WO2004096885A1 - Resin composition for prepreg - Google Patents

Resin composition for prepreg Download PDF

Info

Publication number
WO2004096885A1
WO2004096885A1 PCT/JP2004/006126 JP2004006126W WO2004096885A1 WO 2004096885 A1 WO2004096885 A1 WO 2004096885A1 JP 2004006126 W JP2004006126 W JP 2004006126W WO 2004096885 A1 WO2004096885 A1 WO 2004096885A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
preda
resin
honeycomb core
Prior art date
Application number
PCT/JP2004/006126
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Iwata
Original Assignee
The Yokohama Rubber Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co. Ltd. filed Critical The Yokohama Rubber Co. Ltd.
Publication of WO2004096885A1 publication Critical patent/WO2004096885A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a resin composition for a prepredder field which retains heat resistance and water resistance, and has excellent flow control properties and adhesion to a honeycomb core. More specifically, the present invention relates to a copure adhesive for bonding a honeycomb core to a prepredder. The present invention relates to a resin composition for a prepreg having (self-adhesive) properties. Background art
  • Epoxy resin compositions are used in the fields of construction, civil engineering, automobiles, aircraft, and the like as resins having excellent heat resistance. Fiber-reinforced composite materials using an epoxy resin composition as a matrix resin have excellent mechanical properties, heat resistance and water resistance, and so far pre-preparers have been proposed using combinations of epoxy resins with various compositions and reinforcing fibers. Have been.
  • the pre-preda is generally in the form of a sheet, and includes a sheet plane in which continuous fibers are arranged in one direction in parallel, a continuous fiber woven fabric, a discontinuous fiber arranged in an arbitrary direction, and the like. is there.
  • a honeycomb core having a honeycomb structure is often formed into a structure in which a cross-section of a pre-preda is joined to a cross-section. Adhesion to the pre-preda has been conventionally achieved by interposing a sheet-like adhesive between the honeycomb core and the pre-preda. P2004 / 006126.
  • a pre-preda is laminated on both sides of the 82-cam core without using an adhesive sheet, and the pre-preda itself is cured and adhered to the honeycomb core at the same time and without an adhesive.
  • Precure molding has been required for pre-preda, and as a resin composition for pre-preda impregnation (resin composition for pre-preda), an epoxy resin having co-curability has been studied and disclosed in various inventions for defining viscosity characteristics. I have.
  • JP-A-5-239317 discloses an epoxy resin comprising an epoxy resin, a curing agent, and a solid rubber for the purpose of avoiding the generation of porosity (voids and voids generated during curing of the resin).
  • the composition is a complex viscosity ⁇ measured at 80 ° C. at an oscillation frequency of 0.02 Hz. .. 2 is 500 Pa ⁇ s or more, and complex viscosity TU and 7? Measured at vibration frequency 2 Hz. .. The relationship between 2 is log ??. .. An epoxy resin composition satisfying 2 — log 7 2 ⁇ 0.5 is disclosed.
  • 9-1196461 discloses that a reinforcing fiber and a matrix resin are used for the purpose of improving the duckability and drapability, the matrix resin is a thermosetting resin, and the measurement frequency is 0.
  • the complex viscosity ⁇ * of the matrix resin in the dynamic viscoelasticity measurement at 5 Hz and 50 ° C is in the range of 200 to 2000 Pa ⁇ s, and the energy loss t &: 16 is 0.3 to 5
  • a range of pre-preda is disclosed.
  • JP-A-11-254435 discloses that the minimum viscosity is 0.01 to 30 Pa ⁇
  • a resin film for producing a pre-preda prepared by applying a thermosetting resin of s on a release sheet.
  • the minimum viscosity If the ratio is less than 0.1Pas, the resin film will not be produced uniformly, which will cause problems such as flow and repelling. If it exceeds 30 Pas, the film will not be evenly formed, and when transferring the resin from the coating roll to release paper, transfer unevenness will occur and a uniform resin film will not be obtained.
  • the present invention provides a resin composition for a prepreg, which is excellent in heat resistance, water repellency, flow control properties and adhesion to a honeycomb core, and clarifies the relationship between the formability of the fillet and the complex viscosity of the resin. It is an object of the present invention to provide a structure obtained by adhering a pre-preda using a resin composition for a pre-preda to a honeycomb core.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a group consisting of an epoxy resin, an aromatic amine, an imidazole-based catalyst, a boron trifluoride-amine salt catalyst, and dicyandiamide.
  • Complex viscosity of the resin composition for a pre-preda containing at least one selected from the group consisting of a solid rubber and / or a thermoplastic polymer.
  • the resin composition for a pre-preda is an excellent composition which is excellent in heat resistance, water resistance and flow control as a matrix resin for the pre-preda, and also satisfies the adhesiveness to a honeycomb core.
  • the present invention was found to be a product. That is, the present invention provides the following resin compositions (1) to (3) for a pre-preda and the structure (4).
  • the content of the solid rubber and Z or the thermoplastic polymer (cl) is not less than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a);
  • a resin composition for a pre-preda resin whose complex viscosity measured at a vibration frequency of 0.02 Hz satisfies the relationship represented by the following formula (1).
  • represents the temperature rise rate
  • represents the temperature difference between the measurement points in the measurement temperature range of 25 to 250 ° C.
  • FIG. 1 is a perspective view of a structure including a honeycomb core and a pre-preda.
  • FIG. 2 is a cross-sectional view of a structure including a honeycomb core and a pre-preda.
  • the resin composition for a pre-preda of the present invention comprises: (a) an epoxy resin; (b) an aromatic amine; (c) an imidazole-based catalyst, boron trifluoride'amine salt catalyst, and disiandiamide. At least one selected (hereinafter, also simply referred to as component (c)) and (d) solid rubber and Z or a thermoplastic polymer, and the content of the solid rubber and Z or thermoplastic polymer (d) But not less than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a),
  • the resin composition for a pre-preda is characterized in that the complex viscosity 7? Measured at a vibration frequency of 0.02 Hz satisfies the relationship represented by the following formula (1).
  • A represents the temperature rise rate
  • represents the temperature difference between the measurement points in the measurement temperature range of 25 to 250 ° C.
  • the epoxy resin (a) used in the present invention is not particularly limited as long as it is a polyepoxy compound having an average of two or more epoxy groups in one molecule.
  • epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, and piphenyl type, etc.
  • Bifunctional glycidyl ether epoxy resins such as polyalkylene glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthylene ring, and epoxy compounds having a fluorene group;
  • Polyfunctional dalicidyl ether type epoxy resin such as phenol nopolak type, orthocresol nopolak type, DPP nopolak type, tris-hydroxyphenylmethane type, trifunctional type, tetraphenylolethane type, etc .;
  • TGDDM tetraglycidyl m-xylyl
  • Aromatic epoxy resin having a glycidylamino group such as rangedamine, triglycidyl-1-P-aminophenol, N, N-diglycidyldiline;
  • Alicyclic epoxy resin epoxy resin represented by Flep 10 manufactured by Toray Recoal Co., Ltd. epoxy resin having a sulfur atom in the main chain; urethane-modified epoxy resin having urethane bond; polybutadiene, liquid polyacrylonitrile-butadiene rubber or A rubber-modified epoxy resin containing acrylonitrile-butadiene rubber (NBR) is exemplified. These may be used alone or in combination of two or more.
  • the resin composition for a pre-preda of the present invention preferably contains an epoxy resin having a skeleton and an aromatic epoxy resin having a Z or dalicidylamino group, because it is excellent in heat resistance and water resistance. .
  • epoxy resin having a dicyclopentene skeleton for example, commercially available products such as TACTIX-556 from Dow Chemical and HP-720 from Dainippon Ink & Chemicals, Inc.
  • aromatic epoxy resins having a glycidylamino group can be used. Specifically, for example, Sumitomo Chemical's ELM-434, Mitsubishi Gas Chemical's TET RAD—X etc. can be used.
  • the resin composition for a pre-preda may include, as an epoxy resin, In addition to an epoxy resin having a Tajene skeleton and / or an aromatic epoxy resin having a glycidylamino group, an epoxy resin having two or more epoxy groups in one molecule (polyfunctional epoxy resin) However, heat resistance, water resistance, and adhesion to the honeycomb core and the carbon fiber are preferable because they are good.
  • the polyfunctional epoxy resin the above-mentioned daricidyl ether type epoxy resin is preferably used, and specifically, for example, glycidyl ether type epoxy resins represented by the following formulas (4) and (5) and the like are mentioned.
  • epoxy resin (a) used in the present invention As the epoxy resin (a) used in the present invention,
  • the aromatic epoxy resin having a glycidylamino group accounts for 30% by mass of all epoxy resins constituting the epoxy resin (a) (hereinafter, simply referred to as epoxy resin (a)).
  • the content of the epoxy resin having a dicyclopentene skeleton is preferably 25% by mass or more from the viewpoint of maintaining a balance between water resistance and heat resistance.
  • the total content is 55 to 95% by mass with respect to the epoxy resin (a), Preferably it is 65 to 95% by mass. This range is preferred because it is excellent in water resistance and heat resistance.
  • the epoxy resin (a) includes, in addition to the above-mentioned epoxy resin having a dicyclopentene skeleton and the above-mentioned aromatic epoxy resin having a dalycidylamino group, a general epoxy resin such as the above-mentioned polyfunctional epoxy resin.
  • the composition contains 5 to 45% by mass, preferably 5 to 35% by mass of a general-purpose epoxy resin used for the composition. When the content of the other epoxy resin is within this range, heat resistance and water resistance are maintained, and an appropriate viscosity can be obtained, which is preferable.
  • aromatic amine (b) used in the present invention include, for example, diaminodiphenylsulfone (DDS), diaminodiphenylmethane (DDM), and diaminodiphenylene represented by the following formula (6).
  • DDS diaminodiphenylsulfone
  • DDM diaminodiphenylmethane
  • diaminodiphenylene represented by the following formula (6).
  • Monoter (D AD PE) bisaniline
  • benzyldimethylaniline and the like.
  • aromatic amines having one or more amino groups in the molecule are preferred from the viewpoint that the resulting composition of the present invention has excellent heat resistance.
  • Such aromatic amines having one or more amino groups Preferred examples of the diamine diphenyl sulfone (DDS), diamino diphenyl methane (DDM), diamino diphenyl ether (DADPE), bisaniline, etc. It is preferable to use it as an agent because it is particularly excellent in heat resistance. These aromatic amines may be used alone or as a mixture of two or more.
  • the resin composition for a prepredder of the present invention may comprise, as a curing agent, an imidazole-based catalyst or boron trifluoride as a component (c), in addition to the aromatic amine (b), as long as the object of the present invention is not impaired.
  • Contains at least one selected from the group consisting of amine salt catalysts and dicyandiamide.
  • component (c) examples include those commonly used as a curing agent and a curing catalyst for an epoxy resin.
  • dicyandiamide DI CY
  • various derivatives of imidazole eg, Shikoku Chemicals
  • 2MA—OK 2 ⁇ - ⁇
  • boron trifluoride-amine salt catalyst eg, boron trifluoride-monoethylamine, boron trifluoride'pirazine salt, boron trifluoride-aniline
  • the solid rubber and / or thermoplastic polymer (d) used in the present invention is as described above.
  • Specific examples of the solid rubber include various rubbers such as acrylonitrile-butadiene rubber and its hydride, acryl rubber, ethylene-acrylic rubber, epichlorohydrin rubber, and ethylene-vinyl acetate rubber.
  • thermoplastic polymer examples include, for example, PES (polyether sulfone), PPS (polyphenylene sulfide), PEEK (polyether ethyl ketone), PI (polyimide), PEI (polyetherimide), PAI (Polyamide imide), and the like, and the thermal decomposition onset temperature (Td) is preferably 160 ° C. or more.
  • Examples of the functional group capable of reacting with the epoxy resin include a hydroxyl group, an amino group, and the like.
  • the solid rubber is preferably an acrylonitrile butadiene rubber (NBR) among the above examples, and a functional group capable of reacting with an epoxy resin or a curing agent, in particular, a carboxy-modified acrylonitrile butadiene rubber having a carboxyl group and More preferably, it is Z or carboxy-modified hydrogenated acrylonitrile-butadiene rubber (hereinafter, referred to as carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber).
  • NBR acrylonitrile butadiene rubber
  • a functional group capable of reacting with an epoxy resin or a curing agent in particular, a carboxy-modified acrylonitrile butadiene rubber having a carboxyl group and More preferably, it is Z or carboxy-modified hydrogenated acrylonitrile-butadiene rubber (hereinafter, referred to as carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber).
  • the carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber may be one or both of a non-hydrogenated rubber and a hydrogenated rubber.However, when the hydrogenated rubber is used, the weather resistance of the composition, Good heat resistance and water resistance. Cal The modified oxy group can easily react with an epoxy resin or a curing agent because it has a hydroxyl group.
  • the carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber (d) used in the present invention may be one type or a mixture of two or more types.
  • the carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber is a carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber having 20% to 40% by mass of nitrile and 0.5% to 6% by mass of carboxy. It is preferable that there is.
