WO2005087675A1 - 抗菌性ガラスおよび抗菌性ガラスの製造方法 - Google Patents

抗菌性ガラスおよび抗菌性ガラスの製造方法 Download PDF

Info

Publication number
WO2005087675A1
WO2005087675A1 PCT/JP2005/004292 JP2005004292W WO2005087675A1 WO 2005087675 A1 WO2005087675 A1 WO 2005087675A1 JP 2005004292 W JP2005004292 W JP 2005004292W WO 2005087675 A1 WO2005087675 A1 WO 2005087675A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
glass
antibacterial glass
weight
amount
Prior art date
Application number
PCT/JP2005/004292
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Kamiya
Shinobu Kanamaru
Original Assignee
Koa Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Glass Co., Ltd. filed Critical Koa Glass Co., Ltd.
Priority to JP2006510991A priority Critical patent/JP5378647B2/ja
Publication of WO2005087675A1 publication Critical patent/WO2005087675A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron

Definitions

  • Antibacterial glass and method for producing antibacterial glass are provided.
  • the present invention relates to an antibacterial glass for a washing machine that can elute silver ions by coming into direct contact with water during or after washing of an antibacterial object (an antibacterial glass for a washing machine having an antifungal property).
  • the present invention relates to an antibacterial glass suitable as such, and a method for producing such an antibacterial glass.
  • an antibacterial glass suitable as an antibacterial glass for a washing machine or the like for performing antibacterial treatment with silver ions during or after washing of an antibacterial object, and when it comes into direct contact with water The present invention relates to an antibacterial glass capable of releasing a predetermined amount of silver ions quickly and for a long period of time, and a method for producing such an antibacterial glass.
  • antibacterial glass having a predetermined particle size has been used for building materials, home appliances (including TVs, personal computers, mobile phones, video cameras, etc.), miscellaneous goods, packaging materials, and the like, in order to impart an antibacterial effect.
  • An antibacterial resin composition mixed in a predetermined amount into fat is used.
  • an antibacterial resin composition there is disclosed a synthetic resin molded article containing borosilicate antibacterial glass that elutes silver ions in the resin (for example, see Patent Document 1).
  • the strong synthetic resin molded body is made of SiO
  • CaO one or two or more kinds of ⁇ network-modified oxides and 100 parts by weight of a glass solid that also acts as a monovalent Ag in a weight of 100 parts by weight of AgO.
  • An antibacterial resin composition containing an antibacterial glass having an average particle size of 20 m or less in a synthetic resin is disclosed.
  • the particle size having antibacterial properties is 10-1000 ⁇ m, and the thickness is 0.
  • a resin composition containing glass flakes of 120 m in length is disclosed (for example, Patent Document More specifically, as the composition of the glassy glass flakes, when BO is contained, S
  • Disclosed antibacterial water-based products composed of 0.5 to 5% by weight of inorganic antibacterial agent containing silver ion and 2 to 20% by weight of inorganic filler with average particle size of 2 to 20m Have been.
  • an antibacterial resin composition which exemplifies electric appliances such as a dishwasher, a dish dryer, a refrigerator, a washing machine, and a pot (for example, see Patent Documents). 4 and 5).
  • Suya also mean particle size of 20 m or less of ZnO: 5 4- 60 mole 0/0, BO: 25-32 mole 0/0
  • alkali metal oxides an antimicrobial glass consisting 5-8 mole 0/0,
  • Antibacterial resin compositions containing a predetermined amount of each.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 1-313531 (Claims)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-25635 (Claims)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-3238 (Claims)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-3239 (Claims)
  • Patent Document 6 Japanese Patent Publication No. 7-63701 (Claims)
  • Patent Documents 15 are all formed by adding antibacterial glass to the resin, the antibacterial resin compositions are disclosed. Glass was configured to be able to release silver ions for the first time by indirect contact with water that has penetrated into the resin.
  • the average particle size of the antibacterial glass is preferably about 20 m or less in order to uniformly mix the resin.
  • the antibacterial glass has a predetermined size. Although the glass flakes were used, there was a manufacturing problem that these values had to be restricted to a predetermined range by using a classifying device or the like as a manufacturing device.
  • the glass water treatment agent disclosed in Patent Document 6 has a problem that although the longest diameter is relatively large, the amount of silver ion eluted is basically small. Therefore, similar to the antibacterial resin composition disclosed in Patent Documents 1 to 5, the antibacterial object is brought into direct contact with water during or after washing to quickly release silver ions, and It was practically difficult to attach a predetermined amount of silver ions to an antibacterial substance.
  • an antibacterial glass for releasing silver ions upon direct contact with water and exhibiting an antibacterial effect, and has a maximum diameter (tl) within a range of 1 to 50 mm.
  • an antibacterial glass having a silver ion elution amount within a range of 0.5 to 100 mgZ (g'24Hrs), which can solve the above-mentioned problem.
  • antibacterial glass of the present invention for example, during or after washing of an antibacterial substance, a predetermined amount of silver ions can be released quickly and for a long period of time by direct contact with water. it can. Therefore, a predetermined antibacterial treatment can be repeatedly applied to the antibacterial object.
  • antibacterial glass having such a size not only facilitates handling, but also causes adjacent glass to come into contact with each other, agglomeration or fusion, despite extremely high solubility. Can be effectively prevented.
  • the antibacterial glass for a washing machine is subjected to an antibacterial treatment with silver ions during or after washing of an antibacterial object.
  • the raw materials of the predetermined boric acid-based antibacterial glass are blended in the respective predetermined amounts, it is possible to release a predetermined amount of silver ions over a long period of time by directly contacting with water. As a result, a predetermined antibacterial effect can be continuously exerted. Further, according to such antibacterial glass for a washing machine, a predetermined antibacterial treatment can be stably applied to an antibacterial object washed with a detergent having low reactivity with a detergent. In the case of strong antibacterial glass, use a relatively large amount of BO as a raw material.
  • Weight percent 2 to 5 weight percent Ag 2 O, and 15 alkali metal oxides.
  • the value be within the range of 35% by weight.
  • a predetermined amount of the phosphoric acid-based antibacterial glass raw material is blended in a predetermined amount, by directly contacting with water, for example, in a washing machine application, a predetermined amount of silver ion And a predetermined antibacterial effect can be continuously imparted to the laundry.
  • such a phosphate antibacterial glass is excellent in transparency and can release a predetermined amount of silver ions even if it is granular, regardless of whether it is flat. Furthermore, with such a phosphate antibacterial glass, it is possible to obtain an advantage if the production conditions are reduced so that the corrosiveness to a melting furnace or the like during production is reduced.
  • the antibacterial glass of the present invention can be cut into an arbitrary size and used in consideration of the environmental conditions and the amount of water to be used or the long-term use time, etc., by adopting a so-called chocolate cut shape.
  • it since it has a predetermined thin portion, it is used as a cut point and has an appropriate size according to the size and shape of the place of use. And antibacterial glass of different shapes.
  • a coating member is provided around the antibacterial glass, and that the cartridge is inscribed!
  • the cartridge is provided with the predetermined covering member and is cartridge-shaped, not only is it easy to handle and exchange, etc., but even when a relatively strong water flow is used, the water is discharged to the outside together with the water flow. Outflow can be effectively prevented.
  • Another embodiment of the present invention is a method for producing an antibacterial glass for releasing silver ions by directly contacting with water to exhibit an antibacterial effect, comprising the following step (A): (B) A method for producing an antibacterial glass, comprising:
  • the process since the process includes a predetermined manufacturing process, it can release silver ions by coming into direct contact with water and quickly exert an antibacterial effect. As a result, the object to be antibacterial can be washed or washed. Later, an antibacterial glass that releases a predetermined amount of silver ions and can stably perform a predetermined antibacterial treatment on an antibacterial substance can be efficiently obtained.
  • Still another embodiment of the present invention relates to a method for producing an antibacterial glass for releasing silver ions upon direct contact with water and exhibiting an antibacterial effect, comprising the following steps ( ⁇ (1) A method for producing an antibacterial glass, characterized by containing one ( ⁇ ').
  • the antibacterial effect can be promptly exerted by releasing silver ions by directly contacting with water.
  • the antibacterial glass that releases a predetermined amount of silver ions during or after washing of the antibacterial substance and can stably perform a predetermined antibacterial treatment on the antibacterial substance.
  • a flat antibacterial glass is formed using a rotating member having a concave portion on the surface. Is preferred.
  • FIG. 1] (a)-(f) are views provided for explaining the shape of the antibacterial glass of the first embodiment.
  • FIG. 2 is a diagram provided for explaining a relationship between a maximum diameter (tl) of an antibacterial glass and a residual ratio.
  • FIG. 3 is a diagram provided to explain the relationship with the amount of silver ion eluted with the number of washings.
  • FIG. 4 is a view showing a washing machine to which the antibacterial glass of the first embodiment is applied.
  • FIG. 5 is a diagram provided for explaining a shape of an antibacterial glass.
  • FIG. 6 is a view provided to explain a coating member of antibacterial glass (part 1).
  • FIG. 7] (a)-(c) is a diagram provided to explain a coating member of antibacterial glass (part 2).
  • FIG. 8 is a diagram provided for explaining a shape of an antibacterial glass and a covering member.
  • FIG. 9 is a diagram provided for explaining a method of using the antibacterial glass.
  • FIG. 10 is a diagram provided for explaining an antibacterial method for an antibacterial substance.
  • FIG. 11 is a diagram provided for explaining a method for manufacturing the antibacterial glass of the second embodiment (part 1).
  • FIG. 13 is a view provided for explaining a method of manufacturing the antibacterial glass of the third embodiment. (Part 1)
  • FIG. 14 is a view provided for explaining a method of manufacturing the antibacterial glass of the third embodiment. (Part 2)
  • the first embodiment is an antibacterial glass for releasing silver ions in direct contact with water and exhibiting an antibacterial effect, and has a maximum diameter (tl) within a range of 1 to 50 mm. It is an antibacterial glass with a silver ion elution amount in the range of 0.5-100 mg / (g'24Hrs).
  • the shape of the antibacterial glass is not particularly limited, but as shown in FIG. 1 (a)-(f), a flat plate having a rectangular shape, a polygonal shape, a circular shape, an elliptical shape, an irregular shape, a perforated shape, etc. It is preferred that it is in the form.
  • the antibacterial glass is formed in a flat plate shape such as a rectangular shape or a perforated shape, so that even if it is placed at a predetermined location and brought into direct contact with water, it is washed away by water pressure, This is because it is possible to effectively prevent the power from flowing out of the predetermined location.
  • the antibacterial glass is rectangular or the like, it is difficult to coagulate during manufacturing or use, so the size and shape of the antibacterial glass during manufacturing and the control of environmental conditions during use are also considered. This is because it becomes easier.
  • the antibacterial glass can be formed into any shape such as a polyhedral, granular, spherical, elliptical, columnar, or pulverized body.
  • the maximum diameter (tl) of the antibacterial glass is set to a value within a range of 1 to 50 mm.
  • the maximum diameter (tl) of the antibacterial glass is, for example, the maximum length when an arbitrary line is drawn in the shape of the antibacterial glass as shown in FIGS. Means That is, the maximum diameter (tl) of the antibacterial glass is the maximum diameter in the plane direction when the antibacterial glass is, for example, a flat plate, and the maximum diameter of the particles when the antibacterial glass is granular. .
  • the reason for limiting the maximum diameter (tl) of the antibacterial glass is that when the maximum diameter to be pressed is less than lmm, it is placed at a predetermined location and pressed directly by water when pressed against water. It may be easily washed away and force to flow out of a specified location, or it may be difficult to release silver ions of a predetermined concentration for a long period of time, or it may be easy to agglomerate during storage. is there.
  • the maximum diameter when the shape of the antibacterial glass is flat or the like, it is more preferable to set the maximum diameter to a value in the range of 8 to 30 mm, more preferably to a value in the range of 15 to 20 mm.
  • the shape of the antibacterial glass is granular, etc., it is more preferable to set the maximum diameter to a value within the range of 3 to 25 mm in consideration of the easiness of production. More preferably, it is set to a value.
  • the thickness of the antibacterial glass is preferably in the range of 0.1 to 10 mm.
  • the thickness of the strong antibacterial glass is less than 0.1 mm, it becomes difficult to release silver ions of a predetermined concentration, handling becomes difficult, and stable production This may be difficult.
  • the thickness of the antibacterial glass exceeds 10 mm, on the other hand, handling becomes difficult, and it becomes difficult to manufacture it stably.
  • the antibacterial glass if the antibacterial glass is flat, its thickness should be in the range of 0.5-8 mm. It is more preferable to set the value within the range. It is more preferable to set the value within the range of 11 to 5 mm.
  • the maximum diameter / thickness of the antibacterial glass described above can be easily measured using, for example, an optical microscope photograph or a caliper.
  • the horizontal axis of FIG. 2 shows the maximum diameter (mm) of the antibacterial glass in the plane direction in logarithm, and the vertical axis shows the antibacterial glass in Examples described later when the antibacterial glass of each particle size is used.
  • the residual ratio (%) measured according to the method for measuring the residual ratio of lath is shown.
  • the residual ratio shows a relatively high value, that is, a value of 50% or more. However, it is understood that it can withstand long-term use.
  • the antibacterial glass according to the present invention (maximum diameter in the plane direction of 15 mm) and the antibacterial glass having an average particle diameter of 20 ⁇ m were used.
  • the change in the number of washings and the amount of silver ion eluted in this case will be described in detail. That is, the horizontal axis of FIG. 3 indicates the number of washings using each antibacterial glass using the washing machine 50 as shown in FIG. 4, and the vertical axis of FIG.
  • the elution amount of ion (mg / (g'24Hrs)) is shown.
  • the data on the antibacterial glass of the present invention is shown by a solid line A
  • the data on the antibacterial glass having an average particle diameter of 20 ⁇ m is shown by a dotted line B.
