し、上記コンクリート組成物の 早強性や耐水性を向上させる。特に、上記配合比率がほぼ 1 : 1である場合には、最 も結合力が強ぐかつ、粘性も大きくなり、早強性や耐水性が大幅に向上する。また、 上記配合比率が 1 : 1からずれると、結合力が弱くなり、粘性も小さくなる。一方、上記 配合比率が同じ場合には、上記化合物 (A)と上記化合物(B)の添加量が多いほど 粘性は大きくなる。
上記早強性耐水コンクリート組成物も、従来のコンクリート組成物と同様に、環境温 度が低い打設現場においてはその粘性が低下するが、この他にも、運搬の混練中、 あるいは、打設現場への圧送中に、上記コンクリート組成物に油分が混入した場合に 、上記第 1の水溶性低分子化合物 (A)が上記油分に吸着され、その結果、上記第 1 の水溶性低分子化合物 (A)と上記第 2の水溶性低分子化合物 (B)との配合比率が ずれてしま!/、粘性が低下してしまうことがある。
すなわち、上記コンクリート組成物においては、粘性の低下は、上記化合物 (A)と 上記化合物(B)との配合比率が変化した場合にも生じるので、粘性調整のために上 記増粘性添加剤とは異なる増粘剤を添加した場合、コンクリート組成物の特性に影 響がでてしまい、所望の特性が得られなくなる恐れがあった。また、上記コンクリート 組成物に粘性が高くなつた場合に、安易に水分を加えると、上記化合物 (A)と上記 化合物(B)との単位水量に対する割合が変化し、上記コンクリート組成物の特性を劣 化させる恐れがある。
[0032] し力しながら、上記早強性耐水コンクリート組成物の粘性は、上記第 1の水溶性低 分子化合物 (A)と第 2の水溶性低分子化合物 (B)との配合比率により変化すること から、上記コンクリート組成物の粘性を調整する際には、上記コンクリート組成物に上 記化合物 (A)あるいは上記化合物(B)を添加してその配合比率を調整してやれば、 上記コンクリート組成物の特性を劣化させることなぐ容易に粘性調整を行うことがで きる。
[0033] 次に、上記コンクリート組成物の粘性調整方法の具体的方法について、図 3のフロ 一チャートを参照して説明する。
まず、コンクリートプラントにおいて、上記の、早強ポルトランドセメント、水、粗骨材、 細骨材、コンクリート用化学混和剤、及び、上記増粘性混和剤を混練して成るコンクリ ート組成物を作製し、その粘性 (初期粘性率 r? (0) )を測定する (ステップ Sl)。
次に、打設現場に運搬されてきた上記コンクリート組成物の粘性 (粘性率 r? )を測 定し (ステップ S 2)、上記測定された粘性率 7?と初期粘性率 7? (0)とを比較し、上記 測定された粘性率 r?が上記初期粘性率 r? (0)よりも低いかどうかを判定する (ステツ プ S3)。
粘性率 r?が初期粘性率 r? (0)よりも低い場合 (ステップ S3で Yesの場合)には、上 記コンクリート組成物に上記第 1の水溶性低分子化合物 (A)を少量添加して再度混 練する (ステップ S4)。そして、粘性が回復した力どうかを調べ (ステップ S5)、粘性が 回復していたならば、そのまま上記コンクリート組成物を打設する。また、上記第 1の 水溶性低分子化合物 (A)を添加しても粘性が回復して ヽな 、場合には、上記第 1の 水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B)との配合比が上記コンク リート組成物の現場温度での最大粘性を実現する配合比力 上記化合物 (A)が多 い方にずれてしまったと推定されるので、これを調整するため、第 2の水溶性低分子 化合物(B)を少量添加して再度混練し (ステップ S6)、粘性が回復したところで、上記 コンクリート組成物を打設する。
[0034] 一方、粘性率 7?が初期粘性率 7? (0)よりも高 、場合 (ステップ S3で Noで、かつ、ス テツプ S7で Yesの場合)には、ステップ S8に進み、上記第 2の水溶性低分子化合物( B)を少量添加して再度混練し、粘性を初期レベルまで下げたところで、上記コンクリ ート組成物を打設する。なお、この場合には、上記第 1の水溶性低分子化合物 (A) を添加しても粘性を低下させることができるが、上記化合物 (A)では、混練の際に若 干泡の発生があるため混練に手間が力かるので、上記化合物(B)を添加した方が作 業上有利である。
なお、上記測定された粘性率 r?が初期粘性率 r? (0)とあまり変わらない場合には、 そのまま上記コンクリート組成物を打設すればよい。
[0035] また、シールド工法における覆ェコンクリートを構築する場合のように、上記コンクリ ート組成物をコンクリートポンプで圧送して打設する場合には、上記コンクリートボン プの油分により上記第 1の水溶性低分子化合物 (A)が吸着されることが想定される ので、上記コンクリート組成物に、予め、上記第 1の水溶性低分子化合物 (A)を添カロ してから圧送するようにすれば、打設時における上記コンクリート組成物の特性を初 期特性に確実に維持することができる。
なお、上記の粘性調整方法は、シールド工法の直打ちコンクリートライニング材と使 用される早強性耐水コンクリートに限るものではなく、ノイブレータによる締め固めが 困難な建築物の施工、更には、海洋構造物や地中構造物などの水が存在する場所 でのコンクリート施工に用いられるコンクリート組成物についても適用可能である。 実施例