  • the content of solid rubber and Z or thermoplastic polymer (d) compatible with the epoxy resin is 1 part by weight or more and less than 10 parts by weight with respect to 100 parts by weight of the epoxy resin (a). It is preferably less than 5 parts by mass from the viewpoint of the viscosity (complex viscosity) of the obtained prepreg resin composition of the present invention and the formability of fillets described later.
  • the resin composition for a prepreg of the present invention further comprises a complex measured at a vibration frequency of 0.02 Hz.
  • is the heating rate and ⁇ is between the measurement points in the measurement temperature range of 25 to 250 ° C. 6126 Indicates the temperature difference.
  • the complex viscosity is a value measured as follows using a dynamic mechanical analyzer (dynamic viscoelasticity measuring device; DMA).
  • DMA dynamic viscoelasticity measuring device
  • the complex viscosity is measured by a plate-to-plate type (parallel plate method) using a disk-shaped plate with a diameter of 25 mm or 50 mm. It is measured from a torque and a phase difference generated when the resin composition for a pre-preda of the present invention is filled and one plate is subjected to a vibration having a predetermined vibration frequency of 0.02 Hz and an amplitude of 1 Hz.
  • the present inventor uses this as a parameter indicating the distance at which the upper fillet flows out during the co-curing of the pre-preda, and integrates 1Z within the temperature range in which the resin composition for the pre-preda flows out and hardens, so that the upper fillet is sufficiently large.
  • ⁇ / ( ⁇ ? ⁇ ) obtained by integrating the complex viscosity of the resin composition for pre-preda measured in a specific measurement temperature range (25 to 250 ° C) and the measured value of the upper fillet.
  • the parameter represented by the above formula (1) is different from that of the resin composition for a pre-reader. Since a continuous change in a wide temperature range in the outflow hardening can be reflected, this is an excellent parameter when selecting a resin composition having a certain viscosity range capable of obtaining a sufficiently large fillet shape.
  • the resin composition for a prepreg of the present invention comprises, as essential components, an epoxy resin (a), an aromatic amine (b), an imidazole catalyst, a boron trifluoride / amine salt catalyst and dicyandiamide. It contains at least one selected material (c) and a solid rubber and / or a thermoplastic polymer (d), but it does not impair the curing of the resin composition for a prepreg of the present invention. And various additives such as an anti-aging agent and a solvent.
  • Examples of the filler include Ribon Bonplatsk, calcium carbonate, titanium oxide, silica, aluminum hydroxide and the like.
  • Examples of the anti-aging agent include hindered amines and hindered phenols.
  • Examples of the solvent include methanol, ethanol, propanol, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK).
  • the resin composition for a prepreg of the present invention comprises at least one selected from the group consisting of an epoxy resin (a), an aromatic amine (b), an imidazole-based catalyst, a boron trifluoride-amine salt catalyst, and dicyandiamide.
  • One (c), the solid rubber and Z or the thermoplastic polymer (d), and the additives to be added as required, are added using a Dalton-type mixer, a paint roll, a grinder, or the like. It is manufactured by mixing in a conventional manner.
  • the carboxy-modified (hydrogenated) acrylonitrile When the gen rubber component is mixed as a solid rubber, it may be mixed by dissolving it in the above solvent, or may be mixed by a paint roll. However, both of them must be well dispersed in the epoxy resin (a). is necessary.
  • the cured product obtained from the resin composition for a prepreg of the present invention is excellent in heat resistance and water resistance and also excellent in adhesion between the prepreg and the honeycomb core. It is useful to use it as an object.
  • the use of the resin composition for a pre-preda of the present invention as a matrix resin composition refers to a carbon fiber, an aramide fiber such as Kevlar, a fiber woven fabric such as a glass fiber, or a unidirectional fiber thereof. This is to impregnate the resin composition for a prepreg of the present invention, or to laminate a plurality of woven fabrics impregnated with the resin composition, thereby producing a prepreg.
  • the resin composition for a pre-preda of the present invention is dissolved in a solvent to prepare a varnish and then impregnated.
  • a solvent used in preparing the varnish a solvent of alcohols such as methanol, ethanol, and propanol, or a solvent of ketones such as methyl ethyl ketone (MEK) is preferably dissolved.
  • MEK methyl ethyl ketone
  • a varnish containing the resin composition for pre-preda may be prepared and then impregnated into a woven fabric.
  • the addition amount of the solvent is 100 to 200 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for a prepredder, so that the drying step is optimized.
  • Examples of the fiber woven fabric used in the prepreg using the resin composition for a prepreg of the present invention as a matrix resin include carbon fibers, aramide fibers such as Kepler, fiber woven fabrics such as glass fibers, and unidirectional fibers (long fibers) thereof. And the like. Specific examples include Rikibon fiber T-300 manufactured by Toray Co., Ltd. and HTA grade manufactured by Toho Rayon Co., Ltd., and the basis weight of the fiber is 140 to 200 g. / m 2 is preferred.
  • the pre-preda using the resin composition for a pre-preda of the present invention as a matrix resin is a pre-preda prepared by impregnating the above-described epoxy resin (a) as a varnish with or without a solvent into a woven fabric of carbon fiber.
  • a pre-preda prepared by impregnating the above-described epoxy resin (a) as a varnish with or without a solvent into a woven fabric of carbon fiber.
  • Such prepregs can be manufactured using equipment such as a UD (unidirect) machine.
  • the content of the impregnated resin composition for a prepreg is not particularly limited as long as it is a value suitable for each application, but is 30 to 50% by mass, particularly 35 to 45% by mass in the prepreg. Preferably it is.
  • the resin composition for a pre-preda of the present invention can be an adhesive to a honeycomb core as well as a matrix resin for a pre-preda. Therefore, if the prepreg is applied as it is, it is not necessary to use another adhesive between the prepreg and the honeycomb core. This indicates that so-called cure molding, in which a prepreg is prepared using the prepreg resin composition of the present invention and curing of the prepreg itself and adhesion to the honeycomb core can be performed simultaneously.
  • any composition may be used as long as it is a non-metallic 82-cam core such as a resin-based or paper-based material.
  • a Nomex honeycomb core impregnated with is most preferred when applied to aircraft.
  • Various sizes of hexagonal pillars in the honeycomb structure of the honeycomb core can be used, but it is preferable to use a honeycomb core having a cell size of 1/8 to 38 inches. It is preferable in terms of strength and weight reduction.
  • FIG. 1 and 2 show an example of a structure in which a pre-preda and a honeycomb core are bonded, and a method of bonding the pre-preda and the honeycomb core will be described.
  • FIG. 1 is a perspective view of the structure 1.
  • FIG. 2 is a cross-sectional view of the structure 1 cut in parallel with the side surfaces of the prisms of the honeycomb core 11.
  • Part a of FIG. 2 shows a structure using a pre-preparer formed of a conventional matrix resin
  • part b shows a structure using a pre-preda using a resin composition for a pre-preda of the present invention as a matrix resin.
  • the structure 1 is obtained by bonding the pre-predator 10 and the honeycomb core 11 to each other, and the present invention is applied to one or both end faces of the end 12 of the honeycomb core having a honeycomb structure. It is produced by bonding a pre-predator 10 using the above composition as a matrix resin and heat-curing with an autoclave or the like while pressing from both ends.
  • the solid rubber and / or the thermoplastic polymer (d), preferably, propyloxy-modified (hydrogenated) acrylonitrile By containing butadiene rubber
  • d propyloxy-modified (hydrogenated) acrylonitrile
  • An appropriate amount of the resin composition for prepreg can be present in the prepreg without the resin component flowing out of the prepreg due to excessive outflow. Therefore, curing can be completed while maintaining the appropriate shape of the upper fillet 14. Also, on the lower surface, when the viscosity once decreases, the lower fillet 14 'is formed by the surface tension, and the resin composition for pre-preda is appropriately held, whereby the curing can be completed.
  • the fillet refers to the shape of the resin layer formed between the pre-preda and the honeycomb core when the pre-preda and the honeycomb core are joined and cured. (14, 14 'in Figure 2)
  • the structure of the present invention does not impair the heat resistance of the epoxy resin, and is more water-resistant than before. Also, it has excellent adhesion between the pre-preda and the honeycomb core.
  • Curing conditions at the time of bonding the honeycomb core and Puripureda is, 2 to 5 ° CZ min, at pressure 2. 5 ⁇ 4. O k gZ cm 2, 1 5 0 ⁇ 1 8 5. It is preferable to raise the temperature to C, maintain the temperature at 150 to 185 ° C for 1 to 2 hours, and then lower the temperature to room temperature in 2 to 5 ° C for Z minutes.
  • the resulting structure of the prepredder and the honeycomb core has excellent heat resistance and water resistance, and has an adhesive property between the prepredder and the honeycomb core.
  • the size of the upper fillet is preferably 400 m or more because of excellent adhesion between the pre-preda and the honeycomb core.
  • the raw material components were mixed at the ratios (parts by mass) shown in Table 1 below, or various dalton type mixers were used to produce various pre-preda resin compositions.
  • each composition was heated at a minute and cured at 180 ° C for 2 hours, and the cured product obtained was cut into a 5 x 5 x 15 mm rod shape.
  • the inflection point of the curve obtained by measuring the sample obtained under the conditions of a heating rate of 10 ° CZ and a load of 100 g using the penetration method of a thermomechanical analyzer (TMA) is used as the glass transition point (Tg).
  • TMA thermomechanical analyzer
  • the cured product cured at 180 ° C for 2 hours was immersed in warm water at 93 ° C for 14 days, and immediately after being taken out, the glass transition point (Tg) was determined using the above-mentioned (1) for the Venetration by TMA. )). In this measurement, if the glass transition point is less than 165 ° C, it is not suitable for use after water resistance. (3) Pre-preda moldability
  • the prepredder prepared in (3) above was joined to both cross sections of a Nomex honeycomb core manufactured by Showa Aircraft Co., Ltd., exhibiting a honeycomb pattern, pre-assembled by the vacuum back method, and then heated to 2 ° CZ by autoclave.
  • the temperature was raised to 180 ° C. at a molding pressure of S kgZcm 2 and then kept at 180 ° C. for 2 hours to obtain a test piece.
  • the obtained test piece was cut parallel to the prism of the honeycomb core, and a case where fillets of 400 m or more were formed at the top and bottom of both ends of the honeycomb core was evaluated as “ ⁇ ”, and a fillet was formed below 400 m. If the fillet was not filled or had a fillet biased only on the lower surface, it was evaluated as “X”.
  • the prepredder prepared in (3) was joined to both cross sections of the Nomex honeycomb core manufactured by Showa Aircraft Co., Ltd., which had a honeycomb-like pattern, and pre-assembled by the vacuum back method.
  • the temperature was raised to 180 ° C at a temperature rising rate of 2 ° C / min and a molding pressure of 3 kg / cm 2 , and then kept at 180 ° C for 2 hours to obtain a test piece.
  • the obtained test piece was cut parallel to the prism of the 82 cam core, and the fillet size of the fillet (upper fillet) formed at the upper end of the 82 cam core was measured.
  • Epoxy resin> 'ELM-434 Daricidylamine type epoxy resin of the above formula (2) manufactured by Sumitomo Chemical Co., Ltd. (epoxy equivalent: 120)
  • HP-7200 Epoxy resin having a dicyclopentene group manufactured by Dainippon Ink and Chemicals, Inc. (epoxy equivalent 250-280)
  • EP-154 Phenol-nopolak type epoxy resin manufactured by Yuka Shell Chemical (epoxy equivalent 180)
  • YD-128 Bisphenol A type epoxy resin manufactured by Toto Kasei (epoxy equivalent 190)
  • DDS 4,4,1-diaminodiphenyl sulfone manufactured by Sumitomo Chemical Co., Ltd.
  • BF 3 / MEA Boron trifluoride monoethylamine, manufactured by Stella Chemifa DI CY-15: Dicyandiamide manufactured by Yuka Shell Chemical
  • DCMU-99 3- (3,4-dichlorophenyl) 1-1,1-dimethylperyl manufactured by Hodogaya Chemical Co., Ltd.
  • N ipo 1— 1041 Acrylonitrile butadiene rubber manufactured by Zeon Corporation
  • N ip 01-1072 Carboxy-modified acrylonitrile rubber manufactured by Zeon Corporation ⁇ Thermoplastic polymer>
  • the resin composition for prepreg of the present invention that satisfies the relationship represented by the above formula (1) has excellent prepreg moldability and fillet moldability, and furthermore, the upper fillet 1, It has been found that the size of 400 m or more results in excellent adhesion to the honeycomb core.
  • the resin composition for a prepreg of the present invention can maintain the heat resistance and water resistance of the resin.
  • the prepreg using the resin composition for a prepreg has excellent adhesiveness with a honeycomb core, and has excellent adhesion to a honeycomb core. This is useful because a sufficiently large fillet can be formed between them.
  • the pre-preda can be provided with cocurability, which is useful because it exhibits flow control properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The relationship between fillet moldability and the complex viscosity of a resin is clarified. Provided are: a resin composition for prepregs which is excellent in heat resistance, water resistance, suitability for flow control, and adhesion to honeycomb cores; and a structure obtained by bonding prepregs obtained from the resin composition to a honeycomb core. The resin composition for prepregs comprises (a) an epoxy resin, (b) an aromatic amine, (c) at least one member selected from the group consisting of imidazole catalysts, boron trifluoride/amine salt catalysts, and dicyandiamide, and (d) a solid rubber and/or a thermoplastic polymer, the amount of the solid rubber and/or thermoplastic polymer (d) being 1 to 10 parts by weight, excluding 10 parts by weight, per 100 parts by weight of the epoxy resin (a), the complex viscosity η of the resin composition as measured at a frequency of 0.02 Hz satisfying a given relationship.

Description

プリプレダ用樹脂組成物 技術分野 Technical field of resin composition for pre-preda
本発明は、 耐熱性、 耐水性を保持明し、 かつ、 フローコントロール性およびハニ カムコアとの接着性に優れたプリプレダ田用樹脂組成物、 さらに詳細には、 ハニカ ムコアとプリプレダとの接着に際しコキュァ (自己接着) 性を有するプリプレダ 用樹脂組成物に関する。 背景技術  The present invention relates to a resin composition for a prepredder field which retains heat resistance and water resistance, and has excellent flow control properties and adhesion to a honeycomb core. More specifically, the present invention relates to a copure adhesive for bonding a honeycomb core to a prepredder. The present invention relates to a resin composition for a prepreg having (self-adhesive) properties. Background art
エポキシ樹脂組成物は、 耐熱性に優れた樹脂として、 建築、 土木、 自動車、 航 空機などの分野で利用されている。 エポキシ樹脂組成物をマトリックス樹脂とす る繊維強化複合材料は、 力学特性、 耐熱性、 耐水性に優れており、 これまで、 さ まざまな組成を有するエポキシ樹脂と補強繊維の組み合わせによるプリプレダが 提案されている。 プリプレダは、 一般にシート状をしており、 シート平面の中に 連続繊維が一方向に平行に配列したものや、 連続繊維織物となったもの、 不連続 繊維を任意の方向に配列したものなどがある。  Epoxy resin compositions are used in the fields of construction, civil engineering, automobiles, aircraft, and the like as resins having excellent heat resistance. Fiber-reinforced composite materials using an epoxy resin composition as a matrix resin have excellent mechanical properties, heat resistance and water resistance, and so far pre-preparers have been proposed using combinations of epoxy resins with various compositions and reinforcing fibers. Have been. The pre-preda is generally in the form of a sheet, and includes a sheet plane in which continuous fibers are arranged in one direction in parallel, a continuous fiber woven fabric, a discontinuous fiber arranged in an arbitrary direction, and the like. is there.
航空機構造材料等に使用されるプリプレダでは、 構造材料の軽量化の観点から 蜂の巣構造をとるハニカムコアの断面にプリプレダの平面を接合させた構造に成 形されることが多く、 また、 ハニカムコアとプリプレダとの接着は、 従来より シート状の接着剤をハニカムコアとプリプレダとの間に介在させて接着されてい P2004/006126 る。 In the case of a pre-predder used for aircraft structural materials, etc., in order to reduce the weight of the structural material, a honeycomb core having a honeycomb structure is often formed into a structure in which a cross-section of a pre-preda is joined to a cross-section. Adhesion to the pre-preda has been conventionally achieved by interposing a sheet-like adhesive between the honeycomb core and the pre-preda. P2004 / 006126.
そこで、 製造工程を短縮する観点から、 八二カムコアの両面に、 接着剤シート を介さずに、 プリプレダを積層し、 プリプレダそのものの硬化とハニカムコアと の接着を同時にしかも接着剤なしで行う、 いわゆるコキュア成形がプリプレダに 要求されてきており、 プリプレダ含浸用の樹脂組成物 (プリプレダ用樹脂組成 物) として、 コキュァ性を有するエポキシ樹脂が、 粘度特性を規定する種々の発 明において検討、 開示されている。  Therefore, from the viewpoint of shortening the manufacturing process, a pre-preda is laminated on both sides of the 82-cam core without using an adhesive sheet, and the pre-preda itself is cured and adhered to the honeycomb core at the same time and without an adhesive. Precure molding has been required for pre-preda, and as a resin composition for pre-preda impregnation (resin composition for pre-preda), an epoxy resin having co-curability has been studied and disclosed in various inventions for defining viscosity characteristics. I have.
特開平 5— 239317号公報には、 ポロシティ一 (樹脂硬化中に発生するポ イド、 空隙) の発生を回避することを目的とした、 エポキシ樹脂と、 硬化剤と、 固形ゴムとからなるエポキシ樹脂組成物であって、 80°Cにおいて振動周波数 0 . 02Hzで測定した複素粘性率 η。.。 2が 500 P a · s以上であり、 振動周波 数 2 H zで測定した複素粘性率 TU と 7?。.。2の関係が l o g ??。.。2— l o g 7 2 ≥ 0. 5を満足するエポキシ樹脂組成物が開示されている。 - 特開平 9一 19461 1号公報には、 夕ック性とドレープ性の向上を目的とし た、 強化繊維とマトリックス樹脂からなり、 該マトリックス樹脂が熱硬化性樹 脂であり、 測定周波数 0. 5Hz、 50°Cでの動的粘弾性測定における該マト リックス樹脂の複素粘性率 η* が 200〜2000 P a · sの範囲にあり、 エネ ルギー損失 t &:16が0. 3〜 5の範囲にあるプリプレダが開示されている。 一方、 プリプレダの樹脂含有率がムラなく均一であるプリプレグの製造に適し た樹脂フィルムを製造する観点から、 特開平 1 1一 254435号公報には、 最 低粘度が 0. 01〜 30 P a · sの熱硬化性樹脂を離型シート上に塗布してなる プリプレダ製造用樹脂フィルムが開示されている。 この発明によると、 最低粘度 が 0 . O l P a . sより低いと樹脂フィルムが均一に作製されず、 流れを生じた りはじきを生じる問題が発生する。 3 0 P a · sを超えると、 やはりフィルムが 均一に作製されない上に、 樹脂をコ一ティングロールから離型紙に転写する際、 転写斑を生じて均一な樹脂フィルムが得られない上、 プリプレダを作製したとき のタックやドレープが不足して、 良好な成形体が得られないことが記されてい る。 - 上記各公報は、 いずれも、 樹脂のチクソ性や離型紙への塗工性の改良を目的と したものであり、 これまで、 ハニカムコアとプリプレダの接着に際し樹脂により 形成されるフィレツトの形成性と、 樹 J3旨の複素粘性率との関係については十分な 評価が成されておらず、 良好なフィレット形成性を得るための条件は開示されて いなかった。 JP-A-5-239317 discloses an epoxy resin comprising an epoxy resin, a curing agent, and a solid rubber for the purpose of avoiding the generation of porosity (voids and voids generated during curing of the resin). The composition is a complex viscosity η measured at 80 ° C. at an oscillation frequency of 0.02 Hz. .. 2 is 500 Pa · s or more, and complex viscosity TU and 7? Measured at vibration frequency 2 Hz. .. The relationship between 2 is log ??. .. An epoxy resin composition satisfying 2 — log 7 2 ≥ 0.5 is disclosed. -Japanese Patent Application Laid-Open No. 9-1196461 discloses that a reinforcing fiber and a matrix resin are used for the purpose of improving the duckability and drapability, the matrix resin is a thermosetting resin, and the measurement frequency is 0. The complex viscosity η * of the matrix resin in the dynamic viscoelasticity measurement at 5 Hz and 50 ° C is in the range of 200 to 2000 Pa · s, and the energy loss t &: 16 is 0.3 to 5 A range of pre-preda is disclosed. On the other hand, from the viewpoint of producing a resin film suitable for producing a prepreg in which the resin content of the prepreg is uniform without unevenness, JP-A-11-254435 discloses that the minimum viscosity is 0.01 to 30 Pa · There is disclosed a resin film for producing a pre-preda prepared by applying a thermosetting resin of s on a release sheet. According to the present invention, the minimum viscosity If the ratio is less than 0.1Pas, the resin film will not be produced uniformly, which will cause problems such as flow and repelling. If it exceeds 30 Pas, the film will not be evenly formed, and when transferring the resin from the coating roll to release paper, transfer unevenness will occur and a uniform resin film will not be obtained. It is described that tack and drape at the time of producing the molded article were insufficient, so that a good molded body could not be obtained. -Each of the above publications is aimed at improving the thixotropic properties of the resin and the coatability of the release paper, and the formability of the filler formed by the resin at the time of bonding the honeycomb core and the pre-preda has been hitherto And the relationship between this and the complex viscosity of Tree J3 was not sufficiently evaluated, and the conditions for obtaining good fillet-forming properties were not disclosed.
. 発明の開示 . DISCLOSURE OF THE INVENTION
本発明は、 フィレツトの形成性と樹脂の複素粘性率との関係を明らかにする、 耐熱性、 而水性、 フロ一コントロール性およびハニカムコアとの接着性に優れた プリプレダ用樹脂組成物、 ならびに該プリプレダ用樹脂組成物を用いてなるプリ プレダとハニカムコアとを接着させて得られる構造体を提供することを目的とす る。  The present invention provides a resin composition for a prepreg, which is excellent in heat resistance, water repellency, flow control properties and adhesion to a honeycomb core, and clarifies the relationship between the formability of the fillet and the complex viscosity of the resin. It is an object of the present invention to provide a structure obtained by adhering a pre-preda using a resin composition for a pre-preda to a honeycomb core.
本発明者は、 上述の課題を解決するために鋭意研究を重ねた結果、 エポキシ樹 脂と、 芳香族ァミンと、 イミダゾ一ル系触媒、 三フッ化ホウ素 ·ァミン塩触媒お よびジシアンジアミドからなる群より選択される少なくとも 1つと、 固形ゴムお よび/または熱可塑性ポリマーとを含有するプリプレダ用樹脂組成物の複素粘性 率が、 特定の関係を満たす場合、 該プリプレダ用樹脂組成物は、 プリプレダ用の マトリックス樹脂として耐熱性、 耐水性およびフローコントロール性に優れ、 か っハニカムコアとの接着性も満足する優れた組成物であることを見出し、 本発明 に至った。 すなわち本発明は、 以下に示す (1) 〜 (3) のプリプレダ用樹脂組 成物および (4) の構造体を提供する。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a group consisting of an epoxy resin, an aromatic amine, an imidazole-based catalyst, a boron trifluoride-amine salt catalyst, and dicyandiamide. Complex viscosity of the resin composition for a pre-preda containing at least one selected from the group consisting of a solid rubber and / or a thermoplastic polymer. When the ratio satisfies a specific relationship, the resin composition for a pre-preda is an excellent composition which is excellent in heat resistance, water resistance and flow control as a matrix resin for the pre-preda, and also satisfies the adhesiveness to a honeycomb core. The present invention was found to be a product. That is, the present invention provides the following resin compositions (1) to (3) for a pre-preda and the structure (4).
(1) (a) エポキシ樹脂と、 (b) 芳香族ァミンと、 (c) イミダゾール系 触媒、 三フッ化ホウ素 ·アミン塩触媒およびジシアンジアミドからなる群より選 択される少なくとも 1つと、 (d) 固形ゴムおよび/または熱可塑性ポリマーと を含有し、  (1) (a) an epoxy resin; (b) an aromatic amine; and (c) at least one selected from the group consisting of an imidazole catalyst, a boron trifluoride / amine salt catalyst, and dicyandiamide; and (d) Containing solid rubber and / or a thermoplastic polymer,
該固形ゴムおよび Zまたは熱可塑性ポリマ一 (cl) の含有量が、 該エポキシ樹 脂 (a) 100質量部に対して、 1質量部以上 10質量部未満であり、  The content of the solid rubber and Z or the thermoplastic polymer (cl) is not less than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a);
さらに、 振動周波数 0. 02Hzで測定した複素粘性率??が、 下記式 (1) で 示される関係を満足するプリプレダ用樹脂組成物。  Further, a resin composition for a pre-preda resin whose complex viscosity measured at a vibration frequency of 0.02 Hz satisfies the relationship represented by the following formula (1).
0. 2≤ΣΔΤ/ (7? ΧΑ) ≤ 6 ( 1)  0. 2≤ΣΔΤ / (7? ΧΑ) ≤ 6 (1)
式中、 Αは昇温速度、 ΔΤは測定温度範囲 25〜250°Cにおける測定点間の 温度差を表す。  In the formula, Α represents the temperature rise rate, and ΔΤ represents the temperature difference between the measurement points in the measurement temperature range of 25 to 250 ° C.
(2) 上記エポキシ樹脂 (a) が、 ジシクロペン夕ジェン骨格を有するェポキ シ樹脂および Zまたはグリシジルァミノ基を有する芳香族エポキシ樹脂を含有す る上記 (1) に記載のプリプレダ用樹脂組成物。  (2) The resin composition for a pre-preda according to the above (1), wherein the epoxy resin (a) contains an epoxy resin having a dicyclopentene skeleton and an aromatic epoxy resin having a Z or glycidylamino group.
(3) 上記固形ゴムが、 上記エポキシ樹脂 (a) と相溶するアクリロニトリル ブタジエンゴム (NBR) またはカルポキシ変性アクリロニトリルブタジエンゴ ムである上記 (1) または (2) に記載のプリプレダ用樹脂組成物。 TJP2004/006126 (3) The resin composition for a prepreg according to the above (1) or (2), wherein the solid rubber is acrylonitrile butadiene rubber (NBR) or carboxy-modified acrylonitrile butadiene rubber compatible with the epoxy resin (a). TJP2004 / 006126
(4) 上記 (1) 〜 (3) のいずれかに記載のプリプレダ用樹脂組成物を用い てなるプリプレダと、 八二カムコアとを接着させて得られる構造体。 図面の簡単な説明 (4) A structure obtained by adhering a pre-preda using the resin composition for a pre-preda according to any one of the above (1) to (3) and an 82 cam core. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ハニカムコアとプリプレダよりなる構造体の斜視図である。  FIG. 1 is a perspective view of a structure including a honeycomb core and a pre-preda.
図 2は、 ハニカムコアとプリプレダよりなる構造体の断面図である。 発明を実施するための最良の形態  FIG. 2 is a cross-sectional view of a structure including a honeycomb core and a pre-preda. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のプリプレダ用樹脂組成物は、 (a) エポキシ樹脂と、 (b) 芳香族ァ ミンと、 (c) イミダゾ一ル系触媒、 三フッ化ホウ素 'アミン塩触媒およびジシ アンジアミドからなる群より選択される少なくとも 1つ (以下、 単に成分 (c) ともいう) と、 (d) 固形ゴムおよび Zまたは熱可塑性ポリマーとを含有し、 該固形ゴムおよび Zまたは熱可塑性ポリマー (d) の含有量が、 該エポキシ樹 脂 (a) 100質量部に対して、 1質量部以上 10質量部未満であり、  The resin composition for a pre-preda of the present invention comprises: (a) an epoxy resin; (b) an aromatic amine; (c) an imidazole-based catalyst, boron trifluoride'amine salt catalyst, and disiandiamide. At least one selected (hereinafter, also simply referred to as component (c)) and (d) solid rubber and Z or a thermoplastic polymer, and the content of the solid rubber and Z or thermoplastic polymer (d) But not less than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a),
さらに、 振動周波数 0. 02Hzで測定した複素粘性率 7?が、 下記式 (1) で 示される関係を満足することを特徴とするプリプレダ用樹脂組成物である。  Further, the resin composition for a pre-preda is characterized in that the complex viscosity 7? Measured at a vibration frequency of 0.02 Hz satisfies the relationship represented by the following formula (1).
0. 2≤ΣΔΤ/ (7? X A) ≤ 6 (1)  0.2≤ΣΔΤ / (7? X A) ≤ 6 (1)
式中、 Aは昇温速度、 ΔΤは測定温度範囲 25〜250°Cにおける測定点間の 温度差を表す。  In the formula, A represents the temperature rise rate, and ΔΤ represents the temperature difference between the measurement points in the measurement temperature range of 25 to 250 ° C.
本発明に用いられるエポキシ樹脂 (a) は、 エポキシ基を 1分子内に平均 2個 以上有するポリエポキシ化合物であれば、 特に限定されない。 具体的には、 例え ば、 ビスフエノール A型、 ビスフエノール F型、 臭素化ビスフエノール A型、 水 添ビスフエノール A型、 ビスフエノール S型、 ビスフエノール A F型、 ピフエ二 ル型等のビスフェニル基を有するエポキシ化合物や、 ポリアルキレングリコール 型、 アルキレングリコール型のエポキシ化合物、 さらにナフ夕レン環を有するェ ポキシ化合物、 フルオレン基を有するエポキシ化合物等の二官能タイプのグリシ ジルエーテル型エポキシ樹脂; The epoxy resin (a) used in the present invention is not particularly limited as long as it is a polyepoxy compound having an average of two or more epoxy groups in one molecule. Specifically, for example For example, epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, and piphenyl type, etc. Bifunctional glycidyl ether epoxy resins such as polyalkylene glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthylene ring, and epoxy compounds having a fluorene group;
フエノールノポラック型、 オルソクレゾールノポラック型、 D P Pノポラック 型、 トリス ·ヒドロキシフエニルメタン型、 三官能型、 テトラフエ二ロールエタ ン型等の多官能タイプのダリシジルエーテル型エポキシ樹脂;  Polyfunctional dalicidyl ether type epoxy resin such as phenol nopolak type, orthocresol nopolak type, DPP nopolak type, tris-hydroxyphenylmethane type, trifunctional type, tetraphenylolethane type, etc .;
ダイマー酸等の合成脂肪酸のダリシジルエステル型エポキシ樹脂; 下記式 (2 ) で表される N, N, N ' , N ' ーテトラグリシジルジアミノジ フエニルメタン (T GD D M) 、 テトラグリシジルー m—キシリレンジァミン、 トリグリシジル一P—ァミノフエノール、 N, N—ジグリシジルァ二リン等のグ リシジルァミノ基を有する芳香族ェポキシ榭脂 ·;  Daricidyl ester type epoxy resin of synthetic fatty acid such as dimer acid; N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyl m-xylyl represented by the following formula (2) Aromatic epoxy resin having a glycidylamino group such as rangedamine, triglycidyl-1-P-aminophenol, N, N-diglycidyldiline;
Figure imgf000008_0001
下記式 (3 ) で表されるトリシクロ 〔5, 2 , 1 , 0 2· 6 〕 デカン環 (以下、 ジシクロペン夕ジェン基と略す) を有するエポキシ化合物、 具体的には、 例 えば、 ジシクロペン夕ジェンとメタクレゾール等のクレゾ一ル類、 またはフエ ノール類を重合させた後、 ェピクロルヒドリンを反応させる公知の製造方法に よって得ることができるエポキシ化合物;
Figure imgf000008_0001
Tricyclo represented by the following formula (3) [5, 2, 1, 0 2, 6] decane ring (hereinafter, Jishikuropen evening abbreviated as Gen group) epoxy compound having, in particular, if example embodiment, Jishikuropen evening Jen And cresols such as meta-cresol or phenols, and then reacting with epichlorohydrin. Epoxy compounds obtainable thereby;
Figure imgf000009_0001
Figure imgf000009_0001
(式中、 mは、 0 1 5の整数を示す。 ) (In the formula, m represents an integer of 0 15.)
脂環型エポキシ樹脂;東レチォコール社製のフレップ 1 0に代表されるェポキ シ樹脂主鎖に硫黄原子を有するエポキシ樹脂;ウレタン結合を有するウレタン変 性エポキシ樹脂;ポリブタジエン、 液状ポリアクリロニトリル一ブタジエンゴム またはアクリロニトリルブタジエンゴム (N B R) を含有するゴム変性エポキシ 樹脂等が挙げられる。 これらは 1種単独で用いても、 2種以上を併用してもよ い。  Alicyclic epoxy resin; epoxy resin represented by Flep 10 manufactured by Toray Recoal Co., Ltd. epoxy resin having a sulfur atom in the main chain; urethane-modified epoxy resin having urethane bond; polybutadiene, liquid polyacrylonitrile-butadiene rubber or A rubber-modified epoxy resin containing acrylonitrile-butadiene rubber (NBR) is exemplified. These may be used alone or in combination of two or more.
本発明のプリプレダ用樹脂組成物は、 '骨格を有するェポ キシ樹脂および Zまたはダリシジルアミノ基を有する芳香族エポキシ樹脂を含有 していることが、 耐熱性、 耐水性に優れるという理由から好ましい。  The resin composition for a pre-preda of the present invention preferably contains an epoxy resin having a skeleton and an aromatic epoxy resin having a Z or dalicidylamino group, because it is excellent in heat resistance and water resistance. .
ジシクロペン夕ジェン骨格を有するエポキシ樹脂としては、 具体的には、 例え ば、 ダウ ·ケミカル社製の T A C T I X— 5 5 6、 大日本インキ化学社製の H P — 7 2 0 0等の市販品を使用することができ、 グリジシルァミノ基を有する芳香 族エポキシ樹脂としては、 市販品を利用することができ、 具体的には、 例えば、 住友化学社製の E L M— 4 3 4、 三菱ガス化学社製の T E T RAD— X等を使用 することができる。  As the epoxy resin having a dicyclopentene skeleton, for example, commercially available products such as TACTIX-556 from Dow Chemical and HP-720 from Dainippon Ink & Chemicals, Inc. Commercially available aromatic epoxy resins having a glycidylamino group can be used. Specifically, for example, Sumitomo Chemical's ELM-434, Mitsubishi Gas Chemical's TET RAD—X etc. can be used.
本発明のプリプレダ用樹脂組成物は、 エポキシ樹脂として、 上記ジシクロペン タジェン骨格を有するエポキシ樹脂および/または上記グリジシルァミノ基を有 する芳香族エポキシ樹脂とともに、 さらに、 エポキシ基を 1分子内に 2個以上有 するエポキシ樹脂 (多官能性エポキシ樹脂) を含有していることが、 耐熱性、 耐 水性、 ハニカムコアおよび炭素繊維との接着性が良好となる理由から好ましい。 上記多官能性エポキシ樹脂としては、 上記ダリシジルエーテル型エポキシ樹脂 が好ましく用いられ、 具体的には、 例えば、 下記式 (4 ) および (5 ) で表され るグリシジルェ一テル型エポキシ樹脂等が挙げられ、 市販品としては、 ダウ 'ケ ミカル社製の TA C T I X— 7 4 2 (三官能型エポキシ樹脂) 、 油化シェル化学 社製の E P— 1 5 4 (フエノールノポラック型エポキシ樹脂) 、 東都化成社製の YD— 1 2 8等を使用することが可能である。 The resin composition for a pre-preda according to the present invention may include, as an epoxy resin, In addition to an epoxy resin having a Tajene skeleton and / or an aromatic epoxy resin having a glycidylamino group, an epoxy resin having two or more epoxy groups in one molecule (polyfunctional epoxy resin) However, heat resistance, water resistance, and adhesion to the honeycomb core and the carbon fiber are preferable because they are good. As the polyfunctional epoxy resin, the above-mentioned daricidyl ether type epoxy resin is preferably used, and specifically, for example, glycidyl ether type epoxy resins represented by the following formulas (4) and (5) and the like are mentioned. Commercially available products include TA CTIX—742 (trifunctional epoxy resin) manufactured by Dow Chemical Co., Ltd., EP—154 (phenol nopolak epoxy resin) manufactured by Yuka Shell Chemical Co., Ltd. It is possible to use YD-1228 manufactured by Kaseisha.
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
本発明に用いられるエポキシ樹脂 (a ) として、 上
Figure imgf000010_0002
As the epoxy resin (a) used in the present invention,
格を有するエポキシ樹脂および上記グリシジルァミノ基を有する芳香族エポキシ 樹脂を含有する場合、 エポキシ樹脂 (a ) を構成する全てのエポキシ樹脂 (以 下、 単にエポキシ樹脂 ( a ) という) に対して、 グリシジルァミノ基を有する芳 香族エポキシ樹脂が 3 0質量%以上、 ジシクロペン夕ジェン骨格を有するェポキ シ樹脂が 2 5質量%以上であることが、 耐水性 '耐熱性のバランスを保つ理由か ら好ましい。 Epoxy Resin Having the Qualities and Aromatic Epoxy Having Glycidylamino Group When the resin is contained, the aromatic epoxy resin having a glycidylamino group accounts for 30% by mass of all epoxy resins constituting the epoxy resin (a) (hereinafter, simply referred to as epoxy resin (a)). As described above, the content of the epoxy resin having a dicyclopentene skeleton is preferably 25% by mass or more from the viewpoint of maintaining a balance between water resistance and heat resistance.
また、 上記ジシクロペン夕ジェン骨格を有するエポキシ樹脂および上記グリシ ジルァミノ基を有する芳香族エポキシ樹脂を含有する場合の合計の含有量は、 エポキシ樹脂 (a ) に対して、 5 5〜9 5質量%、 好ましくは 6 5〜9 5質量% である。 この範囲であると、 耐水性および耐熱性に優れるという理由から好まし い。  When the epoxy resin having the dicyclopentene skeleton and the aromatic epoxy resin having the glycidylamino group are contained, the total content is 55 to 95% by mass with respect to the epoxy resin (a), Preferably it is 65 to 95% by mass. This range is preferred because it is excellent in water resistance and heat resistance.
さらに、 エポキシ樹脂 (a ) には、 上記ジシクロペン夕ジェン骨格を有するェ ポキシ樹脂および Zまたは上記ダリシジルアミノ基を有する芳香族エポキシ樹脂 以外に、 上述した多官能性エポキシ樹脂等の一般のエポキシ樹脂組成物に用いら れる汎用のエポキシ樹脂を 5〜4 5質量%、 好ましくは 5〜 3 5質量%含有して いる。 その他のエポキシ樹脂の含有量がこの範囲であれば、 耐熱性と耐水性を維 持し、 適度な粘性を得ることができるため好ましい。  Further, the epoxy resin (a) includes, in addition to the above-mentioned epoxy resin having a dicyclopentene skeleton and the above-mentioned aromatic epoxy resin having a dalycidylamino group, a general epoxy resin such as the above-mentioned polyfunctional epoxy resin. The composition contains 5 to 45% by mass, preferably 5 to 35% by mass of a general-purpose epoxy resin used for the composition. When the content of the other epoxy resin is within this range, heat resistance and water resistance are maintained, and an appropriate viscosity can be obtained, which is preferable.
本発明に用いられる芳香族ァミン (b ) としては、 具体的には、 例えば、 下記 式 ( 6 ) で示されるジァミノジフエニルスルホン (D D S ) 、 ジアミノジフエ二 ルメタン (D DM) 、 ジアミノジフエ二ルェ一テル (D AD P E) 、 ビスァニリ ン、 ベンジルジメチルァニリン等が挙げられる。 これらのうち、 分子内に 1個以 上のアミノ基を有する芳香族ァミンが、 得られる本発明の組成物の耐熱性が優れ るという観点から好ましい。 このような 1個以上のアミノ基を有する芳香族アミ ン系化合物としては、 ジアミノジフエニルスルホン (DDS) 、 ジアミノジフエ ニルメタン (DDM) 、 ジアミノジフエ二ルェ一テル (DADPE) 、 ビスァニ リン等が好ましく例示され、 ジアミノジフエニルスルホン (DDS) の各種異性 体を硬化剤として用いると、 特に耐熱性に優れるため好ましい。 また、 これらの 芳香族ァミンは、 単独で用いても、 あるいは 2種以上の混合物を用いてもよい。
Figure imgf000012_0001
Specific examples of the aromatic amine (b) used in the present invention include, for example, diaminodiphenylsulfone (DDS), diaminodiphenylmethane (DDM), and diaminodiphenylene represented by the following formula (6). Monoter (D AD PE), bisaniline, benzyldimethylaniline and the like. Of these, aromatic amines having one or more amino groups in the molecule are preferred from the viewpoint that the resulting composition of the present invention has excellent heat resistance. Such aromatic amines having one or more amino groups Preferred examples of the diamine diphenyl sulfone (DDS), diamino diphenyl methane (DDM), diamino diphenyl ether (DADPE), bisaniline, etc. It is preferable to use it as an agent because it is particularly excellent in heat resistance. These aromatic amines may be used alone or as a mixture of two or more.
Figure imgf000012_0001
芳香族ァミン (b) の含有量は、 特に限定されるものではないが、 耐熱性を発 現する上から、 エポキシ樹脂 (a) との当量比が、 芳香族ァミンの活性水素当量 Zエポキシ当量 =0. 6〜1. 2であることが好ましく、 0. 7〜1. 1である ことがより好ましい。  The content of the aromatic amine (b) is not particularly limited, but from the viewpoint of exhibiting heat resistance, the equivalent ratio with the epoxy resin (a) is determined by the active hydrogen equivalent of the aromatic amine and the epoxy equivalent. = 0.6 to 1.2, more preferably 0.7 to 1.1.
本発明のプリプレダ用樹脂組成物は、 本発明の目的を損なわない範囲で、 硬化 剤として、 芳香族ァミン (b) 以外に、 成分 (c) として、 イミダゾ一ル系触 媒、 三フッ化ホウ素 ·アミン塩触媒およびジシアンジアミドからなる群より選択 される少なくとも 1つを配合している。  The resin composition for a prepredder of the present invention may comprise, as a curing agent, an imidazole-based catalyst or boron trifluoride as a component (c), in addition to the aromatic amine (b), as long as the object of the present invention is not impaired. · Contains at least one selected from the group consisting of amine salt catalysts and dicyandiamide.
成分 (c) としては、 エポキシ樹脂の硬化剤、 硬化触媒として一般的に用いら れるものが挙げられ、 具体的には、 例えば、 ジシアンジアミド (D I CY) 、 ィ ミダゾールの各種誘導体 (例えば、 四国化成社製の 2PHZ、 2MA— OK、 2 ΜΖ-Α) 、 三フッ化ホウ素 ·アミン塩触媒 (例えば、 三フッ化ホウ素 ·モノエ チルァミン、 三フッ化ホウ素 'ピぺラジン塩、 三フッ化ホウ素 ·ァニリン塩) 等 が挙げられる。  Examples of the component (c) include those commonly used as a curing agent and a curing catalyst for an epoxy resin. Specifically, for example, dicyandiamide (DI CY), various derivatives of imidazole (eg, Shikoku Chemicals) 2PHZ, 2MA—OK, 2ΜΖ-Α), boron trifluoride-amine salt catalyst (eg, boron trifluoride-monoethylamine, boron trifluoride'pirazine salt, boron trifluoride-aniline) Salt) and the like.
本発明に用いられる固形ゴムおよび/または熱可塑性ポリマー (d) は、 上記 エポキシ樹脂 (a) と相溶する固形ゴムおよび/または熱可塑性ポリマ一であ り、 エポキシ樹脂と反応しうる官能基を分子内に有し、 エポキシ樹脂と好ましく は 20〜150°Cで相溶する固形ゴムおよび/または熱可塑性ボリマ一である。 固体ゴムとしては、 具体的には、 例えば、 アクリロニトリルブタジエンゴムお よびその水素化物、 ァクリルゴム、 エチレン一アクリルゴム、 ェピクロルヒドリ ンゴム、 エチレン一酢酸ビニルゴム等の各種ゴムが挙げられる。 The solid rubber and / or thermoplastic polymer (d) used in the present invention is as described above. A solid rubber and / or thermoplastic polymer that is compatible with the epoxy resin (a) and has a functional group that can react with the epoxy resin in the molecule, and is compatible with the epoxy resin at 20 to 150 ° C, preferably. Solid rubber and / or thermoplastic polymer. Specific examples of the solid rubber include various rubbers such as acrylonitrile-butadiene rubber and its hydride, acryl rubber, ethylene-acrylic rubber, epichlorohydrin rubber, and ethylene-vinyl acetate rubber.
熱可塑性ポリマーとしては、 具体的には、 例えば、 PES (ポリエ一テルスル ホン) 、 PPS (ポリフエ二レンスルフイド) 、 PEEK (ポリエーテルエ一テ ルケトン) 、 P I (ポリイミド) 、 PE I (ポリエーテルイミド) 、 PAI (ポ リアミドイミド) 等が挙げられ、 熱分解開始温度 (Td) が 160°C以上である ことが好ましい。  Specific examples of the thermoplastic polymer include, for example, PES (polyether sulfone), PPS (polyphenylene sulfide), PEEK (polyether ethyl ketone), PI (polyimide), PEI (polyetherimide), PAI (Polyamide imide), and the like, and the thermal decomposition onset temperature (Td) is preferably 160 ° C. or more.
また、 上記エポキシ樹脂と反応しうる官能基としては、 力ルポキシル基、 アミ ノ基等が挙げられる。  Examples of the functional group capable of reacting with the epoxy resin include a hydroxyl group, an amino group, and the like.
上記固体ゴムは、 上記例示のうち、 アクリロニトリルブタジエンゴム (NB R) であることが好ましく、 エポキシ榭脂あるいは硬化剤と反応しうる官能基、 特に、 カルボキシル基を有するカルポキシ変性ァクリロニトリルブタジエンゴム および Zまたはカルポキシ変性水素化ァクリロニトリルブタジエンゴム (以下、 カルボキシ変性 (水素化) アクリロニトリルブタジエンゴムと記載する) である ことがより好ましい。  The solid rubber is preferably an acrylonitrile butadiene rubber (NBR) among the above examples, and a functional group capable of reacting with an epoxy resin or a curing agent, in particular, a carboxy-modified acrylonitrile butadiene rubber having a carboxyl group and More preferably, it is Z or carboxy-modified hydrogenated acrylonitrile-butadiene rubber (hereinafter, referred to as carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber).
該カルポキシ変性 (水素化) アクリロニトリルブタジエンゴムは、 水素化され ていないもの、 水素化されたもののいずれか一方または両方を用いてもよいが、 水素化されたものを用いると組成物の耐候性、 耐熱性、 耐水劣化性がよい。 カル ポキシ変性体は力ルポキシル基を有することにより、 エポキシ樹脂あるいは硬化 剤と容易に反応しうる。 The carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber may be one or both of a non-hydrogenated rubber and a hydrogenated rubber.However, when the hydrogenated rubber is used, the weather resistance of the composition, Good heat resistance and water resistance. Cal The modified oxy group can easily react with an epoxy resin or a curing agent because it has a hydroxyl group.
本発明で用いるカルポキシ変性 (水素化) アクリロニトリルブタジエンゴム (d) は 1種類でも、 2種類以上の混合物でもよい。  The carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber (d) used in the present invention may be one type or a mixture of two or more types.
さらに、 該カルボキシ変性 (水素化) アクリロニトリルブタジエンゴムは、 二 トリル量が 20質量%〜40質量%でカルボキシ量が 0. 5質量%〜6質量%で あるカルポキシ変性 (水素化) アクリロニトリルブタジエンゴムであることが好 ましい。  Further, the carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber is a carboxy-modified (hydrogenated) acrylonitrile-butadiene rubber having 20% to 40% by mass of nitrile and 0.5% to 6% by mass of carboxy. It is preferable that there is.
エポキシ樹脂と相溶する、 固形ゴムおよび Zまたは熱可塑性ポリマ一 (d) の 含有量は、 エポキシ樹脂 (a) 100質量部に対して 1質量部以上 10質量部未 満であり、 1質量部以上 5質量部未満であることが、 得られる本発明のプリプレ グ用樹脂組成物の粘度 (複素粘性率) および後述するフィレットの形成性の観点 から好ましい。  The content of solid rubber and Z or thermoplastic polymer (d) compatible with the epoxy resin is 1 part by weight or more and less than 10 parts by weight with respect to 100 parts by weight of the epoxy resin (a). It is preferably less than 5 parts by mass from the viewpoint of the viscosity (complex viscosity) of the obtained prepreg resin composition of the present invention and the formability of fillets described later.
上記エポキシ樹脂 (a) と、 芳香族ァミン (b) と、 成分 (c) と、 固形ゴム および Zまたは熱可塑性ポリマー (d) とを含有し、 該固形ゴムおよび /"または 熱可塑性ポリマー (d) の含有量が、 該エポキシ樹脂 (a) 100質量部に対し て、 1質量部以上 10質量部未満である本発明のプリプレダ用樹脂組成物は、 さらに、 振動周波数 0. 02Hzで測定した複素粘性率 77 (Pa * s) が、 下 記式 (1) で示される関係を満足することを特徴とするプリプレダ用樹脂組成物 である。  It contains the above epoxy resin (a), aromatic amine (b), component (c), solid rubber and Z or thermoplastic polymer (d), and the solid rubber and / or the thermoplastic polymer (d ) Is 1 part by mass or more and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a). The resin composition for a prepreg of the present invention further comprises a complex measured at a vibration frequency of 0.02 Hz. A resin composition for a prepreg, wherein the viscosity 77 (Pa * s) satisfies the relationship represented by the following formula (1).
0. 2≤ΣΔΤ/ (?7 ΧΑ) ≤ 6 (1)  0. 2≤ΣΔΤ / (? 7 ΧΑ) ≤ 6 (1)
式中、 Αは昇温速度、 ΔΤは測定温度範囲 25〜250°Cにおける測定点間の 6126 温度差を表す。 Where 式 is the heating rate and ΔΤ is between the measurement points in the measurement temperature range of 25 to 250 ° C. 6126 Indicates the temperature difference.
本発明において複素粘性率? とは、 ダイナミックメカニカルアナライザー (動 的粘弾性測定装置; DMA) を用い、 次のように測定した値のことである。 すなわち、 複素粘性率 は、 直径 25 mmまたは 50 mmの円盤状のプレート を用いたプレート一プレート型 (パラレルプレート法) による測定で、 プレート 間のギャップを 1. Ommとして、 両プレートの間に本発明のプリプレダ用樹脂 組成物を満たし、 一方のプレートを所定の振動周波数 0. 02Hzで振幅 1 H z の振動を与えた時に生じるトルクと位相差から測定する。  In the present invention, the complex viscosity is a value measured as follows using a dynamic mechanical analyzer (dynamic viscoelasticity measuring device; DMA). In other words, the complex viscosity is measured by a plate-to-plate type (parallel plate method) using a disk-shaped plate with a diameter of 25 mm or 50 mm. It is measured from a torque and a phase difference generated when the resin composition for a pre-preda of the present invention is filled and one plate is subjected to a vibration having a predetermined vibration frequency of 0.02 Hz and an amplitude of 1 Hz.
また、 複素粘性率 7?は、 応力 ひずみ速度の定義から、 下記式 (7) で表され る関係を満たしている。  The complex viscosity 7? Satisfies the relationship expressed by the following equation (7) from the definition of stress strain rate.
粘性流体のひずみ速度 X 7? =粘性流体にかかる応力 ( 7 )  Strain rate of viscous fluid X 7? = Stress on viscous fluid (7)
したがって、 複素粘性率 7 の逆数 1/7]は、  Therefore, the reciprocal 1/7 of complex viscosity 7 is
1 / T] =粘性流体のひずみ速度 /粘性流体にかかる応力  1 / T] = strain rate of viscous fluid / stress on viscous fluid
となり、 一定応力 (重力場) における各測定温度での粘性流体のひずみ速度を 表す。 本発明者は、 これをプリプレダのコキュア成形における上部フィレットの 流出する距離を示すパラメ一夕として用い、 プリプレダ用樹脂組成物が流出硬化 する温度範囲で 1Z ?を積分すれば、 上部フィレツトが十分大きくなる範囲を示 すパラメ一夕が得られるのではないかと考えた。 そこで、 特定の測定温度範囲 (25〜250°C) で測定したプリプレダ用樹脂組成物の複素粘性率を積分した ΣΔΤ/ (τ?ΧΑ) の値と、 上部フィレツトの実測値とを比較したところ、 ∑△ TZ (7? XA) の値が 0. 2〜6、 好ましくは 0. 5〜6の範囲にあれば、 十分 大きいフィレツト形状が得られることを知見した。 従来技術で用いられた、 最低粘度の値やある温度変化における特定粘度範囲を パラメ一夕に用いることに比べて、 上記式 (1 ) で表されるのパラメータは、 プ リプレダ用樹脂組成物の流出硬化における広い温度範囲の連続的な変化を反映す ることができるので、 十分大きいフィレツト形状が得られる一定の粘度範囲を有 する樹脂組成物を選択する際に優れたパラメータとなる。 And represents the strain rate of the viscous fluid at each measurement temperature under constant stress (gravitational field). The present inventor uses this as a parameter indicating the distance at which the upper fillet flows out during the co-curing of the pre-preda, and integrates 1Z within the temperature range in which the resin composition for the pre-preda flows out and hardens, so that the upper fillet is sufficiently large. We thought that it would be possible to obtain a parame showing a certain range. Therefore, a comparison was made between the value of ΣΔΤ / (τ? ΧΑ) obtained by integrating the complex viscosity of the resin composition for pre-preda measured in a specific measurement temperature range (25 to 250 ° C) and the measured value of the upper fillet. It was found that if the value of TZ (7? XA) is in the range of 0.2 to 6, preferably 0.5 to 6, a sufficiently large fillet shape can be obtained. Compared to using the minimum viscosity value or a specific viscosity range at a certain temperature change used in the related art, the parameter represented by the above formula (1) is different from that of the resin composition for a pre-reader. Since a continuous change in a wide temperature range in the outflow hardening can be reflected, this is an excellent parameter when selecting a resin composition having a certain viscosity range capable of obtaining a sufficiently large fillet shape.
本発明のプリプレダ用樹脂組成物は、 必須成分として、 エポキシ樹脂 (a ) と、 芳香族ァミン (b) と、 イミダゾ一ル系触媒、 三フッ化ホウ素 ·ァミン塩触 媒およびジシアンジアミドからなる群より選択される少なくとも 1つ (c ) と、 固形ゴムおよび/または熱可塑性ポリマー (d ) とを含有しているが、 本発明の プリプレダ用樹脂組成物の硬化を損なわない範囲で、 例えば、 充填剤、 老化防止 剤、 溶剤等の各種の添加剤を含有してもよい。  The resin composition for a prepreg of the present invention comprises, as essential components, an epoxy resin (a), an aromatic amine (b), an imidazole catalyst, a boron trifluoride / amine salt catalyst and dicyandiamide. It contains at least one selected material (c) and a solid rubber and / or a thermoplastic polymer (d), but it does not impair the curing of the resin composition for a prepreg of the present invention. And various additives such as an anti-aging agent and a solvent.
充填剤としては、 力一ボンプラッツク、 炭酸カルシウム、 酸化チタン、 シリ 力、 水酸化アルミニウム等が例示される。 老化防止剤としては、 ヒンダードアミ ン系、 ヒンダードフエノール系等が例示される。 溶剤としては、 メタノール、 工 夕ノール、 プロパノール、 メチルェチルケトン (ME K) 、 メチルイソブチルケ トン (M I B K) 等が例示される。  Examples of the filler include Ribon Bonplatsk, calcium carbonate, titanium oxide, silica, aluminum hydroxide and the like. Examples of the anti-aging agent include hindered amines and hindered phenols. Examples of the solvent include methanol, ethanol, propanol, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK).
