JP5001544B2 - Method and apparatus for producing annular assembly of carbon nanotubes - Google Patents

Method and apparatus for producing annular assembly of carbon nanotubes Download PDF

Info

Publication number
JP5001544B2
JP5001544B2 JP2005298693A JP2005298693A JP5001544B2 JP 5001544 B2 JP5001544 B2 JP 5001544B2 JP 2005298693 A JP2005298693 A JP 2005298693A JP 2005298693 A JP2005298693 A JP 2005298693A JP 5001544 B2 JP5001544 B2 JP 5001544B2
Authority
JP
Japan
Prior art keywords
mist
carbon nanotubes
annular
suspension
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005298693A
Other languages
Japanese (ja)
Other versions
JP2007106629A (en
Inventor
直樹 小松
隆英 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Original Assignee
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Mitsubishi Chemical Corp, Hitachi Ltd, Kyoto University, Nippon Telegraph and Telephone Corp, Pioneer Corp filed Critical Rohm Co Ltd
Priority to JP2005298693A priority Critical patent/JP5001544B2/en
Publication of JP2007106629A publication Critical patent/JP2007106629A/en
Application granted granted Critical
Publication of JP5001544B2 publication Critical patent/JP5001544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブの環状集合体の製造方法および製造装置に関する。   The present invention relates to a method and an apparatus for producing a ring-shaped aggregate of carbon nanotubes.

直径が数ナノメートルから数十ナノメートルの筒状炭素化合物であるカーボンナノチューブ(以下、CNTと記す)は、その特異な構造に基づく特異な物性を有することから、近年、研究開発が盛んに行なわれている。このようなCNTの応用としてカーボンナノリングも検討されており、特許文献1にはCNTからなるカーボンナノリングを利用した電子波干渉素子が提案されている。また、特許文献2にその製造方法が開示されている。   Carbon nanotubes (hereinafter referred to as CNTs), which are cylindrical carbon compounds with a diameter of several nanometers to several tens of nanometers, have unique physical properties based on their unique structures, so research and development have been actively conducted in recent years. It is. Carbon nanorings are also being studied as an application of such CNTs, and Patent Document 1 proposes an electron wave interference element using carbon nanorings made of CNTs. Patent Document 2 discloses a manufacturing method thereof.

特許文献2の製造方法によれば、まず単層CNTを強酸中で超音波処理して切断し、次にCNTの両末端に反応性官能基を導入してオープンエンドCNTを調製する。このとき、単層CNTの持続長の約2倍の長さのオープンエンドCNTが含まれるようにする。そして、この反応性官能基を介してCNTを環状化し、得られた環状CNTを熱処理して反応性官能基を介する結合を分解してカーボンナノリングを製造している。
特開2004−174637号公報(段落0014、図1) 特開2002−338219号公報(段落0008〜0012)
According to the production method of Patent Document 2, first, single-walled CNTs are cut by sonication in a strong acid, and then reactive functional groups are introduced into both ends of the CNTs to prepare open-ended CNTs. At this time, open-end CNTs having a length approximately twice as long as the continuous length of single-walled CNTs are included. Then, CNTs are cyclized through the reactive functional groups, and the obtained cyclic CNTs are heat-treated to decompose bonds through the reactive functional groups to produce carbon nanorings.
Japanese Unexamined Patent Publication No. 2004-174637 (paragraph 0014, FIG. 1) JP 2002-338219 A (paragraphs 0008 to 0012)

特許文献2に開示されたカーボンナノリングの製造方法は、CNTを化学的に切断・修飾、そして環化する工程が含まれ、さらに環化する前のCNTの長さを制御する必要があるため、高度な合成技術を要する。今後カーボンナノリングの研究開発を進めていく上で、簡易なカーボンナノリングの製造方法が望まれている。
このような背景において、本発明は、カーボンナノリング等のCNTの環状集合体の簡易な製造方法と、この製造に適した装置を提供することを目的とする。
The method for producing carbon nanorings disclosed in Patent Document 2 includes a step of chemically cutting, modifying, and cyclizing CNT, and it is necessary to control the length of CNT before cyclization. , Requires advanced synthesis technology. In the future, when advancing research and development of carbon nanorings, a simple method for producing carbon nanorings is desired.
In such a background, an object of the present invention is to provide a simple method for producing a cyclic aggregate of CNTs such as carbon nanorings and an apparatus suitable for the production.

本発明は、溶媒とカーボンナノチューブとを含む懸濁液から該懸濁液のミストを発生させるミスト発生工程と、前記ミスト発生工程で発生した前記ミストを気流により移送流路内を移送させ、前記ミスト内の前記溶媒の外周に沿ってカーボンナノチューブの環状集合体を生成させる移送生成工程と、前記移送流路を拡径して前記気流の流速を低下させ、前記移送生成工程で生成された前記カーボンナノチューブの環状集合体を捕捉部に落下させる捕捉工程と、を含むことを特徴とするカーボンナノチューブの環状集合体製造方法である。
CNTを含む懸濁液からミストを発生させる手段として、超音波照射を用いることができる。
The present invention comprises a mist generating step from a suspension comprising a solvent and carbon nanotubes Ru to generate mist of the suspension, the mist generated in the mist generation step is transported through the transport channel by a gas stream, A transfer generation step of generating a ring-shaped aggregate of carbon nanotubes along the outer periphery of the solvent in the mist, and a diameter of the transfer flow path to reduce the flow velocity of the airflow, generated in the transfer generation step a capture step of dropping the annular assembly of the carbon nanotube to the capture unit, is a manufacturing method of an annular assembly of carbon nanotubes, which comprises a.
Ultrasonic irradiation can be used as means for generating mist from a suspension containing CNTs.

本発明によれば、CNTの環状集合体の簡易な製造方法と、この製造に適した装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the simple manufacturing method of the cyclic | annular aggregate | assembly of CNT and the apparatus suitable for this manufacture are provided.

以下、本発明に係るCNTの環状集合体の製造方法および装置について、図1に示したCNTの環状集合体の製造装置10の概念図を参照しながら説明する。図1では、CNTを含む懸濁液1に、ミスト発生手段として超音波バス4を用いて超音波照射することによりミスト2を発生させる。そして、CNTを含む懸濁液1の上面にミスト2を移送するための気流3を供給し、気流3により移送されたミスト2を捕捉手段6の捕捉部7に捕捉する。   Hereinafter, the manufacturing method and apparatus of the CNT annular assembly according to the present invention will be described with reference to the conceptual diagram of the manufacturing apparatus 10 of the CNT annular assembly shown in FIG. In FIG. 1, a mist 2 is generated by irradiating a suspension 1 containing CNTs with ultrasonic waves using an ultrasonic bus 4 as mist generating means. Then, an airflow 3 for transferring the mist 2 is supplied to the upper surface of the suspension 1 containing CNTs, and the mist 2 transferred by the airflow 3 is captured by the capturing unit 7 of the capturing means 6.

本発明で使用するCNTは、単層、多層、いずれでもよく、直径、長さ、キラリティー等その構造などは特に限定されない。また、CNTの骨格に置換基、官能基等を有するものでもよい。CNTの製造方法などは特に限定されず、例えば、グラファイト、炭化水素、アルコール、一酸化炭素等を原料とし、アーク放電法、レーザー気化法、CVD法等により合成されたCNTを用いることができる。   The CNT used in the present invention may be either a single layer or a multilayer, and its structure such as diameter, length, and chirality is not particularly limited. Moreover, what has a substituent, a functional group, etc. in the frame | skeleton of CNT may be used. The method for producing CNTs is not particularly limited. For example, CNTs synthesized from an arc discharge method, a laser vaporization method, a CVD method, or the like using graphite, hydrocarbon, alcohol, carbon monoxide or the like as a raw material can be used.

本発明で使用するCNTを懸濁させるための溶剤の指定は特に無く、例えば、へキサン、ヘプタン、クロロホルム、ジクロロメタン、トルエン、ベンゼン、クロロベンゼン、アセトン、メタノール、エタノール、イソプロパノール、ブタノール、アセトニトリル、ジエチルエーテル,THF等の有機溶剤が挙げられる。また、水を懸濁溶剤に用いることもできる。   There is no particular designation of the solvent for suspending the CNTs used in the present invention, for example, hexane, heptane, chloroform, dichloromethane, toluene, benzene, chlorobenzene, acetone, methanol, ethanol, isopropanol, butanol, acetonitrile, diethyl ether. And organic solvents such as THF. Water can also be used as the suspension solvent.

ミスト発生手段には、超音波バス4等の超音波照射を用いることができる。液体に超音波の振動エネルギーを与えると液面や液内部に周波数固有の毛細表面波が発生する。液体の表面に無数の毛細表面波が生じると、液体の表面張力が減少して規則的***が発生する。換言すれば、超音波により水の表面張力を減少させてミスト2を発生させることができる。このとき、ミスト2の内部にはCNTが懸濁した状態で存在している。
超音波照射により発生するミスト2の粒径は、超音波の周波数と、液体の表面張力および粘度をパラメータとした実験式で求めることができる。
As the mist generating means, ultrasonic irradiation such as an ultrasonic bus 4 can be used. When ultrasonic vibration energy is applied to a liquid, a capillary surface wave specific to the frequency is generated on the liquid surface or inside the liquid. When innumerable capillary surface waves are generated on the surface of the liquid, the surface tension of the liquid decreases and regular splitting occurs. In other words, the mist 2 can be generated by reducing the surface tension of water with ultrasonic waves. At this time, CNT exists in a suspended state in the mist 2.
The particle diameter of the mist 2 generated by ultrasonic irradiation can be obtained by an empirical formula using the ultrasonic frequency, the surface tension and the viscosity of the liquid as parameters.

内部にCNTが懸濁しているミスト2は、他の方法で発生させることもできる。例えば、CNTを含む懸濁液1を高圧の噴射ノズルから噴霧して衝突板に衝突させて微細なミストを発生させる方法を用いこともできるし、回転体の遠心力を利用してミストを発生させる方法を用いることもできる。超音波照射でミストを発生させる場合、CNTが作る強固なバンドルをほどく効果も得られる。   The mist 2 in which the CNTs are suspended can be generated by other methods. For example, a method of generating fine mist by spraying suspension 1 containing CNTs from a high-pressure spray nozzle and colliding with a collision plate, or generating mist using the centrifugal force of a rotating body It is also possible to use a method of When mist is generated by ultrasonic irradiation, an effect of unwinding a strong bundle made of CNTs can be obtained.

気流3を発生させるための気流発生手段は、懸濁液1から発生させたミスト2をガスに随伴させて捕捉部7まで移送できるものであればよく、例えば図1のようにエアポンプ5を用いることができる。この他、ガスボンベを用いることもできるし、液化ガスを気化させて供給することもできる。   The air flow generation means for generating the air flow 3 may be any means as long as it can transfer the mist 2 generated from the suspension 1 to the capturing unit 7 along with the gas. For example, an air pump 5 is used as shown in FIG. be able to. In addition, a gas cylinder can be used, or a liquefied gas can be vaporized and supplied.

また、気流3のガスに指定は無い。空気でもよいし、窒素、ヘリウムなどの不活性ガスでもよい。気流3は製造プロセスの全体にわたって層流とすることが好ましい。なお、ミスト2の飛散方向と、気流3の流れの方向の関係についての指定は無い。この2つの方向は、図1のように直交していてもよいし、平行でもよい。   Moreover, there is no designation | designated in the gas of the airflow 3. FIG. Air or an inert gas such as nitrogen or helium may be used. The air flow 3 is preferably a laminar flow throughout the manufacturing process. In addition, there is no designation | designated about the relationship between the scattering direction of the mist 2 and the direction of the flow of the airflow 3. These two directions may be orthogonal as shown in FIG. 1 or may be parallel.

捕捉手段6は、気流3により移送されてきたミスト2を捕捉できるものであれば良く、例えば図1のように気流3の流路を拡径して流速を低下させてミスト2を落下し易くし、捕捉部7に着地させる構成とすることができる。あるいは、気流3の流路に多孔質のフィルタを設けてミスト2を捕捉する構成とすることもできる。   The capturing means 6 may be any means that can capture the mist 2 transferred by the airflow 3. For example, as shown in FIG. 1, the flow path of the airflow 3 is expanded to reduce the flow velocity and easily drop the mist 2. And it can be set as the structure made to land on the capture part 7. FIG. Alternatively, a porous filter may be provided in the flow path of the airflow 3 to capture the mist 2.

次に、CNTの環状集合体の製造装置10内におけるミスト2の挙動について説明する。前記したように、ミスト2の内部にはCNTが懸濁している。懸濁液1から飛散したミスト2は、飛散方向と直交する向きの気流3により捕捉手段6に向けて移送される。移送の過程でミスト2の上方に向かう速度は徐々に低下し、最終的には重力により落下し始めて捕捉手段6内部の捕捉部7に着地する。   Next, the behavior of the mist 2 in the CNT annular assembly manufacturing apparatus 10 will be described. As described above, CNTs are suspended in the mist 2. The mist 2 scattered from the suspension 1 is transferred toward the capturing means 6 by the air flow 3 in the direction orthogonal to the scattering direction. In the course of the transfer, the speed toward the upper side of the mist 2 gradually decreases, and finally starts to fall due to gravity and lands on the capturing part 7 inside the capturing means 6.

ここで、ミスト2内部に懸濁しているCNT分子は、溶剤への溶解性が極めて低いため溶剤中に安定して懸濁することはできず、表面自由エネルギーが最小になるように一本のCNTが球状のミスト2の外周に沿ってコイル状の形状になり、分子内に作用するvan der Waals力によって強固な環状集合体を生成すると考えられる。あるいは、複数本のコイル状のCNTが球状のミスト2の外周に沿って集合し、CNT相互の距離が縮小して、ついにはCNT分子間に作用するvan der Waals力によって環状集合体を生成することも考えられる。この結果、化学反応によらなくてもCNTから、コイル状、もしくはリング状の環状集合体を製造することが可能となる。   Here, since the CNT molecule suspended in the mist 2 has extremely low solubility in the solvent, the CNT molecule cannot be stably suspended in the solvent, so that one surface free energy is minimized. It is considered that the CNT has a coil shape along the outer periphery of the spherical mist 2 and a strong annular aggregate is generated by the van der Waals force acting on the molecule. Alternatively, a plurality of coiled CNTs gather along the outer periphery of the spherical mist 2, the distance between the CNTs decreases, and finally an annular assembly is generated by the van der Waals force acting between the CNT molecules. It is also possible. As a result, it is possible to produce a coiled or ring-shaped annular assembly from CNTs without using a chemical reaction.

ミスト2は、気流3により移送されている間に、その溶剤の一部または全部が蒸発する。このため捕捉部7には、溶剤が一部残存したCNTの環状集合体も着地して集積する。このとき、CNTは分子間相互のvan der Waals力によって強固に環状集合体を形成しているので、溶剤が残存していても個々のCNT分子に再度分かれることは無い。   While the mist 2 is being transferred by the air flow 3, part or all of the solvent thereof is evaporated. Therefore, an annular aggregate of CNTs in which a part of the solvent remains also lands and accumulates on the capturing unit 7. At this time, since the CNTs firmly form a cyclic aggregate due to the inter-van der Waals force, they do not separate into individual CNT molecules even if the solvent remains.

捕捉部7に着地したCNTの環状集合体は、遠心分離して溶剤と分離することにより回収することができる。なお、回収したCNTの環状集合体を洗浄する場合、前記のようにvan der Waals力によって強固に環状集合体を形成しているので、溶剤に再度分散させて遠心分離するか、自然沈降や濾過によって固液分離することにより行なうことができる。   The annular aggregate of CNTs landed on the capture unit 7 can be recovered by centrifugation and separation from the solvent. In addition, when the collected cyclic aggregate of CNTs is washed, the cyclic aggregate is firmly formed by the van der Waals force as described above, so that it is dispersed again in a solvent and centrifuged, or natural sedimentation or filtration is performed. Can be carried out by solid-liquid separation.

以上の説明から分かるように、本実施形態に係るCNTの環状集合体の製造方法は、超音波照射するのみで化学反応を伴わないので極めて簡易にカーボンナノリングを製造することができる。また、原理的には、あらゆる直径、長さのカーボンナノチューブに対応可能である。   As can be seen from the above description, the method for producing a ring-shaped aggregate of CNTs according to the present embodiment can produce carbon nanorings very simply because it involves only ultrasonic irradiation and no chemical reaction. In principle, it is possible to deal with carbon nanotubes of any diameter and length.

本実施例では、図2に示すCNTの環状集合体の製造装置10を用いてCNTの環状集合体を製造した。本実施例では、エアポンプ5にニッソー社製エアポンプ(Chikara alpha-600)を用い、超音波バス4にはブランソン社製のバス型超音波装置(2510J−MT、42kHz、100W)を用いた。   In this example, a CNT annular assembly was manufactured using the CNT annular assembly manufacturing apparatus 10 shown in FIG. In the present example, a Nisso air pump (Chikara alpha-600) was used for the air pump 5, and a Branson bus type ultrasonic device (2510J-MT, 42 kHz, 100 W) was used for the ultrasonic bus 4.

図2に示すCNTの環状集合体の製造装置10は、ガラス容器11にガラス製の入口配管12と出口配管13の一端を溶着し、さらに出口配管13の他端には、内径が出口配管13の内径よりも大きいガラス製の容器(捕捉手段6)を溶着して作製した。そして、捕捉手段6の下流に気流3の流れを確認するために水を満たした容器14を設け、ゴム管を介して接続した。また、入口配管12とエアポンプ5の接続にもゴム管を用いた。なお、本実施例の入口配管12の内径は4mm、出口配管13の内径は4mm、捕捉手段6の最大内径は15mmであった。   An apparatus 10 for producing an annular assembly of CNTs shown in FIG. 2 welds one end of a glass inlet pipe 12 and an outlet pipe 13 to a glass container 11, and the outlet pipe 13 has an inner diameter at the other end of the outlet pipe 13. A glass container (capturing means 6) larger than the inner diameter was prepared by welding. And in order to confirm the flow of the airflow 3 downstream of the capturing means 6, a container 14 filled with water was provided and connected via a rubber tube. A rubber tube was also used to connect the inlet pipe 12 and the air pump 5. In this example, the inner diameter of the inlet pipe 12 was 4 mm, the inner diameter of the outlet pipe 13 was 4 mm, and the maximum inner diameter of the capturing means 6 was 15 mm.

本実施例では、CNTに直径1.2〜1.5nmのアーク法で製造したCNTを用いた。このCNT9.7mgとヘプタン(和光純薬株式会社製、特級)12mlをCNTの環状集合体の製造装置10の中に入れ、超音波バス4により超音波照射して懸濁させた。
そして、エアポンプ5からCNT懸濁液1の上方約0.5cmの部分に空気を流通させ、この気流3によりミスト2を捕捉手段6内部の捕捉部7まで移送した。なお、超音波照射は20℃で行い、超音波照射中は、懸濁液1の液面がほぼ一定になるよう溶媒のヘプタンを滴下ロート15から適宜加えた。
In this example, CNT produced by an arc method having a diameter of 1.2 to 1.5 nm was used as the CNT. 9.7 mg of this CNT and 12 ml of heptane (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were placed in the manufacturing apparatus 10 for the annular aggregate of CNTs, and suspended by irradiating ultrasonic waves with the ultrasonic bath 4.
Then, air was circulated from the air pump 5 to a portion about 0.5 cm above the CNT suspension 1, and the mist 2 was transferred to the capturing unit 7 inside the capturing means 6 by the air flow 3. The ultrasonic irradiation was performed at 20 ° C., and during the ultrasonic irradiation, heptane as a solvent was appropriately added from the dropping funnel 15 so that the liquid level of the suspension 1 became almost constant.

約1時間超音波を照射した後、捕捉部7にたまった黒色の懸濁液をFEP(Fluorinated ethylene propylene共重合体)製のチューブ(10ml、Nalgene社製)に移し、遠心分離機(TOMY社製、MRX-152)により遠心分離を20分間行った。遠心分離後の液の上澄みを除いた後、得られた黒色固体を、室温真空下で乾燥した。   After irradiating with ultrasonic waves for about 1 hour, the black suspension accumulated in the capturing part 7 was transferred to a FEP (Fluorinated ethylene propylene copolymer) tube (10 ml, manufactured by Nalgene) and centrifuged (TOMY). The product was centrifuged for 20 minutes using MRX-152). After removing the supernatant of the liquid after centrifugation, the resulting black solid was dried under vacuum at room temperature.

本実施例では、捕捉部7以外に、ガラス容器11の側壁部S1(図2参照)、入口配管12の内部S2、出口配管13の内部S3にも、黒色の付着が認められた。これらの黒色付着物についても前記と同様の方法で精製し黒色固体を得た。また、ガラス容器11の底部の黒色残渣S4についても同様の方法で精製し、黒色固体を得た。
そして、捕捉部7およびS1〜S4で得られた黒色固体の形状を透過型電子顕微鏡(TEM)で観察した。結果を図3〜10に示す。
In this example, black adhesion was recognized not only on the capturing part 7 but also on the side wall part S1 (see FIG. 2) of the glass container 11, the inside S2 of the inlet pipe 12, and the inside S3 of the outlet pipe 13. These black deposits were also purified by the same method as described above to obtain a black solid. Moreover, it refine | purified by the same method also about the black residue S4 of the bottom part of the glass container 11, and black solid was obtained.
And the shape of the black solid obtained by the capture part 7 and S1-S4 was observed with the transmission electron microscope (TEM). The results are shown in FIGS.

捕捉部7で得られた黒色固体のTEM写真を図3〜図6に示す。これらの写真から、捕捉部7で得られた黒色固体の大部分はリング状、もしくはCNTが渦巻状に巻いたコイル状のCNTの環状集合体で占められていることが認められた。得られたCNTの環状集合体の直径は、およそ1.0〜3.3μmの範囲であり、円に近い形状のものから楕円のものまで見受けられた。また、2つの円に近い形状のものが接近して重なっているか、もしくはインターロックした形のものも含まれていた。   3 to 6 show TEM photographs of the black solid obtained by the capturing unit 7. From these photographs, it was confirmed that most of the black solid obtained in the capturing unit 7 was occupied by a ring-shaped or coil-shaped annular aggregate of CNTs wound in a spiral shape. The diameter of the obtained annular aggregate of CNTs was in the range of about 1.0 to 3.3 μm, and it was observed from a shape close to a circle to an ellipse. Moreover, the thing of the shape which the shape close | similar to two circles approached and overlapped, or interlocked was included.

これに対し、図7〜図10のTEM写真に示したように、S1〜S4で得られた黒色固体には、殆どCNTの環状集合体は認められなかった。より詳しくは、ガラス容器11の側壁部S1で得られた黒色固体(図7)ではコイル状のCNTの環状集合体が僅かに認められたものの、大部分は繊維状のCNTであった。また、入口配管12の内部S2(図8)では、数個のCNTの環状集合体が認められたが、他はすべて繊維状のCNTであった。出口配管13の内部S3(図9)では、S2よりはやや多くのCNTの環状集合体が認められたが大部分は繊維状のCNTであった。ガラス容器11の底部の黒色残渣S4(図10)についても、2〜3個のCNTの環状集合体が認められたが、他は全て繊維状のCNTであった。   On the other hand, as shown in the TEM photographs of FIGS. 7 to 10, almost no CNT cyclic aggregates were observed in the black solids obtained in S1 to S4. More specifically, in the black solid obtained in the side wall portion S1 of the glass container 11 (FIG. 7), although a ring-shaped aggregate of coiled CNTs was slightly observed, most of them were fibrous CNTs. In addition, in the inside S2 (FIG. 8) of the inlet pipe 12, several CNT annular aggregates were observed, but the others were all fibrous CNTs. In the inside S3 (FIG. 9) of the outlet pipe 13, a slightly larger number of annular aggregates of CNTs than S2 were observed, but most of them were fibrous CNTs. Regarding the black residue S4 (FIG. 10) at the bottom of the glass container 11, a ring aggregate of 2 to 3 CNTs was observed, but the others were all fibrous CNTs.

以上のように、飛散したミスト2の内、捕捉部7に達したミスト2でのみ多量のCNTの環状集合体が認められたことから、CNTの環状集合体はミスト2が気流3により移送されている間に生成すると考えられる。また、CNTの環状集合体を含むミスト2は他の形状のCNTを含むミスト2に比べ気流の影響を受けやすく、それにより環状集合体のみが捕捉部7に濃縮された、ということも考えられる。また、ガラス容器11の底部の黒色残渣S4にCNTの環状集合体が殆ど存在しなかったことから、CNTの環状集合体は超音波照射のみでは生成しないことが分かる。   As described above, since a large amount of CNT cyclic aggregates was observed only in the mist 2 that reached the trapping portion 7 among the scattered mist 2, the mist 2 was transferred by the airflow 3 to the CNT cyclic aggregate. It is considered to generate during. It is also conceivable that the mist 2 containing the cyclic aggregate of CNTs is more susceptible to the airflow than the mist 2 containing CNTs of other shapes, so that only the cyclic aggregates are concentrated in the capturing part 7. . Further, since there was almost no CNT annular aggregate in the black residue S4 at the bottom of the glass container 11, it can be seen that the CNT annular aggregate is not generated only by ultrasonic irradiation.

CNTリングは大きな常磁性を示すと予見されていることから(Physical Review Letters,88, 217206 (2002))、本発明に係るCNTの環状集合体は、例えば非常に軽い磁石で構成された磁気テープや磁気ディスク等の磁気記録媒体の製造に利用できると期待される。   Since the CNT ring is predicted to exhibit a large paramagnetism (Physical Review Letters, 88, 217206 (2002)), the annular assembly of CNTs according to the present invention is, for example, a magnetic tape composed of a very light magnet. It is expected that it can be used for manufacturing magnetic recording media such as magnetic disks.

CNTの環状集合体の製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus of the cyclic | annular aggregate of CNT. 実施例に係るCNTの環状集合体の製造装置の図である。It is a figure of the manufacturing apparatus of the cyclic | annular aggregate | assembly of CNT which concerns on an Example. CNTの環状集合体のTEM写真である。It is a TEM photograph of the cyclic | annular aggregate of CNT. CNTの環状集合体のTEM写真である。It is a TEM photograph of the cyclic | annular aggregate of CNT. CNTの環状集合体のTEM写真である。It is a TEM photograph of the cyclic | annular aggregate of CNT. CNTの環状集合体のTEM写真である。It is a TEM photograph of the cyclic | annular aggregate of CNT. ガラス容器の側壁部で得られた黒色固体のTEM写真である。It is a TEM photograph of black solid obtained by the side wall part of a glass container. 入口配管の内部で得られた黒色固体のTEM写真である。It is a TEM photograph of the black solid obtained inside the entrance piping. 出口配管の内部で得られた黒色固体のTEM写真である。It is a TEM photograph of the black solid obtained inside the outlet piping. ガラス容器底部の黒色残渣のTEM写真である。It is a TEM photograph of the black residue of a glass container bottom.

符号の説明Explanation of symbols

1 懸濁液
2 ミスト
3 気流
4 超音波バス(ミスト発生手段)
5 エアポンプ(気流発生手段)
6 捕捉手段
10 CNTの環状集合体の製造装置
1 Suspension 2 Mist 3 Airflow 4 Ultrasonic bath (mist generating means)
5 Air pump (air flow generation means)
6 Capturing means 10 CNT annular body manufacturing apparatus

Claims (4)

溶媒とカーボンナノチューブを含む懸濁液から該懸濁液のミストを発生させるミスト発生工程と、
前記ミスト発生工程で発生した前記ミストを気流により移送流路内を移送させ、前記ミスト内の前記溶媒の外周に沿ってカーボンナノチューブの環状集合体を生成させる移送生成工程と、
前記移送流路を拡径して前記気流の流速を低下させ、前記移送生成工程で生成された前記カーボンナノチューブの環状集合体を捕捉部に落下させる捕捉工程と、
を含むことを特徴とするカーボンナノチューブの環状集合体の製造方法。
A mist generation step of the suspension containing the solvent and the carbon nanotube Ru to generate mist of the suspension,
A transfer generation step of transferring the mist generated in the mist generation step in a transfer flow path by an air flow , and generating an annular aggregate of carbon nanotubes along an outer periphery of the solvent in the mist ;
A capture step of expanding the diameter of the transfer flow path to reduce the flow velocity of the airflow, and dropping the annular aggregate of the carbon nanotubes generated in the transfer generation step to a capture portion ;
The manufacturing method of the cyclic | annular aggregate | assembly of a carbon nanotube characterized by including this.
前記ミスト発生工程は、
前記懸濁液に超音波を照射してミストを発生させることを特徴とする請求項1に記載のカーボンナノチューブの環状集合体の製造方法。
The mist generation process includes
The method for producing an annular aggregate of carbon nanotubes according to claim 1, wherein mist is generated by irradiating the suspension with ultrasonic waves.
溶媒とカーボンナノチューブを含む懸濁液から該懸濁液のミストを発生させるミスト発生手段と、
前記懸濁液の上面に前記ミストを移送するための気流を供給する気流発生手段と、
前記気流により前記ミストが移送され、前記ミスト内の前記溶媒の外周に沿ってカーボンナノチューブの環状集合体を生成させる移送流路と、
前記移送流路より拡径することにより前記気流の流速を低下させ、前記カーボンナノチューブの環状集合体を捕捉部に落下させる捕捉手段と、
を備えることを特徴とするカーボンナノチューブの環状集合体の製造装置。
A mist generating means from a suspension comprising a solvent and carbon nanotubes to generate a mist of the suspension,
An air flow generating means for supplying an air flow for transferring the mist to the upper surface of the suspension;
Wherein the transfer airflow into by Ri before Symbol mist, a transfer passage to produce an annular assembly of the carbon nanotubes along the outer periphery of the solvent in said mist,
Capture means for reducing the flow velocity of the air flow by expanding the diameter from the transfer flow path, and dropping the annular aggregate of the carbon nanotubes to the capture section;
An apparatus for producing an annular aggregate of carbon nanotubes, comprising:
前記ミスト発生手段、超音波照射装置であることを特徴とする請求項3に記載のカーボンナノチューブの環状集合体の製造装置。 The said mist generating means is an ultrasonic irradiation apparatus, The manufacturing apparatus of the cyclic | annular aggregate | assembly of a carbon nanotube of Claim 3 characterized by the above-mentioned.
JP2005298693A 2005-10-13 2005-10-13 Method and apparatus for producing annular assembly of carbon nanotubes Expired - Fee Related JP5001544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298693A JP5001544B2 (en) 2005-10-13 2005-10-13 Method and apparatus for producing annular assembly of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298693A JP5001544B2 (en) 2005-10-13 2005-10-13 Method and apparatus for producing annular assembly of carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2007106629A JP2007106629A (en) 2007-04-26
JP5001544B2 true JP5001544B2 (en) 2012-08-15

Family

ID=38032784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298693A Expired - Fee Related JP5001544B2 (en) 2005-10-13 2005-10-13 Method and apparatus for producing annular assembly of carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5001544B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
JP4207398B2 (en) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 Method for manufacturing wiring of carbon nanotube structure, wiring of carbon nanotube structure, and carbon nanotube device using the same
JP3857547B2 (en) * 2001-07-09 2006-12-13 独立行政法人科学技術振興機構 Method for producing fine particles by spray pyrolysis
JP2005146406A (en) * 2003-10-23 2005-06-09 Zenhachi Okumi Method and device for producing fine particle

Also Published As

Publication number Publication date
JP2007106629A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
CN107249730B (en) Composite of carbon structure and covalent organic framework, preparation method and application thereof
US20190185325A1 (en) Microwave Reactor System with Gas-Solids Separation
JP5447367B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
CN100368287C (en) Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof and use of derivatized nanotubes
KR20080112274A (en) Method for separating high aspect ratio molecular structures
JP2010540220A5 (en)
TW202112250A (en) Filter material and filter to retain polyaromatic hydrocarbons, carbonyl and other smoke compounds from tobacco products
JPWO2017115708A1 (en) Fibrous carbon nanostructure dispersion
JP2012153540A (en) Carbon nanotube aggregate, and method for manufacturing the same
JP5001544B2 (en) Method and apparatus for producing annular assembly of carbon nanotubes
JP4868490B2 (en) Carbon nanotube purification method
JP5980327B2 (en) System and method for nanoscale oriented carbon nanotubes
JP2005015243A (en) Method of manufacturing high purity nanometer scale carbon tube-containing carbonaceous material
JP2003146635A (en) Method, apparatus and equipment for manufacturing carbon nanomaterial
JP6965751B2 (en) Fibrous carbon nanostructure dispersion
WO2020031883A1 (en) Boron nitride nanotube material, boron nitride nanotube composite material, and method for producing boron nitride nanotube material
JP6511906B2 (en) Method of producing carbon film and carbon film
JP2004075457A (en) Method and apparatus for producing carbon nanofiber
Lin et al. Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition
JPH08217431A (en) Fullerene and its production
JP2006240921A (en) Method for granulating carbon-based substance
JP6787339B2 (en) Fibrous carbon nanostructure dispersion
JP2006231198A (en) Catalyst for producing nanocarbon material, its production method and apparatus for producing nanocarbon material
JP2005185951A (en) Gas occluding material, gas occluding apparatus, carbon nanotube and producing method for the nanotube
WO2022268980A1 (en) Device, in particular PE CVD APPARATUS FOR CONTINUOUS PRODUCTION OF HIGH_PERFORMANCE CARBON THREAD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees