WO2005082775A1 - Thin film containing carbon nanotube - Google Patents

Thin film containing carbon nanotube Download PDF

Info

Publication number
WO2005082775A1
WO2005082775A1 PCT/JP2005/003367 JP2005003367W WO2005082775A1 WO 2005082775 A1 WO2005082775 A1 WO 2005082775A1 JP 2005003367 W JP2005003367 W JP 2005003367W WO 2005082775 A1 WO2005082775 A1 WO 2005082775A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
swnt
dispersion
carbon nanotube
swnts
Prior art date
Application number
PCT/JP2005/003367
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutsugu Minami
Yeji Kim
Said Kazaoui
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2006510516A priority Critical patent/JPWO2005082775A1/en
Publication of WO2005082775A1 publication Critical patent/WO2005082775A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method in which carbon nanotubes such as single-walled carbon nanotubes (hereinafter, also simply referred to as SWNTs) and multi-walled carbon nanotubes (hereinafter, simply referred to as MWNTs) are dispersed in a matrix polymer while being separated from each other.
  • the present invention relates to a carbon nanotube-containing thin film having a modified structure, a light emitting material and a polarizing material using the same, and a multi-walled carbon nanotube dispersion in which MWNTs are homogeneously and stably dispersed.
  • SWNTs Single-walled carbon nanotubes
  • a technology for forming a tube (hereinafter, referred to as a separated SWNT) separated into individual pieces into a uniform thin film will be developed. It is extremely important to emit.
  • Non-Patent Document 2 a thin film in which SWNT dispersed by a surfactant is combined with polybutylpyrrolidone′polybutyl alcohol has been reported.
  • SWNTs are formed into a homogeneous thin film, and preferably, if a technology for orienting the tube in the thin film in a certain direction is developed, DC / AC electrical conduction, photoconduction, photovoltaic, light emitting functions It is possible to provide molded products that can effectively demonstrate the various optical and electronic functions of SWNT, such as electroluminescent function, nonlinear optical function, various sensors, etc., and its industrial use value is extremely large, At present, no thin film has been developed to meet such demands.
  • MWNT is expected to be used as a conductive coating, an electromagnetic wave shielding material, a field emission material and the like, and is being researched and developed in various ways.
  • Non-Patent Document 3 SWNTs can be dispersed and purified by using carboxymethylcellulose, which is a kind of cellulose derivative, as a dispersant.
  • carboxymethylcellulose which is a kind of cellulose derivative
  • SWNTs were separated from each other. There is no description of the ability to form thin films that are homogeneously dispersed in this state, nor their light absorption and emission characteristics. Also, to MWNT In this regard, there has been no report on the use of a cellulose derivative as a dispersant or dispersion medium.
  • Non-patent document 1 Science, 297, 593-596 (2002)
  • Non-Patent Document 2 Nano Letters 3, 1285-1288 (2003)
  • Non-Patent Document 3 Jpn.J.Appl.Phys.Parti, 43 (6A), 3636-3639 (2004)
  • the present invention provides a carbon nanotube, particularly a single-walled carbon nanotube, which is separated from each other, fully expressing the optical, electronic properties, and functions inherent to the separated SWNT. Accordingly, an object of the present invention is to provide a single-walled carbon nanotube-containing thin film capable of adjusting the concentration of SWNT in a wide range, and a light emitting material and a polarizing material using the same. It is a further object of the present invention to provide a multi-walled carbon nanotube dispersion having excellent dispersion stability, low cost, safety, and low environmental load.
  • a thin film containing carbon nanotubes wherein the material for forming the thin film is gelatin or a cellulose derivative.
  • a light-emitting material comprising the carbon nanotube-containing thin film described in (1) above, (1) V or (4).
  • a polarizing material comprising the single-walled carbon nanotube-containing thin film according to any one of (1) to (4).
  • the carbon nanotube thin film using gelatin as the thin film forming material according to the present invention exists in a state where single-walled carbon nanotubes are separated from each other, and the optical and electronic properties' functions inherent to the separated SWNT are inherent. Are sufficiently expressed, and the single-walled carbon nanotube is easily orientated in one direction. Therefore, taking advantage of the optical and electronic functions of SWNT, materials for products that have DC / AC electric conduction, photoconduction, photovoltaic, light-emitting, electroluminescence, polarization, nonlinear optical functions, various sensor functions, etc. In particular, it can be advantageously used as a light emitting material and a polarizing material.
  • the carbon nanotube thin film using a cellulose derivative as the thin film forming material according to the present invention can sufficiently exhibit the optical, electronic properties and functions inherent to the separated SWNT, and can further increase the dispersion concentration in a wide range. Because it can be adjusted, taking advantage of the optical and electronic functions of SWNT, DC and AC electric conduction, photoconduction, photovoltaic, light emission, electroluminescence, nonlinear optical functions, various sensor functions, etc. It can be advantageously used as a product material, especially a light emitting material.
  • the multi-walled carbon nanotube dispersion liquid (also referred to as MWNT dispersion liquid) of the present invention has excellent dispersion stability, is inexpensive, safe, and has a low environmental load by using a cellulose derivative as a dispersant. It can be preferably used for producing a MWNT-containing thin film. Further, the MWNT thin film prepared from the dispersion liquid can be used for purposes such as a conductive coating, an electromagnetic wave shielding material, and a field emission material.
  • FIG. 1 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 1 and a SWNT dispersion as a raw material thereof.
  • FIG. 2 is an emission spectrum (excitation wavelength: 662 nm) of the SWNT-containing thin film obtained in Example 1 and a SWNT dispersion as a raw material thereof.
  • FIG. 3 is a polarization absorption spectrum of the SWNT-containing thin film obtained in Example 1 (drawing ratio: 2).
  • FIG. 4 is a polarization absorption spectrum of the SWNT-containing thin film obtained in Example 2 (drawing ratio: 3 times).
  • FIG. 5 is a polarization microscope photograph of the SWNT-containing thin film (stretch magnification: 3 times) obtained in Example 2.
  • FIG. 6 is a polarized light emission spectrum of the SWNT-containing thin film obtained in Example 2 (drawing ratio: 3 times).
  • FIG. 7 is an absorption spectrum of the SWNT-containing thin film obtained in Example 3.
  • FIG. 8 shows an emission spectrum (excitation wavelength: 662 nm) of the SWNT-containing thin film obtained in Example 3.
  • FIG. 9 shows optical absorption spectra of the SWNT-containing thin film (a) obtained in Example 4 and a SWNT dispersion (10-fold dilution) (b) as a raw material thereof.
  • FIG. 10 shows emission spectra of the SWNT-containing thin film (a) obtained in Example 4 and a SWNT dispersion (20-fold dilution) (b) as a raw material thereof (excitation wavelength: 662 nm).
  • FIG. 11 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 5.
  • FIG. 12 is an emission spectrum (excitation wavelength; 662 ⁇ m) of the SWNT-containing thin film obtained in Example 5.
  • FIG. 13 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 6.
  • FIG. 14 is an emission spectrum (excitation wavelength; 662 ⁇ m) of the SWNT-containing thin film obtained in Example 6.
  • FIG. 15 is a polarization absorption total of the SWNT-containing thin film (drawing ratio: 2) obtained in Example 7.
  • FIG. 16 is a light absorption spectrum of the MWNT dispersion (10-fold dilution) obtained in Example 8.
  • FIG. 17 is a time-dependent change in absorbance at a wavelength of 100 nm for the MWNT dispersion (10-fold dilution) obtained in Example 8.
  • the carbon nanotubes (SWNT and MWNT) used in the present invention are not particularly limited, and conventionally known ones can be used.
  • the diameter and length of SWNT and MWNT are not particularly limited, but the former has a diameter of 0.4-3. Onm and a length of about 0.1—, and the latter has a diameter of 10—50 nm and a length of 0.1—. It is preferable to use one of about 10 m.
  • gelatin or a cellulose derivative is used as a thin film forming material.
  • the gelatin used in the present invention is not particularly limited, and any conventionally known gelatin can be used. It is preferable to use gelatin having a number average molecular weight of several hundred thousand to several hundred thousand.
  • the cellulose derivative used in the present invention means a conventionally known compound such as cellulose ether or cellulose ester that also induces a cellulosic power.
  • the cellulose derivative preferably used in the present invention has a degree of polymerization of about 100 to 1000. Also
  • cellulose ethers are preferred. Specifically, those in which a part or all of the hydroxyl groups of cellulose are etherified, for example, carboxymethyl cenorellose, canoleboxixetinoresenorelose, aminoethinoresenorelose , Okishetinoresenorerose, hydroxymethinoresenorelose, hydroxyethinoresenorelose, hydroxypropyl pinoreses norelose, methinoresenorelose, etinoresenorelose, benzinoresenorelose, trimethinoresenorelose, etc. Is preferably used.
  • the SWNT-containing thin film and the MWNT thin film of the present invention have a structure in which a plurality of SWNTs or MWNTs are dispersed in a gelatin thin film or a cellulose derivative thin film in a state of being separated from each other without agglomeration.
  • the MWNT dispersion in the present invention refers to a MWNT in a state of being stably dispersed in water using a cellulose derivative as a dispersant.
  • the thickness is 0.1 to 100 m, preferably 1.0 to 10 / z m.
  • the dispersion concentration (ratio) of the SWNT (or MWNT) is 0.1-10% by weight.
  • a method for preferably producing the SWNT-containing thin film of the present invention will be described. First, the method using gelatin is described.
  • an aqueous dispersion in which SWNT is uniformly dispersed is prepared.
  • a surfactant may or may not be used.
  • a surfactant eg, sodium dodecyl sulfate
  • the concentration of the surfactant is 0.1 to 10% by weight, preferably 0.5 to 2% by weight
  • the concentration of SWNT is 0.1 to 10 parts by weight per 100 parts by weight of the surfactant solution. And preferably one to five parts by weight.
  • the dispersion of SWNTs can be combined with a dispersion promoting means such as ultrasonic treatment.
  • the dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and this supernatant is used as a SWNT dispersion.
  • the acceleration is 51,400,000 G, preferably 11,300,000 G.
  • the SWNT dispersion preferably the centrifuged supernatant thereof, and an aqueous gelatin solution are mixed.
  • the concentration of gelatin 2 20 weight 0/0 preferably 4 one 15 wt%.
  • the concentration of the gelatin, 1 one 10 weight 0/0 and it is preferably adjusted in the range of 2 one 10 wt%.
  • SWNT and gelatin are directly added to water and dispersed, thereby producing an aqueous dispersion in which SWNT is homogeneously dispersed.
  • the concentration of the SWNT is 0. 01 1% by weight, preferably 0.1 03 0.1 1 wt%, the concentration of gelatin 1 one 15 weight 0/0, preferably 2-10 wt% .
  • the dispersion of SWNTs can be used in combination with dispersion promoting means such as ultrasonic treatment.
  • the dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and the supernatant is used as a SWNT dispersion.
  • the acceleration is 51,400,000 G, preferably 11,300,000 G.
  • SWNT 'surfactant / gelatin mixture prepared as described above, or SWNT'
  • the SWNT-containing thin film of the present invention can be obtained by casting a gelatin mixture on a substrate.
  • the obtained SWNT thin film contains SWNTs (separated SWNTs) dispersed in a liquid in a state of being separated from each other by a rapid gelling action of gelatin in a dispersed state. That is, the SWNTs dispersed in the membrane exist in a state of being separated from each other without causing aggregation.
  • a SWNT-containing thin film in which SWNTs are highly oriented can be obtained.
  • the stretching ratio in this case is 1.5 to 10 times.
  • an aqueous dispersion in which SWNTs are homogeneously dispersed can be produced.
  • the concentration of the SWNT is 0. 005- 1 wt 0/0, preferably 0. 01-0. 2 weight 0/0
  • the concentration of the polymer is 0.5 05 20 weight 0/0, preferably 0 . 1-10 weight 0/0.
  • the dispersion of SWNTs may be used in combination with a dispersion promoting means such as ultrasonic treatment.
  • the dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and the supernatant is used as a SWNT dispersion.
  • the acceleration is 51,400,000 G, preferably 11,300,000 G.
  • the SWNT′-containing cellulose derivative thin film of the present invention can be obtained by casting the SWNT ′ polymer mixture prepared as described above on a substrate.
  • the obtained SWNT thin film contains SWNT while maintaining a state of being separated from each other in a liquid due to an excellent dispersing action of the cellulose derivative. That is, the SWNTs dispersed in the membrane exist in a state of being separated from each other without causing aggregation.
  • the dispersion concentration of SWNT in the thin film was estimated to be 0.1 to 3% by weight.
  • the MWNT dispersion and the MWNT-containing thin film can be prepared by substantially the same method as in the case of SWNT, but it is not always necessary to perform centrifugation when preparing the dispersion.
  • the dispersion can maintain a stable dispersion state even when stored for a long period of time, and since the cellulose derivative is inexpensive and safe and has a low environmental load, it can be used for conductive coatings, electromagnetic wave shielding materials, field emission materials, etc. It can be used favorably for the purpose of producing a.
  • the carbon nanotube thin film using gelatin as a thin film forming material according to the present invention exists in a state where single-wall carbon nanotubes are separated from each other, and the optical and electronic properties' functions inherent to the separated SWNTs are provided. Are sufficiently expressed, and the single-walled carbon nanotube is easily orientated in one direction. Therefore, taking advantage of the optical and electronic functions of SWNT, materials for products that have DC / AC electric conduction, photoconduction, photovoltaic, light-emitting, electroluminescence, polarization, nonlinear optical functions, various sensor functions, etc. In particular, it can be advantageously used as a light emitting material and a polarizing material.
  • a carbon nanotube using a cellulose derivative as a thin film forming material is provided.
  • Ube thin film fully utilizes the optical and electronic properties of SWNTs because the optical, electronic properties, and functions inherent to the separated SWNTs are fully exhibited, and the dispersion concentration can be adjusted over a wide range. Therefore, it can be advantageously used as a material for products having DC / AC electric conduction, photoconduction, photoelectromotive force, light emitting function, electroluminescent function, non-linear optical function, various sensor functions, etc., particularly as a light emitting material.
  • the multi-walled carbon nanotube dispersion liquid (also referred to as MWNT dispersion liquid) of the present invention has excellent dispersion stability, is inexpensive, safe, and has a low environmental load by using a cellulose derivative as a dispersant. It can be preferably used for producing a MWNT-containing thin film. Further, the MWNT thin film prepared from the dispersion liquid can be used for purposes such as a conductive coating, an electromagnetic wave shielding material, and a field emission material.
  • a surfactant sodium dodecyl sulfate, SDS
  • SDS sodium dodecyl sulfate
  • the separated SWNT dispersion prepared above and a commercially available aqueous solution of gelatin (10% by weight) were mixed at a weight ratio of 1: 1 while heating.
  • This mixed aqueous solution was cast on a glass substrate, and allowed to cool to room temperature.
  • gelatin gelled while containing the SWNT dispersion By continuing to stand, the moisture in the gel evaporated and a dry thin film was formed.
  • the thin film was peeled from the substrate to obtain a free-standing film.
  • the self-standing membrane was swelled by immersing it in an ethanol: water mixed solution (3: 2) for 1 hour. Fix the swollen membrane to the stretching machine, and Stretching was performed. The stretching ratio was about twice.
  • Figure 1 shows the light absorption spectrum of this cast film and the light absorption spectrum of the SWNT dispersion, which is the raw material for the film.
  • the spectra were almost the same except for a slight peak shift and broadening, indicating that the tube was kept in a good separation state even after the thin film was formed. I understand. Further, when this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 2 was observed. Although the emission spectrum from this thin film has a slight peak shift and a broad broadening of the peak compared to that from the aqueous dispersion, the emission function characteristic of the separated SWNT is sufficiently maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
  • FIG. 3 shows the polarization absorption spectrum of the SWNT-containing thin film of the present invention. From Fig. 3, the light absorption intensity of the SWNT-containing thin film of the present invention is about 1.9 times larger when the polarization direction is parallel ( ⁇ ) to the stretching direction than when it is vertical ( ⁇ ). This proves that the nanotubes are highly oriented in the stretching direction.
  • Polyvinylpyrrolidone (PVP) was added to the SWNTZSDS dispersion prepared in the same manner as in Example 1, and a cast film was formed on a glass substrate.
  • This film was completely different from Example 1 and was a very heterogeneous film having many irregularities. This is because, during the drying process of the solution, since the gelling does not occur and the solution remains in the solution state, the initial homogeneous dispersion state is not fixed, and as the water evaporates, the mutual interaction between the substrate material and the solute due to the surface tension occurs. It is considered that the solution part on the substrate shrinks unevenly due to the action.
  • Polyvinyl alcohol (PVA) was added to the SWNTZSDS dispersion prepared in the same manner as in Example 1, and a cast film was formed on a glass substrate. This was completely different from Example 1, and the shape of the solution shrank in a circular shape with the evaporation of water, and became an uneven solid with a raised central portion. Because the solution does not gel during the drying process and remains in the solution state, the solution portion on the substrate may be lost due to the interaction between the substrate material and the solute due to the surface tension, etc. as the water evaporates. This is probably due to uneven shrinkage.
  • the self-standing film produced in the same manner as in Example 1 and further swollen by the same method was fixed to a stretching machine and stretched to a stretching ratio of about 3 times. From the optical micrograph, the obtained thin film was confirmed to be optically very homogeneous.
  • FIG. 4 is a polarization absorption spectrum of the SWNT-containing thin film.
  • the dichroic ratio increased from about 1.9 to about 3 as the draw ratio increased from 2 to 3 times, that is, the degree of orientation of SWNT in the thin film increased. It can be seen that it has improved.
  • FIG. 5 shows a polarizing microscope photograph of the SWNT-containing thin film. When observed with cross-col, when the angle between the stretching direction and the polarizer axis is 0 ° or 90 °, the light transmittance is almost 0, and the light is slightly transmitted at a force of 10 ° or 80 °, It shows maximum transmission at 45 °. This is due to the large difference in the refractive index between the stretching direction and the direction perpendicular thereto.
  • FIG. 6 shows a polarized light emission spectrum of the SWNT-containing thin film. Although light having a wavelength of 662 nm is used as the excitation light, the emission is strongly polarized, and the polarization component parallel to the stretching direction is about six times stronger than the vertical component. This is also evidence that SWNTs are strongly oriented in the stretching direction. This result also shows that the SWNT-containing thin film can be used as a polarized light emitting material.
  • the above SWNT gelatin mixed solution was heated and cast on a glass substrate, and allowed to cool to room temperature. In this cooling process, gelatin gelled while containing the SWNT dispersion. By continuing to stand, the moisture in the gel evaporated to form a dry thin film. In order to form a homogeneous thin film of the separated SWNTs, it is important to fix the state in which the separated SWNTs are uniformly dispersed in the aqueous solution by gelling. As a result, it is possible to prevent tube agglomeration and film heterogeneity occurring during the drying process.
  • the obtained thin film was confirmed to be optically very homogeneous.
  • Figure 7 shows the light absorption spectrum of this cast film.
  • the spectrum is the same as that of the SWNT dispersion in Fig. 1 except for a slight peak shift and broadening, and the separation state of the tube is good even after thin film deposition. You can see that it is kept. Further, when this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 8 was observed. The emission spectrum of this thin film shows a slight peak shift and peak broadening compared to that of the SWNT dispersion in Fig. 2. Despite the fact that it has a light emitting diode, the light emission function, which is a feature of the separated SWNT, is sufficiently maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
  • Fig. 9a shows the light absorption spectrum of this cast thin film
  • Fig. 9b shows the light absorption spectrum of the SWNT dispersion, which is the film forming material. Since this dispersion is difficult to measure the optical absorption spectrum when the dispersion concentration of SWNT is extremely high, it is diluted 10-fold and adjusted to an appropriate optical density before the measurement (optical path length). lcm cell).
  • the outer diameter of the tube is almost the same except that there is a slight broad jung. You can see that it is dripping.
  • this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 10A was observed.
  • the emission spectrum from this thin film shows a slight peak shift and broad broadening of the peak compared to that of the aqueous dispersion (Fig. 10b, 20-fold dilution) power, but the emission function that is characteristic of the separated SWNTs is sufficient. Has been maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
  • Example 4 In 20 ml of water was dissolved another 100 mg of hydroxyethyl cellulose (about 5% by weight), and then 6 mg of SWNT was added. Thereafter, a SWNT dispersion was prepared by the same method as in Example 4, and a cast film was prepared by the same method as in Example 4.
  • FIG. 11 shows a light absorption spectrum of this cast film. Again, carboxymethyl A spectrum similar to that obtained when cellulose was used was obtained, indicating that SWNTs were well dispersed in the film. In addition, the absorption strength was equivalent to that of Example 4, indicating that hydroxyshethyl cellulose can also be effectively used for producing a SWNT-containing thin film. Further, when this dispersion thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 12 was observed. The emission spectrum and intensity from the thin film were the same as those in Example 4 (Fig. 10), which proves that SWNTs were well dispersed in the hydroxyethyl cellulose thin film. Is done.
  • FIG. 13 shows the light absorption spectrum of this cast film.
  • the absorption intensity was weaker, the shape of the absorption spectrum was almost the same as that of Examples 415, and hydroxypropylcellulose was also a SWNT-containing thin film. It was shown that it can be used effectively for the production of Further, when this dispersion thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 14 was observed. The emission spectrum from this thin film is equivalent to that of Example 4 (FIG. 12), which indicates that SWNTs are well dispersed in the hydroxypropyl cellulose thin film. Is proved.
  • a small amount of glycerin was added to the SWNT dispersion prepared in the same manner as in Example 5, and a cast membrane was fabricated in the same manner as in Example 5.
  • the thin film was peeled from the substrate to obtain a free-standing film.
  • the self-standing film was fixed in a stretching machine and stretched in one axis while being heated to about 100 ° C. The stretching ratio was about twice.
  • Figure 15 shows the polarization absorption spectrum of the stretched thin film.
  • the light absorption intensity of the stretched thin film is 2.3 times larger when the polarization direction is parallel ( ⁇ ) to the stretching direction than when it is perpendicular ( ⁇ ). This proves that the nanotubes are oriented in the stretching direction.
  • FIG. 17 shows the time-dependent change in the absorbance of the dispersion at a wavelength of 100 nm. Even after 28 days from the preparation, no significant change was observed in the absorbance. Is very stably dispersed.
  • the MWNT dispersion prepared in Example 8 was cast on a glass substrate (size: 13 ⁇ 38 ⁇ 1 mm), and allowed to dry at room temperature to obtain an MWNT dispersion thin film. From the optical micrograph, the obtained thin film was confirmed to be optically homogeneous. When the electrical resistance of the MWNT dispersed film was evaluated, a sheet resistance of 160 k ⁇ / port was obtained, indicating that MWNT can function as a conductive filler in the polymer thin film.

Abstract

A thin film containing a single wall or multi-wall carbon nanotube, wherein the material for forming said film is gelatin or a cellulose derivative; a luminescent material using such a single-wall carbon nanotube; and a dispersion containing a multi-wall carbon nanotube, wherein the dispersant is a cellulose derivative. In the above thin film, single wall carbon nanotubes (SWNT) or multi-wall carbon nanotubes (MWNT) are present in a state wherein they are separated from one another and optical and electronic characteristics and functions inherent in a separated single wall carbon nanotube can be satisfactorily expressed. In the above dispersion, multi-wall carbon nanotubes are uniformly dispersed, and the dispersion is safe and reduced in the load to the environment and can be produced at a low cost.

Description

明 細 書  Specification
力一ボンナノチューブ含有薄膜  Carbon nanotube containing thin film
技術分野  Technical field
[0001] 本発明は、単層カーボンナノチューブ(以下単に SWNTとも言う)や多層カーボン ナノチューブ(以下単に MWNTとも言う)などのカーボンナノチューブが、相互に分 離された状態でマトリックス高分子中に分散された構造を有するカーボンナノチュー ブ含有薄膜及びこのものを用いた発光材料 ·偏光材料、更には MWNTが均質かつ 安定に分散された多層カーボンナノチューブ分散液に関するものである。  [0001] The present invention relates to a method in which carbon nanotubes such as single-walled carbon nanotubes (hereinafter, also simply referred to as SWNTs) and multi-walled carbon nanotubes (hereinafter, simply referred to as MWNTs) are dispersed in a matrix polymer while being separated from each other. The present invention relates to a carbon nanotube-containing thin film having a modified structure, a light emitting material and a polarizing material using the same, and a multi-walled carbon nanotube dispersion in which MWNTs are homogeneously and stably dispersed.
背景技術  Background art
[0002] 単層カーボンナノチューブ(SWNT)は、様々な新機能を発揮しうる新素材として大 きな注目を集め世界中で活発な研究開発が行われている。今後、産業上の様々な 用途に有効に使用するためには、 SWNTを均質な薄膜に成形することが必須の課 題である。また、 SWNTの光 '電子機能を活用する場合に、チューブを一本ずつに 分離することが重要であることを示す研究結果が最近報告された (非特許文献 1)。  [0002] Single-walled carbon nanotubes (SWNTs) have attracted great attention as a new material that can exhibit various new functions, and are being actively researched and developed worldwide. In the future, in order to effectively use SWNTs in various industrial applications, it is essential to form SWNT into a homogeneous thin film. Recently, research results showing that it is important to separate tubes one by one when utilizing the optical and electronic functions of SWNT (Non-Patent Document 1).
[0003] すなわち、チューブが束になっていると、チューブ間相互作用によって電子物性が 大きく変化し、 SWNTが本来有している性質'機能を十分に発揮することができない 。一方、界面活性剤を用いてチューブを一本ずつに分離すると、 SWNT本来の特性 が観測されるようになる。すなわち、 SWNTZ界面活性剤分散水溶液においては、 束になったチューブの場合に比べて光吸収スペクトルのピークが著しく鋭くなると同 時に、バンド間光学遷移による発光が観測されるようになる。吸収ピークが鋭くなるの は、チューブ間相互作用による電子状態の広がりが無くなつたためであり、発光が観 測されるのは、チューブ間相互作用による熱的な励起失活が無くなつたためである。  [0003] In other words, when the tubes are bundled, the electronic properties change greatly due to the interaction between the tubes, and the properties and functions inherent to SWNTs cannot be sufficiently exhibited. On the other hand, if the tubes are separated one by one using a surfactant, the original characteristics of SWNT will be observed. That is, in the aqueous solution of the SWNTZ surfactant dispersion, the peak of the light absorption spectrum becomes significantly sharper than in the case of a bundled tube, and at the same time, light emission due to the optical transition between bands is observed. The sharp absorption peak is due to the elimination of the spread of the electronic state due to the interaction between the tubes, and the emission is observed because the thermal excitation and deactivation due to the interaction between the tubes are eliminated. .
[0004] このように、今後、 SWNTの産業技術への利用を促進するためには、一本ずつに分 離されたチューブ (以下、分離 SWNTと称する)を均質な薄膜に成形する技術を開 発することが極めて重要となって 、る。  [0004] As described above, in order to promote the use of SWNTs in industrial technology, a technology for forming a tube (hereinafter, referred to as a separated SWNT) separated into individual pieces into a uniform thin film will be developed. It is extremely important to emit.
従来、このような分離 SWNT含有薄膜としては、界面活性剤によって分散した SW NTをポリビュルピロリドン'ポリビュルアルコールと複合ィ匕した薄膜が報告されている (非特許文献 2)。 Conventionally, as such a separated SWNT-containing thin film, a thin film in which SWNT dispersed by a surfactant is combined with polybutylpyrrolidone′polybutyl alcohol has been reported. (Non-Patent Document 2).
[0005] しかし、この方法では、薄膜形成過程においてチューブの凝集が起こり、得られる S WNTは直径 30nm程度の束となってしまう(分離 SWNT自体の直径は lnm程度)。ま た、吸収スペクトルのピークもブロードであり、発光が観測されるかどうかに関しては 記述がなぐまた、その光学顕微鏡写真は、この薄膜が力なり不均質なものであること を示している。すなわち、このような薄膜では、 SWNTが本来有している光 ·電子特 性'機能を十分に生かすことができないことは明らかである。  [0005] However, in this method, agglomeration of the tubes occurs in the process of forming the thin film, and the obtained SWNTs are bundled with a diameter of about 30 nm (the diameter of the separated SWNT itself is about 1 nm). In addition, the absorption spectrum peak is broad, and there is no description as to whether or not light emission is observed. The optical micrograph shows that the thin film is strong and inhomogeneous. In other words, it is clear that such a thin film cannot make full use of the optical and electronic characteristics' functions inherent to SWNT.
[0006] また、 SWNTの物性'機能は著しく大きな異方性を有することから、産業目的に利 用する場合には、チューブを一定方向に配向させることが重要である。しかるに、こ れまで、分離 SWNTを一定方向に配向させたという報告例はなぐ分離 SWNTを配 向する技術の開発はその重要性にもかかわらずほとんど進展していない。  [0006] In addition, since the physical property 'function of SWNT has remarkably large anisotropy, it is important to orient the tube in a certain direction when used for industrial purposes. However, there has been no report that the isolated SWNTs have been oriented in a certain direction so far. Development of technology for orienting the separated SWNTs has hardly progressed despite its importance.
[0007] 分離 SWNTを均質な薄膜状に成形し、好ましくは、薄膜中のチューブを一定方向 に配向する技術が開発されれば、直流 ·交流電気伝導、光伝導、光起電力、発光機 能、電界発光機能、非線形光学機能、各種センサー等、 SWNTの持つ多様な光, 電子機能を、有効に発揮させ得る成形物を提供することが可能となり、その産業的利 用価値は極めて大きいが、未だこのような要請に応える薄膜が開発されていないの が現状である。  [0007] Separation SWNTs are formed into a homogeneous thin film, and preferably, if a technology for orienting the tube in the thin film in a certain direction is developed, DC / AC electrical conduction, photoconduction, photovoltaic, light emitting functions It is possible to provide molded products that can effectively demonstrate the various optical and electronic functions of SWNT, such as electroluminescent function, nonlinear optical function, various sensors, etc., and its industrial use value is extremely large, At present, no thin film has been developed to meet such demands.
[0008] 一方、 MWNTは、導電性コーティング、電磁波シールド材料、電界放出材料等と して期待が持たれ様々な研究開発が行われている力 これらの産業用途に好ましく 用いられるためには、 MWNTが均質に分散された状態で長期間安定に保存できる ような分散液の状態で提供されることが必要である。この場合、 MWNTの分散を促 進させるための分散剤としては、分散安定性に優れ、安価、安全で、かつ環境負荷 の少ないものを用いることが望ましいが、そのような観点力もの研究開発はほとんど行 われて ヽな 、のが現状である。  [0008] On the other hand, MWNT is expected to be used as a conductive coating, an electromagnetic wave shielding material, a field emission material and the like, and is being researched and developed in various ways. Must be provided in the form of a dispersion liquid that can be stored stably for a long time in a state of being homogeneously dispersed. In this case, it is desirable to use a dispersant that has excellent dispersion stability, is inexpensive, safe, and has a low environmental load as a dispersant to promote the dispersion of MWNT. At present, most of the work is done.
[0009] なお、セルロース誘導体の一種であるカルボキシメチルセルロースを分散剤として 用いることによって、 SWNTが分散 '精製できることが文献 (非特許文献 3)に記され て 、るが、 SWNTが相互に分離された状態で均質に分散した薄膜が形成できること や、それらの光吸収 ·発光特性については全く記述されていない。また、 MWNTに 関しては、セルロース誘導体を分散剤、もしくは分散媒体として用いた例は報告され ていない。 [0009] It is noted in the literature (Non-Patent Document 3) that SWNTs can be dispersed and purified by using carboxymethylcellulose, which is a kind of cellulose derivative, as a dispersant. However, SWNTs were separated from each other. There is no description of the ability to form thin films that are homogeneously dispersed in this state, nor their light absorption and emission characteristics. Also, to MWNT In this regard, there has been no report on the use of a cellulose derivative as a dispersant or dispersion medium.
[0010] 非特許文献 1: Science, 297, 593-596 (2002)  [0010] Non-patent document 1: Science, 297, 593-596 (2002)
非特許文献 2 : Nano Letters 3, 1285-1288 (2003)  Non-Patent Document 2: Nano Letters 3, 1285-1288 (2003)
非特許文献 3 :Jpn. J. Appl. Phys. Parti, 43(6A), 3636-3639 (2004))  Non-Patent Document 3: Jpn.J.Appl.Phys.Parti, 43 (6A), 3636-3639 (2004))
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、カーボンナノチューブ殊に単層カーボンナノチューブが相互に分離され た状態で存在し、分離 SWNTが本来有している光 ·電子特性 ·機能が十分に発現し 、更に、 目的に応じて、 SWNTの濃度を広い範囲で調節できるような単層カーボンナ ノチューブ含有薄膜およびこれを用いた発光材料および偏光材料を提供することを 目的とする。更には、分散安定性に優れ、かつ安価'安全で環境負荷の少ない多層 カーボンナノチューブ分散液を提供することを目的とする。 [0011] The present invention provides a carbon nanotube, particularly a single-walled carbon nanotube, which is separated from each other, fully expressing the optical, electronic properties, and functions inherent to the separated SWNT. Accordingly, an object of the present invention is to provide a single-walled carbon nanotube-containing thin film capable of adjusting the concentration of SWNT in a wide range, and a light emitting material and a polarizing material using the same. It is a further object of the present invention to provide a multi-walled carbon nanotube dispersion having excellent dispersion stability, low cost, safety, and low environmental load.
課題を解決するための手段  Means for solving the problem
[0012] この出願によれば、以下の発明が提供される。 According to this application, the following invention is provided.
(1)カーボンナノチューブを含有する薄膜であって、該薄膜形成材料がゼラチンまた はセルロース誘導体であることを特徴とするカーボンナノチューブ含有薄膜。  (1) A thin film containing carbon nanotubes, wherein the material for forming the thin film is gelatin or a cellulose derivative.
(2)複数のカーボンナノチューブが相互に分離した状態で分散していることを特徴と する上記(1)に記載のカーボンナノチューブ含有薄膜。  (2) The carbon nanotube-containing thin film according to (1), wherein a plurality of carbon nanotubes are dispersed in a state of being separated from each other.
(3)カーボンナノチューブが単層又は多層カーボンナノチューブであることを特徴と する上記(1)又は(2)に記載のカーボンナノチューブ含有薄膜。  (3) The carbon nanotube-containing thin film according to the above (1) or (2), wherein the carbon nanotube is a single-walled or multi-walled carbon nanotube.
(4)カーボンナノチューブがー方向に配向して 、ることを特徴とする上記(1)一 (3) いずれかに記載の単層カーボンナノチューブ含有薄膜。  (4) The single-walled carbon nanotube-containing thin film according to any one of (1) to (3) above, wherein the carbon nanotubes are oriented in a negative direction.
(5)上記(1)一 (4) V、ずれかに記載のカーボンナノチューブ含有薄膜からなる発光 材料。  (5) A light-emitting material comprising the carbon nanotube-containing thin film described in (1) above, (1) V or (4).
(6)上記(1)一(4)何れかに記載の単層カーボンナノチューブ含有薄膜からなる偏 光材料。  (6) A polarizing material comprising the single-walled carbon nanotube-containing thin film according to any one of (1) to (4).
(7)多層カーボンナノチューブを含有する分散液であって、該分散剤がセルロース 誘導体であることを特徴とする多層カーボンナノチューブ含有分散液。 発明の効果 (7) a dispersion containing multi-walled carbon nanotubes, wherein the dispersant is cellulose A dispersion containing multi-walled carbon nanotubes, which is a derivative. The invention's effect
[0013] 本発明に係る、薄膜形成材料としてゼラチンを用いたカーボンナノチューブ薄膜は 、単層カーボンナノチューブが相互に分離された状態で存在し、分離 SWNTが本来 有している光 ·電子特性'機能が十分に発現し、更には単層カーボンナノチューブが 一方向に簡便に配向するといつた特性を有する。したがって、 SWNTの持つ光 '電 子機能を生かして、直流 ·交流電気伝導、光伝導、光起電力、発光機能、電界発光 機能、偏光機能、非線形光学機能、各種センサー機能等を有する製品用材料、特 に発光材料および偏光材料として有利に用いることができる。  [0013] The carbon nanotube thin film using gelatin as the thin film forming material according to the present invention exists in a state where single-walled carbon nanotubes are separated from each other, and the optical and electronic properties' functions inherent to the separated SWNT are inherent. Are sufficiently expressed, and the single-walled carbon nanotube is easily orientated in one direction. Therefore, taking advantage of the optical and electronic functions of SWNT, materials for products that have DC / AC electric conduction, photoconduction, photovoltaic, light-emitting, electroluminescence, polarization, nonlinear optical functions, various sensor functions, etc. In particular, it can be advantageously used as a light emitting material and a polarizing material.
また、本発明に係る、薄膜形成材料としてセルロース誘導体を用いたカーボンナノチ ユーブ薄膜は、分離 SWNTが本来有している光 ·電子特性 ·機能が十分に発現し、 更に分散濃度を広 、範囲で調節することが可能なことから、 SWNTの持つ光 ·電子 機能を生かして、直流 ·交流電気伝導、光伝導、光起電力、発光機能、電界発光機 能、非線形光学機能、各種センサー機能等を有する製品用材料、特に発光材料とし て有利に用いることができる。  In addition, the carbon nanotube thin film using a cellulose derivative as the thin film forming material according to the present invention can sufficiently exhibit the optical, electronic properties and functions inherent to the separated SWNT, and can further increase the dispersion concentration in a wide range. Because it can be adjusted, taking advantage of the optical and electronic functions of SWNT, DC and AC electric conduction, photoconduction, photovoltaic, light emission, electroluminescence, nonlinear optical functions, various sensor functions, etc. It can be advantageously used as a product material, especially a light emitting material.
また、本発明の多層カーボンナノチューブ分散液 (MWNT分散液ともいう)は、セ ルロース誘導体を分散剤として用いることにより、分散安定性に優れ、かつ安価'安 全で環境負荷の少な 、ものであり、 MWNT含有薄膜の作製に好ましく使用すること ができるものである。また、該分散液カゝら作製した MWNT薄膜は、導電性コーティン グ、電磁波シールド材料、電界放出材料等の目的に使用することができる。  Further, the multi-walled carbon nanotube dispersion liquid (also referred to as MWNT dispersion liquid) of the present invention has excellent dispersion stability, is inexpensive, safe, and has a low environmental load by using a cellulose derivative as a dispersant. It can be preferably used for producing a MWNT-containing thin film. Further, the MWNT thin film prepared from the dispersion liquid can be used for purposes such as a conductive coating, an electromagnetic wave shielding material, and a field emission material.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、実施例 1で得た SWNT含有薄膜とその原料である SWNT分散液の光 吸収スペクトル。  FIG. 1 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 1 and a SWNT dispersion as a raw material thereof.
[図 2]図 2は、実施例 1で得た SWNT含有薄膜とその原料である SWNT分散液の発 光スペクトル (励起波長; 662nm)。  FIG. 2 is an emission spectrum (excitation wavelength: 662 nm) of the SWNT-containing thin film obtained in Example 1 and a SWNT dispersion as a raw material thereof.
[図 3]図 3は、実施例 1で得た SWNT含有薄膜 (延伸倍率 2倍)の偏光吸収スペクトル  [FIG. 3] FIG. 3 is a polarization absorption spectrum of the SWNT-containing thin film obtained in Example 1 (drawing ratio: 2).
[図 4]図 4は、実施例 2で得た SWNT含有薄膜 (延伸倍率 3倍)の偏光吸収スペクトル [図 5]図 5は、実施例 2で得た SWNT含有薄膜 (延伸倍率 3倍)の偏光顕微鏡写真。 [FIG. 4] FIG. 4 is a polarization absorption spectrum of the SWNT-containing thin film obtained in Example 2 (drawing ratio: 3 times). FIG. 5 is a polarization microscope photograph of the SWNT-containing thin film (stretch magnification: 3 times) obtained in Example 2.
[図 6]図 6は、実施例 2で得た SWNT含有薄膜 (延伸倍率 3倍)の偏光発光スペクトル  [FIG. 6] FIG. 6 is a polarized light emission spectrum of the SWNT-containing thin film obtained in Example 2 (drawing ratio: 3 times).
[図 7]図 7は、実施例 3で得た SWNT含有薄膜の吸収スペクトル。 FIG. 7 is an absorption spectrum of the SWNT-containing thin film obtained in Example 3.
[図 8]図 8は、実施例 3で得た SWNT含有薄膜の発光スペクトル (励起波長; 662nm FIG. 8 shows an emission spectrum (excitation wavelength: 662 nm) of the SWNT-containing thin film obtained in Example 3.
) o ) o
[図 9]図 9は、実施例 4で得た SWNT含有薄膜 (a)とその原料である SWNT分散液( 10倍希釈)(b)の光吸収スペクトルを示す。  FIG. 9 shows optical absorption spectra of the SWNT-containing thin film (a) obtained in Example 4 and a SWNT dispersion (10-fold dilution) (b) as a raw material thereof.
[図 10]図 10は、実施例 4で得た SWNT含有薄膜 (a)とその原料である SWNT分散 液(20倍希釈) (b)の発光スペクトルを示す (励起波長; 662nm)。  FIG. 10 shows emission spectra of the SWNT-containing thin film (a) obtained in Example 4 and a SWNT dispersion (20-fold dilution) (b) as a raw material thereof (excitation wavelength: 662 nm).
[図 11]図 11は、実施例 5で得た SWNT含有薄膜の光吸収スペクトル。  FIG. 11 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 5.
[図 12]図 12は、実施例 5で得た SWNT含有薄膜の発光スペクトル (励起波長; 662η m)。  FIG. 12 is an emission spectrum (excitation wavelength; 662 ηm) of the SWNT-containing thin film obtained in Example 5.
[図 13]図 13は、実施例 6で得た SWNT含有薄膜の光吸収スペクトル  FIG. 13 is a light absorption spectrum of the SWNT-containing thin film obtained in Example 6.
[図 14]図 14は、実施例 6で得た SWNT含有薄膜の発光スペクトル (励起波長; 662η m)。  FIG. 14 is an emission spectrum (excitation wavelength; 662 ηm) of the SWNT-containing thin film obtained in Example 6.
[図 15]図 15は、実施例 7で得た SWNT含有薄膜 (延伸倍率 2倍)の偏光吸収スぺタト ル。  [FIG. 15] FIG. 15 is a polarization absorption total of the SWNT-containing thin film (drawing ratio: 2) obtained in Example 7.
[図 16]図 16は、実施例 8で得た MWNT分散液(10倍希釈)の光吸収スペクトル。  FIG. 16 is a light absorption spectrum of the MWNT dispersion (10-fold dilution) obtained in Example 8.
[図 17]図 17は、実施例 8で得た MWNT分散液(10倍希釈)の波長 lOOOnmにおけ る吸光度の経時変化。  FIG. 17 is a time-dependent change in absorbance at a wavelength of 100 nm for the MWNT dispersion (10-fold dilution) obtained in Example 8.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明で用いるカーボンナノチューブ(SWNTや MWNT)は、特に制約されず、 従来公知のものを用いることができる。 SWNTや MWNTの直径や長さに特に制約 はないが、前者では直径 0. 4-3. Onm、長さ 0. 1— 程度のもの、後者では直 径 10— 50nm、長さ 0. 1— 10 m程度のものを用いることが好ましい。  [0015] The carbon nanotubes (SWNT and MWNT) used in the present invention are not particularly limited, and conventionally known ones can be used. The diameter and length of SWNT and MWNT are not particularly limited, but the former has a diameter of 0.4-3. Onm and a length of about 0.1—, and the latter has a diameter of 10—50 nm and a length of 0.1—. It is preferable to use one of about 10 m.
[0016] 本発明では、薄膜形成材料として、ゼラチン又はセルロース誘導体を用いる。 本発明で用いるゼラチンは、特に制約されず、従来公知のものを用いることができ、 数平均分子量が数万一数 10万のものを用いることが好まし 、。 [0016] In the present invention, gelatin or a cellulose derivative is used as a thin film forming material. The gelatin used in the present invention is not particularly limited, and any conventionally known gelatin can be used. It is preferable to use gelatin having a number average molecular weight of several hundred thousand to several hundred thousand.
また、本発明で用いるセルロース誘導体とは、セルロースエーテルやセルロースェ ステルなどのセルロース力も誘導される従来公知の化合物を意味する。本発明で好 ましく使用されるセルロース誘導体は、重合度が 100— 1000程度のものである。また In addition, the cellulose derivative used in the present invention means a conventionally known compound such as cellulose ether or cellulose ester that also induces a cellulosic power. The cellulose derivative preferably used in the present invention has a degree of polymerization of about 100 to 1000. Also
、セルロース誘導体の中でもセルロースエーテルが望ましぐ具体的にはセルロース の水酸基の一部または全部がエーテルィ匕されたもの、たとえばカルボキシメチルセ ノレロース、カノレボキシェチノレセノレロース、アミノエチノレセノレロース、ォキシェチノレセノレ ロース、ヒドロキメチノレセノレロース、ヒドロキシェチノレセノレロース、ヒドロキシプ口ピノレセ ノレロース、メチノレセノレロース、ェチノレセノレロース、ベンジノレセノレロース、トリメチノレセノレ ロースなどが好ましく使用される。 Among the cellulose derivatives, cellulose ethers are preferred. Specifically, those in which a part or all of the hydroxyl groups of cellulose are etherified, for example, carboxymethyl cenorellose, canoleboxixetinoresenorelose, aminoethinoresenorelose , Okishetinoresenorerose, hydroxymethinoresenorelose, hydroxyethinoresenorelose, hydroxypropyl pinoreses norelose, methinoresenorelose, etinoresenorelose, benzinoresenorelose, trimethinoresenorelose, etc. Is preferably used.
[0017] 本発明の SWNT含有薄膜および MWNT薄膜は、ゼラチン薄膜又はセルロース誘 導体薄膜中に、複数の SWNTあるいは MWNTが凝集することなく相互に分離した 状態で分散させた構造を有する。また、本発明でいう、 MWNT分散液とは、 MWNT がセルロース誘導体を分散剤として水中に安定に分散した状態にあるものを指す。  The SWNT-containing thin film and the MWNT thin film of the present invention have a structure in which a plurality of SWNTs or MWNTs are dispersed in a gelatin thin film or a cellulose derivative thin film in a state of being separated from each other without agglomeration. Further, the MWNT dispersion in the present invention refers to a MWNT in a state of being stably dispersed in water using a cellulose derivative as a dispersant.
[0018] これらの SWNT含有薄膜もしくは MWNT薄膜において、その厚さは 0. 1— 100 m、好ましくは 1. 0— 10 /z mである。また、その SWNT (もしくは MWNT)の分散濃 度 (割合)は、 0. 1— 10重量%である。  [0018] In these SWNT-containing thin films or MWNT thin films, the thickness is 0.1 to 100 m, preferably 1.0 to 10 / z m. The dispersion concentration (ratio) of the SWNT (or MWNT) is 0.1-10% by weight.
[0019] 本発明の SWNT含有薄膜を好ましく製造する方法について説明する。まず、ゼラ チンを用いた方法にっ 、て記す。  A method for preferably producing the SWNT-containing thin film of the present invention will be described. First, the method using gelatin is described.
[0020] 本発明の SWNT含有ゼラチン薄膜を好ましく製造するには、先ず、 SWNTが均一 分散した水性分散液を作る。分散液を作る際には、界面活性剤を用いてもよいし、用 いなくともよい。前者の場合は、水中に界面活性剤(例えばドデシル硫酸ナトリウム等 )を溶解させ、この溶液に対して SWNTを添加し分散させることによって得ることがで きる。この場合、界面活性剤の濃度は 0. 1— 10重量%、好ましくは 0. 5— 2重量% であり、 SWNTの濃度は、界面活性剤溶液 100重量部当たり、 0. 1一 10重量部、好 ましくは 1一 5重量部である。なお、この場合、 SWNTの分散には、超音波処理等の 分散促進手段を併用することができる。 [0021] このようにして得た分散液は、好ましくは、遠心分離して、微細 SWNTを含む上澄 液を回収し、この上澄液を SWNT分散液として用いるのがよい。この場合の遠心分 離において、その加速度は 5千一 40万 G、好ましくは 1万一 30万 Gである。 In order to preferably produce the SWNT-containing gelatin thin film of the present invention, first, an aqueous dispersion in which SWNT is uniformly dispersed is prepared. In preparing the dispersion, a surfactant may or may not be used. In the former case, it can be obtained by dissolving a surfactant (eg, sodium dodecyl sulfate) in water, and adding and dispersing SWNT to this solution. In this case, the concentration of the surfactant is 0.1 to 10% by weight, preferably 0.5 to 2% by weight, and the concentration of SWNT is 0.1 to 10 parts by weight per 100 parts by weight of the surfactant solution. And preferably one to five parts by weight. In this case, the dispersion of SWNTs can be combined with a dispersion promoting means such as ultrasonic treatment. [0021] The dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and this supernatant is used as a SWNT dispersion. In the centrifugation in this case, the acceleration is 51,400,000 G, preferably 11,300,000 G.
[0022] 次に、前記 SWNT分散液、好ましくはその遠心分離上澄液とゼラチン水溶液を混 合する。  Next, the SWNT dispersion, preferably the centrifuged supernatant thereof, and an aqueous gelatin solution are mixed.
このゼラチン水溶液において、ゼラチンの濃度は 2— 20重量0 /0、好ましくは 4一 15 重量%である。この混合液において、ゼラチンの濃度は、 1一 10重量0 /0、好ましくは 2 一 10重量%の範囲に調整するのがよい。 In this aqueous gelatin solution, the concentration of gelatin 2 20 weight 0/0, preferably 4 one 15 wt%. In this mixture, the concentration of the gelatin, 1 one 10 weight 0/0, and it is preferably adjusted in the range of 2 one 10 wt%.
[0023] なお、上記分散液を作る際に界面活性剤を用いない場合は、水中に SWNTとゼラ チンを直接添加し、分散させること〖こよって、 SWNTが均質分散した水性分散液を 作ることが出来る。この場合、 SWNTの濃度は 0. 01— 1重量%、好ましくは 0. 03— 0. 1重量%であり、ゼラチンの濃度は 1一 15重量0 /0、好ましくは 2— 10重量%である 。この場合にも、 SWNTの分散には、超音波処理等の分散促進手段を併用すること ができる。 [0023] When a surfactant is not used in preparing the above-mentioned dispersion liquid, SWNT and gelatin are directly added to water and dispersed, thereby producing an aqueous dispersion in which SWNT is homogeneously dispersed. Can be done. In this case, the concentration of the SWNT is 0. 01 1% by weight, preferably 0.1 03 0.1 1 wt%, the concentration of gelatin 1 one 15 weight 0/0, preferably 2-10 wt% . Also in this case, the dispersion of SWNTs can be used in combination with dispersion promoting means such as ultrasonic treatment.
このようにして得た分散液は、好ましくは、遠心分離して、微細 SWNTを含む上澄 液を回収し、この上澄液を SWNT分散液として用いるのがよい。この場合の遠心分 離において、その加速度は 5千一 40万 G、好ましくは 1万一 30万 Gである。  The dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and the supernatant is used as a SWNT dispersion. In the centrifugation in this case, the acceleration is 51,400,000 G, preferably 11,300,000 G.
[0024] 以上のようにして作製した SWNT'界面活性剤 ·ゼラチン混合液、もしくは、 SWNT [0024] The SWNT 'surfactant / gelatin mixture prepared as described above, or SWNT'
'ゼラチン混合液を、基板上にキャスト製膜することにより本発明の SWNT含有薄膜 が得られる。  'The SWNT-containing thin film of the present invention can be obtained by casting a gelatin mixture on a substrate.
[0025] 得られた SWNT薄膜は、ゼラチンの迅速なゲルィ匕作用により、液中に相互に分離 した状態で分散した SWNT (分離 SWNT)を、その分散状態で含有するものである。 すなわち、膜中に分散した SWNTは、凝集を生じることなぐ相互に分離した状態で 存在する。  [0025] The obtained SWNT thin film contains SWNTs (separated SWNTs) dispersed in a liquid in a state of being separated from each other by a rapid gelling action of gelatin in a dispersed state. That is, the SWNTs dispersed in the membrane exist in a state of being separated from each other without causing aggregation.
更に、この薄膜を一方向に延伸することにより、 SWNTが高度に配向した SWNT 含有薄膜を得ることができる。この場合の延伸倍率は、 1. 5— 10倍である。  Further, by stretching this thin film in one direction, a SWNT-containing thin film in which SWNTs are highly oriented can be obtained. The stretching ratio in this case is 1.5 to 10 times.
[0026] つぎに、薄膜形成材料としてセルロース誘導体を用いた方法にっ 、て記す。 Next, a method using a cellulose derivative as a thin film forming material will be described.
水中に SWNTとセルロース誘導体などのポリマーを直接添加し、分散させることに よって、 SWNTが均質分散した水性分散液を作ることが出来る。この場合、 SWNT の濃度は 0. 005— 1重量0 /0、好ましくは 0. 01-0. 2重量0 /0であり、ポリマーの濃度 は 0. 05— 20重量0 /0、好ましくは 0. 1— 10重量0 /0である。この場合、 SWNTの分散 には、超音波処理等の分散促進手段を併用することができる。 To add and disperse SWNT and polymers such as cellulose derivatives directly in water Therefore, an aqueous dispersion in which SWNTs are homogeneously dispersed can be produced. In this case, the concentration of the SWNT is 0. 005- 1 wt 0/0, preferably 0. 01-0. 2 weight 0/0, the concentration of the polymer is 0.5 05 20 weight 0/0, preferably 0 . 1-10 weight 0/0. In this case, the dispersion of SWNTs may be used in combination with a dispersion promoting means such as ultrasonic treatment.
このようにして得た分散液は、好ましくは、遠心分離して、微細 SWNTを含む上澄 液を回収し、この上澄液を SWNT分散液として用いるのがよい。この場合の遠心分 離において、その加速度は 5千一 40万 G、好ましくは 1万一 30万 Gである。  The dispersion thus obtained is preferably centrifuged to recover a supernatant containing fine SWNTs, and the supernatant is used as a SWNT dispersion. In the centrifugation in this case, the acceleration is 51,400,000 G, preferably 11,300,000 G.
[0027] 以上のようにして作製した SWNT'ポリマー混合液を、基板上にキャスト製膜するこ とにより本発明の SWNT含有セルロース誘導体薄膜が得られる。  The SWNT′-containing cellulose derivative thin film of the present invention can be obtained by casting the SWNT ′ polymer mixture prepared as described above on a substrate.
[0028] 得られた SWNT薄膜は、セルロース誘導体の優れた分散作用によって、 SWNTを 、液中で相互に分離した状態を保持したまま含有するものである。すなわち、膜中に 分散した SWNTは、凝集を生じることなぐ相互に分離した状態で存在する。得られ た薄膜の光吸収スペクトルを測定することにより、薄膜中における SWNTの分散濃度 は、 0. 1— 3重量%と見積もられた。  [0028] The obtained SWNT thin film contains SWNT while maintaining a state of being separated from each other in a liquid due to an excellent dispersing action of the cellulose derivative. That is, the SWNTs dispersed in the membrane exist in a state of being separated from each other without causing aggregation. By measuring the light absorption spectrum of the obtained thin film, the dispersion concentration of SWNT in the thin film was estimated to be 0.1 to 3% by weight.
[0029] また、 MWNT分散液および MWNT含有薄膜も、 SWNTの場合とほぼ同様の方 法によって作製することができるが、その分散液を調製する場合において、必ずしも 遠心分離を行う必要はない。該分散液は長期間保存しても安定に分散状態を保つこ とができ、またセルロース誘導体が安価'安全で、かつ環境負荷が少ないことにより、 導電性コーティング、電磁波シールド材料、電界放出材料等を作製する目的に好ま しく使用することができる。  [0029] Further, the MWNT dispersion and the MWNT-containing thin film can be prepared by substantially the same method as in the case of SWNT, but it is not always necessary to perform centrifugation when preparing the dispersion. The dispersion can maintain a stable dispersion state even when stored for a long period of time, and since the cellulose derivative is inexpensive and safe and has a low environmental load, it can be used for conductive coatings, electromagnetic wave shielding materials, field emission materials, etc. It can be used favorably for the purpose of producing a.
[0030] 本発明に係る、薄膜形成材料としてゼラチンを用いたカーボンナノチューブ薄膜は 、単層カーボンナノチューブが相互に分離された状態で存在し、分離 SWNTが本来 有している光 ·電子特性'機能が十分に発現し、更には単層カーボンナノチューブが 一方向に簡便に配向するといつた特性を有する。したがって、 SWNTの持つ光 '電 子機能を生かして、直流 ·交流電気伝導、光伝導、光起電力、発光機能、電界発光 機能、偏光機能、非線形光学機能、各種センサー機能等を有する製品用材料、特 に発光材料および偏光材料として有利に用いることができる。  [0030] The carbon nanotube thin film using gelatin as a thin film forming material according to the present invention exists in a state where single-wall carbon nanotubes are separated from each other, and the optical and electronic properties' functions inherent to the separated SWNTs are provided. Are sufficiently expressed, and the single-walled carbon nanotube is easily orientated in one direction. Therefore, taking advantage of the optical and electronic functions of SWNT, materials for products that have DC / AC electric conduction, photoconduction, photovoltaic, light-emitting, electroluminescence, polarization, nonlinear optical functions, various sensor functions, etc. In particular, it can be advantageously used as a light emitting material and a polarizing material.
また、本発明に係る、薄膜形成材料としてセルロース誘導体を用いたカーボンナノチ ユーブ薄膜は、分離 SWNTが本来有している光 ·電子特性 ·機能が十分に発現し、 更に分散濃度を広 、範囲で調節することが可能なことから、 SWNTの持つ光 ·電子 機能を生かして、直流 ·交流電気伝導、光伝導、光起電力、発光機能、電界発光機 能、非線形光学機能、各種センサー機能等を有する製品用材料、特に発光材料とし て有利に用いることができる。 Further, according to the present invention, a carbon nanotube using a cellulose derivative as a thin film forming material is provided. Ube thin film fully utilizes the optical and electronic properties of SWNTs because the optical, electronic properties, and functions inherent to the separated SWNTs are fully exhibited, and the dispersion concentration can be adjusted over a wide range. Therefore, it can be advantageously used as a material for products having DC / AC electric conduction, photoconduction, photoelectromotive force, light emitting function, electroluminescent function, non-linear optical function, various sensor functions, etc., particularly as a light emitting material.
また、本発明の多層カーボンナノチューブ分散液 (MWNT分散液ともいう)は、セ ルロース誘導体を分散剤として用いることにより、分散安定性に優れ、かつ安価'安 全で環境負荷の少な 、ものであり、 MWNT含有薄膜の作製に好ましく使用すること ができるものである。また、該分散液カゝら作製した MWNT薄膜は、導電性コーティン グ、電磁波シールド材料、電界放出材料等の目的に使用することができる。  Further, the multi-walled carbon nanotube dispersion liquid (also referred to as MWNT dispersion liquid) of the present invention has excellent dispersion stability, is inexpensive, safe, and has a low environmental load by using a cellulose derivative as a dispersant. It can be preferably used for producing a MWNT-containing thin film. Further, the MWNT thin film prepared from the dispersion liquid can be used for purposes such as a conductive coating, an electromagnetic wave shielding material, and a field emission material.
実施例  Example
[0031] 次に本発明を実施例によりさらに詳述する。  Next, the present invention will be described in more detail by way of examples.
[0032] 実施例 1 Example 1
水 30mlに界面活性剤(ドデシル硫酸ナトリウム、 SDS) 250mgを溶解し、次に SW NTを 5mg添カ卩した。このものに超音波処理を行い、生成した分散液を、 200, 000 Gの加速度で 7時間遠心分離し、その上澄み液を採取した。吸収スペクトルや発光ス ベクトルを測定し、文献(Science, 297, 593-596 (2002))のデータを参照することによ り、この上澄み液の中に分離 SWNTが含まれて!/、ることを確認した。  250 mg of a surfactant (sodium dodecyl sulfate, SDS) was dissolved in 30 ml of water, and then 5 mg of SWNT was added thereto. This was subjected to ultrasonic treatment, and the resulting dispersion was centrifuged at an acceleration of 200,000 G for 7 hours, and the supernatant was collected. By measuring the absorption spectrum and emission spectrum and referring to the data in the literature (Science, 297, 593-596 (2002)), the supernatant contains the separated SWNTs! / It was confirmed.
上記によって調製した分離 SWNT分散液と市販ゼラチンの水溶液(10重量%)と を 1: 1の重量比で、加熱しながら混合した。この混合水溶液をガラス基板上にキャス トし、室温に放置して冷却した。この冷却過程において、 SWNT分散液を含有した状 態のままゼラチンがゲルイ匕した。引き続き放置することにより、ゲル中の水分が蒸発し 乾燥薄膜を形成した。分離 SWNTの均質な薄膜を形成するためには、分離 SWNT が水溶液中で均質に分散した状態を、ゲルィ匕によって固定ィ匕することが重要なボイ ントである。これによつて、乾燥過程で起こる、チューブの凝集や膜の不均質ィ匕を防 止することが出来る。  The separated SWNT dispersion prepared above and a commercially available aqueous solution of gelatin (10% by weight) were mixed at a weight ratio of 1: 1 while heating. This mixed aqueous solution was cast on a glass substrate, and allowed to cool to room temperature. During the cooling process, gelatin gelled while containing the SWNT dispersion. By continuing to stand, the moisture in the gel evaporated and a dry thin film was formed. In order to form a homogeneous thin film of the separated SWNTs, it is important to fix the state in which the separated SWNTs are uniformly dispersed in the aqueous solution by gelling. This can prevent tube agglomeration and film inhomogeneity occurring during the drying process.
[0033] 次に、該薄膜を基板から剥離して自立膜を得た。この自立膜をエタノール:水混合 液 (3 : 2)に 1時間浸潰して膨潤させた。膨潤した膜を延伸機に固定して、 1軸方向に 延伸を行った。延伸比率は約 2倍であった。 Next, the thin film was peeled from the substrate to obtain a free-standing film. The self-standing membrane was swelled by immersing it in an ethanol: water mixed solution (3: 2) for 1 hour. Fix the swollen membrane to the stretching machine, and Stretching was performed. The stretching ratio was about twice.
[0034] 得られた薄膜は、その光学顕微鏡写真から、光学的に極めて均質なものであること が確認された。 [0034] From the optical micrograph, the obtained thin film was confirmed to be optically extremely homogeneous.
図 1にこのキャスト製膜の光吸収スペクトル及びその製膜原料である SWNT分散液 の光吸収スペクトルを示す。  Figure 1 shows the light absorption spectrum of this cast film and the light absorption spectrum of the SWNT dispersion, which is the raw material for the film.
この図 1からわ力るように、若干のピークシフトやブロードニングがある以外はほぼ同 様のスペクトルとなっており、薄膜ィ匕した後もチューブの分離状態が良好に保たれて いることが分かる。更に、この薄膜に 662nmのレーザー光を照射したところ、図 2に 示すような発光が観測された。この薄膜からの発光スペクトルは、水分散液からのも のに比べて若干のピークシフトやピークのブロードユングがあるものの、分離 SWNT の特徴である発光機能を十分に維持している。このことからも、薄膜中でチューブの 分散状態が良好に保たれていることが証明される。  As can be seen from Fig. 1, the spectra were almost the same except for a slight peak shift and broadening, indicating that the tube was kept in a good separation state even after the thin film was formed. I understand. Further, when this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 2 was observed. Although the emission spectrum from this thin film has a slight peak shift and a broad broadening of the peak compared to that from the aqueous dispersion, the emission function characteristic of the separated SWNT is sufficiently maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
図 3に本発明の SWNT含有薄膜の偏光吸収スペクトルを示す。図 3から、本発明の SWNT含有薄膜の光吸収強度は、偏光方向が延伸方向に平行 (〃)な場合が、垂 直(丄)な場合に比べて、約 1. 9倍大きくなつており、ナノチューブが延伸方向に高 度に配向していることが証明される。  FIG. 3 shows the polarization absorption spectrum of the SWNT-containing thin film of the present invention. From Fig. 3, the light absorption intensity of the SWNT-containing thin film of the present invention is about 1.9 times larger when the polarization direction is parallel (〃) to the stretching direction than when it is vertical (丄). This proves that the nanotubes are highly oriented in the stretching direction.
[0035] 比較例 1 Comparative Example 1
実施例 1と同じようにして作製した SWNTZSDS分散液に、ポリビュルピロリドン (P VP)を添加して、ガラス基板上にキャスト製膜した。このものは、実施例 1とは全く異な り、凹凸の多い極めて不均質な膜となった。それは、溶液が乾燥する過程において ゲルイ匕が起こらず溶液状態のままであるため、初期の均質な分散状態が固定化され ず、水分の蒸発に伴って、基板材と溶質との表面張力による相互作用等が原因で、 基板上の溶液部分が不均質に収縮するためと考えられる。  Polyvinylpyrrolidone (PVP) was added to the SWNTZSDS dispersion prepared in the same manner as in Example 1, and a cast film was formed on a glass substrate. This film was completely different from Example 1 and was a very heterogeneous film having many irregularities. This is because, during the drying process of the solution, since the gelling does not occur and the solution remains in the solution state, the initial homogeneous dispersion state is not fixed, and as the water evaporates, the mutual interaction between the substrate material and the solute due to the surface tension occurs. It is considered that the solution part on the substrate shrinks unevenly due to the action.
この不均質な薄膜に、 662nmのレーザー光を照射したところ発光が観測されたが 、その強度は、ゼラチン薄膜と比べてはるかに微弱なものであり、また、発光スぺタト ルは、ゼラチン分散膜と比較してブロードで形がかなり変形したものとなった。これは 、薄膜中でチューブ同志が凝集したために励起状態の失活が著しくなつたこと、及び 、凝集のために SWNTの電子状態が大幅に変化したことに起因している。このような 薄膜では、 SWNTの機能を十分に生かすことは困難であり、産業上有用なものとは 成り得ない。 When this heterogeneous thin film was irradiated with a laser beam of 662 nm, light emission was observed, but the intensity was much weaker than that of the gelatin thin film. It became broader and more deformed than the membrane. This is due to the fact that the excited state was significantly deactivated due to the aggregation of the tubes in the thin film, and that the electronic state of SWNT was significantly changed due to the aggregation. like this It is difficult to make full use of the functions of SWNTs with thin films, and they cannot be industrially useful.
[0036] 比較例 2 Comparative Example 2
実施例 1と同じようにして作製した SWNTZSDS分散液に、ポリビュルアルコール( PVA)を添加して、ガラス基板上にキャスト製膜した。このものは、実施例 1とは全く異 なり、水分の蒸発と共に、溶液の形状が円形に収縮し、中心部が盛り上がった不均 質な固形物となった。それは、溶液が乾燥する過程においてゲル化が起こらず溶液 状態のままであるため、水分の蒸発に伴って、基板材と溶質との表面張力による相互 作用等が原因で、基板上の溶液部分が不均質に収縮するためと考えられる。  Polyvinyl alcohol (PVA) was added to the SWNTZSDS dispersion prepared in the same manner as in Example 1, and a cast film was formed on a glass substrate. This was completely different from Example 1, and the shape of the solution shrank in a circular shape with the evaporation of water, and became an uneven solid with a raised central portion. Because the solution does not gel during the drying process and remains in the solution state, the solution portion on the substrate may be lost due to the interaction between the substrate material and the solute due to the surface tension, etc. as the water evaporates. This is probably due to uneven shrinkage.
この不均質な固形物に 662nmのレーザー光を照射したところ発光が観測された。 この場合には、その発光強度はゼラチン分散膜と同等であるが、試料厚がゼラチン 分散膜より大幅に大きいことを考慮すると、発光効率が大幅に減少していることが明 らかである。これは、チューブの凝集によって励起状態の失活が著しくなつたためで ある。発光スペクトルは、比較例 1と同様にかなり変形したものとなった。これは、チュ ーブ同志が凝集したために、電子状態が大幅に変化したことに起因する。このような 固形物では、 SWNTの機能を十分に生かすことは困難であり、産業上有用なものと は成り得ない。  When this heterogeneous solid was irradiated with 662 nm laser light, light emission was observed. In this case, the luminous intensity is equivalent to that of the gelatin dispersion film, but it is clear that the luminous efficiency is greatly reduced in consideration of the fact that the sample thickness is much larger than that of the gelatin dispersion film. This is because the deactivation of the excited state became remarkable due to the aggregation of the tubes. The emission spectrum was considerably deformed similarly to Comparative Example 1. This is due to the fact that the electronic state has changed significantly due to the aggregation of tubes. With such solids, it is difficult to make full use of the function of SWNT, and it cannot be industrially useful.
[0037] 実施例 2 Example 2
実施例 1と同様の方法で作製し、更に同様の方法で膨潤させた自立膜を、延伸機 に固定して、延伸比率約 3倍に延伸した。得られた薄膜は、光学顕微鏡写真から、光 学的に極めて均質なものであることが確認された。  The self-standing film produced in the same manner as in Example 1 and further swollen by the same method was fixed to a stretching machine and stretched to a stretching ratio of about 3 times. From the optical micrograph, the obtained thin film was confirmed to be optically very homogeneous.
図 4は、この SWNT含有薄膜の偏光吸収スペクトルである。図 3と比較すると、延伸 倍率が 2倍から 3倍に増加したことによって、二色比が約 1. 9から約 3へと増大してい ること、すなわち、薄膜中での SWNTの配向度が向上していることが分かる。更に、 図 5に、この SWNT含有薄膜の偏光顕微鏡写真を示す。クロス-コルで観察した場 合、延伸方向と偏光子軸の成す角度が 0° 、 90° では、光の透過度はほぼ 0である 力 10° 、80° でわずかに透過するようになり、 45° で最大の透過度を示す。これ らは、延伸方向とそれに垂直な方向で屈折率が大きく異なることによるものであり、 S WNTが延伸方向に強く配向していることを示している。図 6は、この SWNT含有薄 膜の偏光発光スペクトルである。励起光として 662nmの偏光して 、な 、光を用いて いるが、発光は強く偏光しており、延伸方向に平行な偏光成分が垂直成分に比べて 約 6倍程度強くなつている。このことも、 SWNTが延伸方向に強く配向していることの 証拠となる。また、本結果は、該 SWNT含有薄膜が、偏光発光材料として利用できる ことを示している。 FIG. 4 is a polarization absorption spectrum of the SWNT-containing thin film. Compared to Fig. 3, the dichroic ratio increased from about 1.9 to about 3 as the draw ratio increased from 2 to 3 times, that is, the degree of orientation of SWNT in the thin film increased. It can be seen that it has improved. FIG. 5 shows a polarizing microscope photograph of the SWNT-containing thin film. When observed with cross-col, when the angle between the stretching direction and the polarizer axis is 0 ° or 90 °, the light transmittance is almost 0, and the light is slightly transmitted at a force of 10 ° or 80 °, It shows maximum transmission at 45 °. This is due to the large difference in the refractive index between the stretching direction and the direction perpendicular thereto. This indicates that WNT is strongly oriented in the stretching direction. FIG. 6 shows a polarized light emission spectrum of the SWNT-containing thin film. Although light having a wavelength of 662 nm is used as the excitation light, the emission is strongly polarized, and the polarization component parallel to the stretching direction is about six times stronger than the vertical component. This is also evidence that SWNTs are strongly oriented in the stretching direction. This result also shows that the SWNT-containing thin film can be used as a polarized light emitting material.
実施例 3 Example 3
界面活性剤を含まな ヽ 2. 5%ゼラチン水溶液 20mlに lOmgの SWNTを添カロした 溶液を超音波分散処理し、生成した分散液を 15, OOOGの加速度で 5時間遠心分離 し、その上澄み液を採取した。吸収スペクトルや発光スペクトルを測定し、文献( Science, 297, 593-596  Surfactant-free ヽ 2. A solution of lOmg SWNT added in 20 ml of 5% gelatin aqueous solution was subjected to ultrasonic dispersion treatment, and the resulting dispersion was centrifuged at 15, OOOG for 5 hours, and the supernatant was used. Was collected. The absorption spectrum and emission spectrum were measured, and the literature (Science, 297, 593-596
(2002))のデータを参照することにより、この上澄み液の中に分離 SWNTが含まれて 、ることを確認した。  (2002)), it was confirmed that separated SWNTs were contained in the supernatant.
上記の SWNTゼラチン混合溶液を加熱してガラス基板上にキャストし、室温に放置 して冷却した。この冷却過程において、 SWNT分散液を含有した状態のままゼラチ ンがゲルイ匕した。引き続き放置することにより、ゲル中の水分が蒸発し乾燥薄膜を形 成した。分離 SWNTの均質な薄膜を形成するためには、分離 SWNTが水溶液中で 均質に分散した状態を、ゲルィ匕によって固定ィ匕することが重要なポイントである。これ によって、乾燥過程で起こる、チューブの凝集や膜の不均質ィ匕を防止することが出来 る。  The above SWNT gelatin mixed solution was heated and cast on a glass substrate, and allowed to cool to room temperature. In this cooling process, gelatin gelled while containing the SWNT dispersion. By continuing to stand, the moisture in the gel evaporated to form a dry thin film. In order to form a homogeneous thin film of the separated SWNTs, it is important to fix the state in which the separated SWNTs are uniformly dispersed in the aqueous solution by gelling. As a result, it is possible to prevent tube agglomeration and film heterogeneity occurring during the drying process.
得られた薄膜は、その光学顕微鏡写真から、光学的に極めて均質なものであること が確認された。  From the optical micrograph, the obtained thin film was confirmed to be optically very homogeneous.
図 7にこのキャスト膜の光吸収スペクトルを示す。  Figure 7 shows the light absorption spectrum of this cast film.
この図 7から分力るように、若干のピークシフトやブロードニングがある以外は、図 1 の SWNT分散液と同様のスペクトルとなっており、薄膜ィ匕した後もチューブの分離状 態が良好に保たれていることが分かる。更に、この薄膜に 662nmのレーザー光を照 射したところ、図 8に示すような発光が観測された。この薄膜からの発光スペクトルは、 図 2の SWNT分散液からのものに比べて若干のピークシフトやピークのブロードニン グがあるものの、分離 SWNTの特徴である発光機能を十分に維持している。このこと からも、薄膜中でチューブの分散状態が良好に保たれていることが証明される。 As can be seen from Fig. 7, the spectrum is the same as that of the SWNT dispersion in Fig. 1 except for a slight peak shift and broadening, and the separation state of the tube is good even after thin film deposition. You can see that it is kept. Further, when this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 8 was observed. The emission spectrum of this thin film shows a slight peak shift and peak broadening compared to that of the SWNT dispersion in Fig. 2. Despite the fact that it has a light emitting diode, the light emission function, which is a feature of the separated SWNT, is sufficiently maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
[0039] 実施例 4 Example 4
水 20mlにカルボキシメチルセルロース lOOmg (約 0. 5重量%)を溶解し、次いで S WNTを 6mg添カ卩した。このものに超音波処理を行い、生成した分散液を、 15万 G— 20万 Gの加速度で 5時間遠心分離し、その上澄み液を採取した。吸収スペクトルや 発光スペクトルを測定し、文献(Science, 297, 593-596 (2002))のデータを参照するこ とにより、この上澄み液の中に分離 SWNTが含まれていることを確認した。  100 mg (about 0.5% by weight) of carboxymethyl cellulose was dissolved in 20 ml of water, and then 6 mg of SWNT was added. This was subjected to ultrasonic treatment, and the resulting dispersion was centrifuged at an acceleration of 150,000 G to 200,000 G for 5 hours, and the supernatant was collected. The absorption spectrum and the emission spectrum were measured, and by referring to the data of the literature (Science, 297, 593-596 (2002)), it was confirmed that the separated SWNTs were contained in the supernatant.
この分散水溶液 200 μ 1をガラス基板(サイズ: 13 X 38 X lmm)上にキャストし、室 温に放置して乾燥させることにより SWNT薄膜を得た。得られた薄膜は、その光学顕 微鏡写真から、光学的に極めて均質なものであることが確認された。  200 μl of this aqueous dispersion was cast on a glass substrate (size: 13 × 38 × lmm) and left at room temperature to dry to obtain a SWNT thin film. From the optical micrograph, it was confirmed that the obtained thin film was optically very homogeneous.
図 9aにこのキャスト薄膜の光吸収スペクトル、図 9bにその製膜原料である SWNT 分散液の光吸収スペクトルを示す。なお、本分散液は SWNTの分散濃度が極めて 高ぐそのままでは光吸収スペクトル測定が困難であるため、 10倍に希釈して、適切 な光学濃度に調整した上で測定に供している(光路長 lcmのセルを使用)。  Fig. 9a shows the light absorption spectrum of this cast thin film, and Fig. 9b shows the light absorption spectrum of the SWNT dispersion, which is the film forming material. Since this dispersion is difficult to measure the optical absorption spectrum when the dispersion concentration of SWNT is extremely high, it is diluted 10-fold and adjusted to an appropriate optical density before the measurement (optical path length). lcm cell).
この図 9aと図 9bを比較してわ力るように、若干のブロードユングがある以外はほぼ 同様のスぺ外ルとなっており、薄膜ィ匕した後もチューブの分離状態が良好に保たれ ていることが分かる。更に、この薄膜に 662nmのレーザー光を照射したところ、図 10 aに示すような発光が観測された。この薄膜からの発光スペクトルは、水分散液(図 10 b、 20倍希釈)力 のものに比べて若干のピークシフトやピークのブロードユングがあ るものの、分離 SWNTの特徴である発光機能を十分に維持している。このことからも 、薄膜中でチューブの分散状態が良好に保たれていることが証明される。  As can be seen by comparing FIGS. 9a and 9b, the outer diameter of the tube is almost the same except that there is a slight broad jung. You can see that it is dripping. Further, when this thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 10A was observed. The emission spectrum from this thin film shows a slight peak shift and broad broadening of the peak compared to that of the aqueous dispersion (Fig. 10b, 20-fold dilution) power, but the emission function that is characteristic of the separated SWNTs is sufficient. Has been maintained. This also proves that the dispersion state of the tube is well maintained in the thin film.
[0040] 実施例 5 Example 5
水 20mlに、別のセルロース誘導体であるヒドロキシェチルセルロース lOOOmg (約 5重量%)を溶解し、次いで SWNTを 6mg添加した。それ以降は、実施例 4と同じ方 法によって、 SWNT分散液を作製し、更に、実施例 4と同じ方法によって、キャスト膜 を作製した。  In 20 ml of water was dissolved another 100 mg of hydroxyethyl cellulose (about 5% by weight), and then 6 mg of SWNT was added. Thereafter, a SWNT dispersion was prepared by the same method as in Example 4, and a cast film was prepared by the same method as in Example 4.
図 11に、このキャスト膜の光吸収スペクトルを示す。この場合も、カルボキシメチル セルロースを用いた場合と同様なスペクトルが得られており、膜中で SWNTが良好に 分散していることが分かる。また、吸収強度も、実施例 4と同等の値が得られており、ヒ ドロキシェチルセルロースもまた、 SWNT含有薄膜の作製に有効に使用できることが 示された。更に、この分散薄膜に 662nmのレーザー光を照射したところ、図 12に示 すような発光が観測された。薄膜からの発光スペクトル及び強度は、実施例 4 (図 10) と同等の結果となっており、このことからも、ヒドロキシェチルセルロース薄膜中におい て、 SWNTが良好に分散していることが証明される。 FIG. 11 shows a light absorption spectrum of this cast film. Again, carboxymethyl A spectrum similar to that obtained when cellulose was used was obtained, indicating that SWNTs were well dispersed in the film. In addition, the absorption strength was equivalent to that of Example 4, indicating that hydroxyshethyl cellulose can also be effectively used for producing a SWNT-containing thin film. Further, when this dispersion thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 12 was observed. The emission spectrum and intensity from the thin film were the same as those in Example 4 (Fig. 10), which proves that SWNTs were well dispersed in the hydroxyethyl cellulose thin film. Is done.
[0041] 実施例 6 Example 6
水 20mlに、更に別のセルロース誘導体であるヒドロキシプロピルセルロース 1000 mg (約 5重量%)を溶解し、次いで SWNTを 6mg添加した。それ以降は、実施例 4と 同じ方法によって、 SWNT分散液を作製し、更に、実施例 4と同じ方法によって、キ ヤスト膜を作製した。  In 20 ml of water, 1000 mg (about 5% by weight) of another cellulose derivative, hydroxypropylcellulose, was dissolved, and then 6 mg of SWNT was added. Thereafter, a SWNT dispersion was prepared by the same method as in Example 4, and a cast film was prepared by the same method as in Example 4.
図 13に、このキャスト膜の光吸収スペクトルを示す。実施例 4一 5と比較すると、吸 収強度は、弱くなつているものの、吸収スペクトルの形状は、実施例 4一 5とほぼ同等 なものとなっており、ヒドロキシプロピルセルロースもまた、 SWNT含有薄膜の作製に 有効に使用できることが示された。更に、この分散薄膜に 662nmのレーザー光を照 射したところ、図 14に示すような発光が観測された。この薄膜からの発光スペクトルは 、実施例 4 (図 12)と同等の結果となっており、このことからも、ヒドロキシプロピルセル ロース薄膜中にお 、て、 SWNTが良好に分散して 、ることが証明される。  FIG. 13 shows the light absorption spectrum of this cast film. Compared to Examples 415, although the absorption intensity was weaker, the shape of the absorption spectrum was almost the same as that of Examples 415, and hydroxypropylcellulose was also a SWNT-containing thin film. It was shown that it can be used effectively for the production of Further, when this dispersion thin film was irradiated with a laser beam of 662 nm, light emission as shown in FIG. 14 was observed. The emission spectrum from this thin film is equivalent to that of Example 4 (FIG. 12), which indicates that SWNTs are well dispersed in the hydroxypropyl cellulose thin film. Is proved.
[0042] 実施例 7 Example 7
実施例 5と同じ方法で作製した SWNT分散液に少量のグリセリンを添加した上で、 実施例 5と同じ方法によってキャスト膜を作製した。次に、該薄膜を基板から剥離して 自立膜を得た。この自立膜を延伸機に固定して 100°C程度に加熱しながら 1軸方向 に延伸を行った。延伸比率は約 2倍であった。  A small amount of glycerin was added to the SWNT dispersion prepared in the same manner as in Example 5, and a cast membrane was fabricated in the same manner as in Example 5. Next, the thin film was peeled from the substrate to obtain a free-standing film. The self-standing film was fixed in a stretching machine and stretched in one axis while being heated to about 100 ° C. The stretching ratio was about twice.
図 15に本延伸薄膜の偏光吸収スペクトルを示す。図 15から明らかなように、本延 伸薄膜の光吸収強度は、偏光方向が延伸方向に平行 (〃)な場合が、垂直(丄)な場 合に比べて、 2. 3倍大きくなつており、ナノチューブが延伸方向に配向していることが 証明される。 [0043] 実施例 8 Figure 15 shows the polarization absorption spectrum of the stretched thin film. As is clear from Fig. 15, the light absorption intensity of the stretched thin film is 2.3 times larger when the polarization direction is parallel (〃) to the stretching direction than when it is perpendicular (丄). This proves that the nanotubes are oriented in the stretching direction. Example 8
水 20mlにカノレボキシメチノレセノレロース 200mg (約 1重量0 /0)を溶解し、次 、で MW NTを 6mg添加した。このものに超音波処理を行い、生成した分散液を 1日程度静置 した後、その上澄み液を採取した。図 16は、この MWNT分散液の吸収スペクトルで あるが、 SWNTとは異なり特徴的な吸収ピークは観測されない。なお、本分散液は MWNTの分散濃度が極めて高ぐそのままでは光吸収スペクトル測定が困難である ため、 10倍に希釈して、適切な光学濃度に調整した上で測定に供している(光路長 lcmのセルを使用)。図 17に、この分散液の波長 lOOOnmにおける吸光度の経時 変化を示すが、作製カゝら 28日を経過しても、その吸光度に大きな変化が見られず、 該分散液にぉ 、ては MWNTが極めて安定に分散されて ヽることが分かる。 Was dissolved 20ml of water to Kano levo Kishime Chino receptacle Honoré loin 200 mg (about 1 wt 0/0), the following, in the MW NT was added 6 mg. This was subjected to ultrasonic treatment, and the resulting dispersion was allowed to stand for about one day, after which the supernatant was collected. Figure 16 shows the absorption spectrum of this MWNT dispersion. Unlike SWNT, no characteristic absorption peak is observed. Since this dispersion is difficult to measure the optical absorption spectrum when the dispersion concentration of MWNT is extremely high, it is diluted 10-fold, adjusted to an appropriate optical density, and used for measurement (optical path length). lcm cell). FIG. 17 shows the time-dependent change in the absorbance of the dispersion at a wavelength of 100 nm. Even after 28 days from the preparation, no significant change was observed in the absorbance. Is very stably dispersed.
[0044] 実施例 9 Example 9
実施例 8で作製した MWNT分散液をガラス基板 (サイズ: 13 X 38 X lmm)上にキ ャストし、室温に放置して乾燥させることにより MWNT分散薄膜を得た。得られた薄 膜は、その光学顕微鏡写真から、光学的に均質なものであることが確認された。この MWNT分散膜の電気抵抗を評価したところ、シート抵抗として 160k Ω /口という値 が得られ、高分子薄膜中にお ヽて MWNTが導電性フィラーとして機能し得ることが 示された。  The MWNT dispersion prepared in Example 8 was cast on a glass substrate (size: 13 × 38 × 1 mm), and allowed to dry at room temperature to obtain an MWNT dispersion thin film. From the optical micrograph, the obtained thin film was confirmed to be optically homogeneous. When the electrical resistance of the MWNT dispersed film was evaluated, a sheet resistance of 160 kΩ / port was obtained, indicating that MWNT can function as a conductive filler in the polymer thin film.

Claims

請求の範囲 The scope of the claims
[1] カーボンナノチューブを含有する薄膜であって、該薄膜形成材料がゼラチンまたは セルロース誘導体であることを特徴とするカーボンナノチューブ含有薄膜。  [1] A thin film containing carbon nanotubes, wherein the material for forming the thin film is gelatin or a cellulose derivative.
[2] 複数のカーボンナノチューブが相互に分離した状態で分散して 、ることを特徴とする 請求項 1に記載のカーボンナノチューブ含有薄膜。  [2] The carbon nanotube-containing thin film according to claim 1, wherein the plurality of carbon nanotubes are dispersed while being separated from each other.
[3] カーボンナノチューブが単層又は多層カーボンナノチューブであることを特徴とする 請求項 1又は 2に記載のカーボンナノチューブ含有薄膜。 [3] The carbon nanotube-containing thin film according to claim 1 or 2, wherein the carbon nanotube is a single-walled or multi-walled carbon nanotube.
[4] カーボンナノチューブがー方向に配向して 、ることを特徴とする請求項 1一 3 、ずれ かに記載の単層カーボンナノチューブ含有薄膜。 4. The single-walled carbon nanotube-containing thin film according to claim 13, wherein the carbon nanotubes are oriented in a negative direction.
[5] 請求項 1一 4いずれかに記載のカーボンナノチューブ含有薄膜からなる発光材料。 [5] A luminescent material comprising the carbon nanotube-containing thin film according to any one of [14] to [14].
[6] 請求項 1一 4何れかに記載の単層カーボンナノチューブ含有薄膜からなる偏光材料 [6] A polarizing material comprising the single-walled carbon nanotube-containing thin film according to any one of [14] to [14].
[7] 多層カーボンナノチューブを含有する分散液であって、該分散剤がセルロース誘導 体であることを特徴とする多層カーボンナノチューブ含有分散液。 [7] A dispersion containing multi-walled carbon nanotubes, wherein the dispersion is a cellulose derivative.
PCT/JP2005/003367 2004-03-02 2005-03-01 Thin film containing carbon nanotube WO2005082775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510516A JPWO2005082775A1 (en) 2004-03-02 2005-03-01 Carbon nanotube-containing thin film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-058033 2004-03-02
JP2004058033 2004-03-02
JP2004-297366 2004-10-12
JP2004297366 2004-10-12
JP2004-377140 2004-12-27
JP2004377140 2004-12-27

Publications (1)

Publication Number Publication Date
WO2005082775A1 true WO2005082775A1 (en) 2005-09-09

Family

ID=34916094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003367 WO2005082775A1 (en) 2004-03-02 2005-03-01 Thin film containing carbon nanotube

Country Status (2)

Country Link
JP (1) JPWO2005082775A1 (en)
WO (1) WO2005082775A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067674A (en) * 2007-09-11 2009-04-02 Korea Inst Of Energy Research Method of manufacturing cellulose electrode supporting platinum nano-catalyst, cellulose electrode supporting platinum namo-catalyst, method of manufacturing cellulose electrode for fuel cell and cellulose fiber
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2009277736A (en) * 2008-05-12 2009-11-26 Hokkaido Univ Electromagnetic wave shielding material and manufacturing method therefor
JP2011207632A (en) * 2010-03-29 2011-10-20 Cci Corp Method for producing carbon nanotube dispersion
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
WO2014021344A1 (en) * 2012-07-30 2014-02-06 独立行政法人産業技術総合研究所 Method for producing electrically conductive thin film, and electrically conductive thin film produced by said method
WO2014115560A1 (en) 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2015101722A (en) * 2013-11-25 2015-06-04 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 Method for fabricating three-dimensional network structure material
CN113755018A (en) * 2021-09-30 2021-12-07 哈尔滨工业大学(深圳) Flexible electromagnetic shielding material and preparation method and application thereof
RU2801054C1 (en) * 2022-06-06 2023-08-01 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН) Biopolymer films with carbon nanomaterials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006878A (en) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd Thin film el element and its driving method
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes
JP2002365427A (en) * 2001-06-04 2002-12-18 Toray Ind Inc Polarizer and method for manufacturing the same
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
JP2004276232A (en) * 2003-02-24 2004-10-07 Mitsubishi Electric Corp Carbon nanotube dispersion liquid and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071832B2 (en) * 1993-09-10 2008-04-02 ハイピリオン カタリシス インターナショナル インコーポレイテッド Liquid-containing carbon fibril material
US5576162A (en) * 1996-01-18 1996-11-19 Eastman Kodak Company Imaging element having an electrically-conductive layer
JP2005014332A (en) * 2003-06-25 2005-01-20 Toray Ind Inc Laminate and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006878A (en) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd Thin film el element and its driving method
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes
JP2002365427A (en) * 2001-06-04 2002-12-18 Toray Ind Inc Polarizer and method for manufacturing the same
JP2004124086A (en) * 2002-09-13 2004-04-22 Osaka Gas Co Ltd Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
JP2004276232A (en) * 2003-02-24 2004-10-07 Mitsubishi Electric Corp Carbon nanotube dispersion liquid and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI T. ET AL.: "Carbon Nanotube Usumaku no Sakusei to Butsuri Kagakuteki Seishitsu.", POLYMER PREPRINTS, JAPAN, THE SOCIETY OF POLYMER SCIENCE, JAPAN,, vol. 50, no. 13, 28 August 2001 (2001-08-28), pages 3259 - 3260 *
TAKAHASHI T. ET AL.: "Seitai Kobunshi Yoeki eno Bunsan Shori. Fukugoka ni yoru Tanso Carbon Nanotube no Seisei to Hyoka (2).", POLYMER PREPRINTS, JAPAN, THE SOCIETY OF POLYMER SCIENCE, JAPAN,, vol. 52, no. 9, 10 September 2003 (2003-09-10), pages 1883 - 1884 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067674A (en) * 2007-09-11 2009-04-02 Korea Inst Of Energy Research Method of manufacturing cellulose electrode supporting platinum nano-catalyst, cellulose electrode supporting platinum namo-catalyst, method of manufacturing cellulose electrode for fuel cell and cellulose fiber
JP5652201B2 (en) * 2008-03-25 2015-01-14 東レ株式会社 Conductive composite and method for producing the same
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
TWI497532B (en) * 2008-03-25 2015-08-21 Toray Industries Conductive complex body and manufacturing method thereof
EP2259272A4 (en) * 2008-03-25 2015-08-12 Toray Industries Electrically conductive complex and process for production thereof
JP2009277736A (en) * 2008-05-12 2009-11-26 Hokkaido Univ Electromagnetic wave shielding material and manufacturing method therefor
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
JP2011207632A (en) * 2010-03-29 2011-10-20 Cci Corp Method for producing carbon nanotube dispersion
WO2014021344A1 (en) * 2012-07-30 2014-02-06 独立行政法人産業技術総合研究所 Method for producing electrically conductive thin film, and electrically conductive thin film produced by said method
JPWO2014021344A1 (en) * 2012-07-30 2016-07-21 国立研究開発法人産業技術総合研究所 Method for producing conductive thin film and conductive thin film produced by the method
WO2014115560A1 (en) 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2015101722A (en) * 2013-11-25 2015-06-04 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 Method for fabricating three-dimensional network structure material
CN113755018A (en) * 2021-09-30 2021-12-07 哈尔滨工业大学(深圳) Flexible electromagnetic shielding material and preparation method and application thereof
RU2801054C1 (en) * 2022-06-06 2023-08-01 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН) Biopolymer films with carbon nanomaterials

Also Published As

Publication number Publication date
JPWO2005082775A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2005082775A1 (en) Thin film containing carbon nanotube
Hordy et al. Plasma functionalization of carbon nanotubes for the synthesis of stable aqueous nanofluids and poly (vinyl alcohol) nanocomposites
Fornes et al. Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes
Zhang et al. Poly (vinyl alcohol)/SWNT composite film
Wu et al. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton
Vaisman et al. The role of surfactants in dispersion of carbon nanotubes
Moon et al. Transparent conductive film based on carbon nanotubes and PEDOT composites
Zhang et al. Gel spinning of PVA/SWNT composite fiber
US9299477B2 (en) Electrically conductive film
Hou et al. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites
Wang et al. The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes
JP4537380B2 (en) Reinforced polymer
Shoji et al. Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film
Chen et al. Self‐organizing alignment of carbon nanotubes in thermoplastic polyurethane
Thayumanavan et al. Effect of sodium alginate modification of graphene (by ‘anion-π’type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites
Zhang et al. Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals
Giuliani et al. A new polystyrene-based ionomer/MWCNT nanocomposite for wearable skin temperature sensors
JP2008177165A (en) Transparent electrode of carbon nanotube pattern containing net-like thin film of carbon nanotube, and its manufacturing method
Calisi et al. Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites
Sapalidis et al. Fabrication of antibacterial poly (vinyl alcohol) nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes
JP2005162877A (en) Carbon nanotube-dispersed polar organic solvent and method for producing the same
Li et al. Polymer decoration on carbon nanotubes via physical vapor deposition
JP3837557B2 (en) Carbon nanotube dispersion solution and method for producing the same
Kim et al. Preparation and properties of the single‐walled carbon nanotube/cellulose nanocomposites using N‐methylmorpholine‐N‐oxide monohydrate
Abitbol et al. Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510516

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase