WO2005091027A1 - 光導波路形成用感光性樹脂組成物および光導波路 - Google Patents

光導波路形成用感光性樹脂組成物および光導波路 Download PDF

Info

Publication number
WO2005091027A1
WO2005091027A1 PCT/JP2005/003418 JP2005003418W WO2005091027A1 WO 2005091027 A1 WO2005091027 A1 WO 2005091027A1 JP 2005003418 W JP2005003418 W JP 2005003418W WO 2005091027 A1 WO2005091027 A1 WO 2005091027A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
resin composition
photosensitive resin
cladding layer
epoxy resin
Prior art date
Application number
PCT/JP2005/003418
Other languages
English (en)
French (fr)
Inventor
Tomohiro Utaka
Hideaki Takase
Yuuichi Eriyama
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US10/593,815 priority Critical patent/US7394965B2/en
Publication of WO2005091027A1 publication Critical patent/WO2005091027A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0385Macromolecular compounds which are rendered insoluble or differentially wettable using epoxidised novolak resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention relates to a light-sensitive photosensitive resin composition for forming an optical waveguide which is a component of an optical circuit used in the optical communication field and the optical information processing field, and a multi-mode resin produced using the composition.
  • Optical waveguide for 3 ⁇ 4.
  • optical waveguides are optical devices that realize large-capacity information transmission such as movies and moving images, optical computers, optical integrated circuits (OEICs), and optical integrated circuits. (Optical IC), etc.
  • OEICs optical integrated circuits
  • Optical IC optical integrated circuits
  • optical waveguides Conventionally, a silica-based optical waveguide and a polymer-based optical waveguide are known as optical waveguides.
  • silica-based optical waveguides have five advantages, such as low transmission loss, but a vitrification process at a high temperature (1,200 ° C or more). And it is difficult to improve the efficiency of production.
  • polymer-based optical waveguides have advantages such as ease of processing and wide material design. Because of its advantages, it is promising in the future, and various materials having better physical properties have been developed in addition to general-purpose materials such as polymethyl methacrylate.
  • the core may be a monomer or an oligomer having an epoxy ring (for example, having a specific chemical formula.
  • An optical waveguide which is obtained by photo-curing or heat-curing a mixture of an epoxy UV monomer and a polymerization initiator has been proposed (see Japanese Patent Application Laid-Open No. 8-271746).
  • This optical waveguide is a single-mode optical waveguide, in particular, and enables easy and low-loss optical coupling with other optical components with a positioning accuracy on the order of several meters or less.
  • a material for forming an optical waveguide through which an optical signal can propagate comprising: a first compound having an oxetane ring; and a second compound capable of initiating polymerization by a chain reaction (specifically, A material for an optical waveguide that is cured by an energy beam, comprising a cationic polymerization initiator) and a third compound having an oxysilane ring (for example, a glycidyl-type epoxy resin such as bisphenol A-type epoxy resin) has been proposed. (Refer to Japanese Patent Application Laid-Open No. 2000-350670).
  • this optical waveguide material According to this optical waveguide material, a chain reaction can be rapidly progressed, and a polymer having a high crosslinking density and excellent solvent resistance can be obtained.
  • the epoxy resin is also used as a sealing material for the optical module.
  • polymer-based optical waveguides are required that have not only excellent properties such as patterning properties but also excellent heat resistance, transmission characteristics, and long-term reliability.
  • an object of the present invention is to provide a polymer optical waveguide excellent in all of patterning properties, heat resistance, transmission characteristics, and long-term reliability, and a photosensitive resin composition capable of forming the optical waveguide.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that an intended optical waveguide can be produced by using a specific epoxy resin, and have completed the present invention.
  • the photosensitive resin composition for forming an optical waveguide of the present invention is characterized by containing (A) a novolak type epoxy resin and (B) a photoacid generator.
  • the epoxy equivalent of the component (A) is preferably 50 to 1, OOOOgZeq.
  • the resin composition during curing preferably 1.5 5 or more refractive index (n D 25).
  • the resin composition preferably has a glass transition temperature (T g) of at least 100 ° C. at the time of curing.
  • Ri represents a hydrogen atom or an alkyl group or an aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10.
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group or an aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10.
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group or an aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10).
  • An optical waveguide according to the present invention is an optical waveguide including a lower cladding layer, a core portion, and an upper cladding layer, wherein at least one of the lower cladding layer, the core portion, and the upper cladding layer is provided.
  • One is a cured product of the above resin composition.
  • the resin composition of the present invention is excellent in patterning property at the time of curing, coating property, and curability, and has a high refractive index suitable for use as an optical waveguide when an optical waveguide is formed, Since it has excellent heat resistance, transmission characteristics (low waveguide loss), long-term reliability, etc., it can be suitably used as a material for forming optical waveguides.
  • the resin composition of the present invention after being applied by a spin coating method without using a solvent, patterning can be performed through a photomask, and post-exposure post-bake is unnecessary. In addition, it is possible to improve the manufacturing efficiency of the optical waveguide.
  • FIG. 1 is a cross-sectional view showing an example of an optical waveguide manufactured using the resin composition for forming an optical waveguide of the present invention.
  • the photosensitive resin composition for forming an optical waveguide of the present invention contains (A) a novolak-type epoxy resin, and (B) a photoacid generator.
  • (A) the number of repeating units of the constituent unit is preferably 2 to 12.
  • One preferred example of the resin composition of the present invention contains the following components (A) and (B) as constituent components. However, it can contain the component (C) described below as an optional component.
  • the term “resin composition” has a concept that encompasses both a form before curing and a form after curing.
  • a preferred example of the component (A) constituting the resin composition of the present invention is a novolak-type epoxy resin represented by any of the following general formulas (1) to (3).
  • Ri represents a hydrogen atom or an alkyl group or an aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10.
  • R2 and R3 each independently represent a hydrogen atom or an alkyl or aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10.
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group or an aralkyl group having 1 to 12 carbon atoms.
  • N represents an integer of 0 to 10).
  • Ri to R 5 in 1) and (2) are each a hydrogen atom or carbon It is an alkyl group or an aralkyl group having a number of 1 to 12, preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and more preferably a hydrogen atom. If the number of carbon atoms exceeds 12, the glass transition temperature of the cured product will decrease, and there may be a problem with the heat resistance of the waveguide.
  • the alkyl group or aralkyl group having 1 to 12 carbon atoms may be linear, branched, or cyclic.
  • the epoxy resin in which Ri is a hydrogen atom is referred to as a phenol novolak epoxy resin.
  • An epoxy resin in which R 1 is a methyl group is referred to as a cresol novolak epoxy resin.
  • the epoxy resins represented by the general formulas (2) and (3) are referred to as bisphenol A nopolak type epoxy resins.
  • N in the general formulas (1) to (3) is 0 to 10, preferably 0 to 8. If n exceeds 10, the viscosity of the resin composition increases, which may cause inconvenience in handling and coating properties.
  • an oligomer or a polymer having at least two (preferably 2 to 12) structural units in the chemical structure of the compound is a repeating unit. It is necessary to use When a compound (epoxy monomer) having one repeating structural unit is used, the curing shrinkage becomes large, and when the waveguide is used in various environments, the waveguide and the substrate are not bonded. Interfacial separation may occur between layers or between layers constituting the waveguide, and reliability may be reduced.
  • nopolak epoxy resin represented by the general formula (1) are Epicort 152, Epicorte 154 (all manufactured by Japan Epoxy Resin), Epiclone N740, Epiclon N770 (or more manufactured by Dainippon Ink and Chemicals), Epoteto YD PN63 8 (manufactured by Toto Kasei), DER 431, DER 438 (manufactured by Dow Chemical), Araldite EPN 1 1 3 8 (manufactured by Ciba Geigy) (manufactured by phenol novolak epoxy resin), Epicoto 180 (manufactured by Japan Epoxy Resin Co., Ltd.), Epicron N660, Epicron N670 (manufactured by Dainippon Ink & Chemicals, Inc.), Epoteto YD CN701, Epoteto YDCN702 (Manufactured by Toto Kasei Co., Ltd.), Araldite ECN1273, Aralda
  • Examples of commercially available products of the nopolak type epoxy resin represented by the general formula (2) or (3) include Epicoat 1557S65, Epicoat 1557S70 (hereinafter, manufactured by Japan Epoxy Resin), N865 (manufactured by Dainippon Ink & Chemicals, Inc.).
  • the epoxy equivalent of the component (A) is preferably from 50 to: L, 000 g / eq, more preferably from 100 to 500 g / eq, particularly preferably from 100 to 300 g / eq. eq.
  • L 000 g / eq
  • the curing shrinkage becomes large, which is not preferable in the characteristics of the waveguide. If the value exceeds 1, OO Og / eq, sufficient heat resistance cannot be obtained, and a problem may occur in reliability.
  • the epoxy equivalent means the mass of a resin containing 1 g equivalent of epoxy group.
  • the epoxy equivalent can be calculated by the “Epoxy resin epoxy equivalent test method” specified in JISK 736.
  • the mixing ratio of the components in the resin composition of the present invention is preferably 1 0-9 9.9 wt%, more preferably from 1 0-9 0 weight 0 /. Particularly preferably, it is 15 to 80% by mass. If the value is less than 10% by mass, characteristics required for the waveguide such as heat resistance and long-term reliability may not be compatible. The value is 99.9 mass% If the ratio exceeds the above range, the mixing ratio of the photoacid generator of the component (B) becomes small. As a result, the curing speed and the degree of curing of the composition become small, and sufficient heat resistance may not be obtained. [Component (B)]
  • Component (B) constituting the resin composition of the present invention is a photoacid generator.
  • Photoacid generators are photoinitiated thione polymerization initiators that release Lewis acids upon receiving light.
  • Examples of the photoacid generator include, for example, an hondium salt having a structure represented by the following general formula (4). This rhodium salt has a substantial light absorption wavelength below 400 nm.
  • M is the halide complex [MX n + m] Metal or metalloid, e.g., B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, C r, Mn, Co, etc.
  • X is a halogen atom such as F, Cl, Br, etc.
  • m is the net charge of the halide complex ion
  • n is the valence of M .
  • onium ions include dipheninolenodonium, 4-methoxydiphenylenodonium, and bis (4-methinophenolinole).
  • onium ions include dipheninolenodonium, 4-methoxydiphenylenodonium, and bis (4-methinophenolinole).
  • Kisafunoreo the hexa full O b phosphorylase Hue Ichito (PF 6 I), to - in the general formula (3), specific examples of the Anion [MX n + m], Te trough Ruo Ropo rate (BF 4) mouth Anchimone Doo (S b F 6 -), to Kisafuruoroa Ruseneto (A s F 6 -) ( S b C 1 6 -) and the like, hexa-chloro anti Monet Ichito to.
  • the photoacid generator preferably used in the present invention is an aromatic onium salt such as diaryl rhododium salt and triaryl sulfonium salt.
  • aromatic halonium salts described in Japanese Patent Application Laid-Open Nos. 50-151996 and 50-180680, and Japanese Patent Application Laid-Open Nos. No. 7, JP-A-52-30989, JP-A-56-55420, JP-A-55-125105, etc.
  • photoacid generators examples include Adeka Optomer SP-150, SP-151, SP-170, SP-172 (all manufactured by Asahi Denka Kogyo), UVI 6950, UVI-6970, UVI-6974, UVI-690 (above, manufactured by Union Carbide), Irgacure 2 61 (Ciba Specialty) ⁇ Chemicals Co., Ltd.), CI 1 2481, CI—26 24, C 1—26 39, CI-2 064 (all manufactured by Nippon Soda Co., Ltd.), CD_1010, CD— 1 0 1 1, CD—1 0 1 2 (all from Satma), DTS—102, DTS—103, NAT—103, NDS — 103, TPS — 103 , MDS — 103, MPI — 103, BBI — 103 (or more, manufactured by Midori Kagaku Co .; Ltd.), PCI — 061T, PCI — 062T,
  • Adeka Optoma S S-170, SP-172, UVI-6970, UVI_6994, CD-102, MPI-103 are trees
  • the resin composition is particularly preferred because it can exhibit high photocuring sensitivity.
  • the photoacid generators can be used alone or in combination of two or more.
  • a sensitizer may be used in combination to promote the generation of acid by the photoacid generator.
  • the sensitizer include dihydroxybenzene, trihydroxybenzene, hydroxyacetophenone, dihydroxydipheninolemethane, and the like.
  • the compounding ratio of the component (B) (photoacid generator) in the resin composition of the present invention is preferably from 0.1 to: 0% by mass of L, more preferably from 0.1 to 5% by mass / 0 . Particularly preferred is 0.5 to 3% by mass.
  • the value is less than 0.1% by mass, the resin composition In some cases, the curing speed and degree of curing become low, and sufficient heat resistance may not be obtained. If the value exceeds 10% by mass, a problem may occur in long-term reliability or a loss may be deteriorated.
  • the component (C) is a polymerizable monomer other than the component (A), and includes, for example, an epoxy monomer and a monomer having a (meth) acryloyl group.
  • the component (C) By blending the component (C), it is possible to adjust the viscosity of the resin composition before curing, adjust the refractive index of the resin composition after curing, increase the curing speed, and the like. However, depending on the type of the component (A), the desired viscosity, refractive index, and curing speed can be secured without blending the component (C).
  • component (C) examples include butyldaricidyl ether, ethylene glycol monoresiglycidyl ether / re, propylene glycol cornoresidglycidinoleatenoate, neopentinoleglycol diglycidyl ether, and trimethylonoletriglycidyl ether.
  • Epoxy compounds such as ethers, bisphenol A propylene oxide adduct diglycidinole ether, bisphenol A diglycidyl ether, and 3,4,4-epoxycyclohexeninolemethinole 3 ', 4'-epoxycyclohexenecarboxylate 3,4-epoxycyclohexynolemethyi / le 3 ', 4'-epoxycyclohexane-modified olevochelate, epoxidized 3-cyclohexene-1,1,2-dicarboxylate 3—Skin mouth qualification) Modified £ — Power Examples thereof include xenoxide compounds such as loratatone, and oxetane compounds such as pheninoleoxetane and xylenedioxetane.
  • the compounding ratio of the component (C) in the resin composition of the present invention is preferably 0 to 89.9% by mass, more preferably 5 to 85% by mass, and particularly preferably 17 to 82% by mass. %.
  • various additives other than the above-mentioned components include, for example, antioxidants, ultraviolet absorbers, light stabilizers, silane coupling agents, coating surface improvers, thermal polymerization inhibitors, leveling agents, and interface agents.
  • Activators, colorants, storage stabilizers, plasticizers, lubricants, solvents, fillers, anti-aging agents, wetting improvers, mold release agents, etc. can be added as necessary.
  • the resin composition of the present invention can be produced by mixing the above-mentioned components by a conventional method.
  • the viscosity of the resin composition of the present invention thus prepared is usually from 50 to 200,000 cp / 25 ° C, preferably from 100 to 100,000 cp / 2. Five. C, more preferably 200 to 50,000, cp / 25 ° C. If the viscosity is less than 50 cp / 25 ° C., it is difficult to obtain a target film thickness, and the patterning property may deteriorate. If the viscosity exceeds 200,000 cp 25 ° C, unevenness or undulation may occur when applying the resin composition to the substrate, or the patterning property may deteriorate when the core portion is formed. It is difficult to obtain the desired shape.
  • Refractive index of the cured product of the resin composition of the present invention (n D 2 5) is preferably 1.5 5 above.
  • the “refractive index (n D 25 )” means the refractive index when passing light of 589 nm at an emission line of Na at 25 ° C.
  • the glass transition temperature of the cured product of the resin composition of the present invention is preferably 100 ° C., more preferably 120 ° C. or higher.
  • glass transition temperature is the loss tangent of the vibration frequency 1 0 H Z at the resonant type dynamic viscoelasticity measuring apparatus is determined by the temperature showing the maximum value.
  • FIG. 1 is a cross-sectional view showing an example of an optical waveguide produced using the optical waveguide forming resin composition of the present invention.
  • optical waveguide 1 is a substrate such as a silicon wafer.
  • a lower cladding layer 3 a core portion 5 extending in a band shape in a part of a region of the upper surface of the lower cladding layer 3, and a side portion and an upper portion of the core portion 5.
  • an upper cladding layer 4 formed so as to cover it.
  • the core portion 5 is a light transmission path, and is formed of a material having a higher refractive index than the lower cladding layer 3 and the upper cladding layer 4.
  • Resin compositions of “J — 1” to “J-7” The resin composition was applied on a glass substrate to a thickness of 60 m using an applicator to form a resin composition layer. Thereafter, ultraviolet light of 3. OJ / cm 2 was irradiated using a conveyor type UV irradiation device to obtain a cured film. With respect to this cured film, the refractive index when passing light of 589 nm in Na emission line at 25 ° C. was measured using an Abbe refractometer.
  • Epicotyl 15 2 phenol novolac type epoxy resin (epoxy equivalent 172-178, manufactured by Japan Epoxy Resin Co.)
  • Epicotyl 15 7 S 65 Bisphenol A novolak type epoxy resin (Epoxy equivalent of 200 to 220, manufactured by Japan Epoxy Resin)
  • Epicoco 8 28 Bisphenol A type epoxy resin (Epoxy equivalent: 184-194, manufactured by Japan Epoxy Resin Co.)
  • DCP— A Dimethylol tricyclodecane diethanolate Reiterate DCP — A ”(Kyoeisha Chemical Co., Ltd.)
  • VR 77 Vinyl ester resin (bisphenol-based vinyl ester) f Lipoxy VR— 77 j (Showa Kogaku Kogyo)
  • SP-172 Adeka Optoma SP-172 J (manufactured by Asahi Denka Kogyo Co., Ltd.)
  • Adeka Obtomer S P—170 Adeka Obtomer S P—170 (Asahi Denka Kogyo Co., Ltd.)
  • Irgcure 36 9 Photoradical polymerization initiator (manufactured by Ciba Chemicals, Inc.)
  • Celloxide 202 P 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexenecarboxylate, manufactured by Daicel Chemical Industries
  • An optical waveguide was manufactured.
  • the lower cladding layer having a thickness of 50 mm was formed by irradiating with ultraviolet rays having an irradiance of 30 mWZ cm 2 for 30 seconds and curing with ultraviolet rays.
  • a photosensitive resin composition ⁇ J_1 '' is applied on the lower cladding layer by a spin coater, and a wavelength of 365 nm is applied through a photomask having a 50 ⁇ m-width linear pattern.
  • the linear pattern was irradiated with ultraviolet rays having an illuminance of 30 mW / cm 2 for 30 seconds to cure the linear pattern.
  • the substrate having the UV-cured coating film is immersed in a developing solution composed of acetone, and the unexposed portion of the coating film is washed away to obtain a linear film having a thickness of 50 / im and a width of 50 ⁇ m.
  • a core portion having the following pattern was formed.
  • optical waveguide was formed in the same manner as in Example 1 except that the compositions shown in Table 2 were used as the materials for the lower cladding layer, the core portion, and the upper cladding layer. ⁇ Evaluation of optical waveguide>
  • both the height and width of the core part were formed with dimensional accuracy of 50 ⁇ 5 ⁇ m
  • the case was designated as “ ⁇ ”, and the case formed outside the range of 50 ⁇ 5 ⁇ was designated as “X”.
  • the waveguide loss per unit length was determined by the cutback method.
  • the optical waveguide After preparing a straight waveguide having a waveguide length of 2 Omm and measuring the initial insertion loss value, the optical waveguide was heated in an oven at 200 ° C. for 30 minutes. Then, the optical waveguide was taken out, allowed to stand at room temperature for a certain period of time, and the insertion loss value was measured again. “X” indicates that the change in insertion loss after caro heat exceeds 1.0 dB from the initial value, and “ ⁇ j” indicates that the change is 1.O dB or less.
  • the resin composition of the present invention (Example 15) has a refractive index suitable for an optical waveguide when used as a material for forming an optical waveguide, and has a patterning property (shape). Accuracy), transmission characteristics (low waveguide loss), heat resistance It can be seen that it has excellent performance (maintaining good transmission characteristics under high temperature test) and long-term reliability (maintaining good transmission characteristics under heat cycle test).
  • Comparative Example 1 since the component (A) was not contained, the long-term reliability was poor. In Comparative Example 2, the transmission characteristics (waveguide loss), heat resistance, and long-term reliability are poor.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Integrated Circuits (AREA)
  • Epoxy Resins (AREA)

Abstract

 (A)ノボラック型エポキシ樹脂、および(B)光酸発生剤を含有する光導波路形成用感光性樹脂組成物。該組成物は、光導波路1のコア部5等の材料として用いられる。該組成物中の成分(A)は、下記一般式(1)等で表される。(式中、R1は水素原子または炭素数1~12のアルキル基またはアラルキル基を表す。nは、0~10の整数を表す。)該組成物は、硬化時のパタ−ニング性等に優れ、かつ、光導波路を形成したときに優れた耐熱性、伝送特性、長期信頼性等を有する。

Description

光導波路形成用感光性樹脂組成物および光導波路
技術分野
本発明は、 光通信分野や光情報処理分野で用いられる光回路の構成部品 である光導波路を形成するため明の感光性樹脂組成物、 および該組成物を用 いて作製される主にマルチモード用の光導波路に関す ¾。
田 背景技術
マルチメディア時代を迎え、 光通信システムやコンピュータにおける情 報処理の大容量化及び高速化の要求から、 光を伝送媒 flsとする伝送システ ムが、 公衆通信網、 L A N (ローカルェリアネッ トワー ク)、 F A (ファタ トリーォートメーシヨン)、 コンピュータ間のインターコネク ト、家庭内酉己 線等に使用されつつある。
かかる伝送システムを構成する要素の中で、 光導波路は、 映画や動画等 の大容量の情報伝達や光コンピュータ等を実現するたわの光デバイスや、 光電集積回路 (O E I C ) や、 光集積回路 (光 I C ) 等における基本構成 要素である。 そして、 光導波路は、 大量の需要があることから鋭意研究さ れる一方、 特に高性能で、 低コス トの製品が求められている。
光尊波路としては、 従来、 石英系光導波路やポリマー系光導波路が知ら れている。
このうち、 石英系光導波路は、 伝送損失が低いとい 5利点を有するもの の、 高温でのガラス化工程 ( 1, 2 0 0 °C以上) ゃェ チング処理を必要 とするなど、 工程の数が多く、 製造の効率化が困難で ¾る。
一方、 ポリマー系光導波路は、 加工のし易さや材料設計の幅広さ等の利 点を有することから、 将来的に有望視され、 ポリメチルメタタリ レー ト等 の汎用の材料に加えて、 より優れた物性を有するものが種々開発されてい る。
例えば、 近年、 エポキシ樹脂を含む感光性組成物を用いて、 位置合わせ 精度等に優れた光導波路を作製する技術が提案されている。
例えば、 コアと、 該コアを囲み該コアよりも低屈折率のクラッ ドとを少 なく とも有する光導波路において、 前記コアは、 エポキシ環を有するモノ マーあるいはオリ ゴマー (例えば、 特定の化学式を有するエポキシ系 U V モノマ.一) と、 重合開始剤の混合物を光硬化または熱硬化したものである 光導波路が、 提案されている (特開平 8— 2 7 1 7 4 6号公報参照)。
この光導波路は、 特に単一モード用光導波路であって、 数 mオーダー 以下の位置合わせ精度で他の光部品と容易にかつ低損失で光結合が可能で ある。
また、 内部を光信号が伝搬し得る光導波路を形成するための材料であつ て、 ォキセタン環を有する第 1 の化合物と、 連鎖反応による重合を開始さ せ得る第 2の化合物 (具体的にはカチオン重合開始剤) と、 ォキシラン環 を有する第 3の化合物 (例えば、 ビスフエノール A型エポキシ樹脂等のグ リシジル型エポキシ樹脂) とを含む、 エネルギービームで硬化される光導 波路用材料が、提案されている(特開 2 0 0 0— 3 5 6 7 2 0号公報参照)。
この光導波路用材料によれば、連鎖反応を迅速に進行させることができ、 架橋密度の高い、 耐溶剤性に優れたポリマーを得ることができる。
なお、ェポキシ樹脂は、光モジュ一ルの封止材としても用いられている。 例えば、 ベース基板に搭載した発光素子等の複数の光学部品間の光路を 光透過性樹脂でプリコートして形成する工程と、 ノボラック型エポキシ樹 脂等の中から選ばれたエポキシ当量 1 6 0〜 2 5 0 g / e qのエポキシ樹 脂と無機質充填材と光酸発生剤とを必須成分とする光硬化性樹脂で前記光 路の上を覆う工程等を含む光モジュールの製造方法が提案されている (特 開平 9 - 24 3 8 70号公報参照)。 発明の開示
上述のように、 従来、 特定のエポキシ樹脂等を用いたポリマー系光導波 路が提案されている。
しかし、 ポリマー系光導波路の高性能化に伴い、 パターニング性等の物 性に加えて、 耐熱性、 伝送特性、 長期信頼性等についても格段に優れてい るポリマー系光導波路が求められている。
そこで、 本発明は、 パターニング性、 耐熱性、 伝送特性、 長期信頼性の 全てに優れたポリマー系光導波路、 および該光導波路を形成し得る感光性 樹脂組成物を提供することを目的とする。
本発明者は、 上記課題を解決するために鋭意検討した結果、 特定のェポ キシ樹脂を用いれば、 目的とする光導波路を作製することができることを 見出し、 本発明を完成した。
すなわち、本発明の光導波路形成用感光性樹脂組成物は、 (A) ノボラッ ク型エポキシ樹脂、および(B)光酸発生剤を含有することを特徴とする。 前記成分 (A) のエポキシ当量は、 好ましくは 5 0〜 1 , O O O gZe qである。
前記樹脂組成物は、 硬化時において、 好ましくは 1. 5 5以上の屈折率 (nD 25) を有する。
前記樹脂組成物は、 硬化時において、 好ましくは 1 0 0°C以上のガラス 転移温度 (T g ) を有する。
前記成分 (A) の好ましい一例として、 下記一般式 ( 1 ) 〜 ( 3) のい ずれ力、:
Figure imgf000006_0001
(式中、 Ri は水素原子または炭素数 1〜 1 2のアルキル基またはァラル キル基を表す。 nは、 0〜 1 0の整数を表す。)
Figure imgf000006_0002
(式中、 R2および R3は、 各々独立して、 水素原子または炭素数 1〜 1 2 のアルキル基またはァラルキル基を表す。 nは、 0〜 1 0の整数を表す。)
Figure imgf000007_0001
(式中、 R 4および R 5は、 各々独立して、 水素原子または炭素数 1〜 1 2 のアルキル基またはァラルキル基を表す。 nは、 0〜 1 0の整数を表す。) で表されるノボラック型ェポキシ樹脂が挙げられる。
本発明の光導波路は、 下部クラッ ド層と、 コア部と、 上部クラッ ド層と を含む光導波路であって、 前記下部クラッ ド層、 前記コア部および前記上 部クラッ ド層の少なく とも一つが、 上述の樹脂組成物の硬化物であること を特徴とする。
本発明の樹脂組成物は、 硬化時のパターニング性、 塗工性、 硬化性に優 れ、 かつ、 光導波路を形成したときに、 光導波路と して用いるのに適する 高い屈折率を有するとともに、 耐熱性、 伝送特性 (低い導波路損失)、 長期 信頼性等に優れるため、 光導波路形成用材料として好適に用いることがで きる。
また、 本発明の樹脂組成物によれば、 溶剤を用いずにスピンコート法で 塗布した後、 フォ トマスクを介してパターニングすることができ、 また、 露光後のボス トべイクが不要であるため、 光導波路の製造効率を向上させ ることができる。 図面の簡単な説明
第 1図は、 本発明の光導波路形成用樹脂組成物を用いて作製された光導 波路の一例を示す断面図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明の光導波路形成用感光性樹脂組成物は、 (A)ノボラック型ェポキ シ樹脂、 および (B) 光酸発生剤を含有するものである。 ここで、 (A) 成 分の構成単位の繰返し単位数は、 好ましくは、 2〜 1 2である。
本発明の樹脂組成物の好適な一例は、 以下に説明する成分 (A) および (B) を構成成分として含むものである。 伹し、 任意成分として以下に説 明する成分 (C) を含むことができる。
なお、 本明細書中において、 「樹脂組成物」 の語は、 硬化前の形態と、 硬 化後の形態の両方を包含する概念を有するものである。
[成分 (A)]
本発明の樹脂組成物を構成する成分 (A) の好適な一例は、 下記一般式 ( 1 ) 〜 (3) のいずれかで表されるノボラック型エポキシ樹脂である。
Figure imgf000008_0001
(式中、 Ri は水素原子または炭素数 1〜 1 2のアルキル基またはァラル キル基を表す。 nは、 0〜 1 0の整数を表す。)
Figure imgf000009_0001
(式中、 R2および R3は、 各々独立して、 水素原子または炭素数 1〜 1 2 のアルキル某またはァラルキル基を表す。 nは、 0〜 1 0の整数を表す。)
Figure imgf000009_0002
(式中、 R 4および R 5は、 各々独立して、 水素原子または炭素数 1〜 1 2 のアルキル基またはァラルキル基を表す。 nは、 0〜 1 0の整数を表す。) 前記式 ( 1 ) および ( 2) 中の Ri〜R5は、 各々、 水素原子または炭素 数 1〜 1 2のアルキル基またはァラルキル基、 好ましくは水素原子または 炭素数 1 ~ 8のアルキル基、 より好ましくは水素原子である。 炭素数が 1 2を超えると、 硬化物のガラス転移温度が低下し、 導波路の耐熱性などに 問題を生ずるおそれがある。
ここで、 炭素数 1〜 1 2のアルキル基またはァラルキル基は、 直鎖状、 分岐状、 環状のいずれであってもよく、 例えば、 メチル基、 ェチル基、 プ ロピノレ基、 ブチノレ基、 イソブチノレ基、 ペンチル基、 へキシル基、 シクロへ キシル基、 ヘプチル基、 ォクチル基、 一 C ( C H 3) 2_C 6H5、 - C (C H 3 ) 2— CH2— C ( し H3) 3、 _ C i。H2。— CH3、 一 C nn22— C H3等が挙げられる。
なお、 一般式 ( 1 ) において、 Ri が水素原子である場合のエポキシ樹 脂は、 フエノールノボラック型エポキシ樹脂と称される。 また、 R 1 がメ チル基である場合のエポキシ樹脂は、 クレゾールノボラック型エポキシ樹 脂と称される。 一般式 ( 2)、 ( 3) で示されるエポキシ樹脂は、 ビスフエ ノール Aノポラック型エポキシ樹脂と称される。
一般式 ( 1 ) 〜 ( 3) 中の nは、 0〜 1 0、 好ましくは 0〜 8である。 nが 1 0を超えると、 樹脂組成物の粘度が大きくなり、 取り扱いや塗工性 に不都合が生じ得る。
本発明では、 一般式 ( 1 ) 〜 ( 3) に示すように、 化合物の化学構造上 の構成単位の繰返し単位数が少なく とも 2つ (好ましくは 2~ 1 2) であ るオリ ゴマーまたはポリマーを用いることが必要である。 構成単位の繰返 し単位数が 1つである化合物 (エポキシ系モノマー) を用いた場合には、 硬化収縮が大きくなり、 様々な環境下で導波路を使用した場合に、 導波路 と基板の間、 あるいは導波路を構成する各層の間で界面剥離が起こり、 信 頼性が低下するおそれがある。
一般式 ( 1 ) で示されるノポラック型エポキシ樹脂の市販品の例と して は、 ェピコート 1 5 2、 ェピコート 1 5 4 (以上、 ジャパンエポキシレジ ン社製)、 ェピクロン N 7 4 0、 ェピクロン N 7 7 0 (以上、 大日本インキ 化学工業社製)、 ェポトート YD P N 6 3 8 (東都化成社製)、 D E R 4 3 1、 D E R 4 3 8 (以上、 ダウケミカル社製)、 ァラルダイ ト E P N 1 1 3 8 (チバガイギ一社製) (以上、フエノールノボラック型エポキシ樹脂)や、 ェピコ一ト 1 8 0 (ジャパンエポキシレジン社製)、 ェピクロン N 6 6 0、 ェピクロン N 6 7 0 (以上、 大日本ィンキ化学工業社製)、 ェポトート YD C N 7 0 1、 ェポトート YD CN 7 0 2 (以上、 東都化成社製)、 ァラルダ イ ト E C N 1 2 7 3、ァラルダイ h E C .N l 2 8 0 (チバガイギ一社製) (以 上、 クレゾールノボラック型エポキシ樹脂) 等が挙げられる。
一般式 ( 2 ) または (3 ) で示されるノポラック型エポキシ樹脂の市販 品の例としては、 ェピコート 1 5 7 S 6 5、 ェピコート 1 5 7 S 7 0 (以 上、ジャパンエポキシレジン社製)、 N 8 6 5 (大日本ィンキ化学工業社製) 等が挙げられる。
成分 (A) のエポキシ当量は、 好ましくは 5 0〜: L , 0 0 0 g / e q、 より好ましくは 1 0 0〜 5 0 0 g / e q、 特に好ましくは 1 0 0〜 3 0 0 g / e qである。該数値が 5 0 g / e q未満では、硬化収縮が大きくなり、 導波路の特性上好ましくない。 該数値が 1, O O O g / e qを超えると、 十分な耐熱性が得られず、 信頼性に問題が生ずるおそれがある。
なお、 エポキシ当量とは、 1 g当量のエポキシ基を含む樹脂の質量を意 味する。 エポキシ当量は、 J I S K 7 2 3 6に規定する 「エポキシ樹 脂のエポキシ当量試験方法」 によって算出することができる。
本発明の樹脂組成物中の成分 (Α) の配合割合は、 好ましくは 1 0〜 9 9. 9質量%、 より好ましくは 1 0 ~ 9 0質量0/。、 特に好ましくは 1 5〜 8 0質量%である。 該値が 1 0質量%未満では、 耐熱性や長期信頼性など の導波路に必要な特性が両立できない場合がある。 該値が 9 9. 9質量% を超えると、 成分 (B) の光酸発生剤の配合割合が小さくなるので、 その 結果、 組成物の硬化速度及び硬化度が小さくなり、 十分な耐熱性が得られ ないことがある。 [成分 (B)]
本発明の樹脂組成物を構成する成分 (B) は、 光酸発生剤である。
光酸発生剤は、 光を受けることによりルイス酸を放出する光力チオン重 合開始剤である。
光酸発生剤の例として、 例えば、 下記一般式 (4) で表される構造を有 するォニゥム塩が挙げられる。 このォェゥム塩は、 4 0 0 nm未満に実質 的な光吸収波長を有する。
[R 6 a R 7 b R8 c R 9 d Z] + m [MXn + m ] - m (4) (式中、 カチオンはォニゥムイオンであり、 Zは S、 S e、 T e、 P、 A s、 S b、 B i、 0、 I、 B r、 C Iまたは N≡Nを示し、 R 6 、 R 7 、 R 8 および R 9 は、 互いに同一または異なる有機基を示す。 a、 b、 cお よび dは、 それぞれ 0〜 3の整数であって、 ( a + b + c + d ) は Zの価数 に等しい。 Mは、 ハロゲン化物錯体 [MXn + m ]の中心原子を構成する金 属またはメタロイ ドを示し、 例えば B、 P、 A s、 S b、 F e、 S n、 B i、 A l、 C a、 I n、 T i、 Z n、 S c、 V、 C r、 Mn、 C o等であ る。 Xは例えば F、 C l、 B r等のハロゲン原子であり、 mはハロゲン化 物錯体イオンの正味の電荷であり、 nは Mの原子価である。〕
前記一般式 (4) において、 ォニゥムイオンの具体例としては、 ジフエ ニノレョー ドニゥム、 4ーメ トキシジフエニノレョー ドニゥム、 ビス (4ーメ チノレフェニノレ) ョ一 ドニゥムヽ ビス ( 4一 t e r t—プチノレフエ二ノレ) ョ 一ドニゥム、 ビス (ドデシルフェニル) ョードニゥム等のジァリ一ルョ一 ドニゥムや、 トリフエニノレス/レホニゥム、 ジフエ二/レー 4—チオフエノキ シフエニノレス/レホニゥム等の ト リ アリーノレスノレホニゥムや、 ビス [4一 (ジ フエニルス/レホニォ) 一フエ二ノレ] スルフィ ド、 ビス [4一 (ジ ( 4一 ( 2 ーヒ ドロキシェチノレ) フエニル) ス /レホニ才) - フエニル] スノレフィ ド、 η 5 - 2 , 4 - (シク 口ペンタジェニル) [ 1 , 2 , 3, 4 , 5, 6 -?) ] - (メチルェチル) 一ベンゼン] —鉄 ( 1 +) 等が挙げられる。
前記一般式 ( 3 ) において、 ァニオン [MXn + m ] の具体例としては、 テ トラフルォロポレー ト ( B F 4 - )、 へキサフルォロホスフエ一ト ( P F 6 一 )、 へキサフノレオ口アンチモネー ト ( S b F 6 - )、 へキサフルォロァ ルセネート (A s F 6 — )、 へキサクロロアンチモネ一ト ( S b C 1 6 - ) 等が挙げられる。
また、 一般式 [MX„ (OH) ― ] で表されるァニオンを有するォニゥム 塩を使用することができる。 さらに、 過塩素酸イオン (C 1 04 — )、 トリ フノレ才ロメタンスノレフォン酸イ オン ( C F a S〇 3 — )、 フルォ口スノレフォ ン酸イオン ( F S〇 3 _ )、 トルェンスルフォン酸イオン、 ト リニ トロベン ゼンスノレフォン酸ァニオン、 ト リ ニ トロ トノレエンスノレフォン酸ァニオン等 の他のァニオンを有するォニゥム塩を使用することもできる。
本発明で好ましく用いられる光酸発生剤は、ジァリールョードニゥム塩、 トリァリ一ルスルホニゥム塩等の芳香族ォニゥム塩等である。 例えば特開 昭 5 0— 1 5 1 9 9 6号公報、 特開昭 5 0— 1 5 8 6 8 0号公報等に記載 の芳香族ハロニゥム塩、 特開昭 5 0— 1 5 1 9 9 7号公報、 特開昭 5 2 - 3 0 8 9 9号公報、 特開昭 5 6— 5 5 4 2 0号公報、 特開昭 5 5— 1 2 5 1 0 5号公報等に記載の V I A族芳香族ォニゥム塩、 特開昭 5 0— 1 5 8 6 9 8号公報等に記載の V A族芳香族ォニゥム塩、 特開昭 5 6— 8 4 2 8 号公報、 特開昭 5 6— 1 4 9 4 0 2号公報、 特開昭 5 7— 1 9 2 4 2 9号 公報等に記載のォキソスルホキソニゥム塩、 特開昭 4 9 - 1 7 0 4 0号公 報等に記載の芳香族ジァゾニゥム塩、 米国特許第 4, 1 3 9 , 6 5 5号明 細書に記載のチオビリ リ ゥム塩等が好ましい。 また、 鉄/アレン錯体、 ァ ルミ二ゥム錯体/光分解ケィ素化合物系開始剤等も挙げることができる。 光酸発生剤の市販品の例としては、 アデカオプトマー S P— 1 5 0、 S P— 1 5 1、 S P— 1 7 0、 S P - 1 7 2 (以上、 旭電化工業社製)、 U V I 一 6 9 5 0、 UV I — 6 9 7 0、 UV I — 6 9 7 4、 U V I - 6 9 9 0 (以上、 ユニオンカーバイ ド社製)、 I r g a c u r e 2 6 1 (チバ ·ス ぺシャルティー■ケミカルズ社製)、 C I 一 24 8 1、 C I — 2 6 2 4、 C 1 — 2 6 3 9、 C I - 2 0 6 4 (以上、 日本曹達社製)、 CD_ 1 0 1 0、 CD— 1 0 1 1、 CD— 1 0 1 2 (以上、 サートマ一社製)、 D T S— 1 0 2、 D T S— 1 0 3、 NAT— 1 0 3、 ND S _ 1 0 3、 T P S _ 1 0 3、 MD S— 1 0 3、 MP I _ 1 0 3、 B B I — 1 0 3 (以上、 みどり化学社 製;)、 P C I — 0 6 1 T、 P C I — 0 6 2 T、 P C I — 0 2 0 T、 P C I — 0 2 2 T (以上、 日本化薬社製) 等が挙げられる。
これらのうち、 アデカオプトマ一 S Ρ— 1 7 0、 S P— 1 7 2、 U V I 一 6 9 7 0、 UV I _ 6 9 7 4、 CD— 1 0 1 2、 MP I — 1 0 3は、 樹 脂組成物に高い光硬化感度を発現させることができることから特に好まし い。
光酸発生剤は、 1種単独でまたは 2種以上を組み合わせて用いることが できる。
なお、 光酸発生剤による酸の発生を促進させるために、 増感剤を併用し てもよい。 增感剤の例と しては、 ジヒ ドロキシベンゼン、 トリ ヒ ドロキシ ベンゼン、 ヒ ドロキシァセ トフェノン、 ジヒ ドロキシジフエ二ノレメタン等 が挙げられる。
本発明の樹脂組成物中の成分 (B) (光酸発生剤) の配合割合は、 好まし くは 0. 1〜: L 0質量%、 より好ましくは 0. 1〜 5質量0/。、 特に好まし くは 0. 5〜 3質量%である。 該値が 0. 1質量%未満では、 樹脂組成物 の硬化速度及び硬化度が小さくなり、 十分な耐熱性が得られないことがあ る。 該値が 1 0質量%を超えると、 長期信頼性に問題が生じたり、 損失面 で悪化したりすることがある。 [成分 ( C ) ]
成分 (C ) は、 成分 (A ) 以外の重合性モノマーであり、 例えば、 ェポ キシ系モノマ一や、 (メタ)ァクリロイル基を有するモノマー等が挙げられ る。
成分 (C ) を配合することによって、 樹脂組成物の硬化前の粘度の調整 や、 樹脂組成物の硬化後の屈折率の調整や、 硬化速度の増大等を図ること ができる。 ただし、 成分 (A ) の種類によっては、 成分 (C ) を配合しな くても所望の粘度、 屈折率、 硬化速度を確保することができる。
成分 ( C ) の例と しては、 ブチルダリシジルエーテル、 エチレングリ コ 一ノレジグリ シジルエーテ /レ、プロ ピレングリ コーノレジグリシジノレエーテノレ、 ネオペンチノレグリ コールジグリシジルエーテル、 トリメチローノレトリ グリ シジルエーテル、 ビスフエノール Aプロピレンォキシド付加物ジグリシジ ノレエーテル、 ビスフエノール Aジグリシジルェ一テルなどのエポキシ化合 物や、 3 , 4—エポキシシクロへキセニノレメチノレ一 3 ', 4 ' —エポキシシ クロへキセンカルボキシレー ト、 ε —力プロラタ トン変性 3, 4—ェポキ シシクロへキシノレメチ/レー 3 ' , 4 ' 一エポキシシクロへキサン力ノレボキレ ート、 エポキシ化 3—シク口へキセン一 1, 2 —ジカルボン酸ビス( 3—シ ク口へキセニノレメチノレ)修飾 £ —力プロラタ トンなどのシク口へキセンォ キシド化合物や、 フエニノレオキセタン、 キシレンジォキセタンなどのォキ セタン化合物等が挙げられる。
本発明の樹脂組成物中の成分(C )の配合割合は、好ましくは 0〜 8 9 . 9質量%、 より好ましくは 5 ~ 8 5質量%、 特に好ましくは 1 7〜 8 2質 %である。 本発明においては、 上述の成分以外にも各種添加剤として、 例えば、 酸 化防止剤、紫外線吸収剤、光安定剤、シランカツプリング剤、塗面改良剤、 熱重合禁止剤、 レベリング剤、 界面活性剤、着色剤、保存安定剤、 可塑剤、 滑剤、 溶媒、 フィラー、 老化防止剤、 濡れ性改良剤、 離型剤等を必要に応 じて配合することができる。
本発明の樹脂組成物は、 前記各成分を常法により混合して製造すること ができる。このようにして調製される本発明の樹脂組成物の粘度は、通常、 5 0〜2 0, 0 0 0 c p / 2 5 °C、 好ましくは 1 0 0〜 1 0, 0 0 0 c p / 2 5。C、 より好ましくは 2 0 0〜 5, 0 0 0 c p / 2 5 °Cである。 該粘 度が 5 0 c p / 2 5 °C未満では、 目標とする膜厚が得られ難い上に、 パタ 一ユング性が悪化することがある。 該粘度が 2 0 , 0 0 0 c p 2 5 °Cを 超えると、 基板に樹脂組成物を塗布する際に、 塗布ムラやうねりが生じた り、 あるいはコア部の形成時に、 パターユング性が悪化して目的とする形 状が得られ難くなる。
本発明の樹脂組成物の硬化物の屈折率 (n D 2 5) は、 好ましくは 1. 5 5以上である。 なお、 「屈折率 (nD 2 5)」 とは、 2 5 °Cで N aの輝線 5 8 9 n mの光を通過させたときの屈折率を意味する。
本発明の樹脂組成物の硬化物のガラス転移温度は、好ましくは 1 0 0 °C、 より好ましくは 1 2 0°C以上である。 なお、 「ガラス転移温度」 は、 共振型 動的粘弾性測定装置において振動周波数 1 0 H Zでの損失正接が最大値を 示す温度によって定められる。
次に、 本発明の樹脂組成物からなる光導波路の一例を説明する。 第 1図 は、 本発明の光導波路形成用樹脂組成物を用いて作製された光導波路の一 例を示す断面図である。 第 1図中、 光導波路 1は、 シリコンウェハ等の基 材 (基板) 2の上に形成されており、 下部クラッド層 3と、 下部クラッド 層 3の上面の領域の一部に帯状に延びるコア部 5と、 コア部 5の側方およ ぴ上方を覆うように形成されている上部クラッ ド層 4とから構成されてい る。 コア部 5は光の伝送路であり、 下部クラッ ド層 3および上部クラッド 層 4よりも屈折率が大きい材料によって形成されている。
[実施例]
以下、 本発明を実験例に基いて説明する。
ぐ感光性樹脂組成物の調製 >
表 1に示す配合量で各成分を仕込み、 液温を 5 0〜 6 0 °Cに制御しなが ら 1時間攪拌し、 液状組成物を得た。 なお、 表 1中、 各成分の配合量の単 位は、 質量部である。
ぐ感光性樹脂組成物の評価 >
1. 硬化性
「 J — 1」 〜 「: ί _ 7」 の各感光性樹脂組成物を、 スピンコーターを用 いてシリコン基板上に塗布し、 波長 3 6 5 n m、 照度 3 0 mW/ c m2の 紫外線をマスクァライナーにて照射し、 紫外線硬化させた。 3 0秒間の照 射でタックフリーとなったものを◎、 1 0 0秒間の照射でタックフリーと なったものを〇とした。
2. ガラス転移温度
「 J 一 1」 〜 「 J 一 7」 の各感光性樹脂組成物を、 アプリケーターを用 いてガラス基板上に 6 0 i m厚になるように塗布して、 樹脂組成物層を形 成させた後、 コンベア式 UV照射装置を用いて、 3. O J / c m2の紫外 線を照射し、硬化膜を得た。次いで、共振型動的粘弾性測定装置を用いて、 振動周波数 1 0 H zの振動を与えながら、 この硬化膜の損失正接の温度依 存性を測定した。 得られた損失正接の最大値を示す温度をガラス転移温度 (T g) とした。
3. 屈折率
「 J _ 1」 〜 「 J— 7」 の各感光性.樹脂組成物を、 アプリケーターを用 いてガラス基板上に 6 0 m厚になるように塗布して、 樹脂組成物層を形 成させた後、 コンベア式 UV照射装置を用いて、 3. O J /c m2の紫外 線を照射し、 硬化膜を得た。 この硬化膜について、 2 5°Cで N aの輝線 5 8 9 nmの光を通過させたときの'屈折率を、 アッベ屈折計を用いて測定し た。
結果を表 1に示す。
[表 1 ]
i
Figure imgf000019_0002
ェピコ一 卜 1 5 2 : フエノールノボラ ック型エポキシ樹脂 (エポキシ当量 1 7 2〜 1 7 8、 ジャパンエポキシレジン社製) ェピコ一 卜 1 5 7 S 6 5 : ビスフエノール Aノボラック型エポキシ榭脂 (エポキシ当量 2 0 0〜 2 2 0、 ジャパンエポキシ レジン社製)
ェピコ一 ト 8 2 8 : ビスフエノール A型エポキシ榭脂 (エポキシ当量 1 8 4 ~ 1 9 4、 ジャパンエポキシレジン社製) D C P— A : ジメチロールー ト リ シク ロデカンジアタ リ レー 卜 「ライ トァク リ レー ト D C P— A」 (共栄社化学工業製) V R 7 7 : ビニルエステル樹脂 (ビスフエノール系 ビニルエステル) f リポキシ VR— 7 7 j (昭和高分子製)
S P— 1 7 2 : Γアデカオプトマ一 S P— 1 7 2 J (旭電化工業社製)
S P— 1 7 0 : 「アデカオブトマー S P— 1 7 0」 (旭電化工業社製)
I r g c u r e 3 6 9 :光ラジカル重合開始剤 (チバケミカルスぺシャリ ティ一社製)
セロキサイ ド 2 0 2 1 P : 3 , 4—エポキシシク ロへキセニルメチルー 3 ', 4 ' 一エポキシシク ロへキセンカルボキシレ一 ト、 ダイセル化学工業社製)
Figure imgf000019_0001
に光導波路を作製した。
[実施例 1 ]
1. 下部クラッド層の形成
シリ コン基板上に感光性樹脂組成物「E L C 2 5 0 0 (C l e a r )」 (E L E C TRO- L I T E C o r p o r a t i o n製 n D 25 = 1. 5 1 5 ) をスビンコ一ターで塗布し、 波長 3 6 5 n m、 照度 3 0 mWZ c m2 の紫外線を 3 0秒間照射し、 紫外線硬化させることにより、 厚さ 5 0 Ζ ΠΙ の下部クラッド層を形成した。
2. コア部の形成
次に、 下部クラッド層の上に感光性樹脂組成物 「 J _ 1」 をスピンコー ターで塗布し、 幅 5 0 μ mのライン状パターンを有するフォ トマスクを介 して、 波長 3 6 5 nm、 照度 3 0 mW/ c m 2の紫外線を 3 0秒間照射し て、 直線状のパターンを放射線硬化させた。
次いで、 紫外線硬化させた塗膜を有する基板を、 アセ トンからなる現像 液中に浸漬して、 塗膜の未露光部を洗い流して、 膜厚 5 0 /i m、 幅 5 0 μ mの直線状のパターンを有するコァ部を形成した。
3. 上部クラッド層の形成
コア部および下部クラッド層の上面に、 感光性樹脂組成物 「E L C 2 5
0 0 (C 1 e a r )」 をスビンコ一ターで塗布し、 波長 3 6 5 nm、 照度 3 0 mW/ c m2の紫外線を 3 0秒間照射し、 紫外線硬化させることにより、 コア部の上面を基準とした厚さが 5 0 ί mである上部クラッド層を形成し た。
[実施例 2〜 5、 比較例 1〜 2 ]
下部クラッド層、 コア部、 上部クラッ ド層の各材料として表 2に示した 組成物を用いた以外は実施例 1 と同様にして、 光導波路を形成した。 <光導波路の評価 >
( 1 ) 形状の精度
前記の方法で形成したコア部 (高さ 5 0 μ mXライン幅 5 0 μ m) の形 状に関して、 コア部の高さおよび幅が、 ともに 5 0 ± 5 μ mの寸法精度で 形成された場合を 「〇」、 5 0 ± 5 μ παの範囲外で形成された場合を 「X」 とした。
( 2) 導波路損失
光導波路の一端から波長 8 5 0 nmの光を入射させて、 他端から出射す る光量を測定した後、 カッ トバック法により、 単位長さ当たりの導波路損 失を求めた。
( 3) 耐熱性
導波路長 2 Ommの直線導波路を作製し、 初期揷入損失値を測定後、 光 導波路を 2 0 0°Cのオーブン内で 3 0分間加熱した。 その後、 光導波路を 取り出し、 室温下で一定時間静置させ、 再度、 挿入損失値を測定した。 カロ 熱後の挿入損失値の変化量が、初期値に対し 1. 0 d Bを超えるものを「X」、 1. O d B以下のものを 「〇j とした。
(4) 長期信頼性
上記と同様に、初期挿入損失値を測定後、一 4 0°C ( 3 0分)、 8 5°C ( 3 0分) の繰り返しを冷熱衝撃試験機にて 5 0 0回実施した。 その後、 光導 波路を取り出し、 室温下にて再度、 挿入損失値を測定した。 冷熱衝撃試験 機に入れる前の挿入損失の値に対し、 試験後の揷入損失値の変化量が 1. O d Bを超えるものを 「X」、 1. O d B以下のものを 「〇J とした。
結果を表 2に示す。
[表 2]
Figure imgf000022_0001
表 1および表 2より、 本発明の樹脂組成物 (実施例 1 5 ) は、 光導波 路の形成材料として用いたときに、 光導波路として適する屈折率を有し、 かつ、 パターユング性 (形状の精度)、 伝送特性 (低い導波路損失)、 耐熱 性 (高温試験下での良好な伝送特性の維持)、 長期信頼性 (ヒートサイクル 試験下での良好な伝送特性の維持) に優れていることがわかる。
一方、 比較例 1では、 成分 (A ) を含まないため、 長期信頼性が劣る。 比較例 2では、 伝送特性 (導波路損失)、 耐熱性および長期信頼性が劣る。

Claims

請 求 の 範 囲
1. (A) ノポラック型エポキシ樹脂、 および (B) 光酸発生剤を含有 することを特徴とする光導波路形成用感光性樹脂組成物。―
2. 前記成分 (A) のエポキシ当量が 5 0〜: L , O O O g/ e qである 請求の範囲第 1項に記載の光導波路形成用感光性樹脂組成物。
3. 前記樹脂組成物の硬化物の屈折率 (iiD 25) が 1. 5 5以上である 請求の範囲第 1項又は第 2項に記載の光導波路形成用感光性榭脂組成物。
4. 前記樹脂組成物の硬化物のガラス転移温度が 1 0 0°C以上である請 求の範囲第 1項〜第 3項のいずれか 1項に記載の光導波路形成用感光性樹 脂組成物。
5. 前記成分 (A) が、 下記一般式 ( 1 ) 〜 ( 3) のいずれか:
Figure imgf000024_0001
(式中、 R1 は水素原子または炭素数 1〜 1 2のアルキル基またはァラル キル基を表す。 nは、 0〜 1 0の整数を表す。)
Figure imgf000025_0001
(式中、 R 2および R 3は、 各々独立して、 水素原子または炭素数 1〜 1 2 のアルキル基またはァラルキル基を表す。 11は、 0〜 1 0の整数を表す。)
Figure imgf000025_0002
(式中、 R4および R 5は、 各々独立して、 水素原子または炭素数 1 ~ 1 2 のアルキル基またはァラルキル基を表す。 nは、 0〜 1 0の整数を表す。) で表されるノボラック型エポキシ樹脂である請求の範囲第 1項〜第 4項の いずれか 1項に記載の光導波路形成用感光性樹脂組成物。
6. 下部クラッ ド層と、 コア部と、 上部クラッ ド層とを含む光導波路に おいて、 前記下部クラッ ド層、 前記コア部および前記上部クラッ ド層の少 なく とも一つが、 請求の範囲第 1項〜第 5項のいずれか 1項に記載の樹脂 組成物の硬化物であることを特徴とする光導波路。
PCT/JP2005/003418 2004-03-23 2005-02-23 光導波路形成用感光性樹脂組成物および光導波路 WO2005091027A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/593,815 US7394965B2 (en) 2004-03-23 2005-02-23 Photosensitive resin composition for optical waveguide formation and optical waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004084283A JP2005274664A (ja) 2004-03-23 2004-03-23 光導波路形成用感光性樹脂組成物および光導波路
JP2004-084283 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005091027A1 true WO2005091027A1 (ja) 2005-09-29

Family

ID=34993847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003418 WO2005091027A1 (ja) 2004-03-23 2005-02-23 光導波路形成用感光性樹脂組成物および光導波路

Country Status (5)

Country Link
US (1) US7394965B2 (ja)
JP (1) JP2005274664A (ja)
KR (1) KR20060132947A (ja)
TW (1) TW200602701A (ja)
WO (1) WO2005091027A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102500B (zh) * 2013-04-26 2017-03-22 日东电工株式会社 光波导用感光性环氧树脂组合物、光波导形成用固化性薄膜、以及使用其的光波导和光/电传输用混载挠性印刷电路板、以及该光波导的制法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055134A1 (ja) * 2005-11-10 2007-05-18 Nec Corporation 光導波路形成用感光性樹脂組成物、光導波路、及び光導波路の製造方法
EP1995266A4 (en) * 2006-03-15 2012-02-08 Hitachi Chemical Co Ltd PHENOXY RESIN FOR OPTICAL MATERIAL, RESIN COMPOSITION FOR OPTICAL MATERIAL, RESIN FILM FOR OPTICAL MATERIAL AND OPTICAL WAVEGUIDE THEREOF
KR20100028555A (ko) * 2007-07-03 2010-03-12 코니카 미놀타 옵토 인코포레이티드 촬상 장치의 제조 방법, 촬상 장치 및 광학 소자
JP5308398B2 (ja) * 2010-05-11 2013-10-09 日東電工株式会社 光導波路形成用樹脂組成物およびそれを用いた光導波路
JP5449109B2 (ja) * 2010-11-05 2014-03-19 日東電工株式会社 光導波路用樹脂組成物およびそれを用いた光導波路
JP5455884B2 (ja) * 2010-12-20 2014-03-26 日東電工株式会社 光導波路用樹脂組成物およびそれを用いた光導波路ならびにその製法
JP5905303B2 (ja) * 2012-03-12 2016-04-20 日東電工株式会社 光導波路形成用エポキシ樹脂組成物およびそれより得られる光導波路形成用硬化性フィルム並びに光伝送用フレキシブルプリント基板
JP6026347B2 (ja) * 2013-04-23 2016-11-16 日東電工株式会社 感光性エポキシ樹脂組成物および光導波路コア層形成用硬化性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
JPWO2018235200A1 (ja) * 2017-06-21 2019-06-27 三菱電機株式会社 光導波路、光回路および半導体レーザ
TW202342576A (zh) * 2022-03-31 2023-11-01 日商松下知識產權經營股份有限公司 光波導用樹脂組成物、光波導用乾膜及光波導
TW202344545A (zh) * 2022-03-31 2023-11-16 日商松下知識產權經營股份有限公司 光波導用樹脂組成物、光波導用乾膜及光波導

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147045A (ja) * 2001-11-15 2003-05-21 Nippon Kayaku Co Ltd 光導波路用樹脂組成物及びその硬化物
JP2003177260A (ja) * 2001-12-13 2003-06-27 Showa Denko Kk 光導波路樹脂用組成物
JP2003195078A (ja) * 2001-12-27 2003-07-09 Toppan Printing Co Ltd 高分子光導波路の製造方法
JP2003202438A (ja) * 2001-12-28 2003-07-18 Jsr Corp 光導波路形成用放射線硬化性組成物、光導波路ならびにその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271746A (ja) 1995-03-31 1996-10-18 Nippon Telegr & Teleph Corp <Ntt> 光導波路およびその作製法
JPH09243870A (ja) 1996-03-14 1997-09-19 Hitachi Ltd 光モジュール製造方法
JP2000356720A (ja) 1999-06-16 2000-12-26 Sony Corp 光導波路用材料並びに光導波路およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147045A (ja) * 2001-11-15 2003-05-21 Nippon Kayaku Co Ltd 光導波路用樹脂組成物及びその硬化物
JP2003177260A (ja) * 2001-12-13 2003-06-27 Showa Denko Kk 光導波路樹脂用組成物
JP2003195078A (ja) * 2001-12-27 2003-07-09 Toppan Printing Co Ltd 高分子光導波路の製造方法
JP2003202438A (ja) * 2001-12-28 2003-07-18 Jsr Corp 光導波路形成用放射線硬化性組成物、光導波路ならびにその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102500B (zh) * 2013-04-26 2017-03-22 日东电工株式会社 光波导用感光性环氧树脂组合物、光波导形成用固化性薄膜、以及使用其的光波导和光/电传输用混载挠性印刷电路板、以及该光波导的制法

Also Published As

Publication number Publication date
TW200602701A (en) 2006-01-16
US7394965B2 (en) 2008-07-01
KR20060132947A (ko) 2006-12-22
JP2005274664A (ja) 2005-10-06
US20070223868A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
WO2005091027A1 (ja) 光導波路形成用感光性樹脂組成物および光導波路
CA2325716C (en) Liquid, radiation-curable composition, especially for stereolithography
EP1564565B1 (en) Optical waveguide and production method thereof
CN102712741B (zh) 固化性的含有长链亚烷基的环氧树脂组合物
CN101592759B (zh) 光学材料用树脂组合物、光学材料用树脂薄膜及使用其的光导
US20020161068A1 (en) Polymerizable composition, cured material thereof and method for manufacturing the same
CN103429632B (zh) 多官能环氧化合物
WO2006100964A1 (ja) 立体形状物の製造方法及び立体形状物
JP2002071987A (ja) 光導波路の作製方法
US8414733B2 (en) Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide
KR102494437B1 (ko) 장쇄 알킬렌기함유 에폭시 수지 조성물
JP2001083710A (ja) 電子部品用材料およびそれを硬化してなる電子部品
JP2003149476A (ja) 光導波路用樹脂組成物及びその硬化物
JP3867409B2 (ja) 光導波路の製造方法
US20100150506A1 (en) Polymer optical waveguide forming material, polymer optical waveguide and manufacturing method of polymer optical waveguide
JP2007119585A (ja) 硬化性エポキシ樹脂フィルム
JP2020094095A (ja) 光導波路用エポキシ樹脂感光性組成物、光導波路用感光性フィルム、光導波路、および、光電気混載基板
JP2005010770A (ja) 光導波路形成用組成物及び光導波路
JP2003177260A (ja) 光導波路樹脂用組成物
JP5448358B2 (ja) 樹脂組成物、光学材料、及び、光学部材
WO2005085922A1 (ja) 光導波路チップの製造方法
JPH11302358A (ja) 光硬化性樹脂組成物
JP2005126497A (ja) 光導波路用感光性樹脂組成物および光導波路
JP2003213243A (ja) 光学接着剤用組成物
JP2007204604A (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019600

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067019600

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593815

Country of ref document: US

Ref document number: 2007223868

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10593815

Country of ref document: US