本発明のプリプレダ用樹脂組成物は、 エポキシ樹脂 (a ) 、 芳香族ァミン ( b ) 、 イミダゾ一ル系触媒、 三フッ化ホウ素 ·ァミン塩触媒おょぴジシアンジ アミドからなる群より選択される少なくとも 1つ (c ) 、 および、 固形ゴムおよ び Zまたは熱可塑性ポリマー (d ) 、 さらに所望に応じて添加する添加剤を、 ダ ルトン型混合機、 ペイントロール、 らいかい機等を用いて、 常法により混合する ことで製造される。 特に、 上記カルボキシ変性 (水素化) アクリロニトリルブ夕 ジェンゴム成分を固形ゴムとして混合する時は、 上記溶剤に溶解して混合しても よく、 ペイントロールにて混合してもよいが、 いずれもエポキシ樹脂 (a ) 中に よく分散していることが必要である。 The resin composition for a prepreg of the present invention comprises at least one selected from the group consisting of an epoxy resin (a), an aromatic amine (b), an imidazole-based catalyst, a boron trifluoride-amine salt catalyst, and dicyandiamide. One (c), the solid rubber and Z or the thermoplastic polymer (d), and the additives to be added as required, are added using a Dalton-type mixer, a paint roll, a grinder, or the like. It is manufactured by mixing in a conventional manner. In particular, the carboxy-modified (hydrogenated) acrylonitrile When the gen rubber component is mixed as a solid rubber, it may be mixed by dissolving it in the above solvent, or may be mixed by a paint roll. However, both of them must be well dispersed in the epoxy resin (a). is necessary.
本発明のプリプレダ用樹'脂組成物より得られる硬化物は、 耐熱性、 耐水性に加 えて、 プリプレダとハニカムコアとの接着性に優れているので、 接着剤、 プリプ レグ用のマトリックス樹脂組成物等として使用することが有用である。  The cured product obtained from the resin composition for a prepreg of the present invention is excellent in heat resistance and water resistance and also excellent in adhesion between the prepreg and the honeycomb core. It is useful to use it as an object.
本発明のプリプレダ用樹脂組成物をプリプレダ用のマ卜リックス樹脂組成物と して用いた例を以下に説明する。  An example in which the resin composition for a prepreg of the present invention is used as a matrix resin composition for a prepreg will be described below.
ここで、 本発明のプリプレダ用樹脂組成物をマトリックス樹脂組成物として用 いるとは、 炭素繊維、 ケブラ一等のァラミド繊維、 ガラス繊維等の繊維織布、 ま たは、 それらの一方向繊維に本発明のプリプレダ用樹脂組成物を含浸させるか、 または、 該樹脂組成物を含浸させた織布を複数積層することであり、 これにより プリプレダが製造される。  Here, the use of the resin composition for a pre-preda of the present invention as a matrix resin composition refers to a carbon fiber, an aramide fiber such as Kevlar, a fiber woven fabric such as a glass fiber, or a unidirectional fiber thereof. This is to impregnate the resin composition for a prepreg of the present invention, or to laminate a plurality of woven fabrics impregnated with the resin composition, thereby producing a prepreg.
含浸させる際には、 溶剤を使用するウエット法でも、 無溶剤法であるホットメ リレト法のいずれの方法を用いてもよい。  When impregnating, either a wet method using a solvent or a hot mellet method, which is a solventless method, may be used.
ゥエツト法でプリプレダの製造を行う場合は、 本発明のプリプレダ用樹脂組成 物を溶媒に溶解させ、 ワニスを調製してから含浸させる。 ワニス調製時に使用す る溶媒としてはメタノール、 エタノール、 プロパノ一ル等のアルコール類、 また は、 メチルェチルケトン (M E K) 等のケトン類の溶剤が好ましく、 これらの溶 剤に溶解させ、 本発明のプリプレダ用樹脂組成物を含有するワニスを調製してか ら織布に含浸させてもよい。 溶剤の添加量が、 プリプレダ用樹脂組成物の固形分 1 0 0質量部に対して、 1 0 0〜2 0 0質量部であるのが、 乾燥工程の最適化を 004/006126 (4) In the case of producing a pre-preda by an etching method, the resin composition for a pre-preda of the present invention is dissolved in a solvent to prepare a varnish and then impregnated. As a solvent used in preparing the varnish, a solvent of alcohols such as methanol, ethanol, and propanol, or a solvent of ketones such as methyl ethyl ketone (MEK) is preferably dissolved. A varnish containing the resin composition for pre-preda may be prepared and then impregnated into a woven fabric. The addition amount of the solvent is 100 to 200 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for a prepredder, so that the drying step is optimized. 004/006126
1 6  1 6
行うのに好ましい。 Preferred to do.
本発明のプリプレダ用樹脂組成物をマトリックス樹脂とするプリプレダに用い る繊維織布としては、 炭素繊維、 ケプラー等のァラミド繊維、 ガラス繊維等の繊 維織布およびそれらの一方向繊維 (長繊維) 等が挙げられる。 具体例としては、 東レ社製の力一ボン繊維 T一 3 0 0、 東邦レーヨン社製の力一ボン繊維 HT Aグ レード等が挙げられ、 繊維目付量は、 1 4 0〜2 0 0 g /m2 であるのが好まし い。 Examples of the fiber woven fabric used in the prepreg using the resin composition for a prepreg of the present invention as a matrix resin include carbon fibers, aramide fibers such as Kepler, fiber woven fabrics such as glass fibers, and unidirectional fibers (long fibers) thereof. And the like. Specific examples include Rikibon fiber T-300 manufactured by Toray Co., Ltd. and HTA grade manufactured by Toho Rayon Co., Ltd., and the basis weight of the fiber is 140 to 200 g. / m 2 is preferred.
本発明のプリプレダ用樹脂組成物をマトリックス樹脂とするプリプレダは、 上 述のエポキシ樹脂 (a) を溶媒なしで、 または溶媒を使ってワニスとして炭素繊 維の織布に含浸させてなるプリプレダであるのが好ましい。 このようなプリプレ グは UD (ュニダイレクト) マシーン等の装置を用いて製造することができる。 含浸させたプリプレダ用樹脂組成物の含有量は、 それぞれの用途に適した値であ れば特に限定されないが、 プリプレダ中 3 0〜5 0質量%、 特に、 3 5〜4 5質 量%であるのが好ましい。  The pre-preda using the resin composition for a pre-preda of the present invention as a matrix resin is a pre-preda prepared by impregnating the above-described epoxy resin (a) as a varnish with or without a solvent into a woven fabric of carbon fiber. Is preferred. Such prepregs can be manufactured using equipment such as a UD (unidirect) machine. The content of the impregnated resin composition for a prepreg is not particularly limited as long as it is a value suitable for each application, but is 30 to 50% by mass, particularly 35 to 45% by mass in the prepreg. Preferably it is.
さらに、 本発明のプリプレダ用樹脂組成物は、 プリプレダ用のマトリックス樹 脂であるとともにハニカムコアとの接着剤ともなりうる。 したがって、 プリプレ グをそのまま適用すればハニカムコアとの間に別の接着剤を用いなくともよい。 このことは、 本発明のプリプレダ用樹脂組成物を用いてプリプレダを作成し、 プリプレグそのものの硬化とハニカムコアとの接着を同時に行う、 いわゆるコ キュア成形を行うことができることを示している。  Furthermore, the resin composition for a pre-preda of the present invention can be an adhesive to a honeycomb core as well as a matrix resin for a pre-preda. Therefore, if the prepreg is applied as it is, it is not necessary to use another adhesive between the prepreg and the honeycomb core. This indicates that so-called cure molding, in which a prepreg is prepared using the prepreg resin composition of the present invention and curing of the prepreg itself and adhesion to the honeycomb core can be performed simultaneously.
ハニカムコアの材質は、 樹脂系、 紙等の、 非金属の八二カムコアであれば、 ど のような組成のものを用いてもよいが、 例えば、 ノーメックスにフエノール樹脂 を含浸させたノ一メックスハニカムコアが航空機への応用を考えた場合に最も好 ましい。 ハニカムコアの蜂の巣状の構造体の六角柱の大きさは、 各種のものが使 用可能であるが、 ハニカムコアのセルサイズの長さが 1 / 8〜 3 8ィンチのも のを用いるのが、 強度、 軽量化の点で好ましい。 As the material of the honeycomb core, any composition may be used as long as it is a non-metallic 82-cam core such as a resin-based or paper-based material. A Nomex honeycomb core impregnated with is most preferred when applied to aircraft. Various sizes of hexagonal pillars in the honeycomb structure of the honeycomb core can be used, but it is preferable to use a honeycomb core having a cell size of 1/8 to 38 inches. It is preferable in terms of strength and weight reduction.
図 1および図 2に、 プリプレダとハニカムコアとを接着させた構造体の例を示 し、 プリプレダとハニカムコアとの接着方法について説明する。 図 1は、 構造体 1の斜視図である。 図 2は、 構造体 1をハニカムコア 1 1の角柱の側面と平行に 切断した断面図である。 図 2の a部は、 従来のマトリックス樹脂で形成したプリ プレダを用いた構造体、 b部は、 本発明のプリプレダ用樹脂組成物をマトリック ス樹脂としたプリプレダを用いた構造体を示す。  1 and 2 show an example of a structure in which a pre-preda and a honeycomb core are bonded, and a method of bonding the pre-preda and the honeycomb core will be described. FIG. 1 is a perspective view of the structure 1. FIG. 2 is a cross-sectional view of the structure 1 cut in parallel with the side surfaces of the prisms of the honeycomb core 11. Part a of FIG. 2 shows a structure using a pre-preparer formed of a conventional matrix resin, and part b shows a structure using a pre-preda using a resin composition for a pre-preda of the present invention as a matrix resin.
構造体 1は、 図 1に示すとおり、 プリプレダ 1 0とハニカムコア 1 1とを接着 させて得られるが、 蜂の巣状の構造を示すハニカムコアの端部 1 2の一方または 両方の端面に本発明の組成物をマトリックス樹脂としたプリプレダ 1 0を接合 し、 両端から圧着しながらオートクレーブ等で加熱硬化させることによって作製 される。  As shown in FIG. 1, the structure 1 is obtained by bonding the pre-predator 10 and the honeycomb core 11 to each other, and the present invention is applied to one or both end faces of the end 12 of the honeycomb core having a honeycomb structure. It is produced by bonding a pre-predator 10 using the above composition as a matrix resin and heat-curing with an autoclave or the like while pressing from both ends.
しかし加熱硬化の際に、 プリプレダ 1 0とハニカムコア 1 1とを均等に圧着し ても、 従来の組成物を用いると図 2の a部に示されるとおり、 プリプレダ用樹脂 組成物が全て下面部 1 3 ' に落ちて上面部 1 3にフィレツトが形成されなかった り、 部分的にプリプレダ 1 0とハニカムコア 1 1との接着面に隙間が生じる場合 がある。 これに対して、 図 2の b部に示されるとおり、 本発明のプリプレダ用樹 脂組成物では、 固形ゴムおよび/または熱可塑性ポリマー (d ) 、 好適には、 力 ルポキシ変性 (水素化) アクリロニトリルブタジエンゴムを含有することによ り、 プリプレダ用樹脂組成物に適当な粘度が付与され、 良好なフィレットが形成 される。 このため、 従来はハニカムコアとプリプレダとの接着が不完全であった が、 本発明のプリプレダ用樹脂組成物は粘度範囲が適切なので接着が完全に行わ れ、 しかもプリプレダからプリプレダ用樹脂組成物が流出しすぎて樹脂成分がプ リプレダ中からなくなることなく、 プリプレダに適量のプリプレグ用樹脂組成物 が存在することができる。 したがって、 上部フィレット 1 4の適切な形状を維持 しながら硬化を完了することができる。 また、 下面においても、 粘度が一度低下 したときに表面張力によって下部フィレット 1 4 ' が形成されプリプレダ用樹脂 組成物が適度に保持されて硬化を完了することができる。 However, even when the pre-predator 10 and the honeycomb core 11 are pressed evenly during the heat curing, when the conventional composition is used, as shown in part a of FIG. There may be a case where no fillet is formed on the upper surface portion 13 due to the fall to 13 ′, or a gap is partially formed on the bonding surface between the pre-predeer 10 and the honeycomb core 11. On the other hand, as shown in part b of FIG. 2, in the resin composition for a pre-preda of the present invention, the solid rubber and / or the thermoplastic polymer (d), preferably, propyloxy-modified (hydrogenated) acrylonitrile By containing butadiene rubber As a result, an appropriate viscosity is imparted to the resin composition for pre-preda, and a good fillet is formed. For this reason, in the past, the bonding between the honeycomb core and the pre-preda was incomplete, but the resin composition for the pre-preda of the present invention has an appropriate viscosity range, so that the bonding is completely performed, and the resin composition for the pre-preda is converted from the pre-preda. An appropriate amount of the resin composition for prepreg can be present in the prepreg without the resin component flowing out of the prepreg due to excessive outflow. Therefore, curing can be completed while maintaining the appropriate shape of the upper fillet 14. Also, on the lower surface, when the viscosity once decreases, the lower fillet 14 'is formed by the surface tension, and the resin composition for pre-preda is appropriately held, whereby the curing can be completed.
ここでフィレットとは、 プリプレダとハニカムコアとを接合、 硬化させる際 に、 プリプレダとハニカムコアとの間に形成される樹脂層の形状を指す。 (図 2 の 1 4、 1 4 ' )  Here, the fillet refers to the shape of the resin layer formed between the pre-preda and the honeycomb core when the pre-preda and the honeycomb core are joined and cured. (14, 14 'in Figure 2)
本発明のプリプレダ用樹脂組成物の粘度は、 コキュァ性を持たせるのに十分に 制御することができるので、 本発明の構造体はエポキシ樹脂の耐熱性を損なうこ となく、 従来よりも耐水性およびプリプレダとハニカムコアとの接着性に優れて いる。  Since the viscosity of the resin composition for a pre-preda of the present invention can be sufficiently controlled so as to have cocurability, the structure of the present invention does not impair the heat resistance of the epoxy resin, and is more water-resistant than before. Also, it has excellent adhesion between the pre-preda and the honeycomb core.
ハニカムコアとプリプレダとを接着させる際の硬化条件は、 2〜5 °CZ分、 加圧 2 . 5〜4. O k gZ c m2 で、 1 5 0〜 1 8 5。Cまで昇温させた後、 1 5 0〜1 8 5 °Cで 1〜2時間維持し、 その後 2〜 5 °CZ分で室温まで降下させる等 の方法が好ましい。 Curing conditions at the time of bonding the honeycomb core and Puripureda is, 2 to 5 ° CZ min, at pressure 2. 5~4. O k gZ cm 2, 1 5 0~ 1 8 5. It is preferable to raise the temperature to C, maintain the temperature at 150 to 185 ° C for 1 to 2 hours, and then lower the temperature to room temperature in 2 to 5 ° C for Z minutes.
得られるプリプレダとハニカムコアとの構造体は、 耐熱性、 耐水性に優れ、 か つ、 プリプレダとハニカムコアとの接着性を有するため、 航空機、 自動車等の部 材として有用である。 また、 上部フィレットのサイズとしては、 400 m以上 あることが、 プリプレダとハニカムコアとの接着に優れるという理由から好まし い。 The resulting structure of the prepredder and the honeycomb core has excellent heat resistance and water resistance, and has an adhesive property between the prepredder and the honeycomb core. Useful as a material. In addition, the size of the upper fillet is preferably 400 m or more because of excellent adhesion between the pre-preda and the honeycomb core.
以下、 実施例により本発明を具体的に説明するが、 本発明はこれに限定される ものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
(実施例 1〜 6、 比較例 1〜4)  (Examples 1 to 6, Comparative Examples 1 to 4)
下記表 1に示す割合 (質量部) で、 原料成分を混合し、 または、 ダルトン型混 合機を一部使用して、 各種のプリプレダ用樹脂組成物を製造した。  The raw material components were mixed at the ratios (parts by mass) shown in Table 1 below, or various dalton type mixers were used to produce various pre-preda resin compositions.
上記各種プリプレダ用樹脂組成物のそれぞれについて、 下記の評価を行い、 結 果を下記表 1に示した。  The following evaluations were performed for each of the various resin compositions for pre-preda, and the results are shown in Table 1 below.
(1) ガラス転移点 (Tg)  (1) Glass transition point (Tg)
各組成物をハニカムコアとプリプレダを接着させる時と同様の条件で、 分で昇温させて 180°Cで 2時間硬化させて得られた硬化物を、 5 X 5 X 15m mの棒状に切り出したサンプルを、 サ一モメカニカルアナライザ一 (TMA) の ベネトレーション法を用い昇温速度 10°CZ分かつ荷重 100 gの条件で測定し て得られたカーブの変曲点をガラス転移点 (Tg) とした。 この測定において、 ガラス転移点が 170°C未満であると耐熱性に劣るため使用に適さない。  Under the same conditions as when bonding the honeycomb core to the pre-preda, each composition was heated at a minute and cured at 180 ° C for 2 hours, and the cured product obtained was cut into a 5 x 5 x 15 mm rod shape. The inflection point of the curve obtained by measuring the sample obtained under the conditions of a heating rate of 10 ° CZ and a load of 100 g using the penetration method of a thermomechanical analyzer (TMA) is used as the glass transition point (Tg). And In this measurement, if the glass transition point is lower than 170 ° C., the heat resistance is inferior, so that it is not suitable for use.
(2) 耐水試験後のガラス転移点 (Tg)  (2) Glass transition point after water resistance test (Tg)
180°C、 2時間で硬化させた硬化物を 93°Cの温水中に 14日間浸積し、 取 り出した後、 ただちに TMAによるベネトレ一シヨン用でガラス転移点 (Tg) を上記 (1) と同様の条件で測定した。 この測定において、 ガラス転移点が 16 5 °C未満であると耐水後の使用に適さない。 (3) プリプレダ成形性 The cured product cured at 180 ° C for 2 hours was immersed in warm water at 93 ° C for 14 days, and immediately after being taken out, the glass transition point (Tg) was determined using the above-mentioned (1) for the Venetration by TMA. )). In this measurement, if the glass transition point is less than 165 ° C, it is not suitable for use after water resistance. (3) Pre-preda moldability
横浜ゴム社製の UDマシーンを用い、 炭素繊維 (東レ T一 300) (繊維目付 量 140 g/m2 ) に下記表 1の組成の組成物を 38 %含浸させてカーボンプリ プレダを作製し, マシ一ンにおける組成物の含浸性、 フローコントロール性に問 題がなく、 プリプレダが作製できる場合を 「〇」 と評価し、 粘度が高く含浸でき ない場合を 「X」 と評価した。 「〇」 と評価した組成物のうち、 特に、 炭素繊維 への含浸性が優れているものを 「◎」 と評価した。 Using a UD machine manufactured by Yokohama Rubber Co., Ltd., carbon fiber (Toray T-1300) (fiber basis weight 140 g / m 2 ) was impregnated with 38% of the composition of the composition shown in Table 1 below to produce a carbon pre-preparer. When there was no problem with the impregnation property and flow control property of the composition in the machine, a case where a pre-preda could be produced was evaluated as “〇”, and a case where the viscosity was too high to impregnate was evaluated as “X”. Among the compositions evaluated as “〇”, those having excellent carbon fiber impregnation properties were evaluated as “◎”.
(4) フィレット成形性  (4) Fillet formability
上記 (3) で作製したプリプレダを昭和飛行機社製のノーメックスハニカムコ ァの蜂の巣状の模様を呈する両方の断面と接合させ、 バキュームバック法でプレ アッシーした後、 オートクレープで昇温速度 2 °CZ分、 成形圧力 S kgZcm2 で 180°Cまで昇温し、 その後 180°Cで 2時間保持し試験片を得た。 得られた 試験片をハ二カムコアの角柱に平行に切断し、 ハニカムコアの両端上下に 400 m以上のフィレットが形成されている場合を 「〇」 と評価し、 400 m未 満、 フィレットが形成されていない、 もしくは下面のみに偏ってフィレットがあ る塲合を 「X」 と評価した。 The prepredder prepared in (3) above was joined to both cross sections of a Nomex honeycomb core manufactured by Showa Aircraft Co., Ltd., exhibiting a honeycomb pattern, pre-assembled by the vacuum back method, and then heated to 2 ° CZ by autoclave. The temperature was raised to 180 ° C. at a molding pressure of S kgZcm 2 and then kept at 180 ° C. for 2 hours to obtain a test piece. The obtained test piece was cut parallel to the prism of the honeycomb core, and a case where fillets of 400 m or more were formed at the top and bottom of both ends of the honeycomb core was evaluated as “〇”, and a fillet was formed below 400 m. If the fillet was not filled or had a fillet biased only on the lower surface, it was evaluated as “X”.
(5) ΣΔΤ/ (77 XA) 値  (5) ΣΔΤ / (77 XA) value
各組成物を測定温度範囲 25〜250°C (測定点間の温度差 10°C = AT) 、 振動周波数 0. 02Hz、 オートクレープ (昇温速度 A=2DCZ分) で昇温さ せ、 周波数 02Hzでダイナミックメカニカルアナライザー (動的粘弾性測 定装置; DMA) のプレートの一方を振動させた際に生じるトルクと位相差から 各組成物の複素粘性率 7)を求めた。 AT= 10°C、 ?および Α=2^から、 ΔΤ TJP2004/006126 Heat each composition at a measurement temperature range of 25 to 250 ° C (temperature difference between measurement points 10 ° C = AT), vibration frequency 0.02Hz, and autoclave (heating rate A = 2D CZ min). The complex viscosity 7) of each composition was determined from the torque and phase difference generated when one of the plates of a dynamic mechanical analyzer (dynamic viscoelasticity measuring device; DMA) was vibrated at a frequency of 02 Hz. From AT = 10 ° C,? And Α = 2 ^, ΔΤ TJP2004 / 006126
21  twenty one
/ (η ΧΑ) を算出し、 さらに、 測定温度範囲おいて積分した値として ΣΔΤΖ (τ? X Α) を求めた。  / (η ΧΑ) was calculated, and ΣΔΤΖ (τ? X Α) was obtained as an integrated value over the measurement temperature range.
(6) フィレツトサイズ  (6) Fillet size
上記 (3) で作製したプリプレダを、 上記 (4) 同様、 昭和飛行機社製のノー メックスハニカムコアの蜂の巣状の模様を呈する両方の断面と接合させ、 バ キュ一ムバック法でプレアツシ一した後、 オートクレーブで昇温速度 2 °C /分、 成形圧力 3 k g/cm2 で 1 8 0°Cまで昇温し、 その後 1 8 0°Cで 2時間保持し 試験片を得た。 得られた試験片を八二カムコアの角柱に平行に切断し、 八二カム コアの上端に形成されるフィレット (上部フィレット) のフィレットサイズを測 定した。 As in (4) above, the prepredder prepared in (3) was joined to both cross sections of the Nomex honeycomb core manufactured by Showa Aircraft Co., Ltd., which had a honeycomb-like pattern, and pre-assembled by the vacuum back method. In an autoclave, the temperature was raised to 180 ° C at a temperature rising rate of 2 ° C / min and a molding pressure of 3 kg / cm 2 , and then kept at 180 ° C for 2 hours to obtain a test piece. The obtained test piece was cut parallel to the prism of the 82 cam core, and the fillet size of the fillet (upper fillet) formed at the upper end of the 82 cam core was measured.
上記 (1) 〜 (6) の測定の結果を下記表 1に示す。 表中、 各成分の量は、 質 量部を示す。 The results of the above measurements (1) to (6) are shown in Table 1 below. In the table, the amounts of each component indicate parts by mass.
表 1 table 1
Figure imgf000024_0001
Figure imgf000024_0001
表 1中のエポキシ樹脂、 芳香族ァミン、 硬化触媒、 固形ゴムおよび熱可塑性ポ リマーは、 以下のものを使用した。 The following epoxy resin, aromatic amine, curing catalyst, solid rubber and thermoplastic polymer in Table 1 were used.
くエポキシ樹脂〉 ' ELM— 434 :住友化学社製の上記式 (2) で示されるダリシジルァミン型 エポキシ樹脂 (エポキシ当量 120) Epoxy resin> 'ELM-434: Daricidylamine type epoxy resin of the above formula (2) manufactured by Sumitomo Chemical Co., Ltd. (epoxy equivalent: 120)
HP- 7200 :大日本インキ化学社製のジシクロペン夕ジェン基を有するェ ポキシ樹脂 (エポキシ当量 250〜280)  HP-7200: Epoxy resin having a dicyclopentene group manufactured by Dainippon Ink and Chemicals, Inc. (epoxy equivalent 250-280)
EP- 154 :油化シェル化学社製のフエノール · ノポラック型エポキシ樹脂 (エポキシ当量 180)  EP-154: Phenol-nopolak type epoxy resin manufactured by Yuka Shell Chemical (epoxy equivalent 180)
YD- 128 :東都化成社製のビスフエノール A型エポキシ樹脂 (エポキシ当 量 190)  YD-128: Bisphenol A type epoxy resin manufactured by Toto Kasei (epoxy equivalent 190)
<芳香族アミン〉 <Aromatic amine>
DDS :住友化学社製の 4, 4, 一ジアミノジフエニルスルホン  DDS: 4,4,1-diaminodiphenyl sulfone manufactured by Sumitomo Chemical Co., Ltd.
ぐ硬化触媒〉 Curing catalyst>
2MA-OK:四国化成社製のトリアジン骨格含有イミダゾ一ル  2MA-OK: Triazine skeleton-containing imidazole manufactured by Shikoku Chemicals
BF3 /MEA:ステラケミファ社製の三フッ化ホウ素 ·モノェチルァミン D I CY- 15 :油化シェル化学社製のジシアンンジアミド BF 3 / MEA: Boron trifluoride monoethylamine, manufactured by Stella Chemifa DI CY-15: Dicyandiamide manufactured by Yuka Shell Chemical
DCMU- 99 :保土ケ谷化学社製の 3— (3, 4—ジクロロフエニル) 一 1 , 1ージメチルゥレア  DCMU-99: 3- (3,4-dichlorophenyl) 1-1,1-dimethylperyl manufactured by Hodogaya Chemical Co., Ltd.
ぐ固形ゴム > Solid rubber>
N i p o 1— 1041 : 日本ゼオン社製のァクリロニトリルブタジエンゴム N i p 01 - 1072 : 日本ゼオン社製のカルボキシ変性ァクリロニトリルブ <熱可塑性ポリマー > N ipo 1— 1041: Acrylonitrile butadiene rubber manufactured by Zeon Corporation N ip 01-1072: Carboxy-modified acrylonitrile rubber manufactured by Zeon Corporation <Thermoplastic polymer>
P E S :住友化学社製のポリエーテルスルホン  PES: Sumitomo Chemical's polyethersulfone
表 1に示す結果より、 上記式 ( 1 ) で示される関係を満足する本発明のプリプ レグ用樹脂組成物は、 プリプレグ成形性およびフィレツト成形性に優れており、 さらに、 上部フィレツトのフィレツ 1、サイズが 4 0 0 m以上となることからハ 二カムコアとの接着性に優れるものとなることが分かつた。 産業上の利用可能性  From the results shown in Table 1, the resin composition for prepreg of the present invention that satisfies the relationship represented by the above formula (1) has excellent prepreg moldability and fillet moldability, and furthermore, the upper fillet 1, It has been found that the size of 400 m or more results in excellent adhesion to the honeycomb core. Industrial applicability
本発明のプリプレダ用樹脂組成物は、 榭脂の耐熱性、 耐水性を維持することが でき、 該プリプレダ用樹脂組成物を用いてなるプリプレダは、 ハニカムコアとの 接着性に優れ、 ハニカムコアとの間に十分な大きさのフィレツトを形成すること ができるので有用である。 また、 本発明のプリプレダ用樹脂組成物によれば、 プ リプレダにコキュァ性を持たせることができ、 フローコントロール性が発現する ため有用である。  The resin composition for a prepreg of the present invention can maintain the heat resistance and water resistance of the resin. The prepreg using the resin composition for a prepreg has excellent adhesiveness with a honeycomb core, and has excellent adhesion to a honeycomb core. This is useful because a sufficiently large fillet can be formed between them. Further, according to the resin composition for a pre-preda of the present invention, the pre-preda can be provided with cocurability, which is useful because it exhibits flow control properties.

Claims

請 求 の 範 囲 The scope of the claims
1. (a) エポキシ樹脂と、 1. (a) an epoxy resin;
(b) 芳香族ァミンと、  (b) an aromatic amine,
(c) イミダゾール系触媒、 三フッ化ホウ素 ·アミン塩触媒およびジシアンジ アミドからなる群より選択される少なくとも 1つと、  (c) at least one selected from the group consisting of an imidazole-based catalyst, a boron trifluoride-amine salt catalyst, and dicyandiamide;
(d) 固形ゴムおよび Zまたは熱可塑性ポリマーと  (d) with solid rubber and Z or thermoplastic polymer
を含有し、 Containing
該固形ゴムおよび Zまたは熱可塑性ポリマー (d) の含有量が、 該エポキシ樹 脂 (a) 100質量部に対して、 1質量部以上 10質量部未満であり、  The content of the solid rubber and Z or the thermoplastic polymer (d) is not less than 1 part by mass and less than 10 parts by mass with respect to 100 parts by mass of the epoxy resin (a);
さらに、 振動周波数 0. 02Hzで測定した複素粘性率 ηが、 下記式 ( 1 ) で 示される関係を満足するプリプレダ用樹脂組成物。  Further, a resin composition for a pre-preda whose complex viscosity η measured at a vibration frequency of 0.02 Hz satisfies the relationship represented by the following formula (1).
0. 2≤ΣΔΤ/ (ν A) ≤6 (1)  0.2 ≤ΣΔΤ / (ν A) ≤6 (1)
(式中、 Aは昇温速度、 ΔΤは測定温度範囲 25〜250°Cにおける測定点間の 温度差を表す。 )  (In the formula, A is the heating rate, and ΔΤ is the temperature difference between the measurement points in the measurement temperature range of 25 to 250 ° C.)
2. 前記エポキシ樹脂 (a) が、 ジシクロペン夕ジェン骨格を有するエポキシ 樹脂および/またはグリシジルァミノ基を有する芳香族エポキシ樹脂を含有する 請求項 1に記載のプリプレダ用樹脂組成物。  2. The resin composition according to claim 1, wherein the epoxy resin (a) contains an epoxy resin having a dicyclopentene skeleton and / or an aromatic epoxy resin having a glycidylamino group.
3. 前記固形ゴムが、 前記エポキシ樹脂 (a) と相溶するアクリロニトリルブ タジェンゴム (NBR) またはカルポキシ変性アクリロニトリルブタジエンゴム である請求項 1または 2に記載のプリプレダ用樹脂組成物。  3. The resin composition for a prepreader according to claim 1, wherein the solid rubber is acrylonitrile butadiene rubber (NBR) or carboxy-modified acrylonitrile butadiene rubber compatible with the epoxy resin (a).
4. 請求項 1〜 3のいずれかに記載のプリプレダ用樹脂組成物を用いてなるプ 2 6 リプレダと、 ハニカムコアとを接着させて得られる構造体。 4. A process using the resin composition for pre-preda according to any one of claims 1 to 3. 2 6 A structure obtained by bonding a repre- dator and a honeycomb core.
PCT/JP2004/006126 2003-04-28 2004-04-28 Resin composition for prepreg WO2004096885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-123545 2003-04-28
JP2003123545A JP2004346092A (en) 2003-04-28 2003-04-28 Resin composition for prepreg

Publications (1)

Publication Number Publication Date
WO2004096885A1 true WO2004096885A1 (en) 2004-11-11

Family

ID=33410130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006126 WO2004096885A1 (en) 2003-04-28 2004-04-28 Resin composition for prepreg

Country Status (2)

Country Link
JP (1) JP2004346092A (en)
WO (1) WO2004096885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222339A1 (en) * 2016-06-24 2017-12-28 에스케이케미칼주식회사 Epoxy resin composition for fiber-reinforced composite material, and prepreg using same
EP3623406A4 (en) * 2017-05-10 2020-12-16 Toray Industries, Inc. Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569159B2 (en) * 2004-04-28 2010-10-27 住友ベークライト株式会社 Resin composition, prepreg and laminate
JP4871500B2 (en) * 2004-11-02 2012-02-08 株式会社カネカ Resin modifier for improving fluidity of resin composition
JP4639899B2 (en) * 2005-03-30 2011-02-23 横浜ゴム株式会社 Method for manufacturing honeycomb panel
JP5017794B2 (en) * 2005-04-13 2012-09-05 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4141487B2 (en) * 2006-04-25 2008-08-27 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP2008001807A (en) * 2006-06-22 2008-01-10 Fujikura Ltd Epoxy resin composition, epoxy adhesive, cover lay, prepreg, metal-clad laminate and printed circuit board
CN101608050B (en) * 2008-06-20 2011-06-08 中国科学院化学研究所 Epoxy resin modified material with three-layer structure and preparation method thereof
US10570282B2 (en) 2015-03-09 2020-02-25 Sumitomo Rubber Industries, Ltd. Tire
JP2016210860A (en) * 2015-05-01 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition and prepreg for fiber-reinforced composite material
CN109312057B (en) * 2016-06-24 2021-09-03 Sk化学株式会社 Epoxy resin composition for fiber-reinforced composite material and prepreg using the same
JP7028276B2 (en) * 2020-04-15 2022-03-02 横浜ゴム株式会社 Epoxy resin compositions for fiber reinforced composites, prepregs and fiber reinforced composites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625446A (en) * 1992-03-02 1994-02-01 Toray Ind Inc Cloth prepreg and its production
JPH06345884A (en) * 1993-06-10 1994-12-20 Toray Ind Inc Epoxy resin composition for yarn prepreg and yarn prepreg
JPH09132636A (en) * 1995-11-09 1997-05-20 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH09143249A (en) * 1995-11-24 1997-06-03 Yokohama Rubber Co Ltd:The Epoxy resin composition
JP2001031838A (en) * 1999-07-22 2001-02-06 Toho Rayon Co Ltd Epoxy resin composition for self-adhesive facing material and prepreg
JP2002194054A (en) * 2000-12-27 2002-07-10 Yokohama Rubber Co Ltd:The Epoxy resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625446A (en) * 1992-03-02 1994-02-01 Toray Ind Inc Cloth prepreg and its production
JPH06345884A (en) * 1993-06-10 1994-12-20 Toray Ind Inc Epoxy resin composition for yarn prepreg and yarn prepreg
JPH09132636A (en) * 1995-11-09 1997-05-20 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH09143249A (en) * 1995-11-24 1997-06-03 Yokohama Rubber Co Ltd:The Epoxy resin composition
JP2001031838A (en) * 1999-07-22 2001-02-06 Toho Rayon Co Ltd Epoxy resin composition for self-adhesive facing material and prepreg
JP2002194054A (en) * 2000-12-27 2002-07-10 Yokohama Rubber Co Ltd:The Epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222339A1 (en) * 2016-06-24 2017-12-28 에스케이케미칼주식회사 Epoxy resin composition for fiber-reinforced composite material, and prepreg using same
EP3623406A4 (en) * 2017-05-10 2020-12-16 Toray Industries, Inc. Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same

Also Published As

Publication number Publication date
JP2004346092A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4829766B2 (en) Epoxy resin composition for fiber reinforced composite materials
KR102126294B1 (en) Improvements in or relating to fibre reinforced composites
JP6525268B2 (en) Fast curing epoxy resin system
JP5023498B2 (en) Resin composition for prepreg sheet and prepreg sheet
WO2001027190A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
US9969852B2 (en) Epoxy resin formulations
JP2007291235A (en) Epoxy resin composition for fiber-reinforced composite material
WO2004096885A1 (en) Resin composition for prepreg
EP3024649B1 (en) Improvements in or relating to fibre reinforced composites
WO2019167579A1 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
JP2022084774A (en) Carbon fiber prepreg and resin composition
JP2009102563A (en) Epoxy resin composition and fiber-reinforced composite material by using the same
JP4910684B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP7382937B2 (en) Reinforced adhesive and bonding method using the same
JP6845141B2 (en) Resin composition
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
JP2007297549A (en) Epoxy resin composition
JP3602228B2 (en) Epoxy resin composition
JP3483684B2 (en) Epoxy resin composition
WO2018021146A1 (en) Prepreg and fiber-reinforced composite material
JP2009227907A (en) Epoxy resin composition and fiber reinforced composite material containing it
JP2002179771A (en) Epoxy resin composition
JP2006326892A (en) Binder composition for preform, reinforcing fiber base material for preform, preform manufacturing method and manufacturing method of fiber reinforced composite material
JP2002194054A (en) Epoxy resin composition
GB2509616A (en) A fast cure epoxy resin formulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase