WO2005040038A1 - Method and device for producing fine particles - Google Patents

Method and device for producing fine particles Download PDF

Info

Publication number
WO2005040038A1
WO2005040038A1 PCT/JP2004/015599 JP2004015599W WO2005040038A1 WO 2005040038 A1 WO2005040038 A1 WO 2005040038A1 JP 2004015599 W JP2004015599 W JP 2004015599W WO 2005040038 A1 WO2005040038 A1 WO 2005040038A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
solution
fine particles
gas
spraying
Prior art date
Application number
PCT/JP2004/015599
Other languages
French (fr)
Japanese (ja)
Inventor
Zempachi Ogumi
Original Assignee
Zempachi Ogumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zempachi Ogumi filed Critical Zempachi Ogumi
Publication of WO2005040038A1 publication Critical patent/WO2005040038A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention provides a nanometer-sized (
  • the fine particles of the present invention are included in electrode / electrolyte materials applied to batteries such as lithium ion secondary batteries, nickel metal hydride batteries, and fuel cells, and in image display devices such as plasma display panels and displays using electron-emitting devices. It can be suitably used as a material of a phosphor to be used, an electrode material such as a ceramic multilayer substrate for high-frequency radio, and a photocatalyst material.
  • Patent Literature 1 and Patent Literatures 1 to 3 demand a method for efficiently and easily producing fine particles at low cost. So far, sol, gel method, coprecipitation method, PVD method, hydrothermal method, hydrolysis method, spray thermal decomposition method, etc. are known as methods for producing nanometer-sized fine particles. In the sol-gel method, the starting material alkoxide is expensive, so the raw material cost of fine particles is high. In addition, it is easily affected by manufacturing conditions such as temperature and humidity, so that stable industrial production is difficult.
  • the PVD method is not suitable as a starting material that evaporates at a low temperature, so there is a limitation on the types of fine particles that can be produced, and the production cost is high because a high vacuum device is required for vaporization.
  • the hydrothermal method requires special equipment that can withstand high temperature and pressure, and the Notch method requires expensive fine particles to be produced.
  • the hydrolysis method has a complicated manufacturing process and a wide particle size distribution of the obtained fine particles.
  • the spray pyrolysis method is relatively simple because fine particles are obtained by spraying a raw material solution to generate fine droplets and performing pyrolysis in a high-temperature reaction atmosphere. is there.
  • Various spraying means have been proposed, for example, well-known ultrasonic atomization (Patent Document
  • Patent Document 7 spraying with a two-fluid nozzle
  • Patent Document 8 pressurized spraying
  • vibrational spraying vibrational spraying
  • rotating disk type spraying with a deviation of Patent Document 8
  • electrostatic atomization Patent Document 9
  • Tepuru. V displacement is several tens of micrometer force This is a method that can efficiently produce particles with a size of about submicron meter.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-038150
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-162735
  • Patent Document 3 Japanese Patent No. 2909403
  • Patent Document 4 Japanese Patent Publication No. 63-46002
  • Patent Document 5 JP-A-6-199502
  • Patent Document 6 JP-A-8-170112
  • Patent Document 7 JP-A-11-236607
  • Patent Document 8 JP-A-2003-19427
  • Patent Document 9 JP-A-2002-187729
  • Patent Document 10 JP-A-2003-155504
  • Non-Patent Document 1 JOURNAL of the Electrochemical Society, 2003, 150, A10 00-A1007
  • Non-Patent Document 2 J. Schoonman / Solid State Ionicsl35 (2000) 5-19 Disclosure of Invention
  • an object of the present invention is to provide a method and an apparatus for efficiently producing nanometer-sized fine particles having a uniform particle diameter at low cost.
  • a method for producing fine particles of the present invention comprises:
  • the spraying is preferably performed by using a two-fluid nozzle having a liquid feed pipe for passing a solution and a gas feed pipe for passing gas, for example, a gas feed pipe provided coaxially with the liquid feed pipe. Is applied through the liquid feeding pipe.
  • the gas injected with the solution becomes turbulent near the injection port, and the turbulence of the gas flow causes the solution to become small droplets.
  • the solvent in the droplets gradually evaporates and desorbs during the flight process after spraying, reducing the surface area of the droplets. Since the droplet is charged by applying a voltage, the charge density on the surface of the droplet increases as the surface area decreases, and when it reaches a certain level, it becomes two or more minute droplets due to electrical restrictions. It splits or desorbs ions from the droplet.
  • a manufacturing apparatus suitable for the method for manufacturing fine particles of the present invention includes:
  • a liquid supply pipe having a solution injection port at one end for spraying the solution, and a coaxially provided with the liquid supply pipe over a predetermined length connected to the solution injection port, for injecting gas around the solution injection port.
  • a reactor having one end connected to the solution injection port and the gas injection port, and having a fine particle collection port at the other end;
  • a heating furnace provided around the reactor to heat the reactor
  • the solution passing through the liquid feed pipe is charged.
  • the charged solution is sprayed into the reactor of the two-fluid nozzle capillar, so that the charged solution is formed into droplets and fly in the reactor. Since the gas is also sprayed simultaneously with the spraying of the solution, the spray speed is high and the flight distance is long. Therefore, as described above, the division of the droplet and the desorption of the ions can be repeated in the flight process, and the droplet is miniaturized.
  • the droplets are thermally decomposed into nanometer-sized particles.
  • a solution containing a metal element is charged and sprayed to form fine droplets, and these particles are made uniform by a simple manufacturing process of thermally decomposing the droplets. Nanometer-sized fine particles can be continuously and efficiently produced. Since the fine particles obtained by the present invention have high crystallinity and uniform particle size, the materials for electronic devices such as batteries, displays, and ceramic multilayer substrates, magnetic materials, ferroelectrics, superconductors, photocatalysts It shows excellent performance.
  • FIG. 1 is a schematic diagram showing a two-fluid nozzle.
  • FIG. 2 is a configuration diagram of a manufacturing apparatus used in Examples 17 and 18 and Comparative Example 1.
  • FIG. 3 is a configuration diagram of a manufacturing apparatus used in Examples 8-10 and Comparative Example 2.
  • FIG. 4 is a configuration diagram of a manufacturing apparatus used in Examples 11 to 14.
  • FIG. 5 is a configuration diagram of a manufacturing apparatus used in Example 15.
  • FIG. 6 is a configuration diagram of a manufacturing apparatus used in Example 16.
  • FIG. 1 shows an example of the two-fluid nozzle used in the present invention.
  • the two-fluid nozzle has a solution jetting port 3 at one end, and a liquid sending pipe 1 through which the solution 4 flows with the other end connected to the solution supply container, and a gas introducing pipe 2 through which gas passes.
  • the liquid feed pipe 1 is linear at least over a certain length connected to the solution injection port 3, and a gas introduction pipe 2 is provided so as to coaxially surround the outside of the linear part.
  • the tip of the gas inlet pipe 2 is a ring-shaped gas jet concentric with the solution jet port 3. Make a mouth.
  • the gas introduction pipe 2 is preferably tapered. It is also preferable that the liquid sending pipe 1 is tapered. When both pipes are tapered, the gradient of the taper of the gas inlet pipe 2 is made larger. By forming the taper in this manner, the gap between the liquid feed pipe and the gas inlet pipe at the tip, that is, the difference between the inner and outer diameters of the gas injection port is reduced, so that the gas flow rate increases to about the speed of sound, and the solution is further reduced. It can be sprayed vigorously.
  • the inner diameter of the liquid sending pipe 1 in the solution injection port 3 is 10 to 1000 m and the thickness is 10 to 500 ⁇ m. If the inner diameter is less than 10 ⁇ m, the liquid sending pipe 1 may be clogged by impurities, and if the inner diameter exceeds 1000 m, it tends to become fine particles. In addition, if the thickness of the liquid sending pipe at the tip is less than 10 m, the liquid sending pipe tends to be damaged and handling is difficult, and if it is more than 500 m, coarse liquid droplets tend to be generated.
  • the conductive material may be any material that is conductive to the inner surface that comes in contact with the solution and is not easily corroded by the solution, and that has conductivity over a predetermined length. And metals such as copper, gold, and platinum. It is not necessary that all of the pipes be made of the same material.
  • V you can.
  • the tip of the liquid sending pipe made of metal or alloy, but if processing is difficult, the tip of the liquid sending pipe should be insulated with glass or the like.
  • Use materials ⁇ .
  • an insulating material such as glass and a conductive material, it is preferable to use, for example, Kovar as the conductive material.
  • the insulating material may be subjected to metal plating using an electroless plating method or the like.
  • the two-fluid nozzle is a nozzle in which part or all of the liquid feed pipe or Z and the gas inlet pipe are made non-linear, and the liquid feed pipe or / and gas inlet Nozzle with multiple pipes, Nozzles that generate ultrasonic waves, and the like can be given.
  • the gas flow injected from the gas introduction pipe swirl the gas-liquid mixing is promoted and finer particles are achieved. Also, clogging of the nozzle can be prevented by the swirling gas flow.
  • a nozzle provided with a plurality of liquid feeding pipes and / or gas introduction pipes is used, different solution gases can flow in each path.
  • the type of the carrier gas flowing through the gas introduction pipe 2 is one that does not react with the solution at normal temperature and normal pressure, but is preferably selected according to the type of the fine particles to be produced.
  • the gas pressure is controlled by using a pressure regulator such as a regulator, etc., in consideration of the shape of the two-fluid nozzle and the pressure in the reactor, which are preferably controlled to be higher than the pressure in the reactor.
  • the pressure is approximately 0.8 atm or more and 20 atm or less. Above 20 atmospheres, the two-fluid nozzle is easily broken.
  • the gas flow velocity depends on the gap between the liquid sending pipe and the gas introduction pipe at the tip of the two-fluid nozzle, and is approximately 0.1-50 liters Z. If it is less than 0.1 liter Z, the spray speed is low and it is not practical. If it exceeds 50 liter Z, the flow of the sprayed droplets tends to become turbulent.
  • the spraying rate of the solution has a direct effect on the rate of fine particle formation, and is preferably 0.5-10 4 mlZ min, more preferably 10-5 x 10 3 mlZ min.
  • the two-fluid nozzle is connected to a rotary atomizer whose liquid sending pipe 1 and gas introducing pipe 2 rotate at high speed around the axis. Is preferred.
  • the pipe axis direction of the two-fluid nozzle is set at —90 (spray direction is directly above)-+ 90 ° (spray direction) in consideration of the installation space of the device and the like. Can be selected in the range below).
  • the tube axis direction of the two-fluid nozzle is preferably 9030 °.
  • the solution flowing through the liquid sending pipe 1 is lithium (Li), sodium (Na), potassium), magnesium. (Mg), Ca (calcium), strontium (Sr), barium (Ba), carbon (C), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), yttrium (Y), zirconium (Zr), molybdenum (Mo), palladium (Pd ), Silver (Ag), tin (Sn), tungsten (W), lanthanum (La), platinum (Pt), and gold (Au).
  • a solution can be prepared by dissolving the compound containing these metal elements in a solvent.
  • the types of metal compounds include alkoxides, sulfates, chlorides, nitrates, phosphates, carbonates, acetates, perchlorates, ammonium salts, cyanide compounds, and the like. However, it is not limited to these.
  • the conductivity of the solution to be sprayed and the dielectric constant of the solvent constituting the solution be as high as possible.
  • the former has a metal element concentration closely related, 10-6 - 2 moles Z liter properly at it is preferred to preferred instrument range of 10 4 - 1 mole Z liter. If it exceeds 2 mol Z liters, the content of the solvent is small and the droplets are not easily formed into fine particles, so that coarse particles are easily generated. On the other hand, the rate of formation of fine particles becomes difficult to say that very slow because practically is less than 10-6 mole Z rates Torr.
  • the solvent constituting the solution is desired to be selected in consideration of the solubility of a solute such as a compound containing a metal element, and the like. It is preferable that the point force of the droplet to be easily charged has a high dielectric constant. . Further, from the viewpoint of the ease with which the droplets are broken, the surface tension of the solution is preferably 80 mNZm 2 or less, more preferably 50 mN / m 2 or less.
  • solvent contained in such a solution examples include methanol, ethanol, 2-propanol, n-propanol, butanol, pentanole, hexanol, ethylene glycol, propylene glycol, 3-methyl-3-methoxybutanol, Alcohols such as benzyl alcohol, 3-methyl-3-methoxybutanol, ⁇ -butyrolataton, ⁇ -methyl-2-pyrrolidone, dimethylacetamide, propylene glycol monomethyl ethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, methyl isobutyl Polar solvents such as ketone, dimethylacetamide, ⁇ , ⁇ -dimethylformamide, tetrahydrofuran, acetone and water Can be used alone or as a mixture.
  • the solution preferably contains a surfactant. Further, it is preferable that a solvent having a boiling point of 100 ° C. or less be used as a main solvent in view of the ease of desolvation. In addition, it is desirable to keep the viscosity of the solution below 100 cP from the viewpoint of the smoothness of liquid sending.
  • the two-fluid nozzle is connected to one end of a long tubular reactor 11 for performing a thermal decomposition reaction at the tip as shown in FIG.
  • the pressure in the reactor 11 should be kept at a pressure of usually at most 1 atm, preferably at most 0.5 atm, more preferably at most 0.05 atm.
  • the pressure is reduced by a vacuum pump 9 connected to the other end of the reactor 11 via the trap 8.
  • a low pressure promotes desolvation, but if the pressure is too low, it becomes difficult to spray droplets due to the characteristics of the two-fluid nozzle.
  • the pressure in the reactor near the two-fluid nozzle should be increased so that good spraying can be obtained.
  • an evacuation device such as an aspirator can be used more simply besides a vacuum evacuation pump.
  • the pumping speed VI (liter Z minute) of these pumping devices can be appropriately selected according to the volume V2 (liter) of the reactor 11 and the spraying speed of the solution, but is in a range of about 0.055 ⁇ V2 ⁇ V1 ⁇ 5. Is preferred.
  • the pressure in the solution supply container is 0.01 to 0.9 atm, preferably 0 to 0.9 atm, higher than the pressure in the reactor. It is preferable to control so that the pressure becomes higher by 1 to 0.5 atm.
  • a portion of the liquid supply pipe 11 made of a conductive material is connected to the high-voltage DC power supply 7.
  • the voltage E1 applied from the power supply 7 to the liquid sending pipe 11 can be appropriately selected according to the shape of the liquid sending pipe, the pressure and temperature in the heating furnace, the presence or absence of a counter electrode described later, and the voltage of the counter electrode.
  • a heating furnace 12 is arranged around the reactor 11.
  • the temperature inside the reactor 11 is controlled by the heating furnace 12 at room temperature or higher, preferably in the range of 40 to 1200 ° C. Temperature is measured by thermocouple 13. Therefore, the droplets sprayed into the two-fluid nozzle capillar reactor 11 receive heat from the caro heating furnace 12 and are decomposed.
  • the heating furnace 12 at least one selected from the group consisting of an infrared heating furnace, a microwave induction heating furnace, and a resistance heating furnace can be used in consideration of the physical properties of the solvent and the temperature at which fine particles are generated.
  • a heat source such as a heater may be provided in the reactor to promote heat transfer to the droplets. Also, in order to promote thermal decomposition of droplets, connect a gas burner to the reactor and burn combustible gas such as oxygen in the reactor.
  • the shape of the reactor 11 is not limited to the tubular shape as described above, and may be a spherical shape or a radial shape centered on a two-fluid nozzle for the purpose of keeping the flight distance of droplets constant.
  • the inner diameter of the tube is preferably 30 to 1000 mm. If the diameter is less than 30 mm, the production speed of the fine particles is remarkably reduced, which is not practical.If the diameter exceeds 1000 mm, the heat from the heating furnace 12 is not sufficiently transmitted to the droplets, and the crystallinity of the obtained fine particles is remarkably high. Tends to decrease.
  • the length of the tube is preferably 100-10000 mm, more preferably 300-7000 mm.
  • the diameter is less than 100 mm, the flight distance of the sprayed droplet is short, so that the size is insufficiently reduced and coarse particles are easily generated. If it exceeds 10,000 mm, the generated fine particles stay and remain in the reactor because the reactor is long, and it becomes difficult to collect the fine particles.
  • the solution 4 containing the metal element is charged by the voltage applied from the power supply 7 to the liquid sending pipe 1 while passing through the liquid sending pipe 1. Then, the charged solution 4 is applied to the two-fluid nozzle
  • the droplets are sprayed into the reactor 11 in a charged state.
  • the droplets fly in the reactor 11, are miniaturized due to electrical restrictions during the flight, and are decomposed by receiving heat from the heating furnace 12 to become nanometer-sized fine particles.
  • a known collection method can be used, and examples thereof include a filter set using a cyclone and a bag filter, and an electrostatic collection type. In the illustrated example, the fine particles are deposited on the collecting substrate 14 placed at the other end in the reactor 11, so that the fine particles can be easily collected.
  • a heater may be provided in the reactor to increase the amount of heat supplied to the droplets to promote thermal decomposition. Further, by fixing the collecting substrate on the heater, a film containing nanometer-sized fine particles can be formed on the collecting substrate.
  • the average particle diameter of the fine particles produced by the production method of the present invention is generally in the range of 11 100 nm. Therefore, the production method of the present invention is, for example, LiCoO, LiNiO, LiMnO (provided that 0.8 ⁇ a ⁇ l. 3) used as a positive electrode active material of a lithium ion secondary battery,
  • Li FePO (provided that 0.8 ⁇ a ⁇ l. 3)
  • Li Ni Co O (provided that 0.8 ⁇ a ⁇ l. 3, b + c a 3 a b c 2
  • Me represents at least one element selected from the group consisting of B, Al, Mg, Si, Cu, Ti, V, Mn, Ni, Sn, Zr and Cr. ) And the like. Also, the production of carbon fine particles such as graphite, non-graphitizable carbon, and graphitizable carbon, which are preferably used as a negative electrode active material of a lithium ion secondary battery, silicon, tin, and LiTiO.
  • the production method of the present invention is also preferably used when producing an electrolyte for a lithium ion secondary battery, for example, LiPF, LiBF, LiCF SO, LiN (CF S),
  • the present invention can be preferably applied not only to lithium ion secondary batteries, but also to batteries such as nickel-metal hydride batteries, fuel cells, and solar cells.
  • batteries such as nickel-metal hydride batteries, fuel cells, and solar cells.
  • a negative electrode material such as LiTiO is deposited on a metal substrate such as copper by using a known appropriate method. Then, on top of this,
  • An electrolyte such as Li La TiO and a positive electrode such as LiMn O
  • the fine particles of the present invention are also suitable as an electrode catalyst material for a fuel cell, for example, Pt, Au, Ni, Rh, Zr, Ag, Ir, Ru, Fe, Co, Ni, Cr, Metal fine particles containing at least one metal element selected from W, Mn, V and Pd can be used. These metals may be alloyed alloy fine particles. In addition, these metal fine particles or alloy fine particles may be fine particles containing acid oxide fine particles. Further, it is also suitable as an electrolyte material for a fuel cell, for example, ZrO, CeO, SnO, WO, SrO, LaO, and these.
  • Solid solution oxide fine particles or these oxide fine particles contain at least one metal element selected from Sc, Ga, Y, Yb, La, Ce, Pr, Nd, Sm, Gd and Dy in an amount of 110 to 30 mol%.
  • the fine particles of the present invention are also preferably used as an electrode material for a fuel cell.
  • the fine particles of ZrO, CeO and Zr CeO are used.
  • Silver ion conductor such as O, Ag I WO, j8-alumina, ,,-alumina, Rb Cu CI I
  • Fine particles of a magnesium ion conductor such as y ⁇ 6.5, 0 ⁇ z ⁇ 0.5).
  • the fine particles of the present invention can also be preferably used for ferroelectric materials, for example, barium titanate BaTiO, and Mg, Ca, Nb, Co, Mn, Ni, Si, B, Bi, Zn , Cu,
  • Group strength of Ho, Zr, Hf and Sr Examples include barium titanate containing at least one selected element.
  • Neodymium rare earth magnets such as l ⁇ a ⁇ 6, 10 ⁇ b ⁇ 35) containing at least one selected metal element, SmCo and Sm Co
  • the fine particles of the present invention are also preferably used as a superconducting material, for example, BiSrCaCuO, YBaCuO, MgB, Tl
  • Fine particles such as Ba Ca Cu O may be used.
  • the fine particles of the present invention are also suitable as phosphor particles used in a plasma display.
  • red particles such as YEuTaO (but 0.005 ⁇ x ⁇ 0.1) and YO: Eu can be used.
  • Phosphor, Zn SiO Green such as Mn and Y Tb TaO (however, 0.001 ⁇ x ⁇ 0.2)
  • Fine particles of a blue phosphor may be used.
  • the fine particles of the present invention are also suitable for circuit materials such as ceramic multilayer substrates for high-frequency wireless. It is. Typical examples of inorganic powders constituting the matrix of the multilayer circuit include alumina, zircon-a, magnesia, beryllia, mullite, spinel, forsterite, anosite, cellian and glass ceramics including aluminum nitride. . Furthermore, it can be preferably applied to fine particles of Cu, Cr, Ag, Ni, Al and Au used as wiring conductors.
  • the fine particles of the present invention are also suitable as titanium oxide fine particles used as a photocatalyst and titanium oxide fine particles containing Al, Si, Fe and the like.
  • the titanium oxide referred to here is a titanium oxide such as titanium monoxide, dititanium trioxide, or titanium dioxide, and particularly in the case of titanium dioxide, the crystal form is either rutile or anatase. Good.
  • an electrostatic collector 10 is provided outside a reactor 11, and a collecting substrate 14 is placed therein.
  • Other configurations are the same as those of the first embodiment. By providing the collector 10 outside in this way, it is possible to avoid collecting relatively coarse particles.
  • a plurality of heating furnaces 12 are arranged on the outer periphery of the reactor 11 in the axial direction.
  • a temperature gradient can be provided in parallel with the direction of the tube axis of the two-fluid nozzle, and the temperature can be set according to the [Solute Z solvent] ratio of the droplet in flight.
  • a single heating furnace may be used as long as a plurality of heating temperature ranges can be provided.
  • the opposite electrode 15 applied with a voltage having a different polarity from the voltage applied to the liquid sending pipe from the power supply 18 different from the power supply 7 is applied to the two-fluid nozzle side end in the reactor 11. It is arranged in non-contact with the two-fluid nozzle.
  • the opposite electrode 15 may be applied with a voltage E2 having a polarity different from that of E1, or may be grounded.
  • the droplet 5 is accelerated, and the flight distance and the flight time of the droplet are extended, so that the atomization is promoted. As a result, fine particles with a uniform particle size tend to be obtained.
  • the shape of the counter electrode 15 has a mesh or an orifice, a partition that stands upright with respect to the axis of the two-fluid nozzle, or a cone that has a concentric orifice with the two-fluid nozzle. It is preferable to use a trapezoidal or conical schema.
  • the number of meshes in the case of a mesh is preferably 5 to 800 mesh. When the mesh size is less than 5 meshes, the eyes are too large, so that the droplets are hardly charged.
  • Diaphragm with orifice ⁇ The diameter of the orifice when using the scheme 1 is preferably 30 to 5000 ⁇ m
  • the electrification of the droplets is promoted and the coarse droplets can be removed as soon as possible, thereby suppressing the generation of coarse particles.
  • two or more orifices exist in one partition / schema in order to increase the amount of droplets introduced into the heating furnace.
  • two magnets 16 are fixed on the outer periphery of the reactor 11 near the connection with the two-fluid nozzle.
  • Other configurations are the same as those of the first embodiment.
  • the two magnets are provided to face each other with the reactor 11 therebetween, and have different polarities.
  • a magnetic field is formed in the radial direction of the reactor 11, and coarse droplets of the sprayed droplets are directed in the radial direction by the action of the magnetic field, and collide with and adhere to the inner surface of the reactor 11. Therefore, large particles derived from coarse droplets are not placed on the collecting substrate 14, and fine particles having a uniform particle diameter can be obtained.
  • the magnetic flux density by the magnet 16 is preferably 50 to 250 mT.
  • the magnet 16 is preferably rotated about the axis of the two-fluid nozzle. This is to prevent coarse particles from adhering to the same location on the inner surface of the reactor 11.
  • Embodiment 5 In this embodiment, as shown in FIG. 6, a laser light source 17 is arranged on one side near the connection with the two-fluid nozzle on the outer periphery of the reactor 11. This laser beam contains a wavelength that can be absorbed by the droplet 5, and by irradiating the laser beam onto the droplet 5 immediately after spraying, the desorption of the solvent is promoted.
  • Other configurations are the same as those of the second embodiment.
  • TEM transmission electron microscope
  • Particles obtained by dispersing the obtained fine particles in three kinds of solvents of ethanol, acetone and water at a concentration of 3 wt% each were measured using a particle size distribution analyzer NICOMP3 80ZDLS of Particle sizing systems. The smallest! /, The average particle diameter was defined as the average particle diameter B, and D was determined for the sample showing the average particle diameter B.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 30 mm and a length of 100 mm was used as the reactor 11.
  • a thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 500 ° C. in the resistance heating furnace 12.
  • X-ray diffraction measurement was performed on the prepared fine particles. It was found to be zeolite titanium oxide.
  • the average particle diameter A of the fine particles was 35 nm
  • the average particle diameter B was 25 nm
  • D was 185 nm.
  • a platinum salt solution having a sulfur concentration of 1 mol / liter was prepared.
  • the carrier gas is a mixed gas of argon and hydrogen (1: 1 by volume)
  • the carrier gas pressure is 2 atm
  • the pressure in the reactor 11 is 0.06 atm
  • Fine particles were produced under the conditions that the voltage applied to the liquid tube 1 was 135 kV DC and the spraying rate of the solution was 100,000 mlZ, and the fine particles were collected on the same collecting substrate 14 as that in Example 1.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and an alumina tube having an inner diameter of 950 mm and a length of 9200 mm was used as the reactor 11.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 600 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the prepared fine particles revealed that the particles were platinum. Average particle size A of fine particles is 30 nm, average particle size B is 35 nm, D is 180 nm
  • the carrier gas is argon
  • the carrier gas pressure is 4 atm
  • the pressure in the reactor 11 is 0.79 atm
  • the voltage applied to the liquid sending pipe 1 is 48 kV
  • the solution spray speed Prepared fine particles under the conditions of 4700 mlZ and collected them on the same collecting substrate 14 as in Example 1.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 30 mm and a length of 300 mm was used as the reactor 11.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 450 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the produced fine particles showed that they were spinel-type LiMn O.
  • Average particle size A of fine particles is 25nm, average particle size B is 28nm, D is 165 ⁇
  • a solution having a total elemental concentration of lead, manganese and silicon of 0.9 mol Z liter was prepared.
  • the carrier gas is air
  • the carrier gas pressure is 5 atm
  • the pressure in the reactor is 0.1 atm
  • the voltage applied to the liquid sending pipe 1 is 2 kV DC
  • the spraying speed of the solution is Fine particles were produced under the condition of lOmlZ, and were collected on the same collecting substrate 14 as in Example 1.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and an alumina tube having an inner diameter of S950 mm and a length of 7000 mm was used as the reactor 11.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 750 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the produced microparticles showed that it was spinel-type ZnSiO: Mn.
  • Average particle size A of fine particles is 21 nm
  • average particle size B is 25 nm
  • D is 160 nm
  • a solution having a total elemental concentration of lanthanum and lithium of 0.15 mol Z liter was prepared.
  • the carrier gas is a mixed gas of nitrogen and argon (volume ratio: 5:95)
  • the carrier gas pressure is 3 atm
  • the pressure in the reactor 11 is 0.15 atm
  • the liquid supply pipe 1 Microparticles were produced under the conditions of a voltage of 4 kV DC applied and a spraying rate of 30 mlZ for the solution, and the fine particles were collected on the same collecting substrate 14 as in Example 1.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 100 mm and a length of 900 mm was used as the reactor 11.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached at the center of the tube, and was maintained at 850 ° C. in a resistance heating furnace 12 having an axial length of 900 mm.
  • the particles were perovskite type Li La TiO.
  • Average particle diameter A of fine particles is 5 nm, average particle diameter B is 6 nm, D is 45 ⁇
  • Lithium perchlorate LiCIO, water and getyl ether were used to determine the elemental concentration of lithium.
  • Particle size B was 19 nm and D was 52 nm.
  • a solution having a total elemental concentration of titanium, lanthanum and lithium of 0.1 mol Z liter was prepared using 3 7 4 3 7 and 2-propanol.
  • the carrier gas was argon
  • the carrier gas pressure was 2.5 atm
  • the pressure inside the reactor 11 was 0.75 atm
  • the voltage applied to the liquid sending pipe 1 was 25 kV DC
  • the solution Fine particles were prepared under the condition of a spraying rate of 70 mlZ, and were collected on the same collecting substrate 14 as in Example 1.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 150 mm and a length of 1000 mm was used as the reactor 11.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 400 ° C. in the resistance heating furnace 12.
  • X-ray diffraction measurement of the prepared fine particles revealed that the particles were spinel-type LiTiO.
  • Average particle size A of fine particles is 15 ⁇
  • the average particle diameter was 13 nm, and D was 62 nm.
  • a solution having a total elemental concentration of 0.003 mol Zl of titanium was prepared.
  • the carrier gas was air
  • the carrier gas pressure was 2.5 atm
  • the pressure inside the reactor 11 was 0.5 atm
  • the voltage applied to the liquid sending pipe 1 was 30 kV DC
  • the solution Fine particles were prepared at a spraying rate of 950 mlZ, and were collected on a 20 mm square collecting substrate 14 made of quartz using an electrostatic collector 10.
  • the axial direction of the two-fluid nozzle is parallel (0 °) to the ground
  • As the reactor 11, a quartz tube having an inner diameter of 50 mm and a length of 1000 mm was used.
  • thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 750 ° C. in a resistance heating furnace 12 having an axial length of 1000 mm.
  • a thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 750 ° C. in a resistance heating furnace 12 having an axial length of 1000 mm.
  • the average particle diameter A of the fine particles was 20 nm
  • the average particle diameter B was 25 nm
  • D was 85 nm.
  • a 4 molar Z liter solution was prepared.
  • the carrier gas is argon
  • the carrier gas pressure is 1.5 atm
  • the pressure inside the reactor 11 is 0.35 atm
  • the voltage applied to the liquid supply pipe is 15 kV DC
  • the solution is sprayed. Fine particles were produced at a speed of 3 mlZ and collected on the collecting substrate 14 in the same manner as in Example 8.
  • the axial direction of the two-fluid nozzle was 45 ° above the ground.
  • a quartz tube having an inner diameter of 150 mm and a length of 700 mm was used as the reactor 11, a quartz tube having an inner diameter of 150 mm and a length of 700 mm was used.
  • a thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 900 ° C. in the resistance heating furnace 12.
  • the carbon material was a non-graphitizable carbon material.
  • the average particle diameter A of the fine particles was 8 nm
  • the average particle diameter B was 9 nm
  • D was 72 nm.
  • a 4 molar Z liter solution was prepared.
  • the carrier gas is argon
  • the carrier gas pressure is 2 atm
  • the pressure in the reactor 11 is 0.35 atm
  • the voltage applied to the liquid supply pipe 1 is 20 kV
  • the spraying speed of the solution Prepared fine particles under the condition of 5 mlZ and collected them on a quartz substrate of 20 mm square.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 150 mm and a length of 700 mm was used as the reactor 11.
  • a thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 900 ° C. in the resistance heating furnace 12.
  • the average particle diameter A of the fine particles was 10 ⁇ m
  • the average particle diameter B was 13 nm
  • D was 100 nm.
  • Example 11 A stainless steel mesh electrode (5 mesh) arranged in the reactor 11 at a distance of 20 mm from the tip of the two-fluid nozzle was used as the counter electrode 15, and a heating furnace 12 having three heating zones was used. Example 7 was repeated except for ( Figure 4). A DC voltage of 10 kV was applied to the counter electrode. The length of each zone was 330 mm, and the thermocouple 13 located at the center of each zone showed 200, 300, and 400 ° C from the side near the two-fluid nozzle. X-ray diffraction measurement of the prepared fine particles showed that it was spinel-type LiTiO. Particulate
  • the average particle diameter A was 13 nm, the average particle diameter B was 10 nm, and D was 42 nm, which was smaller than that of Example 7.
  • the particle size distribution has become narrower.
  • a stainless steel mesh electrode (800 mesh) arranged in the reactor 11 at a distance of 35 mm from the tip of the two-fluid nozzle was used as the counter electrode 15, and a heating furnace 12 having three heating zones was used.
  • Example 7 was repeated except for ( Figure 4).
  • a DC voltage of 25 kV was applied to the counter electrode.
  • the length of each zone was 330 mm, and the thermocouple 13 arranged in the center of each zone showed 180, 350, and 400 ° C from the side near the two-fluid nozzle.
  • X-ray diffraction measurement of the produced fine particles revealed that the particles were spinel-type LiTiO. Fine grain
  • the average particle size A of the particles was 16 nm, the average particle size B was 15 nm, and D was 30 nm.
  • the particle size distribution became narrower than that of.
  • Example 7 (FIG. 4). A single 30 m diameter orifice was placed at the top of a regular pentagon with a side length of lmm surrounding the axial center of the two-fluid nozzle viewed from the tube axis direction of the two-fluid nozzle.
  • One electrode of the schema was connected to the ground, and was set to substantially 0V.
  • each zone was 330 mm, and the thermocouple 13 located at the center of each zone showed 180, 350, and 400 ° C from the side near the two-fluid nozzle.
  • X-ray diffraction measurement of the produced fine particles showed that the particles were spinel-type Li Ti O.
  • the average particle diameter A of the fine particles is 13 nm
  • the average particle diameter B is 10 nm
  • D is 42 nm.
  • the average particle size B is 14 nm and D is 39 nm, and the particle size distribution is narrower than that of Example 7.
  • a pair of magnets 16 having an axial length of 150mm and a magnetic flux density of 250mT are arranged at a position 100mm away from the tip of the two-fluid nozzle on the outer periphery of the reactor 11, and the length of the heating furnace 12 Example 5 was repeated except that was changed to 650 mm (FIG. 5).
  • the magnets 16 were opposed to each other with the reactor 11 interposed therebetween, and were rotated around the reactor 11 at a speed of 10 rotations Z.
  • the fine particles were perovskite-type Li La TiO.
  • the average particle diameter A of the fine particles is 5 nm
  • the average particle size B was 7 nm, and D was 30 nm. Compared with Example 5, coarse particles were reduced.
  • a neodymium YAG laser light source 17 having a wavelength of 1 ⁇ m is disposed on the outer periphery of the reactor 11 at a distance of 100 mm from the tip of the two-fluid nozzle over an axial length of 150 mm.
  • Example 8 was repeated except that the length of the reactor was 750 mm and the temperature of the reactor 11 was 500 ° C. (FIG. 6). The laser was irradiated continuously at the atomized droplets.
  • the perovskite Li As a result of composition analysis and X-ray diffraction measurement of the prepared fine particles, the perovskite Li
  • the average particle size A was 18 nm, the average particle size B was 23 nm, and D was 80 nm, which was smaller than that of Example 8.
  • Example 7 was repeated, except that the entire apparatus was rotated 90 ° so that the spray direction of the two-fluid nozzle was perpendicular (directly above) the ground.
  • the average particle diameter A of the fine particles was 14 nm
  • the average particle diameter B was 11 nm
  • D was 50 nm.
  • the coarse particles were smaller than those in Example 7.
  • Example 7 By repeating Example 7 except that a copper substrate was used in place of the quartz substrate as the collecting substrate 14, Lithium oxide having a thickness of 100 m and a group force of fine particles deposited on the copper substrate was also obtained.
  • a TiO film is formed, and the LiMn O film having a thickness of 80 m is further formed thereon by repeating Example 3.
  • the fine particles were prepared under the conditions of minute and collected on the collecting substrate 14.
  • the axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 900 mm and a length of 1000 mm was used as the reactor 11.
  • the reaction tube 11 was heated using a resistance heating furnace 12 having three heating zones.
  • the length of each zone was 330 mm, and a thermocouple 13 for measuring the temperature of the reactor 11 was placed at the center of each zone.
  • the thermocouple is close to a 13-powder two-fluid nozzle. Norihara et al. Showed 200, 600, and 300 ° C.
  • Average particle size A of fine particles is 5 nm, average particle size B is 9 nm, D is 28 nm
  • Example 19 was repeated except that the spray solution was a solution having a total elemental concentration of chloroauric acid, water and ethanol of 0.0005 mol Zl, and argon was used as a carrier gas.
  • X-ray diffraction measurement of the prepared fine particles showed that the particles were gold.
  • the average particle diameter A of the fine particles is 3 nm
  • the average particle diameter B is 5 nm
  • D is 15 nm.
  • Example 19 was repeated except that a solution having a total elemental concentration of nickel acetate and nickel of ethanol of 0.0005 mol Z liter was used as the spraying solution, and argon was used as the carrier gas.
  • X-ray diffraction measurement, Raman measurement and TEM observation of the produced fine particles revealed that they were single-walled carbon nanotubes. Using TEM, we observed and photographed 10 times at 10 non-overlapping locations, and obtained the diameter of 100 arbitrary carbon nanotubes from the photograph. Their average diameter was 3 nm.
  • Example 1 was repeated except that no voltage was applied to the liquid sending tube 1.
  • the obtained particles were subjected to X-ray diffraction measurement, and it was found that the particles were anatase-type titanium oxide.
  • the average particle size A of the particles is 515 nm
  • the average particle size B is 485 nm
  • D is 780 nm.
  • the nanometer-sized fine particles aimed at by the invention were not obtained.
  • Example 8 was repeated except that no voltage was applied to the liquid sending tube 1.
  • the average particle diameter A of the particles is 630 nm, the average particle diameter B is 645 nm, and D is 980 nm.

Abstract

A method of producing nanometer-sized particles having uniform diameters and a device for producing the particles. A method of producing fine particles by spraying and thermally decomposing a solution including a metallic element is characterized in that the solution is subjected to a voltage before being sprayed and sprayed with a gas. The producing device is characterized by having a two-fluid nozzle, a reactor (11), a heating furnace (12), and a power source (7). The two-fluid nozzle has a liquid-feeding tube (1) that has at its one end a solution-jetting opening (3) for spraying the solution and a gas-introducing tube (2) that is provided coaxially with the liquid-feeding tube (1) along a predetermined length extending to the solution-jetting opening (3) and has a gas-jetting opening around the solution-jetting opening. The reactor (11) is connected at its one end to the solution-jetting opening and to the gas-jetting openings and having at the other end a particle recovery opening. The heating furnace (12) is provided around the reactor (11) and heats the reactor (11). The power source (7) applies a voltage to the liquid-feeding tube (1).

Description

明 細 書  Specification
微粒子の製造方法及びそのための装置  Method for producing fine particles and apparatus therefor
技術分野  Technical field
[0001] 本発明は、金属元素を含む溶液を噴霧し加熱することによってナノメーターサイズ( [0001] The present invention provides a nanometer-sized (
1一 300nm)の微粒子を製造する方法に関するものである。本発明の微粒子はリチ ゥムイオン二次電池、ニッケル水素電池、燃料電池等の電池に適用される電極ゃ電 解質の材料、プラズマディスプレイパネルや電子放出素子を用いたディスプレイ等の 画像表示装置に含まれる蛍光体の材料、高周波無線用セラミックス多層基板等の電 極材料、光触媒材料として好適に利用されうる。 (1) 300 nm). The fine particles of the present invention are included in electrode / electrolyte materials applied to batteries such as lithium ion secondary batteries, nickel metal hydride batteries, and fuel cells, and in image display devices such as plasma display panels and displays using electron-emitting devices. It can be suitably used as a material of a phosphor to be used, an electrode material such as a ceramic multilayer substrate for high-frequency radio, and a photocatalyst material.
背景技術  Background art
[0002] 上記の分野においては、それぞれ電池の高出力化、ディスプレイの輝度向上、配 線の寸法安定性向上、触媒効率向上などのため、何れもナノメーターサイズの微粒 子を必要としており(非特許文献 1及び特許文献 1一 3)、微粒子を低コストで効率よく 簡便に製造する方法が求められている。これまでに、ナノメーターサイズの微粒子の 作製方法としては、ゾル,ゲル法、共沈法、 PVD法、水熱法、加水分解法、噴霧熱分 解法などが知られている。ゾル 'ゲル法は、出発原料であるアルコキシドが高価なの で微粒子の原料コストが高ぐまた、温度や湿度などの製造条件の影響を受けやす いので工業的な安定生産が難しい。共沈法は、沈殿を作製する際の製造条件の制 御が難しぐまた、長時間を要する製造プロセスであるため大量生産が難しい。さらに 、製造される微粒子が二次凝集を起こしやすい。 PVD法は、低温で蒸発する出発原 料にし力適さないので、製造できる微粒子の種類に制約があり、また、蒸気化のため に高真空装置を必要とするので製造コストが高い。水熱法は、高温高圧に耐えられ る特殊な装置が必要であり、また、ノツチ法であるため製造される微粒子が高価とな らざるを得ない。加水分解法は、製造プロセスが複雑であり、また、得られる微粒子の 粒度分布が広い。  [0002] In the above-mentioned fields, nanometer-sized fine particles are required in order to increase the output of batteries, improve the brightness of displays, improve the dimensional stability of wiring, and improve the catalyst efficiency. Patent Literature 1 and Patent Literatures 1 to 3) demand a method for efficiently and easily producing fine particles at low cost. So far, sol, gel method, coprecipitation method, PVD method, hydrothermal method, hydrolysis method, spray thermal decomposition method, etc. are known as methods for producing nanometer-sized fine particles. In the sol-gel method, the starting material alkoxide is expensive, so the raw material cost of fine particles is high. In addition, it is easily affected by manufacturing conditions such as temperature and humidity, so that stable industrial production is difficult. In the coprecipitation method, it is difficult to control the production conditions when preparing the precipitate, and it is a production process that requires a long time, so mass production is difficult. Furthermore, the produced fine particles are liable to undergo secondary aggregation. The PVD method is not suitable as a starting material that evaporates at a low temperature, so there is a limitation on the types of fine particles that can be produced, and the production cost is high because a high vacuum device is required for vaporization. The hydrothermal method requires special equipment that can withstand high temperature and pressure, and the Notch method requires expensive fine particles to be produced. The hydrolysis method has a complicated manufacturing process and a wide particle size distribution of the obtained fine particles.
[0003] これらの方法に対して、噴霧熱分解法は、原料溶液を噴霧して微小液滴を生成し、 高温反応雰囲気中で熱分解することによって微粒子が得られるので、比較的簡便で ある。噴霧手段としても種々提案されており、例えば、周知の超音波霧化 (特許文献[0003] In contrast to these methods, the spray pyrolysis method is relatively simple because fine particles are obtained by spraying a raw material solution to generate fine droplets and performing pyrolysis in a high-temperature reaction atmosphere. is there. Various spraying means have been proposed, for example, well-known ultrasonic atomization (Patent Document
4一 8)のほか、二流体ノズルによる噴霧 (特許文献 7)や加圧噴霧、振動噴霧、回転 ディスク式噴霧 ( ヽずれも特許文献 8)や静電霧化 (特許文献 9)が知られて ヽる。 V、 ずれも数十ミクロンメートル力 サブミクロンメートル程度の大きさの粒子であれば効 率よく生産することができる方法である。 In addition to 4-1 8), spraying with a two-fluid nozzle (Patent Document 7), pressurized spraying, vibrational spraying, rotating disk type spraying (with a deviation of Patent Document 8) and electrostatic atomization (Patent Document 9) are also known. Tepuru. V, displacement is several tens of micrometer force This is a method that can efficiently produce particles with a size of about submicron meter.
また近年、同軸状に配置されたノズル力ゝら親油性溶液と親水性溶液を同時にエレ タトロスプレーした後、放射線源を用いて液滴の電荷を中和し、加熱分解すること〖こ よって二重構造を有するナノメーターサイズ粒子を製造する方法も開示されている( 特許文献 10)。  In recent years, the lipophilic solution and the hydrophilic solution are simultaneously electrosprayed with a coaxially arranged nozzle force, and then the charge of the droplets is neutralized using a radiation source and thermally decomposed. A method for producing nanometer-sized particles having a double structure has also been disclosed (Patent Document 10).
[0004] 特許文献 1:特開 2002-038150号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-038150
特許文献 2:特開 2002— 162735号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-162735
特許文献 3:特許 2909403号公報  Patent Document 3: Japanese Patent No. 2909403
特許文献 4:特公昭 63— 46002号公報  Patent Document 4: Japanese Patent Publication No. 63-46002
特許文献 5 :特開平 6— 199502号公報  Patent Document 5: JP-A-6-199502
特許文献 6:特開平 8—170112号公報  Patent Document 6: JP-A-8-170112
特許文献 7:特開平 11—236607号公報  Patent Document 7: JP-A-11-236607
特許文献 8:特開 2003— 19427号公報  Patent Document 8: JP-A-2003-19427
特許文献 9:特開 2002-187729号公報  Patent Document 9: JP-A-2002-187729
特許文献 10 :特開 2003- 155504号公報  Patent Document 10: JP-A-2003-155504
非特許文献 1 JOURNAL of the Electrochemical Society, 2003, 150, A10 00-A1007  Non-Patent Document 1 JOURNAL of the Electrochemical Society, 2003, 150, A10 00-A1007
非特許文献 2 :J. Schoonman/Solid State Ionicsl35 (2000) 5— 19 発明の開示  Non-Patent Document 2: J. Schoonman / Solid State Ionicsl35 (2000) 5-19 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記特許文献 4一 8に開示された方法では、噴霧によって形成された液滴 がその飛行過程で更に***することは困難であるから、得られる微粒子の大きさが、 液滴に含まれる初期の物質量によって決定される。このためナノメーターサイズの微 粒子を製造するには、原料溶液に含む金属元素濃度を薄くする等の製造条件の制 約が生じるので生産性が著しく低下する。また、特許文献 9に記載の静電霧化法は、 その特性上、噴霧速度が非常に遅いので実用的な方法とは言い難い。特許文献 10 に記載の方法では親水性溶液と親油性溶液力 なる二重構造の液滴を得るための 両液の噴霧条件を制御することが非常に困難であり、噴霧速度を遅くせざるを得ない 。し力も、二重構造の液滴が自己崩壊することを防止する目的で、放射線源を用いて 液滴の電荷を取り除く工夫を施しており、電荷を中和することによって液滴の微粒子 化が阻害されるので、結果的にナノメーターサイズの微粒子を得ることも難しい。 それ故、この発明の課題は、粒子径の揃ったナノメーターサイズの微粒子を効率よ く低コストで製造する方法及びその装置を提供することにある。 [0005] However, in the method disclosed in Patent Document 4-18, it is difficult for the droplet formed by spraying to break up further in the flight process, so that the size of the obtained fine particles is limited to that of the droplet. Is determined by the initial amount of substance contained in For this reason, in order to produce nanometer-sized fine particles, control of production conditions such as reducing the concentration of metal elements contained in the raw material solution is required. As a result, productivity is significantly reduced. Further, the electrostatic atomization method described in Patent Document 9 cannot be said to be a practical method because the spray speed is extremely low due to its characteristics. According to the method described in Patent Document 10, it is very difficult to control the spraying conditions of the hydrophilic solution and the lipophilic solution in order to obtain a double-structured liquid droplet, and the spraying speed must be reduced. I can't get it. In order to prevent the double-structured droplets from self-disintegrating, a method has been devised to remove the charges from the droplets using a radiation source.The neutralization of the charges reduces the droplets into fine particles. As a result, it is difficult to obtain nanometer-sized fine particles. Therefore, an object of the present invention is to provide a method and an apparatus for efficiently producing nanometer-sized fine particles having a uniform particle diameter at low cost.
課題を解決するための手段 Means for solving the problem
その課題を解決するために、この発明の微粒子製造方法は、  In order to solve the problem, a method for producing fine particles of the present invention comprises:
金属元素を含む溶液より微粒子を製造する方法において、  In a method for producing fine particles from a solution containing a metal element,
前記溶液に電圧を印加する段階、  Applying a voltage to the solution,
電圧が印加された溶液を溶液中の成分と常温常圧では反応しないガスとともに噴 霧する段階、及び  Spraying the solution to which the voltage is applied with a gas that does not react with the components in the solution at normal temperature and pressure; and
噴霧された溶液を熱分解する段階  Pyrolyzing the sprayed solution
を経ることを特徴とする。前記噴霧は好ましくは、溶液を通す送液管、及びガスを通 すガス導入管、例えば送液管と同軸上に設けられたガス導入管を備えた二流体ノズ ルを用いてなされ、前記電圧が送液管を介して印加される。 It is characterized by passing through. The spraying is preferably performed by using a two-fluid nozzle having a liquid feed pipe for passing a solution and a gas feed pipe for passing gas, for example, a gas feed pipe provided coaxially with the liquid feed pipe. Is applied through the liquid feeding pipe.
この方法によれば、詳細は明らかでないが、次のような現象が生じて溶液力 微粒 子が製造されると推察される。溶液とともに噴射されるガスは、噴射口付近で乱流に なり、その気流の乱れによって溶液が小さな液滴になる。液滴中の溶媒は噴霧後の 飛行過程において次第に気化して脱離するので、液滴の表面積が減少する。液滴 は電圧が印加されることにより帯電しているので、表面積の減少に伴い、液滴表面の 電荷密度が増し、ある程度以上に達すると電気的な制約によって 2つ以上の微小な 液滴に***するか、または液滴からイオンが脱離する。このような液滴の***ゃィォ ンの脱離を繰り返すことによって液滴が微小化されるので、これらを熱分解することに よってナノメーターサイズの微粒子が得られる。 [0007] 次に、この発明の微粒子製造方法に適切な製造装置は、 Although the details are not clear according to this method, it is presumed that the following phenomena occur and the solution particles are produced. The gas injected with the solution becomes turbulent near the injection port, and the turbulence of the gas flow causes the solution to become small droplets. The solvent in the droplets gradually evaporates and desorbs during the flight process after spraying, reducing the surface area of the droplets. Since the droplet is charged by applying a voltage, the charge density on the surface of the droplet increases as the surface area decreases, and when it reaches a certain level, it becomes two or more minute droplets due to electrical restrictions. It splits or desorbs ions from the droplet. Droplets are miniaturized by repeating the desorption of the splitting zones of such droplets, and nanometer-sized fine particles can be obtained by thermally decomposing these droplets. [0007] Next, a manufacturing apparatus suitable for the method for manufacturing fine particles of the present invention includes:
金属元素を含む溶液から微粒子を製造する装置において、  In an apparatus for producing fine particles from a solution containing a metal element,
前記溶液を噴霧する溶液噴射口を一端に有する送液管、及び溶液噴射口に連な る所定長さに亘つて送液管と同軸上に設けられ、溶液噴射口の周囲にガスを噴射す るガス噴射口を有するガス導入管を備えた二流体ノズルと、  A liquid supply pipe having a solution injection port at one end for spraying the solution, and a coaxially provided with the liquid supply pipe over a predetermined length connected to the solution injection port, for injecting gas around the solution injection port. A two-fluid nozzle equipped with a gas introduction pipe having a gas injection port,
一端が溶液噴射口及びガス噴射口に連結され、他端に微粒子回収口を有する反 応器と、  A reactor having one end connected to the solution injection port and the gas injection port, and having a fine particle collection port at the other end;
反応器の周囲に設けられて反応器を加熱する加熱炉と、  A heating furnace provided around the reactor to heat the reactor;
送液管に電圧を印加する電源と  A power supply for applying voltage to the liquid supply pipe
を備えることを特徴とする。  It is characterized by having.
この装置によれば、送液管に電圧を印加することにより、送液管を通過する溶液が 帯電する。続いて帯電した溶液が二流体ノズルカゝら反応器に噴霧されるので、帯電 した状態で液滴化され、反応器内を飛行する。しカゝも溶液の噴霧と同時にガスが噴 射されるので、噴霧速度が高ぐ飛行距離が長い。よって、上記の通り飛行過程で液 滴の***やイオンの脱離を繰り返すことができ液滴が微小化される。そこで、加熱炉 を用いて反応器を加熱することで、液滴が熱分解し、ナノメーターサイズの微粒子と なる。  According to this device, by applying a voltage to the liquid feed pipe, the solution passing through the liquid feed pipe is charged. Subsequently, the charged solution is sprayed into the reactor of the two-fluid nozzle capillar, so that the charged solution is formed into droplets and fly in the reactor. Since the gas is also sprayed simultaneously with the spraying of the solution, the spray speed is high and the flight distance is long. Therefore, as described above, the division of the droplet and the desorption of the ions can be repeated in the flight process, and the droplet is miniaturized. Then, by heating the reactor using a heating furnace, the droplets are thermally decomposed into nanometer-sized particles.
発明の効果  The invention's effect
[0008] 本発明によれば、金属元素を含む溶液を帯電させ、これを噴霧することによって微 小な液滴を作り、これらを熱分解するという簡便な製造工程によって、粒子径の揃つ たナノメーターサイズの微粒子を連続的に効率よく生産することができる。そして、本 発明によって得られた微粒子は、結晶性が高ぐ粒度が揃っているので、電池、ディ スプレイ、セラミックス多層基板などの電子デバイス用材料、磁性体、強誘電体、超伝 導体、光触媒として優れた性能を示す。  [0008] According to the present invention, a solution containing a metal element is charged and sprayed to form fine droplets, and these particles are made uniform by a simple manufacturing process of thermally decomposing the droplets. Nanometer-sized fine particles can be continuously and efficiently produced. Since the fine particles obtained by the present invention have high crystallinity and uniform particle size, the materials for electronic devices such as batteries, displays, and ceramic multilayer substrates, magnetic materials, ferroelectrics, superconductors, photocatalysts It shows excellent performance.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]二流体ノズルを示す模式図である。  FIG. 1 is a schematic diagram showing a two-fluid nozzle.
[図 2]実施例 1一 7、 18及び比較例 1で用いた製造装置の構成図である。  FIG. 2 is a configuration diagram of a manufacturing apparatus used in Examples 17 and 18 and Comparative Example 1.
[図 3]実施例 8— 10及び比較例 2で用いた製造装置の構成図である。 [図 4]実施例 11一 14で用いた製造装置の構成図である。 FIG. 3 is a configuration diagram of a manufacturing apparatus used in Examples 8-10 and Comparative Example 2. FIG. 4 is a configuration diagram of a manufacturing apparatus used in Examples 11 to 14.
[図 5]実施例 15で用いた製造装置の構成図である。  FIG. 5 is a configuration diagram of a manufacturing apparatus used in Example 15.
[図 6]実施例 16で用いた製造装置の構成図である。  FIG. 6 is a configuration diagram of a manufacturing apparatus used in Example 16.
符号の説明  Explanation of symbols
[0010] 1 送液管 [0010] 1 Liquid supply pipe
2 ガス導入管  2 Gas inlet pipe
3 溶液噴射 PI  3 Solution injection PI
4 溶液  4 Solution
5 噴霧された液滴  5 sprayed droplets
6 キャリアーガス  6 Carrier gas
7, 18 高圧電源  7, 18 High voltage power supply
8 コールド卜ラップ  8 Cold trap
9 ポンプ  9 pump
10 捕集器  10 Collector
11 反応器  11 Reactor
12 加熱炉  12 heating furnace
13 熱電対および温度表示計  13 Thermocouple and temperature indicator
14 捕集基板  14 Collection board
15 対向電極  15 Counter electrode
16 回転磁石  16 rotating magnet
17 レーザー光源  17 Laser light source
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 一実施形態 1 [0011] One embodiment 1
本発明で用いる二流体ノズルの一例を図 1に示す。二流体ノズルは、一端に溶液 噴射口3を有し、他端が溶液供給容器と接続して溶液 4が流れる送液管 1と、ガスが 通過するガス導入管 2とからなる。送液管 1は溶液噴射口 3に連なる少なくとも一定長 に亘つて直線状をなし、その直線部分の外部を同軸上に取り囲むようにしてガス導入 管 2が設けられている。ガス導入管 2の先端は、溶液噴射口 3と同心の輪状のガス噴 射口をなす。 FIG. 1 shows an example of the two-fluid nozzle used in the present invention. The two-fluid nozzle has a solution jetting port 3 at one end, and a liquid sending pipe 1 through which the solution 4 flows with the other end connected to the solution supply container, and a gas introducing pipe 2 through which gas passes. The liquid feed pipe 1 is linear at least over a certain length connected to the solution injection port 3, and a gas introduction pipe 2 is provided so as to coaxially surround the outside of the linear part. The tip of the gas inlet pipe 2 is a ring-shaped gas jet concentric with the solution jet port 3. Make a mouth.
溶液噴射口 3にお ヽてガスを溶液の噴射方向とほぼ同方向に勢!ヽよく噴出させるこ とによって、溶液 4が液滴 5となって噴霧される。二流体ノズルの先端近傍では、ガス 導入管 2に先細りのテーパーを付することが好ましい。また、送液管 1にテーパーを 付することも好ましい。両方の管にテーパーを付するときはガス導入管 2のテーパー の勾配をより大きくする。このようにテーパーを形成することによって、先端における 送液管とガス導入管とのギャップ、即ちガス噴射口の内外径差が小さくなるので、ガ スの流速が音速程度に上昇し、溶液を一層勢いよく噴霧することができる。安定した 送液を行うためには、溶液噴射口 3における送液管 1の内径が 10— 1000 m、厚 みが 10— 500 μ mであることが好ましい。内径が 10 μ m未満では不純物による送液 管 1の詰まりが起こりやすぐ 1000 mを超えると微粒子化されに《なる傾向がある 。また、先端部における送液管の厚みが 10 m未満では送液管が破損しやすいの で取り扱いが困難であり、 500 m以上では粗大な液滴が生成しやすい傾向がある 送液管 1を構成する材料としては、溶液に触れる内面が溶液に腐食されにくぐ力 つ所定長さに亘つて導電性を有するものであればよぐこのような導電性の材料とし ては、ステンレスなどの合金や銅、金、白金などの金属を用いることができる。送液管 の全てが同一の材料である必要はなぐ 2種類以上の異なる材料を繋ぎ合わせて用 Gas is supplied to the solution injection port 3 in almost the same direction as the solution injection direction!溶液 By jetting well, the solution 4 is sprayed as droplets 5. In the vicinity of the tip of the two-fluid nozzle, the gas introduction pipe 2 is preferably tapered. It is also preferable that the liquid sending pipe 1 is tapered. When both pipes are tapered, the gradient of the taper of the gas inlet pipe 2 is made larger. By forming the taper in this manner, the gap between the liquid feed pipe and the gas inlet pipe at the tip, that is, the difference between the inner and outer diameters of the gas injection port is reduced, so that the gas flow rate increases to about the speed of sound, and the solution is further reduced. It can be sprayed vigorously. In order to perform stable liquid sending, it is preferable that the inner diameter of the liquid sending pipe 1 in the solution injection port 3 is 10 to 1000 m and the thickness is 10 to 500 μm. If the inner diameter is less than 10 μm, the liquid sending pipe 1 may be clogged by impurities, and if the inner diameter exceeds 1000 m, it tends to become fine particles. In addition, if the thickness of the liquid sending pipe at the tip is less than 10 m, the liquid sending pipe tends to be damaged and handling is difficult, and if it is more than 500 m, coarse liquid droplets tend to be generated. The conductive material may be any material that is conductive to the inner surface that comes in contact with the solution and is not easily corroded by the solution, and that has conductivity over a predetermined length. And metals such as copper, gold, and platinum. It is not necessary that all of the pipes be made of the same material.
V、ることができる。微細な液滴を噴霧するには金属や合金カゝらなる送液管の先端部 をテーパー加工することが好ましいが、加工が難しい場合には、送液管の先端部に はガラスなどの絶縁材料を用いるとよ ヽ。ガラスなどの絶縁材料と導電性の材料の接 合性を向上させるには、導電性の材料として、例えばコバールを用いることが好まし い。このように送液管の先端部分を絶縁材料で構成することによって、後述する対向 電極と送液管の間で放電が起こりに《なる傾向がある。しかし、液滴を十分に帯電さ せるためには、溶液が高電圧に長時間晒される必要があるので、絶縁材料に無電解 鍍金法などを用いて金属鍍金を施してもよい。二流体ノズルは、図 1に示した形態の 二流体ノズル以外にも、送液管または Zおよびガス導入管の一部または全部を非直 線状にしたノズル、送液管または/およびガス導入管が複数経路備わったノズル、 超音波の発生を伴うノズル等が挙げられる。例えばガス導入管カゝら噴射されるガス流 が旋回するような形状とすることにより、気液混合が促進されてより微粒ィ匕が達成され る。また、旋回ガス流によりノズルの目詰まりを防止することもできる。送液管または/ およびガス導入管が複数備わったノズルを用いる場合、各経路に相異なる溶液ゃガ スを流すことができる。 V, you can. In order to spray fine droplets, it is preferable to taper the tip of the liquid sending pipe made of metal or alloy, but if processing is difficult, the tip of the liquid sending pipe should be insulated with glass or the like. Use materials ヽ. In order to improve the bonding between an insulating material such as glass and a conductive material, it is preferable to use, for example, Kovar as the conductive material. By forming the distal end portion of the liquid feed tube with an insulating material in this way, a discharge tends to occur between the counter electrode described below and the liquid feed tube. However, since the solution needs to be exposed to a high voltage for a long time in order to sufficiently charge the droplet, the insulating material may be subjected to metal plating using an electroless plating method or the like. In addition to the two-fluid nozzle in the form shown in Fig. 1, the two-fluid nozzle is a nozzle in which part or all of the liquid feed pipe or Z and the gas inlet pipe are made non-linear, and the liquid feed pipe or / and gas inlet Nozzle with multiple pipes, Nozzles that generate ultrasonic waves, and the like can be given. For example, by making the gas flow injected from the gas introduction pipe swirl, the gas-liquid mixing is promoted and finer particles are achieved. Also, clogging of the nozzle can be prevented by the swirling gas flow. When a nozzle provided with a plurality of liquid feeding pipes and / or gas introduction pipes is used, different solution gases can flow in each path.
[0013] ガス導入管 2に流すキャリアーガスの種類は、常温常圧では溶液と反応しないもの であるが、好ましくは作製する微粒子の種類によって選ばれる。例えば、酸化物微粒 子を作製する場合には、窒素、アルゴン、酸素および空気からなる群より選ばれる少 なくとも 1種類のガスを用いることが好ましい。また、低価数の金属元素を含む化合物 微粒子や金属微粒子を得る場合には、窒素、アルゴンおよび水素からなる群より選 ばれる少なくとも 1種類のガスを選択することが好ましい。ガスの圧力は、レギユレータ 一等の圧力調節器を用いて反応器内の圧力よりも高 、圧力に制御することが好まし ぐ二流体ノズルの形状や反応器内の圧力などを考慮して制御されるものであるが、 概ね 0. 8気圧以上、 20気圧以下である。 20気圧以上では、二流体ノズルが破壊さ れやすくなる。ガスの流速は、二流体ノズルの先端部における送液管とガス導入管の ギャップなどに依存する力 概ね 0. 1— 50リットル Z分である。 0. 1リットル Z分未満 では、噴霧速度が遅いので実用的とは言い難ぐ 50リットル Z分を超えると、噴霧さ れた液滴の流れが乱流になりやすくなる。溶液の噴霧速度は、微粒子の生成速度に 直接影響を与えるものであり、 0. 5— 104mlZ分であることが好ましぐより好ましくは 10— 5 X 103mlZ分である。溶液を安定して噴霧するためには、流量制御器を用い ることが好ましい。また、ノズル形状の不均質性によって噴霧された液滴が不均一な 分布を生じる場合は、二流体ノズルをその送液管 1及びガス導入管 2が軸回りに高速 回転する回転霧化器とすることが好ましい。また、本発明の微粒子の製造方法では、 装置の設置スペースなどを考慮した上で、二流体ノズルの管軸方向を地面に対して — 90 (噴霧方向が真上)一 + 90° (噴霧方向が真下)の範囲で選ぶことができる。比 較的粗大な微粒子を除去して、粒度分布が狭い微粒子を得るには、二流体ノズルの 管軸方向が 90 30° であることが好ましい。 [0013] The type of the carrier gas flowing through the gas introduction pipe 2 is one that does not react with the solution at normal temperature and normal pressure, but is preferably selected according to the type of the fine particles to be produced. For example, when producing oxide fine particles, it is preferable to use at least one kind of gas selected from the group consisting of nitrogen, argon, oxygen and air. When obtaining compound fine particles or metal fine particles containing a low-valent metal element, it is preferable to select at least one gas selected from the group consisting of nitrogen, argon and hydrogen. The gas pressure is controlled by using a pressure regulator such as a regulator, etc., in consideration of the shape of the two-fluid nozzle and the pressure in the reactor, which are preferably controlled to be higher than the pressure in the reactor. However, the pressure is approximately 0.8 atm or more and 20 atm or less. Above 20 atmospheres, the two-fluid nozzle is easily broken. The gas flow velocity depends on the gap between the liquid sending pipe and the gas introduction pipe at the tip of the two-fluid nozzle, and is approximately 0.1-50 liters Z. If it is less than 0.1 liter Z, the spray speed is low and it is not practical. If it exceeds 50 liter Z, the flow of the sprayed droplets tends to become turbulent. The spraying rate of the solution has a direct effect on the rate of fine particle formation, and is preferably 0.5-10 4 mlZ min, more preferably 10-5 x 10 3 mlZ min. In order to stably spray the solution, it is preferable to use a flow controller. When the sprayed droplets have an uneven distribution due to the non-uniformity of the nozzle shape, the two-fluid nozzle is connected to a rotary atomizer whose liquid sending pipe 1 and gas introducing pipe 2 rotate at high speed around the axis. Is preferred. In addition, in the method for producing fine particles of the present invention, the pipe axis direction of the two-fluid nozzle is set at —90 (spray direction is directly above)-+ 90 ° (spray direction) in consideration of the installation space of the device and the like. Can be selected in the range below). In order to remove relatively coarse fine particles and obtain fine particles having a narrow particle size distribution, the tube axis direction of the two-fluid nozzle is preferably 9030 °.
[0014] 送液管 1に流す溶液は、リチウム (Li)、ナトリウム (Na)、カリウム )、マグネシウム (Mg)、 Ca (カルシウム)、ストロンチウム(Sr)、バリウム(Ba)、炭素(C)、アルミニウム (Al)、シリコン(Si)、チタン (Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄( Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコ二 ゥム(Zr)、モリブデン(Mo)、パラジウム(Pd)、銀 (Ag)、錫(Sn)、タングステン (W) 、ランタン (La)、白金(Pt)および金 (Au)の群力 選ばれる少なくとも 1種類の金属 元素を含むことが好ましい。これらの金属元素を含むことによって、液滴が帯電しや すくなるので、微粒子が得られやすい傾向があるからである。そして、これらの金属元 素を含む化合物を溶媒に溶解することによって溶液を準備することができる。金属化 合物の種類としては、アルコキシド、硫酸塩、塩化物、硝酸塩、リン酸塩、炭酸塩、酢 酸塩、過塩素酸塩、アンモ-ゥム塩およびシアンィ匕合物などが挙げられる力 これら に限定されるものではない。 [0014] The solution flowing through the liquid sending pipe 1 is lithium (Li), sodium (Na), potassium), magnesium. (Mg), Ca (calcium), strontium (Sr), barium (Ba), carbon (C), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), yttrium (Y), zirconium (Zr), molybdenum (Mo), palladium (Pd ), Silver (Ag), tin (Sn), tungsten (W), lanthanum (La), platinum (Pt), and gold (Au). This is because the inclusion of these metal elements makes it easy to charge the droplets, so that fine particles tend to be easily obtained. Then, a solution can be prepared by dissolving the compound containing these metal elements in a solvent. The types of metal compounds include alkoxides, sulfates, chlorides, nitrates, phosphates, carbonates, acetates, perchlorates, ammonium salts, cyanide compounds, and the like. However, it is not limited to these.
液滴を効率よく帯電させるには、噴霧する溶液の導電率や、溶液を構成する溶媒 の誘電率ができるだけ高いことが好ましい。これらのうち、前者については金属元素 濃度と深い関係があり、 10— 6— 2モル Zリットルの範囲であることが好ましぐより好ま しくは 10— 4— 1モル Zリットルである。 2モル Zリットルを超えると溶媒含有率が少なく 液滴が微粒子化されにくいので、粗大な粒子が生成しやすい。他方、 10— 6モル Zリツ トル未満では微粒子の生成速度が非常に遅いので実用的とは言い難くなる。また、 溶液を構成する溶媒は、金属元素を含む化合物などの溶質の溶解度等を考慮して 選択することが望まれる力 液滴の帯電しやすさの点力 誘電率が高いことが好まし い。さら〖こ、液滴の***しやすさの点から、溶液の表面張力が 80mNZm2以下であ ることが好ましぐより好ましくは、 50mN/m2以下である。このような溶液に含まれる 溶媒としては、例えば、メタノール、エタノール、 2—プロパノール、 n—プロパノール、 ブタノーノレ、ペンタノ一ノレ、へキサノーノレ、エチレングリコーノレ、プロピレングリコーノレ 、 3—メチルー 3—メトキシブタノール、ベンジルアルコール、 3—メチルー 3—メトキシブタ ノールなどのアルコール、 γ—ブチロラタトン、 Ν—メチルー 2—ピロリドン、ジメチルァセ トアミド、プロピレングリコールモノメチルェチルエーテル、プロピレングリコールモノメ チルエーテルアセテート、メチルェチルケトン、メチルイソブチルケトン、ジメチルァセ トアミド、 Ν、 Ν-ジメチルホルムアミド、テトラヒドロフラン、アセトン、水などの極性溶媒 を単一または混合して用いることができる。また、溶液の表面張力を低減するために 、溶液が界面活性剤を含むことが好ましい。さらに、脱溶媒のしゃすさの点から、沸 点が 100°C以下の溶媒を主溶媒とすることが好ましい。また、送液のしゃすさの点か ら、溶液の粘度を lOOcP以下に保つことが望まれる。 In order to charge droplets efficiently, it is preferable that the conductivity of the solution to be sprayed and the dielectric constant of the solvent constituting the solution be as high as possible. Of these, the former has a metal element concentration closely related, 10-6 - 2 moles Z liter properly at it is preferred to preferred instrument range of 10 4 - 1 mole Z liter. If it exceeds 2 mol Z liters, the content of the solvent is small and the droplets are not easily formed into fine particles, so that coarse particles are easily generated. On the other hand, the rate of formation of fine particles becomes difficult to say that very slow because practically is less than 10-6 mole Z rates Torr. In addition, the solvent constituting the solution is desired to be selected in consideration of the solubility of a solute such as a compound containing a metal element, and the like. It is preferable that the point force of the droplet to be easily charged has a high dielectric constant. . Further, from the viewpoint of the ease with which the droplets are broken, the surface tension of the solution is preferably 80 mNZm 2 or less, more preferably 50 mN / m 2 or less. Examples of the solvent contained in such a solution include methanol, ethanol, 2-propanol, n-propanol, butanol, pentanole, hexanol, ethylene glycol, propylene glycol, 3-methyl-3-methoxybutanol, Alcohols such as benzyl alcohol, 3-methyl-3-methoxybutanol, γ-butyrolataton, Ν-methyl-2-pyrrolidone, dimethylacetamide, propylene glycol monomethyl ethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, methyl isobutyl Polar solvents such as ketone, dimethylacetamide, Ν, Ν-dimethylformamide, tetrahydrofuran, acetone and water Can be used alone or as a mixture. Further, in order to reduce the surface tension of the solution, the solution preferably contains a surfactant. Further, it is preferable that a solvent having a boiling point of 100 ° C. or less be used as a main solvent in view of the ease of desolvation. In addition, it is desirable to keep the viscosity of the solution below 100 cP from the viewpoint of the smoothness of liquid sending.
[0016] 二流体ノズルは、図 2に示すように先端部で熱分解反応を行う長寸管状の反応器 1 1の一端と連結される。液滴からの溶媒の脱離を促進するために、反応器 11内の圧 力は通常 1気圧以下、好ましくは 0. 5気圧以下、さらに好ましくは 0. 05気圧以下とな るように、コールドトラップ 8を介して反応器 11の他端に接続された真空排気ポンプ 9 にて減圧される。低い圧力であることによって脱溶媒が促進されるが、圧力が低すぎ る場合、二流体ノズルの特性上、液滴を噴霧することが難しくなるので、反応器内に 板状もしくは円錐台状の仕切りを用いて反応器内を仕切ることによって、良好な噴霧 が得られるように二流体ノズル近傍の反応器内の圧力を高くするとよ ヽ。反応器 11内 の圧力を制御するには、真空排気ポンプのほか、より簡易的にはァスピレーターなど の排気装置を用いることができる。これら排気装置の排気速度 VI (リットル Z分)は、 反応器 11の容積 V2 (リットル)および溶液の噴霧速度に応じて適宜選択できるが、 およそ 0. 05≤V2÷V1≤5の範囲であることが好ましい。 V2÷V1 > 5では、液滴か らの脱溶媒が生じにくいので微粒ィ匕が難しぐまた、 0. 05 >V2÷V1では噴霧した 液滴が乱流を生じるので安定した噴霧条件を得ることが難しい傾向がある。また、反 応器の圧力の影響を受けずに安定した送液、噴霧を行うには、溶液供給容器内の 圧力が反応器内の圧力よりも 0. 01-0. 9気圧、好ましくは 0. 1-0. 5気圧高くなる ように制御する、ことが好ましい。  [0016] The two-fluid nozzle is connected to one end of a long tubular reactor 11 for performing a thermal decomposition reaction at the tip as shown in FIG. In order to promote the desorption of the solvent from the droplets, the pressure in the reactor 11 should be kept at a pressure of usually at most 1 atm, preferably at most 0.5 atm, more preferably at most 0.05 atm. The pressure is reduced by a vacuum pump 9 connected to the other end of the reactor 11 via the trap 8. A low pressure promotes desolvation, but if the pressure is too low, it becomes difficult to spray droplets due to the characteristics of the two-fluid nozzle. By partitioning the inside of the reactor using a partition, the pressure in the reactor near the two-fluid nozzle should be increased so that good spraying can be obtained. In order to control the pressure in the reactor 11, an evacuation device such as an aspirator can be used more simply besides a vacuum evacuation pump. The pumping speed VI (liter Z minute) of these pumping devices can be appropriately selected according to the volume V2 (liter) of the reactor 11 and the spraying speed of the solution, but is in a range of about 0.055≤V2 ÷ V1≤5. Is preferred. When V2 ÷ V1> 5, it is difficult to remove the solvent from the droplets, which makes it difficult to finely divide.In the case of 0.05> V2 ÷ V1, the sprayed droplets generate turbulence, so that stable spraying conditions are obtained. It tends to be difficult. In addition, in order to perform stable liquid sending and spraying without being affected by the pressure of the reactor, the pressure in the solution supply container is 0.01 to 0.9 atm, preferably 0 to 0.9 atm, higher than the pressure in the reactor. It is preferable to control so that the pressure becomes higher by 1 to 0.5 atm.
[0017] 送液管 11のうち導電性材料カゝらなる部分は、高圧の直流電源 7と接続されている。  [0017] A portion of the liquid supply pipe 11 made of a conductive material is connected to the high-voltage DC power supply 7.
電源 7より送液管 11に印加する電圧 E1は、送液管の形状、加熱炉内の圧力や温度 、後述の対向電極の有無、対向電極の電圧によって適宜選択することができるが、 ナノメーターサイズの微粒子を作製するためには 0. 1≤ I El I ≤150kV、より好ま しくは 2. 0≤ I El I ≤50kV、送液管の劣化を考慮すると、さらに好ましくは 3. 0≤ I El I ≤40kVの条件を満たすことが好ましい。微小な液滴を効率よく生成させるた めには、できるだけ多くの電荷量を液滴に帯電させた方がよぐ可能な限り高い電圧 を印加することが好ましい。火花放電やコロナ放電を伴いながら噴霧することも可能 であり、この場合、液滴内の金属元素の活性が向上するので、このような放電が無い 場合に比べて反応器の熱分解温度を 50— 300°Cほど低い温度に設定しても結晶性 の高い微粒子が得られる傾向がある。 0. lkV> | El Iの正または負の電圧では、 液滴が帯電し難ぐ本発明のナノメーターサイズの微粒子を得ることが難しい。また、 I E1 | > 150kVではグロ一放電やアーク放電などの持続的な放電が生じるので、 送液管が破壊されやすくなる。 The voltage E1 applied from the power supply 7 to the liquid sending pipe 11 can be appropriately selected according to the shape of the liquid sending pipe, the pressure and temperature in the heating furnace, the presence or absence of a counter electrode described later, and the voltage of the counter electrode. 0.1 ≤ I El I ≤ 150 kV, more preferably 2.0 ≤ I El I ≤ 50 kV, to produce fine particles of a size, and more preferably 3.0 ≤ I It is preferable to satisfy the condition of El I ≤40 kV. In order to generate fine droplets efficiently, it is better to charge as much charge as possible to the droplets. Is preferably applied. It is also possible to spray with spark discharge or corona discharge.In this case, the activity of the metal element in the droplet is improved, so the thermal decomposition temperature of the reactor is reduced by 50% compared to the case without such discharge. — Even at temperatures as low as 300 ° C, fine particles with high crystallinity tend to be obtained. At a positive or negative voltage of 0. lkV> | El I, it is difficult to obtain the nanometer-sized fine particles of the present invention in which the droplets are hardly charged. In addition, if I E1 |> 150 kV, continuous discharge such as glow discharge and arc discharge occurs, so that the liquid supply pipe is easily broken.
[0018] 反応器 11の周囲には加熱炉 12が配置されている。反応器 11の内部は、加熱炉 1 2により室温以上、好ましくは 40— 1200°Cの範囲で温度制御される。温度は熱電対 13にて計測される。従って、二流体ノズルカゝら反応器 11内に噴霧された液滴は、カロ 熱炉 12から熱を受けて分解する。加熱炉 12としては、溶媒の物性や微粒子の生成 温度を考慮して、赤外線加熱炉、マイクロ波誘導加熱炉、抵抗加熱炉などの群から 選ばれる少なくとも 1種類以上を用いることができる。液滴への伝熱を促進するため に、反応器内にヒーター等の熱源を配備してもよい。また、液滴の熱分解を促進する ために、反応器にガスバーナーを接続して、反応器内で酸素等の可燃性ガスを燃焼 させてちょい。 [0018] A heating furnace 12 is arranged around the reactor 11. The temperature inside the reactor 11 is controlled by the heating furnace 12 at room temperature or higher, preferably in the range of 40 to 1200 ° C. Temperature is measured by thermocouple 13. Therefore, the droplets sprayed into the two-fluid nozzle capillar reactor 11 receive heat from the caro heating furnace 12 and are decomposed. As the heating furnace 12, at least one selected from the group consisting of an infrared heating furnace, a microwave induction heating furnace, and a resistance heating furnace can be used in consideration of the physical properties of the solvent and the temperature at which fine particles are generated. A heat source such as a heater may be provided in the reactor to promote heat transfer to the droplets. Also, in order to promote thermal decomposition of droplets, connect a gas burner to the reactor and burn combustible gas such as oxygen in the reactor.
反応器 11の形状は、上記のような管状に限らず、液滴の飛行距離を一定に保つこ とを目的として、球形状や二流体ノズルを中心とした放射状であってもよい。管状の 反応器を用いる場合、管の内径が 30— 1000mmであることが好ましい。 30mm未満 では、微粒子の製造速度が著しく低下するので実用的とは言い難ぐ 1000mmを超 えると加熱炉 12からの熱が液滴に十分に伝わりにくいので、得られた微粒子の結晶 性が著しく低下する傾向がある。管の長さは、 100— 10000mmであることが好ましく 、より好ましくは 300— 7000mmである。 100mm未満では、噴霧された液滴の飛行 距離が短いので、微小化が不十分であり粗大粒子が生成しやすい。 10000mmを越 えると、反応器が長いので生成した微粒子が反応器内に滞留、残存し、微粒子の捕 集が難しくなる。  The shape of the reactor 11 is not limited to the tubular shape as described above, and may be a spherical shape or a radial shape centered on a two-fluid nozzle for the purpose of keeping the flight distance of droplets constant. When a tubular reactor is used, the inner diameter of the tube is preferably 30 to 1000 mm. If the diameter is less than 30 mm, the production speed of the fine particles is remarkably reduced, which is not practical.If the diameter exceeds 1000 mm, the heat from the heating furnace 12 is not sufficiently transmitted to the droplets, and the crystallinity of the obtained fine particles is remarkably high. Tends to decrease. The length of the tube is preferably 100-10000 mm, more preferably 300-7000 mm. If the diameter is less than 100 mm, the flight distance of the sprayed droplet is short, so that the size is insufficiently reduced and coarse particles are easily generated. If it exceeds 10,000 mm, the generated fine particles stay and remain in the reactor because the reactor is long, and it becomes difficult to collect the fine particles.
[0019] この実施形態によれば、金属元素を含む溶液 4が送液管 1を通過中に電源 7から送 液管 1に印加される電圧により帯電する。そして、帯電した溶液 4が二流体ノズルにて 液滴として帯電した状態で反応器 11内に噴霧される。液滴は、反応器 11内を飛行し 、飛行中に電気的制約により微小化するとともに加熱炉 12から熱を受けて分解し、ナ ノメーターサイズの微粒子となる。作製した微粒子の捕集には、公知の捕集方法を用 いることができ、例えば、サイクロンやバグフィルターを用いるフィルタ一式や、静電捕 集式などが挙げられる。図示の例では微粒子は反応器 11内の他端に置かれた捕集 基板 14上に堆積するので、容易に捕集することができる。 According to this embodiment, the solution 4 containing the metal element is charged by the voltage applied from the power supply 7 to the liquid sending pipe 1 while passing through the liquid sending pipe 1. Then, the charged solution 4 is applied to the two-fluid nozzle The droplets are sprayed into the reactor 11 in a charged state. The droplets fly in the reactor 11, are miniaturized due to electrical restrictions during the flight, and are decomposed by receiving heat from the heating furnace 12 to become nanometer-sized fine particles. For collecting the produced fine particles, a known collection method can be used, and examples thereof include a filter set using a cyclone and a bag filter, and an electrostatic collection type. In the illustrated example, the fine particles are deposited on the collecting substrate 14 placed at the other end in the reactor 11, so that the fine particles can be easily collected.
尚、液滴への熱の供給量を増大させて熱分解を促進するために、反応器内に加熱 ヒーターを配置してもよい。さらに、加熱ヒーター上に捕集基板を固定することによつ て、ナノメーターサイズの微粒子を含む膜を捕集基板上に作製することができる。 本発明の製造方法によって製造された微粒子の平均粒子径は概ね 1一 lOOnmの 範囲内である。従って、本発明の製造方法は、例えば、リチウムイオン二次電池の正 極活物質として用いられる LiCoO、 LiNiO , Li Mn O (ただし、 0. 8≤a≤l. 3)、  Note that a heater may be provided in the reactor to increase the amount of heat supplied to the droplets to promote thermal decomposition. Further, by fixing the collecting substrate on the heater, a film containing nanometer-sized fine particles can be formed on the collecting substrate. The average particle diameter of the fine particles produced by the production method of the present invention is generally in the range of 11 100 nm. Therefore, the production method of the present invention is, for example, LiCoO, LiNiO, LiMnO (provided that 0.8 ≤ a ≤ l. 3) used as a positive electrode active material of a lithium ion secondary battery,
2 2 a 2 4  2 2 a 2 4
Li FePO (ただし、 0. 8≤a≤l. 3)、 Li Ni Co O (ただし、 0. 8≤a≤l. 3、 b + c a 3 a b c 2  Li FePO (provided that 0.8 ≤ a ≤ l. 3), Li Ni Co O (provided that 0.8 ≤ a ≤ l. 3, b + c a 3 a b c 2
= 1)、 Li Ni Co Me O (ただし、 0. 8≤a≤l. 3、 b + c + d= 1、 Meは B、 Al、 Mg、 a b c d 2  = 1), Li Ni Co Me O (However, 0.8 ≤ a ≤ l. 3, b + c + d = 1, Me is B, Al, Mg, a b c d 2
Si、 Cu、 Ti、 V、 Mn、 Sn、 Zrおよび Crからなる群より選択される少なくとも 1種類の 元素を含む。)、: Li Ni Co Al Mg O (ただし、 0. 8≤a≤l. 3、 b + c + d+e= 1)、 a b e d e 2  Including at least one element selected from the group consisting of Si, Cu, Ti, V, Mn, Sn, Zr and Cr. ) ,: Li Ni Co Al Mg O (However, 0.8 ≤ a ≤ l. 3, b + c + d + e = 1), a b e de e 2
Li Ni Co Mn Mg O (ただし、 0. 8≤a≤l. 3、 b + c + d+e= 1)、 Li Mn Co O a b c d e 2 a 2-b b Li Ni Co Mn Mg O (However, 0.8 ≤ a ≤ l. 3, b + c + d + e = 1), Li Mn Co O a b c d e 2 a 2-b b
(ただし、 0. 8≤a≤l. 3、b = 0. 01—0. 5) , Li Mn Cr O (ただし、 0. 8≤a≤l(However, 0.8 ≤ a ≤ l. 3, b = 0.01-0.5), Li Mn Cr O (However, 0.8 ≤ a ≤ l
4 a 2-b b 4 4 a 2-b b 4
. 3、b = 0. 01—0. 5)および Li Fe Me PO (ただし、 0. 8≤a≤l. 3、b = 0. 00 a 1-b b 3  3, b = 0.01-0.5) and Li Fe Me PO (provided that 0.8 ≤ a ≤ l. 3, b = 0.000 a 1-b b 3
1—0. 5、 Meは B、 Al、 Mg、 Si、 Cu、 Ti、 V、 Mn、 Ni、 Sn、 Zrおよび Crからなる群 より選択される少なくとも 1種類の元素を表す。)などを製造するのに好適である。また 、リチウムイオン二次電池の負極活物質として好ましく用いられる黒鉛、難黒鉛化性 炭素、易黒鉛化性炭素などの炭素微粒子、シリコン、錫および Li Ti O などの製造  1-0.5, Me represents at least one element selected from the group consisting of B, Al, Mg, Si, Cu, Ti, V, Mn, Ni, Sn, Zr and Cr. ) And the like. Also, the production of carbon fine particles such as graphite, non-graphitizable carbon, and graphitizable carbon, which are preferably used as a negative electrode active material of a lithium ion secondary battery, silicon, tin, and LiTiO.
4 5 12  4 5 12
にも好適である。さらに、本発明の製造方法は、リチウムイオン二次電池の電解質を 製造する場合も好ましく用いられ、例えば、 LiPF、 LiBF、 LiCF SO、 LiN (CF S It is also suitable for. Furthermore, the production method of the present invention is also preferably used when producing an electrolyte for a lithium ion secondary battery, for example, LiPF, LiBF, LiCF SO, LiN (CF S
6 4 3 3 3 6 4 3 3 3
O ) 、 LiN (C F SO ) 、 LiN (CF SO ) (C F SO )、 LiPF (C F ) 、 LiB (CF CO), LiN (C F SO), LiN (CF SO) (C F SO), LiPF (C F), LiB (CF C
2 2 2 5 2 2 3 2 4 9 2 3 2 5 3 32 2 2 5 2 2 3 2 4 9 2 3 2 5 3 3
OO)などの有機物微粒子や、 Li Al Ti (PO ) (ただし、 0. 8≤a≤l. 3, 0. 001OO) or LiAlTi (PO) (provided that 0.8≤a≤l.3, 0.001
4 a b 2-b 4 3 4 a b 2-b 4 3
≤b≤0. 5) , Li Me Ti Si P O (ただし、 0≤a≤0. 4、 0<b≤0. 6、 Me l + a+b a 2-a b 3— b 12 =A1または Ga)、: Li Ti Si P O (ただし、 0≤a≤0. 5)および Li Me (Ge l + a 2 a 3-a 12 1 + a a 1— b≤b≤0.5), Li Me Ti Si PO (However, 0≤a≤0.4, 0 <b≤0.6, Me l + a + ba 2-ab 3—b 12 = A1 or Ga) ,: Li Ti Si PO (however, 0≤a≤0.5) and Li Me (Ge l + a 2 a 3-a 12 1 + aa 1— b
Ti ) (PO ) (ただし、 0≤a≤0. 8、 0≤b< l. 0、 Me=Alまたは Ga)、: Li Ge b 2-a 4 3 4-x 1— xTi) (PO) (However, 0≤a≤0.8, 0≤b <l. 0, Me = Al or Ga), Li Ge b 2-a 4 3 4-x 1— x
P S (ただし、 0. 05≤x≤0. 95)、 Li Si P S (ただし、 0. 05≤x≤0. 95)など x 4 4— x 1— x x 4 P S (but 0.05.x≤0.95), Li Si P S (but 0.05.x≤0.95) etc. x 4 4— x 1— x x 4
のガラス微粒子や、 Li La Ti O (ただし、 0. 3≤a≤0. 5、 0. 4≤b≤0. 6、 0. 9≤c a b c 3  Glass particles or Li La Ti O (0.3 ≤ a ≤ 0.5, 0.4 ≤ b ≤ 0.6, 0.9 ≤ c a b c 3
≤1. 1)、 NASICON構造を有する LiMe (PO ) (ただし、 Me=Ti、 Ge、 Sn、 Hf  ≤1.1), LiMe (PO) with NASICON structure (where Me = Ti, Ge, Sn, Hf
2 4 3  2 4 3
および Zrからなる群より選択される少なくとも 1種類の元素を含む。)、 β -Fe SO型  And at least one element selected from the group consisting of Zr. ), Β-Fe SO type
2 4 構造を有する Li Me (PO ) (ただし、 Me二 Sc、 In、 Crおよび Feからなる群より選  24 Li Me (PO) with a structure (Me selected from the group consisting of Me2 Sc, In, Cr and Fe
3 2 4 3  3 2 4 3
択される少なくとも 1種類の元素を含む。 )などのセラミックス微粒子などを製造するこ とがでさる。  Contains at least one selected element. ) And other fine ceramic particles.
[0021] 但し、リチウムイオン二次電池に限らず、ニッケル水素電池、燃料電池、太陽電池 などの電池にも好ましく適用できる。リチウムイオン二次電池に本発明の製造方法に よる微粒子を最大限活用する場合、例えば、公知の適宜の手法を用いて銅などの金 属基板上に Li Ti O などの負極材料を堆積させる。次いで、この上に、本発明の微  [0021] However, the present invention can be preferably applied not only to lithium ion secondary batteries, but also to batteries such as nickel-metal hydride batteries, fuel cells, and solar cells. In the case where the fine particles obtained by the production method of the present invention are used to the maximum extent in a lithium ion secondary battery, for example, a negative electrode material such as LiTiO is deposited on a metal substrate such as copper by using a known appropriate method. Then, on top of this,
4 5 12  4 5 12
粒子の製造方法を用いて Li La TiOなどの電解質および LiMn Oなどの正  An electrolyte such as Li La TiO and a positive electrode such as LiMn O
0. 35 0. 55 3 2 4 極材料を積層させる。最後に、アルミニウムなどの金属を真空蒸着することによって 全固体型のリチウムイオン二次電池が得られる。  0.35 0.55 3 2 4 Laminate the electrode material. Finally, vacuum deposition of metals such as aluminum provides an all-solid-state lithium-ion secondary battery.
[0022] また、本発明の微粒子は、燃料電池の電極触媒材料としても適しており、例えば、 P t、 Au、 Ni、 Rh、 Zr、 Ag, Ir、 Ru、 Fe、 Co、 Ni、 Cr、 W、 Mn、 Vおよび Pdから選ば れる少なくとも 1種類の金属元素を含む金属微粒子が挙げられる。これらの金属は合 金化された合金微粒子であってもよい。また、これらの金属微粒子または合金微粒子 が酸ィ匕物微粒子を含む微粒子であってもよい。さらに、燃料電池の電解質材料とし ても好適であり、例えば、 ZrO、 CeO、 SnO、 WO、 SrO、 La Oおよびこれらの  [0022] The fine particles of the present invention are also suitable as an electrode catalyst material for a fuel cell, for example, Pt, Au, Ni, Rh, Zr, Ag, Ir, Ru, Fe, Co, Ni, Cr, Metal fine particles containing at least one metal element selected from W, Mn, V and Pd can be used. These metals may be alloyed alloy fine particles. In addition, these metal fine particles or alloy fine particles may be fine particles containing acid oxide fine particles. Further, it is also suitable as an electrolyte material for a fuel cell, for example, ZrO, CeO, SnO, WO, SrO, LaO, and these.
2 2 2 3 2 3  2 2 2 3 2 3
固溶体の酸化物微粒子や、これらの酸化物微粒子に Sc、 Ga、 Y、 Yb、 La、 Ce, Pr、 Nd、 Sm、 Gdおよび Dyから選ばれる少なくとも 1種類の金属元素を 1一 30モル%含 む酸化物微粒子や、 Ti、 Si、 B、 Yおよび A1カゝら選ばれる少なくとも 1種類の元素を含 むポリリン酸化合物微粒子や、 HWO、 KH PO、 β -アルミナ、 β "-アルミナ、ゼォ  Solid solution oxide fine particles or these oxide fine particles contain at least one metal element selected from Sc, Ga, Y, Yb, La, Ce, Pr, Nd, Sm, Gd and Dy in an amount of 110 to 30 mol%. Oxide fine particles, polyphosphate compound fine particles containing at least one element selected from Ti, Si, B, Y and A1, HWO, KHPO, β-alumina, β "-alumina, and zeolite.
3 2 4  3 2 4
ライトなどが挙げられる。本発明の微粒子は、燃料電池の電極材料としても好ましく用 いられ、例えば、 ZrO、 CeOおよび Zr Ce O (ただし、 0. 01≤ δ≤0. 99)の酸  And the like. The fine particles of the present invention are also preferably used as an electrode material for a fuel cell. For example, the fine particles of ZrO, CeO and Zr CeO (provided that 0.011≤δ≤0.99) are used.
2 2 δ 1- 5 2 ィ匕物微粒子、これらの酸ィ匕物微粒子に Sc、 Ga、 Y、 Yb、 La、 Ce, Pr、 Nd、 Sm、 Dy 力も選ばれる少なくとも 1種類の元素を 1一 30モル%含む酸ィ匕物微粒子、 Mg、 Al、 Ca、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Sr、 Ba、 La、 Ce、 Pr、 Nd、 Sm、 Gdおよび Taカゝら選ばれる少なくとも 2種類の元素を含むベロブスカイト複合酸ィ匕物微粒子が挙 げられる。さらに、上述以外の電池に用いられる電極材料としても好適であり、例えば 、 MnO、 AgO、 NiOOH、 CuO、 PbOなどの微粒子が挙げられる。また、電池ゃセ2 2 δ 1- 5 2 Particles containing at least one element selected from the group consisting of Sc, Ga, Y, Yb, La, Ce, Pr, Nd, Sm, and Dy force. Microparticles, at least two selected from Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Ba, La, Ce, Pr, Nd, Sm, Gd and Ta And perovskite composite oxide particles containing the following elements. Further, it is also suitable as an electrode material used in batteries other than those described above, and examples thereof include fine particles of MnO, AgO, NiOOH, CuO, PbO, and the like. In addition, battery
2 2 twenty two
ンサ一の電解質としても好ましく用いることができる。例えば、 Agl-Ag MoO - AgP  It can also be used preferably as a sensor electrolyte. For example, Agl-Ag MoO-AgP
2 4 twenty four
O、 Ag I WO、 j8 -アルミナ、 ,,-アルミナなどの銀イオン伝導体、 Rb Cu CI ISilver ion conductor such as O, Ag I WO, j8-alumina, ,,-alumina, Rb Cu CI I
3 6 4 4 4 16 13 7 や CuI-CuO P Oなどの銅イオン伝導体、 β -アルミナ、 j8,,-アルミナ、 NASICO 3 6 4 4 4 16 13 13 and copper ion conductors such as CuI-CuO PO, β-alumina, j8, -alumina, NASICO
2 2 5  2 2 5
Nなどのナトリウムイオン伝導体、 Mg Zr P Si O (ただし、 0. 8≤x≤l. 5、 5. 5≤ x 4 y z 24  Sodium ion conductor such as N, Mg Zr P Si O (However, 0.8≤x≤l.5, 5.5≤x4yz24
y≤6. 5, 0≤z≤0. 5)などのマグネシウムイオン伝導体の微粒子が挙げられる。  Fine particles of a magnesium ion conductor such as y≤6.5, 0≤z≤0.5).
[0023] 本発明の微粒子は、強誘電体材料にも好ましく用いることが可能であり、例えば、 チタン酸バリウム BaTiO、並びに Mg、 Ca、 Nb、 Co、 Mn、 Ni、 Si、 B、 Bi、 Zn、 Cu、 The fine particles of the present invention can also be preferably used for ferroelectric materials, for example, barium titanate BaTiO, and Mg, Ca, Nb, Co, Mn, Ni, Si, B, Bi, Zn , Cu,
3  Three
Ho、 Zr、 Hfおよび Srの群力 選ばれる少なくとも 1種類の元素を含むチタン酸バリウ ムなどが挙げられる。  Group strength of Ho, Zr, Hf and Sr Examples include barium titanate containing at least one selected element.
[0024] 本発明の微粒子は、磁性体材料としても好ましく用いられ、例えば、 SrO- 2FeO-n Fe O (ただし、 6. 0≤n≤9. 0)などのフェライト磁石や、 Fe B R (ただし、 R= [0024] The fine particles of the present invention are also preferably used as a magnetic material, for example, a ferrite magnet such as SrO-2FeO-nFeO (provided that 6.0≤n≤9.0) or a FeBR (provided that , R =
2 3 100-a-b a b2 3 100-a-b a b
Co、 Pr、 Nd、 Dyおよび Tbの群力 選択される少なくとも 1種類の金属元素を含む、 l≤a≤6, 10≤b≤ 35)などのネオジゥム系希土類磁石、 SmCoや Sm Co などの Group strength of Co, Pr, Nd, Dy and Tb Neodymium rare earth magnets, such as l≤a≤6, 10≤b≤35) containing at least one selected metal element, SmCo and Sm Co
5 2 17 サマリウム ·コバルト系磁石などが挙げられる。さらに、本発明の微粒子は、超伝導材 料としても好ましく用いられ、例えば、 Bi Sr Ca Cu O 、 YBa Cu O、 MgB、 Tl  5 2 17 Samarium-cobalt magnet. Further, the fine particles of the present invention are also preferably used as a superconducting material, for example, BiSrCaCuO, YBaCuO, MgB, Tl
2 2 2 3 10 2 3 7 2 2 2 2 2 3 10 2 3 7 2 2
Ba Ca Cu O などの微粒子が挙げられる。 Fine particles such as Ba Ca Cu O may be used.
2 4 5 14  2 4 5 14
[0025] 本発明の微粒子は、プラズマディスプレイに用いられる蛍光体粒子としても好適で あ 例えば、 Y Eu TaO (ただし、 0. 005≤x<≤0. 1)や Y O: Euなどの赤色  [0025] The fine particles of the present invention are also suitable as phosphor particles used in a plasma display. For example, red particles such as YEuTaO (but 0.005≤x <≤0.1) and YO: Eu can be used.
l-x X 4 2 3  l-x X 4 2 3
蛍光体、 Zn SiO: Mnや Y Tb TaO (ただし、 0. 001≤x<≤0. 2)などの緑色  Phosphor, Zn SiO: Green such as Mn and Y Tb TaO (however, 0.001≤x <≤0.2)
2 4 l-x x 4  2 4 l-x x 4
蛍光体、 BaMgAl O : Euや Y Tm TaO (ただし、 0. 001≤χ<≤0. 2)などの  Phosphor, BaMgAl O: Eu or Y Tm TaO (However, 0.001≤χ <≤0.2)
14 23 l-x x 4  14 23 l-x x 4
青色蛍光体の微粒子が挙げられる。  Fine particles of a blue phosphor may be used.
[0026] 本発明の微粒子は、高周波無線用セラミックス多層基板などの回路材料にも好適 である。多層基板回路のマトリックスを構成する無機粉末の代表的な例として、アルミ ナ、ジルコ -ァ、マグネシア、ベリリア、ムライト、スピネル、フォルステライト、ァノーサ イト、セルジアンおよび窒化アルミを含むガラスセラミックスなどが挙げられる。さらに、 配線導体として用いられる Cu、 Cr、 Ag、 Ni、 Alおよび Auの微粒子にも好ましく適用 できる。 [0026] The fine particles of the present invention are also suitable for circuit materials such as ceramic multilayer substrates for high-frequency wireless. It is. Typical examples of inorganic powders constituting the matrix of the multilayer circuit include alumina, zircon-a, magnesia, beryllia, mullite, spinel, forsterite, anosite, cellian and glass ceramics including aluminum nitride. . Furthermore, it can be preferably applied to fine particles of Cu, Cr, Ag, Ni, Al and Au used as wiring conductors.
本発明の微粒子は、光触媒として用いられる酸化チタン微粒子、 Al、 Si、 Feなどを 含む酸ィ匕チタン微粒子としても好適である。ここでいう酸ィ匕チタンとは、一酸化チタン 、三酸化二チタン、二酸化チタン過酸化チタンなどのチタニウム酸化物のことであり 、特に二酸化チタンの場合、結晶形はルチル形でも、アナターゼ形でもよい。  The fine particles of the present invention are also suitable as titanium oxide fine particles used as a photocatalyst and titanium oxide fine particles containing Al, Si, Fe and the like. The titanium oxide referred to here is a titanium oxide such as titanium monoxide, dititanium trioxide, or titanium dioxide, and particularly in the case of titanium dioxide, the crystal form is either rutile or anatase. Good.
[0027] 一実施形態 2— Embodiment 2—
この実施形態では、図 3に示すように静電捕集器 10が反応器 11の外部に設けられ 、その中に捕集基板 14が置かれている。その他の構成は実施形態 1と同様である。 このように外部に捕集器 10を設けることにより、比較的粗大な微粒子を捕集すること を避けることができる。  In this embodiment, as shown in FIG. 3, an electrostatic collector 10 is provided outside a reactor 11, and a collecting substrate 14 is placed therein. Other configurations are the same as those of the first embodiment. By providing the collector 10 outside in this way, it is possible to avoid collecting relatively coarse particles.
[0028] 一実施形態 3— Embodiment 3—
この実施形態では、図 4に示すように加熱炉 12が反応器 11の外周における軸方向 に複数(図示の例では 3つ)配置されている。この配置により二流体ノズルの管軸方 向と平行に温度勾配を設け、飛行中の液滴の [溶質 Z溶媒]比に応じた温度を設定 することができる。尚、単一の加熱炉でも複数の加熱温度領域を設けることができるも のであれば、それを用いても良い。  In this embodiment, as shown in FIG. 4, a plurality of heating furnaces 12 (three in the illustrated example) are arranged on the outer periphery of the reactor 11 in the axial direction. With this arrangement, a temperature gradient can be provided in parallel with the direction of the tube axis of the two-fluid nozzle, and the temperature can be set according to the [Solute Z solvent] ratio of the droplet in flight. Note that a single heating furnace may be used as long as a plurality of heating temperature ranges can be provided.
また、この実施形態では、送液管に印加する電圧とは異極性の電圧を前記電源 7と は別の電源 18から印加した対向電極 15が、反応器 11内における二流体ノズル側端 部に二流体ノズルと非接触に配置されている。対向電極 15は、これに E1と異極性の 電圧 E2が印加される他、アースされてもよい。送液管と対向電極の電位を異極性、 または対向電極をアースして実質的に 0Vとすることによって、送液管と対向電極の 間の電位勾配が増加し、この電位勾配に沿って噴霧された液滴 5が加速され、液滴 の飛行距離および飛行時間が延びるので微粒子化が促進される。その結果、粒度 の揃った微粒子が得られる傾向がある。 [0029] 対向電極 15の形状は、網目もしくはオリフィスを有し、二流体ノズルの軸線に対し て垂直に立てられた隔板、またはオリフィスを有し、二流体ノズルと同心状に配置され た円錐台状もしくは円錐状のスキーマ一等であることが好ましい。網目の場合の目数 は、 5— 800メッシュであることが好ましい。 5メッシュ未満では、目が大きすぎるので 液滴の帯電が行われにくい。 800メッシュを超えると液滴が通過し難くなり網目上に 液膜が形成されるので、安定した噴霧を行うことが難しい。オリフィスを有する隔板ゃ スキーマ一を用いる場合のオリフィスの直径は、 305000 μ mであることが好ましいFurther, in this embodiment, the opposite electrode 15 applied with a voltage having a different polarity from the voltage applied to the liquid sending pipe from the power supply 18 different from the power supply 7 is applied to the two-fluid nozzle side end in the reactor 11. It is arranged in non-contact with the two-fluid nozzle. The opposite electrode 15 may be applied with a voltage E2 having a polarity different from that of E1, or may be grounded. By setting the potentials of the liquid transfer tube and the counter electrode to different polarities or by grounding the counter electrode to substantially 0 V, the potential gradient between the liquid transfer tube and the counter electrode increases, and spraying is performed along this potential gradient. The droplet 5 is accelerated, and the flight distance and the flight time of the droplet are extended, so that the atomization is promoted. As a result, fine particles with a uniform particle size tend to be obtained. [0029] The shape of the counter electrode 15 has a mesh or an orifice, a partition that stands upright with respect to the axis of the two-fluid nozzle, or a cone that has a concentric orifice with the two-fluid nozzle. It is preferable to use a trapezoidal or conical schema. The number of meshes in the case of a mesh is preferably 5 to 800 mesh. When the mesh size is less than 5 meshes, the eyes are too large, so that the droplets are hardly charged. If it exceeds 800 mesh, it becomes difficult for droplets to pass and a liquid film is formed on the mesh, so that it is difficult to perform stable spraying. Diaphragm with orifice ゃ The diameter of the orifice when using the scheme 1 is preferably 30 to 5000 μm
。この範囲であることによって、液滴の帯電が促進されやすぐまた、粗大な液滴を除 去することができるので粗大粒子の生成が抑えられる。オリフィスは、加熱炉内への 液滴の導入量を増カロさせるために一つの隔板ゃスキーマ一に 2個以上存在すること が好ましい。また、上述の対向電極 15は、二流体ノズルの軸線方向に間隔を開けて 2つ以上配置することがより好ましぐこの場合、各対向電極間に電位差を設けること によって液滴の直進性が向上するので原料溶液の損失を抑えることができる。 . Within this range, the electrification of the droplets is promoted and the coarse droplets can be removed as soon as possible, thereby suppressing the generation of coarse particles. It is preferable that two or more orifices exist in one partition / schema in order to increase the amount of droplets introduced into the heating furnace. In addition, it is more preferable to arrange two or more of the above-described counter electrodes 15 at intervals in the axial direction of the two-fluid nozzle. In this case, by providing a potential difference between the respective counter electrodes, the straightness of the droplet is improved. As a result, the loss of the raw material solution can be suppressed.
また、対向電極の電位制御について鋭意研究を行った結果、 E1と E2が同極性で ある場合にも、 I E2 Iと I El Iに電位差を設けることによって微粒子化が促進され ることがわ力つた。さらに、同極性であることによって対向電極への液滴の付着が抑え られるので、材料損失が低減されて収率が向上することがわ力つた。  In addition, as a result of diligent research on the potential control of the counter electrode, it was found that, even when E1 and E2 have the same polarity, fine particles can be promoted by providing a potential difference between I E2 I and I El I. I got it. In addition, the same polarity can prevent the droplets from adhering to the opposing electrode, thereby reducing material loss and improving yield.
[0030] 一実施形態 4  [0030] Embodiment 4
この実施形態では、図 5に示すように反応器 11の外周における二流体ノズルとの連 結部付近に 2個の磁石 16が固定されている。その他の構成は実施形態 1と同様であ る。 2個の磁石は反応器 11を間にして対向するように設けられ、互いに異なる極性を 有する。これにより反応器 11の径方向に磁場が形成され、噴霧された液滴のうち粗 大なものは磁場の作用で径方向に向かい、反応器 11の内面に衝突して付着する。 従って、粗大な液滴に由来する大きな粒子が捕集基板 14上に載らなくなり、粒子径 が揃った微粒子を得ることができる。磁石 16による磁束密度は 50— 250mTであるこ とが好ましい。磁石 16は、二流体ノズルの軸線を中心として回転させるとよい。反応 器 11内面の同じ個所に粗大粒子が付着するのを防止するためである。  In this embodiment, as shown in FIG. 5, two magnets 16 are fixed on the outer periphery of the reactor 11 near the connection with the two-fluid nozzle. Other configurations are the same as those of the first embodiment. The two magnets are provided to face each other with the reactor 11 therebetween, and have different polarities. As a result, a magnetic field is formed in the radial direction of the reactor 11, and coarse droplets of the sprayed droplets are directed in the radial direction by the action of the magnetic field, and collide with and adhere to the inner surface of the reactor 11. Therefore, large particles derived from coarse droplets are not placed on the collecting substrate 14, and fine particles having a uniform particle diameter can be obtained. The magnetic flux density by the magnet 16 is preferably 50 to 250 mT. The magnet 16 is preferably rotated about the axis of the two-fluid nozzle. This is to prevent coarse particles from adhering to the same location on the inner surface of the reactor 11.
[0031] 一実施形態 5— この実施形態では、図 6に示すように反応器 11の外周における二流体ノズルとの連 結部付近の一側にレーザー光源 17が配置されている。このレーザー光は液滴 5が 吸収できる波長を含むもので、これを噴霧直後の液滴 5に照射することで溶媒の脱離 が促進される。その他の構成は実施形態 2と同様である。 Embodiment 5— In this embodiment, as shown in FIG. 6, a laser light source 17 is arranged on one side near the connection with the two-fluid nozzle on the outer periphery of the reactor 11. This laser beam contains a wavelength that can be absorbed by the droplet 5, and by irradiating the laser beam onto the droplet 5 immediately after spraying, the desorption of the solvent is promoted. Other configurations are the same as those of the second embodiment.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定さ れない。なお、実施例中に記載された平均粒子径八、平均粒子径 B及び D の測定  Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto. In addition, the measurement of the average particle diameter of 8 and the average particle diameters B and D described in the Examples
90 方法は以下に示すとおりである。  90 The method is as follows.
[0032] [測定方法] [0032] [Measurement method]
(1) TEM観察  (1) TEM observation
透過型電子顕微鏡 (TEM)を用いて合 、重ならない 10ケ所の場所で 100万倍に 拡大して観察、撮影し、その写真を画像処理することによって各像における任意の 2 0個の粒子につ!、て見かけの面積を同面積の円に換算した場合の直径を求め、これ を平均粒子径 Aとした。  Using a transmission electron microscope (TEM), the images were magnified 1 million times at 10 non-overlapping locations, observed and photographed, and the photograph was processed into arbitrary 20 particles in each image. The diameter was calculated by converting the apparent area to a circle of the same area, and this was defined as the average particle diameter A.
(2)粒度分布の測定  (2) Measurement of particle size distribution
得られた微粒子をエタノール、アセトン、水の 3種類の溶媒に各 3wt%の濃度で分 散したものを、粒度分布計 Particle sizing systems社の粒度分布計 NICOMP3 80ZDLSを用いて測定し、これらのうち最も小さ!/、平均粒子径を平均粒子径 Bとし、 更に平均粒子径 Bを示す試料について、 D を求めた。  Particles obtained by dispersing the obtained fine particles in three kinds of solvents of ethanol, acetone and water at a concentration of 3 wt% each were measured using a particle size distribution analyzer NICOMP3 80ZDLS of Particle sizing systems. The smallest! /, The average particle diameter was defined as the average particle diameter B, and D was determined for the sample showing the average particle diameter B.
90  90
実施例 1  Example 1
[0033] テトライソプロポキシチタン Ti(OC H ) とエタノールを用いて、チタンの元素濃度  [0033] Using titanium tetraisopropoxy titanium (OC H) and ethanol, the elemental concentration of titanium
3 7 4  3 7 4
が 5. 7 X 10— 5モル Zリットルのテトライソプロポキシチタン溶液を調整した。図 2に示 す装置を用いて、ガス導入管 2に流したキャリアーガス 6は酸素、キャリアーガス圧力 は 1. 2気圧、反応器 11内の圧力は 0. 98気圧、送液管 1に印加した電圧は直流 0. 15kV、溶液の噴霧速度は 0. 5 lmlZ分の条件で微粒子を作製し、石英製で大きさ 20mm角の捕集基板 14上に捕集した。二流体ノズルの軸方向は地面に対して平行 (0° )であり、反応器 11として内径が 30mm、長さが 100mmの石英管を用いた。反 応器 11の温度を測定する熱電対 13が管の中央に取り付けてあり、抵抗加熱炉 12で 500°Cに保持した。作製した微粒子について X線回折測定を行った結果、アナター ゼ型の酸化チタンであることがわかった。微粒子の平均粒子径 Aは 35nm、平均粒 子径 Bは 25nm、 D は 185nmであった。 There was adjusted tetraisopropoxytitanium solution of 5. 7 X 10- 5 moles Z l. Using the apparatus shown in Fig. 2, the carrier gas 6 flowing into the gas inlet pipe 2 was oxygen, the carrier gas pressure was 1.2 atm, the pressure inside the reactor 11 was 0.98 atm, and the pressure was applied to the liquid sending pipe 1. Fine particles were prepared under the conditions of a voltage of 0.15 kV DC and a spraying rate of 0.5 lmlZ for the solution, and the fine particles were collected on a 20 mm square collecting substrate 14 made of quartz. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 30 mm and a length of 100 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 500 ° C. in the resistance heating furnace 12. X-ray diffraction measurement was performed on the prepared fine particles. It was found to be zeolite titanium oxide. The average particle diameter A of the fine particles was 35 nm, the average particle diameter B was 25 nm, and D was 185 nm.
90  90
実施例 2  Example 2
[0034] 塩化白金(IV)酸六水和物 H PtCl · 6Η 0、水及びエタノールを用いて、白金の元  [0034] Chloroplatinate (IV) hexahydrate H PtCl · 6 · 0, water and ethanol were used to remove platinum
2 6 2  2 6 2
素濃度が 1モル Ζリットルの塩ィ匕白金溶液を調整した。図 2に示す装置を用いて、キ ャリア一ガスはアルゴンと水素の混合ガス (体積比で 1: 1)、キャリアーガス圧力は 2気 圧、反応器 11内の圧力は 0. 06気圧、送液管 1に印加した電圧は直流 135kV、溶 液の噴霧速度は lOOOOmlZ分の条件で微粒子を作製し、実施例 1のものと同じ捕 集基板 14上に捕集した。二流体ノズルの軸方向は地面に対して平行 (0° )であり、 反応器 11として内径が 950mm、長さが 9200mmのアルミナ管を用いた。反応器 11 の温度を測定する熱電対 13が管の中央に取り付けてあり、抵抗加熱炉 12で 600°C に保持した。作製した微粒子について X線回折測定を行った結果、白金であることが わかった。微粒子の平均粒子径 Aは 30nm、平均粒子径 Bは 35nm、 D は 180nm  A platinum salt solution having a sulfur concentration of 1 mol / liter was prepared. Using the apparatus shown in Fig. 2, the carrier gas is a mixed gas of argon and hydrogen (1: 1 by volume), the carrier gas pressure is 2 atm, the pressure in the reactor 11 is 0.06 atm, and Fine particles were produced under the conditions that the voltage applied to the liquid tube 1 was 135 kV DC and the spraying rate of the solution was 100,000 mlZ, and the fine particles were collected on the same collecting substrate 14 as that in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and an alumina tube having an inner diameter of 950 mm and a length of 9200 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 600 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the prepared fine particles revealed that the particles were platinum. Average particle size A of fine particles is 30 nm, average particle size B is 35 nm, D is 180 nm
90 であった。  90.
実施例 3  Example 3
[0035] 硝酸マンガン六水和物 Mn (NO ) · 6Η 0、硝酸リチウム LiNO及びメタノールを  [0035] Manganese nitrate hexahydrate Mn (NO) · 600, lithium nitrate LiNO and methanol
3 2 2 3  3 2 2 3
用いて、マンガンとリチウムの元素濃度が合計 1 X 10— 4モル Zリットルの溶液を調整 した。図 2に示す装置を用いて、キャリアーガスはアルゴン、キャリアーガス圧力は 4気 圧、反応器 11内の圧力は 0. 79気圧、送液管 1に印加した電圧は 48kV、溶液の噴 霧速度は 4700mlZ分の条件で微粒子を作製し、実施例 1のものと同じ捕集基板 14 上に捕集した。二流体ノズルの軸方向は地面に対して平行 (0° )であり、反応器 11 として内径が 30mm、長さが 300mmの石英管を用いた。反応器 11の温度を測定す る熱電対 13が管の中央に取り付けてあり、抵抗加熱炉 12で 450°Cに保持した。作製 した微粒子について X線回折測定を行った結果、スピネル型の LiMn Oであること Used, element concentration of manganese and lithium was adjusted to a solution of total 1 X 10- 4 mole Z l. Using the apparatus shown in Fig. 2, the carrier gas is argon, the carrier gas pressure is 4 atm, the pressure in the reactor 11 is 0.79 atm, the voltage applied to the liquid sending pipe 1 is 48 kV, and the solution spray speed Prepared fine particles under the conditions of 4700 mlZ and collected them on the same collecting substrate 14 as in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 30 mm and a length of 300 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 450 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the produced fine particles showed that they were spinel-type LiMn O.
2 4 がわかった。微粒子の平均粒子径 Aは 25nm、平均粒子径 Bは 28nm、 D は 165η  I found 2 4. Average particle size A of fine particles is 25nm, average particle size B is 28nm, D is 165η
90  90
mであつ 7こ。  7 in m.
実施例 4  Example 4
[0036] 硝酸亜鉛六水和物 Zn (NO ) · 6Η 0、酢酸マンガン四水和物 Mn (CH CO ) ·4  [0036] Zinc nitrate hexahydrate Zn (NO) · 600, manganese acetate tetrahydrate Mn (CH CO) · 4
3 2 2 3 2 2 H 0、オルトケィ酸テトラェチル Si (OC H ) 、硝酸、水及びエタノールを用いて、亜3 2 2 3 2 2 H 0, tetraethyl orthokerate Si (OC H), nitric acid, water and ethanol
2 2 5 4 2 2 5 4
鉛、マンガンおよびシリコンの元素濃度が合計 0. 9モル Zリットルの溶液を調整した 。図 2に示す装置を用いて、キャリアーガスは空気、キャリアーガス圧力は 5気圧、反 応器内の圧力は 0. 1気圧、送液管 1に印加した電圧は直流 2kV、溶液の噴霧速度 は lOmlZ分の条件で微粒子を作製し、実施例 1のものと同じ捕集基板 14上に捕集 した。二流体ノズルの軸方向は地面に対して平行 (0° )であり、反応器 11として内径 力 S950mm、長さが 7000mmのアルミナ管を用いた。反応器 11の温度を測定する熱 電対 13が管の中央に取り付けてあり、抵抗加熱炉 12で 750°Cに保持した。作製した 微粒子について X線回折測定を行った結果、スピネル型の ZnSiO : Mnであることが  A solution having a total elemental concentration of lead, manganese and silicon of 0.9 mol Z liter was prepared. Using the apparatus shown in Fig. 2, the carrier gas is air, the carrier gas pressure is 5 atm, the pressure in the reactor is 0.1 atm, the voltage applied to the liquid sending pipe 1 is 2 kV DC, and the spraying speed of the solution is Fine particles were produced under the condition of lOmlZ, and were collected on the same collecting substrate 14 as in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and an alumina tube having an inner diameter of S950 mm and a length of 7000 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 750 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the produced microparticles showed that it was spinel-type ZnSiO: Mn.
4  Four
わかった。微粒子の平均粒子径 Aは 21nm、平均粒子径 Bは 25nm、 D は 160nm  all right. Average particle size A of fine particles is 21 nm, average particle size B is 25 nm, D is 160 nm
90 であった。  90.
実施例 5  Example 5
[0037] テトライソプロポキシチタン Ti (OC H ) 、酢酸リチウム LiOOCCH、酢酸ランタン 5  [0037] Tetraisopropoxytitanium Ti (OCH), lithium acetate LiOOCCH, lanthanum acetate 5
3 7 4 3  3 7 4 3
. 5水和物 La (CH COO) · 5. 5H 0、酢酸及び 2—プロパノールを用いて、チタン、  .Pentahydrate La (CH COO) 5.5H0, using acetic acid and 2-propanol, titanium,
3 3 2  3 3 2
ランタンおよびリチウムの元素濃度が合計 0. 15モル Zリットルの溶液を調整した。図 2に示す装置を用いて、キャリアーガスは窒素とアルゴンの混合ガス (体積比で 5: 95 )、キャリアーガス圧力は 3気圧、反応器 11内の圧力は 0. 15気圧、送液管 1に印加 した電圧は直流 4kV、溶液の噴霧速度は 30mlZ分の条件で微粒子を作製し、実施 例 1のものと同じ捕集基板 14上に捕集した。二流体ノズルの軸方向は地面に対して 平行(0° )であり、反応器 11として内径が 100mm、長さが 900mmの石英管を用い た。反応器 11の温度を測定する熱電対 13が管の中央に取り付けてあり、軸方向の 長さが 900mmの抵抗加熱炉 12で 850°Cに保持した。作製した微粒子にっ 、て組 成分析および X線回折測定を行った結果、ぺロブスカイト型の Li La TiOであ  A solution having a total elemental concentration of lanthanum and lithium of 0.15 mol Z liter was prepared. Using the apparatus shown in Fig. 2, the carrier gas is a mixed gas of nitrogen and argon (volume ratio: 5:95), the carrier gas pressure is 3 atm, the pressure in the reactor 11 is 0.15 atm, and the liquid supply pipe 1 Microparticles were produced under the conditions of a voltage of 4 kV DC applied and a spraying rate of 30 mlZ for the solution, and the fine particles were collected on the same collecting substrate 14 as in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 100 mm and a length of 900 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached at the center of the tube, and was maintained at 850 ° C. in a resistance heating furnace 12 having an axial length of 900 mm. As a result of composition analysis and X-ray diffraction measurement of the produced fine particles, it was found that the particles were perovskite type Li La TiO.
0. 35 0. 55 3 ることがわかった。微粒子の平均粒子径 Aは 5nm、平均粒子径 Bは 6nm、 D は 45η  0.35 0.55 3 Average particle diameter A of fine particles is 5 nm, average particle diameter B is 6 nm, D is 45η
90 mであつ 7こ。  7 at 90 m.
実施例 6  Example 6
[0038] 過塩素酸リチウム LiCIO、水及びジェチルエーテルを用いて、リチウムの元素濃度  [0038] Lithium perchlorate LiCIO, water and getyl ether were used to determine the elemental concentration of lithium.
4  Four
が合計 0. 03モル Zリットルの溶液を調整した。図 2に示す装置を用いて、キャリアー ガスはアルゴン、キャリアーガス圧力は 2気圧、反応器 11内の圧力は 0. 7気圧、送液 管 1に印加した電圧は直流 37kV、溶液の噴霧速度は lOOmlZ分の条件で微粒子 を作製し、実施例 1のものと同じ捕集基板 14上に捕集した。二流体ノズルの軸方向 は地面に対して平行(0° )であり、反応器 11として内径が 100mm、長さが 2000m mの石英管を用いた。反応器 11の温度を測定する熱電対 13が管の中央に取り付け てあり、抵抗加熱炉 12で 65°Cに保持した。作製した微粒子について X線回折測定を 行った結果、 LiCIOであることがわかった。微粒子の平均粒子径 Aは 12nm、平均 Prepared a total of 0.03 mol Zl of solution. Using the device shown in Fig. 2, the carrier The gas was argon, the carrier gas pressure was 2 atm, the pressure in the reactor 11 was 0.7 atm, the voltage applied to the feed tube 1 was 37 kV DC, and the spraying rate of the solution was 100 mlZ. The sample was collected on the same collecting substrate 14 as that in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 100 mm and a length of 2000 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 65 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the prepared microparticles revealed that it was LiCIO. Average particle size A of fine particles is 12 nm, average
4  Four
粒子径 Bは 19nm、 D は 52nmであった。  Particle size B was 19 nm and D was 52 nm.
90  90
実施例 7  Example 7
[0039] テトライソプロポキシチタン Ti (OC H ) 、リチウムイソプロポキシド LiOC H、酢酸  [0039] Tetraisopropoxytitanium Ti (OCH), lithium isopropoxide LiOCH, acetic acid
3 7 4 3 7 及び 2—プロパノールを用いて、チタン、ランタンおよびリチウムの元素濃度が合計 0. 1モル Zリットルの溶液を調整した。図 2に示す装置を用いて、キャリアーガスはアル ゴン、キャリアーガス圧力は 2. 5気圧、反応器 11内の圧力は 0. 75気圧、送液管 1に 印加した電圧は直流 25kV、溶液の噴霧速度は 70mlZ分の条件で微粒子を作製し 、実施例 1のものと同じ捕集基板 14上に捕集した。二流体ノズルの軸方向は地面に 対して平行(0° )であり、反応器 11として内径が 150mm、長さが 1000mmの石英 管を用いた。反応器 11の温度を測定する熱電対 13が管の中央に取り付けてあり、抵 抗加熱炉 12で 400°Cに保持した。作製した微粒子について X線回折測定を行った 結果、スピネル型の Li Ti O であることがわかった。微粒子の平均粒子径 Aは 15η  A solution having a total elemental concentration of titanium, lanthanum and lithium of 0.1 mol Z liter was prepared using 3 7 4 3 7 and 2-propanol. Using the apparatus shown in Fig. 2, the carrier gas was argon, the carrier gas pressure was 2.5 atm, the pressure inside the reactor 11 was 0.75 atm, the voltage applied to the liquid sending pipe 1 was 25 kV DC, and the solution Fine particles were prepared under the condition of a spraying rate of 70 mlZ, and were collected on the same collecting substrate 14 as in Example 1. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 150 mm and a length of 1000 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 400 ° C. in the resistance heating furnace 12. X-ray diffraction measurement of the prepared fine particles revealed that the particles were spinel-type LiTiO. Average particle size A of fine particles is 15η
4 5 12  4 5 12
m、平均粒子径 Βは 13nm、 D は 62nmであった。  m, the average particle diameter was 13 nm, and D was 62 nm.
90  90
実施例 8  Example 8
[0040] 硝酸コバルト Co (NO ) · 6Η 0、酢酸ニッケル Ni(CH COO) ·4Η 0、酢酸リチウ  [0040] Cobalt nitrate Co (NO) · 600, nickel acetate Ni (CH COO) · 400, lithium acetate
3 2 3 2  3 2 3 2
ム LiOOCCH、酢酸、アセトン及びエタノールを用いて、コノルト、ニッケルおよびリ  Using LiOOCCH, acetic acid, acetone and ethanol
3  Three
チウムの元素濃度が合計 0. 003モル Zリットルの溶液を調整した。図 3に示す装置 を用いて、キャリアーガスは空気、キャリアーガス圧力は 2. 5気圧、反応器 11内の圧 力は 0. 5気圧、送液管 1に印加した電圧は直流 30kV、溶液の噴霧速度は 950mlZ 分の条件で微粒子を作製し、静電捕集器 10を用いて石英製で大きさ 20mm角の捕 集基板 14上に捕集した。二流体ノズルの軸方向は地面に対して平行 (0° )であり、 反応器 11として内径が 50mm、長さが 1000mmの石英管を用いた。反応器 11の温 度を測定する熱電対 13が管の中央に取り付けてあり、軸方向の長さが 1000mmの 抵抗加熱炉 12で 750°Cに保持した。作製した微粒子について X線回折測定を行つ た結果、岩塩型の LiNi Co Oであることがわかった。微粒子の平均粒子径 Aは 20 nm、平均粒子径 Bは 25nm、 D は 85nmであった。 A solution having a total elemental concentration of 0.003 mol Zl of titanium was prepared. Using the apparatus shown in Fig. 3, the carrier gas was air, the carrier gas pressure was 2.5 atm, the pressure inside the reactor 11 was 0.5 atm, the voltage applied to the liquid sending pipe 1 was 30 kV DC, and the solution Fine particles were prepared at a spraying rate of 950 mlZ, and were collected on a 20 mm square collecting substrate 14 made of quartz using an electrostatic collector 10. The axial direction of the two-fluid nozzle is parallel (0 °) to the ground, As the reactor 11, a quartz tube having an inner diameter of 50 mm and a length of 1000 mm was used. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 750 ° C. in a resistance heating furnace 12 having an axial length of 1000 mm. As a result of X-ray diffraction measurement of the produced fine particles, it was found to be rock salt type LiNiCoO. The average particle diameter A of the fine particles was 20 nm, the average particle diameter B was 25 nm, and D was 85 nm.
90  90
実施例 9  Example 9
[0041] ショ糖 C H O 、水及びエチレングリコールを用いて、炭素元素濃度が合計 0. 0  [0041] Using sucrose CHO, water and ethylene glycol, the total carbon element concentration was 0.0.
12 22 11  12 22 11
4モル Zリットルの溶液を調整した。図 3に示す装置を用いて、キャリアーガスはアル ゴン、キャリアーガス圧力は 1. 5気圧、反応器 11内の圧力は 0. 35気圧、送液管に 印加した電圧は直流 15kV、溶液の噴霧速度は 3mlZ分の条件で微粒子を作製し、 実施例 8と同様に捕集基板 14上に捕集した。二流体ノズルの軸方向は、地面に対し て 45° 上方であった。反応器 11として内径が 150mm、長さが 700mmの石英管を 用いた。反応器 11の温度を測定する熱電対 13が管の中央に取り付けてあり、抵抗 加熱炉 12で 900°Cに保持した。作製した微粒子にっ ヽてラマン測定および X線回折 測定を行った結果、難黒鉛ィ匕性炭素材料であることがゎカゝつた。微粒子の平均粒子 径 Aは 8nm、平均粒子径 Bは 9nm、 D は 72nmであった。  A 4 molar Z liter solution was prepared. Using the apparatus shown in Fig. 3, the carrier gas is argon, the carrier gas pressure is 1.5 atm, the pressure inside the reactor 11 is 0.35 atm, the voltage applied to the liquid supply pipe is 15 kV DC, and the solution is sprayed. Fine particles were produced at a speed of 3 mlZ and collected on the collecting substrate 14 in the same manner as in Example 8. The axial direction of the two-fluid nozzle was 45 ° above the ground. As the reactor 11, a quartz tube having an inner diameter of 150 mm and a length of 700 mm was used. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 900 ° C. in the resistance heating furnace 12. As a result of performing Raman measurement and X-ray diffraction measurement on the produced fine particles, it was found that the carbon material was a non-graphitizable carbon material. The average particle diameter A of the fine particles was 8 nm, the average particle diameter B was 9 nm, and D was 72 nm.
90  90
実施例 10  Example 10
[0042] ショ糖 C H O 、水及びエチレングリコールを用いて、炭素元素濃度が合計 0. 0  Using sucrose C H O, water and ethylene glycol, the total carbon element concentration is 0.0
12 22 11  12 22 11
4モル Zリットルの溶液を調整した。図 3に示す装置を用いて、キャリアーガスはアル ゴン、キャリアーガス圧力は 2気圧、反応器 11内の圧力は 0. 35気圧、送液管 1に印 カロした電圧は 20kV、溶液の噴霧速度は 5mlZ分の条件で微粒子を作製し、大き さ 20mm角の石英基板上に捕集した。二流体ノズルの軸方向は地面に対して平行 ( 0° )であり、反応器 11として内径が 150mm、長さが 700mmの石英管を用いた。反 応器 11の温度を測定する熱電対 13が管の中央に取り付けてあり、抵抗加熱炉 12で 900°Cに保持した。作製した微粒子についてラマン測定および X線回折測定を行つ た結果、難黒鉛ィ匕性炭素材料であることがゎカゝつた。微粒子の平均粒子径 Aは 10η m、平均粒子径 Bは 13nm、 D は lOOnmであった。  A 4 molar Z liter solution was prepared. Using the apparatus shown in Fig. 3, the carrier gas is argon, the carrier gas pressure is 2 atm, the pressure in the reactor 11 is 0.35 atm, the voltage applied to the liquid supply pipe 1 is 20 kV, and the spraying speed of the solution. Prepared fine particles under the condition of 5 mlZ and collected them on a quartz substrate of 20 mm square. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 150 mm and a length of 700 mm was used as the reactor 11. A thermocouple 13 for measuring the temperature of the reactor 11 was attached to the center of the tube, and was maintained at 900 ° C. in the resistance heating furnace 12. As a result of performing Raman measurement and X-ray diffraction measurement on the produced fine particles, it was found that the particles were a non-graphitizable carbon material. The average particle diameter A of the fine particles was 10ηm, the average particle diameter B was 13 nm, and D was 100 nm.
90  90
実施例 11 [0043] 二流体ノズルの先端から 20mm離して反応器 11内に配置した SUS製のメッシュ電 極(5メッシュ)を対向電極 15として用い、加熱ゾーンが 3つに分かれた加熱炉 12を 用いた以外は、実施例 7を繰り返した(図 4)。対向電極には 10kVの直流電圧を印 加した。各ゾーンの長さは 330mmであり、各ゾーンの中央に配置された熱電対 13は 二流体ノズルに近い側から 200、 300、 400°Cを示した。作製した微粒子について X 線回折測定を行った結果、スピネル型の Li Ti O であることがわ力つた。微粒子の Example 11 A stainless steel mesh electrode (5 mesh) arranged in the reactor 11 at a distance of 20 mm from the tip of the two-fluid nozzle was used as the counter electrode 15, and a heating furnace 12 having three heating zones was used. Example 7 was repeated except for (Figure 4). A DC voltage of 10 kV was applied to the counter electrode. The length of each zone was 330 mm, and the thermocouple 13 located at the center of each zone showed 200, 300, and 400 ° C from the side near the two-fluid nozzle. X-ray diffraction measurement of the prepared fine particles showed that it was spinel-type LiTiO. Particulate
4 5 12  4 5 12
平均粒子径 Aは 13nm、平均粒子径 Bは 10nm、 D は 42nmであり、実施例 7に比  The average particle diameter A was 13 nm, the average particle diameter B was 10 nm, and D was 42 nm, which was smaller than that of Example 7.
90  90
ベて粒度分布が狭くなつた。  The particle size distribution has become narrower.
実施例 12  Example 12
[0044] 二流体ノズルの先端から 35mm離して反応器 11内に配置した SUS製のメッシュ電 極(800メッシュ)を対向電極 15として用い、加熱ゾーンが 3つに分かれた加熱炉 12 を用いた以外は、実施例 7を繰り返した(図 4)。対向電極には 25kVの直流電圧を 印加した。各ゾーンの長さは 330mmであり、各ゾーンの中央に配置された熱電対 1 3は二流体ノズルに近い側から 180、 350、 400°Cを示した。作製した微粒子につい て X線回折測定を行った結果、スピネル型の Li Ti O であることがわかった。微粒  [0044] A stainless steel mesh electrode (800 mesh) arranged in the reactor 11 at a distance of 35 mm from the tip of the two-fluid nozzle was used as the counter electrode 15, and a heating furnace 12 having three heating zones was used. Example 7 was repeated except for (Figure 4). A DC voltage of 25 kV was applied to the counter electrode. The length of each zone was 330 mm, and the thermocouple 13 arranged in the center of each zone showed 180, 350, and 400 ° C from the side near the two-fluid nozzle. X-ray diffraction measurement of the produced fine particles revealed that the particles were spinel-type LiTiO. Fine grain
4 5 12  4 5 12
子の平均粒子径 Aは 16nm、平均粒子径 Bは 15nm、 D は 30nmであり、実施例 7  The average particle size A of the particles was 16 nm, the average particle size B was 15 nm, and D was 30 nm.
90  90
に比べて粒度分布が狭くなつた。  The particle size distribution became narrower than that of.
実施例 13  Example 13
[0045] 二流体ノズルの先端から 10mm離して反応器 11内に配置した SUS製の円錐台状 スキーマ一電極を対向電極 15として用い、加熱ゾーンが 3つに分かれた加熱炉 12を 用いた以外は、実施例 7を繰り返した(図 4)。スキーマ一電極には、二流体ノズルの 管軸方向から眺めてその軸中心を囲む一辺の長さ lmmの正五角形の頂点位置に 直径 30 mのオリフィスを 1個ずつ合計 5個配置した。スキーマ一電極はアースと接 続して、実質的に 0Vとした。各ゾーンの長さは 330mmであり、各ゾーンの中央に配 置された熱電対 13は二流体ノズルに近い側から 180、 350、 400°Cを示した。作製し た微粒子について X線回折測定を行った結果、スピネル型の Li Ti O であることが  [0045] Except for using a heating furnace 12 with a heating zone 12 divided into three heating zones, using a SUS frustoconical one-electrode arranged in the reactor 11 at a distance of 10mm from the tip of the two-fluid nozzle as the counter electrode 15. Repeated Example 7 (FIG. 4). A single 30 m diameter orifice was placed at the top of a regular pentagon with a side length of lmm surrounding the axial center of the two-fluid nozzle viewed from the tube axis direction of the two-fluid nozzle. One electrode of the schema was connected to the ground, and was set to substantially 0V. The length of each zone was 330 mm, and the thermocouple 13 located at the center of each zone showed 180, 350, and 400 ° C from the side near the two-fluid nozzle. X-ray diffraction measurement of the produced fine particles showed that the particles were spinel-type Li Ti O.
4 5 12  4 5 12
わかった。微粒子の平均粒子径 Aは 13nm、平均粒子径 Bは 10nm、 D は 42nmで  all right. The average particle diameter A of the fine particles is 13 nm, the average particle diameter B is 10 nm, and D is 42 nm.
90 あり、実施例 7に比べて粒度分布が狭くなつた 実施例 14 90, and the particle size distribution was narrower than in Example 7. Example 14
[0046] 二流体ノズルの先端から 100mm離して反応器 11内に配置した SUS製の円錐台 状スキーマ一電極を対向電極 15として用い、加熱ゾーンが 3つに分かれた加熱炉 1 2を用いた以外は、実施例 7を繰り返した(図 4)。スキーマ一電極には、その中央に 直径 5000 μ mのオリフィスが 1個存在し、二流体ノズルの管軸線上にオリフィスがくる ように配置した。スキーマ一電極には 50kVの直流電圧を印加した。各ゾーンの長さ は 330mmであり、各ゾーンの中央に配置された熱電対 13は二流体ノズルに近!ヽ側 力も 150、 380、 400°Cを示した。作製した微粒子について X線回折測定を行った結 果、スピネル型の Li Ti O であることがわかった。微粒子の平均粒子径 Aは 17nm  [0046] One electrode of a SUS frustum-shaped schema placed in the reactor 11 at a distance of 100 mm from the tip of the two-fluid nozzle was used as the counter electrode 15, and a heating furnace 12 having three heating zones was used. Example 7 was repeated except for (Figure 4). One orifice with a diameter of 5000 μm is located at the center of the one-schema electrode, and the orifice is arranged on the tube axis of the two-fluid nozzle. A DC voltage of 50 kV was applied to one electrode of the schema. The length of each zone is 330 mm, and the thermocouple 13 located in the center of each zone is close to the two-fluid nozzle! The 力 side force also showed 150, 380 and 400 ° C. X-ray diffraction measurement of the prepared fine particles revealed that they were spinel-type LiTiO. Average particle size A of fine particles is 17nm
4 5 12 、 平均粒子径 Bは 14nm、 D は 39nmであり、実施例 7に比べて粒度分布が狭くなつ  4512, the average particle size B is 14 nm and D is 39 nm, and the particle size distribution is narrower than that of Example 7.
90  90
た。  It was.
実施例 15  Example 15
[0047] 反応器 11外周にお 、て二流体ノズルの先端から 100mm離れた位置に軸方向の 長さが 150mm、磁束密度が 250mTの 1対の磁石 16を配置し、加熱炉 12の長さを 6 50mmとした以外は実施例 5を繰り返した(図 5)。この磁石 16は反応器 11を挟んで 互いに向き合っており、反応器 11の周囲に沿って 10回転 Z分の速度で周回させた 。作製した微粒子について組成分析および X線回折測定を行った結果、ぺロブス力 イト型の Li La TiOであることがわかった。微粒子の平均粒子径 Aは 5nm、平  [0047] A pair of magnets 16 having an axial length of 150mm and a magnetic flux density of 250mT are arranged at a position 100mm away from the tip of the two-fluid nozzle on the outer periphery of the reactor 11, and the length of the heating furnace 12 Example 5 was repeated except that was changed to 650 mm (FIG. 5). The magnets 16 were opposed to each other with the reactor 11 interposed therebetween, and were rotated around the reactor 11 at a speed of 10 rotations Z. As a result of composition analysis and X-ray diffraction measurement of the prepared fine particles, it was found that the fine particles were perovskite-type Li La TiO. The average particle diameter A of the fine particles is 5 nm,
0. 35 0. 55 3  0.35 0.55 3
均粒子径 Bは 7nm、 D は 30nmであり、実施例 5に比べて粗大粒子が減少した。  The average particle size B was 7 nm, and D was 30 nm. Compared with Example 5, coarse particles were reduced.
90  90
実施例 16  Example 16
[0048] 反応器 11外周にお 、て二流体ノズルの先端から 100mm離れた位置に軸方向の 長さ 150mmに渡って、波長 1 μ mのネオジゥム YAGレーザー光源 17を配置し、カロ 熱炉 12の長さを 750mm、反応器 11の温度を 500°Cとした以外は、実施例 8を繰り 返した(図 6)。レーザーは、噴霧された液滴に向けて連続的に照射した。作製した微 粒子につ 、て組成分析および X線回折測定を行った結果、ぺロブスカイト型の Li  [0048] A neodymium YAG laser light source 17 having a wavelength of 1 µm is disposed on the outer periphery of the reactor 11 at a distance of 100 mm from the tip of the two-fluid nozzle over an axial length of 150 mm. Example 8 was repeated except that the length of the reactor was 750 mm and the temperature of the reactor 11 was 500 ° C. (FIG. 6). The laser was irradiated continuously at the atomized droplets. As a result of composition analysis and X-ray diffraction measurement of the prepared fine particles, the perovskite Li
0. 35 0.35
La TiOであり、回折ピークの半値幅は実施例 8と全く同じであった。微粒子の平La TiO, and the half value width of the diffraction peak was exactly the same as in Example 8. Flat particle
0. 55 3 0.55 3
均粒子径 Aは 18nm、平均粒子径 Bは 23nm、 D は 80nmであり、実施例 8に比べ  The average particle size A was 18 nm, the average particle size B was 23 nm, and D was 80 nm, which was smaller than that of Example 8.
90  90
て反応器の温度を 250°C低下させたにも関わらず、微粒子の結晶性は変化しなかつ た。 Despite lowering the reactor temperature by 250 ° C, the crystallinity of the fine particles did not change and It was.
実施例 17  Example 17
[0049] 装置全体を 90° 回転させて二流体ノズルの噴霧方向を地面に対して垂直方向(真 上)とした以外は実施例 7を繰り返した。微粒子の平均粒子径 Aは 14nm、平均粒子 径 Bは l lnm、 D は 50nmであり、実施例 7に比べて粗大粒子が減少した。  Example 7 was repeated, except that the entire apparatus was rotated 90 ° so that the spray direction of the two-fluid nozzle was perpendicular (directly above) the ground. The average particle diameter A of the fine particles was 14 nm, the average particle diameter B was 11 nm, and D was 50 nm. The coarse particles were smaller than those in Example 7.
90  90
実施例 18  Example 18
[0050] 捕集基板 14として石英基板の代わりに銅基板を用いた以外は、実施例 7を繰り返 すことによって銅基板上に堆積した微粒子の群力もなる厚さが 100 mの Li Ti O  [0050] By repeating Example 7 except that a copper substrate was used in place of the quartz substrate as the collecting substrate 14, Lithium oxide having a thickness of 100 m and a group force of fine particles deposited on the copper substrate was also obtained.
5 12 膜を形成した。次いで、これに実施例 5の方法を用いて厚さが 50 mの Li La  5 12 films were formed. Then, using the method of Example 5, a 50 m thick Li La
0. 35 0. 55 0.35 0.55
TiO膜を形成し、さらにこの上に実施例 3を繰り返して厚さが 80 mの LiMn O膜A TiO film is formed, and the LiMn O film having a thickness of 80 m is further formed thereon by repeating Example 3.
3 2 4 を形成した。最後に、真空蒸着法を用いて厚さが 1 μ mのアルミニウム薄膜を形成し た。膜厚および面積力も活物質量を計算した上で、作製した電池を 100Cで高速充 放電試験した結果、 2. 4-2. 7Vの範囲で充放電容量が認められ、良好な電池反 応が観察された。 3 2 4 was formed. Finally, an aluminum thin film having a thickness of 1 μm was formed using a vacuum deposition method. After calculating the amount of active material for the film thickness and area force, the fabricated battery was subjected to a high-speed charge / discharge test at 100 C. As a result, a charge / discharge capacity in the range of 2.4-2.7 V was observed, indicating a good battery response. Was observed.
実施例 19  Example 19
[0051] 酢酸コバルト四水和物 Co (CH COO) ·4Η 0、酢酸リチウム CH COOLi、酢酸  [0051] Cobalt acetate tetrahydrate Co (CHCOO) 4Η0, lithium acetate CH COOLi, acetic acid
3 2 2 3  3 2 2 3
及び 2—プロパノールを用いて、コノ レトおよびリチウムの元素濃度が合計 0. 05モル Zリットルの溶液を調整した。図 4に示す二流体ノズルに代えて、送液管の先端付近 外周に外径がガス導入管の内径にほぼ等しい 6枚の羽根を螺旋状に取り付け、ガス 導入管のガス流が旋回するようにした二流体ノズルを組み込んだ。この装置を用いて 、キャリアーガスは空気、キャリアーガス圧力は 0. 5気圧、反応器 11内の圧力は 0. 1 気圧、送液管 1に印加した電圧は直流 25kV、溶液の噴霧速度は 20mlZ分の条件 で微粒子を作製し、捕集基板 14上に捕集した。二流体ノズルの軸方向は地面に対 して平行(0° )であり、反応器 11として内径が 900mm、長さが 1000mmの石英管 を用 、た。加熱ゾーンが 3つに分かれた抵抗加熱炉 12を用 、て反応管 11を加熱し た。各ゾーンの長さは 330mmであり、反応器 11の温度を測定する熱電対 13を各ゾ ーンの中央に酉己置した。熱電対 13ίま二流体ノズノレに近! 則力ら 200、 600、 300°C を示した。二流体ノズルの先端から 50mm離して反応器 11内に配置した SUS製の 円錐台状スキーマ一電極を対向電極 15として用いた。スキーマ一電極には、その中 央に直径 20mmのオリフィスが 1個存在し、二流体ノズルの管軸線上にオリフィスがく るように配置した。スキーマ一電極はアースと接続して、実質的に OVとした。作製した 微粒子について X線回折測定を行った結果、層状岩塩型構造を持つ LiCoOである And 2-propanol to prepare a solution having a total elemental concentration of conoreto and lithium of 0.05 mol Zl. Instead of the two-fluid nozzle shown in Fig. 4, six blades with an outer diameter almost equal to the inner diameter of the gas introduction pipe are attached to the outer periphery near the tip of the liquid supply pipe in a spiral shape so that the gas flow in the gas introduction pipe turns. A two-fluid nozzle was assembled. Using this apparatus, the carrier gas was air, the carrier gas pressure was 0.5 atm, the pressure in the reactor 11 was 0.1 atm, the voltage applied to the liquid sending pipe 1 was 25 kV DC, and the spraying rate of the solution was 20 mlZ. The fine particles were prepared under the conditions of minute and collected on the collecting substrate 14. The axial direction of the two-fluid nozzle was parallel (0 °) to the ground, and a quartz tube having an inner diameter of 900 mm and a length of 1000 mm was used as the reactor 11. The reaction tube 11 was heated using a resistance heating furnace 12 having three heating zones. The length of each zone was 330 mm, and a thermocouple 13 for measuring the temperature of the reactor 11 was placed at the center of each zone. The thermocouple is close to a 13-powder two-fluid nozzle. Norihara et al. Showed 200, 600, and 300 ° C. SUS made of 50 mm away from the tip of the two-fluid nozzle and placed in the reactor 11 One electrode having a truncated conical scheme was used as the counter electrode 15. One orifice with a diameter of 20 mm is located in the center of the one electrode of the schema, and the orifice is arranged so that it is on the pipe axis of the two-fluid nozzle. The one electrode of the schema was connected to the ground to make it substantially OV. X-ray diffraction measurement of the produced microparticles revealed that it was LiCoO with a layered rock-salt structure.
2 ことがわかった。微粒子の平均粒子径 Aは 5nm、平均粒子径 Bは 9nm、 D は 28nm  I knew 2 Average particle size A of fine particles is 5 nm, average particle size B is 9 nm, D is 28 nm
90 であった。  90.
実施例 20  Example 20
[0052] 噴霧溶液として、塩化金酸、水及びエタノール力 なる金の元素濃度が合計 0. 00 05モル Zリットルの溶液、キャリアーガスとしてアルゴンを用いた以外は、実施例 19 を繰り返した。作製した微粒子について X線回折測定を行った結果、金であることが わかった。微粒子の平均粒子径 Aは 3nm、平均粒子径 Bは 5nm、 D は 15nmであ  Example 19 was repeated except that the spray solution was a solution having a total elemental concentration of chloroauric acid, water and ethanol of 0.0005 mol Zl, and argon was used as a carrier gas. X-ray diffraction measurement of the prepared fine particles showed that the particles were gold. The average particle diameter A of the fine particles is 3 nm, the average particle diameter B is 5 nm, and D is 15 nm.
90  90
つ 7こ。  7
実施例 21  Example 21
[0053] 噴霧溶液として、酢酸ニッケル及びエタノール力 なるニッケルの元素濃度が合計 0. 0005モル Zリットルの溶液、キャリアーガスとしてアルゴンを用いた以外は、実施 例 19を繰り返した。作製した微粒子について X線回折測定、ラマン測定及び TEM観 察を行った結果、シングルウォールカーボンナノチューブであることがわかった。 TE Mを用いて合い重ならない 10ケ所の場所で 100万倍に拡大して観察、撮影し、その 写真から任意の 100本のカーボンナノチューブについて直径を求めた。これらの平 均直径は 3nmであった。  Example 19 was repeated except that a solution having a total elemental concentration of nickel acetate and nickel of ethanol of 0.0005 mol Z liter was used as the spraying solution, and argon was used as the carrier gas. X-ray diffraction measurement, Raman measurement and TEM observation of the produced fine particles revealed that they were single-walled carbon nanotubes. Using TEM, we observed and photographed 10 times at 10 non-overlapping locations, and obtained the diameter of 100 arbitrary carbon nanotubes from the photograph. Their average diameter was 3 nm.
比較例 1  Comparative Example 1
[0054] 送液管 1に電圧を印加しな 、こと以外は実施例 1を繰り返した。得られた粒子につ V、て X線回折測定を行った結果、アナターゼ型の酸ィ匕チタンであることがわ力つた。 粒子の平均粒子径 Aは 515nm、平均粒子径 Bは 485nm、 D は 780nmであり、本  Example 1 was repeated except that no voltage was applied to the liquid sending tube 1. The obtained particles were subjected to X-ray diffraction measurement, and it was found that the particles were anatase-type titanium oxide. The average particle size A of the particles is 515 nm, the average particle size B is 485 nm, and D is 780 nm.
90  90
発明で目指すところのナノメーターサイズの微粒子は得られな力つた。  The nanometer-sized fine particles aimed at by the invention were not obtained.
比較例 2  Comparative Example 2
[0055] 送液管 1に電圧を印加しな 、こと以外は実施例 8を繰り返した。得られた粒子につ V、て X線回折測定を行った結果、岩塩型の LiNi Co Oであった。粒子の平均粒 子径 Aは 630nm、平均粒子径 Bは 645nm、 D は 980nmであり、本発明で目指す Example 8 was repeated except that no voltage was applied to the liquid sending tube 1. About the obtained particles V, X-ray diffraction measurement showed rock salt type LiNiCoO. The average particle diameter A of the particles is 630 nm, the average particle diameter B is 645 nm, and D is 980 nm.
90  90
ところのナノメーターサイズの微粒子は得られなかった c C fine particles which can not be obtained in the nanometer size of the place

Claims

請求の範囲 The scope of the claims
[1] 金属元素を含む溶液より微粒子を製造する方法において、  [1] A method for producing fine particles from a solution containing a metal element,
前記溶液に電圧を印加する段階、  Applying a voltage to the solution,
電圧が印加された溶液を溶液中の成分と常温常圧では反応しないガスとともに噴 霧する段階、及び  Spraying the solution to which the voltage is applied with a gas that does not react with the components in the solution at normal temperature and pressure; and
噴霧された溶液を熱分解する段階  Pyrolyzing the sprayed solution
を経ることを特徴とする方法。  A method characterized by passing through.
[2] 前記噴霧が、溶液を通す送液管、及びガスを通すガス導入管を備えた二流体ノズ ルを用いてなされ、前記電圧が送液管を介して印加される請求項 1に記載の方法。  [2] The spray according to claim 1, wherein the spraying is performed using a two-fluid nozzle having a liquid sending pipe for passing a solution and a gas introducing pipe for passing gas, and the voltage is applied via the liquid sending pipe. the method of.
[3] 金属元素が、リチウム (Li)、ナトリウム (Na)、カリウム (K)、マグネシウム (Mg)、 Ca ( カルシウム)、ストロンチウム(Sr)、バリウム(Ba)、炭素(C)、アルミニウム(A1)、シリコ ン (Si)、チタン (Ti)、バナジウム (V)、クロム (Cr)、マンガン(Mn)、鉄(Fe)、コバル ト(Co)、ニッケル (Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、モ リブデン(Mo)、パラジウム(Pd)、銀 (Ag)、錫(Sn)、タングステン (W)、ランタン (La )、白金 (Pt)および金 (Au)の群カゝら選ばれる少なくとも 1種類の元素を含むことを特 徴とする請求項 1または 2に記載の微粒子の製造方法。  [3] The metal elements are lithium (Li), sodium (Na), potassium (K), magnesium (Mg), Ca (calcium), strontium (Sr), barium (Ba), carbon (C), aluminum (A1 ), Silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), yttrium (Y), zirconium (Zr), molybdenum (Mo), palladium (Pd), silver (Ag), tin (Sn), tungsten (W), lanthanum (La), platinum (Pt) and 3. The method for producing fine particles according to claim 1, wherein the method comprises at least one element selected from the group consisting of gold (Au).
[4] 噴霧及び熱分解を反応器内で行!ヽ、その反応器内の圧力を 1気圧未満に制御す る請求項 1一 3のいずれかに記載の方法。  [4] The method according to any one of claims 13 to 13, wherein the spraying and the thermal decomposition are performed in the reactor, and the pressure in the reactor is controlled to less than 1 atm.
[5] 噴霧及び熱分解を反応器内で行!ヽ、その反応器に外部磁場を印加する請求項 1 一 4の!、ずれかに記載の方法。  [5] The method according to any one of [14] to [14], wherein spraying and thermal decomposition are performed in a reactor, and an external magnetic field is applied to the reactor.
[6] 噴霧後、熱分解の前に、レーザー光を液滴に照射する請求項 1一 5のいずれかに 記載の方法。  [6] The method according to any one of [15] to [15], wherein the droplets are irradiated with laser light after spraying and before thermal decomposition.
[7] 金属元素を含む溶液から微粒子を製造する装置において、  [7] In an apparatus for producing fine particles from a solution containing a metal element,
前記溶液を噴霧する溶液噴射口を一端に有する送液管、及び溶液噴射口の周囲 にガスを噴射するガス噴射口を有するガス導入管を備えた二流体ノズルと、  A two-fluid nozzle including a liquid sending pipe having at one end a solution injection port for spraying the solution, and a gas introduction pipe having a gas injection port for injecting gas around the solution injection port;
一端が溶液噴射口及びガス噴射口に連結され、他端に微粒子回収口を有する反 応器と、  A reactor having one end connected to the solution injection port and the gas injection port, and having a fine particle collection port at the other end;
反応器の周囲に設けられて反応器を加熱する加熱炉と、 送液管に電圧を印加する電源と A heating furnace provided around the reactor to heat the reactor; A power supply for applying voltage to the liquid supply pipe
を備えることを特徴とする装置。  An apparatus comprising:
[8] 前記電源による送液管への印加電圧 E1が、 0. 1≤ I El I ≤150kVを充足する 請求項 7に記載の装置。  [8] The apparatus according to claim 7, wherein the voltage E1 applied to the liquid supply pipe by the power supply satisfies 0.1 ≦ I El I ≦ 150 kV.
[9] 反応器内における両噴射口との連結部付近に対向電極を更に備え、その対向電 極が送液管との間で電位差を生じるように第二の電源又はアースと接続されている 請求項 7又は 8に記載の装置。 [9] A counter electrode is further provided near the connection with both injection ports in the reactor, and the counter electrode is connected to a second power source or ground so as to generate a potential difference with the liquid sending pipe. An apparatus according to claim 7 or claim 8.
[10] 反応器外における両噴射口との連結部付近に磁石を更に備える請求項 7— 9のい ずれかに記載の装置。 [10] The apparatus according to any one of claims 7 to 9, further comprising a magnet outside the reactor and near a connection with the two injection ports.
[11] 反応器がレーザー光を透過する材料力 なり、反応器にそのレーザー光を照射す る光源を反応器外における両噴射口との連結部付近に更に備える請求項 7— 10の いずれかに記載の装置。  [11] The reactor according to any one of [7] to [10], wherein the reactor is a material capable of transmitting laser light, and a light source for irradiating the laser light to the reactor is further provided outside the reactor in the vicinity of a connection portion between the two injection ports. An apparatus according to claim 1.
PCT/JP2004/015599 2003-10-23 2004-10-21 Method and device for producing fine particles WO2005040038A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-362649 2003-10-23
JP2003362649 2003-10-23
JP2004019184A JP2005146406A (en) 2003-10-23 2004-01-28 Method and device for producing fine particle
JP2004-019184 2004-01-28

Publications (1)

Publication Number Publication Date
WO2005040038A1 true WO2005040038A1 (en) 2005-05-06

Family

ID=34525433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015599 WO2005040038A1 (en) 2003-10-23 2004-10-21 Method and device for producing fine particles

Country Status (2)

Country Link
JP (1) JP2005146406A (en)
WO (1) WO2005040038A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421215C (en) * 2005-07-21 2008-09-24 上海交通大学 Method for preparing high electron mobility hydrogenated nano-crystalline silicon thin films
CN100439014C (en) * 2006-01-26 2008-12-03 湖南凯丰新材料有限公司 Preparation method and equipment for nano-grade superfine cobalt powder
JP2012184137A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Method for producing lithium lanthanum titanate particle and lithium lanthanum titanate particle
CN103303983A (en) * 2012-03-06 2013-09-18 深圳市润麒麟科技发展有限公司 Spinel-phase ultrafine nickel chromite powder and preparation method thereof
JP2015051914A (en) * 2014-10-02 2015-03-19 セイコーエプソン株式会社 Method of producing lithium titanate lanthanum particles, and lithium titanate lanthanum particles
JP2015174945A (en) * 2014-03-17 2015-10-05 国立大学法人金沢大学 Method and apparatus for producing luminescent nanocarbon
JP2015229165A (en) * 2014-06-03 2015-12-21 コリア インスティチュート オブ エナジー リサーチ Composite mass synthesis device, reactor for composite synthesis device and composite synthesis method using the same
WO2020080400A1 (en) * 2018-10-19 2020-04-23 日本化学産業株式会社 Supported metal catalyst and method for producing same
JP2021039872A (en) * 2019-09-02 2021-03-11 太平洋セメント株式会社 Method for manufacturing lanthanum lithium titanate crystal grain for solid electrolyte of lithium ion secondary battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069818A (en) * 2004-08-31 2006-03-16 Keio Gijuku Carbon particulate
JP5001544B2 (en) * 2005-10-13 2012-08-15 国立大学法人京都大学 Method and apparatus for producing annular assembly of carbon nanotubes
JPWO2008114533A1 (en) * 2007-03-19 2010-07-01 コニカミノルタエムジー株式会社 Fine particle production method and semiconductor fine particles produced using the same
CN101778684B (en) * 2007-09-07 2015-11-25 E.I.内穆尔杜邦公司 Comprise silver and at least two kinds of multi-element alloy powders containing the simple substance of non-silver
US20090181179A1 (en) * 2008-01-11 2009-07-16 Climax Engineered Materials, Llc Sodium/Molybdenum Composite Metal Powders, Products Thereof, and Methods for Producing Photovoltaic Cells
KR101278752B1 (en) * 2008-06-26 2013-06-25 에이지씨 세이미 케미칼 가부시키가이샤 Surface modified lithium containing composite oxide for positive electrode active material of lithium ion secondary batteries and method of producing thereof
JP5009882B2 (en) * 2008-09-24 2012-08-22 パナソニック株式会社 Metal fine particle generation device and hair care device including the same
CN102388489B (en) * 2009-04-01 2014-11-26 西开普大学 Method for producing a carbon composite material
WO2011139574A2 (en) 2010-05-05 2011-11-10 Applied Materials, Inc. Hydrothermal synthesis of active materials and in situ spraying deposition for lithium ion battery
KR101212258B1 (en) 2010-06-11 2012-12-12 한국원자력의학원 Process for preparing cationic polymer/hyaluronic acid microbead and cationic polymer/hyaluronic acid microbead chelated with metal ion, and cationic polymer/hyaluronic acid microbead and cationic polymer/hyaluronic acid microbead chelated with metal ion prepared by the same
JP2013017957A (en) * 2011-07-12 2013-01-31 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing fine particle
JP5863178B2 (en) * 2012-05-14 2016-02-16 国立大学法人北海道大学 Method for producing alkali metal and / or alkaline earth metal doped nanoparticles by plasma treatment in microwave liquid and mass spectrometric method using the same
JP6016199B2 (en) * 2013-03-26 2016-10-26 Toto株式会社 Composite metal oxide particles and method for producing the same
JP2015086121A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Oxide particle, method of producing oxide particle and lithium ion battery
KR101629485B1 (en) * 2013-12-06 2016-06-10 주식회사 엘지화학 Method for Manufacturing Bimetallic or Intermetallic Precursor for Manufacturing CIGS Light Absorbing Compound of Solar Cell
JP6168979B2 (en) * 2013-12-16 2017-07-26 三菱電機株式会社 Filter charging device and filter charging method
US20170113213A1 (en) * 2014-06-09 2017-04-27 Canatu Oy Catalyst particle and method for producing thereof
CN104961199B (en) * 2015-06-23 2017-05-10 广西大学 Preparation method of Pd-Fe/foamed nickel three-dimensional particle electrodes
EP3319152A4 (en) * 2015-06-30 2019-10-23 Yuhong Zhang Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
KR101876293B1 (en) * 2016-10-17 2018-07-09 금호석유화학 주식회사 Continuous process for mass production of multi walled carbon nanotube and the catalyst for preparing the carbon nanotube
JP7125227B2 (en) * 2018-07-31 2022-08-24 トヨタ自動車株式会社 Method for producing lithium-containing cobalt oxide having spinel crystal phase
JP7089983B2 (en) * 2018-08-10 2022-06-23 太平洋セメント株式会社 Method for manufacturing NASICON type negative electrode active material particles for sodium ion secondary battery
JPWO2023085260A1 (en) * 2021-11-10 2023-05-19

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187953A (en) * 2000-09-29 2002-07-05 Seiji Kagawa Method and apparatus for producing liquid medium containing composite ultrafine particles
JP2002294312A (en) * 2001-03-29 2002-10-09 Toda Kogyo Corp Method for manufacturing metal particle powder
JP2003080125A (en) * 2001-07-03 2003-03-18 Masaaki Ikeda Ultrafine particle generator
JP2003155504A (en) * 2001-11-16 2003-05-30 Inst Of Physical & Chemical Res Manufacturing method of nano-size particle having double structure or hollow structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153504A (en) * 1989-11-13 1991-07-01 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconducting film
JP2002256309A (en) * 2001-03-06 2002-09-11 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, and equipment for manufacturing metal powder
JP2002270539A (en) * 2001-03-08 2002-09-20 Seiko Epson Corp Method of forming coating film, semiconductor device manufactured thereby, and coating-film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187953A (en) * 2000-09-29 2002-07-05 Seiji Kagawa Method and apparatus for producing liquid medium containing composite ultrafine particles
JP2002294312A (en) * 2001-03-29 2002-10-09 Toda Kogyo Corp Method for manufacturing metal particle powder
JP2003080125A (en) * 2001-07-03 2003-03-18 Masaaki Ikeda Ultrafine particle generator
JP2003155504A (en) * 2001-11-16 2003-05-30 Inst Of Physical & Chemical Res Manufacturing method of nano-size particle having double structure or hollow structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421215C (en) * 2005-07-21 2008-09-24 上海交通大学 Method for preparing high electron mobility hydrogenated nano-crystalline silicon thin films
CN100439014C (en) * 2006-01-26 2008-12-03 湖南凯丰新材料有限公司 Preparation method and equipment for nano-grade superfine cobalt powder
JP2012184137A (en) * 2011-03-04 2012-09-27 Seiko Epson Corp Method for producing lithium lanthanum titanate particle and lithium lanthanum titanate particle
CN103303983A (en) * 2012-03-06 2013-09-18 深圳市润麒麟科技发展有限公司 Spinel-phase ultrafine nickel chromite powder and preparation method thereof
JP2015174945A (en) * 2014-03-17 2015-10-05 国立大学法人金沢大学 Method and apparatus for producing luminescent nanocarbon
JP2015229165A (en) * 2014-06-03 2015-12-21 コリア インスティチュート オブ エナジー リサーチ Composite mass synthesis device, reactor for composite synthesis device and composite synthesis method using the same
US9950317B2 (en) 2014-06-03 2018-04-24 Korea Institute Of Energy Research Large-scale composite synthesis system, reactor and composite synthesis method using the same
JP2015051914A (en) * 2014-10-02 2015-03-19 セイコーエプソン株式会社 Method of producing lithium titanate lanthanum particles, and lithium titanate lanthanum particles
WO2020080400A1 (en) * 2018-10-19 2020-04-23 日本化学産業株式会社 Supported metal catalyst and method for producing same
JPWO2020080400A1 (en) * 2018-10-19 2021-09-16 日本化学産業株式会社 Supported metal catalyst and its manufacturing method
JP7309154B2 (en) 2018-10-19 2023-07-18 日本化学産業株式会社 Supported metal catalyst
US11752490B2 (en) 2018-10-19 2023-09-12 Nihon Kagaku Sangyo, Co, Ltd. Supported metal catalyst and method for producing same
JP2021039872A (en) * 2019-09-02 2021-03-11 太平洋セメント株式会社 Method for manufacturing lanthanum lithium titanate crystal grain for solid electrolyte of lithium ion secondary battery
JP7299110B2 (en) 2019-09-02 2023-06-27 太平洋セメント株式会社 Method for producing lithium lanthanum titanate crystal particles for solid electrolyte of lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005146406A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
WO2005040038A1 (en) Method and device for producing fine particles
KR100772467B1 (en) Electrodes including particles of specific sizes
JP3193294B2 (en) Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
Chen et al. Electrostatic sol–spray deposition of nanostructured ceramic thin films
US20170018760A1 (en) Active Cathode Material for Secondary Lithium Cells and Batteries
US20140217630A1 (en) Method for the production of multiphase composite materials using microwave plasma process
US20220274843A1 (en) Aerosol-based high-temperature synthesis of materials
JP2005078985A (en) Electrode for nonaqueous secondary battery and lithium secondary battery using the same
EP3564001A1 (en) Method for the production of multiphase composite materials using microwave plasma process
KR20200123927A (en) Manufacturing method of garnet oxide type solid electrolyte having cubic structrue
KR20200082581A (en) Manufacturing method of spherical solid electrolyte powder
Heel et al. Flame spray synthesis and characterisation of stabilised ZrO 2 and CeO 2 electrolyte nanopowders for SOFC applications at intermediate temperatures
JP2002260656A (en) Manufacturing method for battery material
JPH07267613A (en) Production of fine complex ceramic power, apparatus for production, the same ceramic powder and solid electrolytic type fuel cell containing the same ceramic powder as electrode material
JP2010108928A (en) Process of producing lithium cell active material, lithium cell active material, and lithium system secondary battery
JP2006188372A (en) Manufacturing method of ceramic powder
US20230163350A1 (en) Large-scale synthesis of powders of solid-state electrolyte material particles for solid-state batteries, systems and methods thereof
Wu et al. Rapid Gas-Phase Synthesis of the Perovskite-Type BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3− δ Proton-Conducting Nanocrystalline Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells
JP4237993B2 (en) Discharge electrode member and ozone generator using the same
JP2006294517A (en) MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL
JP2021169387A (en) Method for producing solid composition and method for producing functional ceramic molded body
CN206652487U (en) Inorganic powder producing device and inorganic powder producing and classifying device
JP4359667B2 (en) Method for producing lithium manganate powder, produced lithium manganate powder, electrode and lithium secondary battery
KR100968805B1 (en) Fabrication method and apparatus for gd-doped ceria nano-sized powder by electro-spray aerosol flame deposition
Okos et al. Review on Synthesis and Properties of Lithium Lanthanum Titanate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006520519

Country of ref document: JP

122 Ep: pct application non-entry in european phase