WO2004112758A1 - Nanopartículas de ácido hialurónico - Google Patents

Nanopartículas de ácido hialurónico Download PDF

Info

Publication number
WO2004112758A1
WO2004112758A1 PCT/ES2004/000284 ES2004000284W WO2004112758A1 WO 2004112758 A1 WO2004112758 A1 WO 2004112758A1 ES 2004000284 W ES2004000284 W ES 2004000284W WO 2004112758 A1 WO2004112758 A1 WO 2004112758A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
hyaluronic acid
salt
cationic polymer
active ingredient
Prior art date
Application number
PCT/ES2004/000284
Other languages
English (en)
French (fr)
Inventor
María José ALONSO FERNÁNDEZ
María DE LA FUENTE FREIRE
María Begoña SEIJO REY
Original Assignee
Advanced In Vitro Cell Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced In Vitro Cell Technologies, S.L. filed Critical Advanced In Vitro Cell Technologies, S.L.
Priority to AT04736983T priority Critical patent/ATE546135T1/de
Priority to BRPI0411678-0A priority patent/BRPI0411678A/pt
Priority to JP2006516221A priority patent/JP4959326B2/ja
Priority to AU2004248936A priority patent/AU2004248936B2/en
Priority to US10/561,548 priority patent/US20060188578A1/en
Priority to CA2535364A priority patent/CA2535364C/en
Priority to EP04736983A priority patent/EP1652517B8/en
Publication of WO2004112758A1 publication Critical patent/WO2004112758A1/es
Priority to NO20056239A priority patent/NO20056239L/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to the development of a nanoparticular system for the administration of active macromolecules, both hydrophilic or hydrophobic, a composition comprising the same and a process for their preparation.
  • These nanoparticles comprise hyaluronic acid in the form of a salt, preferably the sodium salt of said polymer, and a positively charged polymer, preferably chitosan.
  • a polyanionic salt is incorporated into the formulation, preferably selected from the group of phosphates.
  • These nanoparticles can be used for the administration of active ingredients through different routes to the body.
  • the active ingredients can be molecules with therapeutic properties, vaccines or cosmetic ingredients.
  • nanoparticular systems it is also known that the ability of these systems to cross external barriers and access the interior of the organism depends on both their size and composition. Small particles will increase the degree of transport compared to those of a larger size; the nanoparticles, with a diameter of less than 1 ⁇ m, meet this criterion. Yes They are made from biocompatible and biodegradable polymers of natural origin, increasing the chances that they will be transported through the body's mucosa naturally, using known transport mechanisms and without altering the physiology of the epithelia. Another characteristic of nanoparticular systems is that they allow the controlled release of the active molecules that they incorporate and their orientation towards the target tissues.
  • Hyaluronic acid is a polymer of natural origin. More specifically, it is a glycosaminoglycan present in the extracellular matrix of connective tissues, such as the subcutaneous and cartilage, as well as in the vitreous body of the eyeball and in the synovial fluid of the articular cavities. It is a polymer for which there are receptors, with CD44 and RHAMM being predominant, which are located at the level of the cell surface in practically all the cells of the body, with the exception of red blood cells. The interaction of hyaluronic acid with these receptors allows the regulation of certain physiological processes such as cell mobility and proliferation.
  • hyaluronic acid is used in therapeutics, since it plays an important role in processes such as morphogenesis and embryonic development, cancer and inflammation. Furthermore, due to the mentioned properties, hyaluronic acid is used to promote the healing of epithelia. Proof of this biological activity are numerous works in which hyaluronic acid is included as an active biomolecule, including those described by Sand et al., Acta Ophthalmol. 67, 1989, 181-183, where hyaluronic acid is applied in the treatment of keratoconjunctivitis sicca and Nishida et al., Exp. Eye Res. 53, 1991, 753-758, where it is applied as a healing agent at the corneal level.
  • hyaluronium acid is presented as an active molecule and in others as a biomaterial-excipient-used in the development of drug delivery systems. His interest in this line is due to the fact that it is a biodegradable, biocompatible, non-immunogenic polymer and that it has mucoadhesive properties.
  • Patent US6383478 protects a delivery system consisting of microparticles, nanoparticles or films in which hyaluromic acid is incorporated as a possible active molecule to promote angiogenesis.
  • the polymeric film or the particular vehicle is made up of at least two anionic polymers (which does not include hyaluronic acid), a cationic polymer (which does not include chitosan, gelatin or collagen) and a low cation molecular weight.
  • WO0101964 refers to the formation of an ionic complex, between hydrophilic polymers of opposite charges, which will subsequently be precipitated giving rise to the formation of particles, in a size range between 5nm-lmm.
  • the cationic polymer can be a positively charged polymer, such as chitosan.
  • anionic polymers dextran sulfate and others are mentioned. Precipitation takes place upon desolvation of the complex, by the addition of desolvating agents, in this case zinc sulfate.
  • desolvating agents in this case zinc sulfate.
  • Hyaluronic acid can be one of the incorporated biomolecules, since the description includes the use of polysaccharides. Therefore, it is a system in which the active molecule (hyaluronic acid) is complexed with a cationic polymer (for example chitosan) and this complex is made to interact with another anionic polymer (dextran sulfate) and the whole precipitates by addition of zinc sulfate.
  • a cationic polymer for example chitosan
  • WO9704747 describes obtaining nanoparticles from mainly hydrophobic polymers, said nanoparticles being coated with an adhesive agent.
  • An example of an active molecule is a polysaccharic, which could be hyaluronic acid, although it is not explicitly mentioned.
  • said patent indicates chitosan as a possible material to form the nanoparticles, all the examples refer to the use of hydrophobic polymers, with organic solvents being necessary to form the nanoparticles.
  • EP0544259 refers to obtaining a hyaluronic acid complex with a high molecular weight material with amino groups such as chitosan. This complex is presented in different forms adopting that of the container in which it is obtained.
  • a composition which is a simple particulate complex formed by a positively charged aminopolysaccharide, this being chitosan, and a negatively charged polysaccharide, mentioning hyaluronic acid.
  • This particulate complex is formed according to an uncontrolled precipitation process. That is, no crosslinking agent is used to control particle formation, so the resulting particles are usually irregular and highly dispersed.
  • US4582865 protects the production of hyaluronic acid hydrogels or derivatives, alone or in combination with other hydrophilic polymers such as cellulose, collagen, xanthan, carboxymethyl cellulose, etc., obtained by reacting them with a divinyl sulfone WO0128602 describes obtaining an injectable formulation, in the form gel or paste, for the release of osteogenic proteins comprising benzyl ester derivatives of hyaluronic acid, an osteogenic protein and calcium triphosphate as a mineral component.
  • WO9009401 refers to hydrogels of hyaluronic acid or derivatives, obtained by crosslinking the polymer after reacting it with a phosphoric acid derivative, where phosphate ester binding bridges are established. These hydrogels are useful for application as reservoir implants of active ingredients, in the form of films, tubes, etc.
  • WO0230990 describes the production of a cross-linked amide derivative of hyaluronic acid, - based on a " reaction of this with a cationic polymer with two or more amino groups (among which is chitosan). To carry out this chemical reaction a carboxylic group activating agent is needed, using a carbodiimide
  • This hyaluromic acid amide derivative can be in the form of gels, membranes, beads ...
  • patent WO 89/03207 and the article by Benedetti et al., Journal of Controlled Relay 13, 33-41 (1990) present the obtaining of hyaluronic acid microspheres according to the solvent evaporation method.
  • document US6066340 refers to the possibility of obtaining said microspheres using solvent extraction techniques.
  • these documents do not mention the obtaining of nanoparticles since it is not possible to achieve the formation of nanoparticles according to the techniques referred to therein.
  • the combination of hyaluronic acid and chitosan in a microparticular system has been proposed in order to combine the mucoadhesive effect of hyaluronic acid with the absorption promoting effect of chitosan.
  • US20010533S9 proposes the combination, for nasal administration, of an antiviral and a bioadhesive material, being presented in the form of a solution or microspheres composed of different materials, including gelatin, chitosan or hyaluronic acid, but not their mixtures.
  • the microparticles are obtained by classical techniques such as solvent atomization and emulsion / evaporation. Once obtained, the microparticles are hardened by conventional chemical crosslinking procedures (dialdehydes and diketones).
  • US2002197328 also refers to microparticles, prepared from hyaluronic acid, by spraying. The difference from the previous ones is that the microparticles of high molecular weight hyaluronic acid (greater than 1,000,000 daltons) are protected. Although the claims state the obtaining of particles smaller than 1 micron, the truth is that the atomization process with which the referred particles are obtained does not allow obtaining nanoparticles.
  • US20030026844 has been aimed at protecting porous particles, with a size between 10nm-500 ⁇ m, that have functional ionic groups on their surface.
  • These particles are made up of one or more biopolymers (among which are certain polysaccharides such as hyaluronic acid, chitosan).
  • ionic groups are achieved thanks to the essential incorporation of ionizable surfactants.
  • solvent extraction or evaporation, atomization, coacervation, and use of supercritical fluids are used for the formation of these particles describe different methods, such as solvent extraction or evaporation, atomization, coacervation, and use of supercritical fluids.
  • WO-A-99/47130 refers to nanoparticles that have a polyelectrolytic complex, starting from a polycation (which can be chitosan) and a polyanion, as well as at least one bioactive ingredient, the nanoparticles being obtainable by further treating the complex of polyelectrolyte during or after its formation with at least one crosslinking agent (glyoxal, TSTU or EDAP).
  • Polyanionic sulfate is indicated as polyanion.
  • Document US6132750 refers to obtaining small-sized particles (micro and nanoparticles) that on their surface contain at least one protein (collagen, gelatin) and a polysaccharide (chitosan or glycosaminoglycans, among others). They are formed by interfacial crosslinking with a polyfunctional acylating agent that forms amide or ester linkages, and optionally anhydride linkages. It is intended that free groups remain on its surface capable of reacting with metal ions.
  • W09918934 refers to nanoparticles consisting of a core formed by a positively or negatively charged polymer and a shell formed by the combination of both. During their production they need the application of ultrasound. The stabilization of the particles is carried out by reacting them with a crosslinking agent (a dextran polyaldehyde, a photocrosslinking polymer or a glutamyl transferase).
  • a crosslinking agent a dextran polyaldehyde, a photocrosslinking polymer or a glutamyl transferase
  • the present invention relates to nanoparticles comprising hyaluronic acid in the form of a salt, preferably the sodium salt of said polymer, and a positively charged polymer of natural origin, preferably chitosan, so that it interacts electrostatically with the deprotonated form of hyaluronic acid.
  • a polyanionic salt capable of ionically crosslinking the cationic molecule is incorporated into the formulation causing its gelation, preferably selected from the group of phosphates.
  • a combination of hyaluronic acid and chitosan, in nanoparticular form, leads to obtaining a system with high potential in the field of therapeutics.
  • the present invention refers to the combination of two polymers, hyaluronic acid and chitosan, the chitosan being able to be replaced by other positively charged polymers of natural origin, such as collagen or gelatin, to obtain a nanoparticular system.
  • nanoparticle manufacturing procedure has been found that gives rise to the formation of nanoparticles in a controlled manner and that dispenses with the use of organic solvents as well as extreme conditions. Therefore, the integrity of the macromolecules incorporated into the system, susceptible of being degraded, is thus preserved.
  • a polyanionic salt is used, which will lead to the gelation of the positively charged polymer, simultaneously with the ionic interaction with hyaluronic acid. It is, therefore, a process of gelation / ionic interaction, which occurs in a controlled manner and will provide stability to the system, without the need to create covalent bonds between the components.
  • nanoparticles will have advantages over other larger systems (microparticles, pellets, closures, films, sponges ”) in terms of their biological applications.
  • the interaction of a drug delivery system with a biological surface is known to be highly conditioned by its size.
  • nanoparticles are capable of traversing epithelia and mucosa, acting as drug transport systems, while microparticles do not have this capacity.
  • the biodistribution of these systems is highly conditioned by size.
  • the knowledge generated in recent years in the world of colloidal drug delivery systems has made it possible to establish a clearly defined boundary between colloidal systems (less than one gallon) and microparticular systems.
  • the present invention describes the elaboration of nanoparticles constituted from a hyaluronic acid salt and another hydrophilic polymer capable of interacting with said glycosaminoglycan, said interaction being mediated by a polyanionic salt capable of crosslinking the system by establishing electrostatic interactions.
  • the method of obtaining the particles is a simple method that avoids the use of organic solvents as well as drastic conditions. Also, it is not necessary to carry out No type of chemical reaction to obtain them, since, as indicated, the crosslinking procedure is ionic.
  • the present invention relates to a process for making nanoparticles of hyaluronic acid with a diameter of less than 1 ⁇ m, which incorporate an active ingredient, regardless of the hydrophobic or hydrophilic nature thereof.
  • This procedure comprises the following steps: a) preparing an aqueous solution of a hyaluronic acid salt, preferably in a concentration of between 0.50 and 5 mg / mL; b) preparing an aqueous solution of a cationic polymer, preferably in a concentration of between 0.5 and 5 mg / mL; c) adding a polyanionic salt to the solution of the hyaluronic acid salt, preferably in a concentration of 0.25 and 1.00 mg / mL, d) mixing with stirring the solutions resulting from steps b) and c), spontaneously obtaining the nanoparticles.
  • the active ingredient or active ingredients are dissolved in one of solutions a), b) or c) or in the nanoparticle suspension obtained in step
  • the present invention refers to nanoparticles obtained according to the previous procedure, with certain characteristics as regards their composition, properties and morphology, comprising hyaluronic acid, a positively charged polymer, a polyanionic salt and a macromolecule.
  • the invention relates to a pharmaceutical or cosmetic composition
  • a pharmaceutical or cosmetic composition comprising the above nanoparticles, together with one or more pharmaceutically or cosmetically acceptable excipients, respectively.
  • the hyaluronic acid salt is the sodium salt thereof.
  • the positively charged polymer will be chitosan, and may also use collagen or gelatin.
  • the polyanionic salt will be selected from the group of phosphates, taking sodium tripolyphosphate as a model due to the high number of negative charges it presents in its structure.
  • the nanoparticles will have a relative proportion of the different ingredients hyaluronic acid: positive polymer: anionic salt that can vary between 1: 0.5: 0.1 and 1: 10: 2, and, preferably, between 1: 1: 0.15 and 1 : 10: 1,5.
  • the process for making the hyaluronic acid particles may include an additional lyophilization step, in order to preserve them during storage so that they retain their initial characteristics.
  • nanoparticles can be stored for long periods of time, and easily regenerated, if necessary, simply by adding an optimal volume of water.
  • the degree of crosslinking of the nanoparticles increases with this process, since an approximation takes place between the polymer chains, which " makes it easier to increase the degree of polymeric crosslinking, as well as to enhance the effect of polyanion as an agent crosslinker.
  • the present invention also relates to hyaluronic acid nanoparticles and a positive polymer in the form of lyophilisate, and to a pharmaceutical or cosmetic composition that includes them, as well as at least one pharmaceutically or cosmetically acceptable excipient.
  • nanoparticles described here have adequate stability both in suspension and in the form of lyophilisate, so they can be stored for long periods of time.
  • stability in certain biological fluids has also been studied, which guarantees that after its administration to organisms, human or animal, they will remain in nanoparticular form.
  • the nanoparticles that comprise hyaluronic acid in their composition have been shown to have excellent mucoadhesive properties due to their ability to interact with mucin (protein present in mucus), which makes them highly useful systems such as pharmaceutical and also cosmetics. They can be administered by different routes, and among them administration through mucosa is highly interesting, as well as its administration by intra-articular injection.
  • the active ingredient to be incorporated in the nanoparticles that comprise hyaluronic acid will be that with suitable pharmacotherapeutic properties according to the therapeutic application for which the formulation is intended.
  • the effect on the organism human or animal of the incorporated macromolecules will aim to cure, minimize or prevent a disease, after being administered.
  • the hyaluronic acid nanoparticles and a cationic polymer, such as chitosan are suitable for incorporating macromolecules regardless of the solubility characteristics thereof.
  • the association capacity will depend on the incorporated macromolecule, but in general terms it is high both for hydrophilic macromolecules and for those of marked hydrophobic character.
  • the active ingredient may be a drug, a vitamin, a vaccine, etc., or a cosmetic agent.
  • the macromolecule destined to be incorporated into the nanoparticles will be previously dissolved in one of the two aqueous solutions that are used in their production.
  • a variant has been introduced into the production technique according to which the active ingredient is first dissolved in a small volume of a mixture of water and a water-miscible organic solvent, preferably acetonitrile, preferably in an approximate ratio of 1: 1, which will then be added to one of the aqueous solutions mentioned above, so that the concentration by weight of the organic solvent in the final solution is always less than 10%.
  • a water-miscible organic solvent preferably acetonitrile
  • the nanoparticles described in the present invention incorporate more than one macromolecule, which may be dissolved in the same solution or both separately, depending on the nature of the macromolecules to be incorporated, avoiding any type of interaction, either chemical or physical, among them.
  • Hyaluronic acid nanoparticles have an average diameter of less than 1 ⁇ m, thus responding to the definition of nanoparticles, a colloidal system made up of polymers with a size of less than 1 ⁇ m.
  • the size of the same will vary depending on the amount of hyaluronic acid that constitutes them, as well as depending on the amount of polyanionic salt that is used in the crosslinking of the system, and the nature of the active ingredient they include.
  • the surface charge thereof can be varied depending on the different proportions of the constituent polymers thereof. More specifically, the surface charge of the nanoparticles varies in magnitude as a function of the amount of hyaluronic acid that constitutes them, and of the crosslinking polyanionic salt. Frequently it is interesting that the surface charge takes positive values, since the biological surfaces of the organism, and particularly the mucosa, are negatively charged. Therefore, the positive charge of the nanoparticles favors its interaction with them and, as a consequence, it will be favored that the macromolecules associated with the nanoparticular system act on the target tissues.
  • the amount of hyaluronic acid that is included in the formation of these nanoparticles is expected to modulate the release of the incorporated macromolecules, since the nanoparticles are vehicles with which it is intended to release active substances to human or animal organisms. in a controlled or delayed manner.
  • HANa Sodium salt of hyaluronic acid.
  • TPP Sodium Tripolyphosphate
  • FITC-BSA Fluorescein-labeled albumin.
  • CsA Cyclosporin A.
  • SLF Artificial tear fluid.
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure.
  • the hyaluronate and sodium tripolyphosphate solution was added to the chitosan solution, under magnetic stirring, which was maintained for half an hour, allowing the complete evolution of the system towards a stable nanoparticular form.
  • their average diameter was measured, as well as their surface electric charge (zeta potential) and the production yield was calculated (which is expressed as a percentage, and takes into account the weight of the nanoparticles with respect to the weight of the polymers. incorporated).
  • Table 1 and Figures 1,2,3 show the values that the aforementioned parameters take based on the proportion of HA-Na, Cs and TPP. Table 1:
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure.
  • a hydrophilic macromolecule was incorporated into its composition, selecting FITC-BSA for this purpose. It is a macromolecule negatively charged in both solutions due to their pH (3 in the case of chitosan solution, and between 8-8.5 in the case of hyaluronate solutions. and tripolyphosphate), so it was incorporated together with hyaluromic acid to avoid the appearance of interferences in the formation of the particles.
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure.
  • a hydrophobic macromolecule was incorporated, taking the cyclosporin A polypeptide, an immunomodulatory agent practically insoluble in water, especially at moderate temperatures.
  • the manufacturing process is already described in the present invention, with a modification, since the macromolecule is previously dissolved in an acetonitrile / water solution to 50% (V / V) under 'concentration lomg / mL.
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure. Particle size and surface charge measurements were carried out during a month, in order to obtain information about the evolution of the system over time. For this, different formulations with different amounts of hyaluronic acid were selected.
  • the theoretical HANa / CS / TPP ratios were: 1/2 / 0.4 (), 1 / 2.5 / 0.25 (•), l / 3 / 0.5 ( ⁇ ) 1/3 / 0.66 (-) and 1/10 / 1.5 ( TO).
  • the results presented in Figures 4 and 5 show the low variability of the parameters, size and zeta potential, during storage.
  • Hyaluronic acid, chitosan and TPP nanoparticles were prepared according to the present invention.
  • a hydrophobic macromolecule, CsA was incorporated in the manner described in Example 3. Subsequently, the diameter of the nanoparticles was measured over a week to check the stability of the system over time. It was also verified that the drug is incorporated into the particles and not precipitated in the form of nanocrystals, since no type of crystal growth was observed.
  • the theoretical charge of CsA was set at a percentage of 25% with respect to the mass of the nanoparticles.
  • the proportions of the particle-forming polymers and the crosslinking agent, HANa / CS / TPP, were 1/2 / 0.4 () and l / 3 / 0.5 ( «).
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure.
  • a HANa / CS / TPP ratio of 1/2 / 0.4 was used, and the effect that the type of cryoprotective agent used in the lyophilization procedure has on size was verified on these nanoparticles.
  • the influence of the nanoparticle concentration on the suspension to be lyophilized was also evaluated. After preliminary tests, two sugars, glucose and trehalose were selected as cryoprotective agents, and their concentration was kept constant, fixing it at 5% (w / V).
  • SLF which has a pH of 7.4 and a high concentration of ions.
  • the selected formulation was the same as in the previous example. Measurements of the mean diameter of the particles were made for 24 hours.
  • Hyaluronic acid nanoparticles were prepared in the form of the sodium salt, chitosan as the cationic polymer, and sodium tripolyphosphate as the crosslinking agent, according to the previously described procedure.
  • the formulation developed was that with a HANa / CS / TPP composition: 1/2 / 0.4, and it was lyophilized for 48h using 5% glucose as a cryoprotective agent. Subsequently, a mucoadhesion study was carried out, using SLF and a 4% mucin solution.
  • Hyaluronic acid is a polymer that has a viscoelastic behavior in the form of a gel. In the case of colloidal suspensions, the rheological behavior is more complex; viscosity is strongly influenced by the surface properties of the particles.
  • the mucoadhesiveness of the nanoparticles was determined from the following mixtures, prepared at 50%: nanoparticles / mucosa, nanoparticles / SLF and mucin / SLF. The existence of synergism regarding the first of the mixtures with respect to the sum of the other two, observing the values of the elastic modulus (G ') and viscous modulus (G "), is indicative that the system has mucoadhesive properties.
  • the formula Mathematics used was:

Abstract

Nanopartículas de ácido hialurónico para la administración de al menos un ingrediente activo, que comprenden ácido hialurónico en forma de sal, un polímero cargado positivamente, una sal polianiónica y al menos un ingrediente activo. Un procedimiento para la obtención de dichas nanopartículas que comprende las etapas de preparar una disolución acuosa de una sal de ácido hialurónico, preparar una disolución acuosa de un polímero catiónico, adicionar una sal polianiónica a la disolución de la sal de ácido hialurónico, mezclar bajo agitación las disoluciones anteriores, obteniéndose espontáneamente las nanopartículas, siendo disuelto el ingrediente activo en una de las disoluciones iniciales o en la suspensión de nanopartículas obtenidas para ser adsorbido sobre las nanopartículas. Composiciones farmacéuticas y cosméticas que comprenden las nanopartículas.

Description

NANOPARTTCULAS DE ACIDO HIALURONICO
CAMPO DE LA INVENCIÓN
La presente invención se refiere al desarrollo de un sistema nanoparticular para la administración de macromoléculas activas, tanto de carácter hidrofílico o hidrofóbico, una composición que comprende las mismas y un procedimiento para su elaboración. Estas nanopartículas comprenden ácido hialurónico en forma de sal, preferentemente la sal sódica de dicho polímero, y un polímero cargado positivamente, preferentemente quitosano Se incorpora a la formulación una sal polianiónica, de manera preferida seleccionada de entre el grupo de los fosfatos. Estas nanopartículas pueden ser utilizadas para la administración de ingredientes activos por diferentes vías al organismo. Los ingredientes activos pueden ser moléculas con propiedades terapéuticas, vacunas o ingredientes cosméticos.
ANTECEDENTES DE LA INVENCIÓN La administración de principios activos presenta numerosas dificultades, dependientes tanto de la vía de administración utilizada como de las características fisicoquímicas y morfológicas de las moléculas. Es conocido que los mayores inconvenientes se presentan a la hora de administrar moléculas activas inestables, hidrofílicas y de gran tamaño. Por una parte, el acceso de las macromoléculas hidrofílicas al interior del organismo se ve limitado por la baja permeabilidad que presentan las barreras biológicas. Asimismo, éstas son susceptibles de ser degradadas debido a los diferentes mecanismos de defensa que presentan tanto el organismo humano como animal. Estas dificultades han de ser solventadas para conseguir el acceso de la molécula activa a la diana terapéutica y, así, una terapia efectiva.
Ha sido demostrado que la incorporación de macromoléculas en sistemas de tamaño nanométrico facilita su penetración a través de las barreras epiteliales y las protege de ser degradadas. Así pues, el diseño de sistemas nanoparticulares capaces de interaccionar con dichas barreras se presenta como una estrategia prometedora para conseguir la penetración de principios activos a través de mucosas.
Es también conocido que la capacidad de estos sistemas para atravesar las barreras externas y acceder al interior del organismo depende tanto de su tamaño como de su composición. Partículas de pequeño tamaño aumentarán el grado de transporte respecto a las de un mayor tamaño; las nanopartículas, de diámetro inferior a 1 μm, responden a este criterio. Si se elaboran a partir de polímeros de origen natural, biocompatibles y biodegradables, incrementan las posibilidades de que éstas sean transportadas a través de las mucosas del organismo de forma natural, mediante mecanismos de transporte conocidos y sin alterar la fisiología de los epitelios. Otra característica de los sistemas nanoparticulares es que permiten la liberación controlada de las moléculas activas que incorporan y su orientación hacia los tejidos diana.
El ácido hialurónico es un polímero de origen natural. Más concretamente, es un glicosaminoglicano presente en la matriz extracelular de tejidos conectivos, como son el subcutáneo y el cartílago, así como en el cuerpo vitreo del globo ocular y en el fluido sinovial de las cavidades articulares. Se trata de un polímero para el cual existen receptores, siendo predominantes CD44 y RHAMM, los cuales se encuentran localizados a nivel de la superficie celular en prácticamente todas las células del organismo, a excepción de los glóbulos rojos. La interacción del ácido hialurónico con estos receptores permite la regulación de determinados procesos fisiológicos como son la movilidad y proliferación celular. Debido a estas propiedades, el ácido hialurónico es utilizado en terapéutica, ya que ejerce un papel importante en procesos como morfogénesis y desarrollo embrionario, cáncer e inflamación. Además, debido a las citadas propiedades, el ácido hialurónico es utilizado para la promover la cicatrización de epitelios. Prueba de esta actividad biológica son numerosos trabajos en los que se incluye al ácido hialurónico como biomolécula activa, pudiendo mencionar los descritos por Sand et al., Acta Ophthalmol. 67, 1989, 181-183, donde se aplica ácido hialurónico en el tratamiento de keratoconjuntivitis sicca y Nishida et al., Exp. Eye Res. 53, 1991, 753-758, donde se aplica como agente cicatrizante a nivel corneal.
El ácido hialurónico y sus derivados, bajo diferentes formas de presentación, han sido objeto de numerosas patentes. En algunos de estos documentos el ácido hialurónio se presenta como molécula activa y en otras como biomaterial -excipiente-empleado en el desarrollo de sistemas de liberación de fármacos. Su interés en esta línea se debe a que es un polímero biodegradable, biocompatible, no irnmunogé ico y que presenta propiedades mucoadhesivas.
De entre las patentes en las que se cita el ácido hialurónico como ejemplo de molécula activa cabe destacar los siguientes: El documento WO9606622 reivindica la utilización de ácido hialurónico y derivados, solo o en combinación con otro agente terapéutico, para modular la actividad celular de aquellos tejidos y células que en su superficie expresan receptores para el ácido hialurónico, y así tratar o prevenir procesos inflamatorios, fibrosis, o oncogénesis. La patente US6383478, protege un sistema de liberación consistente en micropartículas, nanopartícula o films en los que se incorpora el ácido hialurómco como posible molécula activa para promover la angiogénesis. El film polimérico o el vehículo particular están formados por al menos dos polímeros aniónicos (entre los que no figura el ácido hialurónico), un polímero catiónico (entre los que no figura ni el quitosano ni la gelatina ni el colágeno) y un catión de bajo peso molecular.
El documento WO0101964 se refiere a la formación de un complejo iónico, entre polímeros hidrofílicos de cargas opuestas, que posteriormente será precipitado dando lugar a la formación de partículas, en un rango de tamaño entre 5nm-lmm. El polímero catiónico puede ser un polímero con carga positiva, como por ejemplo el quitosano. Como polímeros aniónicos se mencionan sulfato de dextrano y otros. La precipitación tiene lugar al producirse la desolvatación del complejo, mediante la adición de agentes desolvatantes, en este caso sulfato de zinc. Estos complejos particulados incorporan una biomolécula que previamente es complejada con uno de los polímeros hidrofílicos que forman parte del vehículo. El ácido hialurónico puede ser una de las biomoléculas incorporadas, ya que la descripción incluye el uso de polisacáridos. Por tanto, se trata de un sistema en el que la molécula activa (ácido hialurónico) es complejada con un polímero catiónico (por ejemplo el quitosano) y este complejo se hace interaccionar con otro polímero aniónico (sulfato de dextrano) y el conjunto se precipita por adición de sulfato de zinc. El documento WO9704747 describe la obtención de nanopartículas a partir de polímeros principalmente hidrofóbicos, estando dichas nanopartículas recubiertas por un agente adhesivo. Como ejemplo de molécula activa se cita a un polisacárico, que podría ser el ácido hialurónico, aunque no se menciona explicitamente. Aunque dicha patente señala el quitosano como posible material para formar las nanopartículas, todos los ejemplos se refieren a la utilización de polímeros hidrofóbicos, siendo necesarios disolventes orgánicos para formar las nanopartículas.
El grupo de patentes en las que el ácido hialurónico es empleado como excipiente para el desarrollo de sistemas de liberación de principios activos, es también muy amplio. Dichos sistemas pueden presentarse en forma de simples complejos, hidrogeles, microsferas y nanopartículas.
Entre los numerosos sistemas que incorporan ácido hialurónico o derivados del mismo en su composición, cabe destacar los documentos siguientes: El documento EP0544259 se refiere a la obtención de un complejo de ácido hialurónico con un material de elevado peso molecular con grupos amino como puede ser el quitosano. Este complejo se presenta en diferentes formas adoptando la del recipiente en que es obtenido.
En el documento WO0182724 se reivindica una composición que es un simple complejo particulado formado un aminopolisacárido cargado positivamente, pudiendo este ser quitosano, y un polisacárido dotado de carga negativa, mencionando el ácido hialurónico. Este complejo particulado se forma según un proceso de precipitación no controlada. Es decir, no se hace uso de ningún agente reticulante que permita controlar la formación de las partículas, por lo que las partículas resultantes son normalmente irregulares y altamente dispersas. Además, existen una serie de patentes que protegen la obtención de hidrogeles con arreglo a diferentes procedimientos y composiciones. Entre estas cabe destacar:
US4582865 protege la obtención de hidrogeles de ácido hialurónico o derivados, sólo o en combinación con otros polímeros hidrofílicos como celulosa, colágeno, xantano, carboximetilcelulosa, etc., obtenidos al hacerlos reaccionar con una divinilsulfona WO0128602 describe la obtención de una formulación inyectable, en forma de gel o pasta, para la liberación de proteínas osteogénicas que comprende derivados benciléster de ácido hialurónico, una proteína osteogénica y trifosfato calcico como componente mineral.
El documento WO9009401 se refiere a hidrogeles de ácido hialurónico o derivados, obtenidos por reticulación del polímero tras hacerlo reaccionar con un derivado de ácido fosfórico, donde se establecen puentes de unión éster fosfato. Estos hidrogeles resultan útiles para su aplicación como implantes depósito de principios activo, en forma de films, tubos, etc.
El documento WO0230990 describe la producción de un derivado amida reticulado del ácido hialurónico,- basado en una "reacción de éste con un polímero catiónico con dos o más grupos amino (entre los cuales se encuentra el quitosano). Para llevar a cabo esta reacción química se necesita de un agente activador de grupos carboxílicos, utilizando una carbodiimida. Este derivado amida del ácido hialurómco se puede presentar en forma de geles, membranas, beads...
Asimismo, existen una serie de documentos que hacen referencia a la obtención de partículas (micropartículas o nanopartículas) en cuya composición entra el ácido hialurónico. Conviene hacer la distinción entre las microsferas o micropartículas cuyo tamaño de partícula está entre l-100μm y las nanosferas o nanopartículas cuyo tamaño es inferior a una miera. Aunque existen patentes que reivindican intervalos de tamaño de partícula muy amplios (desde nano a micro), lo cierto es que muchas de las tecnologías aplicables a la obtención de micropartículas no permiten la formación de nanopartículas.
Así, la patente WO 89/03207 y el artículo de Benedetti et al., Journal of Controlled Reléase 13, 33-41 (1990)presentan la obtención de microsferas de ácido hialurónico según el método de evaporación del disolvente. Más recientemente, el documento US6066340 se refiere a la posibilidad de obtener dichas microsferas haciendo uso de técnicas de extracción del disolvente. No obstante, dichos documentos no mencionan la obtención de nanopartículas ya que no es posible conseguir la formación de nanopartículas según las técnicas referidas en los mismos. Además, se ha propuesto la combinación de ácido hialurónico y quitosano en un sistema microparticular a fin de combinar el efecto mucoadhesivo del ácido hialurónico con el efecto promotor de la absorción del quitosano. El valor de esta combinación microparticular se refleja en los trabajos de Lim et al, J. Controll. Reí. 66, 2000, 281-292 y Lim et al, Int. J. Pharm. 23, 2002, 73-82. Al igual que en el documento precedente, estas micropartículas han sido preparadas por la técnica de emulsión-evaporación del solvente.
El documento US20010533S9 propone la combinación, para administración nasal, de un antiviral y un material bioadhesivo, presentándose en forma una solución o bien de microsferas compuestas de diferentes materiales, entre ellos gelatina, quitosano o ácido hialurónico, pero no sus mezclas. Las micropartículas son obtenidas por técnicas clásicas como la atomización y emulsión/evaporación del disolvente. Una vez obtenidas, las micropartículas son endurecidas por procedimientos convencionales de reticulación química (dialdehidos y dicetonas).
El documento US2002197328 se refiere igualmente a micropartículas, preparadas a partir del ácido hialurónico, por atomización. La diferencia con respecto a las anteriores es que se protegen las micropartículas de ácido hialurónico de alto peso molecular (superior a 1,000,000 daltons). Aunque en las reivindicaciones se señala la obtención de partículas de tamaño inferior a 1 miera, lo cierto es el que procedimiento de atomización con el que se obtienen las partículas referidas, no permite la obtención de nanopartículas.
Más recientemente, el documento US20030026844 ha ido encaminado a proteger partículas porosas, con un tamaño entre 10nm-500μm, que presentan grupos iónicos funcionales en su superficie. Estas partículas están constituidas por uno o más biopolímeros (entre los cuales se encuentran determinados polisacáridos como ácido hialurónico, quitosano). Según este documento, los grupos iónicos se consiguen gracias a la incorporación imprescindible de agentes tensoactivos ionizables. Para la formación de estas partículas describen diferentes métodos, como extracción o evaporación del solvente, atomización, coacervación y uso de fluidos supercríticos. A pesar de que en las reivindicaciones se señala la obtención de partículas de tamaño inferior a 1 miera, lo cierto es el que los procedimientos descritos en dicho documento no permiten la obtención de nanopartículas. El documento WO-A-99/47130 se refiere a nanopartículas que presentan un complejo polielectrolítico, a partir de un policatión (que puede ser quitosano) y un polianión, así como al menos un ingrediente bioactivo, siendo las nanopartículas obtenibles tratando adicionalmente el complejo de polielectrolito durante o después de su formación con al menos un agente reticulante (glioxal, TSTU o EDAP). Como polianión se indica el sulfato de polixilano. El documento US6132750 se refiere a la obtención de partículas de pequeño tamaño (micro y nanopartículas) que en su superficie contienen al menos una proteína (colágeno, gelatina) y un polisacárido (quitosano o glicosaminoglicanos, entre otros). Se forman por reticulación interfacial con un agente acilante polifuncional que forma enlaces amida o éster, y opcionalmente enlaces anhídridos. Se pretende que en su superficie queden grupos libres capaces de reaccionar con iones metálicos.
El documento W09918934 se refiere a un nanopartículas que constan de un núcleo formado por un polímero cargado positiva o negativamente y una cubierta formada por la combinación de ambos. Durante la producción de las mismas necesitan la aplicación de ultrasonidos. La estabilización de las partículas se realiza por reacción de las mismas con un agente reticulante (un polialdehido de dextrano, un polímero fotoreticulante o una glutamil transferasa).
RESUMEN DE LA INVENCIÓN
La presente invención se refiere a nanopartículas que comprenden ácido hialurónico en forma de sal, preferentemente la sal sódica de dicho polímero, y un polímero de origen natural cargado positivamente, preferentemente quitosano, de manera que interaccione electrostáticamente con la forma desprotonada del ácido hialurónico. Se incorpora a la formulación una sal polianiónica capaz de reticular iónicamente la molécula catiónica causando su gelificación, de manera preferida seleccionada de entre el grupo de los fosfatos. Una combinación entre ácido hialurónico y quitosano, en forma nanoparticular, conduce a la obtención de un sistema con elevado potencial en el campo de la terapéutica. Por otra parte, es conocida la posibilidad que existe de obtener complejos iónicos a partir de ambos polímeros, al presentar cargas opuestas. También es conocida la diferencia existente entre complejos y nanopartículas, ya que la ventaja de las nanopartículas con respecto a los complejos es un mayor control en cuanto a su composición y tamaño, así como una mayor estabilidad. Con el objeto de proporcionar estabilidad a los sistemas, se ha procedido a la reticulación de los mismos mediante la adición de sustancias que forman enlaces químicos entre los compuestos. Debido a todo lo mencionado anteriormente, la presente invención se refiere a la combinación de dos polímeros, ácido hialurónico y quitosano, pudiendo sustituirse el quitosano por otros polímeros de origen natural cargados positivamente, como colágeno o gelatina, para la obtención de un sistema nanoparticular. Asimismo se ha encontrado un procedimiento de elaboración de nanopartículas que da lugar a la formación de las mismas de manera controlada y que prescinde del uso de solventes orgánicos así como de condiciones extremas. Por tanto, se preserva así la integridad de las macromoléculas incorporadas al sistema, susceptibles de ser degradadas. Para lograr la formación de nanopartículas en un rango de tamaños deseado, se recurre a la adición de una sal polianiónica que conducirá a la gelificación del polímero de carga positiva, simultáneamente con la interacción iónica con el ácido hialurónico. Se trata, por tanto, de un proceso de gelificación/interacción iónica, que ocurre de manera controlada y proporcionará estabilidad al sistema, sin que exista la necesidad de creación de enlaces covalentes entre los componentes. Estas nanopartículas presentarán ventajas respecto a otros sistemas de mayor tamaño (micropartículas, pellets, vedas, films, esponjas...) en cuanto a sus aplicaciones biológicas. De hecho, se sabe que la interacción de un sistema de liberación de fármacos con una superficie biológica está altamente condicionada por su tamaño. Así, las nanopartículas son capaces de atravesar epitelios y mucosas actuando como sistemas de transporte de fármacos, mientras que las micropartículas no tienen esa capacidad. Igualmente, la biodistribución de estos sistemas está altamente condicionado por el tamaño. El conocimiento generado en los últimos años en el mundo de los sistemas coloidales de liberación de fármacos ha permitido fijar una frontera claramente definida entre los sistemas coloidales (inferiores a una miera) y los sistemas microparticulares.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe la elaboración de nanopartículas constituidas a partir de una sal del ácido hialurónico y de otro polímero hidrofílico capaz de interaccionar con el mencionado glicosaminoglicano, siendo mediada dicha interacción por una sal polianiónica capaz de reticular el sistema mediante el establecimiento de interacciones electrostáticas. El método de obtención de las partículas es un método sencillo que evita el uso de solventes orgánicos así como de condiciones drásticas. Además, tampoco es necesario llevar a cabo ningún tipo de reacción química para la obtención de las mismas, ya que según se ha indicado el procedimiento de reticulación es iónico.
Según un primer aspecto, la presente invención se refiere a un procedimiento para elaborar nanopartículas de ácido hialurónico con un diámetro inferior a 1 μm, que incorporan un ingrediente activo, independientemente de la naturaleza hidrofóbica o hidrofílica del mismo. Este procedimiento comprende las siguientes etapas: a) preparar una disolución acuosa de una sal de ácido hialurónico, de forma preferida en una concentración de entre 0,50 y 5 mg/mL; b) preparar una disolución acuosa de un polímero catiónico, de forma preferida en una concentración de entre 0,5 y 5 mg/mL; c) adicionar una sal polianiónica a la disolución de la sal de ácido hialurónico, de forma preferida en una concentración de 0,25 y 1,00 mg/mL, d) mezclar bajo agitación las disoluciones resultantes de las etapas b) y c), obteniéndose espontáneamente las nanopartículas. El ingrediente activo o los ingredientes activos son disueltos en una de las disoluciones a), b) o c) o bien en la suspensión de nanopartículas obtenida en la etapa d) para ser adsorbido sobre las nanopartículas.
Según un segundo aspecto, la presente invención se refiere a nanopartículas obtenidas según el procedimiento anterior, con unas características determinadas en cuanto a su composición, propiedades y morfología, comprendiendo ácido hialurónico, un polímero cargado positivamente, una sal polianiónica y una macromolécula.
Según un aspecto adicional, la invención se refiere a una composición farmacéutica o cosmética que comprende las nanopartículas anteriores, junto con uno o más excipientes farmacéuticamente o cosméticamente aceptables, respectivamente. Según una realización preferida, la sal del ácido hialurónico es la sal sódica del mismo.
De forma preferente, el polímero cargado positivamente será el quitosano, pudiendo utilizar también colágeno o gelatina.
También de forma preferente, la sal polianiónica será seleccionada de entre el grupo de los fosfatos, tomando como modelo el tripolifosfato sódico debido al elevado número de cargas negativas que presenta en su estructura.
La formación de las partículas se produce al mezclar volúmenes de las soluciones mencionadas en diferentes proporciones. De este modo, las nanopartículas tendrán una proporción relativa de los diferentes ingredientes ácido hialurónico:polímero positivo:sal aniónica que podrá variar entre 1 :0,5:0,1 y 1:10:2, y, de forma preferida, entre 1:1:0,15 y 1 :10:1,5.
El procedimiento de elaboración de las partículas de ácido hialurónico puede incluir una etapa adicional de liofilización, con el fin de preservarlas durante su almacenamiento para que conserven sus características iniciales. En forma liofilizada, las nanopartículas pueden ser almacenadas durante largos períodos de tiempo, y ser fácilmente regeneradas, en caso necesario, simplemente añadiendo un volumen de agua óptimo. Por otra parte, el grado de reticulación de las nanopartículas aumenta con este proceso, ya que tiene lugar una aproximación entre las cadenas poliméricas, lo " que facilita que aumente el grado de entrecruzamiento polimérico, así como que se potencie el efecto del polianión como agente reticulante.
Para la liofilización de las partículas únicamente es necesaria la adición de pequeñas cantidades de azúcares, ya que el ácido hialurónico ejerce un efecto como crioprotector. De acuerdo con esta etapa adicional, la presente invención se refiere también a nanopartículas de ácido hialurónico y un polímero positivo bajo forma de liofilizado, y a una composición farmacéutica o cosmética que las incluya, así como al menos un excipiente farmacéutica o cosméticamente aceptable.
Las nanopartículas aquí descritas presentan una estabilidad adecuada tanto en suspensión como bajo forma de liofilizado, por lo que pueden ser almacenadas durante largos períodos de tiempo. Por otra parte, también ha sido estudiada su estabilidad en determinados fluidos biológicos lo cual garantiza que tras su administración a organismos, humano o animal, permanecerán bajo forma nanoparticular.
Por otra parte, las nanopartículas que comprenden ácido hialurónico en su composición han demostrado poseer excelentes propiedades de mucoadhesividad debido a su capacidad de interacción con la mucina (proteína presence en el moco), lo cual las convierte en sistemas de gran utilidad como sistemas farmacéuticos y también cosméticos. Pueden ser administradas por diferentes vías, y entre ellas resulta de elevado interés la administración a través de mucosas, así como también su administración por inyección intra-articular. El ingrediente activo a incorporar en las nanopartículas que comprenden ácido hialurónico será aquel con propiedades farmacoterapéuticas adecuadas de acuerdo con la aplicación terapéutica a la cual sea destinada la formulación. El efecto sobre el organismo humano o animal de las macromoléculas incorporadas tendrá por objeto curar, minimizar o prevenir una enfermedad, tras ser administradas.
Según la presente invención, las nanopartículas de ácido hialurónico y un polímero catiónico, como el quitosano, resultan adecuadas para incorporar macromoléculas independientemente de las características de solubilidad de las mismas. La capacidad de asociación dependerá de la macromolécula incorporada, pero en términos generales resulta elevada tanto para macromoléculas hidrofílicas como para aquellas de marcado carácter hidrofóbico. El ingrediente activo podrá ser un fármaco, una vitamina, una vacuna, etc., o un agente cosmético. La macromolécula destinada a ser incorporada en las nanopartículas se disolverá previamente en una de las dos disoluciones acuosas que se emplean en la producción de las mismas. En el caso de macromoléculas de carácter lipofílico, se ha introducido una variante en la técnica de producción según la cual el ingrediente activo es disuelto en primer lugar en un pequeño volumen de una mezcla de agua y un disolvente orgánico miscible con agua, de manera preferida acetonitrilo, de forma preferida en una proporción aproximada de 1 :1, el cual seguidamente se adicionará a una de las disoluciones acuosas mencionadas con anterioridad, de forma que la concentración en peso del disolvente orgánico en la disolución final sea siempre menor al 10 %.
Cabe la posibilidad de que las nanopartículas descritas en la presente invención incorporen más de una macromolécula, que podrán estar disueltas en la misma disolución o en ambas por separado, dependiendo esto de la naturaleza de las macromoléculas a incorporar evitando que exista ningún tipo de interacción, bien sea química o física, entre ellas.
Las nanopartículas de ácido hialurónico presentan un diámetro medio inferior a lμm, respondiendo por tanto a la definición de nanopartículas, sistema coloidal constituido a base de polímeros con un tamaño inferior a lμm. El tamaño de las mismas variará en función de la cantidad de ácido hialurónico que las constituye, así como en función de la cantidad de sal polianiónica que se emplee en la reticulación del sistema, y de la naturaleza del principio activo que incluyen.
La carga superficial de las mismas puede variarse en función de las diferentes proporciones de los polímeros constitutivos de las mismas. Más concretamente, la carga superficial de las nanopartículas varía en magnitud en función de la cantidad de ácido hialurónico que las constituye, y de la sal polianiónica reticulante. Frecuentemente interesa que la carga superficial tome valores positivos, ya que las superficies biológicas del organismo, y particularmente las mucosas, se encuentran cargadas negativamente. Por tanto, la carga positiva de las nanopartículas favorece su interacción con las mismas y, como consecuencia, se verá favorecido el que las macromoléculas asociadas al sistema nanoparticular actúen sobre los tejidos diana.
La cantidad de ácido hialurónico que se incluye en la formación de estas nanopartículas, por otra parte, se espera que module la liberación de las macromoléculas incorporadas, ya que las nanopartículas son vehículos con los que se pretende liberar sustancias activas a los organismos humano o animal de manera controlada o retardada.
A continuación, para una mayor comprensión de las características y ventajas de la presente invención, se hará referencia a una serie de ejemplos que de forma explicativa completan la descripción anterior, sin suponer en modo alguno que ésta se vea limitada a los mismos.
EJEMPLOS
Durante la exposición de los siguientes ejemplos se emplearán una serie de abreviaturas: HANa = Sal sódica del ácido hialurónico.
CS = Quitosano.
TPP = Tripolifosfato sódico.
FITC-BSA = Albúmina marcada con fluoresceína.
CsA = Ciclosporina A. SLF = Fluido lacrimal artificial.
Ejemplo 1
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. Se adicionó la disolución de hialuronato y tripolifosfato sódico sobre la disolución de quitosano, bajo agitación magnética, la cual se mantuvo durante media hora, permitiendo la completa evolución del sistema hacia una forma nanoparticular estable. Una vez preparadas, se midió su diámetro medio, así como su carga eléctrica superficial (potencial zeta) y se calculó el rendimiento de producción (el cual se expresa en porcentaje, y tiene en cuenta el peso de las nanopartículas respecto al peso de los polímeros incorporados). En la tabla 1 y Figuras 1,2,3 se muestran los valores que toman los parámetros citados en función de la proporción de HA-Na, Cs y TPP. Tabla 1:
HA-Na/CS/TPP Diámetro medio Potencial ζ Rendimiento de
(p/p) (nm) (+mV) producción
1/1/0,05 769+36 +36.09+0.99 43+0,5
1/1/0,1 696+129 +34.50+0.28 53+3
1/1/0,15 585+9 +32.90+0.42 64+3
1/1/0,2 782+36 +31.90+0.42 75+1
1/2/0,1 550+42 +34.95+1.14 38±4
1/2/0,2 509+48 +32.63+0.68 55+1
1/2/0,3 584+26 +32.60+0.52 87+8
1/2/0,4 576+100 +31.66+0.78 82+14
1/3/0,15 19+2
539+52 +38.16+0.57
1/3/0,33 40+3
442+53 +32.63+0.71
1/3/0,5 58+5
420+16 +36.76+0.84
1/3/0,66 72+3
379+34 +35.33+1.93
1/10/0,5 634+55 +46.11+1.69 6+2
1/10/1 396+39 +44.78+1.55 15+1
1/10/1,5 312+29 +42.05+1.42 21+6
1/10/2 290±24 +41.59+2.22 34+12
Ejemplo 2
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. Se procedió a la incorporación de una macromolécula hidrofílica en su composición, seleccionando para tal fin FITC-BSA. Se trata de una macromolécula cargada negativamente en ambas disoluciones debido al pH de las mismas (3 en el caso de la disolución de quitosano, y entre 8-8.5 en el caso de las disoluciones de hialuronato y tripolifosfato), por lo que se incorporó junto al ácido hialurómco para evitar la aparición de interferencias en la formación de las partículas.
Se estableció una carga teórica de un 30% respecto al peso de los polímeros, y una vez preparadas según el procedimiento de la invención se determinó la eficacia de encapsulación (evaluando la proteína libre mediante espectroscopia visible, con λ=494nm). También se midió su diámetro medio. El rendimiento de producción fue determinado teniendo en cuenta el peso de los polímeros y de la proteína incorporada. Teniendo en cuenta éste último dato, fue posible determinar la capacidad de carga real de las partículas.
Tabla 2:
HANa CS/TPP Diámetro medio Eficacia de Rendimiento de Carga en FITC- encapsulación producción BSA
(p/p) (nm)
FITC-BSA (%) (%) (%)
71+2 33
1/2/0,4 745+58 99.75+0.06
70+3 34
1/3/0,5 518+30 99.79+0.03
1/10/1,5 321+24 99.10+0.04 36±4 63
Ejemplo 3
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. Se procedió a la incorporación de una macromolécula hidrofóbica, tomando para ello el polipéptido ciclosporina A, agente immunomodulador prácticamente insoluble en agua, sobre todo a temperaturas moderadas. El procedimiento de elaboración es el ya descrito en la presente invención, con una modificación, ya que la macromolécula es disuelta previamente en una solución acetonitrilo/agua al 50% (V/V), bajo ' una concentración de lOmg/mL. Posteriormente, un pequeño volumen de esta disolución, en torno a 200μL, es añadido a la solución de quitosano, e inmediatamente después se adiciona la disolución que contiene la sal de ácido hialurónico y el agente reticulante. La encapsulación del fármaco tiene lugar en foma de nanocristales, lo cual justifica que el proceso de adición de la segunda disolución sea rápido evitando que la macromolécla precipite y facilitando que se incorpore a las nanopartículas. Se establece una carga teórica de CsA del 25% respecto al peso de los polímeros, y una vez preparadas según el procedimiento de la invención se determinó la eficacia de encapsulación (evaluando el polipéptido libre mediante espectroscopia ultravioleta, con λ=200nm). También se midió su diámetro medio. El rendimiento de producción fue determinado teniendo en cuenta el peso de los polímeros y del polipéptido incorporado. Teniendo en cuenta éste último dato, fue posible determinar la capacidad de carga real de las partículas.
Tabla 3
HANa/CS/TPP Diámetro medio Eficacia de Rendimiento de Capacidad de encapsulación producción carga (p/p) (nm)
1/2/0,4 658+43 99.68+0.27 83+5 24 1/3/0,5 536+88 99.66+0.25 74+6 27 1/10/1,5 515+88 98.93+0.52 54+5 37
Ejemplo 4
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. Se realizaron medidas de tamaño de partícula y carga superficial, durante un mes, con el fin de obtener información acerca de la evolución del sistema con el tiempo. Para ello se seleccionaron distintas formulaciones con diferentes cantidades de ácido hialurónico. Las proporciones teóricas HANa/CS/TPP fueron: 1/2/0.4 ( ), 1/2.5/0.25 (•), l/3/0.5(β) 1/3/0.66 (— ) y 1/10/1.5 (A). Los resultados presentados en las figuras 4 y 5 muestran la escasa variabilidad de los parámetros, tamaño y potencial zeta, durante el almacenamiento.
Ejemplo 5
Se prepararon nanopartículas de ácido hialurónico, quitosano y TPP según la presente invención. Se incorporó una macromolécula hidrofóbica, CsA, de la manera descrita en el ejemplo 3. Posteriormente, se midió el diámetro de las nanopartículas a lo largo de una semana para comprobar la estabilidad del sistema con el tiempo. También se comprobó que el fármaco se encuentra incorporado en las partículas y no precipitado en forma de nanocristales, ya que no se observó ningún tipo de crecimiento cristalino. La carga teórica de CsA se fijó en un porcentaje del 25% respecto a la masa de las nanopartículas. Las proporciones de los polímeros formadores de las partículas y el agente reticulante, HANa/CS/TPP, fueron 1/2/0.4 ( ) y l/3/0.5(«).
Ejemplo 6
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. Se utilizó una proporción HANa/CS/TPP de 1/2/0.4, y sobre estas nanopartículas se comprobó el efecto que el tipo de agente criprotector utilizado en el procedimiento de liofilización tiene sobre el tamaño. Asimismo se evaluó la influencia de la concentración de nanopartículas en la suspensión a liofilizar. Tras ensayos preliminares, como agentes crioprotectores fueron seleccionados dos azúcares, glucosa y trehalosa, y su concentración se mantuvo constante, fijándola en un 5% (p/V).
Ejemplo 7
Las nanopartículas desarrolladas por el método de la presente invención, y liofilizadas en presencia de glucosa al 5%(p/V), fueron incubadas en SLF, el cual posee un pH de 7.4 y una elevada concentración de iones. La formulación seleccionada fue la misma que en el ejemplo anterior. Se realizaron medidas del diámetro medio de las partículas durante 24 horas.
Ejemplo 8
Se prepararon nanopartículas de ácido hialurónico en forma de sal sódica, quitosano como polímero catiónico, y tripolifosfato sódico como agente reticulante, según el procedimiento previamente descrito. La formulación desarrollada fue aquella con una composición HANa/CS/TPP: 1/2/0.4, y fue liofilizada durante 48h utilizando como agente crioprotector glucosa al 5%. Posteriormente, se realizó un estudio de mucoadhesión, utilizando para ello SLF y una solución de mucina al 4%.
El ácido hialurónico es un polímero que presenta un comportamiento viscoelástico en forma de gel. En el caso de suspensiones coloidales el comportamiento reológico resulta más complejo; la viscosidad se ve fuertemente influenciada por las propiedades superficiales de las partículas. La mucoadhesividad de las nanopartículas fue determinada a partir de las siguientes mezclas, preparadas al 50%: nanopartículas/mucüía, nanopartículas/SLF y mucina/SLF. La existencia de sinergismo en cuanto a la primera de las mezclas respecto al sumatorio de las otras dos, observando los valores del módulo elástico (G') y módulo viscoso (G"), es indicativa de que el sistema presenta propiedades mucoadhesivas. La fórmula matemática utilizada fue:
J Nanopartιculas-Muc¡na4%"V. J Nanopartículas-SLF τ J Mucina4%-SU7
Los resultados de módulo elástico y modulo viscoso aparecen en las figuras 10 y 11.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de nanopartículas para la administración de al menos un ingrediente activo, con un diámetro inferior a μm, caracterizado porque comprende las etapas de: a) preparar una disolución acuosa de una sal de ácido hialurónico; b) preparar una disolución acuosa de un polímero catiónico; c) adicionar una sal polianiónica a la disolución de la sal de ácido hialurónico; d) mezclar bajo agitación las disoluciones de las etapas b) y c), obteniéndose espontáneamente las nanopartículas, donde el ingrediente activo es disuelto en una de las disoluciones resultantes a), b) o c) o es disuelto en la suspensión de nanopartículas obtenida en la etapa d) para ser adsorbido sobre las nanopartículas.
2. Procedimiento según la reivindicación 1, caracterizado porque la disolución de la sal de ácido hialurónico se prepara en una concentración de entre 0,50 y 5 mg/rnL.
3. Procedimiento según cualquiera de las reivindicaciones 1 y 2, caracterizado porque la disolución de polímero catiónico se prepara en una concentración de entre 0,5 y 5 mg/mL.
4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, caracterizado porque la sal amónica es añadida en una concentración de 0,25 y 1,00 mg/mL.
5. Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el ingrediente activo es una macromolécula.
6. Procedimiento según la reivindicación 5, caracterizado porque, en caso de que la macromoléucla tenga un carácter lipofílico, dicha macromolécula es disuelta, antes de incorporarla a una de las disoluciones a) o b), en una mezcla de agua y de un disolvente orgánico miscible con agua, de forma que la concentración del disolvente orgánico en la disolución final sea menor de 10 % en peso.
7. Procedimiento según la reivindicación 6, caracterizado porque el disolvente orgánico es acetonitrilo.
8. Procedimiento según cualquiera de las reivindicaciones 1 a 7, caracterizado porque la sal de ácido hialurónico es la sal sódica.
9. Procedimiento según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el polímero catiómco es quitosano.
10. Procedimiento según cualquiera de las reivindicaciones 1 a 9, caracterizado porque el polímero catiónico es colágeno o gelatina.
11. Procedimiento según cualquiera de las reivindicaciones 1 a 10, caracterizado porque la sal polianiónica es tripolifosfato sódico.
12. Procedimiento según cualquiera de las reivindicaciones 1 a 11, caracterizado la proporción de ácido hialurónico:polímero catiónico:sal polianiónica en la disolución final está entre 1:0,5:0,1 y 1:10:2.
13. Procedimiento según cualquiera de las reivindicaciones 1 a 11, caracterizado porque la proporción de ácido hialurónico ¡polímero catiónico:sal aniónica está entre 1:1 :0,15 y 1:10:1.5.
14. Procedimiento según cualquiera de las reivindicaciones 1 a 13, caracterizado porque comprende una etapa adicional e), después de la etapa d), de liofilizar las nanopartículas obtenidas en presencia de cantidades reducidas de azúcares.
15. Procedimiento según la reivindicación 14, caracterizado porque comprende una etapa adicional f), después de la etapa e), de regenerar las nanopartículas liofilizadas.
16. Nanopartículas para la adrrrmistración de un ingrediente activo, obtenibles según cualquiera de las reivindicaciones 1 a 15.
17. Nanopartículas para la administración de un ingrediente activo, caracterizadas porque comprenden una sal de ácido hialurónico, un polímero catiónico, una sal polianiónica y un ingrediente activo.
18. Nanopartículas según la reivindicación 17, caracterizadas porque el ingrediente activo es una macromolécula.
19. Nanopartículas cualquiera de las reivindicaciones 17 y 18, caracterizadas porque la sal de ácido hialurónico es la sal sódica.
20. Nanopartículas según cualquiera de las reivindicaciones 17 a 19, caracterizadas porque el polímero catiónico es quitosano.
21. Nanopartículas según cualquiera de las reivindicaciones 17 a 19, caracterizadas porque el polímero catiónico es colágeno o gelatina.
22. Nanopartículas según cualquiera de las reivindicaciones 17 a 21, caracterizadas porque la sal polianiónica es tripolifosfato sódico.
23. Composición farmacéutica o cosmética caracterizada porque comprende nanopartículas según las reivindicaciones 16 a 22.
24. Uso de las nanopartículas según cualquiera de las reivindicaciones 16 a 22 en la preparación de una composición farmacéutica para administración sobre mucosas, tópica o parenteral.
PCT/ES2004/000284 2003-06-20 2004-06-17 Nanopartículas de ácido hialurónico WO2004112758A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT04736983T ATE546135T1 (de) 2003-06-20 2004-06-17 Hyaluronsäure-nanopartikel
BRPI0411678-0A BRPI0411678A (pt) 2003-06-20 2004-06-17 nanopartìculas de ácido hialurÈnico
JP2006516221A JP4959326B2 (ja) 2003-06-20 2004-06-17 ヒアルロン酸ナノ粒子
AU2004248936A AU2004248936B2 (en) 2003-06-20 2004-06-17 Hyaluronic acid nanoparticles
US10/561,548 US20060188578A1 (en) 2003-06-20 2004-06-17 Hyaluronic acid nanoparticles
CA2535364A CA2535364C (en) 2003-06-20 2004-06-17 Hyaluronic acid nanoparticles
EP04736983A EP1652517B8 (en) 2003-06-20 2004-06-17 Hyaluronic acid nanoparticles
NO20056239A NO20056239L (no) 2003-06-20 2005-12-29 Hyaluronsyre nanopartikler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200301456A ES2226567B1 (es) 2003-06-20 2003-06-20 Nanoparticulas de acido hialuronico.
ESP200301456 2003-06-20

Publications (1)

Publication Number Publication Date
WO2004112758A1 true WO2004112758A1 (es) 2004-12-29

Family

ID=33522604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000284 WO2004112758A1 (es) 2003-06-20 2004-06-17 Nanopartículas de ácido hialurónico

Country Status (11)

Country Link
US (1) US20060188578A1 (es)
EP (1) EP1652517B8 (es)
JP (1) JP4959326B2 (es)
KR (1) KR20060065585A (es)
AT (1) ATE546135T1 (es)
AU (1) AU2004248936B2 (es)
BR (1) BRPI0411678A (es)
CA (1) CA2535364C (es)
ES (1) ES2226567B1 (es)
NO (1) NO20056239L (es)
WO (1) WO2004112758A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371738B2 (en) 2005-04-15 2008-05-13 University Of South Florida Method of transdermal drug delivery using hyaluronic acid nanoparticles
WO2008100044A1 (en) * 2007-02-15 2008-08-21 Amorepacific Corporation Chemically cross-linked hyaluronic acid hydrogel nanoparticles and the method for preparing thereof
EP2266546A1 (en) 2009-06-08 2010-12-29 Advancell Advanced in Vitro Cell Technologies,S.A. Process for the preparation of colloidal systems for the delivery of active compounds
WO2012095543A1 (es) 2011-01-10 2012-07-19 Universidade De Santiago De Compostela Nanocápsulas con cubierta polimérica

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507543A4 (en) 2002-05-09 2006-07-26 Cambridgemed Inc PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF WOOD WITH BLOOD PLASMA OR SERUM
US7495052B2 (en) * 2004-09-15 2009-02-24 Bausch & Lomb Incorporated Method for the production of polymerized nanoparticles and microparticles by ternary agent concentration and temperature alteration induced immiscibility
US7282194B2 (en) * 2004-10-05 2007-10-16 Gp Medical, Inc. Nanoparticles for protein drug delivery
US8467868B1 (en) * 2005-04-26 2013-06-18 University Of South Florida Method of transdermal drug delivery
US7323184B2 (en) * 2005-08-22 2008-01-29 Healagenics, Inc. Compositions and methods for the treatment of wounds and the reduction of scar formation
EP1859792A1 (en) * 2006-05-24 2007-11-28 Advanced in Vitro Cell Technologies, S.L. Nanoparticles of chitosan and hyaluronan for the administration of active molecules
KR20090031861A (ko) * 2006-05-24 2009-03-30 어드밴스드 인 비트로 셀 테크놀로지스, 에스.에이 활성분자의 투여를 위한 키토산 및 하이알루로난 나노입자
KR100774925B1 (ko) * 2006-12-01 2007-11-08 주식회사유한양행 표적지향을 위한 나노입자 및 그의 제조방법
US20090087569A1 (en) * 2007-09-27 2009-04-02 Fenchem Enterprises Ltd. Methods for Preparing Highly Stable Hyaluronic Acid
WO2009091992A1 (en) * 2008-01-16 2009-07-23 Purdue Research Foundation Repairing damaged nervous system tissue with nanoparticles
ITMI20080284A1 (it) * 2008-02-22 2009-08-23 Indena Spa Agenti antitumorali a struttura benzofenantridinica e formulazioni che li contengono
KR101421049B1 (ko) * 2008-02-29 2014-07-21 (주)아모레퍼시픽 립-플럼핑 및 주름 개선 효과를 주는 입술용 화장료 조성물
KR101006755B1 (ko) * 2008-07-07 2011-01-10 한국과학기술원 활성산소를 감지하는 히알루론산 금 나노입자 및 이의제조방법
US20120107229A1 (en) * 2009-04-15 2012-05-03 Xuefei Huang Novel nano-probes for molecular imaging and targeted therapy of diseases
JP5804453B2 (ja) * 2009-05-14 2015-11-04 国立大学法人 東京大学 結晶性ポリオール微粒子及びその調製方法
KR101138258B1 (ko) * 2009-12-09 2012-04-24 (주)바이오제닉스 올리고머 복합체의 형성을 통한 난/불용성 활성물질의 가용화 방법
GB201017889D0 (en) * 2010-10-22 2010-12-01 Univ Dublin A polymeric nanoparticle
KR101294719B1 (ko) * 2010-12-31 2013-08-08 연세대학교 산학협력단 키토산-트리포스페이트/히알루론산을 이용한 신경손상 치료용 유전자 전달체
US20160193343A1 (en) * 2013-06-10 2016-07-07 Aihol Corporation Composition for use in treating and preventing inflammation related disorder
US9878000B2 (en) 2012-06-20 2018-01-30 University Of Waterloo Mucoadhesive nanoparticle composition comprising immunosuppresant and methods of use thereof
EP2863892B1 (en) 2012-06-20 2017-11-08 University Of Waterloo Mucoadhesive nanoparticle delivery system
JP6120397B2 (ja) * 2012-10-11 2017-04-26 ポーラ化成工業株式会社 キトサン及びヒアルロナンを含むナノ粒子の製造方法
WO2014064121A2 (en) * 2012-10-25 2014-05-01 Unilever Plc Improvements relating to surface treatment compositions
JP6162943B2 (ja) * 2012-11-02 2017-07-12 ポーラ化成工業株式会社 ヒアルロナンを含むナノ粒子
CZ304654B6 (cs) * 2012-11-27 2014-08-20 Contipro Biotech S.R.O. Nanomicelární kompozice na bázi C6-C18-acylovaného hyaluronanu, způsob přípravy C6-C18-acylovaného hyaluronanu, způsob přípravy nanomicelární kompozice a stabilizované nanomicelární kompozice a použití
CZ305153B6 (cs) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Konjugáty oligomeru kyseliny hyaluronové nebo její soli, způsob jejich přípravy a použití
CZ2014451A3 (cs) 2014-06-30 2016-01-13 Contipro Pharma A.S. Protinádorová kompozice na bázi kyseliny hyaluronové a anorganických nanočástic, způsob její přípravy a použití
WO2016066864A1 (es) 2014-10-30 2016-05-06 Innovaciones Fisicas Y Quimicas Sostenibles, S.L. Nanopartículas para la liberación controlada de ingredientes activos
CZ309295B6 (cs) 2015-03-09 2022-08-10 Contipro A.S. Samonosný, biodegradabilní film na bázi hydrofobizované kyseliny hyaluronové, způsob jeho přípravy a použití
CZ306479B6 (cs) 2015-06-15 2017-02-08 Contipro A.S. Způsob síťování polysacharidů s využitím fotolabilních chránicích skupin
CZ306662B6 (cs) 2015-06-26 2017-04-26 Contipro A.S. Deriváty sulfatovaných polysacharidů, způsob jejich přípravy, způsob jejich modifikace a použití
JP6602626B2 (ja) * 2015-09-28 2019-11-06 嘉寛 徳留 ヒアルロナンを含む複合粒子を含有する乳化組成物
CZ308106B6 (cs) 2016-06-27 2020-01-08 Contipro A.S. Nenasycené deriváty polysacharidů, způsob jejich přípravy a jejich použití
JP6901841B2 (ja) * 2016-10-17 2021-07-14 ポーラ化成工業株式会社 アニオン性ポリマー及びペプチドを含む複合粒子及びその製造方法
WO2018074237A1 (ja) * 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマー若しくはペプチドを含む複合粒子並びにその製造方法
JP6956478B2 (ja) * 2016-10-18 2021-11-02 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマーを含む複合粒子
CN107998103A (zh) * 2018-01-19 2018-05-08 近镒生技股份有限公司 载体结构、药物载体、其制造方法及其用途
CN111334468A (zh) * 2020-03-12 2020-06-26 李鑫荣 一种低分子量透明质酸片段诱发血红细胞钱串状聚集的应用
TW202245732A (zh) * 2021-02-10 2022-12-01 日商資生堂股份有限公司 化妝料
CN115645377A (zh) * 2022-11-04 2023-01-31 华东理工大学 包载挥发性精油的纳米级天然聚电解质凝聚体的制备方法
CN115814169A (zh) * 2022-12-15 2023-03-21 宁波旸曜医疗科技有限公司 一种鼻窦支架及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642329A1 (fr) * 1989-01-31 1990-08-03 Bioetica Sa Utilisation de solutions d'atelocollagene et de glycosaminoglycannes pour la fabrication de microcapsules, microcapsules ainsi realisees, procedes de fabrication de telles microcapsules et compositions cosmetiques ou pharmaceutiques ou alimentaires en contenant
ES2098188A1 (es) * 1995-05-11 1997-04-16 Univ Santiago Compostela Desarrollo de nanoparticulas a base de polimeros hidrofilicos.
ES2114502A1 (es) * 1996-07-29 1998-05-16 Univ Santiago Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas.
WO2004009060A1 (es) * 2002-07-19 2004-01-29 Universidade De Santiago De Compostela Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582865A (en) * 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
GB8601100D0 (en) * 1986-01-17 1986-02-19 Cosmas Damian Ltd Drug delivery system
CA2049103C (en) * 1990-09-06 1996-10-01 Royce Lewis Implant assist apparatus
IT1247472B (it) * 1991-05-31 1994-12-17 Fidia Spa Processo per la preparazione di microsfere contenenti componenti biologicamente attivi.
US5565215A (en) * 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US20010053359A1 (en) * 1994-07-26 2001-12-20 Peter Watts Drug delivery composition for the nasal administration of antiviral agents
ES2177592T3 (es) * 1995-07-05 2002-12-16 Europ Economic Community Nanoparticulas biocompatibles y biodegradables para la absorcion y administracion de medicamentos proteinicos.
US7276251B2 (en) * 1997-04-01 2007-10-02 Lg Life Sciences, Ltd., Inc. Sustained-release composition of drugs encapsulated in microparticles of hyaluronic acid
US6649192B2 (en) * 1996-07-29 2003-11-18 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms
US20030170313A1 (en) * 1997-10-09 2003-09-11 Ales Prokop Micro-particulate and nano-particulate polymeric delivery system
AU9799198A (en) * 1997-10-09 1999-05-03 Vanderbilt University Micro-particulate and nano-particulate polymeric delivery system
FR2777193B1 (fr) * 1998-04-14 2001-06-08 Coletica Particule a groupement hydroxamique chelatante d'ions metalliques et leur utilisation en cosmetique ou en pharmacie
FR2777895A1 (fr) * 1998-04-28 1999-10-29 Debio Rech Pharma Sa Polymere sequence non-reticule,procede pour sa preparation, et ses utilisations
US20030059465A1 (en) * 1998-05-11 2003-03-27 Unger Evan C. Stabilized nanoparticle formulations of camptotheca derivatives
IN191203B (es) * 1999-02-17 2003-10-04 Amarnath Prof Maitra
WO2000064954A1 (en) * 1999-04-22 2000-11-02 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US6743446B2 (en) * 1999-12-15 2004-06-01 The Ohio State University Research Foundation Methods for stabilizing biologically active agents encapsulated in biodegradable controlled-release polymers
US6465425B1 (en) * 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
US6749865B2 (en) * 2000-02-15 2004-06-15 Genzyme Corporation Modification of biopolymers for improved drug delivery
EP1187602A4 (en) * 2000-04-18 2004-09-15 Peptron Inc SUSTAINABLE RELEASE INJECTABLE PHARMACEUTICAL COMPOSITION AND METHODS OF PREPARING THE SAME
JP2006525333A (ja) * 2003-05-02 2006-11-09 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 高親水性で正電荷に帯電した薬剤を取り込んだ生分解性ナノ粒子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642329A1 (fr) * 1989-01-31 1990-08-03 Bioetica Sa Utilisation de solutions d'atelocollagene et de glycosaminoglycannes pour la fabrication de microcapsules, microcapsules ainsi realisees, procedes de fabrication de telles microcapsules et compositions cosmetiques ou pharmaceutiques ou alimentaires en contenant
ES2098188A1 (es) * 1995-05-11 1997-04-16 Univ Santiago Compostela Desarrollo de nanoparticulas a base de polimeros hidrofilicos.
ES2114502A1 (es) * 1996-07-29 1998-05-16 Univ Santiago Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas.
WO2004009060A1 (es) * 2002-07-19 2004-01-29 Universidade De Santiago De Compostela Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIM S.T. ET AL.: "Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan", J. CONTROL. REL., vol. 66, no. 2-3, May 2000 (2000-05-01), pages 281 - 292, XP002291345 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371738B2 (en) 2005-04-15 2008-05-13 University Of South Florida Method of transdermal drug delivery using hyaluronic acid nanoparticles
WO2008100044A1 (en) * 2007-02-15 2008-08-21 Amorepacific Corporation Chemically cross-linked hyaluronic acid hydrogel nanoparticles and the method for preparing thereof
EP2266546A1 (en) 2009-06-08 2010-12-29 Advancell Advanced in Vitro Cell Technologies,S.A. Process for the preparation of colloidal systems for the delivery of active compounds
WO2012095543A1 (es) 2011-01-10 2012-07-19 Universidade De Santiago De Compostela Nanocápsulas con cubierta polimérica

Also Published As

Publication number Publication date
EP1652517B8 (en) 2012-04-11
ATE546135T1 (de) 2012-03-15
CA2535364C (en) 2011-11-29
ES2226567B1 (es) 2006-07-01
JP2007520424A (ja) 2007-07-26
CA2535364A1 (en) 2004-12-29
AU2004248936A1 (en) 2004-12-29
AU2004248936B2 (en) 2009-05-07
US20060188578A1 (en) 2006-08-24
EP1652517B1 (en) 2012-02-22
JP4959326B2 (ja) 2012-06-20
EP1652517A1 (en) 2006-05-03
BRPI0411678A (pt) 2006-08-29
ES2226567A1 (es) 2005-03-16
NO20056239L (no) 2005-12-29
KR20060065585A (ko) 2006-06-14

Similar Documents

Publication Publication Date Title
EP1652517B8 (en) Hyaluronic acid nanoparticles
ES2277743B2 (es) Nanoparticulas que comprenden quitosano y ciclodextrina.
ES2313346T3 (es) Composicion de gel de polimeros cargados.
Sailaja et al. Different techniques used for the preparation of nanoparticles using natural polymers and their application
WO2010049562A1 (es) Sistemas nanoparticulares elaborados a base de polímeros aniónicos.
ES2333659T3 (es) Nanoparticulas pegiladas.
ES2607802T3 (es) Partículas lipidadas de glicosaminoglicano y su uso en el suministro de fármacos y genes para diagnóstico y terapia
ES2204837T3 (es) Metodo para la preparacion de microesferas que contienen sistemas coloidales.
EP1774971A1 (en) Chitosan and heparin nanoparticles
JP2009537604A (ja) 活性分子の投与のためのキトサンおよびヒアルロナンのナノ粒子
ES2279172T3 (es) Nanoparticulas para la administracion de ingredientes activos, procedimiento para la elaboracion de dichas particulas y composiciones que las contienen.
WO1998004244A1 (es) Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
EP1859792A1 (en) Nanoparticles of chitosan and hyaluronan for the administration of active molecules
Zambito Nanoparticles based on chitosan derivatives
MXPA05013920A (es) Nanoparticulas de acido hialuronico
El-Houssiny et al. A newly developed transdermal treatment of osteoarthritis using gelatin nanoparticles
Badadare et al. Overview on intranasal mucoadhesive drug delivery
ES2342588B2 (es) Sistemas nanoparticulares elaborados a base de polimeros anionicos.
Necolau et al. Plant polysaccharides for nasal drug delivery
BR102016024501A2 (pt) Processo de produção de nanopartículas poliméricas contendo o composto disseleneto de difenila pelo método de dessolvatação
Yi NANOGELS AS HIGHLY EFFECTIVE NANOCARRIERS: A MINI
Mohite et al. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/013920

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2535364

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006516221

Country of ref document: JP

Ref document number: 1020057024506

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004248936

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004248936

Country of ref document: AU

Date of ref document: 20040617

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004248936

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004736983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006188578

Country of ref document: US

Ref document number: 10561548

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004736983

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 1020057024506

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10561548

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0411678

Country of ref document: BR