  • the antibacterial glass of the present invention (antibacterial glass for a washing machine) has a predetermined maximum diameter in the plane direction and is not washed away by water pressure or the like, so that the residual amount is small. It does not decrease significantly. Therefore, it can be understood that the desired elution amount can be maintained even when used repeatedly. Therefore, it is understood that the antibacterial glass of the present invention is immune to long-term use.
  • antibacterial glass having an average particle size of 20 m reduces the residual amount of antibacterial glass each time it is used.
  • the value of the amount of eluted significantly decreased compared to the amount of silver ion eluted immediately after the start of use. Therefore, it is understood that frequent replenishment of the antibacterial glass is necessary in order to secure a desired elution amount of silver ions.
  • the antibacterial glass is formed as a whole through a thin portion 12 having the same component power as the antibacterial glass. It is preferable that a plurality of glass pieces 10a are connected to each other.
  • the antibacterial glass of a large area is cut into an arbitrary size by so-called chocolate cutting in consideration of the environmental conditions, the amount of water used, or the long-term use time, etc. Because it can be used. That is, a large-area antibacterial glass can be cut into a predetermined size by using a predetermined thin portion, and the amount of silver ion eluted (elution rate) can be easily adjusted.
  • the size and shape of the antibacterial glass can be appropriately determined in accordance with the size and shape of the place of use by using the cut portion as a cut portion.
  • boric acid antibacterial glass having the following composition. That is, B O
  • the amount of SiO added is 30-60% by weight, the amount of AgO added is 2-5% by weight,
  • B O basically functions as a network-forming oxide.
  • the invention relates to the function of improving the transparency of antibacterial glass and the uniform release of silver ions. Give.
  • SiO functions as a network-modified antioxidant in antibacterial glass.
  • Ag O is an essential component in the antibacterial glass, and the glass component dissolves.
  • an alkaline earth metal oxide for example, MgO or CaO
  • it can function as a network-modified acid oxide, while, like the alkali metal oxide, the antibacterial glass It can also exhibit the function of improving the transparency and the function of adjusting the melting temperature.
  • a phosphate antibacterial glass having the following composition. That is, as raw materials, P O, Ag O, and alkali metal oxide
  • a phosphate-based antibacterial glass having such a glass composition ability can quickly release a predetermined amount of silver ions by directly contacting with water.
  • the antibacterial glass having such a glass composition power it has excellent transparency and releases a predetermined amount of silver ions within a predetermined time even if the particles have a predetermined particle size irrespective of a flat shape. It is possible because it is easy to use.
  • such a phosphoric acid-based antibacterial glass can be manufactured and economically reduced in terms of manufacturing conditions, such as reducing the corrosiveness to a melting furnace during manufacturing, or reducing manufacturing costs. You can also get benefits.
  • Ag O is an essential component in the antibacterial glass, and the glass component dissolves.
  • Alkali metal oxides such as Na O and K O, are basically network-modified oxides.
  • an alkaline earth metal oxide for example, MgO or CaO
  • it can function as a network-modified acid oxide, while, like the alkali metal oxide, the antibacterial glass It can also exhibit the function of improving the transparency and the function of adjusting the melting temperature.
  • the elution amount of silver ion in the antibacterial glass is set to a value within the range of 0.5 to 1 OOmgZ (g ⁇ 24Hrs).
  • the reason is that when the elution amount of strong silver ions is less than 0.5 mg / (g'24Hrs), the silver ions of a predetermined concentration can be released quickly when they come into direct contact with water. This can be difficult.
  • the elution amount of silver ions in the antibacterial glass is more preferable to set to a value within the range of 90 mgZ (g'24Hrs), more preferably to a value within the range of 10-70 mgZ (g'24Hrs). More preferred.
  • the elution amount of silver ions in the antibacterial glass can be measured according to the measurement method described in Example 1 described later.
  • Complex-forming compounds capable of forming a complex with silver ions, such as ammonium sulfate, ammonium nitrate, sodium chloride, sodium thiosulfate, sodium chloride, ammonium sulfate, and ammonium sulfate. It is preferable to add one or a combination of two or more of tylenediaminetetraacetic acid (EDTA), ammonium acetate, ammonium perchlorate, and ammonium phosphate. Addition of such a complex-forming compound can significantly prevent discoloration and coloring of the antibacterial glass.
  • EDTA tylenediaminetetraacetic acid
  • ammonium nitrate sodium salt ammonium
  • at least one compound selected from the group consisting of sodium thiosulfate is more preferable to use.
  • the amount of the complex-forming compound to be added is preferably set to a value within the range of 0.01 to 30% by weight based on the total amount.
  • the amount of the powerful complex-forming compound is less than 0.01% by weight, it may be difficult to effectively prevent discoloration.
  • the amount of the complex-forming compound exceeds 30% by weight, the antibacterial properties of the antibacterial glass may be reduced or it may be difficult to mix them uniformly.
  • the amount of the complex-forming compound to be added is within the range of 0.1 to 20% by weight based on the total amount.
  • the value is more preferably set to a value in the range of 0.5 to 10% by weight.
  • the covering member has a form in which an antibacterial glass 10 is covered with an inorganic substance and / or an organic substance, or one of the particles 14.
  • the particles that coat the antibacterial glass include titanium oxide, silicon oxide, and colloidal. Silica, zinc oxide, tin oxide, lead oxide, white carbon, acrylic particles, styrene particles, polycarbonate particles, and the like, alone or in combination of two or more are preferred.
  • the method of coating the antibacterial glass with the particles is not particularly limited.
  • the mixture is heated at a temperature of 600 to 1200 ° C to form the glass. It is preferable to fix by a force for fusing or a binder.
  • a cartridge around the antibacterial glass by providing a wrapping member as a covering member or a housing.
  • the antibacterial glass is enclosed in a cylindrical housing 18 'whose both end surfaces are covered with a mesh member having a smaller particle size. It is preferable to encapsulate 10 and connect them to form a cartridge as shown in FIG. 8 (b).
  • the granular antibacterial glass can be composed of phosphoric acid-based glass as a raw material, thereby compensating for the slow dissolution rate by enlarging the glass surface area and obtaining a desired Ag elution amount. It becomes.
  • antibacterial glass is dispersed for antioxidant or coloring purposes.
  • Surfactants stearic acid, myristic acid, sodium stearate, silane coupling agents, etc., hindered phenolic conjugates as anti-irridation agents, pigments as coloring agents, such as hindered amine compounds, etc. It is preferable to add a dye or the like.
  • each of them it is more preferable to set each of them to a value in the range of 0.01 to 30% by weight based on the total amount.
  • the method of direct contact between the antibacterial glass and water is not particularly limited.
  • the antibacterial glass can be immersed in water, or the antibacterial glass can be put into a stream of water. It is preferable to make silver-ion-containing water by directly contacting the glass with water.
  • a bypass 26 is provided and the antibacterial glass 10 for the washing machine is placed there, and when necessary, It is preferable to obtain a silver ion-containing water by opening and closing a valve 28 communicating with the bypass 26 to allow water to flow in and directly contact the antibacterial glass 10 for a washing machine.
  • the antibacterial substance 32 is treated by showering or directly immersing the silver ion-containing water 30 to perform an antibacterial treatment.
  • antibacterial substance examples include woven fabric, fibrous material, nonwoven fabric, mat-like material, clothing, towels, footwear, and the like.
  • a melting step To form a molten glass (hereinafter, sometimes referred to as a melting step).
  • a molding step (hereinafter, referred to as the maximum diameter (tl) of 1 to 50 mm and the elution amount of silver ion of 0.5 to 100 mgZ (g'24Hrs)) It may be referred to as a molding step.)
  • the amount of B O added was 30 60% by weight, and the amount of SiO
  • the mixture was stirred under a condition of a rotation speed of 250 rpm for 30 minutes until it was uniformly mixed so as to have a value within the range of% by weight.
  • the glass raw material was heated at 1280 ° C. for three and a half hours to prepare a glass melt.
  • the heating conditions in the melting furnace can be appropriately changed according to the types and mixing ratios of the raw materials.
  • the forming step is a step of converting molten glass obtained by melting glass raw materials into antibacterial glass having a predetermined shape.
  • melting process Melting process for producing molten glass
  • the amount of PO added was 30 60% by weight, the amount of Ag O was 25% by weight, and
  • the mixture is uniformly mixed at a rotation speed of 250 rpm for 30 minutes so that the addition amount of the alkali metal sardine is within a range of 5 to 40% by weight. And stirred until the Then, using a melting furnace, as an example, calorie the glass raw material at 1280 ° C for three and a half hours. Heating produced a glass melt.
  • the heating conditions in the melting furnace can be appropriately changed according to the types and mixing ratios of the raw materials.
  • the forming step 1 is a step of converting a molten glass obtained by melting a glass material into an antibacterial glass having a predetermined shape, and in particular, maintaining the molten glass in a semi-solid state before it is completely cured. This is a step of forming glass-like glass.
  • the molten glass 22 melted by the above-described method is flowed into a predetermined molding container 60 to form a semi-solid glass plate 22 ′.
  • the material of the molding container 60 is not particularly limited as long as it has a melting point higher than that of the antibacterial glass 10.
  • a heat-resistant material such as carbon is a preferable constituent material in that it can easily cope with the reduction in the weight and precision of the molding container 60.
  • a cooling device 61 is attached to the back surface of the molding container 60 to adjust the temperature of the molding container 60 to an optimum value as shown in FIG. A semi-solid state can be created.
  • the forming step 2 is a step for forming the semi-solid glass plate 22 ′ formed in the forming step 1 into a glass plate having a predetermined thickness.
  • the semi-solid glass plate 22 is inserted into the gap between the rotating members 2CT arranged at the interval dl. At this time, by setting the distance dl larger than the thickness d2 of the semi-solid glass plate 22, the antibacterial glass 10 with the distance dl can be formed as shown in FIG. Can be.
  • the antibacterial glass 10 is crushed by a predetermined method to obtain granular, spherical, This is a step of forming into a shape such as a crushed body.
  • Example 1 After crushing to a certain size using a crushing jig such as a hammer, crushing is performed using a ball milling method or the like. At this time, the desired shape as described above can be obtained by appropriately changing the conditions such as the milling ball diameter and the processing time.
  • a crushing jig such as a hammer
  • the composition ratio of B O is 52% by weight and the composition ratio of SiO is 3%.
  • Each glass raw material was stirred using a universal mixer at a rotation speed of 250 rpm for 30 minutes until it was uniformly mixed. Next, using a glass melting furnace, the glass raw materials were heated at 1280 ° C. for three and a half hours to produce molten glass.
  • the molten glass which has also been taken out of the glass melting furnace, is inserted into the insertion port 4 of the manufacturing apparatus 40 shown in FIG.
  • the residual ratio is 90-100% by weight.
  • the residual ratio is less than 70-90% by weight.
  • the residual ratio is less than 30% by weight.
  • the antibacterial property of cotton underwear was evaluated using the obtained antibacterial glass for a washing machine. That is, the cotton underwear was washed with running water containing detergent using the washing machine shown in FIG.
  • valve 28 communicating with the bypass 26 on which the washing machine antibacterial glass 10 is placed is opened and closed to allow water to flow, and the washing machine antibacterial glass 10 and the water are separated.
  • silver ion-containing water was prepared.
  • antibacterial treatment was applied to cotton underwear 32 as a substance to be bacterium by showering silver ion-containing water 30.
  • the cotton underwear 32 thus obtained was left under environmental conditions of 35 ° C., 95% Rh, and 48 hours, and the antibacterial properties were evaluated under the following conditions.
  • Example 2 The same procedure as in Example 1 was carried out except that 2 3 2 was changed, and an antibacterial glass for a washing machine was prepared and evaluated. Valued.
  • Comparative Example 1 was the same as Example 1 except that the antibacterial glass for a washing machine obtained in Example 1 was adjusted to granular particles having an average particle size of 20 m using a crusher and a classifier. It was evaluated similarly.
  • Example 2 the antibacterial glass for a washing machine obtained in Example 1 was adjusted to flaky particles having a long diameter of 200 m and a thickness of 30 m using a crushing device and a classification device. was evaluated in the same manner as in Example 1.
  • Comparative Example 3 the antibacterial glass for a washing machine having an average particle diameter of 20 m obtained in Comparative Example 1 was added to polypropylene resin so as to have a concentration of 10% by weight. A resin plate containing antibacterial glass was prepared, and silver ion elution properties and antibacterial properties were evaluated.
  • the composition ratio of PO is 70% by weight, and the composition ratio of NaO is 1%. 8% by weight, the composition ratio of CaO is 9% by weight, and the composition ratio of AgO is 3% by weight.
  • glass raw materials were stirred using a universal mixer at a rotation speed of 250 rpm for 30 minutes until they were uniformly mixed.
  • the glass raw material was heated at 1280 ° C. for three and a half hours to produce a molten glass.
  • Example 6 similarly to Example 1, (1) evaluation of silver ion dissolution, (2) evaluation of outflow property, and (3) evaluation of antibacterial property were performed.
  • Weight loss rate is less than 10%.
  • Weight loss rate is less than 10-20%.
  • Weight loss rate is 50% or more.
  • a functional glass was prepared and evaluated.
  • PA 70 64.5 66.5 68 72 60 71
  • the maximum diameter (tl) is extremely large in a flat or granular shape.
  • a predetermined amount of silver ions can be released quickly and for a long period of time.
  • an antibacterial glass having an extremely large maximum diameter (tl) in a flat or granular shape can be efficiently obtained.
  • the antibacterial glass of the present invention silver obtained by directly contacting water with a flat or granular antibacterial glass having an extremely large maximum diameter (tl).
  • tl extremely large maximum diameter
  • the antibacterial glass of the present invention when the antibacterial glass for a washing machine is brought into direct contact with water, which is forced by force, a predetermined amount of silver ions is rapidly and for a long period of time.
  • Suitable to be used in applications where it is required to discharge the water for example, dishwashers, vegetable washer, water purifier, humidifier, humidity supply, disinfectant supply, deodorant supply, etc. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮するための抗菌性ガラスおよびその製造方法を提供する。  被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌処理を施すための洗濯機用抗菌性ガラス等に好適な抗菌性ガラスおよびその製造方法において、洗濯機用抗菌性ガラスの最大径(t1)を1~50mmの範囲内の値とするとともに、銀イオンの溶出量を0.5~100mg/(g・24Hrs)の範囲内の値とする。

Description

明 細 書
抗菌性ガラスおよび抗菌性ガラスの製造方法
技術分野
[0001] 本発明は、被抗菌物の洗濯中あるいは洗濯後に、水と直接的に接触して銀イオン を溶出しうる洗濯機用抗菌性ガラス (防黴性を有する洗濯機用抗菌性ガラスを含む。 以下、同様である。)等として好適な抗菌性ガラス、およびそのような抗菌性ガラスの 製造方法に関する。
より詳細には、被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌処理を 施すための洗濯機用抗菌性ガラス等として好適な抗菌性ガラスであって、水と直接 的に接触した際に、所定量の銀イオンを迅速かつ長期間にわたって放出することが できる抗菌性ガラス、およびそのような抗菌性ガラスの製造方法に関する。
背景技術
[0002] 近年、建材、家電製品 (TV、パソコン、携帯電話、ビデオカメラなどを含む)、雑貨、 包装用資材等において、抗菌効果を付与するために、所定粒径の抗菌性ガラスを、 榭脂中に所定量混入させた抗菌性榭脂組成物が使用されて ヽる。
このような抗菌性榭脂組成物として、榭脂中に、銀イオンを溶出する硼ケィ酸抗菌 性ガラスを含む合成樹脂成形体が開示されている (例えば、特許文献 1参照)。
より具体的には、力かる合成樹脂成形体は、 SiO
2、 B O くは二種 2 3、 P Oの一種もし
2 5
以上の網目形成酸化物と、 Na 0
2 、 K 0
2 、 CaO、 ΖηΟの一種もしくは二種以上の網 目修飾酸ィ匕物と力もなるガラス固形物 100重量部中に、一価の Agとして、 Ag Oを 0
2
. 1一 20重量部含有したホウケィ酸抗菌性ガラスを合成樹脂中に含んで構成されて いる。そして、当該特許公報の実施例において、 SiO :40モル0 /0、 B O : 50モル%
2 2 3
、 Na 0 : 10モル%からなる混合物 100重量部に対して、 Ag Oを 2重量部添加した、
2 2
平均粒径が 20 m以下の抗菌性ガラスを合成樹脂中に含んだ抗菌性榭脂組成物 が開示されている。
[0003] また、抗菌性榭脂組成物として、抗菌性を有する粒径が 10— 1000 μ m、厚さが 0.
1一 20 mの鱗片状ガラスを含む榭脂組成物が開示されている(例えば、特許文献 より具体的には、カゝかる鱗片状ガラスの組成としては、 B Oを含有する場合には、 S
2 3
iO: 20— 60重量%、 BO :30—70重量%、NaO:5—35重量%、AgO:0.5— 3
2 2 3 2 2 重量%からなり、 B Oを含有しない場合には、 SiO :55— 80重量%、 AIO :0.5—
2 3 2 2 3
30重量%、 Na 0: 19.5— 42重量%、 Ag 0:0.5— 3重量%である。
2 2
[0004] また、 100°Cの沸騰水〖こ 500— 1000時間浸漬後〖こ、 20°Cの水または酸に 24時間 浸漬した場合、銀イオンの溶出量が 0.5ngZcm2Zday以上である銀イオン含有無 機系抗菌剤と、無機系充填剤と、を含有する抗菌性水周り製品が開示されている (例 えば、特許文献 3参照)。
より具体的には、榭脂中に、 P O :56— 59mol%、 MgO + CaO+ZnO:33— 38
2 5
mol%、 Al O :6— 8mol%のガラス組成に対して、 Ag Oを 0— 5重量%配合した平
2 3 2
均粒径が 2— 20 mの銀イオン含有無機系抗菌剤を 0.5— 5重量%と、無機系充 填剤を 5— 80重量%と、を添加して構成した抗菌性水周り製品が開示されている。
[0005] また、抗菌性ガラスの用途として、食器洗浄機、食器乾燥機、冷蔵庫、洗濯機、ポッ ト等の電気製品を例示した抗菌性榭脂組成物も提案されている (例えば、特許文献 4 および 5参照)。
すなわち、カゝかる電気製品を構成する成形榭脂中に、平均粒径が 20 m以下の Z nO:40— 80モル0 /0、 SiO :5—35モル%、 CaO: 5— 30モル0 /0力らなる抗菌性ガラ
2
スゃ、同じく平均粒径が 20 m以下の ZnO:54— 60モル0 /0、 B O :25— 32モル0 /0
2 3
、 SiO :7—12モル%、アルカリ金属酸化物: 5— 8モル0 /0からなる抗菌性ガラスを、
2
それぞれ所定量含む抗菌性榭脂組成物である。
さらに、抗菌性ガラスの用途として、貯水槽やクーリングタワー等の水処理装置にお いて使用される硝子水処理剤が提案されている(例えば、特許文献 6参照)。
すなわち、最長径が 10mm以上のリン酸系ガラスであって、その重量組成比が、(R 0+RO)/PO =0.4—1.2、ROZ(RO+RO )=0— 10であり(Rは Caゝ Na
2 2 3 2 2 3
等)、かつ、初期溶解速度を Aとし、末期溶解速度を Bとしたときに、 BZA≥1Z3で あるとともに、金属イオンの含有量が 0.005— 5重量%である硝子水処理剤である。 特許文献 1:特開平 1-313531号公報 (特許請求の範囲) 特許文献 2:特開平 7— 25635号公報 (特許請求の範囲)
特許文献 3:特開平 10- 72530 (特許請求の範囲)
特許文献 4:特開平 2000-3238号公報 (特許請求の範囲)
特許文献 5:特開平 2000— 3239号公報 (特許請求の範囲)
特許文献 6:特公平 7— 63701号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 1一 5に開示されている抗菌性榭脂組成物は、いずれも抗 菌性ガラスを榭脂中に混合添加して構成されていることから、抗菌性ガラスは、榭脂 中に浸透してきた水と、間接的に接触することにより、初めて銀イオンを放出すること ができる構成であった。
したがって、カゝかる抗菌性榭脂組成物を用いた場合、電気製品の部品等に対して 所定の抗菌性を付与することはできても、被抗菌物の洗濯中あるいは洗濯後に水と 直接的に接触させて、迅速に銀イオンを放出させ、その被抗菌物に対して、所定量 の銀イオンを付着させることは事実上困難であった。
また、特許文献 1、 3— 5では、榭脂中に均一に混合するため、抗菌性ガラスの平均 粒径を 20 m以下程度が好ましいとし、特許文献 2では、抗菌性ガラスを所定の大き さの鱗片状ガラスとしているものの、製造装置として分級装置等を併用し、これらの値 を所定範囲に制限しなければならないという製造上の問題が見られた。
一方、特許文献 6に開示されている硝子水処理剤は、最長径は比較的大きいもの の、銀イオンの溶出量が基本的に少ないという問題が見られた。したがって、特許文 献 1一 5に開示されている抗菌性榭脂組成物と同様に、被抗菌物の洗濯中あるいは 洗濯後に水と直接的に接触させて、迅速に銀イオンを放出させ、その被抗菌物に対 して、所定量の銀イオンを付着させることは事実上困難であった。
[0007] そこで、本発明者らは、鋭意検討した結果、抗菌性ガラスの大きさや銀イオンの溶 出量を所定範囲に制限することにより、直接的に水と接触して、繰り返し所定量の銀 イオンを迅速かつ長期間にわたって放出できることを見出し、本発明を完成させたも のである。 すなわち、本発明は、被抗菌物の洗濯中あるいは洗濯後に、直接的に水と接触し て、所定量の銀イオンを迅速かつ長期間にわたって放出し、被抗菌物に対して、繰り 返し所定の抗菌処理を施すことができる洗濯機用抗菌性ガラス等として好適な抗菌 性ガラス、およびそのような抗菌性ガラスの製造方法を提供することを目的とする。 課題を解決するための手段
[0008] 本発明によれば、直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮する ための抗菌性ガラスであって、最大径 (tl)を 1一 50mmの範囲内の値とするとともに 、銀イオンの溶出量を 0. 5— 100mgZ (g' 24Hrs)の範囲内の値とした抗菌性ガラ スが提供され、上述した問題を解決することができる。
すなわち、本発明の抗菌性ガラスによれば、例えば、被抗菌物の洗濯中あるいは 洗濯後において、直接的に水と接触して、所定量の銀イオンを迅速かつ長期間にわ たって放出できることができる。したがって、被抗菌物に対して、繰り返し所定の抗菌 処理を施すことができる。また、このような大きさの抗菌性ガラスであれば、取り扱いが 容易になるばかりか、溶解性が極めて高いにもかかわらず隣接するガラス同士が接 触して、凝集したり、融着したりすることを有効に防止することができる。
[0009] また、本発明の抗菌性ガラスを構成するにあたり、被抗菌物の洗濯中あるいは洗濯 後に、銀イオンによって抗菌処理を施すための洗濯機用抗菌性ガラスであることが好 ましい。
すなわち、洗濯機用途等において、長期間にわたって、所定量の銀イオンを放出し 、所定の抗菌効果を洗濯物等に対して、持続的に付与することができる。
[0010] また、本発明の抗菌性ガラスを構成するにあたり、原材料として、 B Oと、 SiOと、
2 3 2
Ag Oと、アルカリ金属酸化物と、を含むとともに、全体量に対して、 B Oの添加量を
2 2 3
30 60重量%、 SiOの添加量を 30 60重量%、 Ag Oの添加量を 2 5重量%、
2 2
およびアルカリ金属酸ィ匕物の添力卩量を 5— 10重量%の範囲内の値とすることが好ま しい。
すなわち、所定のホウ酸系抗菌ガラスの原材料を、それぞれ所定量配合して構成 してあることから、水と直接接触させることにより、長期間にわたって、所定量の銀ィォ ンを放出させることができ、所定の抗菌効果を持続的に発揮させることができる。 また、このような洗濯機用抗菌性ガラスによれば、洗剤との反応性が乏しぐ洗剤を 用いて洗濯した被抗菌物に対して、所定の抗菌処理を安定して施すことができる。 なお、力かる抗菌性ガラスの場合、原材料として B Oを比較的多量に使用すること
2 3
から、製造条件や使用条件によっては、着色しやすい場合がある。しかしながら、抗 菌性ガラスを、例えば、洗濯機内の水路等の非視認箇所に用いたり、周囲から着色 付きの被覆材を施したり、さら〖こは、後述するように、着色防止剤としての錯体形成化 合物を添加することにより、力かる着色問題を回避することができる。
[0011] また、本発明の抗菌性ガラスを構成するにあたり、原材料として、 P Oと、 Ag Oと、
2 5 2 アルカリ金属酸化物と、を含むとともに、全体量に対して、 P Oの添力卩量を 40— 70
2 5
重量%、 Ag Oの添加量を 2— 5重量%、およびアルカリ金属酸化物の添加量を 15
2
一 35重量%の範囲内の値とすることが好ましい。
すなわち、所定のリン酸系抗菌ガラスの原材料を、それぞれ所定量配合して構成し てあることから、水と直接接触させることにより、例えば、洗濯機用途において、長期 間にわたって、所定量の銀イオンを放出し、所定の抗菌効果を洗濯物に持続的に付 与することができる。
また、このようなリン酸系抗菌ガラスによれば、透明性に優れるとともに、平板状にか かわらず、粒状であっても所定量の銀イオンを放出できる。さらには、このようなリン酸 系抗菌ガラスであれば、製造時の溶融窯等に対する腐食性が少なぐ製造条件が緩 和されると ヽぅ利点を得ることもできる。
[0012] また、本発明の抗菌性ガラスを構成するにあたり、抗菌性ガラスが全体として平板 状であって、当該抗菌性ガラスと同一成分力もなる薄肉部を介して、複数のガラス片 が連結されて構成してあることが好まし 、。
すなわち、所定の薄肉部を介して、平板状のガラス片が複数個連結されていること から、所定の大きさにカットして、銀イオンの絶対的溶出量 (溶出速度)を容易に調整 することができる。したがって、いわゆるチョコレートカット形状とすることにより、使用 する環境条件や水量、あるいは長期使用時間等を考慮して、本発明の抗菌性ガラス を任意の大きさに切断して使用することができる。また、所定の薄肉部を有しているこ とから、そこを切断箇所として、使用場所の大きさや形状に合わせて、適当な大きさ や形状の抗菌性ガラスとすることができる。
[0013] また、本発明の抗菌性ガラスを構成するにあたり、周囲に被覆部材を備え、カートリ ッジィ匕してあることが好まし!/、。
すなわち、所定の被覆部材を備え、カートリッジィ匕してあることから、取り扱いや交換 等が容易になるばかりか、比較的強い水流を用いた場合であっても、当該水流と一 緒に外部に流出することを有効に防止することができる。
[0014] また、本発明の別の態様は、直接的に水と接触して、銀イオンを放出し、抗菌効果 を発揮するための抗菌性ガラスの製造方法であって、下記工程 (A)一 (B)を含むこ とを特徴とする抗菌性ガラスの製造方法である。
(A)原材料として、 B Oと、 SiOと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融さ
2 3 2 2
せて、溶融ガラスを作成する溶融工程
(B)溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶出 量が 0. 5— lOOmgZ (g · 24Hrs)である所定形状を有する抗菌性ガラスとする成形 工程
すなわち、所定の製造工程を含むことから、直接的に水と接触して、銀イオンを放 出し、抗菌効果を迅速に発揮することができ、結果として、被抗菌物の洗濯中あるい は洗濯後において、所定量の銀イオンを放出し、被抗菌物に対して、所定の抗菌処 理を安定して施せる抗菌性ガラスを効率的に得ることができる。
[0015] また、本発明のさらに別の態様は、直接的に水と接触して、銀イオンを放出し、抗菌 効果を発揮するための抗菌性ガラスの製造方法であって、下記工程 (Α')一 (Β')を 含むことを特徴とする抗菌性ガラスの製造方法である。
(ΑΊ原材料として、 Ρ Οと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融させて、溶
2 5 2
融ガラスを作成する溶融工程
(ΒΊ溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶 出量が 0. 5— lOOmgZ (g · 24Hrs)である所定形状を有する抗菌性ガラスとする成 形工程
すなわち、所定の製造工程を含むことから、リン酸系抗菌ガラスであっても、直接的 に水と接触して、銀イオンを放出し、抗菌効果を迅速に発揮することができる。その結 果、被抗菌物の洗濯中あるいは洗濯後において、所定量の銀イオンを放出し、被抗 菌物に対して、所定の抗菌処理を安定して施せる抗菌性ガラスを効率的に得ること ができる。
[0016] また、本発明の抗菌性ガラスの製造方法を実施するにあたり、工程 (B)あるいはェ 程 (ΒΊにおいて、表面に凹部を備えた回転部材を用いて、平板状の抗菌性ガラス を成形することが好ましい。
すなわち、工程 )において、所定の回転部材を用いることにより、いわゆる薄肉部 を利用したチョコレートカットが可能であって、取り扱いや、面積や形状等の調整が容 易な抗菌性ガラスを効率的に得ることができる。
[0017] また、本発明の抗菌性ガラスの製造方法を実施するにあたり、工程 (A)及び (B)と の間、あるいは (ΑΊ及び (ΒΊとの間において、冷却装置を備えた基板上で、抗菌 性ガラスを冷却する工程をさらに含むことが好ましい。
すなわち、所定の冷却工程を含むことから、水を使用することなぐ溶融ガラスを十 分かつ均一に冷却し、次工程において、精度良く所定形状に成形することができる。 図面の簡単な説明
[0018] [図 l] (a)— (f)は、第 1実施形態の抗菌性ガラスの形状を説明するために供する図で ある。
[図 2]抗菌性ガラスの最大径 (tl)と残留率との関係を説明するために供する図である
[図 3]洗濯回数に伴う銀イオンの溶出量との関係を説明するために供する図である。
[図 4]第 1実施形態の抗菌性ガラスを適用した洗濯機を示す図である。
[図 5]抗菌性ガラスの形状について説明するために供する図である。
[図 6]抗菌性ガラスの被覆部材について説明するために供する図である(その 1)。
[図 7] (a)一 (c)は、抗菌性ガラスの被覆部材について説明するために供する図であ る(その 2)。
[図 8]抗菌性ガラスの形状および被覆部材について説明するために供する図である。
[図 9]抗菌性ガラスの使用方法について説明するために供する図である。
[図 10]被抗菌物の抗菌方法について説明するために供する図である。 [図 11]第 2実施形態の抗菌性ガラスの製造方法について説明するために供する図で ある(その 1)。
[図 12]第 2実施形態の抗菌性ガラスの製造方法について説明するために供する図で ある(その 2)
[図 13]第 3実施形態の抗菌性ガラスの製造方法について説明するために供する図で ある。(その 1)
[図 14]第 3実施形態の抗菌性ガラスの製造方法について説明するために供する図で ある。(その 2)
発明を実施するための最良の形態
[0019] 以下、本発明の抗菌性ガラス、抗菌性ガラスの製造方法、および抗菌性ガラスの使 用方法に関する実施の形態を、洗濯機用抗菌性ガラスを主として、具体的に説明す る。
[0020] [第 1の実施形態]
第 1の実施形態は、直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮す るための抗菌性ガラスであって、最大径 (tl)を 1一 50mmの範囲内の値とするととも に、銀イオンの溶出量を 0. 5— 100mg/ (g ' 24Hrs)の範囲内の値とした抗菌性ガ ラスである。
[0021] 1.抗菌性ガラス
(1)形状 1
抗菌性ガラスの形状は特に制限されるものではないが、図 1 (a)— (f)に示すように 、矩形状、多角形状、円状、楕円状、異形状、穴あき状等の平板状であることが好ま しい。
この理由は、抗菌性ガラスを、矩形状や穴あき状等の平板状とすることにより、所定 箇所に載置し、水と直接的に接触させた場合であっても、水圧によって押し流され、 所定箇所力 流出するのを効果的に防止することができるためである。また、抗菌性 ガラスが矩形状等であれば、製造時や使用時等に、凝集しにくいため、抗菌性ガラス の製造時における大きさや形状の制御や、使用する際の環境条件の制御について もより容易となるためである。 ただし、最大径 (tl)および銀イオンの溶出量の範囲を満足する限り、抗菌性ガラス を多面体、粒状、球状、楕円体、柱状、粉砕体等の任意の形状とすることができる。 (2)形状 2
また、抗菌性ガラスの最大径 (tl)を 1一 50mmの範囲内の値とすることを特徴とす る。ここで、抗菌性ガラスの最大径 (tl)とは、例えば、図 1 (a)—(e)に示すように、抗 菌性ガラスの形状において、任意の線を引いたときの最大長さを意味する。すなわち 、カゝかる抗菌性ガラスの最大径 (tl)は、抗菌性ガラスが、例えば平板状である場合 には、平面方向の最大径となり、粒状である場合には、粒の最大直径となる。
また、抗菌性ガラスの最大径 (tl)を制限する理由は、力かる最大径が lmm未満の 値となると、所定箇所に載置し、水と直接的に接触させた場合に、水圧によって押し 流され、所定箇所力 流出しやすくなつたり、長期間にわたって、所定濃度の銀ィォ ンを放出することが困難になったり、さらには、保管時に凝集しやすくなつたりする場 合があるためである。
一方、力かる最大径が 50mmを超えると、取り扱いが困難となったり、安定的に製 造することが困難になったりするためである。
したがって、抗菌性ガラスの形状が平板状等である場合、その最大径を 8— 30mm の範囲内の値とすることがより好ましぐ 15— 20mmの範囲内の値とすることがさらに 好ましい。また、抗菌性ガラスの形状が粒状等の場合には、製造の容易性を考慮し て、最大径を 3— 25mmの範囲内の値とすることがより好ましぐ 5— 10mmの範囲内 の値とすることがさらに好ましい。
また、カゝかる抗菌性ガラスが平板状である場合、抗菌性ガラスの厚さを 0. 1— 10m mの範囲内の値とすることが好ましい。
この理由は、力かる抗菌性ガラスの厚さが 0. 1mm未満の値となると、所定濃度の 銀イオンを放出することが困難になったり、取り扱いが困難となったり、さらには安定 的に製造することが困難になったりする場合があるためである。一方、かかる抗菌性 ガラスの厚さが 10mmを超えると、逆に取り扱いが困難となったり、安定的に製造した りすることが困難になったりするためである。
したがって、カゝかる抗菌性ガラスが平板状である場合、その厚さを 0. 5— 8mmの範 囲内の値とすることがより好ましぐ 1一 5mmの範囲内の値とすることがさらに好まし い。
なお、上述した抗菌性ガラスの最大径ゃ厚さは、例えば、光学顕微鏡写真やノギス を用いて容易に測定することができる。
(3)形状 3
次いで、抗菌性ガラスの形状に関して、図 2を参照しつつ、抗菌性ガラスの平面方 向の最大径 (tl)と、当該抗菌性ガラスの使用時における残留率との関係を詳細に説 明する。この図 2の横軸は、抗菌性ガラスの平面方向の最大径 (mm)を対数で示し、 縦軸は、各粒径の抗菌性ガラスを使用したときに、後述の実施例における抗菌性ガ ラスの残留率の測定方法に準じて測定される残留率 (%)を示して 、る。
力かる図 2から明らかなように、抗菌性ガラスの平面方向の最大径 (tl)が 5mm以 上の値であれば、その残留率は比較的高い値、すなわち、 50%以上の値を示し、長 期間の使用にも耐え得ることが理解される。
次いで、抗菌性ガラスの形状に関して、図 3を参照して、本発明に係る抗菌性ガラ ス(平面方向の最大径 15mm)と平均粒径が 20 μ mの抗菌性ガラス、それぞれを使 用した場合における、洗濯回数と、銀イオンの溶出量の変化について詳細に説明す る。すなわち、図 3の横軸は、図 4に示すような洗濯機 50を用いて、それぞれの抗菌 性ガラスを使用して洗濯した回数を示し、図 3の縦軸は、各回における水中への銀ィ オンの溶出量 (mg/ (g' 24Hrs) )を示している。また、図中、本発明の抗菌性ガラス についてのデータを実線 Aで示し、平均粒径が 20 μ mの抗菌性ガラスについてのデ ータを点線 Bで示す。
かかる図 3に示すように、本発明の抗菌性ガラス (洗濯機用抗菌性ガラス)は、平面 方向の最大径が所定の大きさであり水圧等で押し流されることがないために、残留量 が大幅に減少することがない。したがって、繰り返し使用したとしても、所望の溶出量 を維持できることが理解される。よって、本発明の抗菌性ガラスは、長期間の使用にも 耐免うることが理解される。
一方で、平均粒径が 20 mの抗菌性ガラスは、上述の図 2に示されるように、使用 する毎に抗菌性ガラスの残留量が減少していくために、洗濯回数が増加するに伴つ て、使用開始直後の銀イオンの溶出量と比較して、溶出量の値が大きく減少している 。したがって、所望の銀イオンの溶出量を確保するためには、頻繁に抗菌性ガラスを 補充することが必要であることが理解される。
[0024] (4)形状 4
また、抗菌性ガラスの形状に関して、図 5 (a)—(b)に示すように、抗菌性ガラスが全 体として平板状であって、当該抗菌性ガラスと同一成分力もなる薄肉部 12を介して、 複数のガラス片 10aが連結されて構成してあることが好ましい。
この理由は、大面積の抗菌性ガラスについて、使用する環境条件や水量、あるい は長期使用時間等を考慮して、いわゆるチョコレートカットすることにより、抗菌性ガラ スを任意の大きさに切断して使用することができるためである。すなわち、所定の薄 肉部を利用して、大面積の抗菌性ガラスを所定の大きさにカットして、銀イオンの溶 出量 (溶出速度)を容易に調整することができるためである。
また、所定の薄肉部を有していることから、そこを切断箇所として、使用場所の大き さや形状に合わせて、適当な抗菌性ガラスの大きさや形状とすることもできるためで ある。
[0025] (5)種類 1
また、抗菌性ガラスの種類に関して、以下の組成カゝらなるホウ酸系の抗菌性ガラス を使用することが好ましい。すなわち、原材料として、 B O
2 3と、 SiO
2と、 Ag O
2 と、アル カリ金属酸化物と、を含むとともに、全体量に対して、 B Oの
2 3 添加量を 30— 60重量
%、 SiOの添加量を 30— 60重量%、 Ag Oの添加量を 2— 5重量%、およびアル力
2 2
リ金属酸化物の添力卩量を 5— 10重量%の範囲内の値とすることが好ましい。
この理由は、このようなガラス組成力もなる抗菌性ガラスであれば、水と直接的に接 触して、迅速に所定量の銀イオンを放出することができるためである。また、このような ガラス組成カゝらなる抗菌性ガラスによれば、洗剤との反応性が乏しぐ洗剤を用いて 洗濯した被抗菌物に対して、所定の抗菌処理を安定して施すことができるためである
[0026] ここで、 B Oは、基本的に網目形成酸化物としての機能を果たすが、その他に、本
2 3
発明においては抗菌性ガラスの透明性改善機能や銀イオンの均一な放出性にも関 与する。
また、 SiOは、抗菌性ガラスにおける網目修飾酸ィ匕物としての機能を果たすととも
2
に、黄変を防止する機能を果たしている。
また、 Ag Oは、抗菌性ガラスにおける必須構成成分であり、ガラス成分が溶解して
2
、銀イオンを溶出させることにより、優れた抗菌性を長期間発現することができる。 また、アルカリ金属酸化物、例えば、 Na Oや K Oは、基本的に網目修飾酸化物と
2 2
しての機能を果たす一方、抗菌性ガラスの透明性改善機能や溶融温度の調整機能 につ!、ても発揮することができる。
なお、アルカリ土類金属酸ィ匕物、例えば、 MgOや CaOをさらに添加することにより、 網目修飾酸ィ匕物としての機能を果たせる一方、アルカリ金属酸ィ匕物と同様に、抗菌 性ガラスの透明性改善機能や溶融温度の調整機能についても発揮することができる さらに、 CeOや Al O等を別途添加することにより、電子線に対する変色性や透明
2 2 3
性、あるいは機械的強度を向上させることもできる。
[0027] (6)種類 2
また、抗菌性ガラスの種類に関して、以下の組成カゝらなるリン酸系抗菌ガラスを使 用することが好ましい。すなわち、原材料として、 P Oと、 Ag Oと、アルカリ金属酸ィ匕
2 5 2
物と、を含むとともに、全体量に対して、 P Oの添加量を 40— 70重量%、 Ag Oの添
2 5 2 加量を 2— 5重量%、およびアルカリ金属酸化物の添力卩量を 15— 35重量%の範囲 内の値とすることが好まし 、。
この理由は、このようなガラス組成力もなるリン酸系抗菌ガラスであれば、水と直接 的に接触して、迅速に所定量の銀イオンを放出することができるためである。また、こ のようなガラス組成力もなる抗菌性ガラスによれば、透明性に優れるとともに、平板状 にかかわらず、所定粒径の粒状であっても所定量の銀イオンを、所定時間内に放出 できる、使い勝手に優れるためである。さらには、このようなリン酸系抗菌ガラスであれ ば、製造時の溶融窯等に対する腐食性が少なぐ製造条件が緩和されたり、製造コ ストを低下したりするという、製造的かつ経済的な利点を得ることもできる。
[0028] ここで、 P Oは、基本的に網目形成酸化物としての機能を果たすが、その他に、本 発明においては抗菌性ガラスの透明性改善機能や銀イオンの均一な放出性にも関 与する。
また、 Ag Oは、抗菌性ガラスにおける必須構成成分であり、ガラス成分が溶解して
2
、銀イオンを溶出させることにより、優れた抗菌性を長期間発現することができる。 また、アルカリ金属酸化物、例えば、 Na Oや K Oは、基本的に網目修飾酸化物と
2 2
しての機能を果たす一方、抗菌性ガラスの透明性改善機能や溶融温度の調整機能 につ!、ても発揮することができる。
なお、アルカリ土類金属酸ィ匕物、例えば、 MgOや CaOをさらに添加することにより、 網目修飾酸ィ匕物としての機能を果たせる一方、アルカリ金属酸ィ匕物と同様に、抗菌 性ガラスの透明性改善機能や溶融温度の調整機能についても発揮することができる さらに、 CeOや Al O等を別途添加することにより、電子線に対する変色性や透明
2 2 3
性、あるいは機械的強度を向上させることもできる。
[0029] (7)銀イオン溶出量
抗菌性ガラスにおける銀イオンの溶出量を 0. 5— 1 OOmgZ (g · 24Hrs)の範囲内 の値とすることを特徴とする。
この理由は、力かる銀イオンの溶出量が 0. 5mg/ (g' 24Hrs)未満の値となると、 水と直接的に接触させた場合に、迅速に所定濃度の銀イオンを放出することが困難 になる場合があるためである。
一方、力かる銀イオンの溶出量が 100mgZ (g' 24Hrs)を超えると、長期間にわた つて所定濃度の銀イオンを放出することが困難になったり、取り扱いが困難となったり 、あるいは安定的に製造することが困難になったりするためである。
したがって、抗菌性ガラスにおける銀イオンの溶出量を 1一 90mgZ (g' 24Hrs)の 範囲内の値とすることがより好ましぐ 10— 70mgZ (g' 24Hrs)の範囲内の値とする ことがさらに好ましい。
なお、抗菌性ガラスにおける銀イオンの溶出量は、後述する実施例 1に記載の測定 方法に準じて、測定することができる。
[0030] 2.被覆部材または添加剤 (1)錯体形成化合物
銀イオンと錯体を形成することが可能な錯体形成化合物、例えば、硫酸アンモ-ゥ ム、硝酸アンモ-ゥム、塩ィ匕アンモ-ゥム、チォ硫酸ナトリウム、硫ィ匕アンモ-ゥム、ェ チレンジァミン四酢酸(EDTA)、酢酸アンモ-ゥム、過塩素酸アンモ-ゥム、およびリ ン酸アンモ-ゥム等の一種単独または二種以上の組合せを添加することが好ましい この理由は、このような錯体形成化合物を添加することにより、抗菌性ガラスの変色 や、着色を著しく防止することができるためである。
なお、雰囲気が強アルカリ、例えば pH値が 10以上であっても、銀イオンと容易に錯 体を形成して、着色防止することができることから、錯体形成化合物として、硫酸アン モ-ゥム、硝酸アンモ-ゥム、塩ィ匕アンモ-ゥム、およびチォ硫酸ナトリウム力もなる 群力も選択される少なくとも一つの化合物を使用することがより好ましい。
[0031] また、錯体形成化合物の添加量を、全体量に対して、 0. 01— 30重量%の範囲内 の値とするのが好ましい。
この理由は、力かる錯体形成化合物の添加量が 0. 01重量%未満となると、変色を 有効に防止することが困難となる場合があるためである。一方、かかる錯体形成化合 物の添加量が 30重量%を超えると、抗菌性ガラスにおける抗菌性が低下したり、均 一に混合したりすることが困難となる場合があるためである。
したがって、力かる抗菌性ガラスにおける耐変色性と、抗菌性等とのバランスがより 好ましいことから、錯体形成化合物の添加量を、全体量に対して、 0. 1— 20重量% の範囲内の値とするのがより好ましぐ 0. 5— 10重量%の範囲内の値とすることがさ らに好ましい。
[0032] (2)被覆部材
また、図 6に示すように、被覆部材として、抗菌性ガラス 10の周囲に無機物および 有機物あるいは 、ずれか一方の粒子 14を被覆した形態とすることも好ま 、。
このように構成することにより、銀イオンの溶出速度の制御を容易にし、また、抗菌 性ガラスの凝集防止性を良好なものとすることができる。
また、抗菌性ガラスを被覆する粒子としては、酸化チタン、酸化ケィ素、コロイダル シリカ、酸化亜鉛、酸化スズ、酸化鉛、ホワイトカーボン、アクリル粒子、スチレン粒子 、ポリカーボネート粒子等の一種単独または二種以上の組合せが好まし 、。
さらに、抗菌性ガラスを粒子により被覆する方法も特に制限されるものでないが、例 えば、抗菌性ガラスと、粒子とを均一に混合後、 600— 1200°Cの温度で加熱してガ ラスに融着させる力、あるいは、結合剤を介して、固定することが好ましい。
[0033] また、抗菌性ガラスの周囲に対して、被覆部材としての包装部材を備えたり、筐体を 備えたりして、カートリッジィ匕することが好ましい。
この理由は、このような被覆部材を設けることにより、保存時において、取り扱いが 容易になったり、抗菌性ガラスの凝集化を防止したりすることができるためである。ま た、使用時においては、使用性が向上するとともに、比較的強い水流を用いた場合 であっても、所定場所力も流出を防止したりすることができるためである。さらに、カー トリッジィ匕してあることから、取り扱 、や交換等にっ 、ても容易に実施することができる ためである。
例えば、図 7 (a)に示すように、アルミニウム積層フィルム 16等の防湿材料を用いて 、複数の抗菌性ガラス 10aをパッケージしたり、図 7 (b)に示すように、小分けした状 態で、パッケージしたり、さらに、図 7 (c)に示すように、穴開き部材 (メッシュ部材) 18 で周囲を覆うことが好ましい。
また、抗菌性ガラスの形状として粒状や球状を用いる場合は、図 8 (a)に示すよう〖こ 、両端面を粒径より小さいメッシュ部材で被覆した円筒形筐体 18 '内に抗菌性ガラス 10を封入し、図 8 (b)に示すように、これらを連結してカートリッジィ匕することが好まし い。このような構成とすることで、被覆部材で覆うことが困難な形状である粒状や球状 であったとしても、抗菌性ガラス間の接触による凝集化を最小限に抑えることが可能 となる。また、このような構成とすることで、 Ag溶出量の調整が極めて容易となる。 なお、粒状の抗菌性ガラスは、特に、リン酸系ガラスを原料として構成することにより 、溶解速度の遅さを、ガラス表面積を拡大することで補い、所望の Ag溶出量を得るこ とが可能となる。
[0034] (3)表面処理
また、抗菌性ガラスに対して、酸化防止、あるいは着色化等の目的のために、分散 剤としての界面活性剤、ステアリン酸、ミリスチン酸、ステアリン酸ナトリウム、またはシ ランカップリング剤等、酸ィ匕防止剤としてのヒンダードフエノールイ匕合物ゃヒンダード ァミン化合物等、着色剤としての顔料や染料等を添加することが好まし 、。
なお、これらの添加剤の添加量は、添加効果等を考慮して定めることが好ましいが
、例えば、それぞれ、全体量に対して、 0. 01— 30重量%の範囲内の値とするのがよ り好ましい。
[0035] 3.使用例
本発明の抗菌性ガラスを使用するにあたって、下記工程 (C)一 (D)を含むことが好 ましい。
(C)抗菌性ガラスと、水とを、直接的に接触させて、銀イオン含有水を作成する工程( 接触工程と称する場合がある。 )
(D)銀イオン含有水により被抗菌物を処理して、抗菌処理を施す工程 (抗菌工程と称 する場合がある。 )
なお、以下、図 4に示す洗濯機 50に用いた場合を想定して、かかる抗菌性ガラス( 洗濯機用抗菌性ガラス)の使用方法を具体的に説明する。
[0036] (1)接触工程
抗菌性ガラスと、水との直接的な接触方法は特に制限されるものではないが、例え ば、抗菌性ガラスを水中へ浸漬させたり、抗菌性ガラスを水流中へ投入したりすること により抗菌性ガラスと、水とを直接的に接触させて、銀イオン含有水を作成することが 好ましい。
その際、例えば、抗菌性ガラスを洗濯機において使用する場合には、図 9に示すよ うに、バイパス 26を設けてそこに洗濯機用抗菌性ガラス 10を載置しておき、必要なと きにバイパス 26に通じるバルブ 28を開閉して、水を流入させて、洗濯機用抗菌性ガ ラス 10と直接的に接触させて、銀イオン含有水を得ることが好ましい。
この理由は、例えば、洗濯の最終段階でのみ銀イオン含有水を使用することにより 、銀イオンを無駄に流してしまうことがなぐすなわち、被洗浄物に対して抗菌処理を 施すに際して、洗濯機用抗菌性ガラスの使用量を効率的に制限することができるた めである。 [0037] (2)抗菌工程
また、図 10に示すように、銀イオン含有水 30をシャワリングしたり、直接浸漬したり することにより被抗菌物 32を処理して、抗菌処理を施すことが好ま 、。
なお、被抗菌物の代表例としては、織物、繊維物、不織布、マット状物、衣服、タォ ル類、履物等が挙げられる。
[0038] [第 2の実施形態]
第 2の実施形態は、被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌 処理を施すための抗菌性ガラスの製造方法であって、下記工程 (A)一 (B)を含むこ とを特徴とする抗菌性ガラスの製造方法である。
(A)原材料として、 B Oと、 SiOと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融さ
2 3 2 2
せて、溶融ガラスを作成する溶融工程 (以下、溶融工程と称する場合がある。 )
(B)溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶出 量が 0. 5— 100mgZ (g' 24Hrs)の抗菌性ガラスとする成形工程 (以下、成形工程 と称する場合がある。 )
[0039] 1.溶融工程
原材料として、 B Oと、 SiOと、 Ag Oと、アルカリ金属酸化物と、を使用するととも
2 3 2 2
に、全体量に対して、 B Oの添加量を 30 60重量%、 SiOの添加量を 30 60重
2 3 2
量%、 Ag Oの添加量を 2 5重量%、およびアルカリ金属酸化物の添力卩量を 5 10
2
重量%の範囲内の値となるように、万能混合機を用いて、回転数 250rpm、 30分の 条件で、均一に混合されるまで攪拌した。次いで、溶融炉を用いて、一例として、 12 80°C、 3時間半の条件でガラス原料を加熱して、ガラス融液を作成した。
なお、原材料の種類や配合比率に応じて、溶融炉における加熱条件については、 適宜変更することができる。
[0040] 2.成形工程
成形工程は、ガラス原料を溶融して得た溶融ガラスを、所定形状の抗菌性ガラスと する工程である。
具体的には、図 11 (a)—(b)に示すように、所定の回転部材 20a、 20bを用いて製 造することにより、いわゆる薄肉部を利用したチョコレートカットが可能であって、取り 扱いや、面積や平板形状の調整が容易な抗菌性ガラス 10を効率的に得ることができ る。
すなわち、上方力も溶融ガラス 22を、一対の回転部材 20a、 20bの間に自然落下さ せるとともに、回転部材 20aの表面に設けた凹部 24を利用して、所定の抗菌性ガラス 10を成形することができる。また、一対の回転部材 20a、 20bの中心部には、冷却パ イブ(図示せず。)が備えてあり、回転部材 20a、 20bの表面温度を制御できるように 構成してあることが好ましい。さらに、抗菌性ガラスは、薄肉部を介して、短冊状に成 形してあるためが所定温度を維持しているため、さらに冷却するためには、抗菌性ガ ラスの表面に冷却風を吹きつけることが好ま 、。
なお、図 11 (a)—(b)に示す成形装置は、一対の回転部材 20a、 20bを備えている 力 変形例として、図 12に示すように、一方の回転部材 20bのかわりに、平坦な壁部 材 20cを用いても、実質的に同様の形状であって、薄型平板状の抗菌性ガラス 10を 得ることちでさる。
[0041] [第 3の実施形態]
第 3の実施形態は、被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌 処理を施すための抗菌性ガラスの製造方法であって、下記工程 (Α')一 (Β')を含む ことを特徴とする抗菌性ガラスの製造方法である。
(ΑΊ原材料として、 Ρ Οと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融させて、溶
2 5 2
融ガラスを作成する溶融工程 (以下、溶融工程と称する場合がある。 )
(ΒΊ溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶 出量が 0. 5— 100mgZ (g' 24Hrs)の抗菌性ガラスとする成形工程 (以下、成形ェ 程と称する場合がある。 )
[0042] 1.溶融工程
原材料として、 P Oと、 Ag Oと、アルカリ金属酸化物と、を使用するとともに、全体
2 5 2
量に対して、 P Oの添加量を 30 60重量%、 Ag Oの添加量を 2 5重量%、およ
2 5 2
びアルカリ金属酸ィ匕物の添力卩量を 5— 40重量%の範囲内の値となるように、万能混 合機を用いて、回転数 250rpm、 30分の条件で、均一に混合されるまで攪拌した。 次いで、溶融炉を用いて、一例として、 1280°C、 3時間半の条件でガラス原料をカロ 熱して、ガラス融液を作成した。
なお、原材料の種類や配合比率に応じて、溶融炉における加熱条件については、 適宜変更することができる。
[0043] 2.成形工程 1
成形工程 1は、ガラス材料を溶融して得た溶融ガラスを、所定形状の抗菌性ガラス とする工程であり、特に、溶融ガラスを完全に硬化する前の半固体状態に維持したま ま、板状ガラスとする工程である。
具体的には、図 13 (a)に示すように、所定の成形容器 60内に、上述した方法により 融解させた溶融ガラス 22を流入して、半固体状ガラス板 22'を成形することができる このとき、成形容器 60の材質としては、抗菌性ガラス 10よりも融点の高い材料であ れば特に限定されるものではないが、鉄、ステンレス、カーボン等の高融点材料ゃ耐 熱性材料を用いることが好ましい。特に、カーボン等の耐熱性材料は、成形容器 60 の軽量化、精密化にも対応しやす 、点で好適な構成材料である。
また、成形容器 60の裏面には、所望により、図 13 (a)に示すように、冷却装置 61を 取り付けることにより、成形容器 60の温度を最適値に調整し、所望のガラス状態を有 する半固体状態を作り出すことができる。
なお、これらの方法を実施することにより、図 13 (b)に示すような半固体状の板状ガ ラス 22,とすることができる。
[0044] 2.成形工程 2
成形工程 2は、成形工程 1にて成形した半固体状ガラス板 22'を、所定の厚さのガ ラス板に成形するための工程である。
具体的には、図 14 (a)に示すように、間隔 dlで配置した回転部材 2CTの間隙に、 半固体状ガラス板 22,を挿入する。このとき、間隔 dlを、半固体状ガラス板 22,の厚 さ d2よりも大きく設定しておくことにより、図 14 (b)に示すように、間隔 dlの抗菌性ガ ラス 10を成形することができる。
[0045] 3.破砕工程
破砕工程は、抗菌性ガラス 10を所定の方法により破砕することで、粒状、球状、粉 砕体状等の形状に成形する工程である。
具体的には、ハンマー等の破砕治具を用いて、ある程度の大きさまで破砕した後、 ボールミリング法等を用いて破砕処理を行う。このとき、ミリングボール径、処理時間 等の条件を適宜変更することにより、上述したような、所望の形状を得ることができる。 実施例
[0046] 以下、本発明を実施例によってさらに詳細に説明する。但し、以下の説明は本発明 を例示的に示すものであり、本発明はこれらの記載に制限されるものではない。
[0047] [実施例 1]
1.抗菌性樹脂組成物の作成
(1)溶融工程
全体量を 100重量%としたときに、 B Oの組成比が 52重量%、 SiOの組成比が 3
2 3 2
6重量%、 Na Oの糸且成比が 9重量%、 Ag Oの糸且成比が 3重量%となるように、それ
2 2
ぞれのガラス原料を、万能混合機を用いて、回転数 250rpm、 30分の条件で、均一 に混合するまで攪拌した。次いで、ガラス溶融炉を用いて、 1280°C、 3時間半の条 件でガラス原料を加熱して、溶融ガラスを作成した。
[0048] (2)成形工程
ガラス溶融炉カも取り出した溶融ガラスを、図 11 (a)に示す製造装置 40の挿入口 4
2に導入し、連続的にチョコレートカット可能な平板状の洗濯機用抗菌性ガラス (矩形 状小片、最大径 (tl): 15mm,厚さ(t2): 3mm)とした。
[0049] 2.洗濯機用抗菌性ガラスの評価
(1)銀イオン溶出性評価
得られた洗濯機用抗菌性ガラス 10gを、 100mlの蒸留水(20°C)中に浸漬し、振と う機を用いて 24時間振とうした。遠心分離器を用いて銀イオン溶出液を分離後、さら にろ紙(5C)でろ過して、測定試料とした。次いで、測定試料中の銀イオンを、 ICP発 光分光分析法により測定し、洗濯機用抗菌性ガラスにおける銀イオン溶出量 (mgZ
(g' 24Hrs) )を算出した。
[0050] (2)流出性評価
厚さ lmm、面積 20cm X 20cmのステンレス板の表面に、深さ 0. 5mm、面積 5cm X 5cmの凹部を設けておき、そこに lOOg (W1)の洗濯機用抗菌性ガラスを充填した 状態で、流量が 1リットル Z分の水道水を横方向から吹きつけた。その状態を 1分間 続けた後、ステンレス板の上に、残っている洗濯機用抗菌性ガラスの重量 (W2)を測 定し、洗濯機用抗菌性ガラスの残留率((W1— W2) ZW1 X 100)を算出した。そし て、算出した残留率から、以下の基準により、洗濯機用抗菌性ガラスの流出性を評価 した。
◎:残留率は 90— 100重量%である。
〇:残留率は 70— 90重量%未満である。
△:残留率は 30— 70重量%未満である。
X:残留率は 30重量%未満である。
[0051] (3)抗菌性評価
図 4に示す洗濯機を用いて、得られた洗濯機用抗菌性ガラスによる木綿製下着に 対する抗菌性評価を実施した。すなわち、図 4に示す洗濯機を用い、洗剤入りの水 道水により、木綿製下着を洗濯した。
洗濯終了後、図 9に示すように、洗濯機用抗菌性ガラス 10を載置したバイパス 26に 通じるバルブ 28を開閉して、水を流入させて、洗濯機用抗菌性ガラス 10と水とを直 接的に接触させて、銀イオン含有水を作成した。
次いで、図 10に示すように、銀イオン含有水 30をシャワリングすることにより、被抗 菌物としての木綿製下着 32に対して、抗菌処理を施した。
このようにして得られた木綿製下着 32を、 35°C、 95%Rh、 48時間の環境条件に 放置し、以下の条件で抗菌性を評価した。
◎:臭 、や黒ずみの発生が全く観察されな 、。
〇:臭 、や黒ずみの発生がほとんど観察されな 、。
△:臭 、や黒ずみの発生が一部観察される。
X:顕著な臭いや黒ずみの発生が観察される。
[0052] [実施例 2— 5]
実施例 2— 5では、表 1に示すように実施例 1で使用した B Oおよび SiOの組成比
2 3 2 を変えたほかは、実施例 1と同様に、それぞれ洗濯機用抗菌性ガラスを作成して、評 価した。
[0053] [比較例 1一 3]
比較例 1では、実施例 1において得られた洗濯機用抗菌性ガラスを、粉砕装置およ び分級装置を用いて、平均粒径が 20 mの粒状粒子に調整したほかは、実施例 1と 同様に評価した。
また、比較例 2では、実施例 1において得られた洗濯機用抗菌性ガラスを、粉砕装 置および分級装置を用いて、長径が 200 m、厚さ 30 mの鱗片状粒子に調整し たほかは、実施例 1と同様に評価した。
さらに、比較例 3では、比較例 1で得られた平均粒径が 20 mの洗濯機用抗菌性 ガラスをポリプロピレン榭脂中に、 10重量%の濃度になるように添加して、洗濯機用 抗菌性ガラス入り榭脂プレートを作成して、銀イオン溶出性評価および抗菌性評価を 実施した。
[0054] [表 1]
Figure imgf000024_0001
[0055] [実施例 6]
1.洗濯機用抗菌性ガラスの作成
(1)溶融工程
全体量を 100重量%としたときに、 P Oの組成比が 70重量%、 Na Oの組成比が 1 8重量%、 CaOの組成比が 9重量%、 Ag Oの組成比が 3重量%となるように、それぞ
2
れのガラス原料を、万能混合機を用いて、回転数 250rpm、 30分の条件で、均一に 混合するまで攪拌した。次いで、ガラス溶融炉を用いて、 1280°C、 3時間半の条件 でガラス原料を加熱して、溶融ガラスを作成した。
[0056] (2)成形工程
ガラス溶融炉カゝら取り出した溶融ガラスを、図 13 (a)に示す成形容器 60内に流入さ せ、半固体状ガラス板とした後、図 13 (b)に示す成形装置および粉砕工程を実施す ることにより、粒状の洗濯機用抗菌性ガラス (最大径 (tl) : 5mm、最小径 (t2) : 1mm )とした。
[0057] 2.洗濯機用抗菌性ガラスの評価
実施例 6では、実施例 1と同様に、(1)銀イオン溶出性評価、(2)流出性評価、及び (3)抗菌性評価を実施した。
さらに、 10gの洗濯機用抗菌性ガラスを 1リットルの純水に、 25°C、 8時間の条件で 浸漬させた後、水中から洗濯機用抗菌性ガラスを取り出して重量 (W3)を計り、その 重量減少率((10-W3) Z10 X 100)を算出して、持続性評価とした。
◎:重量減少率は 10%未満である。
〇:重量減少率は 10— 20%未満である。
△:重量減少率は 20— 50%未満である。
X:重量減少率は 50%以上である。
[0058] [実施例 7— 9、比較例 4一 6]
実施例 7— 9、比較例 4一 6では、表 2に示すように実施例 6で使用した P O
2 3、 CaO および Na Oの組成比を変えたほかは、実施例 6と同様に、それぞれ洗濯機用抗菌
2
性ガラスを作成して、評価した。
[表 2] 実施例 6 実施例 7 実施例 8 実施例 9 比較例 4 比較例 5 比較例 6
PA 70 64. 5 66. 5 68 72 60 71 ガ
Na20 18 22. 5 20. 5 20 15 27 24 ラ
CaO 9 10 10 9 10 10 2 組
成 Ag20 3 3 3 3 3 3 3 形状 ¾状 粒状 粒状 粒状 ¾L状 粒状 粒状 最大径 (t1 ) 5mm 5mm 5mm 5mm 5mm 5mm 5mm 樹脂 無し 無し 無し 無し 無し 無し 無し 溶出量 84 79 62 97 0. 3 282 406
(mg/g/24Hr)
流出性 O O O 〇 X ◎ ◎
抗菌性 ◎ ◎ ◎ ◎ X ◎ ◎
持続性 O O O 〇 ◎ X X
産業上の利用可能性
本発明の被抗菌物を銀イオンによって抗菌処理を施すための抗菌性ガラスによれ ば、平板状もしくは粒状等の形状において、最大径 (tl)が極めて大きいために、例 えば、被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌処理を施すため の水と直接接触させることにより、所定量の銀イオンを迅速かつ長期間にわたって放 出することができるようになった。また、本発明の抗菌性ガラスの製造方法によれば、 平板状もしくは粒状等の形状において、最大径 (tl)が極めて大きい抗菌性ガラスを 効率的に得ることができるようになった。
さらに、本発明の抗菌性ガラスの使用方法によれば、平板状もしくは粒状であって 、最大径 (tl)が極めて大きい抗菌性ガラスと、水とを、直接的に接触させて得られた 銀イオン含有水により被抗菌物を処理することにより、例えば、洗濯中の被抗菌物に 対しても、所定の抗菌効果を発揮することができる。
なお、本発明の抗菌性ガラスによれば、このように洗濯機用抗菌性ガラスとしてば 力りでなぐ水と直接的に接触した際に、所定量の銀イオンを迅速かつ長期間にわた つて放出することが要求される用途、例えば、食器洗浄機、野菜洗浄機、浄水装置、 加湿装置、湿度供給装置、消毒液供給装置、消臭液供給装置等の用途に好適に使 用することができる。

Claims

請求の範囲
[1] 直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮するための抗菌性ガラ スであって、最大径 (tl)を 1一 50mmの範囲内の値とするとともに、銀イオンの溶出 量を 0. 5— lOOmg/ (g · 24Hrs)の範囲内の値とすることを特徴とする抗菌性ガラス
[2] 被抗菌物の洗濯中あるいは洗濯後に、銀イオンによって抗菌処理を施すための抗 菌性ガラスであることを特徴とする請求の範囲第 1項に記載の抗菌性ガラス。
[3] 原材料として、 B Oと、 SiOと、 Ag Oと、アルカリ金属酸化物と、を含むとともに、全
2 3 2 2
体量に対して、 B Oの添加量を 30 60重量%、 SiOの添加量を 30 60重量%、
2 3 2
Ag Oの添加量を 2 5重量%、およびアルカリ金属酸化物の添加量を 5 10重量
2
%の範囲内の値とすることを特徴とする請求の範囲第 1項又は第 2項に記載の抗菌 性ガラス。
[4] 原材料として、 P Oと、 Ag Oと、アルカリ金属酸化物と、を含むとともに、全体量に
2 5 2
対して、 P Oの添加量を 40 70重量%、 Ag Oの添加量を 2 5重量%、およびァ
2 5 2
ルカリ金属酸ィ匕物の添力卩量を 15— 35重量%の範囲内の値とすることを特徴とする請 求の範囲第 1項又は第 2項に記載の抗菌性ガラス。
[5] 前記抗菌性ガラスが全体として平板状であって、当該抗菌性ガラスと同一成分から なる薄肉部を介して、複数のガラス片が連結されて構成してあることを特徴とする請 求の範囲第 1項一第 4項に記載の洗濯機用抗菌性ガラス。
[6] 周囲に被覆部材を備え、カートリッジィ匕してあることを特徴とする請求の範囲第 1項 一第 5項のいずれか一項に記載の洗濯機用抗菌性ガラス。
[7] 直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮するための抗菌性ガラ スの製造方法であって、下記工程 (A)一 (B)を含むことを特徴とする抗菌性ガラスの 製造方法。
(A)原材料として、 B Oと、 SiOと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融さ
2 3 2 2
せて、溶融ガラスを作成する溶融工程
(B)溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶出 量が 0. 5— lOOmgZ (g · 24Hrs)である所定形状を有する抗菌性ガラスとする成形 工程
[8] 直接的に水と接触して、銀イオンを放出し、抗菌効果を発揮するための抗菌性ガラ スの製造方法であって、下記工程 (Α')一 (Β')を含むことを特徴とする抗菌性ガラス の製造方法である。
(ΑΊ原材料として、 Ρ Οと、 Ag Oと、アルカリ金属酸化物と、を加熱溶融させて、溶
2 5 2
融ガラスを作成する溶融工程
(ΒΊ溶融ガラスを冷却しながら、最大径 (tl)が 1一 50mmであって、銀イオンの溶 出量が 0. 5— lOOmgZ (g · 24Hrs)である所定形状を有する抗菌性ガラスとする成 形工程
[9] 前記工程 (B)あるいは (ΒΊにおいて、表面に凹部を備えた回転部材を用いて、平 板状の抗菌性ガラスを成形することを特徴とする請求の範囲第 7項又は第 8項に記 載の抗菌性ガラスの製造方法。
[10] 前記工程 (A)及び (B)との間、あるいは (ΑΊ及び (ΒΊとの間において、冷却装置 を備えた基板上で、抗菌性ガラスを冷却する工程をさらに含むことを特徴とする請求 の範囲第 7項一第 9項のいずれか一項に記載の抗菌性ガラスの製造方法。
PCT/JP2005/004292 2004-03-15 2005-03-11 抗菌性ガラスおよび抗菌性ガラスの製造方法 WO2005087675A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510991A JP5378647B2 (ja) 2004-03-15 2005-03-11 抗菌性ガラスおよび抗菌性ガラスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-072776 2004-03-15
JP2004072776 2004-03-15

Publications (1)

Publication Number Publication Date
WO2005087675A1 true WO2005087675A1 (ja) 2005-09-22

Family

ID=34975490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004292 WO2005087675A1 (ja) 2004-03-15 2005-03-11 抗菌性ガラスおよび抗菌性ガラスの製造方法

Country Status (4)

Country Link
JP (2) JP5378647B2 (ja)
KR (1) KR100657123B1 (ja)
CN (2) CN101298364B (ja)
WO (1) WO2005087675A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108245A1 (ja) * 2006-03-17 2007-09-27 Koa Glass Co., Ltd. 抗菌性ガラスおよび抗菌性ガラスの製造方法
WO2007141978A1 (ja) * 2006-06-07 2007-12-13 Koa Glass Co., Ltd. 混合抗菌性ガラス
JP2008214131A (ja) * 2007-03-05 2008-09-18 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP2009268851A (ja) * 2008-05-12 2009-11-19 Panasonic Corp 洗濯機の銀イオン溶出装置
WO2010058653A1 (ja) 2008-11-19 2010-05-27 浜松ホトニクス株式会社 ファイバオプティックプレート及びその製造方法
JP2010119632A (ja) * 2008-11-20 2010-06-03 Panasonic Corp 洗濯機の銀イオン溶出装置
CN101624261B (zh) * 2008-07-11 2011-07-20 陈建仁 玻璃制品的制造方法
JP2012007870A (ja) * 2010-05-27 2012-01-12 Koa Glass Kk 空調施設用混合抗菌性ガラス
KR20120051003A (ko) 2009-07-16 2012-05-21 도아고세이가부시키가이샤 수처리용 입상 항균제
JP2012214381A (ja) * 2012-07-19 2012-11-08 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
KR20130024899A (ko) 2010-04-02 2013-03-08 도아고세이가부시키가이샤 용해성 유리질 항균제 및 수처리제
JP2013155114A (ja) * 2004-03-15 2013-08-15 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP3198214U (ja) * 2015-04-10 2015-06-18 東和通商株式会社 水処理用抗菌剤入り袋体
EP2987775A4 (en) * 2013-07-02 2016-11-16 Koa Glass Co Ltd ANTIBACTERIAL GLASS
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
CZ308908B6 (cs) * 2020-12-01 2021-08-18 Univerzita Tomáše Bati ve Zlíně Ekologická skleněná matrice s obsahem účinných antibakteriálních iontů

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579410B2 (ja) * 2009-08-26 2014-08-27 株式会社オハラ ガラス成型体の製造装置および製造方法
JP2012056785A (ja) * 2010-09-08 2012-03-22 Takara Standard Co Ltd ガラス粒の製造方法及び装置
CN114685045A (zh) * 2020-12-31 2022-07-01 无锡小天鹅电器有限公司 可溶性杀菌玻璃和可溶性杀菌玻璃的制备方法
KR102582713B1 (ko) * 2021-03-16 2023-09-25 엘지전자 주식회사 항균성 복합 유리 조성물 및 이를 적용한 가전기기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213632A (ja) * 1983-05-20 1984-12-03 Nippon Sheet Glass Co Ltd 型板ガラス及び型板ガラス成形用ロ−ル
JPH0725635A (ja) * 1993-07-09 1995-01-27 Nippon Glass Fiber Co Ltd 抗菌性を有するフレーク状ガラス
JPH07252677A (ja) * 1994-03-16 1995-10-03 Ishizuka Glass Co Ltd 防錆効果を有する多孔質体とその製造方法及び水溶性防錆剤
JPH10194756A (ja) * 1997-01-14 1998-07-28 Hoya Corp 肉薄板状ガラスの製造方法
JP2002025574A (ja) * 2000-07-11 2002-01-25 Aisin Takaoka Ltd 固体高分子型燃料電池セパレータ
JP7063701B2 (ja) * 2018-04-20 2022-05-09 株式会社三共 遊技機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011054Y2 (ja) * 1981-07-28 1985-04-13 東芝硝子株式会社 リボンマシンのフィ−ドロ−ラ
JPS62210098A (ja) * 1986-03-07 1987-09-16 Kyoritsu Glass Kk ガラス水処理剤
JPH0647625B2 (ja) * 1988-06-13 1994-06-22 近畿パイプ技研株式会社 合成樹脂成形体
JPH01317133A (ja) * 1988-06-15 1989-12-21 Mitsubishi Rayon Eng Co Ltd ガラス水処理剤
JPH02251293A (ja) * 1989-03-23 1990-10-09 Kinki Pipe Giken Kk 薬湯の保存処理方法
JPH0714825B2 (ja) * 1989-11-01 1995-02-22 ユー・エイチ・アイ システムズ株式会社 抗菌・殺菌用ガラス
JPH0763701B2 (ja) * 1991-03-13 1995-07-12 石塚硝子株式会社 硝子水処理材
JPH08245237A (ja) * 1995-03-09 1996-09-24 Nippon Sheet Glass Co Ltd 抗菌性ガラス用組成物
US6509057B2 (en) * 1998-04-01 2003-01-21 Sumitomo Osaka Cement, Co., Ltd. Antibacterial, antifungal or antialgal article and process for producing same
CN1202034C (zh) * 2000-09-29 2005-05-18 兴亚硝子株式会社 抗菌性玻璃及其制造方法
JP2002255574A (ja) * 2001-02-23 2002-09-11 Canon Inc ガラス光学素子のプレス成形方法
JP2006520311A (ja) * 2003-02-25 2006-09-07 ショット アクチエンゲゼルシャフト 抗微生物作用ホウケイ酸ガラス
KR100657123B1 (ko) * 2004-03-15 2006-12-13 코아 가라스 가부시키가이샤 항균성 유리 및 항균성 유리의 제조방법
JP5043393B2 (ja) * 2006-09-29 2012-10-10 興亜硝子株式会社 収容容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213632A (ja) * 1983-05-20 1984-12-03 Nippon Sheet Glass Co Ltd 型板ガラス及び型板ガラス成形用ロ−ル
JPH0725635A (ja) * 1993-07-09 1995-01-27 Nippon Glass Fiber Co Ltd 抗菌性を有するフレーク状ガラス
JPH07252677A (ja) * 1994-03-16 1995-10-03 Ishizuka Glass Co Ltd 防錆効果を有する多孔質体とその製造方法及び水溶性防錆剤
JPH10194756A (ja) * 1997-01-14 1998-07-28 Hoya Corp 肉薄板状ガラスの製造方法
JP2002025574A (ja) * 2000-07-11 2002-01-25 Aisin Takaoka Ltd 固体高分子型燃料電池セパレータ
JP7063701B2 (ja) * 2018-04-20 2022-05-09 株式会社三共 遊技機

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155114A (ja) * 2004-03-15 2013-08-15 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
WO2007108245A1 (ja) * 2006-03-17 2007-09-27 Koa Glass Co., Ltd. 抗菌性ガラスおよび抗菌性ガラスの製造方法
US8034732B2 (en) 2006-03-17 2011-10-11 Koa Glass Co., Ltd. Antimicrobial glass and method of producing antimicrobial glass
WO2007141978A1 (ja) * 2006-06-07 2007-12-13 Koa Glass Co., Ltd. 混合抗菌性ガラス
JP5114396B2 (ja) * 2006-06-07 2013-01-09 興亜硝子株式会社 混合抗菌性ガラス
JP2008214131A (ja) * 2007-03-05 2008-09-18 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP4530076B2 (ja) * 2008-05-12 2010-08-25 パナソニック株式会社 洗濯機
JP2009268851A (ja) * 2008-05-12 2009-11-19 Panasonic Corp 洗濯機の銀イオン溶出装置
CN101624261B (zh) * 2008-07-11 2011-07-20 陈建仁 玻璃制品的制造方法
KR20110086546A (ko) 2008-11-19 2011-07-28 하마마츠 포토닉스 가부시키가이샤 파이버 옵틱 플레이트 및 그 제조 방법
JP2010122436A (ja) * 2008-11-19 2010-06-03 Hamamatsu Photonics Kk ファイバオプティックプレート及びその製造方法
US10802211B2 (en) 2008-11-19 2020-10-13 Hamamatsu Photonics, K.K. Fiber optic plate and method for producing the same
US10209441B2 (en) 2008-11-19 2019-02-19 Hamamatsu Photonics K.K. Fiber optic plate and method for producing the same
WO2010058653A1 (ja) 2008-11-19 2010-05-27 浜松ホトニクス株式会社 ファイバオプティックプレート及びその製造方法
JP2010119632A (ja) * 2008-11-20 2010-06-03 Panasonic Corp 洗濯機の銀イオン溶出装置
KR20120051003A (ko) 2009-07-16 2012-05-21 도아고세이가부시키가이샤 수처리용 입상 항균제
US8470374B2 (en) 2009-07-16 2013-06-25 Toagosei Co., Ltd. Granular antimicrobial agent for water processing
KR20130024899A (ko) 2010-04-02 2013-03-08 도아고세이가부시키가이샤 용해성 유리질 항균제 및 수처리제
US9017708B2 (en) 2010-05-27 2015-04-28 Koa Glass Co., Ltd. Mixed antibacterial glass
JP2012007870A (ja) * 2010-05-27 2012-01-12 Koa Glass Kk 空調施設用混合抗菌性ガラス
JP2012214381A (ja) * 2012-07-19 2012-11-08 Koa Glass Kk 抗菌性ガラスおよび抗菌性ガラスの製造方法
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10676394B2 (en) 2013-06-17 2020-06-09 Corning Incorporated Antimicrobial glass articles and methods of making and using same
EP2987775A4 (en) * 2013-07-02 2016-11-16 Koa Glass Co Ltd ANTIBACTERIAL GLASS
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10710928B2 (en) 2014-02-13 2020-07-14 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
JP3198214U (ja) * 2015-04-10 2015-06-18 東和通商株式会社 水処理用抗菌剤入り袋体
CZ308908B6 (cs) * 2020-12-01 2021-08-18 Univerzita Tomáše Bati ve Zlíně Ekologická skleněná matrice s obsahem účinných antibakteriálních iontů

Also Published As

Publication number Publication date
KR100657123B1 (ko) 2006-12-13
JP5378647B2 (ja) 2013-12-25
JPWO2005087675A1 (ja) 2008-01-24
KR20060012326A (ko) 2006-02-07
JP2013155114A (ja) 2013-08-15
CN101298364B (zh) 2011-02-16
CN101298364A (zh) 2008-11-05
JP5845209B2 (ja) 2016-01-20
CN100413799C (zh) 2008-08-27
CN1771207A (zh) 2006-05-10

Similar Documents

Publication Publication Date Title
WO2005087675A1 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
US8034732B2 (en) Antimicrobial glass and method of producing antimicrobial glass
KR101024417B1 (ko) 혼합 항균성 유리
JP3622752B2 (ja) 抗菌性ガラスおよびその製造方法
KR101869108B1 (ko) 용해성 유리질 항균제 및 수처리제
KR102549161B1 (ko) 항균 유리 분말 및 항균 유리 분말 제조 방법
JP2001247336A (ja) 抗菌性付与用ガラス組成物、及びそれを用いた抗菌性高分子複合材料、抗菌性高分子複合材料成形体
JP5085803B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP2000191339A (ja) 溶解性ガラス、抗菌性樹脂組成物、および抗菌性成形品
JP5069482B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
KR20210078590A (ko) 항균 유리 조성물 및 그 항균 유리 분말 제조 방법과, 이를 포함하는 가전제품
JP2001226139A (ja) 抗菌性ガラスおよびそれを含有する樹脂組成物
JP2001247726A (ja) 抗菌性付与用ガラス組成物、及び抗菌性高分子複合材料
JP2003054990A (ja) 抗菌性材料および抗菌性樹脂組成物
JP4764685B2 (ja) 抗菌剤、それを含む樹脂組成物及び成形材料
JP2003246645A (ja) 防黴性ガラス、防黴性樹脂組成物および防黴性ガラスの製造方法
JP5111906B2 (ja) 抗菌剤を含む樹脂組成物及び成形品
JP4072229B2 (ja) 溶解性ガラスおよびそれを用いた抗菌性組成物
JP4095604B2 (ja) 抗菌性ガラスの製造方法
WO2003082758A1 (fr) Verre antimicrobien et procede permettant de produire celui-ci
KR102549169B1 (ko) 항균 유리 분말 및 그 제조 방법과, 이를 포함하는 가전제품
JP6088199B2 (ja) 水処理剤および水処理剤の使用方法
JP2003292345A (ja) 抗菌性ガラスおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20058002398

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057023845

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006510991

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057023845

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 1020057023845

Country of ref document: KR

122 Ep: pct application non-entry in european phase