[0036] 以下の表 1及び表 2に示すように、水 190kg/m3に早強セメント (密度; 3. 14g/cm3) 543kg/m3を加え、水セメント比が 35%になるように調整した後、これにコンクリート用 化学混和剤として、高性能特殊混和剤 (花王株式会社製、カルボキシル基含有ポリ エーテル系減水剤、商品名「マイティ 4000FA」)、アルキルァリルスルホン酸ナトリウ ムを主成分とする添加剤 (花王株式会社製、商品名「ピスコトップ 100FA」)とを配合 し、これに、川砂から得られた細骨材 (密度; 2. 63g/cm3) 597kg/m3をカ卩えて練り混 ぜ、この混練物にアルキルアンモ-ゥム塩を主成分とする添加剤(花王株式会社製、 商品名「ピスコトップ 100FB」)を添加して再度混練し、最後に粗骨材 (密度; 2. 56 g/cm3) 597kg/m3を加えて混練しコンクリート組成物を作製した。このとき、上記粗骨 材として、 13mm以下の大きさの粗骨材を用いた。
[表 1]
Figure imgf000019_0001
[表 2]
Figure imgf000019_0002
水セメン卜比 (W/C) =35%
細骨材率 (S/a) =38¾
そして、上記コンクリート糸且成物につき、以下の(1)〜(8)に示すような材料試験を 行った。
(1)初期性状;スランプフロー試験(5分, 10分)、空気量試験、コンクリート温度
(2)フレッシュコンクリート経時変化保持性;初期性状試験項目を練りあがり 0, 60, 1 20, 180, 240分で行う。 (3)水中不分離性;水中にフレッシュコンクリートを落下させ pHを測定
(4)水密性;フレッシュコンクリートの円柱供試体を作製し、その供試体に水圧をかけ 、透過した水量を測定するとともに強度試験を実施
(5)粘性試験; 23度の傾斜面にコンクリートを流し、その速度を測定
(6)圧縮強度試験; JIS A 1108に準拠して実施
(7)ポンプ圧送試験; 3インチ配管で圧送性を確認 (管内圧力損失測定、コンクリート の圧力ロスの確認)
(8)収縮量の測定;長さ変化試験により収縮量を測定
表 3及び表 4は、上記試験結果のうちの、圧縮強度とフレッシュ性状の測定結果で あり、表 5は、各本発明のコンクリート組成物の諸特性を、従来の高流動コンクリート 及び水中コンクリートと比較した結果を示す。なお、比較例として用いた高流動コンク リートは、「高流動コンクリート施工指針」に、水中コンクリートは、「水中不分離性コン クリート設計施工指針 (案)」に基づき作製した。
[表 3]
Figure imgf000020_0001
[表 4]
Figure imgf000020_0002
[表 5] 本発明コンクリート 高流動コンクリート 水中コンクリー卜 高流動性 〇 〇 〇 フレッシュ保持性 〇 Δ O 早強性 〇 〇 X 耐水性 〇 X 〇 ポンプ圧送性 〇 〇 〇 セルフレペリング性 〇 Δ Δ 材料分離抵抗性 〇 〇 〇 表 3〜表 5から明らかなように、本発明のコンクリート組成物は、流動性、材料分離 抵抗性、及び、早強性に優れているだけでなぐ耐水性にも優れ、更には、ポンプ圧 送性、セルフレべリング性つ 、ても優れた特性を有することが確認された。
[0037] 最良の形態 3
上記最良の形態 2では、シールド工法の直打ちコンクリートライニング材と使用され る早強性耐水コンクリートについて説明した力 本発明のコンクリート組成物は、上記 実施例からもわ力るように、耐水性に加えてセルフレべリング性にも優れて 、ることこ とから、場所打ちコンクリート杭の構築にも好適に用いることができる。
場所打ちコンクリート杭は、地盤を機械で掘削し、掘削坑内を安定液で満たして掘 削孔壁を安定させた後、上記削孔内に鉄筋力ごを挿入してコンクリートを打設するこ とにより、杭を現場にて構築する方法の総称で、その代表的な工法としては、アース ドリル工法、リバース工法、オールケーシング工法などがある。図 4は、アースドリルェ 法の施工要領図で、この工法では、図 4 (a) , (b)に示すように、まず、アースドリル 21 を用い、ベントナイト液などの安定液 22を注入しながら地盤 20を掘削して掘削孔 23 を形成する。そして、図 4 (c)〜(e)に示すように、上記掘削孔 23の内部に鉄筋かご 2 4を挿入した後、図示しないコンクリートポンプからトレミー管 25を通して上記掘削孔 2 3内にコンクリート組成物を圧送して打設し、鉄筋コンクリートの杭 (コンクリート杭) 26 を構築する。なお、上記トレミー管 25はコンクリート杭 26の構築後に撤去される。
[0038] ところで、上記コンクリートの打込み時においては、打設するコンクリート組成物のセ ルフレベリング性が低い場合には、コンクリートが泥水ゃ孔壁の土砂などを巻き込む 恐れがあり、このため、コンクリート杭の品質が低下することが考えられる。そこで、安 全を見込んで所定のコンクリート天端高さに対して余盛りを行う必要がある。上記必 要とされる余盛り部 26kの深さは、一般に工法により異なるが、泥水により掘削孔壁を 安定させるアースドリル工法やリバース工法では 80cm程度、オールケーシング工法 では 50cm程度必要である。そして、コンクリート打設後には、レイタンス (泥分層)や 泥水の沈殿物が混合している上記余盛り部 26kをはつる杭頭処理作業が必要となる
[0039] また、砂利や砂礫層での場所打ちでは、伏流水や被圧地下水によりコンクリートが 洗い流されることもあるため、このような場所で使用されるコンクリートとしては、セメン ト、水、骨材に、例えば、シリカゲル、ベントナイト等の無機質混和剤や AE減水剤な どのコンクリート用化学混和剤を配合した、耐水性に優れ、かつ、ブリージングの発生 の少ない水中コンクリートを使用することも考えられる力 水中コンクリートを用いた場 合でも、セルフレべリング性に問題があるため、普通コンクリートの場合と同様に余盛 りを行う必要があった。
そこで、上記のような、場所打ちコンクリート杭を構築する際に、上記最良の形態 1, 2と同様の、上記第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子化合物 (B) とを含有する増粘性混和剤を配合したコンクリート組成物を用いれば、コンクリート組 成物の耐水性とセルフレべリング性とをともに向上させることができるので、伏流水や 被圧地下水がある場合でも信頼性の高いコンクリート杭を構築できると考えられる。 また、その際に、最初に上記増粘性混和剤を配合したコンクリートを所定深さだけ 打設した後、上記増粘性混和剤を配合していないコンクリートを打設してコンクリート 杭を構築するようにすれば、上記増粘性混和剤を配合した高価なコンクリートの使用 量を少なくでき、材料コストを大幅に低減することができる。
[0040] 図 5 (a)〜(c)は、本発明の最良の形態 3に係る場所打ちコンクリート杭の構築方法 を示す図で、本例では、アースドリル等の掘削機械を用いて地盤 20を掘削し、掘削 孔壁を安定させた後、上記掘削孔 23内に鉄筋力ご 24を挿入してコンクリートを打設 する。このとき、はじめに、セルフレべリング性が高ぐかつ、耐水性に優れたコンクリ ート(以下、高セルフレべリング耐水コンクリートという) 11を、所定深さだけ打設した 後、水と普通ポルトランドセメント及び骨材を混練した普通コンクリート 12を打設してコ ンクリート杭 10を構築する。 [0041] 上記高セルフレべリング耐水コンクリートは、セメント、水、粗骨材、細骨材に、コンク リート用化学混和剤に加えて、増粘性混和剤として、カチオン性界面活性剤力も選 ばれる第 1の水溶性低分子化合物 (A)と、ァニオン性芳香族化合物から選ばれる第 2の水溶性低分子化合物 (B)とを含有する増粘性混和剤を配合したもので、その製 造方法としては、はじめに、セメント、水、細骨材に、コンクリート用化学混和剤と、上 記第 2の水溶性低分子化合物 (B)とを練り混ぜて混練物を作製した後、この混練物 に上記第 1の水溶性低分子化合物 (A)を添加して再度混練し、最後に粗骨材をカロ えて混練し、上記コンクリート組成物を作製する。
なお、上記コンクリート用化学混和剤としては、通常使用されているコンクリート用化 学混和剤の中から適宜選択することができるが、中でも、上記増粘性混和剤との相 溶性に優れたカルボキシル基含有ポリエーテル系減水剤を、セメントに対して、 0. 5 〜5. 0重量%、特に好ましくは、 1. 0〜5. 0重量%の割合で配合することにより、流 動性やセルフレべリング性を向上させることができる。
[0042] また、上記セメントとしては、特に限定されるものではなぐ石灰石 '粘土'酸化鉄な どを原料とした普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトラン ドセメント、白色ポルトランドセメントなどのポルトランドセメントや、高炉セメント、フライ アッシュセメント、シリカセメントなどの混合セメントが用いられる力 特に、早強ポルト ランドセメントを用いることが好まし 、。
なお、本例の高セルフレべリング耐水コンクリートにおいても、水セメント比(WZC) としては、 30〜60%とすることが好ましぐ好ましくは 30〜40%で、 35%前後とする ことが特に好ましい。
なお、混練方法については、上記最良の形態 1, 2と同様であるので、その説明を 省略する。
[0043] 上記高セルフレべリング耐水コンクリートは、図 5 (a)に示すように、トレミー管 25を 用いて打設される力 この高セルフレべリング耐水コンクリート 11は高 、セルフレベリ ング性を有するので、普通コンクリートに比べて打設後のコンクリート表面が平坦にな る。したがって、コンクリートの打込み時における泥水ゃ孔壁土砂などの巻き込みを 大幅に低減することができる。 また、上記高セルフレべリング耐水コンクリートは優れた耐水性を有するので、伏流 水や被圧地下水が存在する地盤であっても、泥水による実質上の加水による強度低 下を防止できるとともに、泥水等によるセメント粒子の流出による品質の低下を防止 することができる。
また、上記高セルフレべリング耐水コンクリートは優れたポンプ圧送性や流動性'材 料分離抵抗性を有することから、ポンプ圧送時及び充填時の材料分離を効果的に低 減することができるだけでなぐブリージングの発生も低減することができる。
[0044] また、本例では、図 5 (b)に示すように、上記高セルフレべリング耐水コンクリート 11 を所定深さだけ打設した後、普通コンクリート 12を打設してコンクリート杭 10を構築す ることにより、上記増粘性混和剤を配合した高価な高セルフレベリング耐水コンクリー トの使用量を少なくして、材料コストを低減するようにして 、る。
すなわち、トレミー管 25の下端部を上記打設した高セルフレべリング耐水コンクリー ト 11内に留めた状態で、上記トレミー管 25を徐々に引き上げながら普通コンクリート 1 2を上記トレミー管 25から圧送する。これにより、打設されたコンクリートの表面には、 常に、優れた耐水性とセルフレべリング性とを有する上記高セルフレべリング耐水コ ンクリート 11が存在するので、コンクリート表面は平坦のままであり、泥水ゃ孔壁土砂 などを巻き込むことがない。したがって、コンクリート杭 10の余盛り部 10kの量を極め て少なくすることができるので、杭頭処理を簡略ィ匕することができる。
[0045] 最良の形態 4.
上記最良の形態 1〜3では、骨材として、川砂,海砂,山砂,砕石など力 得られた 骨材 (普通骨材)を用いたが、普通骨材とは比重の異なる異比重骨材を配合した場 合でも、上記第 1の水溶性低分子化合物 (A)と上記第 2の水溶性低分子化合物 (B) とを含有する添加剤を増粘性混和剤として配合することにより、上記異比重骨材をコ ンクリート中に均一に分散させることができる。
通常、建造物の壁版や床、屋根版などを軽量化するための構造用軽量コンクリート や、断熱や被覆、あるいは吸音を主目的とした非構造用コンクリートなどのような軽量 コンクリートに配合される骨材としては、例えば、特開 2001— 261413号公報や、特 開平 8— 26853号公報に開示されているように、普通骨材よりも比重の小さな、火山 礫などの天然軽量骨材ゃメサライト,アサノライト ( ヽずれも商品名)などの人工軽量 骨材が用いられている。
また、堤防などの水理構造物や建築下部構造物など単位体積当たりの重量が大き いことが要求されるコンクリート構造物や、加速器施設,ウラン処理施設,原子炉施設 などのように放射線を取扱う施設に設けられる遮蔽壁には、例えば、特開平 2— 172 846号公報や実開平 6 - 76899号公報に開示されて 、るように、磁鉄鉱等の自然岩 石を粉砕したものや、ショットブラスト用のスチール細粒、あるいは、鉄廃材を鍛造ま たは熱間プレスカ卩ェして粒状としたもののような、普通骨材よりも比重の大きな重量 骨材を含有した重量コンクリートが採用されている。
ところで、上記のような、普通骨材よりも比重の小さな骨材を配合した軽量コンクリー トゃ、比重の大きな骨材を配合した重量コンクリートでは、普通骨材を配合した場合 に比べて材料分離を起こし易ぐそのため、上記骨材の分布が不均質になってしまう といった問題点があった。すなわち、骨材の分布が不均質になると、軽量コンクリート の場合には、コンクリートの強度が低下してしまう。上記軽量コンクリートは、特に、乾 燥状態におかれると乾燥収縮が大きくなつてひび割れが発生し、そのため、曲げ強 度や耐久性がが著しく低下する傾向がある。
一方、堤防などの水理構造物や建築下部構造物などでは、骨材分布が不均一な 場合には、発熱量が大きくなることや乾燥収縮が大きくなることによりひび割れ等が起 こり易ぐ耐久性に問題があった。また、遮蔽壁の場合には、放射線遮蔽効果にばら つきが生じるため、遮蔽効果が低減してしまうといった問題点があった。そこで、上記 軽量コンクリートを製造する際に、 AE減水剤などの減水剤とともに、セルロース系ま たはアクリル系の水溶性高分子を主成分とする材料分離低減剤 (増粘性混和剤)を 配合して、流動性の低下を抑制しつつ、上記材料分離を抑制しょうとする試みが行 われているが、材料分離を十分に抑制することは困難であった。
また、上記重量コンクリートについては、現状では、必要に応じて層打ちを行って骨 材分布の不均一を解消するようにしているが、作業性が悪いだけでなぐ打ち継ぎ目 ができるため、耐久性や強度、放射線遮蔽効果についても十分とはいえな力つた。ま た、骨材の粒度分布の調整を行ったり、表面に凹凸を設けてセメントとの付着性を高 めるなどの方法も提案されて 、るが、 、まだ十分な効果が得られて 、なかった。
[0047] 最良の形態 4に係る異比重骨材含有コンクリート組成物は、セメント及び水に、人工 軽量骨材力も成る骨材とを配合するとともに、コンクリート用化学混和剤 (減水剤)と増 粘性混和剤とを配合したもので、本例では、上記増粘性混和剤として、カチオン性界 面活性剤カゝら選ばれる第 1の水溶性低分子化合物 (A)と、ァ-オン性芳香族化合物 カゝら選ばれる第 2の水溶性低分子化合物 (B)とを含有する添加剤を用いた。また、そ の製造方法としては、はじめに、セメント、水、細骨材に、コンクリート用化学混和剤と 、上記第 2の水溶性低分子化合物 (B)とを練り混ぜて混練物を作製した後、この混練 物に上記第 1の水溶性低分子化合物 (A)を添加して再度混練し、最後に粗骨材を 加えて混練し、コンクリート組成物を作製する。これにより、十分な流動性を確保しつ つ、上記人工軽量骨材をコンクリート中に均一に分散させることができる。
[0048] 上記人工軽量細骨材としては、例えば、膨張性頁岩、膨張粘度、またはフライアツ シュなどの原料を調合して微粉末にした後、造粒'焼成したものや、石灰質や珪酸質 材料を発泡'焼成したもの、あるいは、真珠岩,黒曜石などを焼成膨張させたもの (パ 一ライト)などがあり、 RC造の躯体などの構造材料として使用するか、あるいは、断熱 や耐火被覆などの非構造材料に用いるカゝなど、その用途により、その種類、粒径、細 骨材率、及び配合量が適宜決定される。
これらの人工軽量骨材の化学成分は、主に、シリカ(SiO
2 ) ,アルミナ (Al O
2 3 ) ,酸 化鉄(Fe O, FeO) ,酸化カルシウム(CaO),酸化マグネシウム(MgO)などの金属
2 3
酸化物で、その絶乾比重は、例えば、構造用軽量コンクリート骨材の場合には、細骨 材で 2. 3未満、粗骨材で 2. 0未満である (JIS A 5002 による)。
[0049] また、コンクリート組成物の流動性を挙げるために添加されるコンクリート用化学混 和剤としては、リグニン系、ポリカルボン酸系、メラミン系、ナフタリン系、あるいは、アミ ノスルホン酸系などのポリエーテル系減水剤、カルボキシル基含有ポリエーテル系減 水剤、 AE減水剤、高性能 AE減水剤などの、通常使用されているコンクリート用化学 混和剤の中から適宜選択することができる。
このように、セメント及び水に、人工軽量骨材から成る細骨材に、コンクリート用化学 混和剤と、ァニオン性芳香族化合物から選ばれる第 2の水溶性低分子化合物 (B)と を練り混ぜて混練物を作製した後、この混練物にカチオン性界面活性剤力 選ばれ る第 1の水溶性低分子化合物 (A)を添加して再度混練し、最後に人工軽量骨材から 成る粗骨材を加えて混練し、コンクリート組成物を作製するようにしたので、骨材とし て、普通骨材よりも比重の軽い人工軽量骨材を用いた場合でも、十分な流動性を確 保しつつ、上記人工軽量骨材をコンクリート中に均一に分布させることができる。した がって、作業性を改善できるとともに、強度の均一な軽量コンクリートを作製すること ができる。
[0050] なお、上記最良の形態 4では、軽量骨材として人工軽量骨材を用いた力 これに限 るものではなぐ本発明は、火山礫などの天然軽量骨材や石炭殻などの副産軽量骨 材を用いた場合、あるいは、上記天然軽量骨材や副産軽量骨材と人工軽量骨材とを 組み合わせた軽量骨材を用いた場合にも適用可能であることは言うまでもな!/、。
[0051] 最良の形態 5
上記最良の形態 4では、軽量骨材を配合したコンクリート組成物にっ 、て説明した 1S 堤防などの水理構造物や建築下部構造物などに用いられる、比重が 4. 0以上 の重量骨材をその一部または全部に用いた重量コンクリートを作製する場合でも、水 、セメント、骨材に加えて、カチオン性界面活性剤カゝら選ばれる第 1の水溶性低分子 化合物 (A)と、ァニオン性芳香族化合物から選ばれる第 2の水溶性低分子化合物( B)とを含有する混和剤を増粘性混和剤として配合すれば、上記重量骨材をコンクリ ート中に均質に分布させることができる。なお、上記重量骨材としては、例えば、磁鉄 鉱ゃ砂鉄などの鉄鉱石、あるいは、鉄などの金属、パーライトなどを用いることができ る。また、これらの重量骨材は、細骨材または粗骨材として通常骨材とともに配合して もよいし、細骨材と粗骨材の両方に使用してもよい。
これにより、重量コンクリートにおける上下方向の骨材による不均質が改善され、コ ンクリート上部において富配合 (モルタルの多い配合)にならず、乾燥収縮によるひ び割れの発生が抑制され、耐久性の低下を抑制することができる。更に、層打ちを行 うことなく水理構造物や建築下部構造物などを構築することができるので、作業効率 を向上させることができるとともに、打ち重ね等の構造的な脆弱部のない耐久性の高 V、構造物の作製が可能となる。 [0052] なお、本発明は、水理構造物や建築下部構造物などに用いられる重量コンクリート に限るものではなぐ放射線を遮蔽する遮蔽コンクリートにも適用可能である。すなわ ち、上記遮蔽コンクリートを作製する場合、カチオン性界面活性剤カゝら選ばれる第 1 の水溶性低分子化合物 (A)と、ァニオン性芳香族化合物から選ばれる第 2の水溶性 低分子化合物 (B)とを含有する混和剤を増粘性混和剤として配合すれば、層打ち等 を行わなくても重量骨材をコンクリート中に均質に分布させることができる。したがって 、層打ちによる構造的な脆弱部がないので、遮蔽コンクリートの耐久性を向上させる ことができるとともに、重量骨材がコンクリート中に均質に分布しているので、放射線 遮蔽効果のばらつきをなくすことができ、遮蔽効果を向上させることができる。
また、上記最良の形態 4, 5では、骨材の一部または全部に軽量骨材または重量骨 材を配合した場合について説明したが、本発明は、例えば、建築廃材ゃ銅スラグ骨 材などの廃棄物を原料とする骨材を用いた場合のように、軽量骨材と重量骨材との 両方が混合された骨材を用いた場合にも適用可能である。
産業上の利用可能性
[0053] 以上説明したように、本発明によれば、早強性、流動性、セルフレべリング性、及び 、材料分離抵抗性に優れるとともに、耐水性にも優れたコンクリート組成物を得ること ができるので、湧水地層におけるシールド工法における覆ェコンクリートの構築や、 バイブレータによる締め固めが困難な建築物の施工、更には、海洋構造物や地中構 造物などの水が存在する場所でのコンクリート施工を容易にかつ確実に行うことがで きる。
また、コンクリート杭を構築する際にも、コンクリートの打込み時における泥水ゃ孔壁 土砂などの巻き込みを大幅に低減することができるので、余盛りをほとんど行うことな くコンクリート杭を構築することができる。
更に、骨材として、普通骨材との比重差が大きい骨材を配合した場合でも、上記骨 材をコンクリート中に均一に分散させることができるので、均質性の高い軽量コンクリ ートゃ重量コンクリートを容易に作製することができる。

Claims

請求の範囲
[1] セメント、水、骨材に増粘性混和剤を添加して混練したコンクリート組成物であって 、上記増粘性混和剤として、第 1の水溶性低分子化合物 (A)と第 2の水溶性低分子 化合物 (B)とを含有する添加剤であり、上記化合物 (A)と上記化合物 (B)とが、両性 界面活性剤から選ばれる化合物 (A)とァ-オン性界面活性剤カゝら選ばれる化合物( B)の組み合わせ、または、カチオン性界面活性剤力も選ばれる化合物 (A)とァ-ォ ン性芳香族化合物力 選ばれる化合物(B)との組み合わせ、カチオン性界面活性 剤から選ばれる化合物 (A)と臭素化合物から選ばれる化合物(B)との組み合わせ、 力 選択される添加剤のうちのいずれかの添加剤を用いたことを特徴とするコンクリ 一卜組成物 Q
[2] 上記増粘性混和剤として、カチオン性界面活性剤から選ばれる化合物 (A)とァ- オン性芳香族化合物から選ばれる化合物 (B)とを含有する混和剤を用いるとともに、 上記化合物 (A)と上記化合物(B)とを、単位水量に対して、それぞれ 0. 5〜5. 0重 量%の割合で配合したことを特徴とする請求の範囲 1に記載のコンクリート組成物。
[3] 上記コンクリート組成物における水セメント比を 30〜60%としたことを特徴とする請 求の範囲 1または請求の範囲 2に記載のコンクリート組成物。
[4] 上記コンクリート組成物に、更に、コンクリート用化学混和剤を、セメントに対して、 0 . 5〜5. 0重量%の割合で配合したことを特徴とする請求の範囲 1〜請求の範囲 3の いずれかに記載のコンクリート組成物。
[5] 上記コンクリート用化学混和剤として、カルボキシル基含有ポリエーテル系減水剤 を用 、たことを特徴とする請求の範囲 4に記載のコンクリート組成物。
[6] 上記骨材として粗骨材と細骨材とを用いるとともに、上記骨材に含まれる細骨材の 割合である細骨材率を 30〜45%としたことを特徴とする請求の範囲 1〜請求の範囲 5のいずれかに記載のコンクリート組成物。
[7] 骨材の少なくとも一部または全部に、普通骨材よりも比重の小さな骨材、及び、普 通骨材よりも比重の大きな骨材のいずれか一方または両方を用いたことを特徴とする 請求の範囲 1〜請求の範囲 5のいずれかに記載のコンクリート組成物。
[8] 請求の範囲 1〜請求の範囲 7のいずれかに記載のコンクリート組成物を製造する方 法であって、セメント、水、骨材に上記第 2の水溶性低分子化合物(B)を添加して混 練した後、上記混練物に上記第 1の水溶性低分子化合物 (A)を添加して再度混練 して上記コンクリート組成物を製造するようにしたことを特徴とするコンクリート組成物 の製造方法。
[9] 請求の範囲 1〜請求の範囲 7のいずれかに記載のコンクリート組成物の粘性を調整 する方法であって、上記コンクリート組成物に、更に、上記第 1の水溶性低分子化合 物 (A)及び上記第 2の水溶性低分子化合物(B)の 、ずれか一方または両方を添カロ して、上記コンクリート組成物の粘性を調整するようにしたことを特徴とするコンクリー ト組成物の粘性調整方法。
[10] 上記化合物 (A)と上記化合物 (B)との初期配合比率を略 1: 1としたことを特徴とす る請求の範囲 9に記載のコンクリート組成物の粘性調整方法。
[11] 上記コンクリート組成物の粘性が製造時の粘度よりも低下している場合には、上記 コンクリート組成物に上記第 1の水溶性低分子化合物 (A)を添加するようにしたことを 特徴とする請求の範囲 9または請求の範囲 10に記載のコンクリート組成物の粘性調 整方法。
[12] 上記コンクリート組成物の打設現場における粘性が製造時の粘度よりも高くなつて いる場合には、上記コンクリート組成物に上記第 2の水溶性低分子化合物(B)を添 加するようにしたことを特徴とする請求の範囲 9または請求の範囲 10に記載のコンク リート組成物の粘性調整方法。
[13] 上記コンクリート組成物をコンクリートポンプで圧送して打設する場合には、上記コ ンクリート組成物に予め、上記第 1の水溶性低分子化合物 (A)を添加してから圧送 するようにしたことを特徴とする請求の範囲 9〜請求の範囲 12のいずれかに記載のコ ンクリート組成物の粘性調整方法。
[14] 地盤を掘削した孔の内部に鉄筋かごを挿入し、上記孔内にトレミー管を通してコン クリート組成物を圧送して打設し、コンクリート杭を構築する場所打ちコンクリート杭の 構築方法において、上記コンクリート組成物として、請求の範囲 1〜請求の範囲 6の いずれかに記載のコンクリート組成物を用いたことを特徴とする場所打ちコンクリート 杭の構築方法。 最初に上記増粘性混和剤を配合したコンクリートを所定深さだけ打設した後、上記 増粘性混和剤を配合していないコンクリートを打設してコンクリート杭を構築するよう にしたことを特徴とする請求の範囲 14に記載の場所打ちコンクリート杭の構築方法。
PCT/JP2005/005771 2004-03-30 2005-03-28 コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法 WO2005095300A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-099623 2004-03-30
JP2004099552A JP4727161B2 (ja) 2004-03-30 2004-03-30 シールド直打ち工法に用いられるコンクリート組成物の製造方法
JP2004-099509 2004-03-30
JP2004-099552 2004-03-30
JP2004099623A JP2005282212A (ja) 2004-03-30 2004-03-30 場所打ちコンクリート杭の構築方法
JP2004099509A JP4744813B2 (ja) 2004-03-30 2004-03-30 コンクリート組成物の製造方法
JP2004125067A JP4663250B2 (ja) 2004-04-21 2004-04-21 コンクリート組成物の粘性調整方法
JP2004-125067 2004-04-21
JP2004214135A JP2006036547A (ja) 2004-07-22 2004-07-22 異比重骨材含有コンクリート組成物とその製造方法
JP2004-214135 2004-07-22

Publications (1)

Publication Number Publication Date
