WO2012095543A1 - Nanocápsulas con cubierta polimérica - Google Patents

Nanocápsulas con cubierta polimérica Download PDF

Info

Publication number
WO2012095543A1
WO2012095543A1 PCT/ES2012/000008 ES2012000008W WO2012095543A1 WO 2012095543 A1 WO2012095543 A1 WO 2012095543A1 ES 2012000008 W ES2012000008 W ES 2012000008W WO 2012095543 A1 WO2012095543 A1 WO 2012095543A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
nanocapsules
pga
peg
polyglutamic
Prior art date
Application number
PCT/ES2012/000008
Other languages
English (en)
French (fr)
Inventor
María José Alonso Fernández
Dolores TORRES LÓPEZ
Gustavo RIVERA RODRÍGUEZ
Felipe Andrés OYARZÚN AMPUERO
Giovanna LOLLO
Teresa GONZALO LÁZARO
Marcos GARCÍA FUENTES
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to EP12734760.7A priority Critical patent/EP2664324B1/en
Priority to BR112013017750A priority patent/BR112013017750A8/pt
Priority to CN201280012254.4A priority patent/CN103596558A/zh
Priority to US13/979,092 priority patent/US9415019B2/en
Publication of WO2012095543A1 publication Critical patent/WO2012095543A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery

Definitions

  • the present invention relates to a system for the administration of active ingredients comprising nanocapsules of nanometric size, as well as to pharmaceutical compositions comprising them and processes for their preparation.
  • Polyglutamic acid is a hydrophilic and biodegradable polymer consisting of glutamic acid units with a negative charge. Due to biological properties such as its non-toxicity, its non-immunogenicity and its biocompatibility, this polymer has become considered an important biomaterial for the development of new formulations for drug release (Buescher & Margaritis, Crit RevBiotech 2007).
  • polyglutamic acid is widely reported for the formation of drug-polymer complexes of interest in the treatment of cancer, some formulations being found in advanced stages in their development.
  • Xyotax a formulation consisting of conjugates between poly-L-glutamic acid and paclitaxel cytostatic agent, which is currently in phase 3 of clinical experimentation.
  • This polymer has also been used in the design of formulations for the administration of other antitumor agents such as doxorubicin (Shih et al., 2004).
  • nanoparticles Another type of release system developed from polyglutamic acid is nanoparticles, as described in US 2005238678 and US 6326511.
  • polyglutamic acid has also been conjugated with polyethylene glycol (PEG) in order to achieve surface modifications of nanometric systems, trying to provide greater stability to colloidal systems.
  • PEG polyethylene glycol
  • Said modification with PEG also manages to minimize the recognition by proteins and cells of the endothelial reticulum system towards nanosystems, thus increasing their circulation time.
  • Hyaluronic acid is a polymer of natural origin. More specifically, it is a glycosaminoglycan present in the extracellular matrix of connective tissues such as subcutaneous and cartilaginous; It is also found in the vitreous body of the eyeball and synovial fluid of the joint cavities. It is a polymer capable of interacting with the endogenous CD44 and RHAMM receptors that are located at the level of the cell surface in virtually all body cells, with the exception of red blood cells. The interaction of hyaluronic acid with these receptors allows the regulation of certain physiological processes such as mobility and cell proliferation.
  • hyaluronic acid is used in therapeutics, as it exerts an important role in processes such as embryonic morphogenesis and development, cancer and inflammation.
  • hyaluronic acid is used to promote epithelial healing. Proof of this biological activity are numerous works in which hyaluronic acid is included as an active biomolecule, mentioning those described by Sand et al. (Acta Ophthalmol. 67, 1989, 181-183), where hyaluronic acid is applied in the treatment of keratoconjunctivitis sicca, that of Nishida et al. (Exp. Eye Res.
  • hyaluronic acid has also been the subject of numerous studies in which it is proposed to be used as a biomaterial-excipient used in the development of drug delivery systems. His interest in this line is due to the fact that it is a biodegradable, biocompatible, non-immunogenic, mucoadhesive polymer with selective affinity for receptors such as CD44.
  • the background focused on obtaining nanometric formulations using hyaluronic acid as a biomaterial-excipient the following can be mentioned, among many others:
  • Patent application US 2003/0166602 Al which discloses the elaboration of different formulations with a lipid modified with hyaluronic acid and that can house active ingredients with anticancer activity or other therapeutic or diagnostic agents.
  • Patent application WO 2004/112758 Al which describes the preparation in aqueous medium of nanoparticles containing hyaluronic acid and which are formed by ionic interaction between it, other complementary charge polymers and in the presence of an ionic type crosslinker.
  • L-asparagine is described in the literature as an essential amino acid for the growth and development of all types of cells, since it is directly involved in the synthesis of proteins and DNA and the main source of this amino acid is in the diet .
  • L-asparagine is currently one of the most and best used strategies for the treatment of cancer, a formulation that includes the enzyme necessary for its degradation being commercialized.
  • This formulation is called Oncaspar ® or Elspar ® , the enzyme responsible for this degradation being L-asparaginase.
  • Cancer cells in advanced stages of metastasis, especially in leukemia have a high affinity towards asparagine due to a high surface recognition, due to their rapid reproduction. Cancer cells cannot effectively meet their basic needs of this amino acid, which in many cases results in the migration of these cells in search of higher concentrations of this amino acid towards the tumor periphery. Such recognition and need has recently been used as an alternative for the treatment of many cancers in stages of metastasis.
  • nanometric systems such as polymer micelles or liposomes coated with asparagine-based polymer derivatives.
  • nanocapsular system easily obtainable by different experimental procedures, wherein the nanocapsules comprise a polymer, an oil and a cationic surfactant.
  • Such nanocapsule systems allow an effective association of lipophilic as well as hydrophilic active ingredients.
  • the reduced size of these nanocapsules (diameter less than 1 ⁇ ) allows their passage through biological barriers and that are internalized by the cells.
  • the presence of a polymeric cover in addition to conferring greater stability to the nanocapsules, provides different beneficial characteristics depending on each type of cover in particular.
  • the invention is directed to a system for the administration of active ingredients comprising nanocapsules comprising an oil, a cationic surfactant, a polymer selected from the group consisting of polyglutamic acid (PGA), polyglutamic acid-polyethylene glycol (PGA-PEG), hyaluronic acid (HA) and polyasparagine (PAsn) or a combination thereof, and optionally an active ingredient,
  • PGA polyglutamic acid
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • HA hyaluronic acid
  • PAsn polyasparagine
  • nanocapsule system includes polyglutamic acid or polyglutamic acid-polyethylene glycol (PGA-PEG), then the active ingredient is not a didemnin or a tamandarin.
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • nanocapsules of the invention may also optionally comprise other components such as a water soluble surfactant, an oil soluble surfactant or both.
  • the invention in another aspect, relates to a pharmaceutical composition comprising the system defined above.
  • the invention relates to the use of said system in the preparation of a medicament.
  • said use is related to cancer treatment.
  • the invention is directed to a process for obtaining the system defined above (referred to in the examples as a one-stage solvent diffusion process), comprising: a) preparing an aqueous solution comprising a polymer selected from the group consisting of polyglutamic acid (PGA), polyglutamic acid-polyethylene glycol (PGA-PEG), hyaluronic acid (HA) and polyasparagine (PAsn) or a combination thereof, and optionally a water soluble surfactant;
  • PGA polyglutamic acid
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • HA hyaluronic acid
  • PAsn polyasparagine
  • encapsulation of a lipophilic (hydrophobic) or amphiphilic active ingredient is carried out by adding it to step b).
  • the active ingredients of hydrophilic nature can be added in step a) of the process or in a stage after step d) by an incubation process.
  • the invention is directed to a process for obtaining the systems defined above, which comprises coating a nanoemulsion, consisting of at least one oil, a cationic surfactant, optionally an oil soluble surfactant, and an aqueous phase which optionally it comprises a water-soluble surfactant, with a polymer selected from the group consisting of polyglutamic acid (PGA), polyglutamic acid-polyethylene glycol (PGA-PEG), hyaluronic acid (HA) and polyasparagine (PAsn) or a combination thereof.
  • PGA polyglutamic acid
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • HA hyaluronic acid
  • PAsn polyasparagine
  • the above procedure further comprises adding an active ingredient.
  • the polymer is polyglutamic acid or polyglutamic acid-polyethylene glycol (PGA-PEG)
  • the active ingredient is not a didemnin or a tamandarin.
  • said active ingredient in case the active ingredient has a lipophilic character, said active ingredient is added in the nanoemulsion formation process, preferably dissolved in ethanol.
  • Figure 1 Evolution of particle size and polydispersion of nanocapsules of polyglutamic (1.a) and polyglutamic-polyethylene glycol (l.b) at 37 ° C for a period of 48 h.
  • Figure 2 Particle size of nanocapsules of polyglutamic-polyethylene glycol (2.a) and polyglutamic (2.b), after being lyophilized at different concentrations (0.025-1% w / v) with the trehalose cryoprotectant (5 and 10% p / v).
  • Figure 3 TEM images of hyaluronic acid nanocapsules prepared with the cationic surfactant benzalkonium chloride.
  • DCX Docetaxel release profile obtained from hyaluronic acid nanocapsules prepared with the cationic surfactants benzalkonium chloride (BKC) and hexadecyltrimethylammonium bromide (CTAB).
  • BKC benzalkonium chloride
  • CTAB hexadecyltrimethylammonium bromide
  • Figure 5 Evolution of the particle size of hyaluronic acid nanocapsules prepared with the cationic surfactant benzalkonium chloride (5.a) and hexadecyltrimethylammonium bromide (5.b) in storage at 4 ° C and 37 ° C, over a period 3 months
  • Figure 6 Particle size of hyaluronic acid nanocapsules prepared with the cationic surfactant benzalkonium chloride, after being lyophilized at different concentrations (0.25-1% w / v) with the trehalose cryoprotectant (5 and 10% w / v).
  • NCs HA white hyaluronic acid nanocapsules
  • DCX docetaxel
  • hyaluronic acid nanocapsules containing docetaxel for different concentrations of the antitumor.
  • the cationic surfactant used in the preparation of the nanocapsules was hexadecyltrimethylammonium bromide.
  • Figure 8 TEM images of polyasparagine nanocapsules made with the cationic surfactant benzalkonium chloride (8.a) or with hexadecyltrimethylammonium bromide (8.b).
  • Figure 9 Docetaxel release profile (DCX) obtained from polyasparagine nanocapsules prepared with the cationic surfactant hexadecyltrimethylammonium bromide.
  • Figure 10 Evolution of the particle size and zeta potential of polyasparagine nanocapsules prepared with the cationic surfactant of hexadecyltrimethylammonium bromide during storage at 4 ° C (10.a) and 37 ° C (10b) and of the same systems prepared with the cationic surfactant benzalkonium chloride during storage at 4 ° C (10 ° C) and 37 ° C (10 ° C).
  • Figure 11 Viability of the NCI-H460 cancer cell line after 2 (11.a) and 48 (ll.b) hours of contact with white polyasparagine nanocapsules (PAsn NCs), docetaxel (DCX) in solution, and with nanocapsules of polyasparagine containing docetaxel, for different concentrations of the antitumor.
  • the cationic surfactant used in preparation of the nanocapsules was hexadecyltrimethylammonium bromide.
  • Figure 12 Fluorescence concentration expressed in photons / sec / cm / sr in different organs and tissues after administration of 100 nm polyglutamic-polyethylene glycol nanocapsules, after different time periods: (a) 6 hours, (b) 24 hours, (c) 48 hours; ( ⁇ administration subcutaneously, GHD administration intravenously).
  • Figure 13 Fluorescence concentration expressed in photons / sec / cm / sr in different organs and tissues after administration of 200 nm polyglutamic-polyethylene glycol nanocapsules, after different time periods: (a) 6 hours, (b) 24 hours, (c) 48 hours; (administration subcutaneously, HHD administration intravenously).
  • Figure 14 Kinetics of plasma elimination of fluorescence associated with the nanocapsules of PAsn (A), PGA ( ⁇ ) and PGA-PEG ( ⁇ ) after administration via the I.V. in Swiss mice.
  • the percentage of the injected dose (concentration of DiD in mg / kg of the total weight of the animal at each time in relation to the concentration at zero time) is expressed as a function of time.
  • the nanoemulsion ( ⁇ ) was used as a control.
  • Figure 15 (a) Evolution of tumor size over time after administration of the nanocapsules of PAsn (A), PGA-PEG ( ⁇ ), Taxotere ® (- -X- -) and saline (X ) in mice (subcutaneous tumor model of glioma U87MG); (b) Increase in tumor volume, relative to the initial volume, that mice present after 18 and 21 days, after the injection of the different formulations. As controls were used the formulation Taxotere ® and physiological saline. Statistical analysis shows significant differences in tumor size on day 18 and day 21 in animals treated with nanocapsule formulations and Taxotere ® compared to the control (* P ⁇ 0.05 ** P ⁇ 0.01— F test YEAR GOES).
  • Figure 16 Kaplan-Meier survival curves of animals treated with the different nanocapsule formulations loaded with docetaxel (PAsn nanocapsules ( ⁇ ), PGA-PEG ( ⁇ ), Taxotere ® ( ⁇ ) and saline (+) , compared to those obtained after the administration of Taxotere ® and saline control
  • PAsn nanocapsules
  • PGA-PEG
  • Taxotere ®
  • saline (+) saline
  • the present invention is directed to the design and development of nanocapsules for the administration of active ingredients, wherein the nanocapsules of the system have a diameter of less than 1 ⁇ and are characterized by comprising (a) a shell of a polymer selected from the group consisting of polyglutamic acid, polyglutamic acid-polyethylene glycol, hyaluronic acid, polyasparagine or a combination thereof and (b) a core which in turn comprises an oil and a cationic surfactant.
  • the nanocapsules of the invention also preferably comprise at least one active ingredient, with the proviso that when the polymer is polyglutamic acid or polyglutamic acid-polyethylene glycol (PGA-PEG), then the active ingredient is not a didemnin or a tamandarin.
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • Nanocapsules nature and size
  • nanocapsule systems with respect to emulsion systems is the presence of a polymer coating the oily nuclei that can give them greater stability and protection against aggregation, a change in the release profile of the associated drug, a greater cellular internalization and a specific interaction with certain cell types.
  • the nanocapsules Compared to other systems such as liposomes or nanoparticles, which are generally conditioned by a limited drug load, the nanocapsules have a greater possibility of loading, in particular lipophilic drugs, due to the presence of the oily core.
  • Another of the great advantages of nanocapsules is the ability to combine drugs of different nature, being able to be a lipophilic drug encapsulated in the nucleus and a hydrophilic drug associated with the shell; likewise, the cover gives them stability, protection and specificity.
  • the nanometric size of release systems is essential in order to prevent blockage of blood capillaries.
  • the possibilities of the nanosystems to reach the tumor tissue are strictly related to their size and also by the hydrophilic nature of their surface.
  • the nanocapsules of the systems of the present invention have an average diameter of less than 1 ⁇ , thus responding to the definition of nanosystem, a colloidal system constituted based on polymers with a size less than 1 ⁇ , that is, they have a size between 1 and 999 nm, preferably between 30 and 500 nm.
  • the size of the nanocapsules is mainly influenced by the composition and the formation conditions and can be measured using standard procedures known to those skilled in the art and described, for example, in the experimental part below. The size of the same does not vary significantly when the ratio of the cover compound in the formulation is modified, obtaining in all cases nanometric size systems. It is also important to highlight the difference between the nanocapsule systems and the "complexes".
  • “Complexes” means the nanostructure formed by the interaction of polyelectrolytes or by polyelectrolytes and surfactants of opposite charge.
  • the nanocapsule systems of the present invention differ from polyglutamic-paclitaxel (US 2003170201) or hyaluronic acid (Kim et al. J. Gene Med. (2009) 1 1: 791) complexes because they are a nanocapsular transport system , reservoir type, whose nucleus can accommodate a significant number of molecules that have a greater or lesser affinity for lipids (encapsulation) and whose cover can incorporate hydrophilic molecules that have a certain affinity for it (adsorption). These characteristics allow maintaining the integrity and functionality of the nanostructure, as well as providing greater stability in the presence of biological fluids.
  • PGA Polyglutamic acid
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • polyglutamic acid and its conjugate with PEG constitute very interesting biomaterials in the design of active molecule release systems.
  • PGA includes water-soluble salts of PGA, such as ammonium salt and metal salts of PGA, such as lithium salt, sodium salt, potassium salt, magnesium salt, etc.
  • the PGA form is selected from poly-D-glutamic acid, poly-L-glutamic acid, poly-D, L-glutamic acid, poly-a-glutamic acid, poly-aD- glutamic, poly-aL-glutamic acid, poly-aD, L-glutamic acid, poly-y-glutamic acid, poly-yD-glutamic acid, poly-yL-glutamic acid, and poly-yD, L-glutamic acid, and their mixtures
  • the preferred form of PGA is poly-L-glutamic acid, and even more preferred is the sodium salt of poly-L-glutamic acid.
  • the preferred form of PGA is poly-a-glutamic acid, and even more preferred is the sodium salt of poly-a-glutamic acid.
  • the nanocapsules of the invention can be formed from water-soluble derivatives of PGA or PGA-PEG, where PGA is substituted in one or more available positions, for example the amine and / or carboxylic acid groups, with one or More suitable groups.
  • Suitable derivatives of PGA and PGA-PEG include poly (alkylglutamine) derivatives and PEG-poly (alkylglutamine) derivatives, such as poly (N- 2- (2'-hydroxyethoxy) ethyl-L-glutamine) (PEEG), PEG -PEEG, poly (N-3- (hydroxypropyl) -L-glutamine) (PHPG), PEG-PHPG, poly (N-2- (hydroxyethyl) -L-glutamine) (PHEG), PEG-PHEG, poly (and -benzyl-L-glutamate) (pBG), PEG-pBG, poly (y-trichlorethyl-L-glutamate) (pTCEG), PEG-pTCEG, poly (dimethylaminoethyl-L-glutamine) (pDMAEG), PEG- pDMAEG, poly (pyridinoethyl-L-glutamine) (pPyAEG), PEG
  • a cover based on a pegylated polymer gives nanocapsules greater stability in plasma and an increase in residence time in the body facilitating the arrival at the therapeutic target.
  • the surface modification of the nanostructures with PEG chains manages to reduce their capture by the mononuclear phagocytic system through what has been called the shield system ("stealth system”) or long circulation time (“long circulation” systems ”) (Park JH et al, 2008). Thanks to their prolonged presence in the bloodstream, it was observed that these systems had a greater possibility of access to the target organs.
  • This modification was of interest for the transport and orientation of cytostatic drugs, whose target tissue usually presents hypervascularization and increased permeability of blood vessels.
  • Polyethylene glycol in its most common form, is a polymer of formula
  • Xi is hydrogen or a hydroxyl radical protecting group that blocks OH function for subsequent reactions.
  • Hydroxyl radical protecting groups are widely known in the art; Representative protecting groups (including already the oxygen to be protected) are for example silyl ethers such as trimethylsilyl ether, triethylsilyl ether, tert-butyldimethylsilyl ether, tert-butyldiphenylsilyl ether, triisopropylsilyl ether, diethylsopropylsilyl ether, texyldimethylsilyl, diphenyl ether, diphenyl ether, diphenyl ether tert-butylmethylsilyl ether; alkyl ethers, such as methyl ether, tert-butyl ether, benzyl ether, of p-methoxybenzyl ether, 3,4-dimethoxybenzyl ether, trityl ether, allyl
  • hydroxyl protecting groups can be found in reference books such as "Protective Groups in Organic Synthesit.” from Greene and Wuts, John Wiley & Sons, Inc., New York, 1999.
  • the protecting group is an alkyl ether, preferably that is methyl ether.
  • X 2 is a bridge group that allows anchoring to polyglutamic acid groups and groups of derivatives thereof.
  • X ⁇ can also be a group that allows anchoring with other PGAs and derivatives thereof.
  • the PEGs are linked to PGA and its derivatives through the amine and / or carboxylic acid groups of the latter.
  • Pegylation of the polymers can be performed using any suitable method available in the art (such as described in Veronese et al. DDT, 2005, 10 (21), 1451-1458; Nishiyama et al. Cancer Research 2003, 63, 8977-8983; Cabrera et al. J. Control. Relay, 2005, 101, 223-232; US 2003/0170201).
  • a suitable molecular weight of PGA in PGA and PGA-PEG polymers can be between about 1 kDa and about 100 kDa, preferably between about 5 kDa and about 80 kDa, more preferably between about 10 kDa and about 50 kDa , and even more preferably about 10 kDa, about 15 kDa, about 20 kDa, about 25 kDa, about 30 kDa, and about 35 kDa.
  • a suitable molecular weight for PEG in PGA-PEG polymers and in water-soluble derivatives thereof can be between about 1 kDa and about 50 kDa, preferably between about 2 kDa and about 40 kDa, more preferably between about 3 kDa and about 30 kDa, and even more preferably about 4 kDa, about 5 kDa, about 6 kDa, about 7 kDa, about 8 kDa, about 10 kDa, about 15 kDa, about 20 kDa, about 21 kDa, about 22 kDa, about 23 kDa, about 24 kDa, approximately 25 kDa, and approximately 30 kDa.
  • PGA-PEG polymers and water soluble derivatives thereof are available in a variety of degrees of pegylation and the appropriate degree of pegylation for a given use is readily determined by one skilled in the art. This degree of pegylation is defined as the percentage of PGA functional groups or functional groups of PGA derivatives that are functionalized with PEG.
  • suitable degrees of pegylation in PGA-PEG polymers and in water-soluble derivatives thereof can be between about 0.1% and about 10%, preferably between about 0.2% and about 5%, more preferably between about 0.5% and about 2%, and even more preferably about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 1.1%, about 1.2%, about 1.3%, about 1.4 %, about 1.5%, about 1.6%, about 1.7%, about 1.8%, about 1.9%, and about 2%.
  • the proportion of PEG in the PGA-PEG polymers and water-soluble derivatives thereof can be between about 10% and 90% (w / w) with respect to the total weight of the polymer, preferably between about 15% and 80% , more preferably between about 20% and 70%, and even more preferably about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36% , about 38%, about 40%, about 42%, about 44%, about 46%, about 48%, about 50%, about 52%, about 54%, about 56%, about 58%, and about 60%.
  • hyaluronic acid on the surface of the nanocapsules gives them the ability to adhere to mucous surfaces due to their known mucoadhesive property.
  • they have a great potential to achieve an active vehiculization towards cells that show rapid growth and overexpression of the CD44 receptor, which allows them to form tissues; A clear example of this cellular behavior is evidenced in several types of cancer cells.
  • HA includes water-soluble salts of HA as well as water-soluble derivatives of HA.
  • the hyaluronic acid salt is selected from the group consisting of sodium, potassium, magnesium, calcium and zinc salt.
  • the hyaluronic acid salt is sodium.
  • the presence of the neutral polyamino acid polyamino acid on the surface gives the nanocapsule stability, a long life in the body, protection against mononuclear phagocytic system and specificity in its interaction with certain target cells.
  • polyasparagine on the surface of the nanocapsules also provides greater specificity to cancer cells by the systems, because these cells have a greater need for asparagine to maintain their development. Cancer cells are unable to self-satisfy their needs for this amino acid, contrary to what happens with normal cells.
  • PAsn includes the water soluble salts of PAsn as well as water soluble derivatives of PAsn.
  • the nanocapsules comprise an oil and a cationic surfactant in the core.
  • the oil can be volatile or non-volatile and in a particular embodiment, it is selected from natural, semi-synthetic and synthetic oils for pharmaceutical use or a combination thereof, such as animal, vegetable, hydrocarbon oils or silicone oils.
  • Suitable oils include, but are not limited to, mineral oil, squalene oil, flavor oils, silicone oil, essential oils, water insoluble vitamins, isopropyl stearate, butyl stearate, octyl palmitate, cetyl palmitate, tridecyl behenate, diisopropyl adipate , dioctyl sebacate, mentyl anthranilate, cetyl octanoate, octyl salicylate, isopropyl myristate, neopentyl glycol dicarpath ketoles, Cerafilos®, decyl oleate, C 12- C 15 alkyl lactates, cetyl lactate, lauryl lactate, isostearyl neopentanoate, miristyl lactate, isoistyl lactate, isoistyl lactate, isoistyl lactate, isoistyl lactate, isoistyl lactate
  • the oil is selected from peanut oil, cotton, olive, castor, soy, safflower, palm; Vitamin E, Isopropyl Myristate, Squalene, Miglyol®, Labrafil®, Labrafac®, Peceol® and Maisine® or mixtures thereof.
  • the oil is Miglyol®.
  • the term "cationic surfactant” refers to a component that has structures and / or functional groups that allow them to interact simultaneously with the lipophilic and hydrophilic part of the formulation being the latter interaction favored by the presence of a cationic functional group .
  • the cationic surfactant is selected from highly cationizable primary, secondary and tertiary amines and quaternary amines.
  • the cationic surfactant is selected from oxylamine, stearylamine, benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, cetylthyridinium bromide, dodecyltrimethylammonium bromide, trimethyltetradecylammonium bromide, hexadecyltrimethyl ammonium bromide (p-ammonium bromide). Tetronic®) or mixtures thereof.
  • the cationic surfactant is benzalkonium chloride or hexadecyltrimethylammonium bromide.
  • the nanocapsules according to the present invention may optionally contain an oil-soluble surfactant, a water-soluble surfactant or both, which sterically favor the stability of the system and which allow modulating the surface electric charge of the nanocapsules and providing stability to the system.
  • oil soluble surfactant or
  • water soluble surfactant refers to components that have structures and / or functional groups that allow them to interact simultaneously with the lipophilic and hydrophilic part of the formulation, the interaction being favored with respect to the lipophilic part in the case of soluble surfactants in oil or with respect to the hydrophilic part in the case of water soluble surfactants.
  • suitable surfactants in the present invention include phospholipids such as lecithin, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, diphosphatidylglycerol, phosphatidic acid, phosphatidylethanolamine; cholesterol; glyceryl monostearate; polyoxyethylene polypropylene copolymers (poloxamers); polyethylene glycol; polypropylene glycol; cetyl alcohol; ketostearyl alcohol; stearyl alcohol; aryl alkyl polyether alcohols; sorbitan fatty acid esters
  • Span® and Arlacel® polyoxyethylene fatty acid esters
  • Myrj® polyoxyethylene fatty acid esters
  • fatty acid esters of polyoxyethylene sorbitan polysorbates
  • polyoxyethylene alkyl ethers polyoxyethylene alkyl ethers
  • ethers of fatty alcohols such as Brij®
  • the oil-soluble surfactant is a phospholipid selected from lecithin, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, diphosphatidylglycerol, phosphatidic acid, phosphatidylcholine and phosphatidylethanolamine, preferably lecithin.
  • the water-soluble surfactant is a hydrophilic derivative of polyethylene ethylene, preferably poloxamer, or a polysorbate.
  • polyethylene ethylene preferably poloxamer, or a polysorbate.
  • polyxamer refers to a nonionic triblock copolymer. composed of a central hydrophobic polyoxypropylene chain linked to two hydrophilic polyoxyethylene chains.
  • the poloxamer is 188.
  • the nanocapsules of the invention also optionally comprise at least one active ingredient.
  • active ingredient refers to any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals.
  • the active ingredient may be for example a drug, a vitamin, etc.
  • the nanocapsule systems object of the present invention are suitable for incorporating active ingredients of lipophilic or hydrophilic nature.
  • the active ingredient is docetaxel.
  • the proportion of active ingredient incorporated will depend in each case on the active ingredient to be incorporated, the indication for which it is used and the administration efficiency.
  • Nanocapsules comprising an oil, a cationic surfactant, a polymer selected from PGA and PGA-PEG and an active ingredient selected from a didemnin or a tamandarin are outside the present patent application and are the subject of European patent application EPl 1382003.9 with the title "Nanocapsules for use in pharmaceutical compositions", deposited the same day as the present application.
  • Didemnins and tamandarins are cyclodepsypeptides that exhibit a wide variety of biological activities, such as antitumor, immunosuppressive and antiviral. Examples of such compounds (excluded from the present invention for PGA or PGA-PEG nanocapsules) fall within the following general formula:
  • X is selected from O and NH
  • Y is selected from CO and -COCH (CH 3 ) CO-;
  • n and p are independently selected between 0 and 1, and q is selected between 0, 1 and 2;
  • Ri, R 3 , R 5 , R 9 , Rn, and R 15 are independently selected from hydrogen, Ci-C substituted or unsubstituted alkyl, C 2 -C 6 substituted or unsubstituted alkenyl, and C 2 -C 6 substituted alkynyl or unsubstituted;
  • R 2 is selected from hydrogen, COR a , COOR a , Ct-C substituted or unsubstituted alkyl, C 2 -C 6 substituted or unsubstituted alkenyl, and C 2 -C 6 substituted or unsubstituted alkynyl;
  • R4, R 8 , Rio, R12, and RI ⁇ are independently selected from hydrogen and C ⁇ -C substituted or unsubstituted alkyl;
  • R 7 and R 13 are independently selected from hydrogen, Cj-C 6 substituted or unsubstituted alkyl, C 2 -C 6 substituted or unsubstituted alkenyl, and C 2 -C 6 substituted or unsubstituted alkynyl;
  • R 6 and Ri 4 are independently selected from hydrogen and Ci-C 6 substituted or unsubstituted alkyl; or R and R 7 and / or R 13 and R 14 , together with their corresponding N and C atoms to which they are attached, can form a substituted or unsubstituted heterocyclic group;
  • Ra, Rb, and R c are independently selected from hydrogen, C-Cn substituted or unsubstituted alkyl, C 2 -C 12 substituted or unsubstituted alkenyl, and C 2 -C 12 substituted or unsubstituted alkynyl, substituted or unsubstituted aryl , and substituted or unsubstituted heterocyclic group; or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the nanocapsules comprise polyglutamic acid or polyglutamic acid-polyethylene glycol (PGA-PEG), then the active ingredient is not aplidine.
  • a particular process for obtaining the systems of the invention comprises: a) preparing an aqueous solution comprising a polymer selected from the group consisting of polyglutamic acid (PGA) , polyglutamic acid-polyethylene glycol (PGA-PEG), hyaluronic acid (HA) and polyasparagine (PAsn) or a combination thereof, and optionally a water soluble surfactant;
  • PGA polyglutamic acid
  • PGA-PEG polyglutamic acid-polyethylene glycol
  • HA hyaluronic acid
  • PAsn polyasparagine
  • the addition of the organic solution c) can be carried out in aliquots of volumes of between 250 ⁇ and 500 ⁇ , at time intervals of between 15 and 25 seconds.
  • the systems of the present invention can be prepared by an alternative method (referred to in the examples as a two-stage solvent diffusion process) comprising coating a cationic nanoemulsion with the coating polymer by an incubation process with an aqueous solution of the polymer.
  • a two-stage solvent diffusion process comprising coating a cationic nanoemulsion with the coating polymer by an incubation process with an aqueous solution of the polymer.
  • the formation of the nanoemulsion can be favored by ultrasound (called in the examples sonication procedure) or homogenization (called in the examples homogenization procedure).
  • the incubation process comprises mixing the cationic nanoemulsion with an aqueous solution of the coating polymer.
  • Said cationic nanoemulsion consists of at least one oil, a cationic surfactant and an aqueous phase.
  • the aqueous phase may contain other surfactants, salts, and other auxiliary agents.
  • the processes for preparing said nanoemulsion are known in the state of the art, and can comprise a diffusion, sonication or homogenization process (Prego et al. J. Nanosci. Nanotechnol. (2006) 6: 1; Tadros et al. Adv Colloid Interface Sci. (2004) 109: 303).
  • a particular process for obtaining the cationic nanoemulsion (referred to in the examples as solvent diffusion process) comprises:
  • step ii) adding the solution obtained in step i) over an aqueous phase that optionally contains a water-soluble surfactant and that is under stirring to form a cationic nanoemulsion; iii) optionally, evaporate all or part of the organic solvents to constant volume.
  • Another particular process for obtaining the cationic nanoemulsion (referred to in the examples as sonication procedure) comprises:
  • step ii) add the solution obtained in step i) over an aqueous phase that optionally contains a water-soluble surfactant and sonicate;
  • homogenization procedure comprises:
  • step ii) add the solution obtained in step i) over an aqueous phase that optionally contains a water soluble surfactant and homogenize; iii) dilute with water the emulsion obtained in phase ii) and homogenize;
  • the active ingredient is lipophilic or amphiphilic
  • said active ingredient is added to the organic solution of step b) or step i).
  • said active ingredient is added to the solution of stage a) or stage ii).
  • said hydrophilic active ingredient is added dissolved in an aqueous solution. It is also possible to incorporate the hydrophilic active ingredient by adsorption to the suspension of nanocapsules obtained in step d) or after the incubation process once the nanocapsules are formed.
  • nanocapsules occurs when mixing volumes of the mentioned solutions containing the cationic nanoemulsion with solutions aqueous coating polymer in different proportions, varying the ratio of coating polymer.
  • the proportion of PGA, PGA-PEG and HA is between 0.05 and 12% w / w (coating polymer weight / formulation weight, dry base).
  • the aqueous coating polymer solution is composed of 0.1-25 mg / ml of said polymer.
  • the proportion of PAsn is between 2.5 and 30% w / w (coating polymer weight / formulation weight, dry base).
  • the aqueous solution of this coating polymer is composed of 1-60 mg / ml of said polymer.
  • the solvent of the organic solution is preferably a mixture of polar solvents such as ethanol and acetone and may also include non-polar solvents such as dichloromethane.
  • polar solvents such as ethanol and acetone
  • non-polar solvents such as dichloromethane.
  • the oil and the cationic surfactant are incorporated, and optionally the oil-soluble surfactant.
  • the active ingredient is also incorporated.
  • a particular example for obtaining the nanocapsule systems of the invention comprising PGA or PGA-PEG following the first procedure described above comprises:
  • a particular example for obtaining the nanocapsule systems of the invention of PAsn following the first procedure described above comprises:
  • a particular example for obtaining the nanocapsule systems of the invention of HA following the first procedure described above comprises:
  • the process for preparing nanocapsule systems may include an additional lyophilization stage, in order to preserve them during storage so that they retain their initial characteristics.
  • the lyophilization of the systems requires the addition of sugars that have a cryoprotective effect.
  • sugars useful for carrying out lyophilization are, for example, trehalose, glucose, sucrose, mannitol, maltose, polyvinyl pyrrolidone (PVP).
  • PVP polyvinyl pyrrolidone
  • the present invention also relates to nanocapsule systems comprising a polyglutamic acid, polyglutamic polyethylene glycol, polyasparagine or hyaluronic acid shell in the form of lyophilisate.
  • nanocapsule systems described herein have adequate stability both in suspension and in the form of lyophilisate.
  • stability studies seem to indicate that after administration to organisms, human or animal, they do not undergo a rapid aggregation or destruction process, but predictably remain in nanocapsular form until reaching the target tissue or cell.
  • nanocapsule systems of this invention have advantages compared to other drug delivery and / or delivery systems, due to their unique behavior in terms of:
  • the system may include one or more active ingredients or adjuvant substances, hydrophilic or lipophilic, in proportions greater than that of nanoparticles, micelles, complexes, nanogels.
  • the cover exerts a function on its release rate, allowing the active ingredient to be released in a controlled manner according to application and needs.
  • the polymeric shell gives lipid cores great stability, which represents an advantage over other micro and nanoemulsion systems.
  • the polymeric shell gives the lipid nuclei the possibility of interacting with mucous surfaces as well as with specific epithelia and cells.
  • the invention in a particular embodiment relates to a pharmaceutical composition, comprising the above nanocapsule systems, and optionally one or more pharmaceutically acceptable excipients.
  • the incorporation of active ingredients in the nanocapsules of the invention originates systems, whose characteristics in terms of their composition, properties and morphology, make them excellent candidates for the therapeutic area.
  • the active ingredient to be incorporated in the systems of the invention will be that with suitable pharmacotherapeutic properties according to the therapeutic application to which the formulation is intended.
  • the active ingredient is selected from peptides, proteins, lipid or lipophilic compounds, saccharide compounds, nucleic acid or nucleotide compounds such as oligonucleotides, polynucleotides or combinations of the aforementioned molecules.
  • the lipophilic active ingredient is docetaxel.
  • the active ingredient is selected from an oligonucleotide, interfering RNA, a DNA plasmid or a polynucleotide, more preferably the active ingredient is a DNA plasmid.
  • the active ingredient is hydrophobic, amphiphilic or hydrophilic in nature.
  • the active ingredients of hydrophobic or amphiphilic nature are preferably added in step b) of the nanocapsule preparation process of the invention.
  • the active ingredients of hydrophilic nature are preferably added in step a) of the process or in a stage after d) by an incubation process.
  • the invention also contemplates other embodiments such as adding in step b) a hydrophilic active ingredient dissolved in a small volume of aqueous phase.
  • the active ingredients of hydrophilic nature can be associated with their surface by adsorption.
  • the active ingredient is not a didemnin or a tamandarin.
  • Said pharmaceutical compositions can be administered by different routes, such as through mucous membranes, topically or parenterally.
  • the proportion of active ingredient incorporated in the systems can be up to about 50% by weight with respect to the total weight, dry basis, of the nanocapsule system components. However, the appropriate proportion will depend in each case on the active ingredient to be incorporated, the indication for which it is used and the administration efficiency.
  • the proportion of lipophilic active ingredient can be up to about 10% by weight, preferably up to about 5%.
  • the nanocapsule systems described in the present invention incorporate more than one active ingredient, which may be dissolved in the same solution or separately, depending on the nature of the molecules to be incorporated. , preventing any kind of interaction, whether chemical or physical, between them.
  • the invention relates to the use of said system in the preparation of a medicament.
  • said use is related to cancer treatment.
  • PGA Poly-L-glutamic acid;
  • the PGA salt used in the following examples was the sodium salt of molecular weight between 15,000 and 50,000 Da (SIGMA).
  • PGA-PEG 16000 Da Poly-L-glutamic acid-polyethylene glycol acid; the PGA-PEG salt used in the following examples was the sodium salt of molecular weight of 16000 Da, in particular with a percentage of peguilation of 6% and a PEG chain size of 1000 Da (Alamanda Polymers USA).
  • PGA-PEG 22000 Da Poly-L-glutamic-polyethylene glycol acid;
  • the PGA-PEG salt used in the following examples was the sodium salt of molecular weight of 22,000 Da, in particular with a pegylation percentage of 93% and a PEG chain size of 20,000 Da (Alamanda Polymers USA).
  • PGA-PEG 35000 Da Poly-L-glutamic-polyethylene glycol acid;
  • the PGA-PEG salt used in the following examples was the sodium salt of 35,000 Da molecular weight, in particular with a 60% peguylation percentage and a PEG chain size of 20,000 Da (Alamanda Polymers USA).
  • HA hyaluronic acid
  • the HA salt used in the following examples was the sodium hyaluronate of molecular weight between 20,000 and 50,000 Da and 165,000 Da. (Imquiaroma, France).
  • PAsn Poliasparagine
  • the polyasparagine used preferably has a molecular weight of 5000 to 15000 Da, with approximately 5% of aspartic acid residues (SIGMA).
  • BKC Benzalkonium Chloride (SIGMA).
  • CTAB Hexadecyltrimethylammonium bromide (SIGMA).
  • DCX Docetaxel (SIGMA).
  • Nanoemulsion (NE) This term is used for simplicity in the examples to refer to nanosystems comprised of a lecithin, Miglyol® 812, a cationic surfactant (benzalkonium chloride or hexadecyltrimethylammonium bromide), optionally poloxamer 188 and whose only difference with Nanocapsules is the absence of a coating polymer on the surface of the systems.
  • a lecithin Miglyol® 812
  • a cationic surfactant benzalkonium chloride or hexadecyltrimethylammonium bromide
  • poloxamer 188 optionally poloxamer 188
  • NCs PGA nanocapsules
  • NCs PGA-PEG nanocapsules
  • Nanocapsules (NCs) of HA This term is used for simplicity in the examples and figures to refer to nanosystems whose nanocapsules include lecithin, Miglyol® 812, a cationic surfactant (benzalkonium chloride or hexadecyltrimethylammonium bromide), poloxamer 188 and HA .
  • Nanocapsules (NCs) of PAsn This term is used for simplicity in the examples and figures to refer to nanosystems whose nanocapsules comprise polyaparagin, lecithin, Miglyol® 812, a cationic surfactant (benzalkonium chloride or hexadecyltrimethylammonium bromide) and optionally poloxamide. 188.
  • Nanocapsules consisting of an oily core coated with PGA or PGA-PEG were prepared according to the solvent diffusion process in two stages:
  • step i) the solution obtained in step i) is added on 20 ml of a 0.25% w / v aqueous solution of poloxamer 188 under magnetic stirring being maintained for 10 minutes, in this way the cationic nanoemulsion is spontaneously obtained;
  • the cationic nanoemulsion obtained in step iii) was coated by an incubation process with an aqueous solution (1.5 ml) composed of 0.1 to 25 mg / ml of polyglutamic or polyglutamic-polyethylene glycol of different molecular weight, in a ratio 4: 1.5 v / v (nanoemulsion: polymer solution), the coating is produced immediately, regardless of temperature.
  • Tables 1, 2, 3, 4 show the values obtained from the parameters cited as a function of the amount of polyglutamic and polyglutamic-polyethylene glycol of different molecular weights in step iv).
  • NC PGA-PEG 22000Da 100 227 ⁇ 6 0.1 -6 ⁇ 1
  • Nanocapsules consisting of an oily core coated with polyglutamic or polyglutamic-polyethylene glycol were prepared according to the solvent diffusion process in one step:
  • an aqueous solution (20 ml) was prepared in which 0.5 to 25 mg / ml of polyglutamic or polyglutamic-polyethylene glycol is dissolved which is 0.25% w / v of poloxamer 188;
  • Tables 5, 6, 7 and 8 show the values obtained from the parameters mentioned in the determination of the amount of polyglutamic or polyglutamic-polyethylene glycol in the aqueous solution of step a).
  • NC PGA-PEG 35000Da 100 174 ⁇ 4 0.1 -42 ⁇ 3
  • Nanocapsules consisting of an oily core coated with polyglutamic or polyglutamic-polyethylene glycol were prepared according to the sonication procedure:
  • step i) the solution obtained in step i) was added over 2 ml of water containing poloxamer 188 at 0.25% w / v, sonic for 1 minute;
  • step iv) the cationic nanoemulsion obtained in step iv) was coated by a
  • aqueous solution 1.5 ml
  • aqueous solution composed of 0.1 to 25 mg / ml of polyglutamic or polyglutamic-polyethylene glycol, in a 4: 1, 5 ratio (nanoemulsion: polyglutamic or polyglutamic-polyethylene glycol solution)
  • the coating is produced immediately, regardless of the temperature.
  • Tables 9, 10, 1 1 and 12 show the values obtained from the parameters cited according to the amount of polyglutamic or polyglutamic-polyethylene glycol in step v).
  • NC PGA-PEG 22000Da 100 195 ⁇ 5 0.1 -6 ⁇ 1
  • NC PGA-PEG 35000Da 100 203 ⁇ 10 0, 1 -45 ⁇ 1
  • Nanocapsules consisting of an oily core coated with polyglutamic or polyglutamic-polyethylene glycol were prepared according to the homogenization procedure:
  • an oil phase consisting of a solution of lecithin (30 mg) and the cationic surfactant of benzalkonium chloride (7 mg) in dichloromethane (1 ml) was prepared to which 125 ⁇ of Miglyol® 812 is added; ii) the solution obtained in step i) was added over 2 ml of water containing 0.25% w / v poloxamer 188 and homogenized at 16,000 rpm for 5 minutes and then at 19,000 rpm for another 5 minutes;
  • the emulsion obtained was diluted with water (1: 10 dilution) and homogenized for 3 minutes at 22,000 rpm;
  • step iv) the nanoemulsion obtained in step iv) was coated by an incubation process with an aqueous solution (1.5 ml) composed of 0.1 to 25 mg / ml of polyglutamic or polyglutamic-sodium polyethylene glycol, in a proportion 4 : 1,5 (nanoemulsiómdisolution of polyglutamic or polyglutamic-polyethylene glycol), producing the coating immediately, regardless of temperature.
  • Tables 13, 14, 15 and 16 show the values obtained from the parameters mentioned according to the amount of polyglutamic or polyglutamic-polyethylene glycol in step v).
  • NC PGA 10 187 ⁇ 7 0.2 -65 ⁇ 5
  • NC PGA-PEG 22000Da 100 201 ⁇ 2 0.1 -8 ⁇ 1
  • NC PGA-PEG 35000Da 100 189 ⁇ 14 0.2 -42 ⁇ 2 NC PGA-PEG 35000Da 50 186 ⁇ 7 0.2 -33 ⁇ 7
  • Nanocapsules of polyglutamic or polyglutamic-polyethylene glycol of 35000 Da were prepared in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812 and the cationic surfactant benzalkonium chloride (7 mg) and poloxamer 188.
  • the manufacturing process corresponds to the procedure previously described in Example 1.1., With a modification, since a small aliquot of a stock solution of the active ingredient in ethanol (1-100 mg / ml) is incorporated into the oil phase.
  • the system is then rotated to a constant volume and incubated with a solution of polyglutamic or polyglutamic-polyethylene glycol of 35000 Da forming the nanocapsules encapsulating docetaxel with weight ratios of docetaxel or nanocapsules of polyglutamic or polyglutamic-polyethylene glycol up to 35000 Da 4 %.
  • the parameters mean particle diameter, polydispersion index and zeta potential were also measured (Table 17).
  • Nanocapsules of polyglutamic or polyglutamic-polyethylene glycol of 35000 Da were prepared in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812, and benzalkonium chloride (7 mg) and poloxamer 188 according to the procedure previously described. Particle size measurements were made during a relevant time, in order to obtain information about the evolution of the system over time. The effect of storage temperature (37 ° C) on the stability of the nanocapsules was also evaluated. The results presented in figures la and Ib show the limited variability in the size of the polycalutamic or polyglutamic-polyethylene glycol nanocapsules of 35000 Da at 5.8% w / w during storage.
  • Nanocapsules of polyglutamic or polyglutamic-polyethylene glycol in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812 and the cationic surfactant of benzalkonium chloride (7 mg) and poloxamer 188 were prepared, according to the procedure previously described.
  • the effect of the trehalose cryoprotectant agent during the lyophilization process of the polyglutamic or polyglutamic-polyethylene glycol nanocapsules and the subsequent recovery of the particle size after resuspension was tested by testing two concentrations of trehalose, 5 and 10% w / v.
  • Nanocapsules consisting of an oily core coated with HA were prepared according to the two-stage solvent diffusion process:
  • an oil phase consisting of an ethanol / acetone solution (0.5: 9 ml) of lecithin (30 mg) and the cationic surfactants of benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (1.8 mg) was prepared, to which 125 ⁇ of Miglyol® 812 is added.
  • the solution obtained in step i) is added over 20 ml of a 0.25% w / v aqueous solution of poloxamer 188 under magnetic stirring being kept for 10 minutes , in this way the cationic nanoemulsion is spontaneously obtained;
  • the organic solvents were evaporated to constant volume;
  • step iii) the cationic nanoemulsion obtained in step iii) was coated by an incubation process with an aqueous solution (1.5 ml) composed of 0.1 to 25 mg of sodium hyaluronate, in a 4: 1, 5 ratio ( nanoemulsion: solution of HA), the coating is produced immediately, regardless of temperature.
  • Tables 18 and 19 show the values obtained from the parameters cited as a function of the amount of HA of 20000-50000 Da in step iv) and using benzalkonium chloride or hexadecyltrimethylammonium bromide, respectively.
  • Table 20 shows the values obtained from the parameters cited according to the amount of HA of 160000 Da in step iv) and using benzalkonium chloride.
  • Nanocapsules consisting of an oleosorecoated HA core were prepared according to the one-stage solvent diffusion procedure:
  • an aqueous solution of sodium hyaluronate (20 ml) was prepared in which 0.5 to 25 mg of HA of 20000-50000 Da is dissolved and is 0.25% w / v poloxamer 188;
  • Nanocapsules consisting of an oily core coated with HA were prepared according to the sonication procedure:
  • an oil phase consisting of a solution of lecithin (30 mg) and the cationic surfactant of benzalkonium chloride (4 mg) in dichloromethane (1 ml) was prepared to which 125 ⁇ of Miglyol® 812 is added; ii) the solution obtained in step i) was added over 2 ml of water containing poloxamer 188 at 0.25% w / v, sonic for 1 minute; iii) the emulsion obtained was diluted with water (1: 10 dilution);
  • step iv) the cationic nanoemulsion obtained in step iv) was coated by an incubation process with an aqueous solution (ml - 5 ml) composed of 0.5 to 25 mg of sodium hyaluronate, in a 4: 1.5 v ratio / v (nanoemulsion: solution of HA), producing the coating immediately, regardless of temperature.
  • Table 23 shows the values obtained from the parameters cited as a function of the amount of HA in stage v).
  • Nanocapsules consisting of an HA-coated oily core were prepared according to the homogenization procedure:
  • an oil phase consisting of a solution of lecithin (30 mg) and the cationic surfactant of benzalkonium chloride (4 mg) in dichloromethane (1 ml) was prepared to which 125 ⁇ of Miglyol® 812 is added; ii) the solution obtained in step i) was added over 2 ml of water containing 0.25% w / v poloxamer 188 and homogenized at 16,000 rpm for 5 minutes and then at 19,000 rpm for another 5 minutes;
  • the emulsion obtained was diluted with water (1: 10 dilution) and homogenized for 3 minutes at 22,000 rpm;
  • step iv) the nanoemulsion obtained in step iv) was coated by an incubation process with an aqueous solution (1.5 ml) composed of 0.5 to 25 mg of sodium hyaluronate, in a 4: 1.5 ratio (nanoemulsion: solution of HA), producing the coating immediately, regardless of temperature.
  • Table 24 shows the values obtained from the parameters cited as a function of the amount of HA in step v).
  • HA nanocapsules in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812 and the cationic surfactants of benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (1.8 mg) and poloxamer 188 were prepared.
  • the manufacturing process corresponds to the procedure previously described in Example 5.1, with a modification, since a small aliquot of a stock solution of the active ingredient in ethanol (1-100 mg / ml) is incorporated into the oil phase.
  • the system is rotated to a constant volume and incubated with a solution of HA forming the nanocapsules of HA encapsulating docetaxel with weight ratios of docetaxel / nanocapsules of HA of up to 4%.
  • the encapsulation efficiency was determined (by evaluating the free drug by high performance liquid chromatography, with obtaining an encapsulation efficiency of -65%.
  • the parameters mean particle diameter, polydispersion index and zeta potential were also measured (Table 25). TABLE 25
  • HA nanocapsules were prepared by encapsulating the lipophilic docetaxel drug following the procedure described in example 6. The nanocapsules were diluted in water and incubated in this medium under horizontal agitation (100 rpm) at 37 ° C. At various times samples were taken from the incubation media and the nanocapsules were isolated in suspension by ultracentrifugation. Finally, the fraction of drug released was assessed by quantifying the amount of free drug in the infringing liquid which was checked against that fraction of the drug that remained bound to the nanocapsules. The quantification of docetaxel was performed as described in example 6. The drug assignment profile of the HA nanocapsules is shown in Figure 4. Example 8
  • HA nanocapsules in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812 and benzalkonium chloride (4 mg) or hexadecyltrimethylammonium (5.4 mg) and poloxamer 188 were prepared according to the procedure previously described. Particle size measurements were made during a relevant time, in order to obtain information about the evolution of the system over time. The effect of storage temperature (4 and 37 ° C) on the stability of the nanocapsules was also evaluated.
  • HA nanocapsules in the form of sodium salt, an oily core composed of lecithin, Miglyol® 812 and the cationic surfactant of benzalkonium chloride (4 mg) and poloxamer 188 were prepared, according to the procedure previously described.
  • the effect of the trehalose cryoprotective agent during the lyophilization process of HA nanocapsules and in the subsequent recovery of particle size after resuspension was tested by testing two concentrations of trehalose, 5 and 10% w / v.
  • the influence of the concentration of nanocapsules (0.25, 0.5 and 1% w / v) on the suspension to be lyophilized was evaluated.
  • the results in Figure 6 show the particle size of lyophilized HA nanocapsules after resuspension.
  • HA nanocapsules were prepared using hexadecyltrimethylammonium bromide (1.8 mg) according to procedure described in example 6.
  • the results shown in Figure 7 show the greater capacity to inhibit the proliferation of the nanocapsules encapsulating docetaxel compared to the free molecule when the systems come into contact for 2 and 48 hours with the cells. carcinogenic On the other hand, the safety of systems without docetaxel can be appreciated.
  • docetaxel solution had IC50 values of 105 and 36 nM when in contact with the cells for 2 and 48 respectively; while HA nanocapsule formulations encapsulating docetaxel showed values of ⁇ 29 and -13 nM at the same incubation times, resulting in nanoencapsulation of docetaxel 3.6 and 2.8 times more effective inhibition of cell proliferation.
  • Nanocapsules consisting of an oily core coated with PAsn were prepared according to the two-stage solvent diffusion procedure:
  • an oil phase consisting of an ethanol / acetone solution (0.5: 9 ml) of lecithin (30 mg) and the cationic surfactant benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (1.8 mg) was prepared, to which 0.125 ml of Miglyol® 812 is added.
  • step i) the solution obtained in step i) is added to 10 ml of water under magnetic stirring, maintaining for 10 minutes, in this way the cationic nanoemulsion is spontaneously obtained;
  • step iii) the cationic nanoemulsion obtained in step iii) was coated by an incubation process with an aqueous solution (1 ml) composed of different amounts of PAsn, in a 3.7: 1 ratio, immediately producing the coating, of temperature independent way.
  • Tables 26 and 27 show the values obtained from the parameters cited according to the amount of PAsn in step iv) and using benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (1.4 mg), respectively.
  • Nanocapsules consisting of an oily core coated with PAsn were prepared according to the solvent diffusion process in one step:
  • an aqueous solution of polyasparagine (20 ml) was prepared in which different amounts of the polyamino acid, 5-200 mg, are dissolved;
  • an oil phase consisting of an ethanol / acetone solution (0.5: 9 ml) of lecithin (30 mg) and the cationic surfactants benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (1.8 mg) was prepared at the one that is added 125 ⁇ of Miglyol® 812;
  • Tables 28 and 29 show the values obtained from the parameters cited as a function of the amount of PAsn in the aqueous solution of step a) using benzalkonium chloride or hexadecyltrimethylammonium bromide, respectively.
  • Nanocapsules consisting of an oily core coated with PAsn were prepared according to the sonication procedure:
  • step ii) the solution obtained in step i) was added over 2 ml of water and sonic for 30 seconds;
  • step iv) the organic solvents were evaporated to constant volume to form a cationic nanoemulsion; and v) the cationic nanoemulsion obtained in step iv) was coated by an incubation process with an aqueous solution (1 ml) composed of different amounts of polyasparagine, in a 4: 1 ratio (nanoemulsion: PAsn solution), the coating being produced immediately, regardless of temperature.
  • Nanocapsules consisting of an oily core coated with polyasparagine were prepared according to the homogenization procedure:
  • step ii) the solution obtained in step i) was added over 2 ml of water and homogenized at 16,000 rpm for 5 minutes and then at 19,000 rpm for another 5 minutes;
  • the emulsion obtained was diluted with water (1: 10 dilution) and homogenized for 3 minutes at 22,000 rpm;
  • step iv) the nanoemulsion obtained in step iv) was coated by an incubation process with an aqueous solution (1 ml) composed of different amounts of PAsn, in a 4: 1 ratio (nanoemulsion: PAsn solution), occurring immediately the coating, regardless of temperature.
  • PAsn nanocapsules were prepared, with an oily core composed of lecithin, Miglyol® 812 and the cationic surfactants benzalkonium chloride (4 mg) or hexadecyltrimethyl ammonium bromide (1.8 mg).
  • a lipophilic drug, docetaxel, an antitumor agent practically insoluble in water was incorporated.
  • the manufacturing process corresponds to the procedure previously described in Example 1 1.1., With a slight modification, a small aliquot of a solution of the active ingredient in ethanol (1-100 mg / ml) is incorporated into the oil phase.
  • the system is rotated to a constant volume and incubated with a solution of PAsn forming the nanocapsules encapsulating docetaxel with weight ratios of docetaxel / nanocapsules of PAsn of up to 30%.
  • the encapsulation efficiency was determined (by evaluating the free drug by high performance liquid chromatography, obtaining an encapsulation efficiency of -75%.
  • the parameters mean particle diameter, polydispersion index and zeta potential were also measured (Table 31).
  • Polyaparagine nanocapsules an oily core composed of lecithin, Miglyol® 812 and benzalkonium chloride (4 mg) or hexadecyltrimethylammonium bromide (4 mg) were prepared according to the procedure previously described. Particle size measurements were made over a long period of time, in order to obtain information about the evolution of the system size over time. The effect of storage temperature (4 and 37 ° C) on the stability of the nanocapsules was also evaluated. The results presented in Figures 10a and 10b show the limited variability in the size of PAsn nanocapsules with benzalkonium chloride and hexadecyltrimethylammonium bromide respectively, during storage.
  • Example 15 Example 15
  • Polyaparagine nanocapsules, an oily core composed of lecithin, Miglyol® 812 and the cationic hexadecyltrimethiamonium bromide surfactant (1.8 mg) were prepared according to the procedure previously described.
  • the effect of the trehalose cryoprotective agent during the lyophilization process of PAsn nanocapsules and in the subsequent recovery of particle size after resuspension was evaluated. testing two concentrations of cryoprotectant, 5 and 10% w / v.
  • the influence of the concentration of nanocapsules (0.25, 0.5 and 1% w / v) on the suspension to be lyophilized was evaluated.
  • the results in Table 32 show the particle size of lyophilized PAsn nanocapsules after resuspension.
  • PAsn nanocapsules encapsulating docetaxel were prepared using hexadecyltrimethylammonium bromide (1.8 mg) according to the procedure described in example 12.
  • the results shown in Figure 1 1 show the greater capacity to inhibit the proliferation of the nanocapsules encapsulating docetaxel compared to the free molecule when the systems are contacted for 2 and 48 hours with cancer cells
  • the IC50 values were calculated using the Graph Pad Prism 2.1 program (Graph Pad Software). Thus, docetaxel solution presented IC50 values.
  • Nanocapsules consisting of a polyglutamic-polyethylene glycol (PGA-PEG) shell were prepared in the form of 35,000 Da molecular weight sodium salt, with a 60% peguylation percentage and a PEG chain size of 20,000 Da; an oily core composed of lecithin, Miglyol® 812 and hexadecyltrimethylammonium bromide, of medium size 100 nm, according to the one-stage solvent diffusion process.
  • PGA-PEG polyglutamic-polyethylene glycol
  • nanocapsules consisting of a polyglutamic-polyethylene glycol (PGA-PEG) shell in the form of 35,000 Da sodium salt were prepared, with a 60% peguylation percentage and a PEG chain size of 20,000 Da; poloxamer 188 and an oily core composed of lecithin, Miglyol® 812 and benzalkonium chloride, medium size 200 nm, according to the same procedure.
  • the size of the nanocapsules could be modulated until these sizes were reached, suitably modifying the amount of components and the method of adding the organic phase to the aqueous phase.
  • the nanocapsules were labeled with the lipophilic fluorescent marker DiD ( ⁇ , ⁇ -dioctadecyl-3,3,3 ', 3'-tetramethylindodicarbocyanine perchlorate).
  • DiD ⁇ , ⁇ -dioctadecyl-3,3,3 ', 3'-tetramethylindodicarbocyanine perchlorate.
  • the two 100 and 200 nm nanocapsule formulations were isolated and diluted in a 10% trehalose solution in water and administered subcutaneously (in the interscapular zone) and intravenously (in the tail vein) to SCID mice healthy in order to evaluate its biodistribution, with special attention to its accumulation in lymphatic tissues.
  • the injection volume was 100 ⁇ and the concentration of 100 and 200 nm nanocapsules was 12 mg / ml and 13.6 mg / ml, respectively.
  • Figures 12a, 12b, and 12c show fluorescence levels (expressed in photons / sec / cm 2 / sr) in different organs and tissues after administration of 100 nm polyglutamic-polyethylene glycol nanocapsules, after different periods of time: (a) 6 hours, (b) 24 hours, (c) 48 hours; (ES administration subcutaneously, ülUJ administration intravenously).
  • Figures 13a, 13b and 13c show fluorescence levels (expressed in photons / sec / cm 2 / sr) in different organs and tissues after administration of 200 nm polyglutamic-polyethylene glycol nanocapsules, after different time periods: (a) 6 hours, (b) 24 hours, (c) 48 hours; ( ⁇ administration subcutaneously, U üJ administration intravenously).
  • the results show the high lymphatic accumulation of the fluorescence associated with the nanocapsules after administration by both routes, this accumulation being more pronounced for subcutaneous administration.
  • a clear vehiculization of the marker towards the lymphatic system is seen. This lymphatic accumulation is associated with a reduction of the accumulation in organs responsible for elimination such as liver and spleen.
  • Nanocapsules with different polymers including PAsn, PGA or PGA-PEG were prepared by means of the technique in a step described in example 1.1 and 11.1. These systems were loaded with the DiD fluorescent marker (l, l'-dioctadecyl-3,3,3'3, '- tetramethylindodicarbocyanine perchlorate) (concentration of DiD in the nanocapsules of 100 ⁇ g / ml) prior to administration in Swiss mice (from 9-12 weeks, 20-22 g). An anionic nanoemulsion charged with the same marker and at the same concentration was used as the control formulation. Likewise, a control experiment was performed to determine the residual fluorescence of the plasma, from blood samples from mice to which 150 ⁇ of physiological saline was administered.
  • DiD fluorescent marker l, l'-dioctadecyl-3,3,3'3, '- tetramethylindodicarbocyanine perchlorate
  • the fluorescent formulations, nanocapsules and nanoemulsion, as well as the physiological serum control sample were administered by IV tail injection of mice in a volume of 150 ⁇ .
  • blood samples were taken, in triplicate, by cardiac puncture.
  • the samples were centrifuged for 10 min at 2000g in a Vacutainer tube (SST II Advance, 5 ml, Becton Dickinson France SAS, France).
  • Fluorescence is expressed in fluorescence units (FU) and is calculated by the following equation:
  • Figure 14 shows the percentage of injected fluorescence dose (concentration of DiD in mg / kg of the total weight of the animal at each time in relation to the concentration at zero time) that remains in plasma after different periods of time after injection intravenous in Swiss mice. 100% fluorescence corresponds to zero time fluorescence.
  • the results that appear in Figure 14 show the differences in the rate of plasma elimination of the different formulations evaluated.
  • Lz being the slope corresponding to the linearization of each phase of the plasma levels-time curve. Lz was determined by linear regression using predefined intervals (for distribution half - life [0-1 h] and for t ⁇ to removal [1-24 h] respectively). For the determination of the area under the curve (AUC) a trapezoidal model was used during the experimental time (AUC [0-24 h]) without extrapolation as well as for the AUMC. The average residence time in the organism (MRT) was calculated from 0 to 24 h, according to the equation:
  • Table 1 shows the values corresponding to the parameters: the average distribution life time (alpha phase) (ti / 2 a, hours), calculated from 0 to 1 hours, the average elimination life time (beta phase) ( tm ⁇ , hours), calculated from 1 to 24 hours, the average residence time (MRT, hours), calculated from 0 to 24 hours and area under the plasma levels / time curve (AUC, hours), calculated from 0 to 24 hours.
  • the results obtained for these parameters show the differences in the plasma elimination kinetics of the different formulations.
  • the overall conclusion of these results is the prolonged permanence of all the nanocapsules in plasma, a very favorable behavior when it comes to vehicularizing active ingredients towards tumor zones.
  • Table 1 Pharmacokinetic parameters of the nanocapsules of PGA, PGA-PEG, PAsn and the nanoemulsion used as control after administration I.V. in mice
  • mice When the tumor reached a size of 200 mm, the mice were distributed in 4 groups to which different treatments were administered (the PAG-PEG nanocapsules, the PAsn nanocapsules, the control nanoemulsion and the commercial Taxotere® formulation).
  • the injected formulation volume was a maximum of 150
  • Tumor size was measured twice a week for a period of 24 days.
  • Figure 15a shows the evolution in the increase of the tumor volume (difference between the size at each time and the initial size) of the animals treated with the nanocapsules loaded with drug, as well as with Taxotere® and with the control of saline serum. The results indicate first, that docetaxel retains its antitumor activity in vivo when encapsulated.
  • the nanocapsule formulations were as effective as the commercial formulation, both formulations being effective in reducing the rate of tumor growth.
  • Figure 15b shows the increase in tumor volume after 18 and 21 days in relation to size at zero time. It can be seen that the differences in tumor size of treated and untreated animals (serum were administered) were significant for both times.
  • Figure 16 shows the percentage of mice that survive after different periods of time and after being subjected to different treatments, according to the Kaplan-Meier method. The results show a much higher survival in the case of mice treated with nanocapsule formulations (between 60-80% survival) than with Taxotere® (30% survival). This reduction in the toxicity of the drug formulated in the form of nanocapsules has to be attributed to a greater selectivity of the treatment, which is in line with the prolonged circulation time of the nanocapsules in plasma. The previous results were also analyzed in terms of mean and median survival after tumor implantation.
  • Table 2 shows the survival time of the animals expressed as range (difference between the longest and shortest time), the arithmetic mean and stardard deviation (SD) of the mean survival time and the median. Also, table 2 shows the percentage of the increase in survival (% IST) calculated from the mean or median values. For example, in the case of the mean, the calculation would be done according to the equation:
  • Table 2 Average survival time of animals treated with the different nanocapsule formulations loaded with docetaxel, compared to those obtained after the administration of Taxotere ® and control of saline.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención se refiere a un sistema para la administración de ingredientes activos que comprende nanocápsulas que comprenden un aceite, un tensoactivo catiónico y un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico-polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un ingrediente activo, con la condición de que cuando dicho polímero incluye ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina. La invención también se relaciona con procedimientos para la obtención de dicho sistema de nanocápsulas, sus composiciones farmacéuticas, así como el uso del mismo en medicina.

Description

NANOCÁPSULAS CON CUBIERTA POLIMÉRICA
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un sistema para la administración de ingredientes activos que comprende nanocápsulas de tamaño nanométrico, así como a las composiciones farmacéuticas que comprenden los mismos y procedimientos para su elaboración.
ANTECEDENTES DE LA INVENCIÓN
La incorporación de ingredientes activos en sistemas de tamaño nanométrico ha ayudado a solventar las limitaciones de formulación que presentan estas moléculas, incrementando adicionalmente su potencial en terapéutica. Mejoras en la solubilidad, protección frente a la degradación o mayor penetración de los ingredientes activos son algunas de las ventajas que ofrece la nanoencapsulación de moléculas activas. Así mismo, es también conocido que la capacidad de estos sistemas para atravesar las barreras externas y acceder al interior del organismo depende tanto de su tamaño como de su composición. Partículas de pequeño tamaño aumentarán el grado de transporte respecto a las de un mayor tamaño: los nanosistemas, de diámetro inferior a 1 μιη, responden a este criterio. Ácido polislutámico (PGA)
El ácido poliglutámico (PGA) es un polímero hidrofílico y biodegradable constituido por unidades de ácido glutámico con carga negativa. Debido a propiedades biológicas como su no toxicidad, su no inmunogenicidad y su biocompatibilidad, este polímero ha llegado a ser considerado como un importante biomaterial para el desarrollo de nuevas formulaciones para la liberación de fármacos (Buescher&Margaritis, Crit RevBiotech 2007).
Así por ejemplo, el empleo del ácido poliglutámico se encuentra ampliamente reportado para la formación de complejos fármaco-polímero de interés en el tratamiento de cáncer, encontrándose algunas formulaciones en avanzados estadios en su desarrollo. Tal es el caso del Xyotax, una formulación que consta de conjugados entre el ácido poli-L-glutámico y el agente citostático paclitaxel, que actualmente se encuentra en fase 3 de experimentación clínica. También ha sido empleado este polímero en el diseño de formulaciones para la administración de otros agentes antitumorales como la doxorubicina (Shih et al., 2004).
Asimismo, se encuentra también reportado en el documento de patente US 2006246096, el uso del ácido poliglutámico para la formulación de sistemas de liberación de fármacos, siendo utilizado como cubierta en formulaciones para la vehiculización de material genético a partir de los mismos.
Otro tipo de sistema de liberación desarrollado a partir del ácido poliglutámico son las nanopartículas, tal como se describe en los documentos de patente US 2005238678 y US 6326511.
Por otro lado, el ácido poliglutámico ha sido también conjugado con polietilenglicol (PEG) con el objetivo de conseguir modificaciones en la superficie de sistemas nanométricos, tratando de brindar una mayor estabilidad a sistemas coloidales. Dicha modificación con PEG logra también minimizar el reconocimiento por parte de las proteínas y células del sistema retículo endotelial hacia los nanosistemas, aumentando así el tiempo de circulación de los mismos.
El efecto de la conjugación del acido poliglutámico con el PEG ha sido investigado en la solicitud de patente US 2003170201, donde se evalúa el potencial de los complejos constituidos a partir de este polímero para la liberación de fármacos citostáticos.
Ácido hialurómco (HA)
El ácido hialurónico (HA) es un polímero de origen natural. Más concretamente es un glicosaminoglicano presente en la matriz extracelular de tejidos conectivos como son el subcutáneo y el cartilaginoso; también se encuentra en el cuerpo vitreo del globo ocular y el fluido sinovial de las cavidades articulares. Se trata de un polímero capaz de interaccionar con los receptores endógenos CD44 y RHAMM que se encuentran localizados a nivel de la superficie celular en prácticamente todas las células del organismo, a excepción de los glóbulos rojos. La interacción del ácido hialurónico con estos receptores permite la regulación de determinados procesos fisiológicos como son la movilidad y proliferación celular. Debido a estas propiedades, el ácido hialurónico es utilizado en terapéutica, ya que ejerce un papel importante en procesos como morfogénesis y desarrollo embrionario, cáncer e inflamación. Además, debido a las citadas propiedades, el ácido hialurónico es utilizado para promover la cicatrización de epitelios. Prueba de esta actividad biológica son numerosos trabajos en los que se incluye al ácido hialurónico como biomolécula activa, pudiendo mencionar los descritos por Sand et al. (Acta Ophthalmol. 67, 1989, 181-183), donde se aplica ácido hialurónico en el tratamiento de keratoconjuntivitis sicca, el de Nishida et al. (Exp. Eye Res. 53, 1991, 753-758), donde se aplica como cicatrizante a nivel corneal y el de Blanco et al. (Clin. Exp. Rheumatol. 22(3) 2004, 307-12), donde se aplica el polímero para el tratamiento de la artrosis, entre otros. Adicionalmente, el ácido hialurónico y sus derivados, bajo diferentes formas de presentación, han sido objeto de numerosos documentos de patente en los que se presenta como molécula activa. En este punto cabe destacar la solicitud de patente WO 96/06622, que reivindica la utilización del ácido hialurónico y derivados, sólo o en combinación con otro agente terapéutico, para modular la actividad celular de aquellos tejidos y células que en su superficie expresen receptores para el ácido hialurónico, y así tratar o prevenir procesos inflamatorios, fibrosis u oncogénesis. La patente US 6383478 protege un sistema de liberación consistente en micropartículas, nanopartículas o películas en los que se incorpora el ácido hialurónico como posible molécula activa para promover la angiogénesis.
Por otro lado, el ácido hialurónico también ha sido objeto de numerosos trabajos en los que se propone su utilización como biomaterial-excipiente empleado en el desarrollo de sistemas de liberación de fármacos. Su interés en esta línea se debe a que es un polímero biodegradable, biocompatible, no inmunogénico, mucoadhesivo y con afinidad selectiva por receptores como el CD44. En cuanto a los antecedentes enfocados a la obtención de formulaciones nanométricas utilizando el ácido hialurónico como biomaterial-excipiente se pueden citar, entre muchos otros, los siguientes:
Solicitud de patente US 2007/0224277, que describe la preparación de nanopartículas de ácido hialurónico formadas por entrecruzamientos covalentemente.
Solicitud de patente US 2003/0166602 Al, que divulga la elaboración de distintas formulaciones con un lípido modificado con ácido hialurónico y que puede albergar principios activos con actividad anticancerígena u otros agentes terapéuticos o diagnósticos. Solicitud de patente WO 2004/112758 Al, que describe la preparación en medio acuoso de nanopartículas conteniendo ácido hialurónico y que se forman por la interacción iónica entre éste, otros polímeros de carga complementaria y en presencia de un reticulante de tipo iónico.
- Luo and Prestwich (Bioconjugate Chem. 10, 1999, 755-763) sintetizan un conjugado entre el ácido hialurónico y el agente anticarígeno Taxol y cuya actividad citotóxica es superior y más selectiva que la obtenida únicamente con Taxol en las líneas celulares de mama, colon y ovario que sobreexpresan el receptor CD44.
- Yenice et al (Experimental Eye Research 2008, 87(3), 162-7) y Barbault- foucher et al (Journal of Controlled Reléase 2002, 83, 365-375) describen nanoesferas de ροΐΐ-ε-caprolactona recubiertas por ácido hialurónico como sistema de liberación ocular de fármacos. Poliasparasina (PAsn)
La L-asparagina se encuentra descrita en la literatura como un aminoácido esencial para el crecimiento y el desarrollo de todo tipo de células, ya que interviene directamente en la síntesis de proteínas y de DNA y la fuente principal de este aminoácido se encuentra en la dieta.
La L-asparagina es actualmente una de las estrategias más y mejor utilizadas para el tratamiento del cáncer, encontrándose comercializada una formulación que incluye el enzima necesario para su degradación. Al administrar dicho enzima y conseguir su deposición en la periferia del tumor, se consigue una disminución de la concentración del aminoácido provocando deficiencias de éste, las células quedan entonces impedidas de sintetizar DNA y otras proteínas esenciales para su supervivencia. Dicha formulación lleva por nombre Oncaspar® o Elspar®, siendo el enzima responsable de esta degradación la L-asparaginasa.
Las células de cáncer en estadios de metástasis avanzados, especialmente en leucemia presentan una alta afinidad hacia la asparagina por un alto reconocimiento superficial, esto debido a su rápida reproducción. Las células cancerosas no pueden suplir efectivamente sus necesidades básicas de este aminoácido, lo que en muchos casos deriva en la migración de dichas células en busca de concentraciones más altas de este aminoácido hacia la periferia tumoral. Dicho reconocimiento y necesidad ha sido utilizado recientemente como una alternativa para el tratamiento de muchos cánceres en estadios de metástasis. Se han realizado numerosos estudios con sistemas nanométricos como lo son las micelas poliméricas o los liposomas recubiertos con derivados poliméricos fundamentados en asparagina.
Dichos estudios han demostrado un gran potencial para el desarrollo de nanosistemas basados en poliaminoácidos a base de asparagina como lo es la poliasparagina (PAsn) o la polihidroxietilasparagina. Además, aunado a la especificidad otorgada por el reconocimiento en superficie de la asparagina, los polímeros a base de este aminoácido han demostrado tener propiedades hidrofílicas, estructurales y fisicoquímicas análogas a PEG, lo que otorga a dichos sistemas una mejora en la vida media del fármaco en curso, y una mejora notable en la farmacocinética y la biodistribución.
Dentro de los estudios relacionados con la poliasparagina, Storm y colaboradores (Metselaar, Bruin et al. 2003; Garcion, Lamprecht et al. 2006; Romberg, Kettenes-Van Den Bosch et al. 2006; Romberg, Metselaar et al. 2007; Romberg, Oussoren et al. 2007; Romberg, Oussoren et al. 2007; Romberg, Oussoren et al. 2007; Romberg, Flesch et al. 2008; Romberg, Hennink et al. 2008) evaluaron la farmacocinética de dos diferentes tipos de recubrimiento sobre liposomas, variando el polímero de recubrimiento; comparando el PEG con la polihidroxietilasparagina, los resultados favorecieron a la polihidroxietilasparagina, presentando una mejor farmacocinética y un mayor tiempo de circulación a bajas dosis y con administración repetida. Con la información presentada anteriormente se hace evidente el potencial y el interés que despiertan los compuestos anteriormente mencionados - el ácido poliglutámico y su copolímero con el PEG, el ácido hialurónico, y la poliasparagina - como biomaterial-excipiente en el desarrollo de nuevos sistemas de administración. Particularmente, sería conveniente disponer para determinadas aplicaciones de nanosistemas estables, que fueran aptos para encapsular y proteger moléculas de distintas características y que además presentaran buenas propiedades de adsorción e internalización en las superficies biológicas deseadas. COMPENDIO DE LA INVENCIÓN
Los autores de la presente invención han desarrollado un sistema nanocapsular de fácil obtención mediante distintos procedimientos experimentales, en donde las nanocápsulas comprenden un polímero, un aceite y un tensoactivo catiónico. Dichos sistemas de nanocápsulas permiten una asociación eficaz de ingredientes activos lipofílicos así como hidrofílicos. El tamaño reducido de dichas nanocápsulas (diámetro inferior a 1 μπι) posibilita su paso a través de barreras biológicas y que sean internalizadas por las células. Asimismo, la presencia de una cubierta polimérica, además de conferir mayor estabilidad a las nanocápsulas, proporciona distintas características beneficiosas en función de cada tipo de cubierta en particular.
Así, en un primer aspecto la invención se dirige a un sistema para la administración de ingredientes activos que comprende nanocápsulas que comprenden un aceite, un tensoactivo catiónico, un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico-polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un ingrediente activo,
con la condición de que cuando dicho sistema de nanocápsulas incluye ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
Adicionalmente, las nanocápsulas de la invención también pueden comprender de manera opcional otros componentes como por ejemplo un tensoactivo soluble en agua, un tensoactivo soluble en aceite o ambos.
En otro aspecto, la invención se refiere a una composición farmacéutica que comprende el sistema definido anteriormente.
Asimismo, la invención se refiere al uso de dicho sistema en la preparación de un medicamento. En una realización particular, dicho uso está relacionado con el tratamiento del cáncer.
En un aspecto adicional, la invención se dirige a un procedimiento para la obtención del sistema definido anteriormente (denominado en los ejemplos procedimiento de difusión de disolvente en una etapa), que comprende: a) preparar una disolución acuosa que comprende un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico- polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un tensoactivo soluble en agua;
b) preparar una disolución orgánica que comprende un aceite y un tensoactivo catiónico, y opcionalmente un tensoactivo adicional soluble en aceite; c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), obteniéndose espontáneamente las nanocápsulas; y
d) evaporar total o parcialmente los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante.
Según realizaciones particulares, la encapsulación de un ingrediente activo lipofílico (hidrofóbico) o anfifílico se lleva a cabo por adición de éste a la etapa b). Los ingredientes activos de naturaleza hidrofílica pueden ser añadidos en la etapa a) del procedimiento o en una etapa posterior a la etapa d) mediante un proceso de incubación.
En otro aspecto adicional, la invención se dirige a un procedimiento para la obtención de los sistemas definidos anteriormente, que comprende recubrir una nanoemulsión, constituida al menos por un aceite, un tensoactivo catiónico, opcionalmente un tensoactivo soluble en aceite, y una fase acuosa que opcionalmente comprende un tensoactivo soluble en agua, con un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico-polietilenglicol (PGA- PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos.
Según una realización particular, el procedimiento anterior además comprende añadir un ingrediente activo. Tal como se ha definido anteriormente, cuando el polímero es ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
Según una realización más particular, en caso de que el ingrediente activo tenga un carácter lipofílico, dicho ingrediente activo se añade en el proceso de formación de la nanoemulsión, preferentemente disuelto en etanol. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1: Evolución del tamaño de partícula y polidispersión de nanocápsulas de poliglutámico (1.a) y poliglutámico-polietilénglicol (l.b) a 37°C durante un período de 48 h.
Figura 2: Tamaño de partícula de nanocápsulas de poliglutámico- polietilénglicol (2.a) y poliglutámico (2.b), tras ser liofílizadas a distintas concentraciones (0.025-1% p/v) con el crioprotector trehalosa (5 y 10% p/v).
Figura 3: Imágenes de TEM de nanocápsulas de ácido hialurónico preparadas con el tensoactivo catiónico cloruro de benzalconio.
Figura 4: Perfil de liberación de docetaxel (DCX) obtenido a partir de nanocápsulas de ácido hialurónico preparadas con los tensoactivos catiónicos cloruro de benzalconio (BKC) y bromuro de hexadeciltrimetilamonio (CTAB).
Figura 5: Evolución del tamaño de partícula de nanocápsulas de ácido hialurónico preparadas con el tensoactivo catiónico cloruro de benzalconio (5.a) y bromuro de hexadeciltrimetilamonio (5.b) en su almacenamiento a 4°C y 37°C, durante un período de 3 meses.
Figura 6: Tamaño de partícula de nanocápsulas de ácido hialurónico preparadas con el tensoactivo catiónico cloruro de benzalconio, tras ser liofílizadas a distintas concentraciones (0.25-1% p/v) con el crioprotector trehalosa (5 y 10% p/v).
Figura 7: Viabilidad de la línea celular de cáncer NCI-H460 tras 2 (7.a) y 48
(7.b) horas de contacto con nanocápsulas de ácido hialurónico (NCs HA) blancas, docetaxel (DCX) en solución, y con nanocápsulas de ácido hialurónico conteniendo docetaxel, para distintas concentraciones del antitumoral. El tensoactivo catiónico utilizado en la preparación de las nanocápsulas fue el bromuro de hexadeciltrimetilamonio.
Figura 8: Imágenes de TEM de nanocápsulas de poliasparagina elaboradas con el tensoactivo catiónico cloruro de benzalconio (8.a) o con bromuro de hexadeciltrimetilamonio (8.b).
Figura 9: Perfil de liberación de docetaxel (DCX) obtenido a partir de nanocápsulas de poliasparagina preparadas con el tensoactivo catiónico bromuro de hexadeciltrimetilamonio. Figura 10: Evolución del tamaño de partícula y potencial zeta de nanocápsulas de poliasparagina preparadas con el tensoactivo catiónico bromuro de hexadeciltrimetilamonio durante su almacenamiento a 4°C (10.a) y 37°C (lO.b) y de los mismos sistemas preparados con el tensoactivo catiónico cloruro de benzalconio durante su almacenamiento a 4°C (lO.c) y 37°C (lO.d).
Figura 11: Viabilidad de la línea celular de cáncer NCI-H460 tras 2 (11.a) y 48 (ll.b) horas de contacto con nanocápsulas de poliasparagina (NCs PAsn) blancas, docetaxel (DCX) en solución, y con nanocápsulas de poliasparagina conteniendo docetaxel, para distintas concentraciones del antitumoral. El tensoactivo catiónico utilizado en preparación de las nanocápsulas fue el bromuro de hexadeciltrimetilamonio.
Figura 12: Concentración de fluorescencia expresada en fotones/seg/cm /sr en diferentes órganos y tejidos tras la administración de nanocápsulas de poliglutámico- polietilenglicol de 100 nm, al cabo de diferentes periodos de tiempo: (a) 6 horas, (b) 24 horas, (c) 48 horas; ( ΕΞ administración por vía subcutánea, GHD administración por vía intravenosa).
Figura 13: Concentración de fluorescencia expresada en fotones/seg/cm /sr en diferentes órganos y tejidos tras la administración de nanocápsulas de poliglutámico- polietilenglicol de 200 nm, al cabo de diferentes periodos de tiempo: (a) 6 horas, (b) 24 horas, (c) 48 horas; ( administración por vía subcutánea, HHD administración por vía intravenosa).
Figura 14: Cinética de eliminación en plasma de la fluorescencia asociada a las nanocápsulas de PAsn (A), PGA (♦) y PGA-PEG (■) tras su administración por vía I.V. en ratones Swiss. El porcentaje de la dosis inyectada (concentración de DiD en mg/kg del peso total del animal a cada tiempo en relación a la concentración a tiempo cero) esta expresado en función del tiempo. La nanoemulsión (·) fue utilizada como control. Cada punto representa la media del porcentaje de la dosis inyectada en un grupo y esta expresado como n=3 ± D.E.
Figura 15: (a) Evolución del tamaño del tumor a lo largo del tiempo tras la administración de las nanocápsulas de PAsn (A), PGA-PEG (■), el Taxotere ® (- -X- -) y suero salino (X) en ratones (modelo tumoral subcutáneo de glioma U87MG); (b) Aumento del volumen del tumor, relativo al volúmen inicial, que presentan los ratones al cabo de 18 y 21 días, tras la inyección de las diferentes formulaciones. Como controles se utilizaron la formulación Taxotere® y suero salino fisiológico. El análisis estadístico evidencia las diferencias significativas en el tamaño del tumor el día 18 y el día 21 en los animales tratados con las formulaciones de nanocápsulas y el Taxotere® en comparación con el control (*P < 0.05 **P < 0.01— F test ANO VA).
Figura 16: Curvas de supervivencia de Kaplan-Meier de los animales tratados con las diferentes formulaciones de nanocápsulas cargadas con docetaxel (nanocápsulas de PAsn (·), PGA-PEG (■), el Taxotere ® (♦) y suero salino (+), en comparación a las obtenidas tras la administración del Taxotere ® y el control de suero salino
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se dirige al diseño y desarrollo de nanocápsulas para la administración de ingredientes activos, en donde las nanocápsulas del sistema tienen un diámetro inferior a 1 μπι y se caracterizan por comprender (a) una cubierta de un polímero seleccionado del grupo que consiste en ácido poliglutámico, ácido poliglutámico-polietilenglicol, ácido hialurónico, poliasparagina o una combinación de los mismos y (b) un núcleo que comprende a su vez un aceite y un tensoactivo catiónico. Las nanocápsulas de la invención también comprenden preferiblemente al menos un ingrediente activo, con la condición de que cuando el polímero es ácido poliglutámico o ácido poliglutámico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
Nanocápsulas: naturaleza v tamaño
La ventaja de los sistemas de nanocápsulas con respecto a los sistemas de emulsiones es la presencia de un polímero recubriendo los núcleos oleosos que les puede conferir una mayor estabilidad y protección frente a la agregación, un cambio en el perfil de liberación del fármaco asociado, una mayor internalización celular y una interacción específica con determinados tipos celulares.
En comparación con otros sistemas como los liposomas o las nanopartículas, que generalmente se ven condicionadas a una limitada carga de fármaco, las nanocápsulas poseen una mayor posibilidad de carga, en particular de fármacos lipofílicos, debido a la presencia del núcleo oleoso. Otra de las grandes ventajas de las nanocápsulas es la capacidad de combinar fármacos de diferente naturaleza, pudiendo estar un fármaco lipofílico encapsulado en el núcleo y un fármaco hidrofílico asociado a la cubierta; asimismo, la cubierta les brinda estabilidad, protección y especificidad.
Estos sistemas presentan además ventajas respecto a otros de mayor tamaño (micropartículas, pellets, films, esponjas...) en cuanto a sus aplicaciones biológicas. De hecho, se sabe que la interacción de un sistema de liberación de fármacos con una superficie biológica está altamente condicionada por su tamaño. Así, las nanocápsulas son capaces de atravesar mucosas y de ser internalizadas por las células actuando como sistemas de transporte de fármacos, mientras que las micropartículas no tienen esa capacidad. Igualmente, la biodistribución de estos sistemas está altamente condicionada por el tamaño. El conocimiento generado en los últimos años en el mundo de la nanomedicina y los nanosistemas de liberación de fármacos ha permitido fijar una frontera claramente definida entre los sistemas nanométricos (que poseen un tamaño inferior a una miera ej. nanopartículas y nanocápsulas) y los sistemas micrométricos (micropartículas y microcápsulas). Además de las diferencias de comportamiento en cuanto a su capacidad para ser internalizados por las células y superar complejas barreras biológicas, en el caso de las formulaciones destinadas a la administración intravenosa de fármacos antitumorales es imprescindible el tamaño nanométrico de los sistemas de liberación a fin de prevenir la obstrucción de los capilares sanguíneos. Asimismo, se sabe que las posibilidades de los nanosistemas para alcanzar el tejido tumoral están estrictamente relacionadas con su tamaño y también por el carácter hidrofílico de su superficie.
Las nanocápsulas de los sistemas de la presente invención presentan un diámetro medio inferior a 1 μηι, respondiendo por tanto a la definición de nanosistema, sistema coloidal constituido a base de polímeros con un tamaño inferior a 1 μιη, es decir, tienen un tamaño de entre 1 y 999 nm, preferiblemente de entre 30 y 500 nm. El tamaño de las nanocápsulas está influido principalmente por la composición y las condiciones de formación y puede medirse utilizando procedimientos estándar conocidos por el experto en la técnica y que se describen, por ejemplo, en la parte experimental a continuación. El tamaño de las mismas no varía notoriamente al modificar la relación de compuesto de cubierta en la formulación, obteniéndose en todos los casos sistemas de tamaño nanométrico. Asimismo, es importante destacar la diferencia entre los sistemas de nanocápsulas y los "complejos". Se entiende por "complejos" la nanoestructura formada por la interacción de polielectrolitos o bien por polielectrolitos y tensoactivos de carga opuesta. Los sistemas de nanocápsulas de la presente invención se diferencian de los complejos de poliglutámico-paclitaxel (US 2003170201) o de ácido hialurónico (Kim et al. J. Gene Med. (2009) 1 1 :791) por tratarse de un sistema transportador nanocapsular, tipo reservorio, en cuyo núcleo se pueden alojar un importante número de moléculas que tengan una mayor o menor afinidad por los lípidos (encapsulación) y en cuya cubierta pueden incorporarse moléculas hidrofilicas que tengan una cierta afinidad por la misma (adsorción). Estas características permiten mantener la integridad y funcionalidad de la nanoestructura, así como aportar mayor estabilidad en presencia de fluidos biológicos.
Componentes
Ácido poliglutámico (PGA) y ácido poliglutámico-polietüenglicol (PGA-PEG)
Tal como se ha mencionado en los antecedentes, el ácido poliglutámico y su conjugado con PEG constituyen biomateriales muy interesantes en el diseño de sistemas de liberación de moléculas activas.
Como se utiliza aquí, PGA incluye las sales solubles en agua de PGA, como la sal de amonio y sales metálicas de PGA, como la sal de litio, sal de sodio, sal de potasio, sal de magnesio, etc. Además, en una realización, la forma de PGA se selecciona a partir del ácido poli-D-glutámico, ácido poli-L-glutámico, ácido poli-D,L- glutámico, ácido poli-a-glutámico, ácido poli-a-D-glutámico, ácido poli-a-L-glutámico, ácido poli-a-D,L-glutámico, ácido poli-y-glutámico, ácido poli-y-D-glutámico, ácido poli-y-L-glutámico, y ácido poli-y-D,L-glutámico, y sus mezclas. En otra realización, la forma preferida de PGA es el ácido poli-L-glutámico, y aún más preferido es la sal sódica del ácido poli-L-glutámico. En otra realización, la forma preferida de PGA es el ácido poli-a-glutámico, y aún más preferido es la sal sódica del ácido poli-a-glutámico.
Además, las nanocápsulas de la invención se pueden formar a partir de derivados hidrosolubles de PGA o PGA-PEG, en donde PGA está sustituido en una o más posiciones disponibles, por ejemplo los grupos amina y/o ácido carboxílico, con uno o más grupos adecuados. Derivados adecuados de PGA y PGA-PEG incluyen derivados de poli(alquilglutamina) y derivados de PEG-poli(alquilglutamina), tales como poli(N- 2-(2'-hidroxietoxi)etil-L-glutamina) (PEEG), PEG-PEEG, poli(N-3-(hidroxipropil)-L- glutamina) (PHPG), PEG-PHPG, poli(N-2-(hidroxietil)-L-glutamina) (PHEG), PEG- PHEG, poli(y-bencil-L-glutamato) (pBG), PEG-pBG, poli(y-tricloroetil-L-glutamato) (pTCEG), PEG-pTCEG, poli(dimetilaminoetil-L-glutamina) (pDMAEG), PEG- pDMAEG, poli(piridinoetil-L-glutamina) (pPyAEG), PEG-pPyAEG, poli (aminoetil-L- glutamina) (pAEG), PEG-pAEG, poli(histamino-L-glutamina) (pHisG), PEG-pHisG, poli(agmatino-L-glutamina) (pAgmG), y PEG-pAgmG, y sus mezclas (Hoste et al. J. Control. Reléase, 2000, 64, 53-61; Dekie J. Control. Reléase, 2000, 65, 187-202; Dubruel et al. Biomacromolecules, 2003, 4, 1168-1176). En cualquier caso, cualquier persona experta en la materia es capaz de identificar las modificaciones que se pueden llevar a cabo en PGA para dar lugar a derivados hidrosolubles del mismo.
La presencia de una cubierta a base de un polímero pegilado otorga a las nanocápsulas una mayor estabilidad en plasma y un incremento en el tiempo de residencia en el organismo facilitando la llegada a la diana terapéutica. Así, la modificación de superficie de las nanoestructuras con cadenas de PEG consigue reducir su captura por parte del sistema fagocítico mononuclear a través de lo que se ha denominado el sistema escudo ("stealth system") o de largo tiempo de circulación ("long circulation systems") (Park J. H. et al, 2008). Gracias a su presencia prolongada en el torrente circulatorio, se observó que estos sistemas disponían de una mayor posibilidad de acceso a los órganos diana. Esta modificación resulto de interés para el transporte y orientación de fármacos citostáticos, cuyo tejido diana presenta habitualmente una hipervascularización y una mayor permeabilidad de los vasos sanguíneos.
El polietilenglicol (PEG), en su forma más común, es un polímero de fórmula
(I):
H-(0-CH2-CH2)p-OH
(I) donde p es un número entero que representa el grado de polimerización del PEG. Para la formación del conjugado ácido poliglutámico-polietilenglicol ha de emplearse un PEG modificado en el cual uno o los dos grupos hidroxilo terminales se encuentran modificados. Entre los PEG modificados que pueden emplearse para la obtención de los conjugados PGA-PEG se encuentran aquellos que presentan la fórmula (II):
X1-(0-CH2-CH2)p-X2
(Π)
donde:
Xi es hidrógeno o un grupo protector de radicales hidroxilo que bloquea la función OH para reacciones posteriores. Los grupos protectores de radicales hidroxilo son ampliamente conocidos en la técnica; grupos protectores representativos (incluyendo ya el oxígeno a proteger) son por ejemplo los éteres de sililo como el trimetilsilil éter, trietilsilil éter, terc-butildimetilsilil éter, terc-butildifenilsilil éter, triisopropilsilil éter, dietilsopropilsilil éter, texildimetilsilil éter, trifenilsilil éter, di-terc-butilmetilsilil éter; éteres de alquilo, como metil éter, terc-butil éter, bencil éter, de p-metoxibencil éter, 3,4-dimetoxibencil éter, tritil éter, alil éter; éteres de alcoximetilo como metoximetil éter, 2-metoxietoximetil, benciloximetil éter, p-metoxibenciloximetil éter, 2- (trimetilsilil)etoximetil éter; éteres de tetrahidropiranilo y éteres relacionados; metiltiometil éter; esteres como éster de acetato, éster de benzoato, éster de pivalato, éster de metoxiacetato, éster de cloroacetato, éster de levulinato; carbonatos como carbonato de bencilo, carbonato de p-nitrobencilo, carbonato de tere-butilo, carbonato de 2,2,2-tricloroetilo, carbonato de 2-(trimetilsilil)etilo, carbonato de alilo. Otros ejemplos de grupos protectores de hidroxilo se puede encontrar en libros de referencia como "Protective Groups in Organic Synthesit." de Greene y Wuts, John Wiley & Sons, Inc., Nueva York, 1999. En una realización preferida, el grupo protector es un alquil éter, preferiblemente que es el éter de metilo.
X2 es un grupo puente que permita el anclaje a los grupos del ácido poliglutámico y a los grupos de los derivados del mismo. De forma alternativa X\ puede ser igualmente un grupo que permita el anclaje con otros PGA y derivados del mismo.
Preferiblemente, los PEGs están unidos a PGA y sus derivados a través de los grupos amina y/o ácido carboxílico de este último. La pegilación de los polímeros se puede realizar utilizando cualquier método adecuado disponible en la técnica (como los descritos en Veronese et al. DDT, 2005, 10(21), 1451-1458; Nishiyama et al. Cáncer Research 2003, 63, 8977-8983; Cabrera et al. J. Control. Reléase, 2005, 101, 223-232; US 2003/0170201).
Estos polímeros están disponibles en una variedad de pesos moleculares, y el peso molecular adecuado para un uso dado es determinado fácilmente por un experto en la materia. Así, por ejemplo, un peso molecular adecuado de PGA en polímeros PGA y PGA-PEG puede ser de entre aproximadamente 1 kDa y aproximadamente 100 kDa, preferiblemente entre aproximadamente 5 kDa y aproximadamente 80 kDa, más preferiblemente entre aproximadamente 10 kDa y aproximadamente 50 kDa, y aún más preferiblemente aproximadamente 10 kDa, aproximadamente 15 kDa, aproximadamente 20 kDa, aproximadamente 25 kDa, aproximadamente 30 kDa, y aproximadamente 35 kDa.
Un peso molecular adecuado para PEG en polímeros PGA-PEG y en derivados hidrosolubles de los mismos puede ser entre aproximadamente 1 kDa y aproximadamente 50 kDa, preferiblemente entre aproximadamente 2 kDa y aproximadamente 40 kDa, más preferiblemente entre aproximadamente 3 kDa y aproximadamente 30 kDa, y aún más preferiblemente aproximadamente 4 kDa, aproximadamente 5 kDa, aproximadamente 6 kDa, aproximadamente 7 kDa, aproximadamente 8 kDa, aproximadamente 10 kDa, aproximadamente 15 kDa, aproximadamente 20 kDa, aproximadamente 21 kDa, aproximadamente 22 kDa, aproximadamente 23 kDa, aproximadamente 24 kDa, aproximadamente 25 kDa, y aproximadamente 30 kDa.
Además, los polímeros PGA-PEG y los derivados solubles en agua del mismo están disponibles en una variedad de grados de pegilación y el grado de pegilación apropiado para un uso dado es determinado fácilmente por un experto en la materia. Este grado de pegilación se define como el porcentaje de grupos funcionales de PGA o de grupos funcionales de los derivados de PGA que están funcionalizados con PEG. Por lo tanto, los grados adecuados de pegilación en polímeros PGA-PEG y en derivados hidrosolubles de los mismos pueden estar entre aproximadamente 0,1% y aproximadamente 10%, preferiblemente entre aproximadamente 0,2% y aproximadamente 5%, más preferiblemente entre aproximadamente 0,5% y aproximadamente 2%, y aún más preferiblemente aproximadamente 0,5%, aproximadamente 0,6%, aproximadamente 0,7%, aproximadamente 0,8%, aproximadamente 0,9%, aproximadamente 1%, aproximadamente 1,1%, aproximadamente 1,2%, aproximadamente 1,3%, aproximadamente 1,4%, aproximadamente 1,5%, aproximadamente 1,6%, aproximadamente 1,7%, aproximadamente 1,8%, aproximadamente 1,9%, y aproximadamente 2%.
Por otra parte, la proporción de PEG en los polímeros PGA-PEG y derivados hidrosolubles de los mismos puede ser entre aproximadamente 10% y 90% (p/p) con respecto al peso total del polímero, preferiblemente entre aproximadamente 15% y 80%, más preferiblemente entre aproximadamente 20% y 70%, y aún más preferiblemente aproximadamente 20%, aproximadamente 22%, aproximadamente 24%, aproximadamente 26%, aproximadamente 28%, aproximadamente 30%, aproximadamente 32%, aproximadamente 34%, aproximadamente 36%, aproximadamente 38%, aproximadamente 40%, aproximadamente 42%, aproximadamente 44%, aproximadamente 46%, aproximadamente 48%, aproximadamente 50%, aproximadamente 52%, aproximadamente 54%, aproximadamente 56%, aproximadamente 58%, y aproximadamente 60%.
Ácido hialurónico (HA)
La presencia del ácido hialurónico en la superficie de las nanocápsulas les otorga la capacidad de adherirse a superficies mucosas debido a su conocida propiedad mucoadhesiva. Por otro lado, presentan un gran potencial para lograr una vehiculización activa hacia las células que presenten un rápido crecimiento y sobreexpresión del receptor CD44 lo que les permite formar tejidos; un claro ejemplo de este comportamiento celular se ve evidenciado en varios tipos de células cancerosas.
Como se utiliza aquí, HA incluye las sales solubles en agua de HA así como derivados hidrosolubles de HA. En una realización particular, la sal de ácido hialurónico se selecciona del grupo que consiste en sal de sodio, de potasio, de magnesio, de calcio y de zinc. De forma preferida la sal de ácido hialurónico es sódica.
Poliasparagina (PAsn)
La presencia del poliaminoácido neutro poliasparagina en la superficie brinda a la nanocápsula de estabilidad, de una larga vida en el organismo, protección frente al sistema fagocítico mononuclear y especificidad en su interacción con determinadas células diana.
La presencia de poliasparagina en la superficie de las nanocápsulas además brinda una mayor especificidad hacía las células cancerosas por parte de los sistemas, debido a que dichas células presentan una mayor necesidad de asparagina para mantener su desarrollo. Las células cancerosas son incapaces de auto-satisfacer sus necesidades por este aminoácido, contrariamente a lo que sucede con células normales.
Como se utiliza aquí, PAsn incluye las sales solubles en agua de PAsn así como derivados hidrosolubles de PAsn.
Las nanocápsulas comprenden un aceite y un tensoactivo catiónico en el núcleo. El aceite puede ser volátil o no volátil y en una realización particular, se selecciona entre aceites naturales, semisintéticos y sintéticos de uso farmacéutico o una combinación de los mismos, tales como aceites de origen animal, vegetal, aceites hidrocarbonados o aceites de silicona. Aceites adecuados incluyen, pero no se limitan a, aceite mineral, aceite de escualeno, aceites de sabor, aceite de silicona, aceites esenciales, vitaminas insolubles en agua, isopropil estearato, butil estearato, octil palmitato, cetil palmitato, tridecil behenato, diisopropil adipato, dioctil sebacato, mentil antranilato, cetil octanoato, octil salicilato, isopropil miristato, cetoles de dicarpato de neopentilglicol, Cerafilos®, decil oleato, C12-C15 alquil lactatos, cetil lactato, lauril lactato, isostearil neopentanoato, miristil lactato, isocetil estearoil estearato, octildodecil estearoil estearato, aceites de hidrocarburos, isoparafina, parafinas fluidas, isododecano, vaselina, aceite de argán, aceite de colza, aceite de chile, aceite de coco, aceite de maíz, aceite de algodón, aceite de lino, aceite de semilla de uva, aceite de mostaza, aceite de oliva, aceite de palma, aceite de palma fraccionado, aceite de cacahuete, aceite de ricino, aceite de semilla de pino, aceite de semilla de amapola, aceite de semilla de calabaza, aceite de salvado de arroz, cártamo, aceite de té, aceite de trufa, aceite vegetal, aceite de albaricoque, aceite de jojoba, aceite de macadamia, aceite de germen de trigo, aceite de almendra, aceite de soja, aceite de sésamo, aceite de avellana, aceite de girasol, aceite de cáñamo, aceite de bois, aceite de nuez de Kukui, aceite de aguacate, aceite de nuez, aceite de pescado, aceite de baya, aceite de pimienta de Jamaica, aceite de enebro, aceite de semilla, aceite de semilla de almendra, aceite de semilla de anís, aceite de semilla de apio, aceite de semilla de comino, aceite de semilla de nuez moscada, aceite de hoja de albahaca, aceite de hoja de laurel, aceite de hoja de canela, aceite de hoja de salvia común, aceite de hoja de eucalipto, aceite de hoja de limón, aceite de hoja de melaleuca, aceite de orégano, aceite de hoja de pachuli, aceite de hoja de menta, aceite de aguja de pino, aceite de hoja de romero, aceite de menta verde, aceite de hoja del árbol de té, aceite de hoja de tomillo, aceite de hoja de té de Canadá, aceite de flor, aceite de camomila, aceite de salvia romana, aceite de clavo, aceite de flor de geranio, aceite de flor de hisopo, aceite de flor de jazmín, aceite de flor de lavanda, aceite de flor de mauka, aceite de flor de mejorana, aceite de flor de naranja, aceite de flor de rosa, aceite de flor de ylang-ylang, aceite de corteza, aceite de corteza de casia, aceite de corteza de canela, aceite de corteza de sasafrás, aceite de madera, aceite de madera de alcanfor, aceite de madera de cedro, aceite de palo de rosa, aceite de sándalo, aceite de madera de jengibre, aceite de resina, aceite de reciño, aceite de mirra, aceite de piel, aceite de piel de Bérgamo, aceite de piel de pomelo, aceite de piel de limón, aceite de piel de lima, aceite de piel de naranja, aceite de piel de mandarina, aceite de raíz, aceite de valeriana, ácido oleico, ácido linoleico, oleil alcohol, alcohol de isostearilo, oleato de etilo, Miglyol®, Labrafil®, Labrafac®, Peceol® y Maisine®, derivados sintéticos o semisintéticos de los mimos y combinaciones de los mismos.
En una realización más particular, el aceite se selecciona entre aceite de cacahuete, algodón, oliva, ricino, soja, cártamo, palma; vitamina E, miristato de isopropilo, escualeno, Miglyol®, Labrafil®, Labrafac®, Peceol® y Maisine® o mezclas de los mismos. De forma preferida el aceite es Miglyol®.
En la presente invención, el término "tensoactivo catiónico" alude a un componente que posee estructuras y/o grupos funcionales que les permiten interaccionar simultáneamente con la parte lipófila e hidrófila de la formulación siendo ésta última interacción favorecida por la presencia de un grupo funcional catiónico. En una realización particular, el tensoactivo catiónico se selecciona entre aminas primarias, secundarias y terciarias altamente cationizables y aminas cuaternarias. En una realización más particular, el tensoactivo catiónico se selecciona entre oleilamina, estearilamina, cloruro de benzalconio, cloruro de bencetonio, cloruro de cetilpiridinio, bromuro de cetiltiridinio, bromuro de dodeciltrimetilamonio, bromuro de trimetiltetradecilamonio, bromuro de hexadeciltrimetilamonio y poloxaminas (p.ej. Tetronic®) o mezclas de los mismos. De forma preferida el tensoactivo catiónico es cloruro de benzalconio o bromuro de hexadeciltrimetilamonio.
Asimismo, las nanocápsulas según la presente invención opcionalmente pueden contener un tensoactivo soluble en aceite, un tensoactivo soluble en agua o ambos, que favorecen estéricamente la estabilidad del sistema y que permiten modular la carga eléctrica superficial de las nanocápsulas y aportar estabilidad al sistema.
En la presente invención, los términos "tensoactivo soluble en aceite" o
"tensoactivo soluble en agua" aluden a componentes que poseen estructuras y/o grupos funcionales que les permiten interaccionar simultáneamente con la parte lipófila e hidrófila de la formulación, siendo la interacción favorecida con respecto a la parte lipófila en el caso de los tensoactivos solubles en aceite o con respecto a la parte hidrófila en el caso de los tensoactivos solubles en agua.
En relación con estos tensoactivos opcionales, dependiendo de sus propiedades de solubilidad agua/aceite, entre los tensoactivos adecuados en la presente invención se incluyen fosfolípidos como lecitina, fosfatidilglicerol, fosfatidilserina, fosfatidilinositol, difosfatidilglicerol, ácido fosfatídico, fosfatidilcolina y fosfatidiletanolamina; colesterol; gliceril monoestearato; copolímeros polioxietileno polipropileno (poloxámeros); polietilen glicol; polipropilen glicol; alcohol cetílico; alcohol cetoestearílico; alcohol estearílico; alcoholes de poliéter de arilo alquilo; ésteres de ácidos grasos de sorbitán
(como Span® y Arlacel®); ésteres de ácidos grasos de polioxietileno (como Myrj®); ésteres de ácidos grasos de polioxietilensorbitán (polisorbatos); éteres de polioxietilenalquilo (éteres macrogol); éteres de alcoholes grasos (como Brij®), y mezclas de los mismos.
Según una realización preferida, el tensoactivo soluble en aceite es un fosfolípido seleccionado entre lecitina, fosfatidilglicerol, fosfatidilserina, fosfatidilinositol, difosfatidilglicerol, ácido fosfatídico, fosfatidilcolina y fosfatidiletanolamina, preferiblemente lecitina.
Según otra realización preferida, el tensoactivo soluble en agua es un derivado hidrofílico del polieoxietileno, preferiblemente poloxámero, o un polisorbato En la presente invención el término "poloxámero" alude a un copolímero tribloque no iónico compuesto por una cadena hidrofóbica central de polioxipropileno unida a dos cadenas hidrofílicas de polioxietileno. De forma preferida el poloxámero es el 188.
Tal como se ha definido anteriormente, las nanocápsulas de la invención también comprenden de manera opcional al menos un ingrediente activo. El término "ingrediente activo" se refiere a cualquier sustancia que se utiliza en el tratamiento, cura, prevención o diagnóstico de una enfermedad o que se utiliza para mejorar el bienestar físico y mental de seres humanos y animales. El ingrediente activo podrá ser por ejemplo un fármaco, una vitamina, etc. Los sistemas de nanocápsulas objeto de la presente invención son adecuados para incorporar ingredientes activos de naturaleza lipófila o hidrófila. En una realización preferida, el ingrediente activo es docetaxel.
La proporción de ingrediente activo incorporado dependerá en cada caso del ingrediente activo que va a incorporarse, la indicación para la que se utiliza y la eficiencia de administración.
Nanocápsulas que comprenden un aceite, un tensoactivo catiónico, un polímero seleccionado entre PGA y PGA-PEG y un ingrediente activo seleccionado entre una didemnina o una tamandarina quedan fuera de la presente solicitud de patente y son objeto de la solicitud de patente europea EPl 1382003.9 con el título "Nanocapsules for use in pharmaceutical compositions", depositada el mismo día que la presente solicitud. Las didemninas y tamandarinas son ciclodepsipéptidos que exhiben una amplia variedad de actividades biológicas, tales como antitumoral, immunosupresora y antiviral. Ejemplos de este tipo de compuestos (excluidos de la presente invención para nanocápsulas de PGA o PGA-PEG) caen dentro de la siguiente fórmula general:
Figure imgf000022_0001
en la que X se selecciona entre O y NH;
Y se selecciona entre CO y -COCH(CH3)CO-;
n y p se seleccionan independientemente entre 0 y 1, y q se selecciona entre 0, 1 y 2; Ri, R3, R5, R9, Rn, y R15 se seleccionan independientemente entre hidrógeno, Ci-C alquilo sustituido o no sustituido, C2-C6 alquenilo sustituido o no sustituido, y C2-C6 alquinilo sustituido o no sustituido;
R2 se selecciona entre hidrógeno, CORa, COORa, Ct-C alquilo sustituido o no sustituido, C2-C6 alquenilo sustituido o no sustituido, y C2-C6 alquinilo sustituido o no sustituido;
R4, R8, Rio, R12, y RIÓ se seleccionan independientemente entre hidrógeno y C\-C alquilo sustituido o no sustituido;
R7 y R13 se seleccionan independientemente entre hidrógeno, Cj-C6 alquilo sustituido o no sustituido, C2-C6 alquenilo sustituido o no sustituido, y C2-C6 alquinilo sustituido o no sustituido; R6 y Ri4 se seleccionan independientemente entre hidrógeno y Ci-C6 alquilo sustituido o no sustituido; o R y R7 y/o R13 y R14, junto con su correspondiente átomo de N y de C a los cuales están unidos, pueden formar un grupo heterocíclico sustituido o no sustituido;
R17 se selecciona entre hidrógeno, CORa, COORa, CONHRb, COSRc, (C=NRb)ORa, (C=NRb)NHRb, (C=NRb)SRc, (C=S)ORa, (C=S)NHR„, (C=S)SRc, S02Rc, S03Rc, Cp C12 alquilo sustituido o no sustituido, C2-C12 alquenilo sustituido o no sustituido, y C2- C12 alquinilo sustituido o no sustituido, arilo sustituido o no sustituido, y grupo heterocíclico sustituido o no sustituido; y
Ra, Rb, y Rc se seleccionan independientemente entre hidrógeno, C -Cn alquilo sustituido o no sustituido, C2-C12 alquenilo sustituido o no sustituido, y C2-C12 alquinilo sustituido o no sustituido, arilo sustituido o no sustituido, y grupo heterocíclico sustituido o no sustituido; o una sal farmacéuticamente aceptable, profármaco o esteroisómero de los mismos. En particular, de acuerdo a la presente invención si las nanocápsulas comprenden ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es aplidina.
Procedimiento de obtención
Los procedimientos de obtención de los sistemas de nanocápsulas son métodos sencillos que evitan condiciones drásticas como altas temperaturas. Además, tampoco es necesario llevar a cabo ningún tipo de reacción química para la obtención de los mismos, ya que según se ha indicado anteriormente la obtención del sistema implica interacciones no covalentes. Por tanto, se preserva así la integridad de las moléculas incorporadas al sistema, susceptibles de ser degradadas. Para lograr la formación de nanocápsulas en un rango de tamaños deseado, se procede a la formación de los núcleos oleosos que comprenden un aceite y un tensoactivo catiónico, en cuya superficie se une el polímero de recubrimiento a través de diferentes tipos de interacción. Se trata, por tanto, de un proceso de difusión de solventes, que ocurre de manera controlada y proporciona estabilidad al sistema, sin que exista la necesidad de crear enlaces covalentes entre los componentes.
Un procedimiento particular para la obtención de los sistemas de la invención (denominado en los ejemplos procedimiento de difusión de disolvente en una etapa), comprende: a) preparar una disolución acuosa que comprende un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico- polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un tensoactivo soluble en agua;
b) preparar una disolución orgánica que comprende un aceite y un tensoactivo catiónico, y opcionalmente un tensoactivo soluble en aceite;
c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), obteniéndose espontáneamente las nanocápsulas; y d) opcionalmente, evaporar total o parcialmente los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante.
En una realización particular la adición de la disolución orgánica c) puede realizarse en alícuotas de volúmenes de entre 250μί y 500 μΐ, a intervalos de tiempo de entre 15 y 25 segundos.
Los sistemas de la presente invención se pueden preparar mediante un procedimiento alternativo (denominado en los ejemplos procedimiento de difusión de disolvente en dos etapas) que comprende recubrir una nanoemulsión catiónica con el polímero de recubrimiento mediante un proceso de incubación con una disolución acuosa del polímero. Asimismo, la formación de la nanoemulsión puede favorecerse mediante ultrasonidos (denominado en los ejemplos procedimiento de sonicación) u homogeneización (denominado en los ejemplos procedimiento de homogeneización).
En una realización particular, el proceso de incubación comprende mezclar la nanoemulsión catiónica con una disolución acuosa del polímero de recubrimiento.
Dicha nanoemulsión catiónica está constituida al menos por un aceite, un tensoactivo catiónico y una fase acuosa. La fase acuosa puede contener otros agentes tensoactivos, sales, y otros agentes auxiliares.
Los procedimientos de preparación de dicha nanoemulsión son conocidos en el estado de la técnica, y pueden comprender un proceso de difusión, sonicación u homogeneización (Prego et al. J. Nanosci. Nanotechnol. (2006) 6:1 ; Tadros et al. Adv. Colloid Interface Sci. (2004) 109:303).
Un procedimiento particular para la obtención de la nanoemulsión catiónica (denominado en los ejemplos procedimiento de difusión de disolvente) comprende:
i) preparar una disolución orgánica que comprende un aceite, un tensoactivo catiónico y opcionalmente un tensoactivo soluble en aceite
ii) añadir la disolución obtenida en la etapa i) sobre una fase acuosa que opcionalmente contiene un tensoactivo soluble en agua y que está bajo agitación para formar una nanoemulsión catiónica; iii) opcionalmente, evaporar total o parcialmente los disolventes orgánicos hasta volumen constante. Otro procedimiento particular para la obtención de la nanoemulsión catiónica (denominado en los ejemplos procedimiento de sonicación) comprende:
i) preparar una disolución orgánica que comprende un aceite, un tensoactivo catiónico y opcionalmente un tensoactivo soluble en aceite;
ii) añadir la disolución obtenida en la etapa i) sobre una fase acuosa que opcionalmente contiene un tensoactivo soluble en agua y sonicar;
iii) diluir con agua la emulsión obtenida en la fase ii);
iv) opcionalmente, evaporar total o parcialmente los disolventes orgánicos hasta volumen constante.
Otro procedimiento particular para la obtención de la nanoemulsión catiónica
(denominado en los ejemplos procedimiento de homogeneización) comprende:
i) preparar una disolución orgánica que comprende un aceite, un tensoactivo catiónico y opcionalmente un tensoactivo soluble en aceite;
ii) añadir la disolución obtenida en la etapa i) sobre una fase acuosa que opcionalmente contiene un tensoactivo soluble en agua y homogeneizar; iii) diluir con agua la emulsión obtenida en la fase ii) y homogeneizar;
iv) opcionalmente, evaporar total o parcialmente los disolventes orgánicos hasta volumen constante.
Según realizaciones particulares de los procedimientos anteriores, si el ingrediente activo es lipofílico o anfifílico, dicho ingrediente activo se añade a la disolución orgánica de la etapa b) o de la etapa i). Según otras realizaciones particulares, si el ingrediente activo es hidrofílico, dicho ingrediente activo se añade a la disolución de la etapa a) o de la etapa ii). De manera preferida, dicho ingrediente activo hidrófilo se añade disuelto en una disolución acuosa. También es posible incorporar el ingrediente activo hidrófilo mediante adsorción a la suspensión de nanocápsulas obtenidas en la etapa d) o tras el proceso de incubación una vez formadas las nanocápsulas.
La formación de las nanocápsulas se produce al mezclar volúmenes de las soluciones mencionadas que contienen la nanoemulsión catiónica con disoluciones acuosas del polímero de recubrimiento en diferentes proporciones, variando la relación de polímero de recubrimiento.
En una realización particular, la proporción de PGA, PGA-PEG y HA se encuentra comprendida entre el 0,05 y el 12 % p/p (peso de polímero de recubrimiento/peso de formulación, base seca). De forma preferida, la disolución acuosa de polímero de recubrimiento está compuesta por 0,1-25 mg/ml de dicho polímero.
En otra realización particular, la proporción de PAsn se encuentra comprendida entre el 2,5 y el 30 % p/p (peso de polímero de recubrimiento/peso de formulación, base seca). De forma preferida, la disolución acuosa de este polímero de recubrimiento está compuesta por 1-60 mg/ml de dicho polímero.
El disolvente de la disolución orgánica es preferentemente una mezcla de disolventes polares tales como etanol y acetona pudiendo incluir además disolventes no polares como por ejemplo el diclorometano. En esta fase orgánica se incorpora el aceite y el tensoactivo catiónico, y opcionalmente el tensoactivo soluble en aceite. En una composición particular se incorpora igualmente el ingrediente activo.
Un ejemplo particular para la obtención de los sistemas de nanocápsulas de la invención que comprenden PGA o PGA-PEG siguiendo el primer procedimiento descrito anteriormente comprende:
a) preparar una disolución acuosa de 20 mi al 0,25 % p/v de poloxámero 188 en la que se disuelve de 0,1 a 25 mg/ml de ácido poliglutámico o poliglutámico-polietilenglicol ;
b) preparar una fase oleosa compuesta por una disolución etanol/acetona de lecitina y un tensoactivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio), a la que se le adiciona Miglyol® 812. c) mezclar bajo agitación las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) opcionalmente, evaporar los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante. Un ejemplo particular para la obtención de los sistemas de nanocápsulas de la invención de PAsn siguiendo el primer procedimiento descrito anteriormente comprende:
a) preparar una disolución acuosa de 10 mi de volumen en los que se disuelve de 0,5 a 25 mg de poliasparagina;
b) preparar una fase oleosa compuesta por una disolución etanol/acetona de lecitina y un tensoactivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio), a la que se le adiciona Miglyol® 812; c) mezclar bajo agitación las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) opcionalmente, evaporar los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante.
Un ejemplo particular para la obtención de los sistemas de nanocápsulas de la invención de HA siguiendo el primer procedimiento descrito anteriormente comprende:
a) preparar una disolución acuosa de 20 mi al 0,25 % p/v de poloxámero 188 en la que se disuelve de 0,1 a 25 mg de ácido hialurónico;
b) preparar una fase oleosa compuesta por una disolución etanol/acetona de lecitina y un tensoactivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio), a la que se le adiciona Miglyol® 812. c) mezclar bajo agitación las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) opcionalmente, evaporar los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante.
El procedimiento de elaboración de los sistemas de nanocápsulas puede incluir una etapa adicional de liofilización, con el fin de preservarlos durante su almacenamiento para que conserven sus características iniciales. Para la liofilización de los sistemas es necesaria la adición de azúcares que ejerzan efecto crioprotector. Entre los azúcares útiles para llevar a cabo la liofilización se encuentran por ejemplo trehalosa, glucosa, sucrosa, manitol, maltosa, polivinil pirrolidona (PVP). En forma liofilizada, las nanocápsulas pueden ser almacenadas durante largos períodos de tiempo, y ser fácilmente regeneradas, en caso necesario, simplemente añadiendo un volumen de agua óptimo.
De acuerdo con esta etapa adicional, la presente invención se refiere también a los sistemas de nanocápsulas que comprenden una cubierta de ácido poliglutámico, poliglutámico-polietilenglicol, poliasparagina o ácido hialurónico bajo forma de liofilizado.
Los sistemas de nanocápsulas aquí descritos presentan una estabilidad adecuada tanto en suspensión como bajo forma de liofilizado. Por otra parte, los estudios de estabilidad parecen indicar que tras su administración a organismos, humano o animal, no sufren un proceso rápido de agregación o destrucción, sino que previsiblemente permanecen bajo forma nanocapsular hasta alcanzar el tejido o célula diana.
Los sistemas de nanocápsulas de esta invención presentan ventajas en comparación con otros sistemas de administración y/o liberación de fármacos, debido a su comportamiento singular en cuanto a:
la encapsulación/asociación de principios activos: el sistema puede incluir uno o más principios activos o sustancias adyuvantes, hidrofílicos o lipofílicos, en proporciones superiores a la de las nanopartículas, micelas, complejos, nanogeles.
- la liberación del principio activo: la cubierta ejerce una función en la velocidad de liberación del mismo, permitiendo liberar de forma controlada el principio activo según aplicación y necesidades.
la estabilidad en fluidos biológicos: la cubierta polimérica confiere a los núcleos lipidíeos una gran estabilidad, lo que representa una ventaja frente a otros sistemas de micro y nanoemulsiones.
la interacción específica con determinados superficies biológicas: la cubierta polimérica confiere a los núcleos lipidíeos la posibilidad de interaccionar con superficies mucosas así como con epitelios y células específicas.
Así, la invención en una realización particular se refiere a una composición farmacéutica, que comprende los sistemas de nanocápsulas anteriores, y opcionalmente uno o más excipientes farmacéuticamente aceptables. En particular, la incorporación de ingredientes activos en las nanocápsulas de la invención origina sistemas, cuyas características en cuanto a su composición, propiedades y morfología, les convierte en excelentes candidatos para el área de la terapéutica. El ingrediente activo a incorporar en los sistemas de la invención será aquél con propiedades farmacoterapéuticas adecuadas de acuerdo con la aplicación terapéutica a la cual sea destinada la formulación. En una realización particular, el ingrediente activo se selecciona entre péptidos, proteínas, compuestos lipidíeos o lipofílicos, compuestos sacarídicos, compuestos de ácidos nucleicos o nucleótidos como oligonucleótidos, polinucleótidos o bien combinaciones de las moléculas citadas.
En una realización preferida, el ingrediente activo lipofílico es docetaxel.
En una realización preferida, el ingrediente activo se selecciona entre un oligonucleótido, ARN de interferencia, un plásmido de ADN o un polinucleótido, más preferiblemente el ingrediente activo es un plásmido de ADN.
En otra realización preferida, el ingrediente activo es de naturaleza hidrofóbica, anfifílica o hidrofílica. Los ingredientes activos de naturaleza hidrofóbica o anfifílica preferentemente son añadidos en la etapa b) del procedimiento de preparación de nanocápsulas de la invención. Los ingredientes activos de naturaleza hidrofílica preferentemente son añadidos en la etapa a) del procedimiento o en una etapa posterior a la d) mediante un proceso de incubación. Sin embargo, la invención también contempla otras realizaciones como por ejemplo añadir en la etapa b) un ingrediente activo hidrófilo disuelto en un pequeño volumen de fase acuosa. A diferencia de los principios activos hidrofóbicos, que son encapsulados dentro de las nanocápsulas, los ingredientes activos de naturaleza hidrofílica se pueden asociar a la superficie de las mismas mediante adsorción.
Tal como se ha definido anteriormente, cuando el polímero comprendido en las nanocápsulas de la invención es ácido poliglutámico o ácido poliglutamico- polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
Dichas composiciones farmacéuticas pueden ser administradas por diferentes vías, tales como a través de mucosas, tópica o parenteralmente. La proporción de principio activo incorporado en los sistemas puede llegar a ser de hasta aproximadamente el 50% en peso con respecto al peso total, base seca, de los componentes del sistema de nanocápsulas. Sin embargo, la proporción adecuada dependerá en cada caso del ingrediente activo que va a incorporarse, la indicación para la que se utiliza y la eficiencia de administración. En una realización particular, la proporción de principio activo lipofílico puede llegar a ser de hasta aproximadamente el 10% en peso, preferentemente hasta aproximadamente el 5%.
Tal como se ha descrito anteriormente, cabe la posibilidad de que los sistemas de nanocápsulas descritos en la presente invención incorporen más de un ingrediente activo, que podrán estar disueltos en la misma disolución o por separado, dependiendo esto de la naturaleza de las moléculas a incorporar, evitando que exista ningún tipo de interacción, bien sea química o física, entre ellos.
Tal como se ha definido anteriormente, la invención se refiere al uso de dicho sistema en la preparación de un medicamento. En una realización particular, dicho uso está relacionado con el tratamiento del cáncer.
A continuación, para una mayor comprensión de las características y ventajas de la presente invención, se hará referencia a una serie de ejemplos que de forma explicativa completan la descripción anterior, sin suponer en modo alguno que ésta se vea limitada a los mismos.
Ejemplos
A continuación se indica el significado de las abreviaturas utilizadas a lo largo de los ejemplos
PGA= Ácido poli-L-glutamico; la sal de PGA utilizada en los siguientes ejemplos fue el la sal de sodio de peso molecular de entre 15000 y 50000 Da (SIGMA).
PGA-PEG 16000 Da = Ácido poli-L-glutamico-polietilenglicol; la sal de PGA-PEG utilizada en los siguientes ejemplos fue la sal de sodio de peso molecular de 16000 Da, en particular con un porcentaje de peguilación del 6% y un tamaño de la cadena de PEG de 1000 Da (Alamanda Polymers USA).
PGA-PEG 22000 Da = Ácido poli-L-glutamico-polietilenglicol; la sal de PGA-PEG utilizada en los siguientes ejemplos fue la sal de sodio de peso molecular de 22000 Da, en particular con un porcentaje de peguilación del 93% y un tamaño de la cadena de PEG de 20000 Da (Alamanda Polymers USA).
PGA-PEG 35000 Da = Ácido poli-L-glutamico-polietilenglicol; la sal de PGA-PEG utilizada en los siguientes ejemplos fue la sal de sodio de peso molecular de 35000 Da, en particular con un porcentaje de peguilación del 60% y un tamaño de la cadena de PEG de 20000 Da (Alamanda Polymers USA).
HA = Ácido hialurónico; la sal de HA utilizada en los siguientes ejemplos fue el hialuronato de sodio de peso molecular de entre 20000 y 50000 Da y de 165000 Da. (Imquiaroma, Francia).
PAsn = Poliasparagina; la poliasparagina utilizada presenta preferentemente un peso molecular de 5000 a 15000 Da, con aproximadamente 5% de residuos de ácido aspártico (SIGMA).
BKC = Cloruro de benzalconio (SIGMA).
CTAB = Bromuro de hexadeciltrimetilamonio (SIGMA).
DCX = Docetaxel (SIGMA).
Nanoemulsión (NE) = Este término se utiliza por simplicidad en los ejemplos para referirse a los nanosistemas comprendidos por un lecitina, Miglyol® 812, un tensoactivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio), opcionalmente poloxámero 188 y cuya única diferencia con las nanocápsulas es la ausencia de un polímero de recubrimiento en la superficie de los sistemas.
Nanocápsulas (NCs) de PGA = Este término se utiliza por simplicidad en los ejemplos y las figuras para referirse a los nanosistemas cuyas nanocápsulas comprenden lecitina, Miglyol® 812, cloruro de benzalconio, poloxámero 188 y PGA.
Nanocápsulas (NCs) de PGA-PEG = Este término se utiliza por simplicidad en los ejemplos y las figuras para referirse a los nanosistemas cuyas nanocápsulas comprenden al copolímero PGA-PEG de distinto peso molecular y distinto porcentaje de peguilación, lecitina, Miglyol® 812, cloruro de benzalconio, y poloxámero 188.
Nanocápsulas (NCs) de HA = Este término se utiliza por simplicidad en los ejemplos y las figuras para referirse a los nanosistemas cuyas nanocápsulas comprenden lecitina, Miglyol® 812, un tensoactivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio), poloxámero 188 y HA.
Nanocápsulas (NCs) de PAsn = Este término se utiliza por simplicidad en los ejemplos y las figuras para referirse a los nanosistemas cuyas nanocápsulas comprenden poliasparagina, lecitina, Miglyol® 812, un tensoáctivo catiónico (cloruro de benzalconio o bromuro de hexadeciltrimetilamonio) y opcionalmente poloxámero 188.
Ejemplo 1
Evaluación de las características físico-químicas de las nanocápsulas de PGA y nanocápsulas de PGA-PEG en función de la cantidad de polímero.
Ejemplo 1.1. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de PGA o PGA-PEG según el procedimiento de difusión de disolvente en dos etapas:
i) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (7 mg), a la que se le adiciona 125 μΐ de Miglyol® 812.
ii) se añade la disolución obtenida en la etapa i) sobre 20 mi de una solución acuosa al 0,25% p/v de poloxámero 188 bajo agitación magnética manteniéndose durante 10 minutos, de este modo se obtiene espontáneamente la nanoemulsión catiónica;
iii) se evaporaron los disolventes orgánicos hasta volumen constante;
iv) se recubrió la nanoemulsión catiónica obtenida en la etapa iii) mediante un proceso de incubación con una disolución acuosa (1,5 mi) compuesta por 0,1 a 25 mg/ml de poliglutámico o poliglutámico-polietilenglicol de distinto peso molecular, en una proporción 4:1,5 v/v (nanoemulsión: disolución de polímero), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión (PI) así como su carga eléctrica superficial (potencial zeta). Las tablas 1, 2, 3, 4 muestran los valores obtenidos de los parámetros citados en función de la cantidad de poliglutámico y poliglutámico-polietilenglicol de distintos pesos moleculares en la etapa iv).
TABLA 1
Figure imgf000034_0001
X= no se forman las nanocápsulas
TABLA 2
PGA-PEG 16000Da Tamaño
Formulación Potencial Zeta
PI
etapa iv (mg) (nm) (mV)
NC PGA-PEG 16000Da 100 X
NC PGA-PEG 16000Da 50 X
NC PGA-PEG 16000Da 25 198 ± 4 0,1 -60 ± 1
NC PGA-PEG 16000Da 10 194 ± 8 0,1 -55 ±2
NC PGA-PEG 16000Da 5 219 ± 15 0,2 -56 ±1
NC PGA-PEG 16000Da 1 252 ± 6 0,2 -28 ± 6
X= no se forman las nanocápsulas
TABLA 3
PGA-PEG 22000Da Tamaño
Formulación Potencial Zeta
PI
etapa iv (mg) (nm) (mV)
NC PGA-PEG 22000Da 100 227 ± 6 0,1 -6 ± 1
NC PGA-PEG 22000Da 50 223 ± 1 0,1 -1 ± 2 NC PGA-PEG 22000Da 25 225 ± 9 0,1 +2 ± 3
NC PGA-PEG 22000Da 10 224 ± 2 0,1 +1 1 ± 2
NC PGA-PEG 22000Da 5 222 ± 1 0,1 +15 ± 4
NC PGA-PEG 22000Da 1 21 1 ± 3 0,1 +26 ± 1
TABLA 4
Figure imgf000035_0001
Ejemplo 1.2. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de poliglutámico o poliglutámico-polietilenglicol según el procedimiento de difusión de disolvente en una etapa:
a) se preparó una disolución acuosa (20 mi) en la que se disuelve de 0,5 a 25 mg/ml de poliglutámico o poliglutámico-polietilenglicol que se encuentra al 0,25 % p/v de poloxámero 188;
b) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (7 mg) a la que se le adiciona 125 μΐ de Miglyol® 812;
c) se mezclaron bajo agitación magnética durante 10 minutos las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) se evaporaron los disolventes orgánicos hasta volumen constante.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En las tablas 5, 6, 7 y 8 se muestran los valores obtenidos de los parámetros citados en fiinción de la cantidad de poliglutámico o poliglutámico-polietilenglicol en la disolución acuosa de la etapa a).
TABLA 5
Figure imgf000036_0001
TABLA 6
Figure imgf000036_0002
TABLA 7
Figure imgf000036_0003
TABLA 8 PGA-PEG 35000Da
Formulación Tamaño (nm) Potencial
PI
etapa a (mg) Zeta (mV)
NC PGA-PEG 35000Da 100 174 ± 4 0,1 -42 ± 3
NC PGA-PEG 35000Da 50 188 ± 6 0,1 -39 ± 3
NC PGA-PEG 35000Da 25 178 ± 5 0,1 -43 ± 1
NC PGA-PEG 35000Da 10 170 ± 2 0,1 -26 ± 2
NC PGA-PEG 35000Da 5 192 ± 2 0,1 -15 ± 1
NC PGA-PEG 35000Da 1 170 ± 4 0,1 -18 ± 2
Ejemplo 1.3. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de poliglutámico o poliglutámico-polietilenglicol según el procedimiento de sonicación:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30
mg) y el tensoactivo catiónico cloruro de benzalconio (7 mg) en diclorometano (1 mi) a la que se le adiciona 125 μΐ de Miglyol® 812; ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua conteniendo poloxámero 188 al 0,25 % p/v, se sónico durante 1 minuto;
iii) se diluyó la emulsión obtenida con agua (dilución 1 :10);
iv) se evaporaron los disolventes orgánicos hasta volumen constante para
formar una nanoemulsión catiónica; y
v) se recubrió la nanoemulsión catiónica obtenida en la etapa iv) mediante un
proceso de incubación con una disolución acuosa (1,5 mi) compuesta por 0,1 a 25 mg/ml de poliglutámico o poliglutámico-polietilenglicol, en una proporción 4:1 ,5 (nanoemulsión:disolución de poliglutámico o poliglutámico-polietilenglicol), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En las tablas 9, 10, 1 1 y 12 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de poliglutámico o poliglutámico-polietilenglicol en la etapa v).
TABLA 9
Figure imgf000038_0001
X= no se forman las nanocápsulas
TABLA 10
PGA-PEG 16000Da Tamaño
Formulación Potencial
PI
etapa v (mg) (nm) Zeta (mV)
NC PGA-PEG 16000Da 100 X
NC PGA-PEG 16000Da 50 X
NC PGA-PEG 16000Da 25 202 ± 25 0,2 -60 ± 2
NC PGA-PEG 16000Da 10 194 ± 5 0,1 -57 ± 3
NC PGA-PEG 16000Da 5 193 ± 4 0,1 -59 ± 2
NC PGA-PEG 16000Da 1 243 ± 15 0,1 -22 ± 7
X= no se forman las nanocápsulas
TABLA 11
PGA-PEG 22000Da Tamaño Potencial
Formulación Pl
etapa v (mg) (nm) Zeta (mV)
NC PGA-PEG 22000Da 100 195 ± 5 0,1 -6 ± 1
NC PGA-PEG 22000Da 50 180 ± 12 0,1 -4 ± 1
NC PGA-PEG 22000Da 25 175 ± 9 0,1 -1 ± 1
NC PGA-PEG 22000Da 10 174 ± 1 1 0,1 +6 ± 1
NC PGA-PEG 22000Da 5 172 ± 12 0,1 +10 ± 1
NC PGA-PEG 22000Da 1 132 ± 10 0,3 +25 ± 1
TABLA 12
PGA-PEG 35000Da Tamaño Potencial
Formulación Pl
etapa v (mg) (nm) Zeta (mV)
NC PGA-PEG 35000Da 100 203 ± 10 0, 1 -45 ± 1
NC PGA-PEG 35000Da 50 205 ± 1 0,1 -41 ±1 NC PGA-PEG 35000Da 25 206 ± 3 0,1 -40 ± 1
NC PGA-PEG 35000Da 10 209 ± 4 0,2 -31 ±4
NC PGA-PEG 35000Da 5 200 ± 15 0,1 -2,2 ±
NC PGA-PEG 35000Da 1 224 ± 3 0,1 +1 ± 1
Ejemplo 1.4. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de poliglutámico o poliglutámico-polietilenglicol según el procedimiento de homogeneización:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (7 mg) en diclorometano (1 mi) a la que se le adiciona 125 μΐ de Miglyol® 812; ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua conteniendo 0,25 % p/v de poloxámero 188 y se homogeneizó a 16.000 rpm durante 5 minutos y posteriormente a 19.000 rpm durante otros 5 minutos;
iii) se diluyó la emulsión obtenida con agua (dilución 1 :10) y se homogeneizó durante 3 minutos a 22.000 rpm;
iv) se evaporaron los disolventes orgánicos hasta volumen constante para formar una nanoemulsión catiónica; y
v) se recubrió la nanoemulsión obtenida en la etapa iv) mediante un proceso de incubación con una disolución acuosa (1,5 mi) compuesta por 0,1 a 25 mg/ml de poliglutámico o poliglutámico-polietilenglicol de sodio, en una proporción 4: 1,5 (nanoemulsiómdisolución de poliglutámico o poliglutámico-polietilenglicol), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En las tablas 13, 14, 15 y 16 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de de poliglutámico o poliglutámico-polietilenglicol en la etapa v).
TABLA 13 PGA etapa v
Formulación Potencial Zeta
Tamaño (nm) PI
(mg) (mV)
NC PGA 100 X
NC PGA 50 X
NC PGA 25 X
NC PGA 10 187 ± 7 0,2 -65 ± 5
NC PGA 5 184 ± 10 0,2 -55 ± 1
NC PGA 1 234 ± 7 0,3 -22 ± 1
X= no se forman las nanocápsulas
TABLA 14
Figure imgf000040_0001
X= no se forman las nanocápsulas
TABLA 15
PGA-PEG 22000Da Tamaño
Formulación Potencial Zeta
PI
etapa v (mg) (nm) (mV)
NC PGA-PEG 22000Da 100 201 ± 2 0,1 -8 ± 1
NC PGA-PEG 22000Da 50 199 ± 1 0,2 -2 ± 1
NC PGA-PEG 22000Da 25 202 ± 8 0,2 +4 ± 1
NC PGA-PEG 22000Da 10 210 ± 1 1 0,3 +14 ± 1
NC PGA-PEG 22000Da 5 195 ± 1 0,2 +17 ± 3
NC PGA-PEG 22000Da 1 201 ± 7 0,3 +35 ± 1
TABLA 16
PGA-PEG 35000Da Tamaño
Formulación Potencial Zeta
PI
etapa v (mg) (nm) (mV)
NC PGA-PEG 35000Da 100 189 ± 14 0,2 -42 ± 2 NC PGA-PEG 35000Da 50 186 ± 7 0,2 -33 ± 7
NC PGA-PEG 35000Da 25 206 ± 20 0,2 -37 ± 1
NC PGA-PEG 35000Da 10 197 ± 17 0,2 -37 ± 1
NC PGA-PEG 35000Da 5 194 ± 1 0,2 -24 ± 2
NC PGA-PEG 35000Da 1 216 ± 20 0,2 +7 ± 1
Ejemplo 2
Evaluación de la capacidad de encapsulación del fármaco lipofílico docetaxel en nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da
Se prepararon nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y el tensoactivo catiónico cloruro de benzalconio (7 mg) y poloxámero 188. Se procedió a la incorporación de un fármaco lipofílico, tomando para ello el docetaxel, un agente antitumoral prácticamente insoluble en agua. El procedimiento de elaboración corresponde al procedimiento previamente descrito en el ejemplo 1.1., con una modificación, ya que una pequeña alícuota de una solución stock del ingrediente activo en etanol (1-100 mg/ml) es incorporada a la fase oleosa. Posteriormente se rotaevapora el sistema hasta obtener un volumen constante y se incuba con una solución de poliglutámico o poliglutámico-polietilenglicol de 35000 Da formándose las nanocápsulas encapsulando docetaxel con relaciones de peso de docetaxel/nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da de hasta el 4 %.
Una vez preparadas las nanocápsulas según el procedimiento de la invención se determinó la eficacia de encapsulación (evaluando el fármaco libre mediante cromatografía líquida de alta resolución, con λ=227ηπι), obteniéndose una eficacia de encapsulación de -60%. También se midieron los parámetros diámetro medio de partícula, índice de polidispersión y potencial zeta (Tabla 17).
TABLA 17
Figure imgf000041_0001
Ejemplo 3 Evaluación del tamaño de partícula de la formulación de nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da durante su almacenamiento
Se prepararon nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812, y cloruro de benzalconio (7 mg) y poloxámero 188 según el procedimiento previamente descrito. Se realizaron medidas de tamaño de partícula durante un tiempo pertinente, con el fin de obtener información acerca de la evolución del sistema con el tiempo. Asimismo se evaluó el efecto de la temperatura de almacenamiento (37°C) sobre la estabilidad de las nanocápsulas. Los resultados presentados en la figuras la y Ib muestran la escasa variabilidad del tamaño de las nanocápsulas de poliglutámico o poliglutámico-polietilenglicol de 35000 Da al 5,8 % p/p, durante el almacenamiento.
Ejemplo 4
Evaluación del efecto del crioprotector trehalosa sobre el tamaño de partícula de las nanocápsulas de poliglutámico o poliglutámico-polietilenglicol tras el proceso de liofilización
Se prepararon nanocápsulas de poliglutámico o poliglutámico-polietilenglicol en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y el tensoactivo catiónico cloruro de benzalconio (7 mg) y poloxámero 188, según el procedimiento previamente descrito. Se evaluó el efecto que tiene el agente crioprotector trehalosa durante el proceso de liofilización de las nanocápsulas de poliglutámico o poliglutámico-polietilenglicol y en la posterior recuperación del tamaño de partícula tras la resuspensión ensayando dos concentraciones de trehalosa, 5 y 10% p/v. Asimismo, se evaluó la influencia de la concentración de nanocápsulas (0,025 hasta 1% p/v) en la suspensión a liofilizar. Los resultados de la figura 2a y 2b muestran el tamaño de partícula de las nanocápsulas de poliglutámico o poliglutámico- polietilenglicol tras la resuspensión.
Ejemplo 5
Evaluación de las características físico-químicas de las nanocápsulas de HA y nanocápsulas de HA-PEG en función de la cantidad de polímero. Ejemplo 5.1. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de HA según el procedimiento de difusión de disolvente en dos etapas:
i) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y los tensoactivos catiónicos cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1,8 mg), a la que se le adiciona 125 μΐ de Miglyol® 812. ii) se añade la disolución obtenida en la etapa i) sobre 20 mi de una solución acuosa al 0,25% p/v de poloxámero 188 bajo agitación magnética manteniéndose durante 10 minutos, de este modo se obtiene espontáneamente la nanoemulsión catiónica; iii) se evaporaron los disolventes orgánicos hasta volumen constante;
iv) se recubrió la nanoemulsión catiónica obtenida en la etapa iii) mediante un proceso de incubación con una disolución acuosa (1 ,5 mi) compuesta por 0,1 a 25 mg de hialuronato de sodio, en una proporción 4: 1 ,5 (nanoemulsión:disolución de HA), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta) y se tomaron fotos de las nanocápsulas mediante microscopía electrónica de transmisión (figura 3). En la tablas 18 y 19 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de HA de 20000-50000 Da en la etapa iv) y utilizando cloruro de benzalconio o bromuro de hexadeciltrimetilamonio, respectivamente. La tabla 20 muestra los valores obtenidos de los paráme os citados en función de la cantidad de HA de 160000 Da en la etapa iv) y utilizando cloruro de benzalconio.
TABLA 18
Formulación HA etapa iv (mg) Tamaño (nm) PI Potencial Zeta (mV)
NE - 223 ± 10 0,1 27 ± 3
NCs HA 25 252 ± 19 0,1 -46 ± 2
NCs HA 12,5 235 ± 13 0, 1 -45 ± 4
NCs HA 6,25 248 ± 10 0,2 -42 ± 2
NCs HA 0,5 249 ± 10 0,2 9 ± 2 TABLA 19
Figure imgf000044_0001
TABLA 20
Figure imgf000044_0002
Ejemplo 5.2. Se prepararon nanocápsulas constituidas por un núcleo oleosorecubierto de HA según el procedimiento de difusión de disolvente en una etapa:
a) se preparó una disolución acuosa de hialuronato de sodio (20 mi) en la que se disuelve de 0,5 a 25 mg de HA de 20000-50000 Da y que se encuentra al 0,25 % p/v de poloxámero 188;
b) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y los tensoactivos catiónicos cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1,8 mg) a la que se le adiciona 125 μΐ de Miglyol® 812.
c) se mezclaron bajo agitación magnética durante 10 minutos las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) se evaporaron los disolventes orgánicos hasta volumen constante. Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En las tablas 21 y 22 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de HA en la disolución acuosa de la etapa a) utilizando cloruro de benzalconio o bromuro de hexadeciltrimetilamonio, respectivamente.
TABLA 21
Figure imgf000045_0001
TABLA 22
Figure imgf000045_0002
Ejemplo 5.3. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de HA según el procedimiento de sonicación:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (4 mg) en diclorometano (1 mi) a la que se le adiciona 125 μΐ de Miglyol® 812; ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua conteniendo poloxámero 188 al 0,25 % p/v, se sónico durante 1 minuto; iii) se diluyó la emulsión obtenida con agua (dilución 1 :10);
iv) se evaporaron los disolventes orgánicos hasta volumen constante para formar una nanoemulsión catiónica; y
v) se recubrió la nanoemulsión catiónica obtenida en la etapa iv) mediante un proceso de incubación con una disolución acuosa (lml - 5 mi) compuesta por 0,5 a 25 mg de hialuronato de sodio, en una proporción 4:1,5 v/v (nanoemulsión:disolución de HA), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En la tabla 23 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de HA en etapa v).
TABLA 23
Figure imgf000046_0001
Ejemplo 5.4. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de HA según el procedimiento de homogeneización:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (4 mg) en diclorometano (1 mi) a la que se le adiciona 125 μΐ de Miglyol® 812; ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua conteniendo 0,25 % p/v de poloxamero 188 y se homogeneizó a 16.000 rpm durante 5 minutos y posteriormente a 19.000 rpm durante otros 5 minutos;
iii) se diluyó la emulsión obtenida con agua (dilución 1 :10) y se homogeneizó durante 3 minutos a 22.000 rpm;
iv) se evaporaron los disolventes orgánicos hasta volumen constante para formar una nanoemulsión catiónica; y
v) se recubrió la nanoemulsión obtenida en la etapa iv) mediante un proceso de incubación con una disolución acuosa (1,5 mi) compuesta por 0,5 a 25 mg de hialuronato de sodio, en una proporción 4: 1,5 (nanoemulsión:disolución de HA), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En la tabla 24 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de HA en la etapa v).
TABLA 24
Figure imgf000047_0002
Ejemplo 6
Evaluación de la capacidad de encapsulación del fármaco lipofílico docetaxel en nanocápsulas de HA
Se prepararon nanocápsulas de HA en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y los tensoactivos catiónicos cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1 ,8 mg) y poloxámero 188. Se procedió a la incorporación de un fármaco lipofílico, tomando para ello el docetaxel, un agente antitumoral prácticamente insoluble en agua. El procedimiento de elaboración corresponde al procedimiento previamente descrito en el ejemplo 5.1 , con una modificación, ya que una pequeña alícuota de una solución stock del ingrediente activo en etanol (1-100 mg/ml) es incorporada a la fase oleosa. Posteriormente se rotaevapora el sistema hasta obtener un volumen constante y se incuba con una solución de HA formándose las nanocápsulas de HA encapsulando docetaxel con relaciones de peso de docetaxel/nanocápsulas de HA de hasta el 4 %.
Una vez preparadas las nanocápsulas según el procedimiento de la invención se determinó la eficacia de encapsulación (evaluando el fármaco libre mediante cromatografía líquida de alta resolución, con
Figure imgf000047_0001
obteniéndose una eficacia de encapsulación de -65%. También se midieron los parámetros diámetro medio de partícula, índice de polidispersión y potencial zeta (Tabla 25). TABLA 25
Figure imgf000048_0001
Ejemplo 7
Liberación del fármaco docetaxel de las nanocápsulas de HA
Se prepararon nanocápsulas de HA encapsulando el fármaco lipofílico docetaxel siguiendo el procedimiento descrito en el ejemplo 6. Las nanocápsulas fueron diluidas en agua e incubadas en este medio en agitación horizontal (100 rpm) a 37°C. A diversos tiempos se tomaron muestras de los medios de incubación y se aislaron las nanocápsulas en suspensión mediante ultracentrifugación. Finalmente se valoró la fracción de fármaco liberado cuantifícando la cantidad de fármaco libre en el líquido infranadante la que se cotejó con aquella fracción del fármaco que permanecía unida a las nanocápsulas. La cuantifícación del docetaxel se realizó según lo descrito en el ejemplo 6. El perfil de cesión del fármaco de las nanocápsulas de HA se recoge en la figura 4. Ejemplo 8
Evaluación del tamaño de partícula de la formulación de nanocápsulas de HA durante su almacenamiento
Se prepararon nanocápsulas de HA en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812y cloruro de benzalconio (4 mg) o hexadeciltrimetilamonio (5,4 mg) y poloxámero 188 según el procedimiento previamente descrito. Se realizaron medidas de tamaño de partícula durante un tiempo pertinente, con el fin de obtener información acerca de la evolución del sistema con el tiempo. Asimismo se evaluó el efecto de la temperatura de almacenamiento (4 y 37°C) sobre la estabilidad de las nanocápsulas. Los resultados presentados en las figuras 5a y 5b muestran la escasa variabilidad del tamaño de las nanocápsulas de HA al 5,8 % p/p con cloruro de benzalconio y bromuro de hexadeciltrimetilamonio respectivamente, durante el almacenamiento. Ejemplo 9
Evaluación del efecto del crioprotector trehalosa sobre el tamaño de partícula de las nanocápsulas de HA tras el proceso de liofilización
Se prepararon nanocápsulas de HA en forma de sal de sodio, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y el tensoactivo catiónico cloruro de benzalconio (4 mg) y poloxámero 188, según el procedimiento previamente descrito. Se evaluó el efecto que tiene el agente crioprotector trehalosa durante el proceso de liofilización de las nanocápsulas de HA y en la posterior recuperación del tamaño de partícula tras la resuspensión ensayando dos concentraciones de trehalosa, 5 y 10% p/v. Asimismo, se evaluó la influencia de la concentración de nanocápsulas (0,25, 0,5 y 1% p/v) en la suspensión a liofilizar. Los resultados de la figura 6 muestran el tamaño de partícula de las nanocápsulas de HA liofilizadas tras la resuspensión. Ejemplo 10
Estudio de la capacidad de inhibición de la proliferación celular de las nanocápsulas de HA
Con el fin de evaluar el potencial de las nanocápsulas de HA que encapsulan la molécula citostática docetaxel para inhibir la proliferación celular de la línea de cáncer de pulmón NCI-H460, se prepararon las nanocápsulas de HA utilizando bromuro de hexadeciltrimetilamonio (1.8 mg) según el procedimiento descrito en el ejemplo 6. Los resultados recogidos en la figura 7 muestran la mayor capacidad de inhibición de la proliferación de las nanocápsulas que encapsulan docetaxel en comparación con la molécula libre cuando los sistemas se ponen en contacto durante 2 y 48 h con las células cancerígenas. Por otra parte, se puede apreciar la inocuidad de los sistemas sin docetaxel. Los valores de IC50, concentración a la cual se produce el 50% de la mortalidad de la población, fueron calculados mediante el programa Graph Pad Prism 2.1 (Graph Pad Software). De este modo, la solución de docetaxel presentó valores de IC50 de 105 y 36 nM al estar en contacto con las células durante 2 y 48 respectivamente; mientras que las formulaciones de nanocápsulas de HA encapsulando docetaxel presentaron valores de ~29 y -13 nM en los mismos tiempos de incubación, resultando la nanoencapsulación del docetaxel 3,6 y 2,8 veces más efectiva inhibición de la proliferación celular.
Ejemplo 11
Evaluación de las características físico-químicas de las nanocápsulas de PAsn en función de la cantidad de polímero.
Ejemplo 11.1. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de PAsn según el procedimiento de difusión de disolvente en dos etapas:
i) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y el tensoáctivo catiónico cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1,8 mg), a la que se le adiciona 0,125 mi de Miglyol® 812.
ii) se añade la disolución obtenida en la etapa i) sobre 10 mi de agua bajo agitación magnética manteniéndose durante 10 minutos, de este modo se obtiene espontáneamente la nanoemulsión catiónica;
iii) se evaporaron los disolventes orgánicos hasta volumen constante;
iv) se recubrió la nanoemulsión catiónica obtenida en la etapa iii) mediante un proceso de incubación con una disolución acuosa (1 mi) compuesta por distintas cantidades de PAsn, en una proporción 3,7:1, produciéndose de forma inmediata el recubrimiento, de manera independiente a la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta) y se tomaron fotos de las nanocápsulas mediante microscopía electrónica de transmisión (figura 8). En la tablas 26 y 27 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de PAsn en la etapa iv) y utilizando cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1,4 mg), respectivamente.
TABLA 26
Figure imgf000051_0001
TABLA 27
Figure imgf000051_0002
Ejemplo 11.2. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de PAsn según el procedimiento de difusión de disolvente en una etapa:
a) se preparó una disolución acuosa de poliasparagina (20 mi) en la que se disuelve distintas cantidades del poliaminoácido, 5-200 mg; b) se preparó una fase oleosa compuesta por una disolución etanol/acetona (0,5:9 mi) de lecitina (30 mg) y los tensoactivos catiónicos cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (1,8 mg) a la que se le adiciona 125 μΐ de Miglyol® 812;
c) se mezclaron bajo agitación magnética durante 10 minutos las disoluciones resultantes de las etapas a) y b), obteniéndose espontáneamente las nanocápsulas;
d) se evaporaron los disolventes orgánicos hasta volumen constante.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En la tablas 28 y 29 se muestran los valores obtenidos de los parámetros citados en función de la cantidad de PAsn en la disolución acuosa de la etapa a) utilizando cloruro de benzalconio o bromuro de hexadeciltrimetilamonio, respectivamente.
TABLA 28
Figure imgf000052_0001
TABLA 29
Figure imgf000052_0002
Ejemplo 11.3. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de PAsn según el procedimiento de sonicación:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30 mg) y el tensoáctivo catiónico cloruro de benzalconio (4 mg) o CTAB (1.8 mg) en diclorometano (1 mi) a la que se le adiciona 200 μΐ de Miglyol® 812;
ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua y se sónico durante 30 segundos;
iii) se diluyó la emulsión obtenida con agua (dilución 1 :10);
iv) se evaporaron los disolventes orgánicos hasta volumen constante para formar una nanoemulsión catiónica; y v) se recubrió la nanoemulsión catiónica obtenida en la etapa iv) mediante un proceso de incubación con una disolución acuosa (1 mi) compuesta por distintas cantidades de poliasparagina, en una proporción 4:1 (nanoemulsión:disolución de PAsn), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En la tabla 30 se muestran los valores obtenidos.
Ejemplo 11.4. Se prepararon nanocápsulas constituidas por un núcleo oleoso recubierto de poliasparagina según el procedimiento de homogeneización:
i) se preparó una fase oleosa compuesta por una disolución de lecitina (30 mg) y el tensoactivo catiónico cloruro de benzalconio (4 mg) o CTAB (1,8 mg) en diclorometano (1 mi) a la que se le adiciona 125 μΐ de Miglyol® 812;
ii) se añadió la disolución obtenida en la etapa i) sobre 2 mi de agua y se homogeneizó a 16.000 rpm durante 5 minutos y posteriormente a 19.000 rpm durante otros 5 minutos;
iii) se diluyó la emulsión obtenida con agua (dilución 1 :10) y se homogeneizó durante 3 minutos a 22.000 rpm;
iv) se evaporaron los disolventes orgánicos hasta volumen constante para formar una nanoemulsión catiónica; y
v) se recubrió la nanoemulsión obtenida en la etapa iv) mediante un proceso de incubación con una disolución acuosa (1 mi) compuesta por distintas cantidades de PAsn, en una proporción 4:1 (nanoemulsión:disolución de PAsn), produciéndose de forma inmediata el recubrimiento, independientemente de la temperatura.
Una vez preparadas, se midió su diámetro medio, índice de polidispersión así como su carga eléctrica superficial (potencial zeta). En la tabla 30 se muestran los valores obtenidos de los parámetros citados.
TABLA 30
Cantidad Cantidad Tamaño Potencial
Método TA IP
TA (mg) PAsn (nm) Zeta (mV) Sonicación CTAB 1.8 1 mg/mL 226 ± 5 0,1 -30 ± 4
Sonicación BKC 4 1 mg/mL 242 ± 3 0,2 -37 ± 5
Homogeneización CTAB 1.8 1 mg/mL 236 ± 2 0,1 -31 ± 1
Homogeneización BKC 4 1 mg/mL 254 ± 3 0,2 -34 ± 6
Ejemplo 12
Evaluación de la capacidad de encapsulación del fármaco lipofílico docetaxel en nanocápsulas de poliasparagina
Se prepararon nanocápsulas de PAsn, con un núcleo oleoso compuesto por lecitina, Miglyol® 812 y los tensoactivos catiónicos cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamomo (1,8 mg). Se procedió a la incorporación de un fármaco lipofílico, el docetaxel, un agente antitumoral prácticamente insoluble en agua. El procedimiento de elaboración corresponde al procedimiento previamente descrito en el ejemplo 1 1.1., con una ligera modificación, una pequeña alícuota de una solución del ingrediente activo en etanol (1-100 mg/ml) es incorporada a la fase oleosa. Posteriormente se rotaevapora el sistema hasta obtener un volumen constante y se incuba con una solución de PAsn formándose las nanocápsulas encapsulando docetaxel con relaciones de peso de docetaxel/nanocápsulas de PAsn de hasta un 30%.
Una vez preparadas las nanocápsulas según el procedimiento de la invención se determinó la eficacia de encapsulación (evaluando el fármaco libre mediante cromatografía líquida de alta resolución,
Figure imgf000054_0001
obteniéndose una eficacia de encapsulación de -75%. También se midieron los parámetros diámetro medio de partícula, índice de polidispersión y potencial zeta (Tabla 31).
TABLA 31
Figure imgf000054_0002
Ejemplo 13
Liberación del fármaco docetaxel de las nanocápsulas de poliasparagina Se elaboraron nanocápsulas de poliasparagina encapsulando el fármaco lipofílico docetaxel siguiendo el procedimiento descrito en el ejemplo 12. Las nanocápsulas fueron diluidas en agua e incubadas en este medio en agitación horizontal (100 rpm) a 37°C. A diversos tiempos se tomaron muestras de los medios de incubación y se aislaron las nanocápsulas en suspensión mediante ultracentriftigación. Finalmente se valoró indirectamente la fracción de fármaco liberado cuantificando la cantidad de fármaco encontrada fuera de las nanocápsulas. La cuantificación del docetaxel se realizó según lo descrito en el ejemplo 12. El perfil de liberación del fármaco de las nanocápsulas de PAsn se recoge en la figura 9.
Ejemplo 14
Evaluación de la variación del tamaño de partícula de la formulación de nanocápsulas de poliasparagina durante su almacenamiento
Se prepararon nanocápsulas de poliasparagina, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y cloruro de benzalconio (4 mg) o bromuro de hexadeciltrimetilamonio (4 mg) según el procedimiento previamente descrito. Se realizaron medidas de tamaño de partícula durante un largo periodo de tiempo, con el fin de obtener información acerca de la evolución del tamaño del sistema con el tiempo. Asimismo se evaluó el efecto de la temperatura de almacenamiento (4 y 37°C) sobre la estabilidad de las nanocápsulas. Los resultados presentados en las figuras 10a y 10b muestran la escasa variabilidad del tamaño de las nanocápsulas de PAsn con cloruro de benzalconio y bromuro de hexadeciltrimetilamonio respectivamente, durante el almacenamiento. Ejemplo 15
Evaluación del efecto la trehalosa y la glucosa sobre el tamaño de partícula de las nanocápsulas de PAsn tras el proceso de liofílización
Se prepararon nanocápsulas de poliasparagina, un núcleo oleoso compuesto por lecitina, Miglyol® 812 y el tensoáctivo catiónico bromuro de hexadeciltrimetiamonio (1,8 mg), según el procedimiento previamente descrito. Se evaluó el efecto que tiene el agente crioprotector trehalosa durante el proceso de liofílización de las nanocápsulas de PAsn y en la posterior recuperación del tamaño de partícula tras la resuspensión ensayando dos concentraciones de crioprotector, 5 y 10% p/v. Asimismo, se evaluó la influencia de la concentración de nanocápsulas (0,25, 0,5 y 1% p/v) en la suspensión a liofilizar. Los resultados de la Tabla 32 muestran el tamaño de partícula de las nanocápsulas de PAsn liofilizadas tras la resuspensión.
TABLA 32
Figure imgf000056_0001
Ejemplo 16
Estudio de la capacidad de inhibición de la proliferación celular de las nanocápsulas de PAsn
Con el fin de evaluar el potencial de las nanocápsulas de PAsn que encapsulan el docetaxel para inhibir la proliferación celular de la línea celular de cáncer de pulmón NCI-H460, se prepararon las nanocápsulas de PAsn utilizando bromuro de hexadeciltrimetilamonio (1,8 mg) según el procedimiento descrito en el ejemplo 12. Los resultados recogidos en la figura 1 1 muestran la mayor capacidad de inhibición de la proliferación de las nanocápsulas que encapsulan docetaxel en comparación con la molécula libre cuando los sistemas se ponen en contacto durante 2 y 48 h con las células cancerosas. Por otra parte, se puede apreciar la inocuidad de los sistemas sin docetaxel. Los valores de IC50, fueron calculados mediante el programa Graph Pad Prism 2.1 (Graph Pad Software). De este modo, la solución de docetaxel presentó valores de IC50 de 105 y 36 nM al estar en contacto con las células durante 2 y 48 respectivamente; mientras que las formulaciones de nanocápsulas de PAsn encapsulando docetaxel presentaron valores de ~30 y ~13 nM en los mismos tiempos de incubación, resultando la nanoencapsulación del docetaxel 3,5 y 2,8 veces más efectiva en la inhibición de la proliferación celular.
Ejemplo 17
Evaluación de la biodistribución de nanocápsulas de poliglutámico-polietilenglicol
Se prepararon nanocápsulas constituidas por una cubierta de poliglutámico- polietilenglicol (PGA-PEG) en forma de sal de sodio de peso molecular 35000 Da, con un porcentaje de peguilación del 60% y un tamaño de la cadena de PEG de 20000 Da; un núcleo oleoso compuesto por lecitina, Miglyol® 812 y bromuro de hexadeciltrimetilamonio, de tamaño medio 100 nm, según el procedimiento de difusión de disolvente en una etapa. Asimismo, se elaboraron nanocápsulas constituidas por una cubierta de poliglutámico-polietilenglicol (PGA-PEG) en forma de sal de sodio de 35000 Da, con un porcentaje de peguilación del 60% y un tamaño de la cadena de PEG de 20000 Da; poloxámero 188 y un núcleo oleoso compuesto por lecitina, Miglyol® 812 y cloruro de benzalconio, de tamaño medio 200 nm, según el mismo procedimiento. El tamaño de las nanocápsulas pudo modularse hasta alcanzar dichos tamaños, modificando adecuadamente la cantidad de componentes y el método de adición de la fase orgánica sobre la fase acuosa. Para su posterior visualización y cuantificación, las nanocápsulas se marcaron con el marcador fluorescente lipofílico DiD (Ι,Γ-dioctadecil- 3,3,3',3'-tetrametilindodicarbocianina perclorato). Seguidamente, las dos formulaciones de nanocápsulas de 100 y 200 nm fueron aisladas y diluidas en una solución de trehalosa en agua al 10% y administradas por vía subcutánea (en la zona interescapular) e intravenosa (en la vena de la cola) a ratones SCID sanos con el fin de evaluar su biodistribución, con especial atención a su acumulación en tejidos linfáticos. El volumen de inyección fue de 100 μΐ y la concentración de nanocápsulas de 100 y 200 nm fue 12 mg/ml y 13,6 mg/ml, respectivamente. En ambos casos la concentración de DiD fue 1 1,7 μg/ml. Se evaluó la intensidad de fluorescencia en diferentes órganos por In Vivo Imaging System (IVIS® Spectrum, Caliper Life Sciences) a las 6, 24 y 48 horas de su administración. Las figuras 12 y 13 presentan los perfiles de distribución de la fluorescencia asociada a las nanocápsulas de 100 y 200 nm, respectivamente. Más concretamente las figuras 12a, 12b, y 12c muestran los niveles de fluorescencia (expresada en fotones/seg/cm2/sr) en diferentes órganos y tejidos tras la administración de nanocápsulas de poliglutámico-polietilenglicol de 100 nm, al cabo de diferentes periodos de tiempo: (a) 6 horas, (b) 24 horas, (c) 48 horas; (ES administración por vía subcutánea, ülUJ administración por vía intravenosa). De igual modo, las figuras 13a, 13b y 13c muestran los niveles de fluorescencia (expresada en fotones/seg/cm2/sr) en diferentes órganos y tejidos tras la administración de nanocápsulas de poliglutámico- polietilenglicol de 200 nm, al cabo de diferentes periodos de tiempo: (a) 6 horas, (b) 24 horas, (c) 48 horas; (ΕΞ administración por vía subcutánea, U üJ administración por vía intravenosa). Globalmente, los resultados muestran la alta acumulación linfática de la fluorescencia asociada a las nanocápsulas tras la administración por ambas vías, siendo esta acumulación más pronunciada para la administración subcutánea. De hecho, tras la administración subcutánea se aprecia una clara vehiculización del marcador hacia el sistema linfático. Esta acumulación linfática va asociada a una reducción de la acumulación en órganos responsables de la eliminación tales como hígado y bazo.
Ejemplo 18
Estudio de la velocidad de eliminación plasmática de las nanocápsulas de PAsn, PGA y PGA-PEG tras su administración I.V. en ratones.
Se prepararon nanocápsulas con diferentes polímeros incluyendo PAsn, PGA o PGA- PEG por medio de la técnica en una etapa descrita en el ejemplo 1.1 y 11.1. Estos sistemas fueron cargados con el marcador fluorescente DiD (l,l '-dioctadecil-3,3,3'3,'- tetrametilindodicarbocianina perclorato) (concentración de DiD en las nanocápsulas de 100 μg/ml) previamente a su administración en ratones Swiss (de 9-12 semanas, 20-22 g). Como formulación control se utilizó una nanoemulsión aniónica cargada con el mismo marcador y en la misma concentración. Igualmente, se realizó un experimento control para determinar la fluorescencia residual del plasma, a partir de muestras de sangre de ratones a los que se administró 150 μΐ de suero salino fisiológico.
Las formulaciones, nanocápsulas y nanoemulsión fluorescentes, así como la muestra control de suero fisiológico se administraron mediante inyección I.V. en cola de ratones en un volumen de 150 μΐ. A intervalos de tiempo determinados (30 min, lh, 3h y 24h), se tomaron muestras de sangre, por triplicado, mediante punción cardiaca. Las muestras se centrifugaron durante 10 min a 2000g en un tubo Vacutainer (SST II Advance, 5 mi, Becton Dickinson France SAS, Francia). Para la determinación de la fluorescencia a tiempo cero, alícuotas de nanocápsulas y de nanoemulsión fluorescentes fueron mezcladas con sangre en una proporción adecuada para simular la concentración in vivo a tiempo cero (150 μΐ de formulación en un peso de sangre correspondiente al 7.5 % del peso total del animal, es decir aproximadamente 150 μΐ en 1.89 gr de sangre). Finalmente, 150 μΐ de las muestras de sobrenadante se depositaron en una placa de 96 pocilios, para proceder a la determinación de la fluorescencia utilizando un fluorímetro Ascent mediante el software Fluorscan (Thermo Fischer Scientifíc, France). Las determinaciones de la fluorescencia se realizaron a la longitud de onda de excitación del DiD de 644 nm y de emisión de 664 nm. La concentración de la fluorescencia en sangre, fue calculada asumiendo un peso total de la sangre en los ratones correspondiente al 7.5 % del peso total del animal.
La fluorescencia se expresa en unidades de fluorescencia (FU) y se calcula mediante la siguiente ecuación:
(FU) muestra- (FU) del plasma
La Figura 14 muestra el porcentaje de dosis de fluorescencia inyectada (concentración de DiD en mg/kg del peso total del animal a cada tiempo en relación a la concentración a tiempo cero) que permanece en plasma al cabo de diferentes períodos de tiempo tras la inyección intravenosa en ratones Swiss. El 100% de fluorescencia corresponde a la fluorescencia a tiempo cero. La Figura 1 muestra, por tanto, la cinética de eliminación en plasma de la fluorescencia asociada a las nanocápsulas de PAsn, PGA y PGA-PEG tras su administración. La nanoemulsión aniónica fue utilizada como control. Cada punto representa la media del porcentaje de la dosis inyectada en un grupo n=3 ± D.E.. Los resultados que aparecen en la Figura 14 evidencian las diferencias existentes en la velocidad de eliminación plasmática de las distintas formulaciones evaluadas. Se observa una reducción considerable de la velocidad de eliminación de la fluorescencia asociada a las formulaciones de nanocápsulas, en comparación a la correspondiente a la nanoemulsión control. Ello pone de manifiesto la importancia de la cubierta polimérica cara a prolongar el tiempo de permanencia en sangre de las formulaciones. Este incremento en el tiempo de permanencia en sangre es crítico a la hora de evitar la acumulación del sistema en órganos no deseables a la vez que favorecer el acceso al tejido tumoral.
Para proceder a una comparación más precisa de la cinética de eliminación plasmática de las nanocápsulas se procede a la obtención de parámetros farmacocinéticos a través de un modelo no compartimental utilizando el paquete estadístico Kinetica 5.1 (Thermo Fischer Scientifíc, Francia) (Tabla 1).
La vida media ( ía) de distribución o eliminación se calculó mediante la siguiente formula:
Lz
Siendo Lz la pendiente correspondiente a la linealización de cada fase de la curva niveles plasmáticos-tiempo. Lz se determinó mediante regresión lineal utilizando intervalos predefinidos (para la vida media de distribución [0-1 h] y para la t\a de eliminación [1-24 h] respectivamente). Para la determinación del área bajo la curva (AUC) se utilizó un modelo trapezoidal durante el tiempo experimental (AUC [0-24 h]) sin extrapolación así como para la AUMC. El tiempo medio de residencia en el organismo (MRT) se calculó de 0 a 24 h, según la ecuación:
, ÁUMCÍ - 244]
La Tabla 1 muestra los valores correspondientes a los parámetros: el tiempo de vida media de distribución (fase alfa) (t i/2 a, horas), calculado de 0 a 1 horas, el tiempo de vida media de eliminación (fase beta) (t m β, horas), calculado de 1 a 24 horas, el tiempo medio de residencia (MRT, horas), calculado de 0 a 24 horas y área bajo la curva niveles plasmáticos/tiempo (AUC, horas), calculado de 0 a 24 horas. Los resultados obtenidos para dichos parámetros evidencian las diferencias existentes en la cinética de eliminación plasmática de las distintas formulaciones. Se observa una mejora considerable de los parámetros obtenidos para todas las formulaciones de nanocápsulas en comparación a los obtenidos para la nanoemulsión sin cubierta polimérica (formulación control). La conclusión global de esos resultados es la permanencia prolongada de todas las nanocápsulas en plasma, comportamiento muy favorable a la hora de vehiculizar principios activos hacia zonas tumorales.
Tabla 1: Parámetros farmacocinéticos de las nanocápsulas de PGA, PGA-PEG, PAsn y la nanoemulsión utilizada como control tras administración I.V. en ratones.
Figure imgf000061_0001
Ejemplo 19
Estudio de la eficacia antitumoral de las nanocápsulas de PAsn y PGA-PEG cargadas con docetaxel evaluada en un modelo in vivo de glioma U87MG en ratón tras administración intravenosa
Con el fin de evaluar el potencial de las nanocápsulas de PAsn y PGA-PEG cargadas de docetaxel para inhibir el crecimiento tumoral en un modelo in vivo de un tumor U87MG implantado en ratón, se prepararon las nanocápsulas correspondientes de acuerdo a los ejemplos 1.1 y 11.1. Asimismo, dicha eficacia se comparó con la correspondiente a la formulación comercial Taxotere®.
Para el desarrollo del tumor, los animales (ratones NMRI-nu atímicos desnudos de 6 semanas, 20-24 g) fueron anestesiados con una mezcla de isoflurano/oxígeno y seguidamente se les inyectó en el flanco derecho una suspensión de 1 x 106 de células U87MG (ATCC, Manassas, VA) en 150 μΐ de HBSS por vía subcutánea. El crecimiento tumoral fue evaluado midiendo el tumor con un calibre de Vernier cada 3 días. El volumen tumoral (V) ha sido estimado según la siguiente fórmula:
Figure imgf000062_0001
Cuando el tumor alcanzó un tamaño de 200 mm los ratones se distribuyeron en 4 grupos a los que se administraron diferentes tratamientos (las nanocápsulas de PAG- PEG, las nanocápsulas de PAsn, la nanoemulsión control y la formulación comercial Taxotere®). En cada tratamiento la dosis de docetaxel administrada mediante la inyección I.V. fue de 2 mg de docetaxel/kg de peso del animal. El volumen de formulación inyectada fue de máximo 150 Al grupo control se le administró el mismo volumen de suero salino fisiológico. El tamaño del tumor fue medido 2 veces por semana durante un periodo de 24 días.
La Figura 15a muestra la evolución en el incremento del volúmen del tumor ( diferencia entre el tamaño a cada tiempo y el tamaño inicial) de los animales tratados con las nanocápsulas cargadas de fármaco, así como con Taxotere® y con el control de suero salino. Los resultados indican en primer lugar, que el docetaxel conserva su actividad antitumoral in vivo al encontrarse encapsulado. Además, las formulaciones de nanocápsulas fueron tan eficaces como la formulación comercial, resultando ambas formulaciones eficaces en cuanto a la reducción de la velocidad de crecimiento tumoral. Asimismo, en la Figura 15b se muestra el incremento del volumen tumoral al cabo de 18 y 21 días en relación con el tamaño a tiempo cero. Puede apreciarse que las diferencias en el tamaño del tumor de los animales tratados y no tratados (se les administró suero) fueron significativas para los dos tiempos. Este análisis refleja la prueba de concepto de eficacia de las formulaciones de nanocápsulas desarrolladas. La figura 16 muestra el porcentaje de ratones que sobreviven al cabo de diferentes periodos de tiempo y tras ser sometidos a los diferentes tratamientos, según el método de Kaplan-Meier. Los resultados muestran una supervivencia muy superior en el caso de los ratones tratados con las formulaciones de nanocápsulas (entre el 60-80% de supervivencia) que con el Taxotere® (30 % de supervivencia). Esta reducción de la toxicidad del fármaco formulado en forma de nanocápsulas ha de atribuirse a una mayor selectividad del tratamiento, lo cual está en consonancia con el prolongado tiempo de circulación de las nanocápsulas en plasma. Los resultados anteriores fueron también analizados en términos de media y mediana de supervivencia después de la implantación del tumor. La Tabla 2 muestra el tiempo de supervivencia de los animales expresado como rango (diferencia entre el tiempo más largo y más corto), la media aritmética y desviación stardard (D.E.) de la media del tiempo de supervivencia y la mediana. Asimismo, la tabla 2 muestra el porcentaje sobre el incremento de supervivencia (%IST) calculado a partir de los valores de la media o mediana. Por ejemplo, en el caso de la media, el cálculo se haría según la ecuación:
Me ian
Donde Mediar representa la media de supervivencia de los animales tratados y Mediac representa la media de supervivencia de los animales no tratados (administración de suero salino). Además, la tabla muestra la probabilidad estadística (p) asociada a las diferencias en el parámetro "media del tiempo de supervivencia" para cada una de las formulaciones en comparación con el control(p <0.05 se consideró estadísticamente significativo). Las diferencias estadísticas se calcularon mediante el log-rank test (test de Mantel-Cox) . Los resultados de supervivencia de los animales tratados indican la superioridad de las formulaciones nanocapsulares frente al Taxotere®.
Tabla 2: Tiempo de supervivencia media de los animales tratados con las diferentes formulaciones de nanocápsulas cargadas con docetaxel, en comparación a las obtenidas tras la administración del Taxotere ® y el control de suero salino.
Tiempo de supervivencia Incremento del tiempo de
(días) supervivencia (%)
Tratamiento N
Media IST IST p-valor vs
Rango Mediana
± D.E. mediana inedia suero
Nanocápsulas de PAsn 6 7-18 0 18.1 ± 2 0 61.6 0.066
Nanocápsulas de PGA-
6 14-21 0 18.7 ± 2 0 66.96 0.036 PEG Taxotere ® 6 7-21 21 16.8 ± 2 50 50 0.147
Suero salino 6 7-14 14 1 1.2 ± 2 - -
% IST Porcentaje del incremento de supervivencia con respecto al control.

Claims

REIVINDICACIONES
1. Un sistema para la administración de ingredientes activos que comprende nanocápsulas que comprenden un aceite, un tensoactivo catiónico y un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), ácido poliglutamico-polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un ingrediente activo,
con la condición de que cuando dicho sistema de nanocápsulas incluye ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
2. Sistema según cualquiera de las reivindicaciones anteriores, donde el tensoactivo catiónico se selecciona entre cloruro de benzalconio, cloruro de bencetonio, cloruro de cetilpiridinio, bromuro de cetiltiridinio, bromuro de dodeciltrimetilamonio, bromuro de trimetiltetradecilamonio, bromuro de hexadeciltrimetilamonio y poloxaminas o mezclas de los mismos.
3. Sistema según la reivindicación 2, donde dicho tensoactivo catiónico es cloruro de benzalconio o bromuro de hexadeciltrimetilamonio.
4. Sistema según cualquiera de las reivindicaciones anteriores, donde el aceite se selecciona entre aceite mineral, aceite de escualeno, aceites de sabor, aceite de silicona, aceites esenciales, vitaminas insolubles en agua, isopropil estearato, butil estearato, octil palmitato, cetil palmitato, tridecil behenato, diisopropil adipato, dioctil sebacato, mentil antranilato, cetil octanoato, octil salicilato, isopropil miristato, cetoles de dicarpato de neopentilglicol, Cerafílos®, decil oleato, Ci2-C15 alquil lactatos, cetil lactato, lauril lactato, isostearil neopentanoato, miristil lactato, isocetil estearoil estearato, octildodecil estearoil estearato, aceites de hidrocarburos, isoparafina, parafinas fluidas, isododecano, vaselina, aceite de argán, aceite de colza, aceite de chile, aceite de coco, aceite de maíz, aceite de algodón, aceite de lino, aceite de semilla de uva, aceite de mostaza, aceite de oliva, aceite de palma, aceite de palma fraccionado, aceite de cacahuete, aceite de ricino, aceite de semilla de pino, aceite de semilla de amapola, aceite de semilla de calabaza, aceite de salvado de arroz, cártamo, aceite de té, aceite de trufa, aceite vegetal, aceite de albaricoque, aceite de jojoba, aceite de macadamia, aceite de germen de trigo, aceite de almendra, aceite de soja, aceite de sésamo, aceite de avellana, aceite de girasol, aceite de cáñamo, aceite de bois, aceite de nuez de Kukui, aceite de aguacate, aceite de nuez, aceite de pescado, aceite de baya, aceite de pimienta de Jamaica, aceite de enebro, aceite de semilla, aceite de semilla de almendra, aceite de semilla de anís, aceite de semilla de apio, aceite de semilla de comino, aceite de semilla de nuez moscada, aceite de hoja de albahaca, aceite de hoja de laurel, aceite de hoja de canela, aceite de hoja de salvia común, aceite de hoja de eucalipto, aceite de hoja de limón, aceite de hoja de melaleuca, aceite de orégano, aceite de hoja de pachuli, aceite de hoja de menta, aceite de aguja de pino, aceite de hoja de romero, aceite de menta verde, aceite de hoja del árbol de té, aceite de hoja de tomillo, aceite de hoja de té de Canadá, aceite de flor, aceite de camomila, aceite de salvia romana, aceite de clavo, aceite de flor de geranio, aceite de flor de hisopo, aceite de flor de jazmín, aceite de flor de lavanda, aceite de flor de mauka, aceite de flor de mejorana, aceite de flor de naranja, aceite de flor de rosa, aceite de flor de ylang-ylang, aceite de corteza, aceite de corteza de casia, aceite de corteza de canela, aceite de corteza de sasafrás, aceite de madera, aceite de madera de alcanfor, aceite de madera de cedro, aceite de palo de rosa, aceite de sándalo, aceite de madera de jengibre, aceite de resina, aceite de reciño, aceite de mirra, aceite de piel, aceite de piel de Bérgamo, aceite de piel de pomelo, aceite de piel de limón, aceite de piel de lima, aceite de piel de naranja, aceite de piel de mandarina, aceite de raíz, aceite de valeriana, ácido oleico, ácido linoleico, oleil alcohol, alcohol de isostearilo, oleato de etilo, Miglyol®, Labrafil®, Labrafac®, Peceol® y Maisine®, derivados sintéticos o semisintéticos de los mimos y combinaciones de los mismos.
5. Sistema según la reivindicación 4, donde dicho aceite es Miglyol®.
6. Sistema según cualquiera de las reivindicaciones anteriores, que adicionalmente comprende un tensoactivo soluble en aceite.
7. Sistema según la reivindicación 6, donde el tensoactivo soluble en aceite es un fosfolípido seleccionado entre lecitina, fosfatidilglicerol, fosfatidilserina, fosfatidilinositol, difosfatidilglicerol, ácido fosfatídico, fosfatidilcolina y fosfatidiletanolamina.
8. Sistema según la reivindicación 7, donde dicho fosfolípido es lecitina.
9. Sistema según cualquiera de las reivindicaciones anteriores, que adicionalmente comprende un tensoactivo soluble en agua.
10. Sistema según la reivindicación 9, donde el tensoactivo soluble en agua es se selecciona entre poloxámero y polisorbatos.
1 1. Sistema según la reivindicación 10, donde dicho poloxámero es poloxámero 188.
12. Sistema según cualquiera de las reivindicaciones anteriores, donde el ingrediente activo se selecciona entre péptidos, proteínas, compuestos lipidíeos o lipofílicos, compuestos sacarídicos, compuestos de ácidos nucleicos y nucleótidos o bien combinaciones de los mismos.
13. Sistema según la reivindicación 12, donde el ingrediente activo es docetaxel.
14. Sistema según la reivindicación 12, donde el ingrediente activo se selecciona entre un oligonucleótido, ARN de interferencia, un plásmido de ADN o un polinucleótido.
15. Sistema según la reivindicación 14, donde el ingrediente activo es un plásmido de ADN.
16. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque se encuentra en forma liofilizada.
17. Procedimiento de obtención del sistema definido en cualquiera de las reivindicaciones 1 a 16, que comprende:
a) preparar una disolución acuosa que comprende un polímero seleccionado del grupo que consiste en ácido poliglutámico (PGA), poliglutamico- polietilenglicol (PGA-PEG), ácido hialurónico (HA) y poliasparagina (PAsn) o una combinación de los mismos, y opcionalmente un tensoactivo soluble en agua;
b) preparar una disolución orgánica que comprende un aceite y un tensoactivo catiónico, y opcionalmente un tensoactivo soluble en aceite;
c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), obteniéndose espontáneamente las nanocápsulas; y
d) opcionalmente, evaporar total o parcialmente los disolventes orgánicos de la mezcla obtenida en la etapa anterior hasta volumen constante.
18. Procedimiento según la reivindicación 17, que además comprende añadir un ingrediente activo, con la condición de que cuando dicho polímero incluye ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
19. Procedimiento de obtención del sistema definido en cualquiera de las reivindicaciones 1 a 16, que comprende recubrir una nanoemulsión, constituida al menos por un aceite, un tensoactivo catiónico, opcionalmente un tensoactivo soluble en aceite y una fase acuosa que opcionalmente comprende un tensoactivo soluble en agua, mediante un proceso de incubación con una disolución acuosa de ácido poliglutámico, poliglutámico-polietilenglicol, ácido hialurónico, poliasparagina o una mezcla de los mismos.
20. Procedimiento según la reivindicación 19, que además comprende añadir un ingrediente activo, con la condición de que cuando dicho polímero incluye ácido poliglutámico o ácido poliglutamico-polietilenglicol (PGA-PEG), entonces el ingrediente activo no es una didemnina o una tamandarina.
21. Procedimiento según cualquiera de las reivindicaciones 17 a 20, que a continuación comprende una etapa de liofilización de los sistemas obtenidos en presencia de crioprotectores.
22. Procedimiento según la reivindicación 21, que a continuación comprende una etapa para regenerar los sistemas liofilizados.
23. Composición farmacéutica que comprende el sistema definido en cualquiera de las reivindicaciones 1 a 16.
24. Composición farmacéutica según la reivindicación 23, en donde dicha composición es para administración tópica, parenteral o a través de mucosas.
25. Uso de un sistema como se ha definido en cualquiera de las reivindicaciones de 1 a 16 en la preparación de un medicamento.
26. Uso de un sistema como se ha definido en cualquiera de las reivindicaciones 1 a 16 en la preparación de un medicamento para el tratamiento de cáncer.
PCT/ES2012/000008 2011-01-10 2012-01-09 Nanocápsulas con cubierta polimérica WO2012095543A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12734760.7A EP2664324B1 (en) 2011-01-10 2012-01-09 Nanocapsules with a polymer shell
BR112013017750A BR112013017750A8 (pt) 2011-01-10 2012-01-09 nanocápsulas com revestimento polimérico
CN201280012254.4A CN103596558A (zh) 2011-01-10 2012-01-09 聚合物壳纳米微胶囊
US13/979,092 US9415019B2 (en) 2011-01-10 2012-01-09 Nanocapsules with a polymer shell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130015A ES2385995B2 (es) 2011-01-10 2011-01-10 Nanocápsulas con cubierta polimérica
ESP201130015 2011-01-10

Publications (1)

Publication Number Publication Date
WO2012095543A1 true WO2012095543A1 (es) 2012-07-19

Family

ID=46506792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000008 WO2012095543A1 (es) 2011-01-10 2012-01-09 Nanocápsulas con cubierta polimérica

Country Status (6)

Country Link
US (1) US9415019B2 (es)
EP (1) EP2664324B1 (es)
CN (1) CN103596558A (es)
BR (1) BR112013017750A8 (es)
ES (1) ES2385995B2 (es)
WO (1) WO2012095543A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483353A (zh) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
CN105283176A (zh) * 2012-12-17 2016-01-27 圣地亚哥-德孔波斯特拉大学 鱼精蛋白纳米胶囊

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527157A (ja) 2010-04-15 2013-06-27 ワシントン・ユニバーシティ プロドラッグ組成物、プロドラッグナノ粒子およびその使用方法
AU2016343840A1 (en) * 2015-10-30 2018-06-07 The Johns Hopkins University Mucus penetrating particles with high molecular weight and dense coatings
ES2664584B2 (es) 2016-09-19 2018-12-13 Universidade De Santiago De Compostela Nanoparticulas con interiores protegidos, y métodos de uso de las mismas
WO2018064393A1 (en) * 2016-09-30 2018-04-05 President And Fellows Of Harvard College Materials including polymeric fibers incorporating microcapsules or nanocapsules including an essential oil
US10918685B2 (en) * 2017-01-05 2021-02-16 Ravi Ramamoorthy Iyer Herbal topical composition for muscle and joint health, recovery from exertion, and for pain management
WO2018169960A1 (en) * 2017-03-17 2018-09-20 The Johns Hopkins University Nanoparticle formulations for enhanced drug delivery to the bladder
ES2711669A1 (es) * 2017-11-02 2019-05-06 Univ Santiago Compostela Sistemas de liberacion de farmacos de acido polisialico y metodos
WO2020255114A1 (en) * 2019-06-20 2020-12-24 Lyotropic Delivery Systems Ltd. Polymeric soft films embedded with nanodomains and/or a bioactive and methods of producing same
CN111544643B (zh) * 2020-04-23 2022-06-07 海南芬森医疗器械有限公司 γ-聚谷氨酸皮肤屏障修复敷料及其制备方法
US11696888B2 (en) 2020-05-27 2023-07-11 Mary Kay Inc. Topical compositions and methods
CN115152739A (zh) * 2021-04-01 2022-10-11 中国科学院理化技术研究所 一种加载海藻糖的聚合物纳米颗粒及其制备方法与应用
CN115193263B (zh) * 2022-08-03 2023-04-18 广西大学 一种旋转膜过滤净化装置及其应用、净化山茶油的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006622A1 (en) 1991-07-03 1996-03-07 Hyal Pharmaceutical Corporation Hyaluronic acid and derivatives for modulation of cellular activity
US6326511B1 (en) 1997-08-18 2001-12-04 Lajos Kossuth University Polymeric product
US6383478B1 (en) 1999-04-22 2002-05-07 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US20030166602A1 (en) 1999-12-03 2003-09-04 Szoka Francis C. Targeted drug delivery with a CD44 receptor ligand
US20030170201A1 (en) 2000-09-26 2003-09-11 Kazunori Kataoka Polymeric micelle containing cisplatin enclosed therein and use thereof
WO2004112758A1 (es) 2003-06-20 2004-12-29 Advanced In Vitro Cell Technologies, S.L. Nanopartículas de ácido hialurónico
US20050238678A1 (en) 2004-03-05 2005-10-27 Janos Borbely Hydrogels from biopolymers
US20060246096A1 (en) 2003-12-29 2006-11-02 University of Debrecen, Department of Colloid and Environmental Chemistry Nanoparticles from biopolymers
US20070224277A1 (en) 2005-12-23 2007-09-27 Janos Borbely Hyaluronic acid-based cross-linked nanoparticles
WO2009087678A2 (en) * 2007-12-24 2009-07-16 Sun Pharma Advanced Research Company Limited Nanodispersion
BRPI0803473A2 (pt) * 2008-09-18 2010-06-15 Fundacao De Amparo A Pesquisa nanopartìcula transportadora de fármacos, processo de preparo e composição farmacêutica compreendendo a mesma e método para entrega de fármacos

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670185A (en) * 1982-07-19 1987-06-02 Lion Corporation Aqueous vesicle dispersion having surface charge
IL101241A (en) * 1992-03-16 1997-11-20 Yissum Res Dev Co Pharmaceutical or cosmetic composition comprising stabilized oil-in-water type emulsion as carrier
JP2811036B2 (ja) * 1992-05-26 1998-10-15 参天製薬株式会社 ビタミンe点眼剤
DE4244122C1 (de) * 1992-12-24 1994-06-01 Sanol Arznei Schwarz Gmbh Lyophilisierte, wirkstoffhaltige Emulsion zur intravenösen Applikation
US6365706B1 (en) * 2000-06-21 2002-04-02 Mississippi Chemical Corporation Process for production of polyasparagine and the high nitrogen content polymer formed thereby
US20040047891A1 (en) * 2001-02-26 2004-03-11 Sabina Glozman Systems devices and methods for intrabody targeted delivery and reloading of therapeutic agents
WO2002087563A2 (en) * 2001-05-01 2002-11-07 Angiotech Pharmaceuticals Inc. Compositions comprising an anti-microtubule agent and a polypeptide or a polysaccharide and the use thereof for the preparation of a medicament for the treatment of inflammatory conditions
KR100874847B1 (ko) * 2001-06-01 2008-12-19 아스텔라스 파마 유럽 비.브이. 지질-폴리머-접합체
US20050196370A1 (en) * 2003-03-18 2005-09-08 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with sodium hyaluronate for alleviating dry eye
ES2232287B1 (es) * 2003-07-04 2006-11-01 Advanced In Vitro Cell Technologies, S.L. Nanoparticulas de derivados polioxietilenados.
US7879885B2 (en) * 2004-03-24 2011-02-01 Array Biopharma, Inc. Thioalkeneamides as transketolase inhibitors
WO2006014706A2 (en) * 2004-07-21 2006-02-09 Serenex, Inc. Methotrexate derivatives useful for treating cancer and arthritis
US8114842B1 (en) * 2004-10-05 2012-02-14 Gp Medical, Inc. Nanoparticles for drug delivery
US7541028B2 (en) * 2005-01-04 2009-06-02 Gp Medical, Inc. Nanoparticles for monoclonal antibody delivery
US20070099856A1 (en) * 2005-05-13 2007-05-03 Gumerlock Paul H Combined treatment with docetaxel and an epidermal growth factor receptor kinase inhibitor using an intermittent dosing regimen
CN101062017B (zh) * 2006-04-26 2010-05-12 科妍生物科技股份有限公司 一种透明质酸及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006622A1 (en) 1991-07-03 1996-03-07 Hyal Pharmaceutical Corporation Hyaluronic acid and derivatives for modulation of cellular activity
US6326511B1 (en) 1997-08-18 2001-12-04 Lajos Kossuth University Polymeric product
US6383478B1 (en) 1999-04-22 2002-05-07 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US20030166602A1 (en) 1999-12-03 2003-09-04 Szoka Francis C. Targeted drug delivery with a CD44 receptor ligand
US20030170201A1 (en) 2000-09-26 2003-09-11 Kazunori Kataoka Polymeric micelle containing cisplatin enclosed therein and use thereof
WO2004112758A1 (es) 2003-06-20 2004-12-29 Advanced In Vitro Cell Technologies, S.L. Nanopartículas de ácido hialurónico
US20060246096A1 (en) 2003-12-29 2006-11-02 University of Debrecen, Department of Colloid and Environmental Chemistry Nanoparticles from biopolymers
US20050238678A1 (en) 2004-03-05 2005-10-27 Janos Borbely Hydrogels from biopolymers
US20070224277A1 (en) 2005-12-23 2007-09-27 Janos Borbely Hyaluronic acid-based cross-linked nanoparticles
WO2009087678A2 (en) * 2007-12-24 2009-07-16 Sun Pharma Advanced Research Company Limited Nanodispersion
BRPI0803473A2 (pt) * 2008-09-18 2010-06-15 Fundacao De Amparo A Pesquisa nanopartìcula transportadora de fármacos, processo de preparo e composição farmacêutica compreendendo a mesma e método para entrega de fármacos

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BARBAULTFOUCHER ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 83, 2002, pages 365 - 375
BLANCO ET AL., CLIN. EXP RHEUMATOL., vol. 22, no. 3, 2004, pages 307 - 12
BUESCHER; MARGARITIS, CRIT REVBIOTECH, 2007
CABRERA ET AL., J. CONTROL. RELEASE, vol. 101, 2005, pages 223 - 232
DEKIE J., CONTROL. RELEASE, vol. 65, 2000, pages 187 - 202
DUBRUEL ET AL., BIOMACROMOLECULES, vol. 4, 2003, pages 1168 - 1176
GREENE; WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC.
HOSTE ET AL., J. CONTROL. RELEASE, vol. 64, 2000, pages 53 - 61
KIM ET AL., J. GENE MED, vol. 11, 2009, pages 791
LUO; PRESTWICH, BIOCONJUGATE CHEM, vol. 10, 1999, pages 755 - 763
NISHIDA ET AL., EXP. EYE RES, vol. 53, 1991, pages 753 - 758
NISHIYAMA ET AL., CANCER RESEARCH, vol. 63, 2003, pages 8977 - 8983
PREGO ET AL., J. NANOSCI. NANOTECHNOL., vol. 6, 2006, pages 1
SAND ET AL., ACTA OPHTHALMOL., vol. 67, 1989, pages 181 - 183
TADROS ET AL., ADV. COLLOID INTERFACE SCI, vol. 109, 2004, pages 303
VERONESE ET AL., DDT, vol. 10, no. 21, 2005, pages 1451 - 1458
YENICE ET AL., EXPERIMENTAL EYE RESEARCH, vol. 87, no. 3, 2008, pages 162 - 7
YENICE I. ET AL.: "Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea", EXPERIMENTAL EYE RESEARCH, vol. 87, 2008, pages 162 - 167, XP025348994 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483353A (zh) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
CN103483353B (zh) * 2012-06-13 2016-02-24 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
CN105283176A (zh) * 2012-12-17 2016-01-27 圣地亚哥-德孔波斯特拉大学 鱼精蛋白纳米胶囊
JP2016503780A (ja) * 2012-12-17 2016-02-08 ウニベルシダッデ デ サンティアゴ デ コンポステーラ プロタミンナノカプセル
US20160038433A1 (en) * 2012-12-17 2016-02-11 Universidade De Santiago De Compostela Nanocapsules of protamine
US9642816B2 (en) * 2012-12-17 2017-05-09 Universidade De Santiago De Compostela Nanocapsules of protamine

Also Published As

Publication number Publication date
EP2664324A4 (en) 2015-05-27
ES2385995B2 (es) 2013-05-21
BR112013017750A8 (pt) 2018-03-06
CN103596558A (zh) 2014-02-19
ES2385995A1 (es) 2012-08-06
EP2664324A1 (en) 2013-11-20
BR112013017750A2 (pt) 2016-10-11
EP2664324B1 (en) 2019-09-25
US9415019B2 (en) 2016-08-16
US20140023703A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
ES2385995B2 (es) Nanocápsulas con cubierta polimérica
Majumder et al. Nanocarrier-based systems for targeted and site specific therapeutic delivery
Jia et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats
Mo et al. PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure
Wang et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer
ES2671047T3 (es) Encapsulado de fotosensibilizadores en nanoemulsiones
ES2923929T3 (es) Formulación liposomal para uso en el tratamiento del cáncer
KR20200130704A (ko) 약물 전달 시스템
Yoon et al. Docetaxel-loaded RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes: drug release, cytotoxicity, and antitumor efficacy
US10632081B2 (en) Intralymphatic delivery of hyaluronan nanoparticle for cancer metastasis
ES2951598T3 (es) Composición farmacéutica que combina al menos dos nanopartículas distintas y un compuesto farmacéutico, preparación y usos de los mismos
Marzban et al. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: In vitro and in vivo studies
Wei et al. Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy
KR20110056042A (ko) 종양세포 표적지향을 위한 나노 입자 및 이의 제조방법
AU2006321796A1 (en) Liposomal compositions
US20180207104A1 (en) Improved nanoparticle delivery systems
ES2481940B1 (es) Nanocápsulas de protamina
WO2021057007A1 (zh) 一种雷帕霉素纳米缓释剂及其制备方法
Ao et al. Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer
ES2347119B2 (es) Nanocapsulas de poliarginina.
KR20100075490A (ko) 신규 탁소이드-기재 조성물
WO2009121997A2 (es) Nanopartículas pegiladas que comprenden una molécula biológicamente activa y sus aplicaciones
Tang et al. Construction and evaluation of hyaluronic acid-based copolymers as a targeted chemotherapy drug carrier for cancer therapy
WO2016066864A1 (es) Nanopartículas para la liberación controlada de ingredientes activos
Karimi et al. Prolonged local delivery of doxorubicin to cancer cells using lipid liquid crystalline system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012734760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13979092

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013017750

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013017750

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130710