WO2017222339A1 - Epoxy resin composition for fiber-reinforced composite material, and prepreg using same - Google Patents

Epoxy resin composition for fiber-reinforced composite material, and prepreg using same Download PDF

Info

Publication number
WO2017222339A1
WO2017222339A1 PCT/KR2017/006658 KR2017006658W WO2017222339A1 WO 2017222339 A1 WO2017222339 A1 WO 2017222339A1 KR 2017006658 W KR2017006658 W KR 2017006658W WO 2017222339 A1 WO2017222339 A1 WO 2017222339A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
prepreg
component
resin composition
formula
Prior art date
Application number
PCT/KR2017/006658
Other languages
French (fr)
Korean (ko)
Inventor
이재원
정훈희
김현석
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to CN201780034156.3A priority Critical patent/CN109312057B/en
Priority claimed from KR1020170079636A external-priority patent/KR20180001487A/en
Publication of WO2017222339A1 publication Critical patent/WO2017222339A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates

Definitions

  • the present invention relates to an epoxy resin composition suitable for mass production of fiber reinforced composites and a prepreg using the same.
  • Fiber-reinforced composites have high specific strength and inelasticity, so they are widely used in sports leisure applications, aviation applications, automotive and railway applications, electronics applications, and general industrial applications.
  • molding methods such as filament winding, infusion, res in transfer molding, pultrusion, and press are applied.
  • molding methods such as autoclave, vacuum bag, sheet winding, and bladder molding are used in the preprep, an intermediate product in which matrix resin is impregnated with reinforcing fibers. He is being applied.
  • the prepreg is cut, the prepreg is laminated on a mold of a desired shape, and then vacuum-backed, followed by heat curing for several hours. It takes a long process time, and is not suitable for mass production, but also has the disadvantage of requiring expensive autoclave equipment investment.
  • a press molding method which does not need a vacuum bag operation and can be automated is preferable.
  • the press molding method does not require expensive equipment such as an autoclave, and it is possible to utilize a press equipment that is commonly used.
  • Curing time of 1 hour to 3 hours is required at a temperature of 125 ° C to 175 ° C.
  • the flow of resin is rapidly increased during press molding, causing defects on the surface or inside of the molded article, or the straightness of the fiber. Defects such as disturbing will occur /
  • the storage stability of the prepreg may decrease rapidly.
  • the physical properties are lowered and the physical properties of the finally molded fiber reinforced composites are lowered.
  • the present invention is excellent in workability and storage stability required as a prepreg, heat curing within a few minutes to be suitable for mass production, the resin flow control is adjusted during press molding does not cause defects inside and outside the molded article It is to provide a resin composition and a prepreg using the same.
  • the present invention also provides a method for producing a fiber-reinforced composite using the prepreg.
  • the present invention provides an epoxy resin composition comprising the following components (A), (B), (C), and (D).
  • Component (A) may be composed of 50 to 100 parts by weight of the tetrafunctional glycidyl amine type epoxy resin with respect to 100 parts by weight of the bifunctional BPA type epoxy resin.
  • Dicyandiamide of component (B) is used as an epoxy hardening
  • the content of dicyandiamide may be used so that the ratio of active hydrogen equivalent of dicyandiamide to the average equivalent of component (A) epoxy resin is 30% to 80%.
  • Component (C) comprises 40% to 60% of an aliphatic tertiary amine air duct latent curing agent by weight, formula (1), (2), or an imidazole represented by the formula (3) coming from "60% to 40% It can be a complex mixture, including.
  • the aliphatic tertiary amine adduct type latent curing agent has an effect of lowering the temperature at which the curing reaction is initiated, and the imidazole represented by Formula 1, Formula 2, or Formula 3 increases the rate of the disclosed curing reaction within minutes.
  • the curing reaction can be completed so that the combined use of these can satisfy the fast curing property with excellent storage stability.
  • Component (D) is a polyvinyl acetal resin containing a carboxyl group as a thermoplastic polymer, which may be included in 3 to 10 parts by weight based on 100 parts by weight of component (A). This invention also provides the prepreg manufactured using the epoxy resin composition.
  • the invention also provides a method for producing a fiber-reinforced composite material to press molding for 2 to 5 minutes the prepreg in the mold of 140 ° C to 160 ° C.
  • the present invention by optimizing the components and composition of the epoxy resin, the curing agent, the curing agent, the thermoplastic resin, etc. in the epoxy resin composition, excellent storage stability at room temperature, heat curing within a few minutes to be suitable for mass production, press
  • the resin flowability during molding may be adjusted to provide a prepreg in which defects do not occur inside or outside the molded article.
  • the prepreg using the epoxy resin composition of the present invention is cured at least 90% within 3 minutes at a temperature of 150 ° C, exhibits a glass transition temperature (T g ) of more than 140 ° C, viscosity and tackiness for 1 month or more at room temperature (Tacky) It has storage stability without change.
  • T g glass transition temperature
  • Tacky room temperature
  • it even under press molding conditions with a pressure of 10 kgf / cm 2 , it exhibits moderate resin flowability, which does not cause surface and internal defects, and minimizes bleeding of the resin near the edge of the molded product. Can be used as a leg.
  • FIG. 1 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Example 1.
  • FIG. 2 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Comparative Example 2.
  • FIG. 3 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Comparative Example 4.
  • FIG. 3 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Comparative Example 4.
  • Figure 4 is a graph measuring the degree of cure of the prepreg prepared according to Example 1, Comparative Example 5, Comparative Example 6
  • Comparative Example 6 When using only aliphatic tertiary amine adduct type latent curing agent (Amine adduct), Comparative example 5: using only imidazole Case (Imidazole),
  • Example 1 When an aliphatic tertiary amine adduct latent hardener is mixed with imidazole (Amine adduct + Imi dazole), TemP: the actual temperature at which the actual prepreg is heated to heat. [Specific contents to carry out invention]
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • the curing degree is 90% or more or 91% or more, preferably 93% or more or 95% or more when press-molded using a 150 r mold for 3 minutes, fiber reinforced
  • the glass transition temperature (T g ) of the composite molded article is at least 140 ° C or at least 141 ° C, preferably at least 143 ° C or at least 147 ° C. It provides to the epoxy resin composition which can obtain favorable quality without an external defect, and the prepreg manufacturing method using the same.
  • an epoxy resin composition comprising the following components (A), (B), (C), and (D) is provided.
  • Component (A) gives semi-astringent, adhesive property to a resin composition, and after hardening It provides heat resistance, toughness, chemical resistance, etc. to a resin composition.
  • Examples of the epoxy resin applicable to the prepreg include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl epoxy resins, novolak type epoxy resins, naphthalene type epoxy resins, and glycidyl ester types.
  • Epoxy resin, glycidyl amine type epoxy resin, polycyclopentadiene type epoxy resin, alicyclic epoxy resin, etc. are mentioned, The epoxy resin etc. which modified these are mentioned.
  • Epoxy resins of bifunctional group have excellent toughness but low heat resistance, and epoxy resins of more than 3 functional groups have high heat resistance due to high crosslinking density, low toughness, and deformation due to high shrinkage during curing. This is more likely to occur. Therefore, it is preferable to use a bifunctional bisphenol A epoxy and a trifunctional or higher epoxy resin in combination, and the epoxy having a trifunctional or higher functional group is a glycidyl amine epoxy resin having a tetrafunctional group in consideration of the curing rate, heat resistance and viscosity. Should be used.
  • the epoxy resin composition of this invention contains the mixture of such bifunctional bisphenol A epoxy resin (bifunctional BPA type epoxy resin) and glycidyl amine type epoxy resin as (A) component.
  • Component (A) is based on 100 parts by weight of the bifunctional BPA epoxy resin.
  • T g glass transition temperature
  • the component of the tetrafunctional glycidyl amine-type epoxy resin exceeds 100 parts by weight based on the difunctional BPA-type epoxy resin increase, the resin ' flowability is excessively increased during press molding and the adhesion of the surface of the prepreg ( Tacky) can be excessively high.
  • the difunctional BPA-type epoxy resin can be classified into liquid, semi-solid, solid, etc. according to the equivalent weight and molecular weight, of which solid-state BPA-type epoxy
  • the use of the resin in an amount of 2 to 30% or more by weight is preferable in view of ensuring proper viscosity and tackiness for prepreg production.
  • Tetraglycidyl diamino diphenyl methane tetraglycidyl diamino diphenyl ether
  • tetraglycidyl diamino diphenylamide tetraglycidyl xylenediamine And halogen substituted products thereof, hydrogenated products thereof, and the like, and one or more thereof
  • Tetraglycidyldiaminodiphenyl methane and the like are preferable in view of the thickening, heat resistance and compatibility with the BPA type epoxy.
  • Examples of commercially available products relating to tetraglycidyl diaminodiphenyl methane include ELM434 from Sumitomo Chemical, Nippon Steel Chemical Company ⁇ YH434L, JER 604 from Mitsubishi Chemical Corporation, Araldite MY9655, MY720, etc., from Huntsman Advanced Materials. Can be mentioned.
  • dicyandiamide is used as a curing agent, in which case the epoxy resin composition has excellent storage stability, and the cured epoxy resin composition has high heat resistance.
  • the content of dicyandiamide may be 3 to 8 parts by weight based on 100 parts by weight of component (A). This can be used so that the ratio of the active hydrogen equivalent of dicyandiamide to the average equivalent of the mixed epoxy resin (A) component is 30% to 80%.
  • the epoxy of component (A) may not participate in the curing reaction, and thus, the heat resistance and mechanical properties of the cured product may be deteriorated.
  • the amount of the cyan die die amide exceeds 8 weight parts, or more than equivalent weight ratio is "80%, fragile and easily becomes high as the cured brittle over, there is a fear that the heat resistance decreases.
  • Examples of commercially available products related to these dicyandiamides include Dicy-7 and Dicy-15 from Mitusbishi Chemical, Dyhard 100S and 100SF from Alzchem, CG1400 from Air product, DDA5 from CVC Thermoset Specialties.
  • an aliphatic tertiary amine adduct type latent curing agent and an imidazole having a structure of Formula (1), (2) or (3) are used in combination. Used as a curing accelerator to promote the reaction of epoxy resin and curing agent.
  • the aliphatic tertiary amine adduct type latent curing agent is a reactant obtained by polymerizing an amine compound, such as a tertiary amine compound, with an epoxy compound, an isocyanate compound, etc., and may be in the form of finely divided powder. It exhibits a low solubility in the epoxy resin at room temperature, but when heated, reacts with the epoxy resin from the surface of the particles to dissolve and causes uniform curing reaction.
  • the aliphatic tertiary amine air duct latent curing agent is cured while it is banung this is the start lowering the temperature at which the effect of the curing accelerator acts to be a curing reaction starts at temperatures above 100 ° C, of less than 80 ° C In silver road, hardening reaction does not occur and shows high storage stability.
  • the aliphatic tertiary amine adduct type latent curing agent of the present invention using aliphatic tertiary amine has a low calorific value during curing and excellent storage stability.
  • the resin composition is cured, its color is relatively transparent.
  • the amount of heat generated during curing is large, there is a possibility that the cured product may deteriorate, and in order to secure the appearance quality, the cured product may be transparent. This appearance quality is a very important characteristic in terms of aesthetics of the user, unless a separate color coating.
  • the fiber reinforced composite material when used as an exterior part such as an automobile, and a separate colored coating is not applied, the woven form of the fiber is exposed to the outside, and when the resin composition is cured, the surface becomes cloudy or cloudy.
  • the problem is that the aesthetic function is significantly degraded.
  • the imidazole represented by Formula 1, Formula 2, or Formula 3 maintains a high storage stability at temperatures below 80 ° C., but at a high temperature above 130 ° C., the rate of curing reaction is very fast and the T g of the cured product is high. have.
  • aliphatic tertiary amine adduct type latent curing agents in combination with 60% to 40% of imidazole represented by the formula (1), (2) or (3).
  • the aliphatic tertiary amine adduct type latent curing agent and the formula (1), (2) or (3) can be used in mixture of 4 to 55%, respectively.
  • the aliphatic tertiary amine adduct type latent curing agent and the imidazole of Formula 1, Formula 2, or Formula 3 are used in combination, the aliphatic tertiary amine adduct type in the process of raising the temperature to the press molding temperature
  • the curing reaction is initiated by the effect of the latent curing agent, and after reaching the press molding temperature, the rapid curing reaction proceeds and is completed by the effect according to the imidazole of Formula 1, Formula 2, or Formula 3 and stored. It is possible to satisfy both stability and fast curing.
  • the aliphatic tertiary amine adduct type latent curing agent may be prepared by reacting an aliphatic tertiary amine compound with an epoxy compound or an isocyanate compound as described above.
  • aliphatic tertiary amines used in such aliphatic tertiary amine adduct type latent curing agents include diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclonuxylamine, And 4,4'-diamino-dicyclonucleomethane and the like
  • examples of the epoxy compound include 1, 2-epoxybutane, 1, 2-epoxynucleic acid, 1, 2-epoxyoctane, styrene oxide and n -butylglycol.
  • Cylyl ether nucleosilglycidyl ether, phenylglycidyl ether, glycidyl acetate and the like.
  • the amine adduct type latent hardener made by Ajinomoto Fine Techno Co., Ltd. (trade name: Amicure MY-24, MY-H), a latent hardener made by T & K TOKA (brand name: Fujicure FXR-1020, FXR-1030) etc.
  • T & K TOKA brand name: Fujicure FXR-1020, FXR-1030
  • the imidazole used as a curing accelerator together with an aliphatic tertiary amine adduct type latent curing agent is 4'hydroxymethyl-5-methyl-2- Phenylimidazole (4-hydroxymethyl-5-methyl-2-phenyl imidazole, 2P4MHZ) and 2,4-diamino-6- [2'-methylimidazoli- (1 ')]-ethyl -3_ triazine isocyanuric acid adduct dihydrate (2,4-diamino_6- [2'-methylimidazol i ⁇ ( ⁇ )] _ ethyl ⁇ s ⁇ triazine isocyanuric adic adduct dehydrate, 2MA-0K), Formula 3 2-phenyl-4,5-dihydroxymethyl imidazole of (2-phenyl-4,5-dihydroxymethyl imidazole, 2PHZ) is preferable in terms of curing rate and storage stability. As these commercial items,
  • the present invention is a component '(C) by using a mixture of an aliphatic tertiary amine adduct type latent curing agent and imidazole having a structure of Formula 1, Formula 2, or Formula 3, to increase the reaction speed and the prepreg molding process time At the same time, the stability of the room temperature is significantly improved, and the mass production process is effectively performed. This is because the urea-based or imida (1 ⁇ (132016; 2MI, 2E4MI, 2P4MI, 2PI, etc.) curing accelerators known in the related art are used alone or at room temperature storage stability when using a compound having a sulfur atom epoxy alone. This remarkably falling problem can be clearly solved.
  • thermoplastic polymer having a hydrogen bond functional group that can be dissolved in an epoxy resin is used as the component (D).
  • the thermoplastic polymer may be dissolved in an epoxy resin, thereby improving the interfacial adhesion between the resin and the reinforcing fiber, thereby increasing the toughness and mechanical properties of the fiber reinforced composite material.
  • the flowability of the resin at high temperature and high pressure during press molding is reduced.
  • Thermoplastic polymers having a hydrogen bond functional group include those having a hydroxyl group, an amide group, and a sulfonyl group.
  • thermoplastic resins having hydroxyl groups include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol and phenoxy resins.
  • thermoplastic resins having amide bonds include polyamides, polyimides and polyvinyl pyridones.
  • An example of a thermoplastic resin having sulfonyl groups is polysulfone.
  • Polyamides, polyimides and polysulfones may have functional groups such as ether bonds and carbonyl groups in their backbone.
  • Polyamide is the nitrogen atom of the amide group It may have a substituent on the phase.
  • thermoplastic resin having a hydrogen bonding functional group that can be dissolved in an epoxy resin is polyvinyl acetal resin.
  • the grade containing a carboxyl group is especially preferable in the polyvinyl acetal resin which has a hydroxyl group, and it is preferable to contain this at 3-10 weight part with respect to 100 weight part of component (A).
  • the thermoplastic polymer of the component (D) controls the resin flowability during press molding, and when the content is less than 3 parts by weight, there is no effect of reducing the resin flowability, and the straightness of the fibers on the surface during the press molding is disturbed and near the edges. Resin and bleeding may become excessive. In addition, even inside the molded article, it is possible to generate voids so that the resin is rapidly pulled out before the resin is cured.
  • the content of the component (D) is included in excess of 10 parts by weight, the flowability of the resin is very small, and voids are not removed sufficiently during press molding, and when dissolved in an epoxy resin, the viscosity becomes very high, and thus prepreg production is performed. It can be difficult.
  • Epoxy resin composition of the present invention using a Brookfield viscometer (e.g., CAP-2000), the viscosity set at 80 ° C. can be 15,000 to 30,000 cps black silver 18,000 to 28,000 cps, to prepare a hot melt prepreg Suitable viscosity ranges can be.
  • the epoxy resin composition is 40 ° C. When stored for a long time under constant temperature conditions, even if more than 30 days or more than 40 days elapses, the viscosity is maintained at less than twice the initial viscosity and can exhibit excellent storage stability.
  • the epoxy resin composition of the present invention is used as a matrix resin for the production of hot melt prepreg without a solvent, it is prepared by the following method.
  • component (A), component (B), and component (E) were put into a container, and stirred for several hours at a temperature of 80 ° C to 180 ° C to prepare a base resin in which component (E) was dissolved in an epoxy resin. do.
  • the base resin is cooled to 60 ° C. to 90 ° C.
  • the components (C) and (D) are stirred together with the curing agent paste in which a part of the component (A) is dispersed.
  • an epoxy resin composition having excellent storage stability can be obtained.
  • a prepreg prepared using the epoxy resin composition as described above.
  • the prepreg can be obtained by impregnating the reinforcing fibers in the epoxy resin composition, and methods of impregnating the prepreg include a dry method (hot melt method) and a wet method (solution method).
  • the wet method is a method in which a prepreg is prepared by immersing reinforcing fibers in an epoxy resin composition solution in which an epoxy resin composition is dissolved in a ketone or alcohol solvent, and then passing through a drying furnace to remove the solvent.
  • the prepreg of the present invention can be produced by applying a hot melt method, which is a dry method, using the epoxy resin composition, and an example of the hot melt method may be mentioned as follows.
  • Hot-melt method has the advantage that can be prepared prepreg containing no residual solvent.
  • the coating method comma coating, roll coating, slot die coating, or the like can be used.
  • carbon fibers such as tow (Tow), continuous fibers such as fabric (Fabr ic), chopped / long fibers (Chopped Fiber), mat
  • tow tow
  • Fabr ic continuous fibers
  • chopped Fiber chopped Fiber
  • carbon fibers or abrasion fibers are preferred because they exhibit excellent specific strength and inelasticity, which can result in light weight properties of fiber-reinforced composites.
  • the fiber content (FAW, Fiber Areal Weight) per unit area of the prepreg is suitable from 50 to 300 g / m 2 . If the FAW is less than 50 g / ra 2 , the work time and cost increase because the number of prepreg stacks is increased to produce molded articles of desired thickness. If the FAW is 300 g / m 2 or more, the drape of the prepreg may be deteriorated, which may be unsuitable for the manufacture of a molded article having a complex shape including a curved surface, and the thickness of the prepreg cross section may increase, making it difficult to impregnate completely.
  • the resin content (RC, Res in Content) in the prepreg is suitable from 25% to 35%.
  • the RC is less than 25%, there is a possibility that the reinforcing fibers are not completely impregnated in the resin and voids remain in the prepreg production. In addition, the fiber is exposed to the surface after molding, it is difficult to ensure excellent surface quality. When RC is more than 35%, the fiber content is relatively low, which lowers the mechanical strength such as specific strength and inelasticity.In addition, the excess resin flows during press molding, which disturbs the arrangement of fibers and near the edge of the molded product. This may cause problems such as resin leaking out.
  • the resin flow to the prepreg prepared using the epoxy composition of the present invention within 12%, preferably within 11% within 5% or less than 6% to 11%, or less than 10% or less than 10% 10% can be exhibited, and it can maintain a favorable state with the appearance that the fiber is not disturbed and resin bleeding to an edge.
  • the resin flow rate of the prepreg is higher than 12%, the straightness of the fiber is disturbed due to the pressure, and the mechanical properties are reduced.
  • the fibers are pulled together (Bl eeding) and the desired product thickness cannot be achieved. This can cause many problems, such as the need for further trimming.
  • more than 6% may be good in terms of removing voids inside the product.
  • Such resin flowability can be derived by measuring the initial weight Wi and the post-molding weight W f under normal press molding conditions, and calculating it according to the following formula (1).
  • Resin Flowability (%) [(W,-W f ) / Wi] x 100
  • Wi shows the initial weight (Wi) measured by laminating four layers of prepregs having a size of 300 mm x 300 mm before press forming.
  • W f is press-molded for 3 minutes at a temperature of 150 ° C and pressure of 10 kgf / cm 2 using a flat tube mold to produce a carbon fiber-reinforced composite. It shows the measured weight (w f ) by processing the initial weight (Wi) to the same size as the measurement.
  • the 'gel time (Gel t ime) measured under conditions of a press-molding temperature of 150 ° C in accordance with the American Society for Testing and Materials method ASTM D 3532 with respect to the prepreg is from about 75 seconds within black is from about 30 seconds to about 75 seconds, Preferably, within about 63 seconds, the black may be about 30 seconds to about 63 seconds, more preferably about 53 seconds or about 30 seconds to about 53 seconds.
  • the gel time (Gel t ime) is the time until the flow of the resin decreases rapidly and the curing reaction proceeds rapidly, that is, the storage modulus of the resin is lost due to the progress of the curing reaction. It means the time it takes to get bigger than).
  • the prepreg prepared using the epoxy composition of the present invention may exhibit a significantly shorter gel time than the conventional one, and thus may be molded in a short time to be suitable for mass production due to a high degree of curing in a certain time and a fast reaction speed. Can be.
  • a method for producing a fiber-reinforced composite using the prepreg as described above a method of manufacturing a part using a prepreg may be applied to any type of molding method such as an existing autoclave, vacuum bag, press molding, but in particular press molding. Through this, it is possible to manufacture a fiber reinforced composite having high productivity and excellent surface quality.
  • the present invention may be prepared by preparing a prepreg using the epoxy resin composition, and press-molded it for 2 to 5 minutes in a mold at a temperature of 140 to 160 ° C, wherein the pressure conditions are 5 to 10 kgf / cm 2 can be applied.
  • the glass fiber-reinforced composite transition low temperature press molding temperature or more than 20 ° C than the temperature in the mold to remove a molded fiber-reinforced composite material from the mold, so components can result in failure to be bent or deformed, pressed at 150 ° C
  • the glass transition temperature should be at least 130 ° C.
  • An epoxy resin composition was prepared at a blending ratio as shown in Table 1 below.
  • the epoxy resin in the component (A) and the thermoplastic resin of the component (D) were weighed and introduced into a glass flask, followed by stirring at 150 ° C. for 2 hours or more to prepare a base resin in which the thermoplastic resin of the component (D) was completely dissolved. It was.
  • 12 phr of EP0N 828, a liquid bisphenol A epoxy resin, and (B) and (C) in the component (A) were weighed and mixed, and then uniformly dispersed through 3 Rol l Mi 11 to prepare a curing agent paste. .
  • the base resin and the hardener paste were mixed at a temperature of about 80 ° C. to prepare an epoxy resin composition.
  • the epoxy resin composition thus prepared is resin basis weight using a comma coater.
  • the prepared prepreg is cut at 300 ⁇ X 300 ⁇ , cross-prepreg is laminated in the direction of the fiber, and 5 sheets are laminated in the order of lamination angle [0/90/0/90/0].
  • the resultant was placed in a mold and press-molded for 3 minutes under conditions of a temperature of 150 T and a pressure of 10 kgf / cm 2 to prepare a carbon fiber reinforced composite.
  • the epoxy resin composition was prepared in the same manner as in Examples 1 to 4, and a prepreg and a carbon fiber reinforced composite were prepared using the same.
  • the epoxy resin composition prepared was measured at 80 ° C. using a Brookfield viscometer (CAP-2000). In addition, the epoxy resin composition was stored in a 40 ° C oven (oven) and the viscosity was measured, the time (days, days) to double the initial viscosity was measured and based on this, the storage stability was evaluated.
  • CAP-2000 Brookfield viscometer
  • Gel time of the prepreg was measured by the method of ASTM D 3532. Gel time cuts the prepreg sample into a size of 6 mm 2 , puts it on a hot plate and cover glass set to a press forming temperature of 150 ° C, and then places the sample. Covered with another cover glass, stirred with a wooden stick and the gelation time was measured in seconds.
  • the heat resistance of the epoxy resin composition was measured using a differential scanning calorimetry device (DSC, Q2000, TA Instruments). First, the sample was heated to 25 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min, completely cured, cooled, and the glass transition temperature (T g ) that appeared while heating up was measured in the same manner.
  • d) degree of cure of prepreg The degree of curing of the prepreg was measured at 150 ° C isothermal conditions after the sample was heated from 25 ° C to 150 ° C at a rate of 100 ° C / min using a differential scanning calorimetry (DSC, Q2000, TA Instruments). It was. It took 1 minute to reach 150 ° C., then the degree of cure was calculated when staying at 150 ° C. for 3 minutes.
  • resin flowability DSC, Q2000, TA Instruments
  • the resin flow of the prepreg using the epoxy resin composition was measured according to the method of ASTM D 3531 of the American Society for Testing and Materials. However, in order to simulate the actual press molding conditions, the resin flowability was measured by discharging the resin from the front and rear sides of the prepreg, leaving the resin to the outside (edge), and weighing the remaining weight.
  • the prepreg was cut to 300 ⁇ X 300 ⁇ , and then the prepregs were cross-laminated in the direction of the fibers, and 4 sheets were laminated in the lamination angle [0/90/90/0], and the weight was measured. (Wi). This was placed in a flat die, press-molded for 3 minutes under the condition of temperature 150 ° C, pressure 10 kgf / cm 2 to prepare a carbon fiber reinforced composite. After removing the cured resin from the edge of the carbon fiber composite material was processed to an initial size of 300 ⁇ X 300mm (W f ) was weighed again. Resin flowability was calculated according to the following formula (1).
  • Resin Flowability (3 ⁇ 4>) [(W;-W f ) / Wi] x 100
  • Wi shows the initial weight (Wi) measured by laminating four layers of prepregs having a size of 300 mm x 300 mm before press forming.
  • the appearance of the fabricated carbon fiber composite was visually observed to observe whether the one-way carbon fiber was kept straight and undisturbed, and the color of the resin exiting the surface and the edge was observed. In addition, the center portion was cut, the cross section was observed under a microscope, and no voids (vo i d) remained inside.
  • FIGS. 1 to 3 micrographs of cross sections obtained by cutting the central portion of the carbon fiber composites prepared according to Example 1, Comparative Examples 2 and 4 are shown in FIGS. 1 to 3, respectively.
  • the carbon fiber composite of Example 1 according to the present invention can be seen that the voids (void) hardly remain inside the center portion has very excellent properties in terms of formability and mechanical properties.
  • the carbon fiber composites of Comparative Examples 2 and 4 did not optimize the flowability of the resin did not remove the voids (voi d) inside during press molding It can be confirmed directly, in this case it can be seen that very poor in terms of formability and mechanical properties.
  • FIG. 1 the carbon fiber composite of Example 1 according to the present invention can be seen that the voids (void) hardly remain inside the center portion has very excellent properties in terms of formability and mechanical properties.
  • the carbon fiber composites of Comparative Examples 2 and 4 did not optimize the flowability of the resin did not remove the voids (voi d) inside during press molding It can be confirmed directly, in this case it can be
  • Temp shown in FIG. 4 means an actual temperature at which the actual prepreg is heated by receiving heat, and in about 1 minute, the temperature is raised from room temperature to 150 ° C under actual molding conditions or curing degree measurement conditions. This means that after 3 minutes after the temperature rise, the degree of curing is shown.
  • Example 4 in the case of Example 1 in which an aliphatic tertiary amine adduct-type latent hardener and imidazole are mixed according to the present invention, based on a molding time of 2 to 3 minutes (X-axis) (Amine It can be seen that the degree of curing (y-axis, convers ion) is the highest in adduct + imidazo), which is suitable for mass production using presses. In addition, at least 80% of this degree of conv. It can be said that the mold can be demoulded in the press mold, and in the case of Example 1, the curing degree is achieved by 80% or more before 2 minutes 30 seconds has elapsed, and thus it can be seen that it is very suitable for mass production.
  • the viscosity of the epoxy resin composition obtained in Examples 1 to 4 is 15, 000 to 30, 000 cps (at 80 ° C), a viscosity range suitable for the production of hot melt prepreg ,
  • the storage time at 40 ° C was increased to twice the initial viscosity time was more than 30 days was excellent storage stability.
  • it exhibited a curing degree of 90% or more in the curing time of 3 minutes at 150 ° C to implement fast curing suitable for mass production, the glass transition temperature after curing showed a high heat resistance of 140 ° C or more.
  • the resin flowability through the above press molding conditions was within 10%, so that the appearance was maintained in a good state with little fiber bleeding and resin bleeding to the edges.
  • both prepreg and gel time (Gel t ime) prepared using the epoxy resin composition of Examples 1 to 4 were short within 53 seconds, thereby high curing rate within a certain time and fast reaction rate for mass production. It can be seen that molding is possible within a suitable short time.
  • Comparative Examples 1 and 2 by using only conventionally known urea-based or imidazole-type curing accelerators, the storage stability of the epoxy resin composition is not good, and it is not completely cured under the above press molding conditions. I could't.
  • the glass transition temperature was less than 140 ° C, causing deformation of the molded article when demolding.
  • Comparative Example 3 does not use a glycidyl amine-type epoxy resin, the reaction rate is slow, it can be seen that the gel time is long, the heat resistance (T g ) is low.
  • Comparative Example 4 the flow of the resin was very high due to the change of the thermoplastic resin, resulting in fiber disturbance on the surface, excessive resin bleeding to the edges, and voids were not removed inside.
  • Comparative Example 5 when using only the imidazole compound of Formula 1 alone as in Comparative Example 5, not only high molding temperature of 160 ° C or more, but also room temperature storage stability is lowered, there is a problem that can not be used as a prepreg.

Abstract

The present invention relates to an epoxy resin composition suitable for mass production of a fiber-reinforced composite, and a prepreg using the same. The epoxy resin composition comprises: component (A), which is a mixture of a difunctional BPA type epoxy resin and a tetrafunctional glycidyl amine type epoxy resin; component (B), which is a dicyandiamide as an epoxy resin curing agent; component (C), which is, as a curing accelerator, a mixture of an aliphatic tertiary amine adduct type latent curing and amidazole; and component (D), which is a polyvinyl acetal resin having a carboxyl group as a thermoplastic polymer. According to the present invention, provided is a prepreg having excellent storage stability at a room temperature, capable of being thermoset within several minutes so as to be suitable for mass production, and generating no defects inside and outside a molded product because resin flowability is controlled during press molding.

Description

【발명의 설명】  [Explanation of invention]
【발명의 명칭】  [Name of invention]
섬유강화 복합재료용 에폭시 수지 조성물 및 이를 이용한 프리프레그 【기술분야】  Epoxy resin composition for fiber-reinforced composite materials and prepreg using the same
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2016년 6월 24일자 한국 특허 출원 제 10-2016-0079556호 및 2017년 6월 23일자 한국 특허 출원 제 10-2017-0079636호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0079556 dated June 24, 2016 and Korean Patent Application No. 10-2017-0079636 dated June 23, 2017, All content disclosed in the literature is included as part of this specification.
본 발명은 섬유강화 복합재의 대량 생산에 적합한 에폭시 수지 조성물 및 이를 이용한 프리프레그에 관한 것이다.  The present invention relates to an epoxy resin composition suitable for mass production of fiber reinforced composites and a prepreg using the same.
【배경기술】 Background Art
섬유강화 복합재료는 높은 비강도 및 비탄성를을 가지므로, 스포츠 레저 용도, 항공용도, 자동차 및 철도 용도, 전자제품 용도 및 일반 산업용도에 널리 이용되고 있다.  Fiber-reinforced composites have high specific strength and inelasticity, so they are widely used in sports leisure applications, aviation applications, automotive and railway applications, electronics applications, and general industrial applications.
특히 최근에는 자동차 분야에서 이산화탄소 배출 및 연비 향상 규제에 따라 차량 경량화 요구가 높아지고 있으며, 이에 대웅할 수 있는 재료로 섬유강화 복합재료가 주목 받고 있다.  In recent years, the demand for lighter vehicles is increasing due to the regulation of carbon dioxide emission and fuel efficiency improvement in the automobile field, and fiber reinforced composite materials are attracting attention as a material that can be considered as a material.
이러한 섬유강화 복합재료를 제조하는 방법으로는 필라멘트 와인딩 (Fi l ament winding) , 인퓨젼 ( Infusion), RTM(Res in Transfer Molding) , 인발 (Pul trusion), 압축 (Press) 등의 성형 공법이 적용되고 있으며, 특히 오토클레이브 (Autocl ave) , 진공백 (Vacuum Bag) , 시트 와인딩 (Sheet winding) , 블래더 몰딩 (Bladder Molding) 등의 성형공법에는 강화 섬유에 매트릭스 수지를 미리 함침시킨 중간제품인 프라프레그가 적용되고 있다.  As a method of manufacturing the fiber-reinforced composite material, molding methods such as filament winding, infusion, res in transfer molding, pultrusion, and press are applied. In particular, molding methods such as autoclave, vacuum bag, sheet winding, and bladder molding are used in the preprep, an intermediate product in which matrix resin is impregnated with reinforcing fibers. He is being applied.
프리프레그를 사용하는 경우 복합재의 기계적 물성에 크게 영향을 미치는 섬유의 함량을 높이거나, 목표하는 섬유의 함량을 균일하게 관리하기 용이하고, 보이드 (void) 등의 내부 결함을 감소시킬 수 있으며, 내열도 또는 층격강도 등의 물성을 향상시키는 것이 용이하다. In the case of using prepreg, increase the content of the fiber which greatly affects the mechanical properties of the composite, or make the content of the target fiber uniform It is easy to manage, it is possible to reduce internal defects such as voids, and to improve physical properties such as heat resistance or delamination strength.
그러나, 기존의 프리프레그 및 이를 이용한 대표적인 성형공법인 오토클레이브 성형공법에서는, 프리프레그를 재단하고, 원하는 형상의 몰드에 프리프레그를 적층한 후 진공백 작업을 해야 하며, 이후 수시간 동안 가열 경화를 시키는 등 오랜 공정시간이 소요되어, 대량 생산에는 적합하지 않을 뿐만 아니라 고가의 오토클레이브 설비 투자가 필요하다는 점 등의 단점이 있다.  However, in the existing prepreg and autoclave molding method, which is a typical molding method using the same, the prepreg is cut, the prepreg is laminated on a mold of a desired shape, and then vacuum-backed, followed by heat curing for several hours. It takes a long process time, and is not suitable for mass production, but also has the disadvantage of requiring expensive autoclave equipment investment.
대량 생산을 위해서는 성형시간이 10 분 이내로 단축되어야 하므로, 진공백 작업이 필요 없고, 자동화가 가능한 압축 (press ) 성형 공법이 바람직하다. 프레스 성형공법의 경우 오토클레이브와 같은 고가의 설비가 필요 없고, 보편적으로 사용 중인 프레스 설비를 활용하는 것이 가능하다. 일반적인 열경화성 에폭시 수지 조성물로 제조된 프리프레그의 경우 Since the molding time has to be shortened to 10 minutes or less for mass production, a press molding method which does not need a vacuum bag operation and can be automated is preferable. The press molding method does not require expensive equipment such as an autoclave, and it is possible to utilize a press equipment that is commonly used. For prepregs made of common thermosetting epoxy resin compositions
125 °C 내지 175 °C의 온도에서 1 시간에서 3 시간 정도의 경화시간이 요구되며, 프레스 성형시 수지의 흐름성이 급격하게 높아져, 성형품의 표면 또는 내부에 결함을 야기하거나, 섬유의 직진성을 흐트러뜨리는 등의 불량이 발생하게 된다 / Curing time of 1 hour to 3 hours is required at a temperature of 125 ° C to 175 ° C. The flow of resin is rapidly increased during press molding, causing defects on the surface or inside of the molded article, or the straightness of the fiber. Defects such as disturbing will occur /
경화시간을 단축하기 위해 수지 조성물 중의 경화제 및 경화촉진제를 증량하거나, 경화속도가 빠른 경화촉진제를 적용할 경우, 프리프레그의 보관 안정성이 급격히 감소하는 문제가 발생하며, 경화된 수지 조성물의 열적, 기계적 물성이 저하되어 최종적으로 성형된 섬유강화복합재의 물성이 저하된다.  When the curing agent and curing accelerator in the resin composition is increased to shorten the curing time, or when the curing accelerator is applied at a high curing rate, the storage stability of the prepreg may decrease rapidly. The physical properties are lowered and the physical properties of the finally molded fiber reinforced composites are lowered.
또한, 프레스 성형시 수지의 흐름성을 조정하기 위해서는 점도의 에폭시 수지를 사용하거나, 열가소성 고분자를 첨가하거나, 요변성을 증진시키기 위해 필러를 사용하는 방법 등이 알려져 있다.  In addition, in order to adjust the flowability of the resin during press molding, a method of using an epoxy resin of viscosity, adding a thermoplastic polymer, or using a filler to improve thixotropy is known.
그러나, 고점도의 에폭시 수지를 사용하거나 필러를 사용할 경우, 상온에서의 점도가 높아져 프리프레그를 제조하기 곤란하며, 프리프레그 표면의 점착성 (tacky)이 낮아져 프레프레그를 적층하는 데 어려움이 발생한다ᅳ 열가소성 고분자를 첨가하는 경우, 에폭시에 대한 용해도가 낮으므로 수지 흐름성이 저하되는 수준까지 그 함량을 증가시키기 어려우며, 이로 인해 경화물의 내열성 (유리전이온도)가 낮아지는 문제가 발생한다. 또한, 수지 흐름성을 너무 저하시킬 경우에도, 섬유강화 복합재 내부에 보이드 등의 결함이 잔존할 가능성이 높아진다. 【발명의 내용] However, when a high viscosity epoxy resin or a filler is used, the viscosity at room temperature is high, making prepreg difficult, and the pretack is difficult to laminate due to low tacky on the surface of the prepreg. When the polymer is added, the solubility in epoxy is low, so it is difficult to increase its content to a level where resin flowability is lowered. This causes a problem that the heat resistance (glass transition temperature) of the cured product is lowered. Moreover, even if resin flowability is reduced too much, the possibility that a defect, such as a void, remains inside a fiber reinforced composite material will become high. [Contents of the Invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 프리프레그로서 요구되는 작업성 및 보관안정성이 우수하고, 대량 생산에 적합하도록 수분 이내에 열경화가 가능하며, 프레스 성형시 수지 흐름성이 조절되어 성형품 내부 및 외부에 결함이 발생하지 않는 에폭시 수지 조성물과 이를 이용한 프리프레그를 제공하고자 한다.  The present invention is excellent in workability and storage stability required as a prepreg, heat curing within a few minutes to be suitable for mass production, the resin flow control is adjusted during press molding does not cause defects inside and outside the molded article It is to provide a resin composition and a prepreg using the same.
본 발명은 또한, 상기 프리프레그를 이용한 섬유강화 복합재의 제조 방법을 제공하고자 한다.  The present invention also provides a method for producing a fiber-reinforced composite using the prepreg.
【과제의 해결 수단】 [Measures of problem]
상기 목적을 달성하가위하여, 본 발명은 하기의 성분 (A) , (B) , (C) , 및 (D)를 포함하는 에폭시 수지 조성물을 제공한다.  In order to achieve the above object, the present invention provides an epoxy resin composition comprising the following components (A), (B), (C), and (D).
(A) 이관능성 비스페놀 A형 에폭시 수지와 4관능기를 가진 글리시딜 아민형 에폭시 수지의 흔합물,  (A) a mixture of a bifunctional bisphenol A epoxy resin and a glycidyl amine epoxy resin having a tetrafunctional group,
(B) 에폭시 수지의 경화제로서 다이시안다이아마이드,  (B) dicyandiamide as a curing agent for epoxy resins,
(C) 경화촉진제로서 지방족 3급 아민 어덕트형 잠재성 경화제와 하기 화학식 1 , 화학식 2, 또는 화학식 3으로 표시되는 이미다졸 화합물의 흔합물, 및  (C) a mixture of an aliphatic tertiary amine adduct type latent curing agent and an imidazole compound represented by the following formula (1), (2) or (3) as a curing accelerator, and
(D) 열가소성 고분자로서 카르복실기 함유 폴리비닐아세탈 (Polyvinyl acet al ) 수지 .  (D) Carboxyl group-containing polyvinyl acetal resin as thermoplastic polymer.
[화학식 1] [Formula 1]
C i-OH
Figure imgf000005_0001
[화학식 2]
Figure imgf000006_0001
C i-OH
Figure imgf000005_0001
[Formula 2]
Figure imgf000006_0001
[화학식 3] [Formula 3]
Figure imgf000006_0002
성분 (A)는 이관능성 BPA형 에폭시 수지 100 중량부에 대하여 4관능기 글리시딜 아민형 에폭시 수지 50 내지 100 중량부로 구성될 수 있다.
Figure imgf000006_0002
Component (A) may be composed of 50 to 100 parts by weight of the tetrafunctional glycidyl amine type epoxy resin with respect to 100 parts by weight of the bifunctional BPA type epoxy resin.
성분 (B)의 다이시안다이아마이드는 에폭시 경화제로 사용되어 보관안정성이 우수하고, 경화된 에폭시 수지 조성물이 높은 내열성을 갖는다. 상기 다이시안다이아마이드의 함량은 성분 (A) 에폭시 수지의 평균 당량 대비 다이시안다이아마이드의 활성수소 당량 비율이 30% 내지 80%가 되도록 사용할 수 있다.  Dicyandiamide of component (B) is used as an epoxy hardening | curing agent, and is excellent in storage stability, and the hardened epoxy resin composition has high heat resistance. The content of dicyandiamide may be used so that the ratio of active hydrogen equivalent of dicyandiamide to the average equivalent of component (A) epoxy resin is 30% to 80%.
성분 (C)는 지방족 3급 아민 어덕트형 잠재성 경화제를 중량 기준으로 40% 내지 60%를 포함하며, 화학식 1, 화학식 2, 또는 화학식 3으'로 표시되는 이미다졸을 60% 내지 40%를 포함하여 흔합한 흔합물이 될 수 있다. 여기서, 지방족 3급 아민 어덕트형 잠재성 경화제는 경화반웅이 개시되는 온도을 낮춰주는 효과가 있으며, 화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸은 개시된 경화반웅의 속도를 증가시켜 수분 이내 경화 반웅을 완료시킬 수 있어 이들을 흔합 사용하여야 우수한 보관안정성과 함께 속경화성을 동시에 만족시킬 수 있다 . Component (C) comprises 40% to 60% of an aliphatic tertiary amine air duct latent curing agent by weight, formula (1), (2), or an imidazole represented by the formula (3) coming from "60% to 40% It can be a complex mixture, including. Here, the aliphatic tertiary amine adduct type latent curing agent has an effect of lowering the temperature at which the curing reaction is initiated, and the imidazole represented by Formula 1, Formula 2, or Formula 3 increases the rate of the disclosed curing reaction within minutes. The curing reaction can be completed so that the combined use of these can satisfy the fast curing property with excellent storage stability.
성분 (D)는 열가소성 고분자로서 카르복실기가 함유된 폴리비닐아세탈 수지이며, 이를 성분 (A) 100 중량부에 대하여 3 내지 10 중량부로 포함될 수 있다. 본 발명은 또한, 에폭시 수지 조성물을 이용하여 제조한 프리프레그를 제공한다. Component (D) is a polyvinyl acetal resin containing a carboxyl group as a thermoplastic polymer, which may be included in 3 to 10 parts by weight based on 100 parts by weight of component (A). This invention also provides the prepreg manufactured using the epoxy resin composition.
본 발명은 또한, 상기 프리프레그를 140 °C 내지 160 °C의 금형 내에서 2 내지 5 분 동안 프레스 성형하는 섬유강화 복합재의 제조 방법을 제공한다. The invention also provides a method for producing a fiber-reinforced composite material to press molding for 2 to 5 minutes the prepreg in the mold of 140 ° C to 160 ° C.
【발명의 효과】 【Effects of the Invention】
본 발명에 따르면, 에폭시 수지 조성물에서 에폭시 수지 및 경화제, 경화촉제제, 열가소성 수지 등의 성분 및 조성을 최적화함으로써, 상온에서 보관안정성이 우수하고, 대량 생산에 적합하도록 수분 이내에 열경화가 가능하며, 프레스 성형시 수지 흐름성이 조절되어 성형품의 내, 외부에 결함이 발생하지 않는 프리프레그를 제공할 수 있다.  According to the present invention, by optimizing the components and composition of the epoxy resin, the curing agent, the curing agent, the thermoplastic resin, etc. in the epoxy resin composition, excellent storage stability at room temperature, heat curing within a few minutes to be suitable for mass production, press The resin flowability during molding may be adjusted to provide a prepreg in which defects do not occur inside or outside the molded article.
특히, 본 발명의 에폭시 수지 조성물을 사용한 프리프레그는 150 °C의 온도에서 3분 이내 90% 이상 경화되어, 140 °C 이상의 유리전이온도 (Tg)를 나타내며, 상온에서 1개월 이상 점도 및 점착성 (Tacky) 변화가 없는 보관안정성을 가진다. 또한, 10 kgf/cm2의 압력을 적용한 프레스 성형 조건에서도 절한 수지 흐름성을 발휘하여 표면 및 내부의 결함이 발생하지 않고, 성형품 가장자리 부근으로 수지의 블리딩도 최소화시킬 수 있어, 대량 생산에 적합한 프리프레그로 사용할 수 있다. In particular, the prepreg using the epoxy resin composition of the present invention is cured at least 90% within 3 minutes at a temperature of 150 ° C, exhibits a glass transition temperature (T g ) of more than 140 ° C, viscosity and tackiness for 1 month or more at room temperature (Tacky) It has storage stability without change. In addition, even under press molding conditions with a pressure of 10 kgf / cm 2 , it exhibits moderate resin flowability, which does not cause surface and internal defects, and minimizes bleeding of the resin near the edge of the molded product. Can be used as a leg.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 실시예 1에 따라 제조된 탄소섬유 복합재의 중앙부를 절단한 단면에 대한 현미경 사진이다.  1 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Example 1. FIG.
도 2는 비교예 2에 따라 제조된 탄소섬유 복합재의 중앙부를 절단한 단면에 대한 현미경 사진이다.  2 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Comparative Example 2. FIG.
도 3은 비교예 4에 따라 제조된 탄소섬유 복합재의 중앙부를 절단한 단면에 대한 현미경 사진이다.  3 is a photomicrograph of a cross section of a central portion of a carbon fiber composite prepared according to Comparative Example 4. FIG.
도 4는 실시예 1, 비교예 5, 비교예 6에 따라 제조된 프리프레그의 경화도를 측정한 그래프이다 [비교예 6 : 지방족 3급아민 어덕트형 잠재성경화제만 사용한 경우 (Amine adduct ) , 비교예 5 : 이미다졸만 사용한 경우 ( Imidazole) , 실시예 1 : 지방족 3급아민 어덕트형 잠재성경화제과 이미다졸을 흔합한 경우 (Amine adduct + Imi dazole) , TemP : 실제 프리프레그가 열을 받아 승온되는 실제 온도] . 【발명을 실시하기 위한 구체적인 내용】 Figure 4 is a graph measuring the degree of cure of the prepreg prepared according to Example 1, Comparative Example 5, Comparative Example 6 [Comparative Example 6: When using only aliphatic tertiary amine adduct type latent curing agent (Amine adduct), Comparative example 5: using only imidazole Case (Imidazole), Example 1: When an aliphatic tertiary amine adduct latent hardener is mixed with imidazole (Amine adduct + Imi dazole), TemP: the actual temperature at which the actual prepreg is heated to heat. [Specific contents to carry out invention]
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.  In the present invention, terms such as first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" , "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  Also, the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise", "include" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It is to be understood that the present invention does not exclude the possibility of adding or presenting numbers, steps, components, or a combination thereof.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하에서는 본 발명의 바람직한 일 구현예에 따른 에폭시 수지 조성물과 이를 이용한 프리프레그, 및 상기 프리프레그를 이용한 섬유강화 복합재의 제조 방법에 관하여 보다 구체적으로 설명하기로 한다 .  As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Hereinafter will be described in more detail with respect to the epoxy resin composition according to an embodiment of the present invention, a prepreg using the same, and a method for producing a fiber-reinforced composite using the prepreg.
특히, 본 발명은 섬유강화 복합재를 대량 생산하기 위하여, 150 r의 금형을 이용하여 3분간 프레스 성형할 때 경화도가 90% 이상 혹은 91% 이상 바람직하게는 93% 이상 혹은 95% 이상이고, 섬유강화 복합재 성형품의 유리전이온도 (Tg)가 140 °C 이상 혹은 141 °C 이상, 바람직하게는 143 °C 이상 혹은 147 °C 이상이며, 수지 흐름성이 조절되어 성형품 내부 및 외부의 결함이 없는 양호한 품질을 얻을 수 있는 에폭시 수지 조성물 및 이를 이용한 프리프레그 제조 방법에 제공한다. In particular, the present invention, in order to mass-produce fiber-reinforced composite material, the curing degree is 90% or more or 91% or more, preferably 93% or more or 95% or more when press-molded using a 150 r mold for 3 minutes, fiber reinforced The glass transition temperature (T g ) of the composite molded article is at least 140 ° C or at least 141 ° C, preferably at least 143 ° C or at least 147 ° C. It provides to the epoxy resin composition which can obtain favorable quality without an external defect, and the prepreg manufacturing method using the same.
본 발명의 일 구현예에 따르면, 하기의 성분 (A) , (B) , (C) , 및 (D)를 포함하는 에폭시 수지 조성물이 제공된다.  According to one embodiment of the present invention, an epoxy resin composition comprising the following components (A), (B), (C), and (D) is provided.
(A) 이관능성 비스페놀 A형 에폭시 수지와 4관능기를 가진 글리시딜 아민형 에폭시 수지의 흔합물, ' (A) di-functional bisphenol A epoxy resin and 4-glycidyl compounds of dill common amine-type epoxy resin having a functional group, "
(B) 에폭시 수지의 경화제로서 다이시안다이아마이드,  (B) dicyandiamide as a curing agent for epoxy resins,
(C) 경화촉진제로서 지방족 3급 아민 어덕트형 잠재성 경화제와 하기 화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸 화합물의 흔합물, 및  (C) a mixture of an aliphatic tertiary amine adduct type latent curing agent and an imidazole compound represented by the following formula (1), (2) or (3) as a curing accelerator, and
(D) 열가소성 고분자로서 카르복실기 함유 폴리비닐아세탈 (polyvinyl acetal ) 수지 .  (D) Carboxyl group-containing polyvinyl acetal resin as thermoplastic polymer.
[화학식 1]
Figure imgf000009_0001
[Formula 1]
Figure imgf000009_0001
[
Figure imgf000009_0002
[
Figure imgf000009_0002
[화학식 3] [Formula 3]
Figure imgf000009_0003
성분 (A)는 수지 조성물에 반웅성, 접착성을 부여하고, 경화 후의 수지 조성물에 내열성, 강인성, 내약품성 등을 부여한다 .
Figure imgf000009_0003
Component (A) gives semi-astringent, adhesive property to a resin composition, and after hardening It provides heat resistance, toughness, chemical resistance, etc. to a resin composition.
프리프레그에 적용할 수 있는 에폭시 수지로서는, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 바이페닐 에폭시 수지, 노볼락형 에폭시 수지, 나프탈렌형 에폭시 수지, 글리시딜 에스터형 에폭시 수지, 글리시딜 아민형 에폭시 수지, 다사이클로펜타디엔형 에폭시 수지, 지환형 에폭시 수지 등을 들 수 있고, 또는 이들을 변성한 에폭시 수지 등을 들 수 있다. 그 중에서도 2관능기를 가진 비스페놀 A형 에폭시 수지와 3관능기 이상을 가진 노볼락형 에폭시 수지 , 글리시딜 아민형 에폭시 수지를 흔합 사용하는 것이 적합하다. 2관능기의 에폭시 수지만을 사용할 경우 인성이 우수하나 내열성이 낮은 단점이 있고, 3관능기 이상의 에폭시 수지만을 사용할 경우 높은 가교밀도로 인해 내열성은 높아지나, 인성이 낮아지며, 경화시 높은 수축에 의해 변형이 발생할 가능성이 높아진다. 따라서, 이관능성 비스페놀 A형 에폭시와 3관능기 이상의 에폭시 수지를 흔합 사용하는 것이 바람직하며, 3관능기 이상의 에폭시로는 경화속도, 내열성, 점도 등을 고려하여 4관능기를 가진 글리시딜 아민형 에폭시 수지를 사용해야 한다. 본 발명의 에폭시 수지 조성물은 (A) 성분으로 이러한 이관능성 비스페놀 A형 에폭시 수지 (이관능성 BPA형 에폭시 수지 )와 글리시딜 아민형 에폭시 수지의 흔합물을 포함한다.  Examples of the epoxy resin applicable to the prepreg include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl epoxy resins, novolak type epoxy resins, naphthalene type epoxy resins, and glycidyl ester types. Epoxy resin, glycidyl amine type epoxy resin, polycyclopentadiene type epoxy resin, alicyclic epoxy resin, etc. are mentioned, The epoxy resin etc. which modified these are mentioned. Especially, it is suitable to use bisphenol-A epoxy resin which has a bifunctional group, the novolak-type epoxy resin which has a trifunctional group or more, and glycidyl amine type epoxy resin. Epoxy resins of bifunctional group have excellent toughness but low heat resistance, and epoxy resins of more than 3 functional groups have high heat resistance due to high crosslinking density, low toughness, and deformation due to high shrinkage during curing. This is more likely to occur. Therefore, it is preferable to use a bifunctional bisphenol A epoxy and a trifunctional or higher epoxy resin in combination, and the epoxy having a trifunctional or higher functional group is a glycidyl amine epoxy resin having a tetrafunctional group in consideration of the curing rate, heat resistance and viscosity. Should be used. The epoxy resin composition of this invention contains the mixture of such bifunctional bisphenol A epoxy resin (bifunctional BPA type epoxy resin) and glycidyl amine type epoxy resin as (A) component.
성분 (A)는 이관능성 BPA형 에폭시 수지 100 중량부에 대하여 Component (A) is based on 100 parts by weight of the bifunctional BPA epoxy resin.
4관능기 글리시딜 아민형 에폭시 수지 50 내지 100 중량부로 흔합하는 것이 바람직하다. 상기 4관능기 글리시딜 아민형 에폭시 수지의 성분이 50 중량부 미만일 경우 성형된 경화물의 유리전이온도 (Tg)가 낮아져 프레스 성형시 탈형 과정에서 섬유강화복합재의 변형이 발생될 수 있으며, 경화 반웅속도가 느려질 수도 있다. 또한, 상기 4관능기 글리시딜 아민형 에폭시 수지의 성분이 이관능성 BPA형 에폭시 수자 증량을 기준으로 100 중량부를 초과할 경우, 프레스 성형시 수지 '흐름성이 과다하게 증가하고 프리프레그 표면의 점착성 (Tacky)이 과다하게 높아질 수 있다. It is preferable to mix with 50-100 weight part of tetrafunctional glycidyl amine type | mold epoxy resins. When the component of the 4-functional glycidyl amine-type epoxy resin is less than 50 parts by weight, the glass transition temperature (T g ) of the molded cured product is lowered, so that deformation of the fiber-reinforced composite material may occur during the demolding process during press molding. It may be slower. In addition, when the component of the tetrafunctional glycidyl amine-type epoxy resin exceeds 100 parts by weight based on the difunctional BPA-type epoxy resin increase, the resin ' flowability is excessively increased during press molding and the adhesion of the surface of the prepreg ( Tacky) can be excessively high.
여기서, 상기 이관능성 BPA형 에폭시 수지는 당량 및 분자량에 따라 액상, 반고상, 고상 등으로 분류할 수 있는데, 이 중 고상 BPA형 에폭시 수지를 중량 기준 2 내지 30% 이상 흔합 사용하는 것이 프리프레그 제조를 위한 적정 점도 및 점착성 (Tacky) 확보 측면에서 바람직하다. Here, the difunctional BPA-type epoxy resin can be classified into liquid, semi-solid, solid, etc. according to the equivalent weight and molecular weight, of which solid-state BPA-type epoxy The use of the resin in an amount of 2 to 30% or more by weight is preferable in view of ensuring proper viscosity and tackiness for prepreg production.
또한, 4관능성 글리시딜 아민형 에폭시 수지로는 테트라글리시딜 디아미노디페닐 메탄, 테트라글리시딜 디아미노디페닐 에테르, 테트라글리시딜 디아미노디페닐아미드, 테트라글리시딜 크실렌디아민 및 그의 할로겐 치환 생성물, 수소화 생성물 등을 들 수 있으며, 이 중에서 1종 이상을 사용할 수 있다. 이 증, 내열성 및 BPA형 에폭시와의 상용성 측면에서 테트라글리시딜디아미노디페닐 메탄 등이 바람직하다. 예컨대, 테트라글리시딜 디아미노디페닐 메탄 관련하여 상업적으로 입수 가능한 제품의 예는 Sumitomo Chemical의 ELM434, Nippon Steel Chemical Company^ YH434L , Mitsubishi Chemical Corporation의 JER 604, Huntsman Advanced Materials의 Araldite MY9655, MY720 등을 들 수 있다.  Moreover, as tetrafunctional glycidyl amine type epoxy resin, tetraglycidyl diamino diphenyl methane, tetraglycidyl diamino diphenyl ether, tetraglycidyl diamino diphenylamide, tetraglycidyl xylenediamine And halogen substituted products thereof, hydrogenated products thereof, and the like, and one or more thereof can be used. Tetraglycidyldiaminodiphenyl methane and the like are preferable in view of the thickening, heat resistance and compatibility with the BPA type epoxy. Examples of commercially available products relating to tetraglycidyl diaminodiphenyl methane include ELM434 from Sumitomo Chemical, Nippon Steel Chemical Company ^ YH434L, JER 604 from Mitsubishi Chemical Corporation, Araldite MY9655, MY720, etc., from Huntsman Advanced Materials. Can be mentioned.
성분 (B)로서는, 다이시안다이아마이드가 경화제로 사용되며, 이 경우 에폭시 수지 조성물이 우수한 보관안정성을 가지며, 경화된 에폭시 수지 조성물이 높은 내열성을 갖는다. 다이시안다이아마이드의 함량은 성분 (A) 성분의 100 중량부에 대해 3 내지 8 중량부가 될 수 있다. 이는 흔합된 에폭시 수지 (A) 성분의 평균 당량 대비 다이시안다이아마이드의 활성수소 당량 비율이 30% 내지 80%가 되도록 사용하는 것이 될 수 있다. 여기서 상기 다이시안다이아마이드의 함량이 3 중량부 미만 또는 당량 비율이 3 미만일 경우에는, 성분 (A)의 에폭시가 경화반웅에 참여하지 못해 경화물의 내열성 및 기계적 물성이 저하될 우려가 있다. .또한, 상기 다이시안다이아마이드의 함량이 8 중량부를 초과하거나 또는 당량 비율이 '80%를 초과할 경우에는 경화물의 취성이 과다하게 높아져 깨지기 쉽고, 내열성이 저하될 우려가 있다. As the component (B), dicyandiamide is used as a curing agent, in which case the epoxy resin composition has excellent storage stability, and the cured epoxy resin composition has high heat resistance. The content of dicyandiamide may be 3 to 8 parts by weight based on 100 parts by weight of component (A). This can be used so that the ratio of the active hydrogen equivalent of dicyandiamide to the average equivalent of the mixed epoxy resin (A) component is 30% to 80%. Here, when the content of dicyandiamide is less than 3 parts by weight or the equivalent ratio is less than 3, the epoxy of component (A) may not participate in the curing reaction, and thus, the heat resistance and mechanical properties of the cured product may be deteriorated. Further, if the amount of the cyan die die amide exceeds 8 weight parts, or more than equivalent weight ratio is "80%, fragile and easily becomes high as the cured brittle over, there is a fear that the heat resistance decreases.
이러한 다이시안다이아마이드 관련하여 상업적으로 입수 가능한 제품의 예는 Mitusbishi Chemical 의 Dicy— 7 및 Dicy-15, Alzchem의 Dyhard 100S 및 100SF, Air product의 CG1400, CVC Thermoset Specialt ies의 DDA5 등을 들 수 있다.  Examples of commercially available products related to these dicyandiamides include Dicy-7 and Dicy-15 from Mitusbishi Chemical, Dyhard 100S and 100SF from Alzchem, CG1400 from Air product, DDA5 from CVC Thermoset Specialties.
성분 (C)로서는, 지방족 3급 아민 어덕트형 잠재성 경화제와 화학식 1, 화학식 2, 또는 화학식 3의 구조를 가지는 이미다졸을 흔합 사용하여 에폭시 수지와 경화제의 반응을 촉진시키는 경화촉진제로 사용한다 . As the component (C), an aliphatic tertiary amine adduct type latent curing agent and an imidazole having a structure of Formula (1), (2) or (3) are used in combination. Used as a curing accelerator to promote the reaction of epoxy resin and curing agent.
상기 지방족 3급 아민 어덕트형 잠재성 경화제는 3급 아민 화합물 등의 아민 화합물을 에폭시 화합물, 이소시아네이트 화합물 등과 반웅시켜 고분자화한 반응물이며, 이를 미분쇄한 분체 형태가 될 수 있다. 이는 상온에서 에폭시 수지에 용해도가 낮아 잠재성을 나타내지만, 가열시 입자의 표면부터 에폭시 수지와 반웅하여 용해되며 균일한 경화 반웅을 일으키는 것을 특징으로 한다. 상기 지방족 3급 아민 어덕트형 잠재성 경화제는 경화반웅이 개시되는 온도를 낮춰주는 효과가 있어, 100 °C 이상의 온도에서 경화반응이 개시될 수 있도록 경화 촉진제 역할을 하는 반면, 80 °C 이하의 은도에서는 경화반응이 일어나지 않아 높은 보관안정성을 나타낸다. The aliphatic tertiary amine adduct type latent curing agent is a reactant obtained by polymerizing an amine compound, such as a tertiary amine compound, with an epoxy compound, an isocyanate compound, etc., and may be in the form of finely divided powder. It exhibits a low solubility in the epoxy resin at room temperature, but when heated, reacts with the epoxy resin from the surface of the particles to dissolve and causes uniform curing reaction. The aliphatic tertiary amine air duct latent curing agent is cured while it is banung this is the start lowering the temperature at which the effect of the curing accelerator acts to be a curing reaction starts at temperatures above 100 ° C, of less than 80 ° C In silver road, hardening reaction does not occur and shows high storage stability.
아민 화합물로서 이미다졸을 사용한 기존의 이미다졸 어덕트형 잠재성 경화제에 비해, 지방족 3급 아민을 사용한 본 발명의 지방족 3급 아민 어덕트형 잠재성 경화제는 경화 반웅시 발열량이 적고 보관안정성이 우수하며, 수지조성물이 경화되었을 때 그 색상이 상대적으로 투명한 특성이 있다. 특히, 경화 반웅시 발열량이 클 경우 경화물이 열화될 가능성이 있으며, 외관 품질 확보를 위해서는 경화물이 투명한 것이 유리하다. 이러한 외관 품질은 별도의 유색 도장을 하지 않을 경우 사용자의 심미적 측면에서 매우 중요한 특성이라 할 수 있다. 예컨대, 섬유강화복합재를 자동차 등의 외장부품으로 사용하며 별도의 유색 도장을 하지 않을 경우에는 섬유의 직조 형태가 외부로 드러나게 되는데, 수지 조성물이 경화되었을 때 블투명 할 경우에는 표면이 탁하게 또는 뿌옇게 보여 심미적 기능이 현저히 떨어지는 문제가 발생할 수 있다.  Compared with the conventional imidazole adduct type latent curing agent using imidazole as the amine compound, the aliphatic tertiary amine adduct type latent curing agent of the present invention using aliphatic tertiary amine has a low calorific value during curing and excellent storage stability. When the resin composition is cured, its color is relatively transparent. In particular, when the amount of heat generated during curing is large, there is a possibility that the cured product may deteriorate, and in order to secure the appearance quality, the cured product may be transparent. This appearance quality is a very important characteristic in terms of aesthetics of the user, unless a separate color coating. For example, when the fiber reinforced composite material is used as an exterior part such as an automobile, and a separate colored coating is not applied, the woven form of the fiber is exposed to the outside, and when the resin composition is cured, the surface becomes cloudy or cloudy. The problem is that the aesthetic function is significantly degraded.
화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸은 80 °C 이하의 온도에서는 높은 보관안정성을 유지하나, 130 °C 이상의 고온에서는 경화반웅 속도가 매우 빠르며, 경화물의 Tg가 높은 특징이 있다. The imidazole represented by Formula 1, Formula 2, or Formula 3 maintains a high storage stability at temperatures below 80 ° C., but at a high temperature above 130 ° C., the rate of curing reaction is very fast and the T g of the cured product is high. have.
따라서, 지방족 3급 아민 어덕트형 잠재성 경화제 40% 내지 60%와, 화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸 60% 내지 40%를 흔합 사용하는 것이 바람직하다. 바람직하게는 상기 지방족 3급 아민 어덕트형 잠재성 경화제 및 상기 화학식 1, 화학식 2 , 또는 화학식 3으로 표시되는 이미다졸은 각각 4 내지 55%로 흔합하여 사용할 수 있다. Therefore, it is preferable to use 40% to 60% of aliphatic tertiary amine adduct type latent curing agents in combination with 60% to 40% of imidazole represented by the formula (1), (2) or (3). Preferably the aliphatic tertiary amine adduct type latent curing agent and the formula (1), (2) or (3) The imidazole to be displayed can be used in mixture of 4 to 55%, respectively.
지방족 3급 아민 어덕트형 잠재성 경화제만을 경화촉진제로 사용할 경우 경화반웅이 개시되는 온도를 90 내지 120 °C가 되도록 낮춰주는 ' 효과가 있으나, 140 내지 160 °C의 프레스 (Press) 성형 온도에서는 경화 반웅속도가 빠르지 않아 수분내 경화가 불가능하다. 또한, 이미다졸만을 경화축진제로 사용할 경우, 경화 반옹속도를 수분 이내로 빠르게 하는 것이 가능하나, 보관안정성이 매우 저하되어 프리프레그용 수지 조성물로 적용이 불가능하며, 보관안정성이 우수한 이미다졸을 사용할 경우 경화 반웅속도가 느려지는 단점이 있다. 이에 따라, 지방족 3급 아민 어덕트형 잠재성 경화제와 상기 화학식 1, 화학식 2, 또는 화학식 3의 이미다졸을 흔합 사용할 경우, 프레스 (Press) 성형 온도까지 승온되는 과정에서 지방족 3급 아민 어덕트형 잠재성 경화제의 효과로 경화반웅이 개시되며, 프레스 (Press) 성형 온도에 도달한 후에는 상기 화학식 1, 화학식 2, 또는 화학식 3의 이미다졸에 따른 효과에 의해 급격한 경화반응이 진행, 완료됨으로써 보관안정성과 속경화성을 동시에 만족시키는 것이 가능하다 . 상기 지방족 3급 아민 어덕트형 잠재성 경화제는 전술^ t 바와 같이, 지방족 3급 아민 화합물과 에폭시 화합물 또는 이소시아네이트 화합물을 반웅시켜 제조된 것일 수 있다. 예컨대, 이러한 지방족 3급 아민 어덕트형 잠재성 경화제에 사용되는 지방족 3급 아민으로는 디에틸렌트리아민, 트리에틸렌테트라민, n—프로필아민, 2-히드록시에틸아미노프로필아민, 시클로핵실아민, 4,4 ' -디아미노 -디시클로핵실메탄 등을 들 수 있으며, 에폭시 화합물로서는 1 , 2-에폭시부탄, 1 , 2-에폭시핵산, 1, 2-에폭시옥탄, 스티렌옥시드, n-부틸글리시딜에테르, 핵실글리시딜에테르, 페닐글리시딜에테르, 글리시딜아세테이트 등을 들 수 있다. 이러한 지방족 3급 아민 어덕트 잠재성 경화제의 시판품으로서는, 아지노모토파인테크노제 아민어덕트계 잠재성 경화제 (품명: 아미큐어 MY-24 , MY-H) , T&K TOKA제 잠재성 경화제 (품명: 후지큐어 FXR-1020 , FXR-1030) 등을 들 수 있고, 이 중에서 1 종 이상을 사용할 수 있다. Press (Press) molding temperature of the aliphatic tertiary amine air duct latent if only a curing agent to cure accelerator lowers so that from 90 to 120 ° C the temperature at which the curing banung disclosure, but the effect, 140 to 160 ° C in the Curing reaction speed is not fast so curing in moisture is impossible. In addition, when only imidazole is used as a curing accelerator, it is possible to speed up the curing reaction speed within a few minutes. However, the storage stability is very low, so it is impossible to apply the resin composition for prepreg. The reaction speed is slowed down. Accordingly, when the aliphatic tertiary amine adduct type latent curing agent and the imidazole of Formula 1, Formula 2, or Formula 3 are used in combination, the aliphatic tertiary amine adduct type in the process of raising the temperature to the press molding temperature The curing reaction is initiated by the effect of the latent curing agent, and after reaching the press molding temperature, the rapid curing reaction proceeds and is completed by the effect according to the imidazole of Formula 1, Formula 2, or Formula 3 and stored. It is possible to satisfy both stability and fast curing. The aliphatic tertiary amine adduct type latent curing agent may be prepared by reacting an aliphatic tertiary amine compound with an epoxy compound or an isocyanate compound as described above. For example, aliphatic tertiary amines used in such aliphatic tertiary amine adduct type latent curing agents include diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclonuxylamine, And 4,4'-diamino-dicyclonucleomethane and the like, and examples of the epoxy compound include 1, 2-epoxybutane, 1, 2-epoxynucleic acid, 1, 2-epoxyoctane, styrene oxide and n -butylglycol. Cylyl ether, nucleosilglycidyl ether, phenylglycidyl ether, glycidyl acetate and the like. As a commercial item of such an aliphatic tertiary amine adduct latent hardener, the amine adduct type latent hardener made by Ajinomoto Fine Techno Co., Ltd. (trade name: Amicure MY-24, MY-H), a latent hardener made by T & K TOKA (brand name: Fujicure FXR-1020, FXR-1030) etc. can be mentioned, Among these, 1 or more types can be used.
또한, 지방족 3급 아민 어덕트형 잠재성 경화제와 함께 경화촉진제로 사용되는 이미다졸로서는 상기 화학식 1의 4ᅳ히드록시메틸 -5-메틸 -2- 페닐이미다졸 (4-hydroxymethyl-5-methyl-2-phenyl imidazole, 2P4MHZ) 및 상기 화학식 2의 2,4-디아미노-6-[2'-메틸이미다졸리-(1')]-에틸-3_ 트리아진 이소시아누릭 에시드 어덕트 디하이드레이트 (2,4-diamino_6-[2'- methylimidazol iᅳ (Γ )]_ethylᅳ sᅳ triazine isocyanur ic adic adduct dehydrate, 2MA-0K) , 상기 화학식 3의 2-페닐 -4 ,5-디히드톡시메틸이미다졸 (2-phenyl-4,5-dihydroxymethyl imidazole, 2PHZ)가 경화속도, 보관안정성의 측면에서 바람직하다. 이들의 시판품으로서는 시코쿠 화성의 2PHZ, 2P4MHZ, 2MA-0K등을 들 수 있다. In addition, the imidazole used as a curing accelerator together with an aliphatic tertiary amine adduct type latent curing agent is 4'hydroxymethyl-5-methyl-2- Phenylimidazole (4-hydroxymethyl-5-methyl-2-phenyl imidazole, 2P4MHZ) and 2,4-diamino-6- [2'-methylimidazoli- (1 ')]-ethyl -3_ triazine isocyanuric acid adduct dihydrate (2,4-diamino_6- [2'-methylimidazol i ᅳ (Γ)] _ ethyl ᅳ s ᅳ triazine isocyanuric adic adduct dehydrate, 2MA-0K), Formula 3 2-phenyl-4,5-dihydroxymethyl imidazole of (2-phenyl-4,5-dihydroxymethyl imidazole, 2PHZ) is preferable in terms of curing rate and storage stability. As these commercial items, 2PHZ, 2P4MHZ, 2MA-0K, etc. of Shikoku Chemicals are mentioned.
본 발명은 성분' (C)으로서 지방족 3급 아민 어덕트형 잠재성 경화제와 화학식 1, 화학식 2, 또는 화학식 3의 구조를 가지는 이미다졸을 흔합 사용함으로써, 반웅속도를 빠르게 하여 프리프레그 성형공정 시간을 단축시킴과 동시에 상온 보관 안정성을 현저히 향상시켜 대량 생산 공정이 효과적으로 이뤄지도록 하는 특징이 있다. 이는 기존에 알려진 우레아 (Urea)계 또는 이미다 류(1^(132016; 2MI , 2E4MI , 2P4MI, 2PI 등등) 경화촉진제를 단독으로 사용하거나 황원자를 갖는 에폭시를 갖는 화합물을 단독 사용할 때, 상온 보관 안정성이 현저히 떨어지는 문제점을 명확히 해결할 수 있는 것이다.  The present invention is a component '(C) by using a mixture of an aliphatic tertiary amine adduct type latent curing agent and imidazole having a structure of Formula 1, Formula 2, or Formula 3, to increase the reaction speed and the prepreg molding process time At the same time, the stability of the room temperature is significantly improved, and the mass production process is effectively performed. This is because the urea-based or imida (1 ^ (132016; 2MI, 2E4MI, 2P4MI, 2PI, etc.) curing accelerators known in the related art are used alone or at room temperature storage stability when using a compound having a sulfur atom epoxy alone. This remarkably falling problem can be clearly solved.
성분 (D)로서는 에폭시 수지에 용해될 수 있는 수소결합 관능기를 갖는 열가소성 고분자가 사용된다. 상기 열가소성 고분자는 에폭시 수지에 용해될 수 있으며, 수지와 강화섬유 사이의 계면 접착을 개선하여 섬유강화 복합재료의 강인성 및 기계적 물성을 증가 시킨다. 또한, 프레스 성형시 고온 고압에서 수지의 흐름성을 :절한다.  As the component (D), a thermoplastic polymer having a hydrogen bond functional group that can be dissolved in an epoxy resin is used. The thermoplastic polymer may be dissolved in an epoxy resin, thereby improving the interfacial adhesion between the resin and the reinforcing fiber, thereby increasing the toughness and mechanical properties of the fiber reinforced composite material. In addition, the flowability of the resin at high temperature and high pressure during press molding is reduced.
수소결합 관능기를 갖는 열가소성 고분자는 하이드록시기 또는 아미드기, 설포닐 기를 갖는 것 등이 있다. 하이드록시기를 갖는 열가소성 수지의 예는 폴리비닐 아세탈 수지, 예컨대 폴리비닐 포르말 및 폴리비닐 부티랄, 폴리비닐 알콜 및 페녹시 수지를 포함한다. 아미드 결합을 갖는 열가소성 수지의 예는 폴리아미드, 폴리이미드 및 폴리비닐 피를리돈을 포함한다. 술포닐 기를 갖는 열가소성 수지의 예는 폴리술폰이다. 폴리아미드, 폴리이미드 및 폴리술폰은 그의 주쇄에 관능기, 예컨대 에테르 결합 및 카르보닐 기를 가질 수 있다. 폴리아미드는 아미드 기의 질소 원자 상에 치환기를 가질 수 있다 . Thermoplastic polymers having a hydrogen bond functional group include those having a hydroxyl group, an amide group, and a sulfonyl group. Examples of thermoplastic resins having hydroxyl groups include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol and phenoxy resins. Examples of thermoplastic resins having amide bonds include polyamides, polyimides and polyvinyl pyridones. An example of a thermoplastic resin having sulfonyl groups is polysulfone. Polyamides, polyimides and polysulfones may have functional groups such as ether bonds and carbonyl groups in their backbone. Polyamide is the nitrogen atom of the amide group It may have a substituent on the phase.
에폭시 수지에 용해될 수 있는 수소 결합 관능기를 갖는 열가소성 수지의 상업적으로 입수 가능한 제품의 예는 폴리비닐 아세탈 수지인 An example of a commercially available product of a thermoplastic resin having a hydrogen bonding functional group that can be dissolved in an epoxy resin is polyvinyl acetal resin.
"DenkaButyral" 및 "DenkaFormal" (DENKA Kogyo Kabushiki Kaisha 제조) 및 "Vinylec" (JNC Corporation 제조), 페녹시 수지인 "UCAR PKHP" (Union Carbide Corporation 제조), 폴리아미드 수지인 "Macromelt" (Henkel- Hakusui Corporation) 및 "Ami lan CM4000" (Tor ay Industries Inc. 제조), ' 폴리이미드인 "Ultem" (General Electric Co. , Ltd. 제조) 및 "Matrimid 5218" (Ciba Inc. 제조); 폴리술폰인 "Sumikaexcel " (Sumitomo Chemical Co. , Ltd. ) 및 "UDEL" (Solvay Advanced Polymers Kabushiki Kaisha 제조) 및 폴리비닐피를리돈인 "Luviskol" (BASF Ltd.) 제조)을 포함한다. "DenkaButyral" and "DenkaFormal" (manufactured by DENKA Kogyo Kabushiki Kaisha) and "Vinylec" (manufactured by JNC Corporation), "UCAR PKHP" (manufactured by Union Carbide Corporation), phenoxy resin, "Macromelt" (Henkel-Hakusui) Corporation) and "Ami lan CM4000" (Tor ay Industries Inc., Ltd.), "the polyimide of" Ultem "(General Electric Co., Ltd., Ltd.) and" Matrimid 5218 "(Ciba Inc., Ltd.); Polysulfones "Sumikaexcel" (Sumitomo Chemical Co., Ltd.) and "UDEL" (Solvay Advanced Polymers Kabushiki Kaisha) and polyvinylpyridone "Luviskol" (BASF Ltd.).
또한, 이러한 수소결합 관능기 외 카르복실기가 함유되어 있을 경우 에폭시 수지와의 상용성이 높아져 더욱 높은 함량을 에폭시 수지에 용해시키는 것이 가능하다.  In addition, when such a hydrogen bond functional group and other carboxyl groups are contained, compatibility with the epoxy resin is increased, so that a higher content can be dissolved in the epoxy resin.
이 때문에, 하이드록시기를 가지는 폴리비닐아세탈 수지 중에 특히 카르복실기를 함유한 그레이드가 바람직하고, 이를 성분 (A) 100 중량부에 대하여 3 내지 10 중량부로 포함하는 것이 바람직하다. 상기 성분 (D)의 열가소성 고분자는 프레스 성형시 수지 흐름성을 조절하며, 함량이 3 중량부 미만일 경우 수지 흐름성을 감소시키는 효과가 없어져, 프레스 성형시 표면의 섬유의 직진성이 흐트러지며 가장자리 부근으로 수지와 블리딩 (Bleeding)이 과다하게 될 수 있다. 또한, 성형품 내부에서도 수지가 경화되기 전 수지가 급격하게 빠져나게 보이드 (void)를 생성시킬 수 있다. 상기 (D) 성분의 함량이 10 중량부를 초과하여 포함될 경우 수지의 흐름성이 매우 적어져 프레스 성형시 내부의 보이드가 층분히 제거되지 못하며, 에폭시 수지에 용해시켰을 경우 점도가 매우 높아져 프리프레그 제조가 어려워질 수 있다.  For this reason, the grade containing a carboxyl group is especially preferable in the polyvinyl acetal resin which has a hydroxyl group, and it is preferable to contain this at 3-10 weight part with respect to 100 weight part of component (A). The thermoplastic polymer of the component (D) controls the resin flowability during press molding, and when the content is less than 3 parts by weight, there is no effect of reducing the resin flowability, and the straightness of the fibers on the surface during the press molding is disturbed and near the edges. Resin and bleeding may become excessive. In addition, even inside the molded article, it is possible to generate voids so that the resin is rapidly pulled out before the resin is cured. When the content of the component (D) is included in excess of 10 parts by weight, the flowability of the resin is very small, and voids are not removed sufficiently during press molding, and when dissolved in an epoxy resin, the viscosity becomes very high, and thus prepreg production is performed. It can be difficult.
본 발명의 에폭시 수지 조성물은, 브룩필드 점도계 (예컨대, CAP- 2000)를 사용하여 80 °C 에서 정한 점도가 15,000 내지 30,000 cps 흑은 18,000 내지 28,000 cps가 될 수 있으며, 핫멜트 방식의 프리프레그 제조에 적합한 점도 범위가 될 수 있다. 또한, 상기 에폭시 수지 조성물은 40 °C의 항온 조건 하에서 장시간 보관하였을 때, 30일 이상 혹은 40일 이상이 경과하여도 초기 점도의 2배 이하로 점도가 유지되며 우수한 보관안정성을 나타낼 수 있다. Epoxy resin composition of the present invention, using a Brookfield viscometer (e.g., CAP-2000), the viscosity set at 80 ° C. can be 15,000 to 30,000 cps black silver 18,000 to 28,000 cps, to prepare a hot melt prepreg Suitable viscosity ranges can be. In addition, the epoxy resin composition is 40 ° C. When stored for a long time under constant temperature conditions, even if more than 30 days or more than 40 days elapses, the viscosity is maintained at less than twice the initial viscosity and can exhibit excellent storage stability.
한편, 본 발명의 에폭시 수지 조성물은, 용제를 사용하지 않는 핫멜트 방식의 프리프레그 제조를 위한 매트릭스 수지로 사용되며, 아래 방법으로 제조한다.  On the other hand, the epoxy resin composition of the present invention is used as a matrix resin for the production of hot melt prepreg without a solvent, it is prepared by the following method.
먼저, 성분 (A) , 성분 (B) , 성분 (E)를 용기에 투입하고, 80 °C 내지 180 °C의 온도에서 수시간 교반하여 성분 (E)가 에폭시 수지에 용해된 베이스 레진을 제조한다. 베이스 레진을 60 °C 내지 90 °C로 냉각한 후, 성분 (C) , 성분 (D)를 성분 (A) 일부에 분산시킨 경화제 페이스트와 함께 교반한다. 이러한 방법으로 보관안정성이 우수한 에폭시 수지 조성물을 얻을 수 있다. 한편, 본 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 에폭시 수지 조성물을 이용하여 제조한 프리프레그가 제공된다. First, component (A), component (B), and component (E) were put into a container, and stirred for several hours at a temperature of 80 ° C to 180 ° C to prepare a base resin in which component (E) was dissolved in an epoxy resin. do. After the base resin is cooled to 60 ° C. to 90 ° C., the components (C) and (D) are stirred together with the curing agent paste in which a part of the component (A) is dispersed. In this way, an epoxy resin composition having excellent storage stability can be obtained. On the other hand, according to another embodiment of the present invention, there is provided a prepreg prepared using the epoxy resin composition as described above.
일반적으로 프리프레그는 에폭시 수지 조성물에 강화섬유를 함침시킴으로서 얻을 수 있으며, 이를 함침시키는 방법으로는 건식 방법 (핫멜트 방법 ) 및 습식 방법 (용액 방법 )이 있다. 습식 방법은 에폭시 수지 조성물을 케톤 또는 알코올 류의 용제에 용해시킨 에폭시 수지 조성물 용액에 강화섬유를 침지시키고, 이어서 건조로를 통과시켜 용제를 제거하여 프리프레그를 제조하는 방법이다. ' In general, the prepreg can be obtained by impregnating the reinforcing fibers in the epoxy resin composition, and methods of impregnating the prepreg include a dry method (hot melt method) and a wet method (solution method). The wet method is a method in which a prepreg is prepared by immersing reinforcing fibers in an epoxy resin composition solution in which an epoxy resin composition is dissolved in a ketone or alcohol solvent, and then passing through a drying furnace to remove the solvent. '
특히, 본 발명의 프리프레그는 상기 에폭시 수지 조성물을 사용하여 건식 방법인 핫멜트 방법을 적용하여 제조할 수 있으며, 핫멜트 방법의 일례는 아래와 같이 들 수 있다.  In particular, the prepreg of the present invention can be produced by applying a hot melt method, which is a dry method, using the epoxy resin composition, and an example of the hot melt method may be mentioned as follows.
먼저, 에폭시 수지 조성물을 유동성이 확보되도록 60 °C 내지 100 °C 정도의 온도로 가열하여 점도를 저하시킨 후 이형지 위에 계산된 두께로 코팅하여 수지 필름을 제조하고, 이 필름과 평평한 형상으로 펼친 강화섬유를 열과 압력으로 합지 또는 라미네이팅 함으로써 강화섬유를 수지로 함침시키는 방법이다. 핫멜트 방법은 잔류 용제가 포함되지 않는 프리프레그를 제조할 수 있는 장점이 있다. 수지 필름을 제조하기 위한 코팅방법으로는 콤마코팅, 롤코팅, 슬롯다이 코팅 등을 사용할 수 있다. First, a coating with a thickness calculated over then heated to a temperature of about 60 ° C to 100 ° C an epoxy resin composition so that fluidity is secured lower the viscosity the release paper to prepare a resin film, reinforced expanded into a film with a flat shape A method of impregnating a reinforcing fiber with a resin by laminating or laminating the fiber with heat and pressure. Hot-melt method has the advantage that can be prepared prepreg containing no residual solvent. For manufacturing resin film As the coating method, comma coating, roll coating, slot die coating, or the like can be used.
본 발명의 강화 섬유에는 특별한 제한은 없고, 탄소섬유, 흑연 섬유, 유리섬유, 고분자 섬유, 등을 토우 (Tow) , 직물 (Fabr i c)등의 연속섬유, 단 /장섬유 (Chopped Fiber ) , 매트 등의 형태로 사용할 수 있다. 특히 탄소섬유나 혹연 섬유는 비강도와 비탄성률이 우수하여 섬유강화 복합재료의 경량화 특성을 나타낼 수 있으므로 사용이 바람직하다 .  There is no particular limitation on the reinforcing fibers of the present invention, carbon fibers, graphite fibers, glass fibers, polymer fibers, such as tow (Tow), continuous fibers such as fabric (Fabr ic), chopped / long fibers (Chopped Fiber), mat It can be used in the form of. In particular, carbon fibers or abrasion fibers are preferred because they exhibit excellent specific strength and inelasticity, which can result in light weight properties of fiber-reinforced composites.
탄소섬유를 사용하는 경우, 프리프레그 중 단위면적 당 섬유함량 (FAW, Fiber Areal Weight )는 50 내지 300 g/m2이 적당하다. FAW가 50 g/ra2 미만일 경우, 원하는 두께의 성형품을 제조하기 위해서는 프리프레그 적층 수가 늘어나기 때문에 작업 시간 및 비용이 증가하게 된다. FAW가 300 g/m2 이상일 경우 프리프레그의 드레이프성이 나빠져 곡면을 포함한 복잡한 형상의 성형품 제조에는 부적합할 수 있고, 프리프레그 단면의 두께가 증가하여 완전한 함침이 어려워질 가능성이 있다. 프리프레그 중 수지 함량 (RC , Res in Content )는 25% 내지 35%가 적당하다. RC가 25% 미만일 경우 프리프레그 제조시 강화섬유가 수지 중에 완전히 함침되지 않고 내부에 공극 (void)가 남아있을 가능성이 있다. 또한, 성형 후 표면에 섬유가 노출되어 우수한 표면품질 확보가 어려워진다. RC가 35% 이상일 경우 상대적으로 섬유 함량이 낮아져 비강도 및 비탄성률 등의 기계적 강도가 저하되는 단점이 있고, 프레스 성형 시 과량 포함된 수지의 흐름이 많아져 섬유의 배열을 흐트러뜨리거나 성형품 가장자리 부근으로 수지가 새어나오는 등의 문제가 발생할 수 있다. When using carbon fiber, the fiber content (FAW, Fiber Areal Weight) per unit area of the prepreg is suitable from 50 to 300 g / m 2 . If the FAW is less than 50 g / ra 2 , the work time and cost increase because the number of prepreg stacks is increased to produce molded articles of desired thickness. If the FAW is 300 g / m 2 or more, the drape of the prepreg may be deteriorated, which may be unsuitable for the manufacture of a molded article having a complex shape including a curved surface, and the thickness of the prepreg cross section may increase, making it difficult to impregnate completely. The resin content (RC, Res in Content) in the prepreg is suitable from 25% to 35%. If the RC is less than 25%, there is a possibility that the reinforcing fibers are not completely impregnated in the resin and voids remain in the prepreg production. In addition, the fiber is exposed to the surface after molding, it is difficult to ensure excellent surface quality. When RC is more than 35%, the fiber content is relatively low, which lowers the mechanical strength such as specific strength and inelasticity.In addition, the excess resin flows during press molding, which disturbs the arrangement of fibers and near the edge of the molded product. This may cause problems such as resin leaking out.
또한, 본 발명의 에폭시 조성물을 이용하여 제조한 프리프레그에 대한 수지흐름성은 \2 이내 혹은 5% 내 12% , 바람직하게는 11% 이내 흑은 6% 내지 11%, 또는 10% 이내 혹은 Ί 내지 10%를 나타내어, 외관상 섬유의 흐트러짐과 가장자리로의 수지 번짐 (bleeding)이 적은 양호한 상태를 유지할 수 있다. 일반적으로 프레스 성형은 높은 압력으로 프리프레그를 누르는 것으로, 이러한 프리프레그의 수지흐름성이 12%를 초과하여 높을 경우에는 압력에 의해 섬유의 직진성이 흐트러져 기계적 물성을 저하시키며, 제품 가장자리 부근으로 수지 및 섬유가 함께 빠져나가 (Bl eeding) 원하는 제품 두께를 얻을 수 없고, 제품 가장자리의 가공 (Tr imming)이 추가로 필요하게 되는 등 많은 문제를 야기할 수 있다. 다만, 제품 내부에 공극 (Void)을 층분히 제거할 수 있도록 하는 측면에서 6% 이상이 좋을 수도 있다. In addition, the resin flow to the prepreg prepared using the epoxy composition of the present invention within 12%, preferably within 11% within 5% or less than 6% to 11%, or less than 10% or less than 10% 10% can be exhibited, and it can maintain a favorable state with the appearance that the fiber is not disturbed and resin bleeding to an edge. In general, press molding presses the prepreg at a high pressure. When the resin flow rate of the prepreg is higher than 12%, the straightness of the fiber is disturbed due to the pressure, and the mechanical properties are reduced. The fibers are pulled together (Bl eeding) and the desired product thickness cannot be achieved. This can cause many problems, such as the need for further trimming. However, more than 6% may be good in terms of removing voids inside the product.
이러한 수지흐름성은 통상의 프레스 성형 조건 하에서 초기 무게 (Wi )와 프레스 성형후 무게 (Wf )를 측정하여, 하기 계산식 1에 따라 산측하여 도출할 수 있다. Such resin flowability can be derived by measuring the initial weight Wi and the post-molding weight W f under normal press molding conditions, and calculating it according to the following formula (1).
[계산식 1]  [Calculation 1]
수지흐름성 (%) = [ (W, - Wf ) / Wi ] x 100 Resin Flowability (%) = [(W,-W f ) / Wi] x 100
상기 계산식 1에서,  In the above formula 1,
Wi는 프레스 성형 가공하기 전에 300mm x 300隱 크기를 갖는 프리프레그를 4층 적층하고 측정한 초기 무게 (Wi )를 나타낸 것이고,  Wi shows the initial weight (Wi) measured by laminating four layers of prepregs having a size of 300 mm x 300 mm before press forming.
Wf는 평관 금형을 사용하여 온도 150 °C , 압력 10 kgf/cm2의 조건에서 3분간 프레스 성형하여 탄소섬유강화 복합재를 제작하고, 탄소섬유 복합재의 가장자리에 빠져 나은 수지 경화물을 제거한 후, 상기 초기 무게 (Wi )를 측정시와 동일한 크기로 가공하여 측정한 무게 (wf )를 나타낸 것이다. W f is press-molded for 3 minutes at a temperature of 150 ° C and pressure of 10 kgf / cm 2 using a flat tube mold to produce a carbon fiber-reinforced composite. It shows the measured weight (w f ) by processing the initial weight (Wi) to the same size as the measurement.
상기 '프리프레그에 대하여 미국재료시험학회 ASTM D 3532의 방법에 따라 프레스 성형 온도 150 °C의 조건 하에서 측정한 겔타임 (Gel t ime)은 약 75초 이내 흑은 약 30초 내지 약 75초, 바람직하게는 약 63 초 이내 흑은 약 30초 내지 약 63초, 좀더 바람직하게는 약 53초 혹은 약 30초 내지 약 53초가 될 수 있다. 여기서, 겔타임 (Gel t ime)은 수지의 유동이 급격히 감소하고 경화반웅이 급격히 진행되기까지의 시간, 즉, 경화반웅이 진행되어 수지의 보관 모들러스 (Storage modulus)가 손실 모들러스 (Loss modulus)보다 커지기까지 걸리는 시간을 의미한다. 본 발명의 에폭시 조성물을 이용하여 제조한 프리프레그는 기존에 비해 현저히 짧은 겔타임을 나타낼 수 있으며, 이로써 일정시간내 경화도가 높고, 반웅속도가 빨라 대량생산에 적합할 수 있도록 짧은 시간내 성형이 가능할 수 있다. 한편, 본 발명의 또다른 일 구현예에 따르면, 상술한 바와 같은 프리프레그를 사용하여 섬유강화 복합재를 제조하는 방법이 제공된다. 본 발명에서 프리프레그를 사용하여 부품을 제조하는 방법으로는 기존의 오토클레이브 (Autoclave) , 진공백 (Vacuum bag) , 프레스 (Press) 성형 등 어느 종류의 성형법에도 적용할 수 있지만, 특히 프레스 성형을 통해 생산성이 높고 표면품질이 우수한 섬유강화 복합재를 제조하는 것이 가능하다. The 'gel time (Gel t ime) measured under conditions of a press-molding temperature of 150 ° C in accordance with the American Society for Testing and Materials method ASTM D 3532 with respect to the prepreg is from about 75 seconds within black is from about 30 seconds to about 75 seconds, Preferably, within about 63 seconds, the black may be about 30 seconds to about 63 seconds, more preferably about 53 seconds or about 30 seconds to about 53 seconds. Here, the gel time (Gel t ime) is the time until the flow of the resin decreases rapidly and the curing reaction proceeds rapidly, that is, the storage modulus of the resin is lost due to the progress of the curing reaction. It means the time it takes to get bigger than). The prepreg prepared using the epoxy composition of the present invention may exhibit a significantly shorter gel time than the conventional one, and thus may be molded in a short time to be suitable for mass production due to a high degree of curing in a certain time and a fast reaction speed. Can be. On the other hand, according to another embodiment of the present invention, there is provided a method for producing a fiber-reinforced composite using the prepreg as described above. In the present invention, a method of manufacturing a part using a prepreg may be applied to any type of molding method such as an existing autoclave, vacuum bag, press molding, but in particular press molding. Through this, it is possible to manufacture a fiber reinforced composite having high productivity and excellent surface quality.
특히, 본 발명은 상기 에폭시 수지 조성물을 이용하여 프리프레그를 제조하고, 이를 140 내지 160 °C의 온도의 금형 내에서 2 내지 5 분 동안 프레스 성형하여 제조할 수 있으며, 이 때 압력 조건은 5 내지 10 kgf/cm2으로 적용할 수 있다. In particular, the present invention may be prepared by preparing a prepreg using the epoxy resin composition, and press-molded it for 2 to 5 minutes in a mold at a temperature of 140 to 160 ° C, wherein the pressure conditions are 5 to 10 kgf / cm 2 can be applied.
섬유강화 복합재의 유리전이 온도가 프레스 성형 온도 또는 금형 내의 온도보다 20 °C 이상 낮을 경우, 성형된 섬유강화 복합재를 금형으로부터 꺼낼 때 부품이 휘어지거나 변형되는 불량이 발생할 수 있으므로, 150 °C에서 프레스 성형할 경우 유리전이 온도는 130 °C 이상 되어야 한다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1~4 When the glass fiber-reinforced composite transition low temperature press molding temperature, or more than 20 ° C than the temperature in the mold to remove a molded fiber-reinforced composite material from the mold, so components can result in failure to be bent or deformed, pressed at 150 ° C When forming, the glass transition temperature should be at least 130 ° C. Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples. Examples 1-4
하기 표 1에 나타낸 바와 같은 배합 비율로 에폭시 수지 조성물을 제조하였다.  An epoxy resin composition was prepared at a blending ratio as shown in Table 1 below.
먼저, (A) 성분 중 에폭시 수지와 (D) 성분의 열가소성 수지를 계량하여 유리 플라스크에 투입하고, 150 °C 에서 2 시간 이상 교반하여 (D) 성분의 열가소성 수지를 완전히 용해시킨 베이스 레진을 제조하였다. 한편으로는 (A) 성분 중 액상 비스페놀 A형 에폭시 수지인 EP0N 828 12phr과 (B) , (C) 성분을 계량하고 흔합한 후, 3 Rol l Mi 11을 통해 균일하게 분산시켜 경화제 페이스트를 제조하였다. 상기 .베이스 레진과 경화제 페이스트는 약 80 °C의 온도에서 흔합하여 에폭시 수지 조성물을 제조하였다. 이렇게 제조된 에폭시 수지 조성물은 콤마 코터를 이용해 수지 평량First, the epoxy resin in the component (A) and the thermoplastic resin of the component (D) were weighed and introduced into a glass flask, followed by stirring at 150 ° C. for 2 hours or more to prepare a base resin in which the thermoplastic resin of the component (D) was completely dissolved. It was. On the other hand, 12 phr of EP0N 828, a liquid bisphenol A epoxy resin, and (B) and (C) in the component (A) were weighed and mixed, and then uniformly dispersed through 3 Rol l Mi 11 to prepare a curing agent paste. . The base resin and the hardener paste were mixed at a temperature of about 80 ° C. to prepare an epoxy resin composition. The epoxy resin composition thus prepared is resin basis weight using a comma coater.
107 g/m2이 되도록 코팅하여 균일한 레진 필름을 제조하였다. By coating so that the 107 g / m 2 to prepare a uniform resin film.
이후 미쓰비시 레이온사의 일방향 탄소섬유 TR-50S와 위에서 제조한 레진 필름을 80 내지 100 °C의 온도, 1 내지 5 kgf/cm2의 압력으로 합지하여 FAW 250 g/m2 , 수지함량 RC 30%인 프리프레그를 제조하였다. Since Mitsubishi Rayon's one-way carbon fiber TR-50S and the resin film prepared above were laminated at a temperature of 80 to 100 ° C, a pressure of 1 to 5 kgf / cm 2 FAW 250 g / m 2 , the resin content RC 30% Prepregs were prepared.
제조된 프리프레그는 300議 X 300腿로 재단한 후, 프리프레그를 섬유의 방향대로 교차 적층하여, 적층각도 [0/90/0/90/0]의 적층 순서로 5장을 적층한 후 평판 금형에 놓고, 온도 150 T:, 압력 10 kgf/cm2의 조건에서 3 분간 프레스 성형하여 탄소섬유강화 복합재를 제작하였다. The prepared prepreg is cut at 300 議 X 300 腿, cross-prepreg is laminated in the direction of the fiber, and 5 sheets are laminated in the order of lamination angle [0/90/0/90/0]. The resultant was placed in a mold and press-molded for 3 minutes under conditions of a temperature of 150 T and a pressure of 10 kgf / cm 2 to prepare a carbon fiber reinforced composite.
[표 1] TABLE 1
Figure imgf000020_0001
( 10-2) Imidazole (화학식 2) - - - 2
Figure imgf000020_0001
(10-2) Imidazole (Formula 2)---2
(11) Poly vinyl formal - - 3 - (11) Poly vinyl formal--3-
(D)성분 ( 12) Poly vinyl acetal 3 3 - - 3 (D) Component (12) Poly vinyl acetal 3 3--3
(13) Phenoxy - - - -  (13) Phenoxy----
(1) Hex ion, EPON 828, EEW 185-192 (1) Hex ion, EPON 828, EEW 185-192
(2) Hex ion, EPON 1001, EEW 525-550  (2) Hex ion, EPON 1001, EEW 525-550
(3) Hex ion, EPON 1004, EEW 800-950  (3) Hex ion, EPON 1004, EEW 800-950
(4) Huntsman, MY720, EEW 117-134  (4) Huntsman, MY720, EEW 117-134
(5) dicyandi amide, Air product , CG1400  (5) dicyandi amide, Air product, CG1400
(6) di chlorophenyl dimethyl urea , Lanxess , Diuron  (6) dichlorophenyl dimethyl urea, Lanxess, Diuron
(7) toluene bi s dimethyl urea, Alzchem, UR500  (7) toluene bi s dimethyl urea, Alzchem, UR500
(8) Modi f ied amine adduct , Aj i nomoto PN-23  (8) Modi f ied amine adduct, Aj i nomoto PN-23
(9) Modi f ied amine adduct , T&K Toka, FXR-1030  (9) Modi f ied amine adduct, T & K Toka, FXR-1030
( 10-1) Imidazole, Shikoku, 2P4MHZ-PW (10-1) Imidazole, Shikoku, 2P4MHZ-PW
( 10-2) Imidazole, Shikoku, 2MA-0  (10-2) Imidazole, Shikoku, 2MA-0
( 11) polyvinyl formal , JNC, PVF-E  (11) polyvinyl formal, JNC, PVF-E
(12) polyvinyl acetal , Seki sui , S-23Z  (12) polyvinyl acetal, Seki sui, S-23Z
(13) Phenoxy speci al ty, PKHP 비교예 1~7  (13) Phenoxy speci al ty, PKHP Comparative Examples 1-7
하기 표 2에 나타낸 바와 같이 각 성분 및 배합 비율을 달리한 것으로 제외하고는 실시예 1~4와 동일한 방법으로 에폭시 수지 조성물을 제조하고, 이를 이용하여 프리프레그 및 탄소섬유강화 복합재를 제작하였다.  As shown in Table 2, except that the components and the mixing ratio were different, the epoxy resin composition was prepared in the same manner as in Examples 1 to 4, and a prepreg and a carbon fiber reinforced composite were prepared using the same.
[표 2]  TABLE 2
비교예 비교예 비교예 비교예 비교예 비교예 비교예 조己  Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example
ᄋ ΤΓ  ΤΓ
1 2 3 4 5 6 7 1 2 3 4 5 6 7
(1) 액상 비스페놀 A형 (1) Liquid Bisphenol A Type
40 40 40 40 40 40 40 40 40 40 40 40 40 40
(A)성분 에폭시수지 (A) Component Epoxy Resin
(2) 고상 비스페놀 A형 30 30 60 30 30 30 30 에폭시수지 (2) Solid bisphenol A 30 30 60 30 30 30 30 Epoxy resin
(3) 고상 비스페놀 A형  (3) solid bisphenol A
- ᅳ - - - - - 에폭시수지  -ᅳ-----Epoxy resin
(4) 글리시딜 아민형  (4) glycidyl amine type
30 30 - 30 30 30 30 에폭시수지  30 30-30 30 30 30 Epoxy Resin
(B)성분 (5) 다이시안다이아마이드 6 6 6 6 6 6 6 (B) Component (5) Dicyandiamide 6 6 6 6 6 6 6
(6) DCMU 4 - ᅳ - 一 ᅳ ᅳ  (6) DCMU 4-ᅳ-一 ᅳ ᅳ
(7) TBDMU 4 - - - - - (7) TBDMU 4-----
(8) 이미다졸어덕트형 (8) imidazole duct type
- - - ■ - - - 2 잠재성경화제  ---■---2 latent hardener
(C)성분  (C) component
(9) 지방족 3급아민 어덕트형  (9) Aliphatic tertiary amine adduct type
- 一 2 2 - 4 - 잠재성경화제  -一 2 2-4-latent hardener
(10-1) Imidazole (화학식 1) - - 2 2 4 - 2  (10-1) Imidazole (Formula 1)--2 2 4-2
(10-2) Imidazole (화학식 2) - - - - 一 - 一 (10-2) Imidazole (Formula 2)----一-一
(11) Poly vinyl formal - - - - - - - (11) Poly vinyl formal-------
(D)성분 (12) Poly vinyl acetal 3 3 3 - 3 3 3 (D) Component (12) Poly vinyl acetal 3 3 3-3 3 3
(13) Phenoxy - - - 3 - ᅳ -  (13) Phenoxy---3-ᅳ-
(1) Hex ion, EPON 828, EEW 185-192 (1) Hex ion, EPON 828, EEW 185-192
(2) Hex ion, EPON 1001, EEW 525-550  (2) Hex ion, EPON 1001, EEW 525-550
(3) He ion, EPON 1004, EEW 800-950  (3) He ion, EPON 1004, EEW 800-950
(4) Huntsman, MY720, EEW 117-134  (4) Huntsman, MY720, EEW 117-134
(5) dicyandi amide, Air product , CG1400  (5) dicyandi amide, Air product, CG1400
(6) dichlorophenyl dimethyl urea, Lanxess, Diuron  (6) dichlorophenyl dimethyl urea, Lanxess, Diuron
(7) toluene bis dimethyl urea, Alzchem, UR500  (7) toluene bis dimethyl urea, Alzchem, UR500
(8) Modified amine adduct , Aj inomoto PN-23  (8) Modified amine adduct, Aj inomoto PN-23
(9) Modified amine adduct , T&K Toka, FXR-1030  (9) Modified amine adduct, T & K Toka, FXR-1030
(10-1) Imidazole, Shikoku, 2P4MHZ—PW (10-1) Imidazole, Shikoku, 2P4MHZ—PW
(10-2) Imidazole, Shikoku, 2MA-0 (11) polyvinyl formal, JNC, PVF-E (10-2) Imidazole, Shikoku, 2MA-0 (11) polyvinyl formal, JNC, PVF-E
(12) polyvinylacetal , Sekisui , KS-23Z  (12) polyvinylacetal, Sekisui, KS-23Z
(13) Phenoxy specialty, PKHP 시험예  (13) Phenoxy specialty, PKHP test example
실시예 l~4 및 비교예 1~7에 따라 제조된 에폭시 조성물과 이를 이용한 프리프레그, 탄소섬유강화 복합재에 대하여 다음과 같은 방법으로 물성 평가를 수행하였으며, 그의 물성 측정 결과는 하기 표 3에 나타내었다. a) 에폭시 수지 조성물의 점도 및 보관안정성  Evaluation of physical properties of the epoxy compositions prepared according to Examples 1 to 4 and Comparative Examples 1 to 7 and prepreg and carbon fiber reinforced composites using the same were carried out in the following manner, and the results of the measurement of the physical properties are shown in Table 3 below. It was. a) viscosity and storage stability of epoxy resin composition
제조된 에폭시 수지 조성물은 브룩필드 점도계 (CAP-2000)를 사용하여 80 °C에서 점도를 측정하였다. 또한, 이 에폭시 수지 조성물을 40 °C 오븐 (oven)내에 보관하며 점도를 측정하였으며, 초기 점도의 2 배가 되는 시간 (일, days)을 측정하고 이를 기준으로 보관안정성을 평가하였다. b) 프리프레그의 겔타임 (Gel time) The epoxy resin composition prepared was measured at 80 ° C. using a Brookfield viscometer (CAP-2000). In addition, the epoxy resin composition was stored in a 40 ° C oven (oven) and the viscosity was measured, the time (days, days) to double the initial viscosity was measured and based on this, the storage stability was evaluated. b) Gel time of prepreg
프리프레그의 겔타임 (Gel time)은 미국재료시험학회 ASTM D 3532의 방법에 의해서 측정하였다. 겔타임 (Gel time)은 프리프레그 시료를 6 mm2의 크기로 잘라, 프레스 성형 온도인 150 °C로 설정한 핫-플레이트 (hot plate) 및 커버글래스 (cover glass)위에 올려 놓은 후, 시료를 또 다른 커버글래스로 덮고, 나무 스틱 (stick)으로 저어주며 겔화 (Gelation) 시간을 초 단위로 측정하였다. Gel time of the prepreg was measured by the method of ASTM D 3532. Gel time cuts the prepreg sample into a size of 6 mm 2 , puts it on a hot plate and cover glass set to a press forming temperature of 150 ° C, and then places the sample. Covered with another cover glass, stirred with a wooden stick and the gelation time was measured in seconds.
C) 에폭시 수지 조성물의 내열성 C) heat resistance of epoxy resin composition
에폭시 수지 조성물의 내열성은 시차주사열량 측정장비 (DSC, Q2000, TA Instruments)를 사용하여 측정하였다. 먼저 10 °C/min의 승온 속도로 시료를 25 °C 에서 250 °C까지 승온시켜 완전 경화시킨 후 냉각하고, 동일한 방법으로 다시 승온하며 나타나는 유리전이온도 (Tg)를 측정하였다. d) 프리프레그의 경화도 프리프레그의 경화도는 시차주사열량 측정장치 (DSC , Q2000 , TA Instruments)를 사용하여 100 °C /min의 속도로 시료를 25 °C에서 150 °C까지 승온시킨 후, 150 °C 등온 조건에서 측정하였다. 150 °C에 도달하기까지 1분이 소요되며, 이후 3 분간 150 °C에 머물렀을 때 경화도를 계산하였다. e) 수지흐름성 The heat resistance of the epoxy resin composition was measured using a differential scanning calorimetry device (DSC, Q2000, TA Instruments). First, the sample was heated to 25 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min, completely cured, cooled, and the glass transition temperature (T g ) that appeared while heating up was measured in the same manner. d) degree of cure of prepreg The degree of curing of the prepreg was measured at 150 ° C isothermal conditions after the sample was heated from 25 ° C to 150 ° C at a rate of 100 ° C / min using a differential scanning calorimetry (DSC, Q2000, TA Instruments). It was. It took 1 minute to reach 150 ° C., then the degree of cure was calculated when staying at 150 ° C. for 3 minutes. e) resin flowability
에폭시 수지 조성물을 이용한 프리프레그의 수지흐름성은 미국재료시험학회 ASTM D 3531의 방법에 따라 측정하였다. 다만, 실제 프레스 성형조건을 모사하기 위하여, 프리프레그 전면, 후면에서 수지를 빨아들이지 않고, 외곽 (가장자리)으로 수지를 빠져나가게 하고, 남은 무게를 재는 방법으로 수지흐름성을 측정하였다.  The resin flow of the prepreg using the epoxy resin composition was measured according to the method of ASTM D 3531 of the American Society for Testing and Materials. However, in order to simulate the actual press molding conditions, the resin flowability was measured by discharging the resin from the front and rear sides of the prepreg, leaving the resin to the outside (edge), and weighing the remaining weight.
먼저, 프리프레그를 300匪 X 300隱로 재단한 후 프리프레그를 섬유의 방향대로 교차 적층하여, 적층각도 [0/90/90/0]의 적층 순서로 4장을 적층한 후 무게를 측정하였다 (Wi ) . 이를 평판 금형에 놓고, 온도 150 °C , 압력 10 kgf/cm2의 조건에서 3 분간 프레스 성형하여 탄소섬유강화 복합재를 제작하였다. 탄소섬유 복합재의 가장자리에 빠져 나온 수지 경화물을 제거하여 초기의 크기인 300隱 X 300mm로 가공한 후 다시 무게를 측정하였다 (Wf ) . 수지흐름성은 하기 계산식 1에 따라 산측하였다. First, the prepreg was cut to 300 匪 X 300 隱, and then the prepregs were cross-laminated in the direction of the fibers, and 4 sheets were laminated in the lamination angle [0/90/90/0], and the weight was measured. (Wi). This was placed in a flat die, press-molded for 3 minutes under the condition of temperature 150 ° C, pressure 10 kgf / cm 2 to prepare a carbon fiber reinforced composite. After removing the cured resin from the edge of the carbon fiber composite material was processed to an initial size of 300 隱 X 300mm (W f ) was weighed again. Resin flowability was calculated according to the following formula (1).
[계산식 1]  [Calculation 1]
수지흐름성 (¾>) = [ (W; - Wf ) / Wi ] x 100 Resin Flowability (¾>) = [(W;-W f ) / Wi] x 100
상기 계산식 1에서,  In Formula 1,
Wi는 프레스 성형 가공하기 전에 300mm x 300醒 크기를 갖는 프리프레그를 4층 적층하고 측정한 초기 무게 (Wi )를 나타낸 것이고,  Wi shows the initial weight (Wi) measured by laminating four layers of prepregs having a size of 300 mm x 300 mm before press forming.
^는 평판 금형을 사용하여 온도 150 °C , 압력 10 kgf/cm2의 조건에서 3 분간 프레스 성형하여 탄소섬유강화 복합재를 제작하고, 탄소섬유 복합재의 가장자리에 빠져 나온 수지 경화물을 제거한 후, 상기 초기 무게 (Wi )를 측정시와 동일한 크기로 가공하여 측정한 무게 (Wf )를 나타낸 것이다. f) 성형품의 내부 /외부 결함 평가 ^ Press-molded for 3 minutes at a temperature of 150 ° C, pressure 10 kgf / cm 2 using a flat metal mold to produce a carbon fiber-reinforced composite, and after removing the resin cured product falling on the edge of the carbon fiber composite, The initial weight (Wi) is processed to the same size as the measurement, and shows the measured weight (W f ). f) evaluation of internal and external defects of molded parts;
제작된 탄소섬유 복합재의 외관을 육안 관찰하여 일방향 탄소섬유가 직진성을 유지하며 흐트러지지 않는지 관찰하고 표면 및 가장자리에 빠져 나온 수지의 색깔을 관찰하였다. 또한, 중앙부를 절단하여, 단면을 현미경 관찰하고, 내부에 보이드 (vo i d)가 남아있지 않은지 관찰하였다.  The appearance of the fabricated carbon fiber composite was visually observed to observe whether the one-way carbon fiber was kept straight and undisturbed, and the color of the resin exiting the surface and the edge was observed. In addition, the center portion was cut, the cross section was observed under a microscope, and no voids (vo i d) remained inside.
[표 3] TABLE 3
Figure imgf000025_0001
또한, 실시예 1 및 비교예 2, 비교예 4에 따라 제조된 탄소섬유 복합재의 중앙부를 절단한 단면에 대한 현미경 사진을 도 1 내지 도 3에 각각 나타내었다. 도 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1의 탄소섬유 복합재는 중앙부 내부에 보이드 (vo i d)가 거의 남아 있지 않아 성형성 및 기계적 물성 측면에서 매우 우수한 특성을 갖는 것을 알 수 있다. 반면에, 도 2 및 도 3에 나타낸 바와 같이, 비교예 2 및 비교예 4의 탄소섬유 복합재는 수지의 흐름성이 최적화되지 않아 프레스 성형시 내부의 보이드 (voi d)가 층분히 제거되지 못하였음을 직접 확인할 수 있으며, 이러한 경우 성형성 및 기계적 물성 측면에서 매우 좋지 않음을 알 수 있다. 특히, 도 2에 나타낸 바와 같이, 비교예 2의 경우에는 (C) 성분으로 지방족 3급 아민 어덕트형 잠재성 경화제와 이미다졸 흔합물을 사용하지 않고, 일반적으로 프리프레그 제조에 사용되는 우레아 (urea)계 경화촉진제를 사용한 경우로서, 반웅속도가 느려 150 °C 3분의 성형공정에서 경화반웅이 완료되지 않아 기포가 미처 제거되지 못한 상태가 되었음을 알 수 있다. 또한, 도 3에 나타낸 바와 같이, 비교예 4의 경우에는 (D) 성분으로 수소결합 관능기를 갖는 열가소성 고분자를 사용하지 않고, 페녹시 (Phenoxy)계 열가소성 고분자를 사용한 경우로서, 수지의 흐름성이 매우 높아 150 °C 3분의 성형공정 시간동안 수지가 과다하게 홀러 내부에 빈 공간 (voi d)를 발생시켰음을 직접 확인할 수 있다.
Figure imgf000025_0001
In addition, micrographs of cross sections obtained by cutting the central portion of the carbon fiber composites prepared according to Example 1, Comparative Examples 2 and 4 are shown in FIGS. 1 to 3, respectively. As shown in Figure 1, the carbon fiber composite of Example 1 according to the present invention can be seen that the voids (void) hardly remain inside the center portion has very excellent properties in terms of formability and mechanical properties. On the other hand, as shown in Figures 2 and 3, the carbon fiber composites of Comparative Examples 2 and 4 did not optimize the flowability of the resin did not remove the voids (voi d) inside during press molding It can be confirmed directly, in this case it can be seen that very poor in terms of formability and mechanical properties. In particular, as shown in FIG. 2, in the case of Comparative Example 2, an urea (generally used for preparing prepreg, without using an aliphatic tertiary amine adduct type latent curing agent and an imidazole mixture as the component (C) In the case of using a urea-based curing accelerator, it was found that the foam reaction was not completed because the reaction reaction was not completed in the molding process at 150 ° C. for 3 minutes because of the slow reaction reaction. In addition, as shown in FIG. 3, in the case of Comparative Example 4, when the phenoxy-based thermoplastic polymer was used without using the thermoplastic polymer having a hydrogen bonding functional group as the component (D), the flowability of the resin was increased. It is very high that it can be directly confirmed that during the molding process time of 150 ° C. 3 minutes, the resin excessively generated voids (voi d) inside the articulator.
이와 함께, 실시예 1 및 비교예 5, 6에 따라 제조된 프리프레그에 대한 경화도를 측정한 그래프를 도 4에 나타내었다. 여기서, 도 4에 도시된 "Temp" 는 실제 프리프레그가 열을 받아 승온되는 실제 온도를 의미하는 것으로, 실제 성형 조건 또는 경화도 측정 조건에서는 상온에서 150 °C까지 승은되는 데 약 1분 정도가 소요되며, 이렇게 승온된 이후 3분 후 경화도를 나타낸다는 것을 의미한다. 또한, 도 4에서 지방족 3급아민 어덕트형 잠재성경화제만 사용한 비교예 6의 경우 (Amine adduct ) 및 이미다졸만 사용한 비교예 5의 경우 ( Imi dazol e)에 비해, 본 발명에 따라 지방족 3급아민 어덕트형 잠재성경화제과 이미다졸을 흔합하여 사용한 실시예 1의 경우 (Amine adduct + Imi dazo l e)에 그래프상에서 반응속도가 빠름을 확인할 수 있으며, 이로써 대량생산에도 적합한 우수한 속경화성을 갖는 것임을 알 수 있다. 특히, 도 4의 그래프에서 2~3분의 성형시간 (X축)을 기준으로 볼 때, 본 발명에 따라 지방족 3급아민 어덕트형 잠재성경화제과 이미다졸을 흔합한 실시예 1의 경우 (Amine adduct + Imi dazo l e)에 경화도 (y축, convers ion)가 가장 높음을 알 수 있고, 이는 프레스를 사용한 대량 생산에 적합함을 의미한다. 또한, 이러한 경화도 (Convers i on)가 최소 80% 이상 되어야 프레스 금형에서 탈형이 가능하다고 할 수 있으며, 실시예 1의 경우에 2분 30초가 경과하기 전에 경화도 80% 이상을 달성함으로써 , 대량 생산에 매우 적합한 것임을 알 수 있다. In addition, a graph measuring the degree of curing of the prepregs prepared in Example 1 and Comparative Examples 5 and 6 is shown in FIG. 4. Here, "Temp" shown in FIG. 4 means an actual temperature at which the actual prepreg is heated by receiving heat, and in about 1 minute, the temperature is raised from room temperature to 150 ° C under actual molding conditions or curing degree measurement conditions. This means that after 3 minutes after the temperature rise, the degree of curing is shown. In addition, in the case of Comparative Example 6 using only the aliphatic tertiary amine adduct-type latent curing agent in Figure 4 compared to the case of (Amine adduct) and Comparative Example 5 using only imidazole (alimi 3), In the case of Example 1 using a mixture of a tertiary amine adduct type latent hardener and imidazole, it can be seen that the reaction rate is fast on the graph in (Amine adduct + Imi dazo le), thereby having excellent fast curing property suitable for mass production. Able to know. Particularly, in the graph of FIG. 4, in the case of Example 1 in which an aliphatic tertiary amine adduct-type latent hardener and imidazole are mixed according to the present invention, based on a molding time of 2 to 3 minutes (X-axis) (Amine It can be seen that the degree of curing (y-axis, convers ion) is the highest in adduct + imidazo), which is suitable for mass production using presses. In addition, at least 80% of this degree of conv. It can be said that the mold can be demoulded in the press mold, and in the case of Example 1, the curing degree is achieved by 80% or more before 2 minutes 30 seconds has elapsed, and thus it can be seen that it is very suitable for mass production.
또한, 상기 표 3에 나타낸 바와 같이, 실시예 1~4에서 얻어진 에폭시 수지 조성물의 점도는 15 , 000 내지 30 , 000 cps(at 80 °C )로, 핫멜트 방식의 프리프레그 제조에 적합한 점도 범위이며, 40 °C에서 보관시 점도 상승이 초기 점도의 2배가 되는 시간은 30일 이상 소요되어 보관안정성이 우수하였다. 또한, 150 °C에서 3분의 경화 시간내 90% 이상의 경화도를 나타내어 대량 생산에 적합한 속경화성을 구현하였으며, 경화 후 유리전이 온도는 140 °C 이상으로 높은 내열성을 나타내었다. 위의 프레스 성형 조건을 통한 수지 흐름성은 10% 이내를 나타내어, 외관상 섬유의 흐트러짐과 가장자리로의 수지 번짐 (bleeding)이 적은 양호한 상태를 유지하였다. 더욱이, 실시예 1 내지 4의 에폭시 수지 조성물을 이용하여 제조한 프리프레그와 겔타임 (Gel t ime)은 모두 53초 이내로 짧게 나타났으며, 이로써 일정시간내 경화도가 높으며 반응속도가 빨라 대량생산에 적합하게 짧은 시간내 성형이 가능함을 알 수 있다. In addition, as shown in Table 3, the viscosity of the epoxy resin composition obtained in Examples 1 to 4 is 15, 000 to 30, 000 cps (at 80 ° C), a viscosity range suitable for the production of hot melt prepreg , The storage time at 40 ° C was increased to twice the initial viscosity time was more than 30 days was excellent storage stability. In addition, it exhibited a curing degree of 90% or more in the curing time of 3 minutes at 150 ° C to implement fast curing suitable for mass production, the glass transition temperature after curing showed a high heat resistance of 140 ° C or more. The resin flowability through the above press molding conditions was within 10%, so that the appearance was maintained in a good state with little fiber bleeding and resin bleeding to the edges. Furthermore, both prepreg and gel time (Gel t ime) prepared using the epoxy resin composition of Examples 1 to 4 were short within 53 seconds, thereby high curing rate within a certain time and fast reaction rate for mass production. It can be seen that molding is possible within a suitable short time.
반면에, 비교예 1, 2에서는 기존에 알려진 통상의 우레아 (urea)계 또는 이미다졸 ( imidazole)류 경화촉진제만을 사용함으로써 에폭시 수지 조성물의 보관안정성이 좋지 않고, 위의 프레스 성형 조건에서 완전히 경화되지 못했다. 또한, 비교예 3에서는 유리전이 온도가 140 °C 미만을 나타내어, 탈형시 성형품의 변형을 야기하였다. 특히, 비교예 3은 글리시딜 아민형 에폭시 수지를 사용하지 않아, 반웅속도가 느려져 겔 타임이 길고, 내열도 (Tg)가 낮아짐을 알 수 있다. 비교예 4에서는 열가소성 수지의 변경으로 수지 흐름성이 매우 높아 표면의 섬유 흐트러짐이 발생하고 가장자리로의 수지 번짐 (bleeding)이 과다하게 발생하며, 내부에도 보이드 (Void)가 제거되지 못하였다. 한편, 비교예 5에서와 같이 화학식 1의 이미다졸 화합물만을 단독으로 사용할 경우에는, 160 °C 이상의 높은 성형온도가 필요할 뿐 아니라 상온 보관 안정성도 저하되어 프리프레그로 사용이 불가한 문제가 있다. 또한, 비교예 6에서와 같이 지방족 3급 아민 경화제만을 단독으로 사용할 경우에는, 150 °C 성형온도에서 성형시간을 길게 하더라도 어느 수준 이상의 경화도에서는 경화도가 올라가는 속도가 매우 느려 원하는 성형시간을 맞출 수 없어 대량생산에 적합하지 않는 단점이 있다. 비교예 7에서는 기존의 이미다졸 어덕트형 잠재성 경화제를 사용하여 경화수지가 불투명하고 황색으로 나타나는 CFRP 외부 결함 불량이 발생하였으며, 이러한 경우 유색도장을 하지 않는 자동차 외장 부품의 경우에는 이러한 심미적 기능이 현저히 떨어지는 문제가 발생할 수 있다. 이상과 같이, 본 발명의 에폭시 조성물 및 이를 사용하여 제조한 프리프레그는 경화시간 및 성형시간을 현저히 단축시켜 자동차부품 용도와 같은 대량생산에 적용하기 용이할 뿐만 아니라, 경화제 및 경화촉진제를 증량하지 않으면서 고가의 오토클레이브 (autocl ave ) 설비가 아닌 프레스 (press)를 사용하여서도 보관안정성 및 열적 /기계적 물성이 우수한 표면과 내부 결함이 없이 우수한 성형품의 품질을 구현할 수 있는 장점이 있다. On the other hand, in Comparative Examples 1 and 2, by using only conventionally known urea-based or imidazole-type curing accelerators, the storage stability of the epoxy resin composition is not good, and it is not completely cured under the above press molding conditions. I couldn't. In addition, in Comparative Example 3, the glass transition temperature was less than 140 ° C, causing deformation of the molded article when demolding. In particular, Comparative Example 3 does not use a glycidyl amine-type epoxy resin, the reaction rate is slow, it can be seen that the gel time is long, the heat resistance (T g ) is low. In Comparative Example 4, the flow of the resin was very high due to the change of the thermoplastic resin, resulting in fiber disturbance on the surface, excessive resin bleeding to the edges, and voids were not removed inside. On the other hand, when using only the imidazole compound of Formula 1 alone as in Comparative Example 5, not only high molding temperature of 160 ° C or more, but also room temperature storage stability is lowered, there is a problem that can not be used as a prepreg. In addition, when using only an aliphatic tertiary amine curing agent alone as in Comparative Example 6, the molding time at 150 ° C molding temperature Even if it is long, at a certain level or higher degree of curing, the rate of increase of curing rate is very slow, so that the desired molding time cannot be matched, which is not suitable for mass production. In Comparative Example 7, a conventional CFRP external defect defect, in which the cured resin was opaque and yellow, was generated using the conventional imidazole adduct type latent curing agent. Significant drops may occur. As described above, the epoxy composition of the present invention and the prepreg prepared by using the same can significantly shorten the curing time and the molding time, and are easy to be applied to mass production such as automotive parts. The use of a press, rather than an expensive autoclave facility, has the advantage of achieving excellent molded product quality without surface defects and excellent surface stability and thermal / mechanical properties.

Claims

【청구범위】 【청구항 1] 하기의 성분 (A) , (B) , (C) , 및 (D)를 포함하는 에폭시 수지 조성물:(A) 이관능성 비스페놀 A형 에폭시 수지와 4관능기를 가진 글리시딜 아민형 에폭시 수지의 흔합물, (B) 에폭시 수지의 경화제로서 다이시안다이아마이드, (C) 경화촉진제로서 지방족 3급 아민 어덕트형 잠재성 경화제와 하기 화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸 화합물의 흔합물, 및 (D) 열가소성 고분자로서 카르복실기 함유 폴리비닐아세탈 수지. Claims Claim 1 An epoxy resin composition comprising the following components (A), (B), (C), and (D): (A) Glycol having a bifunctional bisphenol A epoxy resin and a tetrafunctional group A mixture of a cydyl amine type epoxy resin, (B) dicyandiamide as a curing agent of an epoxy resin, (C) an aliphatic tertiary amine adduct type latent curing agent as a curing accelerator, and the following Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3 A mixture of the imidazole compound represented by the above, and (D) a carboxyl group-containing polyvinyl acetal resin as the thermoplastic polymer.
[화학식 1]
Figure imgf000029_0001
[Formula 1]
Figure imgf000029_0001
[화학식 2]
Figure imgf000029_0002
[Formula 2]
Figure imgf000029_0002
[화학식 3] [Formula 3]
Figure imgf000029_0003
Figure imgf000029_0003
【청구항 2] [Claim 2]
제 1항에 있어서  The method of claim 1
¾ "기 성분 (A BPA형 에폭시 수지 100 중량부에 대하여 4관능기 글리시딜 아민형 에폭시 수지 50 내지 100 중량부를 흔합한 것인 에폭시 수지 조성물. ¾ " based on 100 parts by weight of A BPA epoxy resin The epoxy resin composition which mixes 50-100 weight part of tetrafunctional glycidyl amine type epoxy resins.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 성분 (B)의 함량은 상기 성분 (A)의 평균 당량 대비 다이시안다이아마이드의 활성수소 당량 비율이 30% 내지 8(»가 되도록 하는 범위로 포함되는 에폭시 수지 조성물.  The content of the component (B) is an epoxy resin composition contained in a range such that the ratio of the active hydrogen equivalent of dicyandiamide to the average equivalent of the component (A) is 30% to 8 (»).
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 성분 (C)는 지방족 3급 아민 어덕트형 잠재성 경화제 40% 내지 6 와 화학식 1, 화학식 2, 또는 화학식 3으로 표시되는 이미다졸 화합물 60% 내지 40%를 흔합한 것인 에폭시 수지 조성물.  The component (C) is an epoxy resin composition in which 40% to 6% of an aliphatic tertiary amine adduct type latent curing agent is mixed with 60% to 40% of an imidazole compound represented by Formula 1, Formula 2, or Formula 3.
·  ·
【청구항 5]  [Claim 5]
게 1항에 있어서,  According to claim 1,
상기 성분 (D)는 상기 성분 (A)의 100 중량부에 대하여 3 내지 10 중량부로 포함되는 에폭시 수지 조성물.  The component (D) is contained in 3 to 10 parts by weight based on 100 parts by weight of the component (A).
【청구항 6】 [Claim 6]
제 1항 내지 제 5항 중 어느 한 항에 따른 에폭시 수지 조성물을 이용하여 제조한 프리프레그. [청구항 7】  A prepreg prepared using the epoxy resin composition according to any one of claims 1 to 5. [Claim 7]
거 16항에 따른 프리프레그를 140 내지 160 °C의 금형 내에서 2 내지 5 분 동안 프레스 성형하는 섬유강화 복합재의 제조 방법. The method of going to the prepreg according to claim 16 in the mold of from 140 to 160 ° C for 2 to 5 minutes for press-molding a fiber-reinforced composite material.
PCT/KR2017/006658 2016-06-24 2017-06-23 Epoxy resin composition for fiber-reinforced composite material, and prepreg using same WO2017222339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780034156.3A CN109312057B (en) 2016-06-24 2017-06-23 Epoxy resin composition for fiber-reinforced composite material and prepreg using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160079556 2016-06-24
KR10-2016-0079556 2016-06-24
KR10-2017-0079636 2017-06-23
KR1020170079636A KR20180001487A (en) 2016-06-24 2017-06-23 Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics

Publications (1)

Publication Number Publication Date
WO2017222339A1 true WO2017222339A1 (en) 2017-12-28

Family

ID=60783984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006658 WO2017222339A1 (en) 2016-06-24 2017-06-23 Epoxy resin composition for fiber-reinforced composite material, and prepreg using same

Country Status (1)

Country Link
WO (1) WO2017222339A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138636A (en) * 2019-12-31 2020-05-12 浙江华正新材料股份有限公司 Resin composition, prepreg and laminated board
CN114015197A (en) * 2021-11-19 2022-02-08 中航复合材料有限责任公司 Matrix resin suitable for non-autoclave molding and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230185A (en) * 1991-10-29 1993-09-07 Kobe Steel Ltd Electrically insulating composite sheet material having excellent flexibility
JPH0641396A (en) * 1992-07-24 1994-02-15 Toray Ind Inc Epoxy resin composition
WO2004096885A1 (en) * 2003-04-28 2004-11-11 The Yokohama Rubber Co. Ltd. Resin composition for prepreg
JP2006160953A (en) * 2004-12-09 2006-06-22 Sekisui Chem Co Ltd Epoxy-based curable composition and electronic part
JP2010202862A (en) * 2009-02-05 2010-09-16 Chisso Corp Epoxy resin composition and cured product thereof
KR20150104120A (en) * 2013-01-07 2015-09-14 도레이 카부시키가이샤 Epoxy resin composition, prepreg, fiber reinforced plastic material, and manufacturing method for fiber reinforced plastic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230185A (en) * 1991-10-29 1993-09-07 Kobe Steel Ltd Electrically insulating composite sheet material having excellent flexibility
JPH0641396A (en) * 1992-07-24 1994-02-15 Toray Ind Inc Epoxy resin composition
WO2004096885A1 (en) * 2003-04-28 2004-11-11 The Yokohama Rubber Co. Ltd. Resin composition for prepreg
JP2006160953A (en) * 2004-12-09 2006-06-22 Sekisui Chem Co Ltd Epoxy-based curable composition and electronic part
JP2010202862A (en) * 2009-02-05 2010-09-16 Chisso Corp Epoxy resin composition and cured product thereof
KR20150104120A (en) * 2013-01-07 2015-09-14 도레이 카부시키가이샤 Epoxy resin composition, prepreg, fiber reinforced plastic material, and manufacturing method for fiber reinforced plastic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138636A (en) * 2019-12-31 2020-05-12 浙江华正新材料股份有限公司 Resin composition, prepreg and laminated board
CN114015197A (en) * 2021-11-19 2022-02-08 中航复合材料有限责任公司 Matrix resin suitable for non-autoclave molding and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6330327B2 (en) Reinforced fiber base material for RTM molding method using binder resin composition for preform for RTM molding method, preform for RTM molding method and fiber reinforced composite material
EP3279263B1 (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
KR101642616B1 (en) Fiber-reinforced resin composite material and process for producing same
EP3072918B1 (en) Production method for fibre-reinforced composite material, prepreg, particle-containing resin composition, and fibre-reinforced composite material
EP3102621B1 (en) Amino benzoates or benzamides as curing agents for epoxy resins
KR20160094935A (en) Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
JP2012211255A (en) Resin composition, cured matter, prepreg and fiber-reinforced composite material
KR102512809B1 (en) Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
WO2015155362A1 (en) Composite materials
TW202033659A (en) Resin composition, fiber-reinforced plastic molding material, and molded article
WO2017222339A1 (en) Epoxy resin composition for fiber-reinforced composite material, and prepreg using same
JP2013181112A (en) Binder composition, reinforcing fiber base material, preform, fiber-reinforced composite material and method for producing the same
EP3105284A1 (en) Composite material with polyamide particle mixtures
JP2021100807A (en) Fiber-reinforced plastic laminate molding and its manufacturing method
JP2010163573A (en) Epoxy resin composition and fiber-reinforced composite material using the same
EP2812393B1 (en) Epoxy resin formulations for textiles, mats and other fibrous reinforcements for composite applications
KR102562027B1 (en) Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
US20230016920A1 (en) Curable Resin Compositions Containing An Aliphatic Polyketone Toughener And Composites Made Therefrom
CN114829097A (en) Prepreg, molded body, and integrated molded body
EP3072920A1 (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019023284A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2020097694A (en) Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material
WO2017104445A1 (en) Binder resin composition for preform, binder particles, reinforced fiber substrate, preform, and fiber-reinforced composite material
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815752

Country of ref document: EP

Kind code of ref document: A1