WO2005095300A1 true WO2005095300A1 (ja) 2005-10-13

Family

ID=35063672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005771 WO2005095300A1 (ja) 2004-03-30 2005-03-28 コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法

Country Status (3)

Country Link
KR (1) KR20070005645A (ja)
TW (1) TW200533628A (ja)
WO (1) WO2005095300A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305789A (ja) * 2004-04-21 2005-11-04 Kumagai Gumi Co Ltd コンクリート用型枠離型剤及びコンクリートの打設方法
JP2005305788A (ja) * 2004-04-21 2005-11-04 Kumagai Gumi Co Ltd コンクリート製品またはコンクリート構造物の製造・構築方法
JP2008150782A (ja) * 2006-12-14 2008-07-03 Fujita Corp 充填材およびその製造方法
JP2008273775A (ja) * 2007-04-27 2008-11-13 Kao Corp 充填材用水硬性組成物
CN102093900A (zh) * 2011-01-11 2011-06-15 天津城市建设学院 一种可部分降解固土植被复合材料
JP2011214399A (ja) * 2011-08-04 2011-10-27 Fujita Corp 充填材
JP2011241679A (ja) * 2011-08-04 2011-12-01 Fujita Corp 充填材
JP2015074599A (ja) * 2013-10-11 2015-04-20 鹿島建設株式会社 コンクリートの打設方法及びフレッシュコンクリート
CN108395157A (zh) * 2018-01-30 2018-08-14 哈尔滨工业大学 粉煤灰吸附性护坡材料的制备方法
CN110451896A (zh) * 2019-09-18 2019-11-15 重庆大学 基于掺合料颗粒级配降低拌合物粘度的高强混凝土
CN115784678A (zh) * 2022-10-13 2023-03-14 北京超薪创艺科技有限公司 一种自密实烧结轻集料发泡混凝土的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357456B1 (ko) * 2011-12-19 2014-02-04 호서대학교 산학협력단 콘크리트용 수중불분리 혼화제 조성물 및 이것의 제조방법
KR102044636B1 (ko) 2018-08-29 2019-11-13 이종우 콘크리트파일
CN109704680A (zh) * 2019-01-28 2019-05-03 中铁大桥局集团有限公司 桥梁墩塔施工用掺有黏度改性材料的混凝土及其制备方法
CN112987813B (zh) * 2021-03-29 2022-02-01 武昌理工学院 不同强度衬砌砼通水冷却优化控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106015A (ja) * 1981-12-17 1983-06-24 Takenaka Komuten Co Ltd 場所打ちコンクリ−ト杭の施工法
JP2003238222A (ja) * 2002-02-19 2003-08-27 Kao Corp 水硬性組成物用添加剤
JP2003313536A (ja) * 2001-06-15 2003-11-06 Kao Corp スラリーレオロジー改質剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106015A (ja) * 1981-12-17 1983-06-24 Takenaka Komuten Co Ltd 場所打ちコンクリ−ト杭の施工法
JP2003313536A (ja) * 2001-06-15 2003-11-06 Kao Corp スラリーレオロジー改質剤
JP2003238222A (ja) * 2002-02-19 2003-08-27 Kao Corp 水硬性組成物用添加剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Viscotop", KAO CHEMICAL DAYORI, KAO CORP, no. 52, 1 October 2003 (2003-10-01), pages 12 - 13, XP002992693 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305789A (ja) * 2004-04-21 2005-11-04 Kumagai Gumi Co Ltd コンクリート用型枠離型剤及びコンクリートの打設方法
JP2005305788A (ja) * 2004-04-21 2005-11-04 Kumagai Gumi Co Ltd コンクリート製品またはコンクリート構造物の製造・構築方法
JP4531438B2 (ja) * 2004-04-21 2010-08-25 株式会社熊谷組 コンクリート製品またはコンクリート構造物の製造・構築方法
JP4579571B2 (ja) * 2004-04-21 2010-11-10 株式会社熊谷組 コンクリートの打設方法
JP2008150782A (ja) * 2006-12-14 2008-07-03 Fujita Corp 充填材およびその製造方法
JP2008273775A (ja) * 2007-04-27 2008-11-13 Kao Corp 充填材用水硬性組成物
CN102093900A (zh) * 2011-01-11 2011-06-15 天津城市建设学院 一种可部分降解固土植被复合材料
JP2011214399A (ja) * 2011-08-04 2011-10-27 Fujita Corp 充填材
JP2011241679A (ja) * 2011-08-04 2011-12-01 Fujita Corp 充填材
JP2015074599A (ja) * 2013-10-11 2015-04-20 鹿島建設株式会社 コンクリートの打設方法及びフレッシュコンクリート
CN108395157A (zh) * 2018-01-30 2018-08-14 哈尔滨工业大学 粉煤灰吸附性护坡材料的制备方法
CN108395157B (zh) * 2018-01-30 2020-08-11 哈尔滨工业大学 粉煤灰吸附性护坡材料的制备方法
CN110451896A (zh) * 2019-09-18 2019-11-15 重庆大学 基于掺合料颗粒级配降低拌合物粘度的高强混凝土
CN115784678A (zh) * 2022-10-13 2023-03-14 北京超薪创艺科技有限公司 一种自密实烧结轻集料发泡混凝土的制备方法
CN115784678B (zh) * 2022-10-13 2024-01-19 北京超薪创艺科技有限公司 一种自密实烧结轻集料发泡混凝土的制备方法

Also Published As

Publication number Publication date
KR20070005645A (ko) 2007-01-10
TW200533628A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
WO2005095300A1 (ja) コンクリート組成物とその製造方法、粘性調整方法、及び、このコンクリート組成物を用いた場所打ちコンクリート杭の構築方法
CA2871595C (en) Foamed cement compositions containing metal silicides usable in subterranean well operations
CN107459301A (zh) 一种预拌流态固化土
CN105507340B (zh) 一种山区桥梁桩基施工方法
CN1938240A (zh) 混凝土组合物及其制造方法、粘性调整方法以及使用该混凝土组合物的现浇混凝土桩的构筑方法
Parhi et al. A comprehensive study on controlled low strength material
Kazemain et al. Review of soft soils stabilization by grouting and
CN106939165A (zh) 一种土体硬化剂和其制备方法及其喷浆方法
KR101413719B1 (ko) 복합 파일구조물의 시공방법
CN108424086A (zh) 一种锚固***封孔材料及其制备方法
CN107512862A (zh) 一种盾构同步注浆材料专用增粘剂
KR20140098416A (ko) 지반개량을 위한 고화토 형성방법
CN110054455A (zh) 防渗截流地下帷幕墙粉煤灰基防渗材料及施工方法
JP4727161B2 (ja) シールド直打ち工法に用いられるコンクリート組成物の製造方法
JP2882259B2 (ja) 水硬性材料及び自硬性安定液
CA3127404A1 (en) Low buoyancy cellular concrete
JP2005282212A (ja) 場所打ちコンクリート杭の構築方法
CN111548092B (zh) 一种早强水泥土及其制备方法与应用
JP2004345885A (ja) 水硬性組成物、それを用いた地盤の埋め戻し材、非高強度硬化部構造材、並びに掘削地盤の埋め戻し工法
KR20150111897A (ko) 복합 기초구조물 및 그 시공방법
JP3088628B2 (ja) 自硬性安定液
KR20130131164A (ko) 토양 고화제를 이용한 팽이기초공법
JPH0825782B2 (ja) 水中構造物固定用グラウト材及びその施工方法
JP2004183364A (ja) 陸地における地中連続遮水壁構造
GB2359074A (en) Bentonite-slag slurries; in-ground hydraulic cut-off barriers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019960

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580010592.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067019960

Country of ref document: KR

122 Ep: pct application non-entry in european phase