WO2005039969A1 - Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent - Google Patents

Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent Download PDF

Info

Publication number
WO2005039969A1
WO2005039969A1 PCT/CN2003/000894 CN0300894W WO2005039969A1 WO 2005039969 A1 WO2005039969 A1 WO 2005039969A1 CN 0300894 W CN0300894 W CN 0300894W WO 2005039969 A1 WO2005039969 A1 WO 2005039969A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
floating airport
airport
submersible
buoyancy
Prior art date
Application number
PCT/CN2003/000894
Other languages
English (en)
French (fr)
Inventor
Xiaoji Yuan
Original Assignee
Xiaoji Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiaoji Yuan filed Critical Xiaoji Yuan
Priority to AU2003280541A priority Critical patent/AU2003280541A1/en
Priority to PCT/CN2003/000894 priority patent/WO2005039969A1/zh
Publication of WO2005039969A1 publication Critical patent/WO2005039969A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/50Vessels or floating structures for aircraft

Definitions

  • the present invention relates to a submersible water; throbbing airport (hereinafter referred to as a floating airfield) and a method for reducing wind and wave loads.
  • a floating airfield throbbing airport
  • a floating airport is a giant structure floating on the water, and it should at least have the ability for a fixed-wing aircraft to take off and land in a conventional manner. To do this, it must have a considerable span and the necessary width.
  • large-span aquatic structures In the prior art, in order to withstand storms, large-span aquatic structures must have considerable structural strength and a large volume of floating bodies, thereby forming various practical technical difficulties and economic difficulties.
  • the most well-known floating airport in the art is the aircraft carrier.
  • An aircraft carrier is a fully functional and highly capable warship. Its characteristics are that the takeoff and landing distance of the aircraft is quite small (not more than 300 meters), and it must adopt catapult or block to take off and land. It has a large restriction on the type of aircraft and a high cost. Therefore, it is not suitable to be a large number of floating airports scattered throughout the ocean and able to adapt to the takeoff and landing of conventional aircraft.
  • a mobile offshore base which is made up of independent units capable of self-propellation, and is semi-circular.
  • the submerged structure prevents wind and wave damage, and adopts a method of improving the structural strength to "hard resist" the wind and wave, so the structure is very bulky. It does not take full advantage of the small load (relative to the deck area) of most airport base facilities.
  • the displacement of the working state based on the unit deck area is more than 7 tons per square meter, and the floating airport has a weight of about 5 tons per square meter. .
  • Each of its units is 300 meters long and has a working displacement of about 350,000 tons. A 1,000-meter-long airport will be built with it. The runway is far from long, and the displacement will exceed one million tons.
  • Another disadvantage is that it uses a small waterline surface semi-submersible structure, so its draught is more sensitive to load changes, and ballast water needs to be adjusted for compensation, which increases the volume of the ballast tank. Due to its heavy weight and huge motion inertia, it is impossible to perform anchoring and adopt dynamic anti-drift, resulting in huge power consumption.
  • the object of the present invention is to provide a submersible floating airport and a method for reducing wind and wave loads.
  • the floating airport can not only ensure its structural safety under the largest wind and waves in the sea area, but also greatly reduce its structure. Weight, reducing construction and use costs.
  • Another object of the present invention is to provide the above-mentioned submersible floating airport and the method for reducing wind and wave load, so that the floating airport and the method can control the operation of the container in a simple, safe and reliable manner.
  • the above purpose of the present invention is basically to make a floating airport have a cost / efficiency ratio that meets practical needs, to make the floating airport suitable for popularization and application from the technical and economic aspects, and to make it possible to build a large number of floating airports.
  • total buoyancy for convenience of description, the concept of "total buoyancy" is adopted:
  • the so-called reserve buoyancy is the displacement of a volume above the waterline of a floating object, so it is related to the position of the waterline.
  • the so-called residual buoyancy is the difference between the displacement of a floating object at a certain waterline (ie, the displacement of the volume below the waterline) and the dead weight of the floating object, so it is also related to the position of the waterline.
  • the total buoyancy is equal to the difference between the displacement of the total volume of the object (ie, the sum of the volume above and below the waterline) and the weight of the object.
  • the displacement of an ordinary ship refers only to the volume of its underwater portion. Since it does not dive, the volume of the water section is not included.
  • a submersible floating airport includes at least a deck capable of taking off and landing an aircraft and a main structure below the deck, and further includes a variable buoyancy device and a depth control device. Reduce the total buoyancy of the floating airport to no more than about 10% of the maximum total buoyancy.
  • the level of the critical wind wave is determined during the design of the floating airport, and its value is at least greater than the maximum wind wave that can be normally operated and less than the maximum wind wave that may occur in the operating sea area.
  • stopping the floating airport from operating normally and abandoning its normal operating capabilities said stopping normal operations and abandoning its normal operating capabilities include:
  • the total buoyancy of the reduced floating airport is not greater than about 1 0 »/ « of the maximum total buoyancy;
  • the total buoyancy of the reduced floating airport is not greater than about 10% of the maximum total buoyancy
  • the wind wave load of the floating airport includes the load directly or indirectly acting on the anchoring system.
  • the diving of the floating airport can improve the safety of the facility in the waves. The reasons are as follows: 1) When the diving of the floating airport reaches the appropriate depth position, it will not bear the wind load at all; 2) At this time, the buoyancy distribution and water surface of the floating airport It has nothing to do with the wave, and there is no additional bending moment and additional shear load caused by the buoyancy distribution changes caused by waves; 3) The floating airport moderately dives, and the wave dynamic pressure load can be greatly reduced (well known, it decays exponentially) 4) Underwater The greater the depth, the lower the current velocity, and therefore the lower the current load; 5) The environmental load on the main body of the floating airport is reduced. In the case of the anchor drift prevention device, the load of the anchor device is also reduced accordingly. It can be seen that diving is beneficial to greatly reduce wind and wave loads, and the safety conditions of the structure will be further significantly improved.
  • the floating airport of the present invention can obtain the following basic beneficial effects by adopting the method for reducing the wind wave load of the present invention: According to the above-mentioned basic structure of the floating airport on the water and the above-mentioned basic method of reducing the load of the wind wave, the airport according to the above This method requires a dive and reduces wind and wave loads, so it is safe. On the other hand, lower wind load requires lower strength, Therefore its structure is lighter.
  • the above-mentioned basic structure and the above-mentioned basic method provided by the present invention can achieve the basic purpose of the present invention, that is, "the structural safety can be ensured under the maximum wind and waves in the sea area where it is located, and the weight of its structure can be greatly reduced and the construction reduced. And the use cost,... This can make the floating airport have a cost / efficiency ratio that meets practical needs, make the floating airport suitable for promotion and application from the technical and economic aspects, and make it possible to build a large number of floating airports.
  • the key to the basic technology of the present invention is the general idea of dividing the environmental conditions of the wind and waves into above and below the threshold, and compressing the general problem of reducing the load of wind and waves into the special problems of the waves above the threshold.
  • Load of wind waves that is to say, the so-called reduction of wind wave load in the present invention is only to reduce the load action of storm waves above the critical wave, but not to reduce the load action of wind waves below the threshold.
  • the sub-critical wind and wave environment is exactly the operating environment. Above the critical wind and wave environment is the environment that cannot be operated, so it can dive. At the same time, the main facilities of the airport are runways. The size of the runways is not large, and the equipment is not large, which makes it easy to dive. Submerged state The reduced load is the one that has the greatest impact on the safety of the floating airport structure. If it is resolved, the floating airport will be safe. This solution is not “hard resistance”, but “detour" into the water, so that the structure can be lightweight.
  • the airport structure According to the basic technology of the present invention, for the airport structure to be able to operate smoothly, it must have a large reserve buoyancy; and in order to be able to dive, it must be able to basically abandon the reserve buoyancy. Therefore, there must be a large amount of fluctuation in buoyancy, that is, a large-capacity variable buoyancy device.
  • the present invention proposes a variety of specific structures and corresponding methods of using variable buoyancy devices, among which, particularly, simple and practical gravity injection drainage structures and methods.
  • the airport structure must have the necessary depth control device to be able to dive down and continue to maintain stability after giving up buoyancy.
  • the depth control device may be a structure with a bottom constraint, which is suitable for the occasion where it is convenient to set the bottom structure; it may be a surface-constrained structure or a power device, which is suitable for those who are not convenient to set the bottom structure. Occasion. Different depth control devices have different depth control methods.
  • the present invention proposes some optional technical features of the overall structure of the floating airport, including:
  • Structures directly or indirectly connected by multiple relatively independent units similar to modularization); structures with small dead weight and small drainage volume (all calculated based on the unit slab area);
  • FIG. 1 is a schematic diagram of the overall effect of the present invention
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 3 is a structural schematic diagram of gravity injection drainage according to the present invention.
  • FIG. 4 is a schematic diagram of the bottom constraint of the present invention.
  • FIG. 5 is a schematic diagram of a floater in water when the bottom of the present invention is restrained
  • FIG. 6 is a schematic diagram of water surface constraints according to the present invention.
  • FIG. 7 is a schematic diagram of heavy objects in water when the water surface is constrained according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 4 of the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 11 is a schematic side view of a structure of Embodiment 3 of the present invention.
  • a submersible floating airport (hereinafter referred to as a floating airport) includes at least deck 1 capable of taking off and landing an aircraft and the main structure under the deck 1, and also includes variable buoyancy devices and depth.
  • the control device, the variable buoyancy device can reduce the total buoyancy of the floating airport to no more than about 10% of the maximum total buoyancy.
  • the structural strength of the floating airport meets the conditions i) the maximum level of wind and waves that can be adapted under the normal operating conditions on the water surface is the critical wave in the area where it is located, ii) the submerged state can adapt to the largest wave in the area where it is located, iii) The strength of the structure is lower than that required to withstand heavy storms on the water.
  • the invention can ensure the structural safety under the maximum wind and waves in the sea area where it is located, and maintain the stability of its attitude under the diving state. Because it adopts variable buoyancy device and depth control device, it can control the dive during the maximum wind and wave in the sea area, which can reduce The weight of the structure makes the structure lighter, which can greatly reduce the construction and use costs. At the same time, it also has the advantages of simple, safe and reliable control operations.
  • the maximum wind and wave level that may occur in the operating sea area in this embodiment is a 12-level sea condition.
  • Class 5 sea conditions are operational sea conditions. Flight operations must be stopped beyond this sea condition.
  • the critical wind and wave is set to a level 8 sea state, that is, the level 8 sea state must dive; the floating airport is designed to withstand the level 8 sea state.
  • the design strength of traditional non-submersible platforms must be able to withstand strengths greater than 12 sea conditions.
  • stopping the floating airport from operating normally and abandoning the ability to operate normally includes:
  • the total buoyancy of the reduced floating airport is not greater than about 10% of the maximum total buoyancy
  • the floating airport in this embodiment includes more than one relatively independent unit, and each of the relatively independent units has the fascia 1 and a main structure under the fascia 1, a variable buoyancy device, and Depth control device; adjacent or similar relatively independent units are directly or indirectly connected by a detachable connection.
  • the shape of each independent unit in a plan view is rectangular.
  • the rectangular armor plate 1 is 300M long, 60M wide, and has an area of 18 000 square meters.
  • a main structure is provided below the deck 1; the main structure described in this embodiment is a truss structure 2; the truss structure 2 has two layers, as shown in FIG.
  • the lower truss 22 is about 12M high, the grid distance is about 12-15M, and the truss
  • the rod is a tube with a diameter of 0.8M. There are holes in the pipe, and the seawater can enter and exit freely, so the drainage volume is negligible.
  • the upper truss 21 is about 2M high and the grid distance is 2-2. 5M.
  • the truss structure 2 The main structure of the pipe and tubular structure is mainly subjected to tensile and compressive forces in order to maintain the overall shape. Generally, the bending moment is relatively small.
  • part of the rod body of the truss structure may be provided as a pontoon; plural pontoons may also be provided on the truss structure; or plural pods may be provided on the truss structure, and part of the truss structure is provided as Float to grab.
  • a lower part of the lower truss structure 22 is provided with a tubular pontoon 3; in this embodiment, the tubular pontoon 3 is arranged in four parallel, with a diameter of 3.5M, a length of 300M, and operating water.
  • the line is located at the pontoon 3, the height of the upper part of the pontoon 3 above the water surface is about 2/3 of the diameter, and the waterline area is about 4000 square meters.
  • the buoyancy tank 3 includes a water-incoming compartment 31 and a constant buoyancy compartment 32.
  • a water-tight compartment door is provided on the water-incoming compartment 31.
  • the fixed buoyancy compartment 32 is a sealed-like chamber, and the interior can be filled with lightweight materials to ensure that no water can enter the broken cabin.
  • the water-incoming compartment 31 constitutes the gravity injection and drainage 31 1 in the variable buoyancy device of the present invention.
  • the gravity injection drainage I 311 is generally located above the working state waterline of the floating airport, and the height position of the bottom of the gravity injection drainage is near the operation state waterline;
  • a watertight hatch 3111 to the outside serves as a vent, and a large-sized watertight hatch 3112 serves as a sea vent.
  • the lower edge of at least one seagate hatch 3112 is the same height as the bottom surface of the ship room 311.
  • a ballast water gun 33 may be provided in the float 3 of this embodiment, and the dead weight of the floating airport is adjusted by adjusting the water filling amount of the ballast tank, so as to balance the fluctuation of the load of the floating airport and the waterline position in the distribution state .
  • the actual waterline position of the floating airport may be lower than the maximum waterline of the operation.
  • the ballast tank or other variable buoyancy device is used to adjust the load balance of the floating airport so that the actual waterline is at the maximum operating state.
  • the position of the waterline that is, the edge of the door 3112, is watertight in the gravity injection and drainage tank 311. In this state, when the floating airport is located at the normal waterline, after opening its watertight hatch doors 3111, 3112, external water cannot temporarily enter and exit the gravity injection and drainage tank 311 temporarily.
  • Opening this watertight door 3111, 3112 is equivalent to the floating airport giving up reserve buoyancy, so as long as the effective length of the chain cable 5 to shorten the subsea weight described below is adjusted by the driver 4, a small downward pull force is applied to the floating airport to float
  • the airport can begin to dive, and the external water enters gravity injection drainage 311 under the action of gravity. This process continues until the dive reaches the required depth of operation, at this time there is a certain tension on the chain cable 5, and the dive depth and underwater attitude of the floating airport tend to be stable.
  • the above process is reversed, that is, the length of the heavy chain cable 5 is lengthened to float the floating airport. From the time when the floating airport emerges from the water surface, the water in the gravity injection drainage tank 311 is It is discharged out of the cabin under the action of gravity, and finally the watertight hatch door 3112 is closed to restore the reserve buoyancy and resume normal operation.
  • the gravity injection drainage method described above includes,
  • the gravity injection drainage tank of this embodiment can use a small operation control to make a large volume to abandon reserve buoyancy, so that drainage is not required Too much power, the operation is too big.
  • variable buoyancy device in addition to the gravity injection and drainage tank and the ballast water tank, the variable buoyancy device further includes a detachable buoyancy tank 6, a detachable heavy tank 7, or a lifting object.
  • detachable pontoons 6 which are provided on the free space on deck 1 of each independent unit of the floating airport; during normal operation of the floating airport, the upper surface of pontoon 6 and floating airport deck 1 Contour becomes part of floating airport deck 1.
  • the detachable float 6 can further have a ballast tank, whose total buoyancy can be adjusted. When it leaves the floating airport body, it reduces the volume of the floating airport body, thereby reducing its total buoyancy. It can rely on its own buoyancy to remain on the water surface, and it can also become an external tensile structure relying on the water surface to exert restraining force on the floating airport.
  • the detachable pontoon 6 becomes a float of the depth control device after separation (see FIG. 6).
  • the power equipment of the floating airport such as a generator, can be installed in the pod 6, and the flexible airport is used to supply power to the floating airport.
  • the floating airport dive mode has a buoyancy tank with a generator 6 that does not dive so that the generator can work normally.
  • the detachable pod 6 can also be equipped with other equipment or cabin space that is not suitable for diving, such as a backup control center, heliport, etc. This equipment or cabin can float on the water when diving at a floating airport.
  • At least one of the above mentioned pods 6 is equipped with control equipment.
  • Several pods are equipped with thrusters and other facilities, and can be completely separated from the floating airport and become rescue capsules to escape if necessary.
  • the connection chain cable of the buoyancy cabin with a life-saving function may have a quick-release structure (such as an explosion bolt, a quick-release lock, etc.), so as to escape from the floating airport for emergency rescue when the floating airport may sink.
  • the independent unit of the floating airport also has 6 detachable weights, which are weights or heavy tanks 7, and the detachable weights or heavy tanks 7 are provided with ballast water tanks;
  • Each deadweight is 250 tons, and its volume is slightly equal to 250 cubic meters.
  • the ballast water tank is emptied, the buoyancy of the weight is slightly equal to its own weight, so the lifting power is small.
  • the ballast tank can become a liftable weight after being filled with water. When it is lifted from the bottom, it can increase the weight of the floating airport and reduce the total buoyancy.
  • the floating airport also includes a drift prevention device.
  • Anti-drift refers to a large change in the position limited in the horizontal plane, and the accuracy requirement is very low; and the function of the positioning device of the offshore platform is generally to maintain water High position accuracy in the horizontal and vertical directions.
  • anti-drift devices for floating airports are usually anchoring devices.
  • the anchors in the mooring devices include heavy blocks, underwater fixed structures (underwater engineering), or conventional anchors, where the heavy blocks are blocks without anchor hooks.
  • the anchoring device is provided with a chain cable, and the pulling direction of the chain cable points in the same direction. Due to the use of multi-point anchoring, it is difficult to achieve a balanced pulling force of each chain cable. If the pulling force of the chain cable is not balanced, the high-stressed chain cable is broken first, and when a heavy block without an anchor is used, the high-stressed anchor can Anchor, so the tension of each chain cable can be balanced.
  • the anti-drift device of the floating airport is a dynamic anti-drift device, including a horizontal omnidirectional thrust device; the thrust device also has the function of a navigation thruster.
  • the volume of the heavy water injection and drainage tank is about 121 00 cubic meters
  • the volume of the ballast tank is about 1 G 00 cubic meters
  • the volume of the fixed buoyancy buoyancy tank is about 66 00 cubic meters. Its buoyancy is close to the weight of the airport structure, so The waterline is at the boundary of the gravity injection and drainage tank of the cabin.
  • the volume of the floating airport, except for the buoyancy tank, is about 700 cubic meters, which is above the operating waterline.
  • the floating airport structure has a weight of about 6,600 tons.
  • variable buoyancy device can reduce the total buoyancy of the floating airport to not more than about 10% of the maximum total buoyancy. This embodiment meets the requirements.
  • the deck 1 in order to reduce the wave dynamic load effect in the submerged state, is a hollow structure, the size of the hollow holes is 15mm x 15mm, the center distance of the holes is 25mra, and the hollow ratio is 72%, which is greater than that of the present invention.
  • the set lower limit is greater than 50 ° /. .
  • the present invention can make the structural dead weight calculated according to the unit slab area small.
  • the upper limit determined by the invention is less than 1 ton per square meter.
  • the present invention can achieve a maximum total displacement calculated in terms of unit deck area.
  • the floating airport's 300-meter span in one direction is greater than or equal to 200 meters of the maximum wavelength of critical waves in the water area.
  • the waterline area of a solid structure near the water surface provided by the present invention is only a portion of the total area of the airport structure distribution area.
  • the above options can make the floating airport have a large span and a large distribution space, as well as a relatively small dead weight, a relatively small volume, and a relatively small waterline area, so that the floating airport can be greatly lightweight, improve stability, Reduce navigation resistance.
  • the basic structure of the depth control device of the floating airport is: it has an external tension structure that applies external tension to the floating airport.
  • the external tension structure includes an external tension structure and an auxiliary external tension structure.
  • the external tension structure is an underwater structure. 8 (fig. 4, 5) or surface float 9 (fig. 6, 7 , 8), the surface float 9 includes a detachable buoyancy tank 6; the auxiliary external tension structure is a weight 8 in the water,
  • the heavy object in the water may be a heavy block or a heavy tank, ( Figure 7) or a floating float 9 '( Figure 5); the external tension structure and the floating airport are connected by a chain cable, and a driving mechanism is used to adjust the chain cable effectively. length.
  • the surface float in the depth control device includes a detachable pontoon that keeps the chain cable tight after separation; the underwater structure in the depth control device includes a detachable heavy tank that drops to the bottom; the underwater structure in the depth control device includes an anchor The heavy weight in water in the depth control device includes a detachable heavy tank left in the water after separation.
  • the safe diving state of the floating airport is a restricted diving state.
  • the method to achieve this is to reduce and adjust the total buoyancy of the floating airport and set and adjust the depth constraint of the floating airport; the reduced total buoyancy of the floating airport does not It is greater than about 10% of the maximum total buoyancy when the floating airport is fully loaded under ice conditions; the depth of the constrained dive is below the trough of the largest wave that may occur, and not greater than the corresponding depth of 1/2 the maximum wavelength.
  • the depth constraint of the "set" floating airport is to apply an external pulling force to the floating airport through a chain cable using an external pulling structure; at least three of the external pulling forces are dependent external pulling forces, and the rest are auxiliary external pulling forces.
  • the external pulling force is called a binding force, and is a pulling force applied to the floating airport by a submarine structure or a surface float through a chain cable.
  • the auxiliary external pulling force is a pulling force applied to the floating airport by a heavy object in the water or a float in the water through the chain cable.
  • the cables 5 and 5 through which the binding force passes are called binding cables.
  • the effective length of the restraint chain determines the depth position of each restraint point of the floating airport, and determines the dive depth of the floating airport.
  • the bottom structure includes anchors, heavy tanks, heavy blocks, and underwater fixed structures (underwater engineering).
  • Extra heavy anchors, heavy navigation and heavy blocks can have ballast tanks. The increased buoyancy during ballast grab emptying can partially or completely offset the deadweight, which can help lift these structures.
  • a simple content of the "adjusting the depth constraint of a floating airport” is to adjust the huge distance between each constraint point and each support (the underwater structure 8, the surface float 9) by adjusting the effective length of each constraint chain.
  • the characteristics of constrained diving are: unbalanced diving, floating state may be unbalanced, buoyancy distribution may be unbalanced, simple control, stable attitude, and low power consumption.
  • the depth control device of this floating airport can adopt the "7 bottom constraint" formula. Structure.
  • Underwater restraint type depth control device (see Figure 4). It has several underwater structures 8 such as anchors, weights or underwater fixed structures. It is based on the underwater structure 8 and exerts downward and downward restraining force on the floating airport through the chain cable 5.
  • the bottom constraint requires the equivalent residual buoyancy of the floating airport to be greater than zero.
  • the sum of the pulling forces of all restraint chains 5 is equal to the equivalent residual buoyancy, but in the opposite direction.
  • the diving depth of a floating airport is determined by the design strength of the floating airport or floating airport and the storm conditions of the environment. When the maximum storm is likely, you must dive to the depth specified by the design to withstand the maximum storm. By using the driving mechanism to adjust the effective length of the chain cable 5, the dive depth of the floating airport can be adjusted. In this embodiment, the diving depth of the floating airport is not greater than 1/2 of the wavelength of the largest wave in the water area, because the underwater kinetic energy of the wave can be ignored at this depth.
  • Another content of the "adjusting the depth constraint of the floating airport” is to adjust the ability of the floating airport to remain stable in a wave disturbance environment.
  • Interference forces such as wave forces may affect the stability of the depth position of each constraint point, and thus affect the stability of the depth of the floating airport and the stability of the attitude of the floating airport.
  • the tension of the restraint cable should be determined according to the possible interference force (mainly the wave force) and the level of stability requirements of the floating airport, that is, the equivalent remaining buoyancy of the floating airport, which is the equivalent of the floating airport.
  • the remaining buoyancy is determined according to the tension of the restraint chain cable required to maintain the stability of the floating airport under the diving condition in a storm environment; adjusting the depth constraint of the floating airport is to adjust the effective length of the chain cable, the equivalent residual buoyancy of the floating airport, and the external supporting force That is to restrain the pulling force.
  • the depth control device of this floating airport can also be used in waters where the water depth is not suitable for the underwater structure.
  • the airport sinks naturally, and its depth is controlled by the surface float through a cable.
  • the total buoyancy of the surface float is greater than the absolute value of the maximum negative equivalent residual buoyancy that may occur at the floating airport, so as to ensure that the floating airport does not sink under the condition of breakage.
  • the effective length of the chain cable 5 determines the dive depth of the floating airport.
  • the relative relationship between the effective lengths of the chain cables 5 at each constraint point determines the attitude of the floating airport.
  • the restraint chain should also be determined according to the possible interference and the level of stability requirements for the floating airport The tension of the cable.
  • the minimum allowable constraint cable tension should be set, and the effective length of the chain cable 5 connected to the surface float is adjusted at any time.
  • This embodiment uses a constant tension windlass.
  • the depth control device of the floating airport can also adopt a bottom-water surface restraint structure.
  • Bottom-water surface restraint type depth control device see Figure 8. It relies on several underwater structures 8 and several surface structures 9 at the same time. At this time, the equivalent residual buoyancy of the floating airport can be greater than, equal to, and less than zero.
  • the total buoyancy of the surface float is greater than the absolute value of the maximum negative equivalent residual buoyancy that may occur at the floating airport, so as to ensure that the floating airport does not sink under the breaking conditions.
  • the heavy objects or floats in the water can be basically stabilized. It does not move), does not move up and down with the floating airport in order to reduce the power of movement.
  • the adjustment operation to constrain the effective length and tension of the chain cables 5 'and 5 is relatively complicated.
  • One recommended adjustment operation method is: ⁇ Determine the chain cable 5 according to the required diving depth. Length and the basic length of the chain cable 5 '. ii) The total buoyancy of the float 9 is adjusted by adjusting the ballast water amount of the float 9; iii) The waterline of the float 9 is adjusted by a slight adjustment of the effective length of the chain cable 5 'on the basic length J ⁇ ii, so that it can be adjusted The remaining buoyancy in the total buoyancy of the float 9 is divided from the reserve buoyancy, and determines the tension of the chain cable 5 ′. iv) Adjust the remaining buoyancy of the floating airport while adjusting i i i) above to adjust the tension of the chain cable 5.
  • the detachable pontoon can be kept on the water or in the water after being separated from the floating airport. After the floating grab is separated, it can be connected with the floating airport by a chain cable, and one end of the chain cable has a chain cable driving mechanism for changing the effective length of the chain cable.
  • the separable buoy can be used as a float in the depth control device after separation, which can tension the chain cable to transmit buoyancy. Certain equipment or cabins that are not suitable for diving can be arranged in a detachable float and left on the surface after separation. Therefore it can be used as a surface float in a depth control device.
  • the detachable buoyancy tank that can be submerged can also be used as an underwater float in the depth control device.
  • the connecting chain cable should have a quick-release structure.
  • the detachable heavy tank of the floating airport can sink in the water or fall to the bottom after being separated from the floating airport; the heavy gun has a chain cable connection with the floating airport after separation; one end of the chain cable has a chain cable A driving mechanism for changing the effective length of the chain cable, which can be used as a depth after being separated
  • the heavy weight in the water or the bottom weight in the control device can also be used as a liftable weight in the variable buoyancy device. Therefore, the variable buoyancy structure and the partial structure of the depth control device of the floating airport can be shared and replaced with each other.
  • the buoyancy of a separable structure should be judged in the buoyancy calculation according to the function of the structure in different situations. For example, when the heavy objects in the water and the floats in the water are diving with the floating airport, they should be considered as part of the floating airport. Their positive or negative buoyancy should be included in the buoyancy of the floating airport. The buoyancy included in the floating airport can only be considered as a component of "equivalent" buoyancy. For another example, a heavy object that sinks to the bottom of the water during operation should be regarded as the underwater structure of the depth control device. When the weight is lifted during a dive, it will be lifted and then floated down to float the airport.
  • variable buoyancy device It should be regarded as a floating airport variable buoyancy device. This will affect the capacity of the variable buoyancy device of the floating airport; if it is not lifted, it should be regarded as a weight in the depth control device, and its buoyancy can only be included in "equivalent" buoyancy.
  • a float and a weight can be arranged to be connected to the same driving mechanism through a chain cable.
  • the heavy objects in the water or the floats in the water are basically stable and do not move up and down with the floating airport, which can reduce the power of movement.
  • the depth control device may have a sensor for measuring the tension of the chain cable, a sensor for measuring the effective length of the chain cable, and a sensor for measuring the horizontal angle and / or the pitch direction angle of the chain cable (the repeated text is added only to avoid The term "and / or” is ambiguous), and the measured tension signal, length signal and direction angle signal are sent to the control system of the floating airport.
  • These signals can be used to determine the following relevant parameters of the floating airport system: the waterline position of the main body of the floating airport and the detachable pontoon, the reserve buoyancy, the remaining buoyancy, the dive depth of the main body of the floating airport, the speed and acceleration of the dive and buoyancy, Swing attitude, wave period, current direction, velocity, etc.
  • the mass of the floating airport is large, but the wave force is quite small after the dive. It is relatively easy to maintain the basic stability of the depth position with a certain restraining tension.
  • the surface float 9 is constantly subjected to waves, and the tension of the chain cable 5 will be constantly changed, sometimes loosened and tight, and there will be more or less disturbance to the depth position of the floating airport. Therefore, the effective length of the surface float chain cable 5 should be continuously adjusted according to the necessity of the situation.
  • the adjustment method is to use the sensor to feedback the chain cable tension, set the upper and lower limits of the tension and the average value of the effective length variable of the chain cable 5, and control it with an automatic control system.
  • the end of the main body unit and the adjacent main body unit are connected by a plurality of bolts, snaps or pins to achieve multi-point connection, so that the main body units are rigidly connected, and the connection points are located near the nodes of the truss structure.
  • Three sets of traction chain cables and three sets of guide structures are arranged between two adjacent main units, and the two main units can be pulled closer from the separated state by the traction chain cables; the guide points align each connection point for connection; In the near process, the respective thrusters generate reverse thrust to prevent the two main body unit structures from colliding with each other.
  • the critical wave height of the floating airport is greater than 10 meters, the wave amplitude is greater than 5 meters, and the maximum wave amplitude of the water area is 15 meters.
  • the slab 1 is about 10 meters away from the static horizontal plane, which is larger than the critical wave amplitude, and it will not be waved on the slab 1 during operation.
  • the height of sampan 1 is far less than 80% of the maximum amplitude, which is difficult to achieve in the existing floating surface fixed-point operation floating airport. Therefore, the floating airport can be made less sloshing, and the local buoyancy no longer increases after the wave peak partially exceeds the upper edge of the floating body.
  • any vertical cross-sectional area of the floating airport in the longitudinal and lateral directions is not greater than 50% of the area within the envelope of the cross-sectional structure. Make the additional bending moment and shear force induced by the wave small. When operating normally in a sub-critical wave environment, the attitude of the floating airport is very stable regardless of the wave direction.
  • the floating airport in the surface operation state its waterline area does not exceed the total area of the envelope envelope of the vertical projection (projected on the horizontal plane) outline of the floating airport structure is about 15%.
  • the small waterline area is distributed in a relatively large water area, and is mainly distributed near the periphery of the water area, so it is easy to improve the stability of the floating airport in design.
  • the floating airport uses constrained dives in wind and wave environments above the threshold to reduce the damage caused by wind and wave loads.
  • the structural strength of the floating airport can adapt to the maximum wind and waves in the sea area where the dive is restricted.
  • the present invention can ensure the structural safety of the sea under the largest wind and waves, and can reduce the weight of its structure to make the structure lighter, which can greatly reduce the construction and use costs.
  • the floating airport of the present invention can be migrated and controlled for diving; its variable buoyancy device and depth control device can maintain the stability of the attitude of the floating airport in the operating and diving state.
  • the floating airport control tube is single, safe and reliable; it can be further reduced in weight when the unit slab area load is small, and the overall resistance is reduced to further reduce its wave resistance, wind resistance and navigation resistance, and reduce wave induction. Additional bending moment and additional shear force; when the maximum storm is encountered, it can ensure the safety of its own structure and anchoring system; in short, the invention makes the floating airport large-scale from the technical and economic aspects.
  • a plate-shaped box structure 2 is provided under the sampan plate 1.
  • the plate-shaped box structure 2 is divided into upper and lower portions.
  • a watertight adobe door is provided on the upper level 2 ⁇ to form a water-incoming compartment; the lower level 22 is a constant buoyancy compartment with fixed buoyancy.
  • the deck of each main unit is 300 meters long and 60 meters wide.
  • the upper part of the main unit of the floating airport is 3 meters high; the plate-shaped box structure is composed of 8 hidden thick steel plates, and it adopts the windproof structure of US Patent 6089175 of Japan Matsubishi Heavy Industries. Plate-shaped box structure 2. Gravity injection drainage tank and ballast tank are set in the upper floor.
  • the airport can accept aircraft takeoff and landing operations.
  • the wave height reached 15 meters, the floating airport dived.
  • the principle and structure of this embodiment are basically the same as those of Embodiment 1.
  • the floating airport has a multi-chain cable heavy tank 10
  • the heavy grab 10 has at least two chain cables 101 and 102.
  • Each chain cable is connected to a driving mechanism 11 provided on the floating airport main unit, which can change the length of the chain cable.
  • the multi-chain cable heavy tank 10 may further include three chain cables 101, 102, 103.
  • Each chain cable is connected to a driving mechanism 11 provided on the main body of the floating airport that can change the length of the chain cable.
  • the projection positions of the three driving mechanisms 11 in the horizontal plane are not collinear.
  • the multi-chain cable heavy tank 10 or weight has the following functions: (1) a detachable heavy tank or a liftable weight as a variable buoyancy device; (2) an underwater weight as a depth control device; (3) As the anchor or weight of the anti-drift device, it is used to adjust the gravity distribution state (such as changing the length of the three chain cables, the gravity distribution state can be adjusted); (5) It is used to correct or eliminate the anchorage failure, if the anchorage situation occurs At this time, the other cables can be pulled to make the anchor or heavy tank, heavy object, etc. pass the obstacle. As shown in FIG. 11, when the re-grabbing 10 does not show a stuck anchor, the cables 101 and 102 are in a normal state.
  • the heavy tank 10 When the heavy tank 10 is caught by the underwater object, the heavy tank 10 can be pulled over the underwater object by pulling the chain cable 102, and the pulled chain cable is in a state of 101, 102, so that the anchor failure can be corrected or eliminated .
  • the direction of the arrow in the figure is the direction of the water flow.
  • this embodiment has the same main truss structure, the same gravity injection and drainage device and ballast tank. The difference is that, as shown in Fig. 9, the depth control device and anti-drift device are dynamic.
  • each main unit is provided with four thrusters 6, all of which are space universal thrusters.
  • the thruster 6 When the floating airport descends, the thruster 6 'is used to dive the floating airport into the water; The propeller 6 also makes the floating airport surface.
  • this thruster can also have the function of a navigation thruster, and can keep the floating airport from drifting. Therefore, the thruster can have three functions: depth control, navigation and anti-drift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Road Paving Structures (AREA)

Description

可下潜的水上浮动机场及其降低风浪载荷的方法 技术领 ^戈 本发明涉及一种可下潜的水上;竽动机场 (以下筒称浮动机场)及其降 低风浪载荷的方法, 特别是一种特轻型防风浪、 可移动可定点、 可下潜的 浮动机场及其降低风浪载荷的方法。 背景技术 水上浮动机场是飘浮于水上的巨型结构, 它至少应具有供固定翼飞机 按常规滑跑方式起降的能力。 为此, 它必须有相当大的跨度及必要的宽度。 在现有技术中, 大跨度水上结构为了抵御风暴必须具有相当大的结构强度 及相当大的浮体体积, 从而形成种种实际的技术困难和经济困难。
迄今为止, 世界上尚未出现具有典型意义的水上浮动机场。 个别水上 机场设置于港湾内, 并且建造了防波堤, 所能适应的环境水域波浪不能很 大。
现有技术的水上浮动机场, 最为众所周知的是***。 航母是一种 功能齐全、 战斗力很强的军舰。 它的特点是飞机起降滑跑距离相当小 (不 超过 300米) , 必须采用弹射或拦阻方式起降, 对飞行器的类型限制大, 造价高昂。 因此, 它不宜于成为数量较多、 散布海洋各处、 能适应常规飞 机起降的浮动机场。
除航母外, 各种构建水上浮动机场的技术构思无不遭遇防止风浪破坏 的难题。
日本三菱重工的专利 [ JP ] 8-331627 ( 1996 )及 [ US ] 6089175 ( 2000 ), 提出一种具有波浪吸收功能的大型浮动结构, 可以用作水上机场。 它的不足之 处是只能吸收大面积水上浮动机场 (曱板 )下方的波浪作用 , 不能消除 (至少 在大部分面积范围内消除)波浪作用。 并且, 它也没有提供消除特大风力(如 热带气旋)作用的措施。 因此, 浮动结构仍将相当笨重, 投资仍将相当巨大。 美国 McDermot t Techno logy, Inc.的专利 W099 2806 ( 1999 ) , 即 [ CN ] 1269759A ( 2000公开) , 提出了一种可移动的海上基地, 由能够自推进的 独立单元相连而成, 采有半潜式结构防止风浪破坏, 并采取提高结构强度 的方法对风浪进行 "硬抗" , 因而结构十分笨重。 它未充分利用大多数机 场基地设施载荷小 (相对于甲板面积而言, ) 的有利条件, 按单位甲板面 积计算的作业状态排水量 7吨 /平方米以上, 水上浮动机场自重约 5吨 /平 方米。 它的每个单元 300米长, 工作状态排水量约 35万吨。 用它组合建造 1 000米长的机场, 跑道远不算长, 排水量却将超过百万吨。 它的另一缺点 是采用了小水线面半潜结构, 因而其吃水深度对载荷变动比较敏感, 需要 用压舱水进行补偿性调节, 增加了压载舱的容积。 由于自重太大, 运动惯 性巨大, 无法进行锚定而采用动力防漂移, 功率消耗巨大。
总起来说, 所有上述各种现有技术中, 都缺少在风暴环境下降低风浪 载荷对浮动机场破坏力的更有效的方法; 也缺少既能防御风暴破坏 , 又能 轻量化从而降低成本的浮动机场结构。 因此, 现有技术浮动机场的费用 /功 效比很差, 大型机场的造价极高, 经济上不可能大量建造在广大海洋上的 组网配置。 发明内容 本发明的目的在于提供一种可下潜的水上浮动机场及其降低风浪载荷 的方法, 该浮动机场既能够在所在海域最大风浪下保证其结构安全, 又能 够大幅度减小其结构的重量, 降低建造及使用成本。
本发明的另一目的在于提供上述可下潜的水上浮动机场及其降低风浪 载荷的方法, 使该浮动机场及该方法控制操作筒单、 安全、 可靠。
本发明的上述目的归根结在于使浮动机场具有符合实用需要的费用 / 功效比, 从技术和经济方面使浮动机场适合推广应用, 使大量建造浮动机 场成为可能。 在本发明中, 为了叙述方便, 采用 "总浮力" 的概念:
总浮力 =储备浮力 + 剩余浮力。
所谓储备浮力, 是浮动物体的吃水线以上的体积的排水量, 因此它与吃水 线位置有关。
所谓剩余浮力, 是浮动物体在一定吃水线状态下的排水量(即吃水线以下 体积的排水量) 与浮动物体自重之差, 因此它也与吃水线位置有关。
所以, 总浮力等于物体总体积(即吃水线以上与以下的体积之和)的排水 量与物体自重之差。
需要特别指出的是, 在本发明中总浮力并非排水量。 普通船舶的排水量仅 指其水下部分的体积。 由于它不下潜, 因而水上部分的体积不计在内。
例如: 1.在本发明中除水的浮力与物体重力之外, 基本上无垂直方向外力 作用的自由浮动物体, 其剩余浮力基本上为零, 因而其总浮力基本上等于储备 浮力。 2.本发明中浮动机场全部下潜后储备浮力为零, 因而总浮力等于剩余浮 力。
本发明的目的是这样实现的, 一种可下潜的水上浮动机场, 至少包括 可起降航空器的甲板以及甲板下的主体结构, 还包括变浮力装置及深度控 制装置, 所述变浮力装置可使浮动机场的总浮力减小到不大于最大总浮力 的约 10%。
所述临界风浪的级別在浮动机场设计时确定, 其值至少大于可以正常 作业的最大风浪, 小于作业海域可能出现的最大风浪。
符合上述条件的浮动机场降低风浪载荷的方法为:
A. 在临界以下风浪环境中, 使浮动机场保持作业需要的总浮力, 具有 正常的作业能力;
B. 在临界以上风浪环境中, 使浮动机场停止正常作业, 并放弃正常作 业能力, 所述停止正常作业并放弃正常作业能力包括:
a.减小并调节浮动机场总浮力, 减小后的浮动机场的总浮力不大于最 大总浮力的约 1 0»/«; b.使浮动机场下潜, 下潜的深度在可能发生的最大波浪的波谷以下, 根据浮动机场的设计强度及环境的风暴状态决定;
C.在浮动机场从下潜状态上浮恢复作业状态时, 恢复浮动机场作业状 态的总浮力。
上述浮动机场的 "下潜状态" 就是上述方法中的 B款限定的条件, 即:
"使浮动机场停止正常作业, 并放弃正常作业能力,
a.減小并调节浮动机场总浮力, 减小后的浮动机场的总浮力不大于最 大总浮力的约 1 0%;
b.使浮动机场下潜, 下潜的深度在可能发生的最大波浪的波谷以下, 根据浮动机场的设计强度及环境的风暴 态决定。 "
当上述浮动机场采用锚泊式防漂移装置时, 上述浮动机场的风浪载荷 包括风浪直接或间接作用于锚泊***的载荷。
浮动机场下潜可以提高设施在波浪中的安全性, 其理由简述如下: 1) 当浮动机场下潜到达适当深度位置时, 完全不承受风力载荷; 2)这时浮动 机场的浮力分布与水面波动无关, 完全不存在波浪导致的浮力分布变动附 加弯矩、 附加剪力载荷; 3)浮动机场适度下潜, 波浪动压载荷可大幅度减 小 (众所周知, 按指数规律衰减) 4)水下深度越大, 海流速度越低, 因而 海流载荷越小; 5)浮动机场主体承受的环境载荷减小, 在采用锚泊防漂移 装置的情形, 其锚泊装置的载荷也相应减小。 由此可见, 下潜有利于大大 降低风浪载荷, 结构的安全性条件将进一步明显改善。
由于风浪载荷大大降低, 浮动机场设计的强度要求也大大降低, 因此 结构自重大大降低。 自重降低使排水量降低, 结构容积减小, 风浪载荷进 一步减小, 使结构进一步轻量化。
本发明的浮动机场采用本发明的降风浪载荷方法可以取得如下基本的 有益效果: 按照本发明提出的水上浮动机场的上述基本结构及上述降低风 浪载荷的基本方法, 在临界以上风浪中, 机场按该方法要求下潜, 降低了 风浪载荷, 因此它是安全的。 另一方面, 较低的风浪载荷要求较低的强度, 因此它的结构是较轻的。
由此可见, 本发明提出的上述基本结构及上述基本方法能够实现本发 明的基本目的, 即 "既能够在所在海域最大风浪下保证其结构安全, 又能 够大幅度减 其结构的重量, 降低建造及使用成本,, 。 这可以使浮动机场 具有符合实用需要的费用 /功效比, 从技术和经济方面使浮动机场适合推广 应用, 使大量建造浮动机场成为可能。
本发明基本技术的关键即总构思是将风浪环境条件划分为临界以上和 临界以下, 将降低风浪载荷的一般问题压缩为临界以上风浪的特殊问题, 本发明的种种技术措施都集中在降低临界以上风浪的载荷作用。 就是说, 本发明所谓降低风浪载荷, 仅仅是降低风暴即临界以上风浪的载荷作用, 而不是降低临界以下风浪载荷作用。 临界以下风浪环境正是作业状态的环 境。 临界以上风浪环境正是不能作业的环境, 因而可以下潜。 同时, 机场 的主要设施是跑道, 而跑道的体积不大, 设备不多, 容易下潜。 下潜状态 降低的载荷正是对浮动机场结构安全破坏作用最大的载荷, 把它解决了, 浮动机场就安全了。 这个解决办法不是 "硬抗" , 而是 "迂回" 到水下, 因而可以使结构轻量化。
本发明的基本技术的具体做法及为了更好实现发明目的进一步技术措 施可极 ϋ述如下。
按照本发明的基本技术, 机场结构要能平稳作业, 必须有较大储备浮 力;而为了能够下潜, 必须能够基本上放弃储备浮力。 所以必须使浮力有很 大的变动量, 即有大容量变浮力装置。 根据浮动机场的特定条件, 本发明 提出了多种可用的变浮力装置的具体结构及相应的使用方法, 其中特别包 括简单实用的重力注排水结构及方法。
按照本发明的基本技术, 机场结构放弃浮力之后要能下潜并继续保持 稳定, 必须有必要的深度控制装置。 在不同水域条件下, 本发明提出, 深 度控制装置可以是具有水底约束的结构, 它适用于便于设置水底结构的场 合; 它可是水面约束式结构或动力式装置, 适用于不便于设置水底结构的 场合。 不同的深度控制装置有相应不同的深度控制方法。
按照本发明的基本技术及上述变浮力装置及深度控制装置的特点, 同 时根据浮动机场的功能需要, 本发明提出浮动机场总体结构的一些可供选 用技术特征, 包括:
大跨度结构;
桁架式总体结构;
镂空曱板结构;
由多个相对独立单元直接或间接地相联的结构 (类似于模块化) ; 小自重、 小排水体积的结构 (均按单位曱板面积计算) ;
作业状态在水面附近的小占空比结构;
作业储备浮力体积的小高度分布;
板式箱形结构。 附图说明 图 1为本发明整体效果示意图;
图 2为本发明实施例 1结构示意图;
图 3为本发明重力注排水般的结构示意图;
图 4为本发明水底约束示意图;
图 5为本发明水底约束时有水中浮子的示意图;
图 6为本发明水面约束示意图;
图 7为本发明水面约束时有水中重物的示意图;
图 8为本发明水底-水面约束示意图;
图 9为本发明实施例 4结构示意图;
图 10为本发明实施例 2结构示意图;
图 11为本发明实施例 3结构侧视示意图;
图 12为本发明实施例 3结构俯视示意图; 具体实施方式 实施例 1
如图 1、图 2所示,一种可下潜的水上浮动机场(以下简称为浮动机场), 至少包括可起降航空器的甲板 1以及甲板 1下的主体结构, 还包括变浮力装 置及深度控制装置, 所述变浮力装置可使浮动机场的总浮力减小到不大于 最大总浮力的约 10%。
所述浮动机场的结构强度符合条件 i)在水面正常作业状态下, 能适应 的风浪级别最高为所在海域的临界风浪, i i)在下潜状态下, 能适应所在海 域最大风浪, i i i)浮动机场的结构强度低于在水面抵御大风暴所要求的强 度。
本发明能够在所在海域最大风浪下保证其结构安全, 保持其在下潜状 态下姿态的稳定性, 由于它采用变浮力装置及深度控制装置, 能够在海域 最大风浪时控制下潜, 因此能够减小其结构的重量使结构轻量化, 可大幅 度降低建造及使用成本; 同时其还具有控制操作简单、 安全、 可靠的优点。
本实施例中所在作业海域可能出现的最大风浪级别为 12级海况。 5级海 况为可作业海况,超过此海况需停止飞行作业。其临界风浪设定为 8級海况, 即 8级海况必须下潜; 浮动机场设计强度为能够承受 8级海况的强度。 而传 统的不可下潜平台的设计强度必须能承受大于 12级海况的强度。
本实施例的浮动机场降低风浪载荷由以下方法实现:
A. 在临界以下风浪环境中, 使浮动机场保持作业需要的总浮力, 具有 正常的作业能力;
B. 在临界以上风浪环境中, 使浮动机场停止正常作业, 并放弃正常作 业能力, 所述停止正常作业并放弃正常作业能力包括:
a . 减小并调节浮动机场总浮力, 减小后的浮动机场的总浮力不大于最 大总浮力的约 10%;
b.使浮动机场下潜, 下潜的深度在可能发生的最大波浪的波谷以下, 根据浮动机场的设计强度及环境的风暴状态决定; C.在浮动机场从下潜状态上浮恢复作业状态时, 恢复浮动机场作业状 态的总浮力。
如图 2所示, 本实施例中所述浮动机场包括一个以上的相对独立单元, 每个所述相对独立单元都具有所述曱板 1以及曱板 1下的主体结构、 变浮 力装置、 及深度控制装置;相邻或相近的相对独立单元直接或间接地用可拆 联接联成整体。 本实施例中每个独立单元俯视投影外形呈矩形, 该矩形甲 板 1长 300M , 宽 60M, 面积 18 000平方米。 甲板 1下设有主体结构; 本实 施例中所述主体结构为桁架结构 2 ; 该桁架结构 2为两层, 如图 2所示, 下 层桁架 22高约 12M, 格距约 12- 15M, 桁架杆为直径 0. 8M的管。 管上有孔, 海水可自由进出, 因而排水体积可忽略不计。 上层桁架 21 高约 2M, 格距 2-2. 5M。 该桁架结构 2 主体结构的管材及管形结构为了保持整体形状主要 承受拉力及压力, 一般情况下弯矩相对不大。
本发明中, 该桁架结构的部分杆体可设置为浮舱; 也可于该桁架结构 上设有复数浮舱; 或于该桁架结构上设有复数浮舱, 并且该桁架结构的部 分杆体设置为浮抢。
如图 1所示,在本实施例中所述下层桁架结构 22下部设有管状浮舱 3; 本实施例中管状浮舱 3为四个平行布置, 其直径 3. 5M, 长 300M, 作业水线 位于浮舱 3处,浮舱 3上部露出水面高度约为直径的 2 / 3 ,水线面积约 4000 平方米。该浮舱 3包括有可进水舱室 31和定浮力舱室 32 , 于所述的可进水 舱室 31上设有水密舱门。 该定浮力舱室 32为密封般室, 其内部可填充轻 质材料, 确保破舱不进水。 其中可进水舱室 31构成本发明变浮力装置中的 重力注排水般 31 1。
本实施例中如图 3所示, 该重力注排水 I 311整***于浮动机场作业 状态吃水线之上, 其舱底的高度位置在作业状态吃水线附近;所述重力注排 水舱 311 上有通向外界的水密舱门 3111 作为通气口, 及大尺寸水密舱门 31 12作为通海口。至少一个通海口舱门 3112的下边缘与该船室 311底面等 高。 本实施例的浮般 3内可设有压载水枪 33 , 通过调节该压载水舱的充水 量来调节浮动机场的自重, 从而用于平衡浮动机场载荷的变动和分布状态 下的水线位置。
在开始约束下潜以前, 浮动机场的实际吃水线的位置可能低于作业最 大吃水线, 通过调节压载水舱或其他变浮力装置来调节浮动机场的载荷平 衡, 使实际吃水线位于作业状态最大吃水线的位置, 即重力注排水舱 311 的水密抢门 3112的边缘。 在此状态下, 当浮动机场位于正常吃水线时, 在 开启其水密舱门 3111、 3112后, 外界的水暂时还不可自由进出该重力注排 水舱 311。
开启该水密 门 3111、 3112 , 等于浮动机场放弃了储备浮力, 因而只 要通过驱动器 4调节缩短下文将说明的海底重块的链缆 5的有效长度, 对 浮动机场施加不大的向下拉力, 浮动机场就可开始下潜, 外界的水在重力 作用下进入重力注排水般 311。这个过程一直进行到下潜达到操作要求的深 度, 此时链缆 5 上有一定张力, 浮动机场的下潜深度及水下姿态都趋于稳 定。
在浮动机场从下潜状态上浮的过程中, 以上过程逆向进行, 即, 放长 重块链缆 5 的长度使浮动机场上浮, 从浮动机场露出水面时起, 重力注排 水舱 311 内的水在重力作用下排出舱外, 最后关闭水密舱门 3112 , 恢复储 备浮力, 恢复正常作业。
筒单地说, 如上所述重力注排水方法包括,
a.开启整***于作业状态吃水线以上的重力注排水舱 311 的通海口和 通气口, 在浮动机场下潜、 该通海口或其局部下潜到水面以下时, 舱外的 水可以在重力作用下进入该舱室, 以便减小浮动机场的储备浮力;
b .在浮动机场该舱室升出水面时, 舱内的水可以在重力作用下流出该 舱室;
c.在该枪室内的水被排出后, 关闭该通海口和通气口, 以便恢复浮动 机场的储备浮力。 常规潜水艇的做法是只能做到重力注水, 不能做到重力排水, 而是动 力排水; 本实施例的重力注排水舱能够用很小作业控制使很大体积放弃储 备浮力, 使排水不需要太大动力, 操作大为筒便。
本实施例中, 所述变浮力装置除重力注排水舱和压载水舱外, 还包括 可分离浮舱 6、 可分离重舱 7 , 或可提起重物。
如图 2所示, 有 6个可分离浮舱 6 , 设于浮动机场各独立单元的甲板 1 上为它留出的空位处; 浮动机场正常作业时, 浮舱 6 上表面与浮动机场甲 板 1等高, 成为浮动机场甲板 1的一部分。 该可分离浮抢 6可进一步具有 压载水舱, 其总浮力可以调节。 它离开浮动机场主体时, 减小浮动机场主 体的体积, 从而减小其总浮力。 它可依靠自身浮力保持在水面, 还可以成 为依托于水面的外部拉力结构, 对浮动机场施加约束力。
可分离浮舱 6分离后成为所述的深度控制装置的浮子(见图 6 )。 浮动 机场的动力设备如发电机可装在浮舱 6 内, 用柔性电缆向浮动机场供电。 浮动机场下潜时装有发电机的浮舱 6 不下潜, 使发电机能正常工作。 可分 离浮舱 6内还可布置其它不宜于下潜的设备或舱室空间, 如备用控制中心、 直升机库等, 浮动机场下潜时, 该设备或舱室可浮于水面上。
上述浮舱 6 中至少有一个装有控制设备。 若干浮舱装有推进器及其他 设施, 必要时可以完全脱离浮动机场成为救生舱逃生。 该具有救生功能的 浮舱的连接链缆可具有快速脱离结构 (如***螺栓、 快速分解式锁扣等) , 以便在浮动机场可能沉没时紧急脱离浮动机场进行自救。
如图 2、 图 6所示, 本浮动机场独立单元还有 6个可分离重物, 该重物 为重块或重舱 7 , 该可分离重块或重舱 7设有压载水舱; 每个自重 250吨, 体积略等于 250 立方米, 压载水舱排空时重物浮力略等于自重, 因此提起 功率小。 它沉到水底后压载水舱注水后可以成为可提起重物, 从水底提起 时可增加浮动机场自重, 减小总浮力。
所述浮动机场还包括有防漂移装置。 防漂移指限制在水平面内位置的 较大变化, 精度要求很低; 而通常海洋平台的定位装置的功能则为保持水 平方向及垂直方向的较高的位置精度。
在适于锚泊的海域, 浮动机场的防漂移装置通常是锚泊装置。 本浮动 机场采用锚泊装置时, 通常是多点锚泊, 锚泊装置中的锚包括重块、 水底 固定构造(水底工程)或常规的锚, 其中重块为无锚钩的块状物。 锚泊装 置设有链缆, 链缆拉力方向指向同一方向。 由于釆用多点锚泊, 很难做到 各链缆拉力均衡, 如果链缆拉力不均衡, 则受力大的链缆先断, 而采用无 锚钩的重块时, 受力大的锚可以走锚, 因此可以使各链缆的拉力趋于平衡。 在不适于锚泊的海域, 浮动机场的防漂移装置是动力式防漂移装置, 包括 水平全向推力装置; 该推力装置兼有航行推进器功能。
在本实施例中, 上述重水注排水舱体积约 121 00立方米, 压载水舱体 积约 1 G 00立方米, 定浮力浮舱体积约 66 00立方米, 其浮力接近于机场结 构自重, 因此, 吃水线在该舱室于重力注排水舱的分界线处。
浮动机场除浮舱以外的体积约 700立方米,位于作业水线以上。 6个可 分离浮舱, 每个体积 200立方米, 共计 1200立方米。
浮动机场结构自重约 6600吨左右。
当压载水枪充满水时,浮动机场达到的最大自重为 6600+1000=7600吨。 当可分离浮舱未分离、 重力注排水舱关闭时, 浮动机场达到的最大总 体积为: 121 00+1 000+6600+700+1200 =20600立方米,同体积水重 20600吨。
当可分离浮舱未分离、 重力注排水舱开启时, 浮动机场达到的最小总 体积为: 1 000+6600+700 = 7 300立方米, 同体积水重 7 300吨。
浮动机场最大总浮力即作业储备浮力为 20600 - 7600=13000吨。 因此, 变浮力装置可使浮动机场的总浮力减小到浮动机场最小总浮力即: 7300 - 7600= - 300吨。 它小于零, 更小于作业储备浮力 13000的 10%即 1300吨。
为了使机场能够下潜, 本发明要求变浮力装置可使浮动机场的总浮力 减小到不大于最大总浮力的约 10% , 本实施例符合要求。
本实施例中, 为了减小下潜状态下波浪动载作用, 甲板 1为镂空结构, 镂空孔尺寸为 15mm x l 5mm, 孔中心距为 25mra,其镂空比 72% , 大于本发明确 定的下限即大于 50°/。。
对于通常应用功能的机场, 本发明可以做到结构自重按单位曱板面积 计算很小, 本实施例结构自重按单位曱板面积计算为 6600 I 18000=0. 36 吨 /每平方米, 小于本发明确定的上限即小于 1吨 /每平方米。
对于通常应用功能的机场, 本发明可以做到最大总排水量按单位甲板 面积计算很小, 本实施例最大总体积按单位曱板面积计算为 20600 I 18000=1. 1立方米 /每平方米,小于本发明确定的上限即小于 2立方米 /每平 方米。
为了使产生作业储备浮力的浮体体积分布不远离水平面, 以便使波浪 增高到一定高度时越过舱室使波浪浮力载荷不再加大, 本实施例的浮动机 场作业储备浮力的折算水体积 13000立方米与作业水线面积 4000平方米之 商为 13000 I 4000=3. 25米, 小于本发明确定的上限即小于临界波浪 ( 8级 海况) 幅高大于 5米。
浮动机场一个方向的跨度 300 米大于等于所在水域临界波浪最大波长 200米。
为了减小波浪作用, 本发明提供的一种结构在水面附近的实体的水线 面积只是机场结构分布区域总面积的一' j、部分。 本实施例浮动机场在水面 作业状态下水线面积 4000平方米, 而浮动机场结构水平面内投影轮廓的包 络线范围总面积约为 180Q 0平方米, 两者之比为 4000 I 18000 = 22%, 小 于本发明确定的上限即小于 30%。
以上种种选择, 可以使浮动机场既有大跨度、 大的分布空间, 又有相 对小的自重、 相对小的体积、 相对小的水线面积, 因而使浮动机场能够大 大轻量化、 提高稳定性、 减小航行阻力。
本浮动机场的深度控制装置的基本结构是: 它具有外部拉力结构,对浮动 机场施加外部拉力, 所述外部拉力结构包括有依托外部拉力结构和辅助外部拉 力结构, 有依托外部拉力结构为水底结构 8 (图 4、 5 )或水面浮子 9 (图 6、 7、 8 ) ,水面浮子 9包括分离后的可分离浮舱 6;辅助外部拉力结构为水中重物 8,, 该水中重物可为重块或重舱, (图 7 )或水中浮子 9' (图 5 );所述外部拉力 结构与浮动机场之间用链缆连接, 并用驱动机构调节所述链缆有效长度。
深度控制装置中的水面浮子包括分离后使链缆保持张紧的可分离浮 舱; 深度控制装置中的水底结构包括落于水底的可分离重舱; 深度控制装 置中的水底结构包括锚泊装置中的锚; 深度控制装置中的水中重物包括分 离后留于水中的可分离重舱。
与此装置相应, 浮动机场的安全下潜状态为约束下潜状态, 实现的方法为 减小并调节浮动机场总浮力和设置并调节浮动机场的深度约束;减小后的浮动 机场的总浮力不大于氷面作业状态下浮动机场满载时最大总浮力的约 10%;约 束下潜的深度在可能发生的最大波浪的波谷以下, 不大于最大波长 1/2的相应 深度。 所述 "设置"浮动机场的深度约束为利用外部拉力结构通过链缆对浮动 机场施加外部拉力;所述外部拉力至少 3个为有依托的外部拉力, 其余为辅助 外部拉力, 所述有依托的外部拉力称为约束力, 是利用水底结构或水面浮子经 过链缆施加于浮动机场的拉力,所述辅助外部拉力为利用水中重物或水中浮子 经过链缆施加于浮动机场的拉力。
约束力所通过的链缆 5、 5,称为约束链缆。显然,约束链缆的有效长度(指 在驱动机构以外的长度, 不计驱动卷筒上的长度)决定浮动机场的各约束点的 深度位置, 决定浮动机场的下潜深度。
7底结构包括锚、 重舱、 重块、 水底固定构造(水底工程)。 特重型锚、 重航及重块可以有压载舱, 压载抢排空时增加的浮力可以部分或全部抵消自 重, 有助于提起这些结构。
因此, 所述 "调节浮动机场的深度约束,,的一个简单内容就是通过调节各 约束链缆的有效长度来调节各约束点与各依托物(水底结构 8、 水面浮子 9 ) 的 巨离。
约束下潜的特点为: 可非平衡下潜, 浮态可不平衡, 浮力分布可不平衡; 控制简单; 姿态稳定, 功率消耗小。
在水深适宜的水域, 本浮动机场的深度控制装置可以采用 "7 底约束"式 结构。
"水底约束" 式深度控制装置(见图 4 ) 。 它具有若干个水底结构 8, 如 锚、 重块或水底固定结构。 它以水底结构 8为依托, 通过链缆 5对浮动机场施 加向下拉力即向下的约束力。
如果某些可分离浮輪 6分离后留于水中,并使链览保持一定张力,见图 5, 就成为深度控制装置中的水中浮子 9,, 即辅助外部拉力结构。 这时, 将它的作 用力与浮动机场的剩余浮力即总浮力之和(代数和)称为当量剩余浮力。 当没 有辅助外部拉力(即辅助拉力为零)时, 浮动机场的剩余浮力也可视为当量剩 佘浮力。 下文将说明的另两种约束方式的 "当量剩余浮力" 依此类推。
水底约束要求浮动机场的当量剩余浮力大于零,全部约束链缆 5的拉力之 和等于当量剩余浮力, 但方向相反。
浮动机场的下潜深度根据浮动机场或浮动机场的设计强度及环境的风暴 状态决定。可能出现最大风暴时,必须下潜到设计规定的抵御最大风暴的深度。 用驱动机构调节链缆 5的有效长度, 可以调节浮动机场的下潜深度。 本实施例 中浮动机场下潜深度不大于所在水域最大波浪的波长的 1/2 , 因为在此深度 波浪的水下动能可以忽略。
所述 "调节浮动机场的深度约束"的另一个内容是调节浮动机场在波浪扰 动环境中保持稳定的能力。
波浪力等干扰力可能影响各约束点深度位置的稳定性,从而影响浮动机场 深度的稳定性和浮动机场姿态的稳定性。 约束链缆的拉力即张力越大, 浮动机 场的深度稳定性及姿态稳定性越好。
由此可见, 应该根据可能存在的干扰力(主要是波浪力)的大小及对浮动 机场稳定性要求的高低来决定约束链缆的张力即浮动机场的当量剩佘浮力,也 就是浮动机场的当量剩余浮力根据在风暴环境中下潜状态下为保持浮动机场 稳定所需约束链缆的张力决定;调节浮动机场的深度约束为调节链缆的有效长 度、 浮动机场的当量剩余浮力及外部有依托拉力即约束拉力。
在水深不适于设置水底结构的水域,本浮动机场的深度控制装置也可以釆 用 "水面约束" 式结构, 即机场自然下沉, 由水面浮子通过链缆控制其深度。
"7J面约束" 式深度控制装置, 见图 6。 这里只说明它与水底约束的区別 点。 它以若干个水面浮子 9为依托, 通过链缆 5,对浮动机场施加向上拉力即向 上的约束力。 水面约束式结构的辅助外部拉力结构常常是水中重物 8, , 见图 7。 水面约束要求浮动机场的当量剩余浮力小于零, 即浮动机场(加上辅助拉 力结构)出现负浮力自然下沉。全部约束链缆 5,的张力之和等于浮动机场的当 量剩余浮力的绝对值。
所述水面浮子的总浮力大于浮动机场可能出现的最大负的当量剩余浮力 的绝对值, 以便保证破^ r条件下浮动机场不沉没。
链缆 5,的有效长度决定浮动机场的下潜深度。 各约束点链缆 5,有效长度 的相对关系决定浮动机场的姿态。
对于 "水面约束"式深度控制装置而言, 也是约束链缆的张力越大, 约束 条件越好, 所以也应该根据可能存在的干扰力的大小及对浮动机场稳定性要求 的高低来决定约束链缆的张力。
依托于水面浮子 9的浮动机场, 为了保持必要的稳定性, 当波浪较大时, 应设定允许的约束链缆张力的最小值,并随时调节水面浮子所连接链缆 5,的有 效长度, 使链缆张力不小于设定的最小值, 以便使各个水面浮子的实际吃水线 位置稳定, 至少要使链缆不松弛。 本实施例采用恒张力锚机。
本浮动机场的深度控制装置还可以采用 底-水面约束,, 式结构。
"水底 -水面约束"式深度控制装置, 见图 8。 它同时以若干个水底结构 8 及若干个水面结构 9作为依托。这时浮动机场的当量剩余浮力可以大于、等于、 小于零。
所述水面浮子的总浮力大于浮动机场可能出现的最大负的当量剩余浮力 的绝对值, 以便保证破 条件下浮动机场不沉没。
在上述三种约束方式中, 在外部约束拉力及辅助拉力结构中同时有浮子
(水面或水中)及重物(水底及水中 )的情形, 在浮动机场下潜及上浮运动过 程中, 可以令水中重物或水中浮子基本上稳定不动( 7底重物及水面浮子本来 就不动) , 不随浮动机场上下运动, 以便减小运动功率。
上文引入 "当量剩余浮力"概念是为了筒化多种关系。 将浮动机场的剩余 浮力用当量剩余浮力代替。 在不具有辅助拉力的情形, 浮动机场的当量剩余浮 力就等于浮动机场的剩余浮力。 这意味着, 在分析约束状态时, 将水中重物及 水中浮子视作浮动机场的一部分, 三者视为一体。 但是, 在分析浮动机场下潜 或上浮过程时, 可以有浮动机场作升降运动而水中重物及水中浮子不动的情 形, 就不能将三者视为一体了。
对于 "水底-水面约束" , 约束链缆 5'及 5的有效长度及张力的调节操作 比较复杂, 一种可以荐用的调节操作傲法是: Π根据需要的下潜深度决定链 缆 5的长度及链缆 5,的基本长度。 i i)通过调节浮子 9的压载水量来调节浮子 9 的总浮力; i i i)通过对链缆 5'有效长度在基本长度 J^ii上的微量调节来调节 浮子 9的吃水线,从而就可以调节浮子 9的总浮力中的剩余浮力与储备浮力的 分割, 并决定链缆 5,的张力。 iv)在上述 i i i)调节的同时调节浮动机场的剩余 浮力, 来调节链缆 5的张力。
以下对本实施例浮动机场作一些补充说明。
( 1 )变浮力装置中的可分离浮舱、 可分离重舱及可提起重物。
可分离浮舱与浮动机场分离后可保持在水面或水中。该浮抢分离后与浮动 机场之间可以用链缆连接, 所述链缆的一端具有链缆驱动机构, 用以改变链缆 的有效长度。 该可分离浮枪分离后可作为深度控制装置中的浮子, 将链缆张紧 传递浮力。 某些不宜下潜的设备或舱室可以安排在可分离浮舱中, 分离后留在 水面。 因此它可以作为深度控制装置中的水面浮子。 可以下潜的可分离浮舱分 离后也可以作为深度控制装置中的水中浮子。
此外,如果可分离浮舱需要在紧急事故中脱离事故浮动机场进行自救, 则 所述连接链缆应该具有快速脱离结构。
与上述情形相似,浮动机场的可分离重舱与浮动机场分离后可以沉于水中 或落于水底;该重枪分离后与浮动机场之间具有链缆连接;所述链缆的一端具 有链缆驱动机构, 用以改变链缆的有效长度, 该可分离重抢分离后可作为深度 控制装置中的水中重物或水底重物 , 也可以作为变浮力装置中的可提起重物。 因此, 本浮动机场的变浮力结构与深度控制装置的局部结构可以公用, 互 相替代。
( 2 ) 可分离结构的浮力归属。
可分离结构的浮力 (储备浮力、 剩余浮力、 总浮力)应按照不同场合下该 结构的作用来判断它在浮力计算中的归属。 例如, 水中重物与水中浮子, 当它 们基本上与浮动机场一齐作下潜上浮运动时, 应看作浮动机场的一部分, 它们 的正或负的浮力应计入浮动机场的浮力;否则不应计入浮动机场的浮力, 只能 视作 "当量" 浮力的組成部分。 又如, 在作业状态时沉于水底的重物, 应视作 深度控制装置的水底结构; 在下潜时重物被提起,提起后随浮动机场下潜上浮, 则应视作浮动机场变浮力装置的一部分, 因而影响浮动机场的变浮力装置的容 量; 提起后不随浮动机场下潜上浮, 则应视作深度控制装置的水中重物, 其浮 力只能计入 "当量" 浮力。
( 3 ) 浮子与重物公用驱动机构。
在深度控制装置有驱动机构位于浮动机场上的情形,可以安排一个浮子与 一个重物通过链缆与同一个驱动机构连接。 在浮动机场下潜及上浮运动过程 中, 令所述水中重物或水中浮子基本上稳定不动, 不随浮动机场上下运动, 可 以减小运动功率。
( 4 )控制***用的传感器。
所述深度控制装置可以具有测定所述链缆张力的传感器、测定所述链缆有 效长度的传感器、 测定所述链缆水平方向角及 /或俯仰方向角的传感器 (增加 的重复文字只是为了避免 "及 /或" 一词作用范围的歧义) , 其测量所得张力 信号、 长度信号、 方向角信号送入浮动机场的控制***。 这些信号可以用于确 定浮动机场***的下列有关参数: 浮动机场主体及可分离浮舱的吃水线位置、 储备浮力、 剩余浮力、 浮动机场主体的下潜深度、 下潜及上浮的速度、加速度、 摆动姿态、 波浪的周期、 海流流向、 流速等。
例如: 浮动机场质量较大, 而下潜后波浪作用力相当小, 因而下潜后只要 有一定的约束拉力就比较容易保持深度位置的基本稳定。但从图 6至 8可见水 面浮子 9不断受到波浪作用, 其链缆 5,的张力将不断变化, 时松时紧, 对浮动 机场的深度位置或多或少有一些扰动。因此水面浮子链缆 5,的有效长度应根据 情况之必要而不断调节。 调节的方法是利用传感器反馈链缆张力, 设定张力的 上下限及链缆 5,的有效长度变量的平均值, 利用自动控制***进行控制。
主体单元端部与相邻主体单元用多个螺栓、 卡接或销栓等可拆联接件 实现多点联接, 使主体单元之间为刚性联接, 联接点位于桁架结构的节点 附近。 两相邻主体单元之间设置三套牵引链缆及三套导引结构, 两主体单 元可以由牵引链缆从分离状态拉近; 由导引结构使各联接点对正, 以便联 接; 在拉近过程中, 各自的推进器产生反向推力, 防止两主体单元结构互 相碰撞。
在本实施例中 , 本浮动机场临界波浪浪高大于 1 0米, 波幅大于 5米, 所在水域最大波浪波幅 15米。 曱板 1距静态水平面约 1 0米, 大于临界波 长波幅, 作业时不会浪上曱板 1。 但曱板 1高度远小于最大波幅的 80% , 这 在现有水面定点作业浮动机场中是很难做到的。 因此可以使该浮动机场垂 荡小, 波峰局部超过浮体上边沿后该局部浮力不再增加。 同时, 所述浮动 机场纵向及横向任意垂直截面积不大于该截面结构轮廓包络内的面积的 5 0%。 使波浪诱导产生的附加弯矩、 剪力小。 在临界以下波浪环境中正常作 业时, 无论波浪方向如何, 浮动机场姿态都十分稳定。
进一步, 浮动机场在水面作业状态下, 其水线面积不超过浮动机场结 构垂直投影(在水平面上投影)轮廓的包络线范围总面积的约 15%。 不大的 水线面积分布在相当大水域面积中, 并且主要分布在水域面积的周边附近, 因而容易在设计上提高浮动机场的稳心。
本浮动机场在临界以上风浪环境中运用约束下潜, 减小风浪载荷的破 坏作用。 本浮动机场的结构强度能适应约束下潜状态下所在海域最大风浪。
由以上叙述可知, 本发明能够在所在海域最大风浪下保证其结构安全, 并能够減小其结构的重量使其结构轻量化, 可大幅度降低建造及使用成本。 本发明的浮动机场可迁移、 可控制下潜; 其变浮力装置及深度控制装置能 够保持浮动机场在作业及下潜状态下姿态的稳定性。 该浮动机场控制操作 筒单、 安全、 可靠; 在单位曱板面积载荷较小的情况下使其进一步轻量化, 并保持整体刚度的条件下进一步减少其浪阻、 风阻及航行阻力, 减少波浪 诱导的附加弯矩及附加剪力; 当遇到最大风暴时, 能够保证自身结构及锚 泊***的安全; 总之, 本发明从技术和经济方面使浮动机场大型化成为可
B匕。 实施例 1
本实施例与实施例 1的原理和结构基本相同,其区别在于如图 10所示, 所述的曱板 1下设有板式箱形结构 2,, 该板式箱形结构 2,分成上、 下两层, 上层 2 Γ上设有水密狳门, 构成可进水舱室; 下层 22,为具有固定浮力的定 浮力舱室。
本实施例中, 每个主体单元甲板长 300米, 宽 60米。 浮动机场主体单 元上部高 3米; 板式箱形结构由 8隱厚钢板构成, 采用日本 Ma t sub i shi重 工的美国专利 6089175的防风浪结构。 板式箱形结构 2,上层内设置重力注 排水舱及压载舱。
当波浪的波幅小于等于 3米时, 机场可以接受飞机起降作业。 当波高 达到 1 5米时, 浮动机场下潜。
本实施例的效果与实施例 1相同, 在此不再赘述。 实施例 3
本实施例与实施例 1的原理和结构基本相同, 其区别在于如图 11、 12 所示, 所述浮动机场具有多链缆重舱 10, 该重抢 10具有至少两根链缆 101、 102每根链缆与浮动机场主体单元上所设的一个可改变链缆长度的驱动机构 11 连接。
进一步在本实施例中, 所述多链缆重舱 10还可具有三根链缆 101、 102、 103 ,每根链缆与浮动机场主体上所设的一个可改变链缆长度的驱动机构 11连 接, 三个驱动机构 11在水平面内的投影位置不共线。
本实施例采用多链缆重舱 10或重物具有以下功能: (1 )作为变浮力 装置的可分离重舱或可提起重物; (2 )作为深度控制装置的水底重物; (3 ) 作为防漂移装置的锚或重物, 用于调节重力分布状态 (如改变三根链缆的 长度, 就可以调节重力分布状态) ; (5 )用于纠正或排除卡锚故障, 如果 出现卡锚情况时, 可通过拉动其它链缆, 以使锚或重舱、 重物等越过障碍 物, 如图 11所示, 重抢 1 0没有出现卡锚时, 链缆 1 01、 102处于正常的状 态, 当重舱 10被水底物体卡住时, 通过拉动链缆 102,使重舱 10能够越过 水底物体, 拉动后的链缆处于 101,、 102,的状态, 这样, 就可以纠正或排 除卡锚故障。 图中箭头方向为水流方向。
本实施例的其它效果与实施例 1相同, 在此不再赘述。 实施例 4
本实施例与实施例 1相比, 主体桁架结构相同, 重力注排水装置及压 载舱相同, 其区别在于如图 9 所示, 其深度控制装置及防漂移装置均为动 力式。
如图所示, 本实施例中, 每个主体单元设置四个推进器 6,, 均为空间 万向推进器, 当浮动机场下潜时, 利用推进器 6 '使浮动机场潜入水中; 上 浮时也由推进器 6,使浮动机场浮出水面。
该推进器, 除用于浮动机场下潜和上浮外, 还可以兼有航行推进器的 功能, 并可保持浮动机场不飘移。 因此, 该推进器可以兼有三种功能: 深 度控制、 航行、 防漂移。
上述实施例用以说明本发明的结构及原理, 并非用以限制本发明, 根 据本发明的原理还可以作出多种变换形式, 这些变换形式也都包含于本发 明的保护范围内。

Claims

权利要求书
1.一种可下潜的水上浮动机场, 至少包括可起降航空器的甲板以及甲 板下的主体结构, 其特征在于:还包括变浮力装置及深度控制装置, 所述变 浮力装置可使浮动机场的总浮力减小到不大于最大总浮力的约 10¾。
2.如权利要求 1 所述的可下潜的水上浮动机场, 其特征在于: 所述浮 动机场的结构强度符合条件 i)在水面正常作业状态下, 能适应的风浪级别 最高为所在海域的临界风浪, i i)在下潜状态下,能适应所在海域最大风浪, i i i)浮动机场的结构强度低于在水面抵御大风暴所要求的强度。
3.如权利要求 1或 1所述的可下潜的水上浮动机场, 其特征在于: 还 包括防漂移装置。
4.如权利要求 3 所述的可下潜的水上浮动机场, 其特征在于: 所述防 漂移装置是锚泊装置。
5.如权利要求 3 所述的可下潜的水上浮动机场, 其特征在于: 所述防 漂移装置是动力式防漂移装置, 包括水平全向或空间万向推力装置。
6.如权利要求 4 所述的可下潜的水上浮动机场, 其特征在于: 所述锚 泊装置设有链缆, 若干个所述链缆的拉力方向在水平面内的投影指向同一 方向。
7.如权利要求 4 所述的可下潜的水上浮动机场, 其特征在于: 所述锚 泊装置中的锚为无锚钩的块状物。
8.如权利要求 1至 7任一项所述的可下潜的水上浮动机场, 其特征在 于: 所述变浮力装置包括压载水舱, 和 /或可分离重舱, 和 /或可提起重物, 和 /或可分离浮舱, 和 /或重力注排水舱。
9.如权利要求 8 所述的可下潜的水上浮动机场, 其特征在于: 所述重 力注排水舱包括可进水舱室, 该可进水舱室整***于浮动机场作业状态吃 水线之上, 其舱底的高度位置在作业状态吃水线附近;所述可进水舱室有通 向外界的通海口、 通气口, 至少一个通海口的下边缘不高于舱底。
10.如权利要求 8所述的可下潜的水上浮动机场, 其特征在于: 所述的 可分离浮舱与浮动机场分离后可保持在水面或水中;该浮舱分离后与浮动 机场之间具有链缆连接;所述链缆的一端具有链缆驱动机构, 用以改变链缆 的有效长度。
11.如权利要求 8所述的可下潜的水上浮动机场, 其特征在于: 所述可 分离的重舱与浮动机场分离后沉于水中或落于水底;该重舱分离后与浮动 机场之间具有链缆连接;所述链缆的一端具有链缆驱动机构, 用以改变链缆 的有效长度。
12.如权利要求 11 所述的可下潜的水上浮动机场, 其特征在于: 所述 浮动机场具有多链缆重舱, 该重舱具有至少两根链缆, 每根链缆与浮动机 场上所设的一个可改变链缆长度的驱动机构连接。
13.如权利要求 11 所述的可下潜的水上浮动机场, 其特征在于: 所述 多链缆重舱具有三根链缆, 每根链缆与浮动机场上所设的一个可改变链缆 长度的驱动机构连接, 三个驱动机构在水平面内的投影位置不共线。
14.如权利要求 1或 2或 5所述的可下潜的水上浮动机场,其特征在于: 该深度控制装置为动力式深度控制装置, 包括具有垂直推力的推进器。
15.如权利要求 14 所述的可下潜的水上浮动机场, 其特征在于: 该具 有垂直推力的推进器为空间万向推进器。
16.如权利要求 1、 2、 3、 4、 6至 1 3所述的可下潜的水上浮动机场, 其特征在于: 该深度控制装置为约束式深度控制装置, 其设有外部拉力结 构, 对浮动机场施加外部拉力, 所述外部拉力结构至少一个、 至多全部为 有依托外部拉力结构, 其余为辅助外部拉力结构, 有依托外部拉力结构为 水底结构和 /或水面浮子, 辅助外部拉力结构为水中重物或水中浮子;所述 外部拉力结构与浮动机场之间用链缆连接, 该链缆连接有用于调节所述链 缆有效长度的驱动机构。
17.如权利要求 16 所述的可下潜的水上浮动机场, 其特征在于: 所述 有依托的外部拉力结构全部是水底结构。
18.如权利要求 16 所述的可下潜的水上浮动机场, 其特征在于: 所述 有依托的外部拉力结构全部是水面浮子。
19.如权利要求 16 所述的可下潜的水上浮动机场, 其特征在于: 所述 有依托的外部拉力结构为水底结构和水面浮子。
20.如权利要求 16至 19任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述深度控制装置至少有一个驱动机构位于所述浮动机场上;至少有 一个所述浮子与至少有一个所述重物通过链缆与所述浮动机场上同一个驱 动机构联接。
21.如权利要求 16至 2 0任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述深度控制装置具有测定所述链缆张力的传感器, 其测量所得的 张力信号送入浮动机场的控制***。
22.如权利要求 16至 2 1任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述深度控制装置具有测定所述链缆有效长度的传感器, 其测量所 得长度信号送入浮动机场的控制***。
23.如权利要求 16至 22任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述深度控制装置具有测定所述链缆的水平方向角及 /或俯仰方向角 的传感器, 其测量所得方向角信号送入浮动机场的控制***。
24.如权利要求 1至 2 3任一项所述的可下潜的水上浮动机场, 其特征 在于: 包括一个以上的相对独立单元, 每个所述相对独立单元都具有所述 曱板以及甲板下的主体结构、 变浮力装置、 及深度控制装置;相邻或相近的 相对独立单元直接或间接地用可拆联接联成整体。
25.如权利要求 1至 24任一项所述的可下潜的水上浮动机场, 其特征 在于: 该甲板为镂空结构; 镂空比大于等于 5 0%。
26.如权利要求 1至 25任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述主体结构为桁架结构。
27.如权利要求 26 所述的可下潜的水上浮动机场, 其特征在于: 该街 架结构的部分杆体设置为浮舱。
28.如权利要求 26 所述的可下潜的水上浮动机场, 其特征在于: 于该 桁架结构上设有复数浮舱。
29.如权利要求 26 所述的可下潜的水上浮动机场, 其特征在于: 于该 桁架结构上设有复数浮舱, 并且该桁架结构的部分杆体设置为浮舱。
30.如权利要求 1所述的可下潜的水上浮动机场, 其特征在于: 所述主 体结构为可变浮力的板式箱形结构。
31.如权利要求 30所述的可下潜的水上浮动机场, 其特征在于: 该板 式箱形结构分为上下两层, 上层设置重力注排水舱室, 下层设置不变浮力 舱室, 具有不变浮力。
32.如权利要求 1至 31任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述浮动机场的最大自重按单位甲板面积计算小于等于 1吨 /每平方 米。
33.如权利要求 1至 32任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述浮动机场的最大总体积按单位曱板面积计算小于等于 2立方未 / 每平方米。
34.如权利要求 1至 33任一项所述的可下潜的水上浮动机场, 其特征 在于: 所述浮动机场的作业储备浮力的折算水体积与吃水线上的水线面禾只 之商小于等于临界波长幅高。
35.如权利要求 1至 34任一项所述的可下潜的水上浮动机场, 其特征 在于: 浮动机场至少一个方向的跨度大于等于所在水域临界波浪最大波长。
36.如权利要求 1至 29、 32至 35任一项所述的可下潜的水上浮动机场, 其特征在于: 浮动机场在水面作业状态下, 其水线面积不超过浮动机场结 构垂直投影轮廓的包络线范围总面积的约 30%。
37.—种如权利要求 1至 36任一项所述的可下潜的水上浮动机场的降 低风浪载荷的方法, 其特征在于该方法包括:
A. 在临界以下风浪环境中, 使浮动机场保持作业需要的总浮力, 具有 正常的作业能力;
B. 在临界以上风浪环境中, 使浮动机场停止正常作业, 并放弃正常作 业能力, 所述停止正常作业并放弃正常作业能力包括:
a. 减小并调节浮动机场总浮力, 减小后的浮动机场的总浮力不大于最 大总浮力的约 1 0%;
b.使浮动机场下潜, 下潜的深度在可能发生的最大波浪的波谷以下, 根据浮动机场的设计强度及环境的风暴状态决定;
C.在浮动机场从下潜状态上浮恢复作业状态时, 恢复浮动机场作业状 态的总浮力。
38.如权利要求 37所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 浮动机场下潜深度不大于所在水域最大波浪的 1/2皮长。
39.如权利要求 37所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 所述 B、 C两款中所述减小、 恢复及调节浮动机场的^ ^浮力的 方法包括: 改变压载枪的充水量, 和 /或重力注排水方法, 和 /或改变可分 离浮抢与浮动机场主体的关系, 和 /或改变可分离重物与浮动机场主体的关 系。
40.如权利要求 39所述的可下潜的氷上浮动机场降低风浪载荷的方法, 其特征在于: 所述重力注排水方法包括:
a.开启整***于作业状态吃水线以上的可进水 室的通海 及通气 口, 在浮动机场下潜、 该通海口下边沿下潜到水面以下时, 舱外的水可以 在重力作用下进入该舱室, 以便减小所述浮动机场的总浮力;
b.在浮动机场上浮、 该可进水舱室舱室升出水面时, 舱内的 7 可以在 重力作用下流出该舱室; C. 在该舱室内的水被排出的条件下关闭该通海口及通气口, 以便恢复 所述浮动机场的总浮力。
41.如权利要求 39所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 所述改变可分离浮舱与浮动机场主体的关系包括:
a.将可分离浮舱与浮动机场牢固联接, 使其向浮动机场贡献总浮力; b.将可分离浮舱与浮动机场分离, 并使链缆松弛使其停止向浮动机场 贡献总浮力。
42.如权利要求 39所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 所述改变可分离重舱与浮动机场主体的关系包括:
a. 将可分离重物与浮动机场联接, 使其向浮动机场贡献负的总浮力; b. 将可分离浮舱与浮动机场分离并落于水底, 使其停止向浮动机场贡 献负的总浮力。
43.如权利要求 37至 42任一项所述的可下潜的氷上浮动机场降低风浪 载荷的方法, 其特征在于: 所述下潜的方法为动力控制下潜, 即, 減小浮 动机场的总浮力到接近于零, 并用具有垂直推力的推进器控制浮动机场下 潜深度并保持浮动机场的姿态稳定。
44.如权利要求 37至 42任一项所述的可下潜的氷上浮动机场降低风浪 载荷的方法, 其特征在于: 所述下潜的方法为约束控制下潜, 即在減小浮 动机场总浮力的条件下设置并调节浮动机场的深度约束。
45.如权利要求 44所述的可下潜的水上浮动机场降 4氏风浪载荷的方法, 其特征在于: 所述设置浮动机场的深度约束为利用外部拉力结构通过链缆 对浮动机场施加外部拉力; 所述外部拉力至少一个、 至多全部为有依托的 外部拉力, 其余为辅助外部拉力, 所述有依托的外部拉力为利用水底结构 和 /或水面浮子经过链缆施加于浮动机场的拉力, 所述辅助外部拉力为利用 水中重物或水中浮子经过链缆施加于浮动机场的拉力。
46.如权利要求 44、 45所述的可下潜的水上浮动机场降低风浪载荷的 方法, 其特征在于: 所述调节浮动机场的深度约束为调节链缆的有效长度、 浮动机场的当量剩余浮力及外部有依托拉力即约束拉力, 所述浮动机场的 当量剩余浮力为浮动机场的剩余浮力与辅助外部拉力之代数和。
47.如权利要求 46所述的可下潜的水上浮动机场降 风浪载荷的方法, 其特征在于: 所述有依托的外部拉力为利用水底绪构经过约束链缆施加于 浮动机场的拉力, 通过调节约束链缆的有效长度调节浮动机场约束点与链 缆所连接的水底结构之间的距离关系, 所述浮动机场的当量剩余浮力大于 令。
48.如权利要求 46所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 所述有依托的外部拉力为利用水面 子经过约束链缆施加于 浮动机场的拉力, 通过调节约束链缆的有效长度调节浮动机场约束点与链 缆所连接的水面浮子之间的距离关系, 所述浮动机场的当量剩余浮力小于 令。
49.如权利要求 46所述的可下潜的水上浮动机场降低风浪载荷的方法, 其特征在于: 至少有一个所述有依托的外部拉力为利用水底结构经过约束 链缆施加于浮动机场的拉力, 通过调节约束链缆的有效长度调节浮动机场 约束点与链缆所连接的水底结构之间的距离关系; 同时, 至少有一个所述 有依托的外部拉力为利用水面浮子经过约束链缆拖加于浮动机场的拉力, 通过调节约束链缆的有效长度调节浮动机场约束点、与链缆所连接的水面浮 子之间的距离关系; 所述浮动机场的当量剩余浮力可以大于零、 等于零或 小于零。
50.如权利要求 47、 48、 49 所述的可下潜的 上浮动机场降低风浪载 荷的方法, 其特征在于: 浮动机场下潜及上浮运动过程中, 令所述水中重 物或水中浮子基本上稳定不动, 不随浮动机场上 T运动, 以便减小运动功 率。
51.如权利要求 47、 48、 4 所述的可下潜的 7_ 上浮动机场降低风浪载 荷的方法, 其特征在于: 当波浪较大时, 通过随时调节水面浮子所连接链 缆的有效长度, 使链缆张力不小于设定的最小值, 以便使链缆不松弛。
52.如权利要求 47、 48、 49 所述的可下潜的水上浮动机场降低风浪载 荷的方法, 其特征在于: 当浮动机场下潜时, 令不宜下潜的浮舱与浮动机 场分离后保持在水面, 用链缆系留于浮动机场。
53.如权利要求 44至 49任一项所述的可下潜的水上浮动机场降低风浪 载荷的方法, 其特征在于: 所述调节浮动机场的当量剩余浮力还包括在风 暴环境中下潜状态下提高浮动机场姿态稳定的方法, 即, 依据风暴对姿态 稳定的干扰力的大小调节浮动机场的当量剩余浮力, 强化约束链缆的张力 对千扰力扰动的抑制。
PCT/CN2003/000894 2003-10-24 2003-10-24 Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent WO2005039969A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003280541A AU2003280541A1 (en) 2003-10-24 2003-10-24 A submersible floating seadrome and a method to decrease wind-wave load
PCT/CN2003/000894 WO2005039969A1 (fr) 2003-10-24 2003-10-24 Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2003/000894 WO2005039969A1 (fr) 2003-10-24 2003-10-24 Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent

Publications (1)

Publication Number Publication Date
WO2005039969A1 true WO2005039969A1 (fr) 2005-05-06

Family

ID=34468819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000894 WO2005039969A1 (fr) 2003-10-24 2003-10-24 Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent

Country Status (2)

Country Link
AU (1) AU2003280541A1 (zh)
WO (1) WO2005039969A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073813A1 (fr) * 2017-11-22 2019-05-24 Serge Rybak Plateforme flottante pour la reception d'aeronefs comprenant un dispositif de stabilisation
WO2021099093A1 (de) * 2019-11-18 2021-05-27 HERREWYN, Jean Michel Schwimmkörper und verfahren zur stabilisierung eines schwimmkörpers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775199B (zh) * 2019-10-10 2022-05-20 哈尔滨工程大学 一种可升沉的海流能潜标

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481899A (en) * 1981-10-07 1984-11-13 Ingenior F. Selmer A/S Floating platform structure
GB2200872A (en) * 1987-02-09 1988-08-17 Andrea Gillian Owens Submersible air base
US5799603A (en) * 1993-11-18 1998-09-01 Tellington; Wentworth J. Shock-absorbing system for floating platform
CN1269759A (zh) * 1997-09-08 2000-10-11 麦克德莫技术股份有限公司 可移动的海上基地
JP2001114189A (ja) * 1999-10-19 2001-04-24 Sumitomo Heavy Ind Ltd 浮体式海上プラットフォーム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481899A (en) * 1981-10-07 1984-11-13 Ingenior F. Selmer A/S Floating platform structure
GB2200872A (en) * 1987-02-09 1988-08-17 Andrea Gillian Owens Submersible air base
US5799603A (en) * 1993-11-18 1998-09-01 Tellington; Wentworth J. Shock-absorbing system for floating platform
CN1269759A (zh) * 1997-09-08 2000-10-11 麦克德莫技术股份有限公司 可移动的海上基地
JP2001114189A (ja) * 1999-10-19 2001-04-24 Sumitomo Heavy Ind Ltd 浮体式海上プラットフォーム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073813A1 (fr) * 2017-11-22 2019-05-24 Serge Rybak Plateforme flottante pour la reception d'aeronefs comprenant un dispositif de stabilisation
WO2019101892A1 (fr) * 2017-11-22 2019-05-31 Rybac Serge Plateforme flottante pour la réception d'aéronefs comprenant un dispositif de stabilisation
WO2021099093A1 (de) * 2019-11-18 2021-05-27 HERREWYN, Jean Michel Schwimmkörper und verfahren zur stabilisierung eines schwimmkörpers

Also Published As

Publication number Publication date
AU2003280541A1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR101592130B1 (ko) 부체식 풍력 발전 장치
CN102658858B (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
CN202728542U (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
US6688248B2 (en) Submersible catamaran
US9180941B1 (en) Method using a floatable offshore depot
EP3261918B1 (en) Method using a floatable offshore depot
WO2018210199A1 (zh) 高安全的大型水上浮式结构
WO2003091092A1 (fr) Procede de reduction de la puissance de la houle due au vent exercee sur une plateforme a site de fixation a la surface de l'eau et plateforme associee
CN108216502A (zh) 一种开放海岸的浮桥滚装运输***
US11052978B2 (en) Floating structure, and basic module of floating structure
WO2005039969A1 (fr) Hydrobase flottante submersible et procede pour reduire les sollicitations dues aux vagues produites par le vent
CN105947123A (zh) 一种甲板可潜至水下的双体半潜船
US3339511A (en) Marine platforms and sea stations
JP2022540094A (ja) 洋上発電システム
WO2003086852A1 (en) Submersible watercraft
CN2846285Y (zh) 移动码头
CN220114781U (zh) 环形浮箱半潜式旅游平台
CN104044707A (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
CN104002939A (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
RU2561491C1 (ru) Волностойкая морская грузоподъёмная платформа (вмгп)
US3316871A (en) Stabilized vessel for open sea operations
US11999448B2 (en) Water-buoyant structure
CN116714731A (zh) 环形浮箱半潜式旅游平台
CN104015891A (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台
CN104002940A (zh) 带高效消载止摇抗翻校正装置的航母、舰船、潜艇、海上平台

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP