WO2004090621A1 - 液晶シール剤およびそれを用いた液晶表示セル - Google Patents

液晶シール剤およびそれを用いた液晶表示セル Download PDF

Info

Publication number
WO2004090621A1
WO2004090621A1 PCT/JP2004/004972 JP2004004972W WO2004090621A1 WO 2004090621 A1 WO2004090621 A1 WO 2004090621A1 JP 2004004972 W JP2004004972 W JP 2004004972W WO 2004090621 A1 WO2004090621 A1 WO 2004090621A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
epoxy resin
group
crystal sealant
bisphenol
Prior art date
Application number
PCT/JP2004/004972
Other languages
English (en)
French (fr)
Inventor
Masahiro Imaizumi
Toyofumi Asano
Naoyuki Ochi
Masahiro Hirano
Sumio Ichimura
Masaru Kudo
Katsuhiko Oshimi
Masataka Nakanishi
Yasumasa Akatsuka
Eiichi Nishihara
Masayuki Itai
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2005505290A priority Critical patent/JP4211942B2/ja
Priority to US10/552,183 priority patent/US7521100B2/en
Priority to CA002521615A priority patent/CA2521615A1/en
Priority to EP04725989A priority patent/EP1612597B1/en
Priority to CNB2004800092506A priority patent/CN100424571C/zh
Priority to DE602004015758T priority patent/DE602004015758D1/de
Publication of WO2004090621A1 publication Critical patent/WO2004090621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • C09K2323/055Epoxy

Definitions

  • the present invention relates to a liquid crystal sealing agent, a liquid crystal display cell using the same, and a composition suitable for a liquid crystal sealing agent and the like. More specifically, the present invention relates to a liquid crystal sealant suitable for manufacturing a liquid crystal display cell by a liquid crystal dropping method, and a composition suitable for a liquid crystal display cell and a liquid crystal sealant manufactured using the same. Background art
  • liquid crystal dropping method which is more mass-produced, has been proposed as a method of manufacturing liquid crystal display cells (Japanese Patent Application Laid-Open No. 63-1793932 and See Japanese Patent Application Laid-Open No. 10-239694.
  • a liquid crystal display cell in which liquid crystal is sealed is manufactured by dropping liquid crystal inside a weir of a liquid crystal sealant formed on one substrate and then bonding the other substrate.
  • the liquid crystal dropping method since the liquid crystal sealant comes into contact with the liquid crystal in an unhardened state, the components of the liquid crystal sealant dissolve in the liquid crystal during the production of a liquid crystal display cell, and the specific resistance of the liquid crystal is reduced. There is a problem, and it is not widely used as a mass production method for liquid crystal display cells.
  • thermosetting method there is a problem that the liquid crystal leaks from the liquid crystal sealant in the middle of curing, which has been reduced in viscosity due to expansion of the liquid crystal due to heating, and the component of the liquid crystal sealant, which has been reduced in viscosity, is dissolved in the liquid crystal.
  • the liquid crystal sealant used in the photocuring method there are two types, a force thione polymerization type and a radical polymerization type, depending on the type of the photopolymerization initiator.
  • a force thione polymerization type liquid crystal sealant ions are generated during photocuring.
  • the ionic component elutes into the liquid crystal in the contact state, which causes a problem of lowering the specific resistance of the liquid crystal.
  • the radical polymerization type liquid crystal sealant has a problem that the adhesive strength is not sufficient because the curing shrinkage upon photocuring is large.
  • a problem with both the cationic polymerization type and the radical polymerization type photo-curing methods is that the liquid crystal sealant is not exposed to light due to the metal wiring portion of the liquid crystal display cell array and the black matrix portion of the color filter substrate. Since the light-shielding portion is generated, there is a problem that the light-shielding portion is not cured.
  • the photo-thermal curing method is characterized by irradiating a liquid crystal sealant sandwiched between substrates with light to cause primary hardening, followed by heating and secondary curing.
  • the characteristics required for the liquid crystal sealant used in the photo-thermal curing combined method are that the liquid crystal sealant does not contaminate the liquid crystal before and after light irradiation and before and after heat curing. It is necessary to take measures against the parts, that is, measures against elution of liquid crystal of the sealant component when the parts that have not undergone photohardening are thermally cured.
  • Possible solutions include: (1) curing at low temperature and quickly before the sealant component elutes; (2) configuring the sealant with components that are difficult to elute in the liquid crystal composition.
  • low-temperature fast curing is a serious problem in practical use because it implies that the pot life during use is also deteriorated. Therefore, in order to realize a liquid crystal sealant having a long pot life and low liquid crystal contamination, it is necessary to constitute the liquid crystal composition with a component which is hardly eluted in the liquid crystal composition.
  • epoxy resins such as bisphenol-epoxy resin and bisphenol-F epoxy resin, have good compatibility with liquid crystals, and are therefore suitable as constituents of the sealing agent from the viewpoint of contamination. Is hard to say.
  • the photothermal curing type liquid crystal sealant that has been proposed for the liquid crystal dropping method, which has been conventionally proposed, satisfies all requirements such as liquid crystal contamination, adhesive strength, pot life at room temperature, and low-temperature curability. Is not what you get.
  • An object of the present invention is to develop a liquid crystal sealant used for a liquid crystal display device by a liquid crystal dropping method, and in particular, to apply liquid crystal to the inside of a liquid crystal sealant weir formed on one substrate and then adhere the other substrate.
  • a liquid crystal sealant used for liquid crystal display devices by a liquid crystal dropping method that heats and hardens after irradiating the liquid crystal seal part with light. That is, according to the present invention, the liquid crystal has extremely low contamination property during the manufacturing process, and is easy to apply to a substrate, can be bonded, has an adhesive strength, a pot life at room temperature (pot life), and has a low curing temperature. It is intended to propose a liquid crystal sealing agent having excellent properties. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the epoxy resin (a) represented by the general formula (1) (that is, the bisphenol S type epoxy resin or the The present inventors have found that a liquid crystal sealant containing an epoxy resin having a silicide unit), a thermosetting agent (b), and a filler (c) having an average particle size of 3 ⁇ m or less achieves the above object.
  • the invention has been completed.
  • a represents an integer of 2 to 4, n represents 0 to 3 (average value), R represents a divalent hydrocarbon group having 2 to 6 carbon atoms, A represents a polyvalent aromatic group, and G represents a glycidyl group.
  • the epoxy resin (a) represented by the general formula (1) is a bisphenol S type.
  • the polyvalent aromatic group is a divalent or trivalent phenol or naphthyl residue, 2 to 4 benzene rings or naphthylene rings (the number of carbon atoms as a substituent on the benzene ring or naphthylene ring) May have 1 to 6 aliphatic groups, and the total number of bonds on the ring is 2 to 4), but is a single bond, a divalent aliphatic hydrocarbon having 1 to 3 carbon atoms.
  • the polyvalent aromatic group has the formula
  • ph is a phenylene group (which may have an aliphatic group having 1 to 6 carbon atoms as a substituent),
  • X is 10-, -S-, -S (0) 2- or formula
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group, or R 3 and R 4 are bonded to each other to represent a fluorene ring by C (R 3 ) (R 4 ))
  • liquid crystal sealant according to the above item 2 which is a divalent aromatic group represented by
  • Epoxy resin (a) has the general formula (2)
  • n 1 and n 2 each independently represent 0.5 to 3
  • R is a divalent hydrocarbon group having 2 to 6 carbon atoms
  • Rjs R 2 is each independently a hydrogen atom or 1 to 6 carbon atoms.
  • a monovalent hydrocarbon group, G represents a glycidyl group
  • liquid crystal sealant according to the above item 4 which is an epoxy resin represented by
  • Epoxy resin (a) has general formula (3)
  • n ls n 2 each independently represents 0.5 to 3
  • R represents a divalent hydrocarbon group having 2 to 6 carbon atoms
  • G represents a glycidyl group.
  • liquid crystal sealing agent according to the above item 5 which is an epoxy resin represented by
  • Epoxy resin (a) has general formula (4)
  • n 2 each independently represent a positive number of 0.5 to 3,: represents a divalent hydrocarbon group having 2 to 6 carbon atoms, and G represents a glycidyl group
  • thermosetting agent (b) is a polyfunctional dihydrazide or a polyvalent phenol compound.
  • liquid crystal sealing agent according to the above item 10, wherein the polyfunctional dihydrazide is a dihydrazide having an isophthalic acid dihydrazide, a valine hydantoin skeleton, or an adipic acid dihydrazide.
  • the mixing ratio of the epoxy resin (a) and the thermosetting agent (b) is such that the active hydrogen equivalent of the thermosetting agent (b) is 0.8 to 3 with respect to 1 equivalent of the epoxy group of the epoxy resin (a). Equivalent, and the content of filler (c) with an average particle size of 3 ⁇ m or less in the liquid crystal sealant is 5-40. 12.
  • liquid crystal sealing agent according to the above item 13, wherein the curable resin (d) containing a (meth) acryl group is a (meth) acrylate of an aromatic epoxy resin.
  • stiffening resin (d) containing a (meth) acrylic group is a (meth) acrylate of an epoxy resin (a) in which n is not zero in the general formula (1).
  • liquid crystal sealing agent according to any one of the above items 1 to 17, further comprising a silane coupling agent (f),
  • liquid crystal sealant according to any one of the above items 1 to 18, further comprising an ion scavenger (g),
  • the ion-trapping agent is a bismuth-based ion trapping agent, an antimony-based ion trapping agent, a titanium phosphate-based ion trapping agent, a zirconium phosphate-based ion trapping agent, or a hydrotalcite-based ion trapping agent.
  • the liquid crystal sealing agent according to the above item 19 which is at least one selected from the group consisting of
  • Liquid crystal sealant contains 5 to 80% of epoxy resin (a) component, 2 to 20% of thermosetting agent (b) component, and 5 to 50% of filler (c) component with average particle size of 3 m or less. %, Curable resin containing (meth) acrylic group (d) component 5 to 80%, radical-generating photopolymerization initiator (e) component 1 to 3%, silane coupling agent (f) component 2 to 2%
  • liquid crystal is dropped inside the weir of the liquid crystal sealant according to any one of the above items 1 to 22 formed on one substrate. And then bonding the other substrate, and then curing the liquid crystal sealant, a method for manufacturing a liquid crystal display cell,
  • the epoxy resin (a) represented by the general formula (1) is a bisphenol S type.
  • composition containing a (meth) acrylic group, a radical-generating photopolymerization initiator (e), a silane coupling agent (f), and an ion scavenger (g).
  • a curable resin containing a (meth) acrylic group, a radical-generating photopolymerization initiator (e), a silane coupling agent (f), and an ion scavenger (g).
  • the liquid crystal sealant and composition of the present invention contain an epoxy resin (a) represented by the general formula (1), a thermosetting agent (b), and a filler (c) having an average particle size of 3 ⁇ 111 or less. It is characterized by.
  • the divalent hydrocarbon group having 2 to 6 carbon atoms represented by R in the general formula (1) may be saturated, unsaturated, linear, cyclic or a combination thereof, but is usually an alkylene having 2 to 6 carbon atoms. Groups are preferred.
  • the aromatic polyhydric alcohol having two or more droxy groups is not particularly limited as long as it is an aromatic residue excluding the hydroxy group.
  • a divalent to trivalent phenol residue 2 to 4 benzene or naphthalene rings (having an aliphatic group having 1 to 6 carbon atoms as a substituent on a benzene ring or a naphthylene ring) And the total number of bonds on the ring is 2 to 4), but is a single bond, a divalent aliphatic hydrocarbon residue having 1 to 3 carbon atoms (which may have phenyl substitution) ),
  • the polyvalent aromatic group has the formula
  • ph is a phenylene group (which may have an aliphatic group having 1 to 6 carbon atoms as a substituent),
  • X is — 0—, 1 S—, — S (0) 2 — or formula
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group, or R 3 and R 4 combine to represent fluorene ⁇ ⁇ by C (R 3 ) (R 4 ))
  • the epoxy resin (a) used in the present invention when n is 0 in the general formula (1) (when the epoxy resin (a) is a bisphenol S type epoxy resin), bisphenol S as a raw material is used.
  • Bisphenol S such as bis C1-C6 hydrogen-substituted phenol S (bisphenol S having C1-C6 hydrocarbon substitution on the benzene nucleus), etc., alkylene being added to the bisphenol S Bis (hydroxy-alkoxyphenyl) sulfones obtained by reacting oxide or the like, or bisphenol S such as bisphenol S.
  • Novolak is obtained by reacting ephalohydrin with novolak containing a skeleton molecule thereof.
  • an aromatic polyhydric alcohol as a raw material preferably an aromatic polyhydric alcohol corresponding to the group described in the above A, more preferably a phenol compound (monohydric alcohol)
  • it is obtained by adding an alkylene oxide to an aromatic polyhydric alcohol or a polyhydric phenol in which a polyhydric phenol is bonded via a crosslinking group, and then reacting the hydroxyl group of the obtained compound with ephalohydrin.
  • the aromatic polyhydric alcohol used as a raw material is not particularly limited as long as it is an aromatic polyhydric alcohol, but polyhydric phenol compounds are preferable.
  • Examples thereof include bisphenol A, Bisphenols such as bisphenol F, bisphenol E, bisphenol S, bisphenol fluorene, biscresol fluorene, oxidiphenol and thiodiphenol, phenol novolak, cresol novolak, bisphenol A novolak, bisphenol -Novolaks such as phenol novolak having a phenol skeleton and triphenolmethane skeleton; catechol, resorcinol, polyhydric phenols having 2 to 3 hydroxy groups such as quinolone and pyrogallol, and biphenols.
  • Bisphenols such as bisphenol F, bisphenol E, bisphenol S, bisphenol fluorene, biscresol fluorene, oxidiphenol and thiodiphenol
  • phenol novolak cresol novolak
  • bisphenol A novolak bisphenol -Novolaks
  • catechol resorcinol
  • polyhydric phenols having 2 to 3 hydroxy groups such as quinolone and pyrogall
  • bisphenol-type (including biphenol) dihydric alcohols such as bisphenol 8, bisphenol F, bisphenol, bisphenol S, bisphenol fluorene, oxidiphenol, thiodiphenol, and biphenol. And more preferably bisphenol S and bisphenol fluorene.
  • Epihalohydrin is not particularly limited, and includes ebichlorohydrin, 5-methylepichlorohydrin, epipib mohydrin, -methylepibromohydrin, and the like, with preference given to epichlorohydrin. is there.
  • the alkylene oxide to be added to the phenol compound is not particularly limited as long as it is an alkylene oxide corresponding to R in the general formula (1).
  • alkylene oxides having 2 to 6 carbon atoms such as ethylene oxide, propylene oxide, tetramethylene oxide, methyl ethylene oxide, hexamethylene oxide, etc.
  • Ethylene oxide is preferred from the viewpoint of mechanical strength.
  • the alkylene oxide to be added is preferably 0.5 to 3 equivalents, more preferably 1.0 to 1.5 equivalents, per equivalent of phenol.
  • the liquid crystal sealant of the present invention contains a thermosetting agent (b).
  • the thermosetting agent is not particularly limited, as long as it reacts with the epoxy resin by heating, usually to 50 ° C.
  • thermosetting condition the liquid crystal to be enclosed In order to minimize the deterioration of the properties, a low-temperature curability of about 1 hour at a temperature of 120 ° C or less is generally required.
  • polyfunctional dihydrazides and polyvalent phenols as the thermosetting component in the liquid crystal sealant of the present invention.
  • the polyfunctional dihydrazides refer to those having two or more hydrazide groups in the molecule, and any of them can be used.
  • an acid hydrazide having two or more, usually 2 to 4 acid hydrazide groups on an aliphatic or aromatic carbon skeleton having 2 to 20 carbon atoms is exemplified.
  • the acid hydrazide group may be bonded to the hydantoin skeleton formed on the hydrocarbon skeleton via a C1-C3 alkylene.
  • the skeleton may contain 1 to 2 nitrogen atoms.
  • polyfunctional dihydrazides include, for example, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, adipic acid dihydrazide, pimelic dihydrazide, suberic acid dihydrazide, azerazic acid dihydrazide, sehydrazide dihydrazide Dibasic dihydrazides, dibasic dihydrazides, and dibasic dihydrazides consisting of fatty acid skeletons such as dodecane dihydrazide, hexadecanoic dihydrazide, maleic dihydrazide, fumaric dihydrazide, diglycolic dihydrazide, tartaric dihydrazide, malic dihydrazide, etc.
  • Aromatic dihydrazides such as 1,4-benzenetrihydrazide, pyromellitic acid tetrahydrazide, 1,4,5,8-naphthoic acid tetrahydrazide, 1,3-bis (hydrazinocarbonoethyl) -1,5-isopropylhydrantoin, etc.
  • polyfunctional dihydrazides When polyfunctional dihydrazides are used as a curing agent, it is preferable to reduce the particle size and uniformly disperse the particles.
  • the polyfunctional dihydrazides particularly preferred are dihydrazide dihydrazide and dihydrazide having a valine hydantoin skeleton. If the average particle size is too large, the upper and lower glass substrates are adhered during the production of a narrow gap liquid crystal cell.
  • the average particle size is preferably the following, more preferably 2 m or less, since this may cause a defect such as inability to form a gap at the time of joining. Below.
  • the maximum particle size is preferably 8 im or less, more preferably 5 zm or less.
  • the particle size of the stiffening agent can be measured with a laser diffraction-scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
  • polyhydric phenol compound When a polyhydric phenol compound is used as a hardener, it is preferable to use it as a homogeneous system.
  • preferred polyhydric phenol compounds include phenol-formaldehyde polycondensate, cresol-formaldehyde polycondensate, hydroxypentazaldehyde-phenol monopolycondensate, cresol naphthol-formaldehyde polycondensate, Polyfunctional novolaks such as resorcinol-formalin polycondensate, furfural phenol polycondensate, ⁇ -hydroxyphenyl-1- ⁇ -hydropoly (biphenyldimethylene-hydroxyphenylene), bisphenol ⁇ , bisphenol F, bis Examples include, but are not limited to, phenol S, thiodiphenol, 4,4'-biphenylphenol, dihydroxynaphthylene, and the like.
  • the compounding ratio of the thermosetting agent (b) is preferably from 0.8 to 3.0 equivalents, more preferably from 0.0 to 3.0 equivalents of the epoxy resin (a) in terms of active hydrogen equivalents. 9 to 2.0 equivalents.
  • the amount of the thermosetting agent (b) is at this level, adhesive strength is high, glass transition is high, etc., and a sufficient pot life is preferable.
  • the filler (c) used in the present invention is not particularly limited as long as it functions as a filler.
  • the above fillers may be used as a mixture of two or more kinds.
  • the average particle size of these fillers is determined by bonding the upper and lower glass substrates.
  • the thickness is preferably 3 zm or less.
  • the content of the filler (c) in the liquid crystal sealant used in the present invention is determined based on the ease of forming the gap of the liquid crystal cell, the adhesive strength to the glass substrate, the moisture resistance reliability, the maintenance of the adhesive strength after moisture absorption, and the like. Taking into account, usually 5 to 40% by weight, preferably 15 to 25% by weight
  • the liquid crystal sealant of the present invention can contain a photocurable resin, a radical generation type photopolymerization initiator and an ion supplement, an organic solvent and other additives as described below. Therefore, one of the preferable compositions of the sealant of the present invention is that the epoxy resin (a) represented by the general formula (1) is 5% to 85%, preferably 10% to 5%, based on the whole sealant. 0%, thermosetting agent (b) is active hydrogen equivalent, epoxy resin
  • the photo-thermal curing combined system is characterized in that the liquid crystal sealing agent sandwiched between the substrates is irradiated with light to perform primary hardening, and then is heated and secondary hardened.
  • the liquid crystal sealant of the present invention may contain a curable resin (d) having a (meth) acrylic group and a radical-generating photopolymerization initiator (e) for the purpose of using a photo-thermal curing system.
  • (meth) acryl means “acryl” and / or “methacryl”. The same applies hereinafter.)
  • the dangling resin (d) containing a (meth) acrylic group is not particularly limited, but is preferably a bifunctional or more functional epoxy resin which is (meth) acrylated.
  • Bifunctional or higher functional epoxy resins include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, thiodiphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolac Epoxy resin, bisphenol A novolak epoxy resin, bisphenol F novolak epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester epoxy resin, glycidylamine epoxy resin, Hydantoin-type epoxy resin, isocyanurate-type epoxy resin, phenol-novolak-type epoxy resin having a triphenyl methane skeleton, other diglycidyl ethers of bifunctional phenols, diglycidyl ethers of bifunctional alcohols, and Examples thereof include halides and hydrogenated products.
  • an aromatic epoxy resin having two or more functionalities an epoxy resin obtained by reacting an aromatic compound having a reactive hydroxyl group with hydrin hydrin.
  • the aromatic compound having a hydroxyl group is not particularly limited, and examples thereof include the aromatic polyhydric alcohols described in the section of the epoxy resin (a). Examples thereof include bisphenol A, bisphenol F, bisphenol E, and bisphenol.
  • Bisphenols such as S, bisphenol fluorene, biscresol fluorene, oxodiphenol and thiodiphenol, phenol novolak, cresol novolac, bisphenol A novolak, bisphenol F novolak and triphenol skeleton
  • acrylates of borazines, catechol, resorcinol, hydroquinone and pyrogallol, etc. and more preferably (meth) acrylates of bifunctional aromatic epoxy resins.
  • (meth) acrylate of bisphenol type epoxy resin and (meth) acrylate of resorcin The (meth) acrylate of the epoxy resin (a) having an alkylene oxide unit is also preferable.
  • the bisphenol-type epoxy resin the bisphenol-type (including biphenol) dihydric alcohol described in the section of the epoxy resin (a) or the aromatic obtained by reacting with the alkylene oxide or the like is used.
  • Epoxy resins obtained by reacting epichlorohydrin with a dihydric alcohol having a group are preferred. More specifically, the following formula (5) G-0-(-R-0-) n-phX-ph-(one 0-R-) n-0-G (5)
  • the present invention does not limit the combination with a conventionally known epoxy resin other than the above.
  • a conventionally known epoxy resin for example, bisphenol F type epoxy resin, alicyclic epoxy resin, triglycidyl isocyanate, heterocyclic epoxy resin, hydrogenated bisphenol A type Epoxy resins and the like can be mentioned, and these epoxy resins may be used in combination as long as the properties of the present invention are not lost.
  • the epoxy resin (a) is in the range of 50 to 100% by weight (the same applies hereinafter) based on the total amount of the epoxy resin in the sealant, preferably in the range of 80 to 100%, More preferably, the content is in the range of 90 to 100% .
  • the liquid crystal sealant of the present invention including the curing system combined with light and heat has an amount of hydrolyzable chlorine derived from an epoxy resin of 600 ppm or less, more preferably.
  • the lower limit is preferably as low as 100 ppm or less as much as possible, but about 300 ppm is usually sufficient due to technical problems and costs.
  • the amount of hydrolyzable chlorine is determined, for example, as follows: First, about 0.5 g Dissolve the epoxy resin in 2 O ml of dioxane, and add 1 1 ⁇ After refluxing for minutes, the amount can be determined by titration with a 0.01 N silver nitrate solution.
  • the hydrolyzable chlorine derived from the epoxy resin is the same as that derived from the epoxy resin (a) and
  • the amount of hydrolyzable chlorine derived from epoxy resin refers to the total amount of those derived from the epoxy resin used in the production of the acrylate and when used in combination with other epoxy resins.
  • the epoxy (meth) acrylate used in the present invention is obtained by esterifying the above-mentioned epoxy resin with (meth) acrylic acid in the presence of a catalyst and a polymerization inhibitor.
  • aromatic hydrocarbons such as xylene; esters such as ethyl acetate and butyl acetate; 1,4-dioxane and tetrahydrofuran Any ethers; ketones such as methyl ethyl ketone and methyl isobutyl ketone; glycol derivatives such as butyl acetate sorb acetate, carbitol acetate, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; cyclohexanone
  • One or two or more of alicyclic hydrocarbons such as cyclohexanol and petroleum solvents such as petroleum ether and petroleum naphtha may be added.
  • Solvents having a low boiling point and high volatility are preferred because they need to be distilled off under reduced pressure, and specifically, toluene, methyl ethyl ketone, methyl isobutyl ketone, and carbitol acetate are preferably used. It is preferable to use a catalyst to promote the reaction. Good. Examples of the catalyst that can be used include benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, and triphenylstibine. The amount used is preferably from 0.1 to 10% by weight, particularly preferably from 0.3 to 5% by weight, based on the reaction raw material mixture.
  • a polymerization inhibitor to prevent polymerization of the (meth) acrylic group during the reaction.
  • the polymerization inhibitor include methoquinone, hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene and the like.
  • the amount used is preferably from 0.01 to 1% by weight, particularly preferably from 0.05 to 0.5% by weight, based on the reaction mixture.
  • the reaction temperature is usually 60 to: L 50 ° C, particularly preferably 80 to 120 ° C.
  • the reaction time is preferably 5 to 60 hours.
  • a monomer and / or an oligomer of a (meth) acrylate may be used in combination as a curable resin containing a (meth) acrylic group.
  • examples of such monomers and oligomers include a reaction product of dipentyl erythritol and (meth) acrylic acid, and a reaction product of dipentyl erythritol 'force prolactone and (meth) acrylic acid.
  • the radical-generating photopolymerization initiator (e) used in the liquid crystal sealant of the present invention has sensitivity near the i-line (365 nm), which has relatively little effect on the characteristics of the liquid crystal, and also has the effect of preventing liquid crystal contamination. It is preferable that the initiator has low reactivity.
  • radical generation type photopolymerization initiator examples include, for example, benzyldimethyl ketone, 1-hydroxycyclohexylphenylketone, getylthioxanthone, benzophenone, 2-ethylanthraquinone, 2-hydroxy-12- Methylpropiophenone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propane, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 3,6-bis (2-methyl- 2-morpholinopropionyl) -1-9-n-octylcarbazol, 1,7-bis (9-acridyl) heptane, and the like.
  • Preferred examples thereof include 3,6-bis (2-methyl-1-2-). Morpholinopropionyl) 1,9-n-octylcarbazole and other rubazole-based photopolymerization initiators, 1,7-bis (9 -Acridyl) Acridine-based photopolymerization initiators such as heptane.
  • the mixing ratio of the radical-generating photopolymerization initiator (e) to the (meth) acrylic group-containing stiffening resin (d) is usually 100 parts by weight of the component (d). 0.1 to 10 parts by weight, preferably 5 to 3 parts by weight per part by weight. If the amount of the radical-generating photopolymerization initiator is less than 0.1 part by weight, the photocuring reaction becomes insufficient. If the amount is more than 10 parts by weight, contamination of the liquid crystal by the initiator and deterioration of the properties of the cured resin are reduced. This can be a problem.
  • the liquid crystal sealant of the present invention preferably contains a silane coupling agent (f) in order to improve the adhesive strength.
  • silane coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclo).
  • Xyl) ethyltrimethoxysilane N-phenyl-1-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyl Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N— (2- (vinylpendylamino) ethyl) 3-aminopropyltrimethoxysilane Hydrochloride, 3—methacryloxypropyl trimethoxysilane, 3 Black hole pro building methyl dimethoxy silane, a silane coupling agent such as 3 black port professional buildings trimethoxysilane.
  • silane coupling agents may be used as a mixture of two or more kinds.
  • the silane coupling agent is preferably a silane coupling agent having an amino group.
  • the liquid crystal sealant of the present invention may further contain an ion scavenger (g) as necessary.
  • an ion scavenger is effective in absorbing and fixing impurity inorganic ions in the liquid crystal sealant and reducing inorganic ions eluted into the liquid crystal, thereby preventing a decrease in the specific resistance of the liquid crystal.
  • the ion scavenger is preferably an inorganic compound having an ion scavenging ability.
  • the ion-capturing ability referred to here is phosphoric acid, phosphorous acid, organic acid anion, It reduces ionic impurities by capturing halogen anions, alkali metal cations, alkaline earth metal cations, and the like.
  • Examples of the ion scavenger that can be used include, for example, the general formula B iOX (OH) Y ( ⁇ 03) [where X is 0.9 to L:
  • is a positive number from 0.6 to 0.8, ⁇ is a positive number from 0.2 to 0.4], an acid-based bismuth-based ion scavenger, an acid-based antimony-based ion scavenger, Titanium phosphate ion scavenger, zirconium phosphate ion scavenger, general formula MgXAlY (OH) 2X + 3Y-2Z
  • ion scavengers include, for example, IXE-100 (a zirconium phosphate-based ion scavenger manufactured by Toago Co., Ltd.), IXE-300 (an antimony oxide-based ion scavenger manufactured by Toago Co., Ltd.), IXE -400 (manufactured by Toagosei Co., Ltd., titanium phosphate-based ion scavenger), IXE-500 (manufactured by Toagogo Co., Ltd., Bismuth-based ion scavenger), IXE-600 (manufactured by Toagosei Co., Ltd., Antimony oxide-bismuth oxide-based ion scavenger, DHT-4A
  • the liquid crystal sealant according to the present invention may further contain, if necessary, an organic solvent, an organic filler, a stress relieving material, and additives such as a pigment, a repelling agent, and an antifoaming agent.
  • the ratio of each component of the liquid crystal sealant of the present invention is not particularly limited, but preferably, the content of each component with respect to the total amount of the sealant (composition) is such that n is zero in the general formula (1).
  • Epoxy resin having alkylene oxide unit in the structure Epoxy resin (a) component 5 to 80%, thermosetting agent (b) component 2 to 20%, and filler (c) having an average particle size of 3 m or less (c) Component 5 to 50%, curable resin containing (meth) acrylic group (d) Component 5 to 80%, radical-generating photopolymerization initiator (e) Component 0.1 to 3%, silane coupling agent ( f) Component 0.2 to 20%, ion scavenger (g) Component 0.2 to 2%.
  • liquid crystal sealant of the present invention for example, (a), (d), (e)
  • the components are dissolved and mixed in the mixing ratio described above.
  • predetermined amounts of the components (b), (c), (f), and (g) are added to the mixture, and the mixture is uniformly mixed by a known mixing device, for example, a three-roll, sand mill, ball mill, or the like.
  • the liquid crystal sealant of the present invention can be manufactured. If necessary, a filtration treatment may be performed after the mixing to remove impurities.
  • the liquid crystal cell of the present invention is a liquid crystal cell in which a pair of substrates each having a predetermined electrode formed on the substrate are opposed to each other at a predetermined interval, the periphery thereof is sealed with the liquid crystal sealing agent of the present invention, and liquid crystal is sealed in the gap. is there.
  • the type of liquid crystal to be enclosed is not particularly limited.
  • the substrate is composed of a combination of at least one of glass, quartz, plastic, silicon, and the like, which has optical transparency.
  • the manufacturing method is as follows. For example, after adding a spacer (gap controlling material) such as glass fiber to the liquid crystal sealing agent of the present invention, the liquid crystal sealing agent is damped to one of the pair of substrates by a dispenser or the like.
  • a liquid crystal is dropped inside the liquid crystal sealing agent weir, and the other glass substrate is overlapped in a vacuum to form a gap.
  • the liquid crystal seal is irradiated with ultraviolet light by an ultraviolet light irradiator to cure the liquid.
  • the irradiation amount of ultraviolet light is usually 500 to 600 mJ / cm2, preferably 100 to 400 mJ / cm2.
  • the spacer include glass fiber, silica beads, and polymer beads.
  • the diameter varies depending on the purpose, but is usually 2 to 8 m, preferably 4 to 72 m.
  • the amount used is usually 0.1 to 4 parts by weight, preferably 0.5 to 2 parts by weight, and more preferably 0.9 to: 0.5 to the liquid crystal sealing agent 100 ⁇ of the present invention. It is about parts by weight.
  • the liquid crystal sealant of the present invention has extremely low contamination to the liquid crystal throughout the manufacturing process, and is suitable for application workability to a substrate, bonding property, adhesive strength, usable time at room temperature (pot life), and low-temperature curability. Excellent.
  • the liquid crystal display cell of the present invention thus obtained has no display failure due to liquid crystal contamination, and has excellent adhesiveness and moisture resistance reliability.
  • Synthesis Example 1 Synthesis of 4,4, -substituted EO-added corn pis S epoxy resin (epoxy resin A)
  • the mixture was heated to 5 ° C., and 60 parts of flaky sodium hydroxide was added in portions over 100 minutes, and then the mixture was further reacted at 45 for 3 hours. After the completion of the reaction, the product is washed twice with water to remove the formed salt, and then heated to 130.C using a rotary evaporator overnight to remove excess epichlorohydrin and the like under reduced pressure. The residue was dissolved by adding 552 parts of methyl isobutyl ketone, and the methyl ethyl ketone solution was heated to 70.C, and 10 parts by weight of a 30% by weight aqueous sodium hydroxide solution was added. After reacting for 1 hour, p
  • Epoxy resin B represented by (7) was obtained.
  • the obtained epoxy resin was semi-solid and had an epoxy equivalent of 294 g / eq.
  • Thermometer dropping inlet one preparative, cooling tube, 2 a flask fitted with a stirrer, 4 5 - bis (2-hydroxy E chill O carboxymethyl) diphenyl sulfone (hydroxyl equivalent: 2 0 9, day Hanaka Science Ltd.) 169 parts, epichlorohydrin 370 parts, and dimethyl sulfoxide 185 parts were added and dissolved with stirring, and the temperature was raised to 50 ° C. Next, 60 parts of sodium hydroxide in the form of flakes were added in portions over 100 minutes, and the post-reaction was further performed at 50 ° C for 3 hours. went. After the completion of the reaction, 400 parts of water was added and washed with water.
  • the components of the sealant that eluted in the liquid crystal upon contact of the liquid crystal with the epoxy resin composed of high boiling components were determined by gas chromatography. That is, 0.1 lg of an epoxy resin consisting of a high-boiling component is placed in a sample bottle, 1 ml of liquid crystal (MLC-686 6-100, manufactured by Merck) is added, and then 120 ° C or more is applied assuming the curing conditions of the sealant. For 1 hour. Thereafter, the liquid crystal after the contact treatment was transferred to an empty sample bottle for 1 hour at room temperature.
  • MLC-686 6-100 liquid crystal
  • the epoxy resin eluted in the liquid crystal was analyzed by gas chromatography using Penyu Decane as an internal standard to determine the amount (wt%) of the epoxy resin eluted in the liquid crystal. Table 1 shows the results. Table 1 Elution amount (wt%)
  • Epoxy resin B Synthesis example 2
  • Epoxy resin C RE-310P (Nippon Daniyaku Co., Ltd .; epoxy equivalent 170 g / eq, liquid bisphenol A type epoxy resin)
  • Epoxy resin D EBPS-300 (Nippon Kayaku Co., Ltd .; epoxy equivalent 233 g / eq, bisphenol S-type epoxy resin)
  • Epoxy resin E Synthesis example a As can be seen from Table 1, the amount of bisphenol A-type epoxy resin (epoxy resin C), which has been conventionally used as a liquid crystal sealant, eluted into the liquid crystal is extremely large, but ethylene oxide is used. The amount of the epoxy resin with the added structure (epoxy resin B) eluted is extremely small. In addition, the amount of bisphenol S-type epoxy resin (epoxy resin D) eluted is small per se, but the amount of eluted epoxy resin A with ethylene oxide added to the liquid crystal is further reduced to 1/10 or less. You can see that. Example 1
  • Bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd., RE-404P, Epoxy equivalent 160 g / eq, Hydrolysis amount 3 Op m) is reacted with 100% equivalent of acrylic acid of epoxy group. After purification by liquid separation treatment of ion-exchanged water / toluene, toluene was distilled off to obtain an acrylate of bisphenol F epoxy.
  • isophthalic acid dihydrazide (trade name: ID HS, a product of Otsuka Chemical Co., Ltd., jet milled grade further finely ground by a jet mill, melting point: 224 ° C, active hydrogen equivalent: 48.5 g / eq, average particle size) 1, 7 um, maximum particle size 7 ⁇ m) 4.1 parts by weight, fused silica (Crystalite IFF, manufactured by Tatsumori Co., Ltd., average particle size 1.
  • Bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd., RE-404P, Epoxy equivalent 160 g / eq, Hydrolysis amount 3 Oppm) is reacted with 100% equivalent of acrylic acid of epoxy group, After purification by liquid separation of ion-exchanged water and Z-toluene, toluene was distilled off to obtain an acrylate of bisphenol F epoxy.
  • isophthalic dihydrazide (trade name: ID HS; jet mill pulverized grade manufactured by Otsuka Chemical Co., Ltd.) is further pulverized with a jet mill, melting point: 224 ° C, active hydrogen equivalent: 48.5 g / eq average particle Diameter 1.7 ⁇ m, maximum particle size 7 m) 3.3 parts by weight, fused silica (Tatsumori Co., Ltd., Chris Evening Light IFF, average particle size:!.
  • ID HS jet mill pulverized grade manufactured by Otsuka Chemical Co., Ltd.
  • Example 3 30 parts by weight, IXE 1 part by weight of 100 (manufactured by Toago Gosei Co., Ltd., zirconium phosphate-based ion scavenger) was added and kneaded with a three-roll mill to obtain a liquid crystal sealant of the present invention.
  • the viscosity (25 ° C) of the liquid crystal sealant was 40 OPa ⁇ s (measured with an R-type viscometer (manufactured by Toki Sangyo Co., Ltd.)).
  • Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., E-404P S E epoxy equivalent 160 g / eq, the amount of hydrolysis 30 ppm) with respect to, reacting the 1 100% equivalent of Akuriru acid epoxy groups, Ion After purification by liquid separation with exchanged water / toluene, toluene was distilled off to obtain an acrylate of bisphenol F epoxy.
  • Akurire Ichito 80 parts by weight of the obtained bisphenol F epoxy, 20 parts by weight of Epoki shea tree effect A Synthesis example 3 3 3,6-Bis as radical-forming photopolymerization initiator (2-methyl-2-morpholino-propionyl) 1.
  • 9-n-octyl carbazole (Adeka Optoma N-1414, manufactured by Asahi Denka Kogyo Co., Ltd.) 1. 8 parts by weight, aminosilane coupling agent (N- / 3 (aminoethyl) aminoaminopropyl trimethoxy) 1.2 parts by weight of silane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-603) was heated and dissolved at 90 ° C. to obtain a resin solution.
  • aminosilane coupling agent N- / 3 (aminoethyl) aminoaminopropyl trimethoxy
  • silane manufactured by Shin-Etsu Silicone Co., Ltd., KBM-603
  • adipic dihydrazide (trade name: ADH-S; jet mill pulverized grade manufactured by Otsuka Chemical Co., Ltd.) is further finely pulverized with a jet mill, melting point: 181 ° C, active hydrogen equivalent: 43.5 g / eq, average Particle size 1.3 ⁇ m, maximum particle size 5m) 3.8 parts by weight, fused crushed silica (manufactured by Tatsumori Co., Ltd., Chris Yu Light 1FF, average particle size 1.0m) 30 parts by weight, IXE-100 (manufactured by Toagosei Co., Ltd., 1 part by weight of zirconium phosphate ion scavenger) was added and kneaded with a three-roll mill to obtain a liquid crystal sealing agent of the present invention.
  • the viscosity (25 ° C) of the liquid crystal sealant was 30 OPa ⁇ s (measured with an R-type viscometer (man
  • Bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd., RE-404P, Epoxy equivalent 160 g / e, Hydrolysis amount 3 Oppm) is reacted with 100% equivalent of acrylic acid of epoxy group, After purification by liquid separation of ion-exchanged water and Z-toluene, toluene was distilled off to obtain an acrylate of bisphenol F epoxy.
  • isofluoric acid dihydrazide (trade name: IDH-S; a jet mill pulverized grade manufactured by Otsuka Chemical Co., Ltd.) was further pulverized with a jet mill, melting point: 224 ° C, active hydrogen equivalent: 48.5 g / eq, average particle size 1.7 ⁇ maximum particle size 7 zm) 4.
  • diphthalic acid dihydrazide (trade name: IDH-S; jet mill powder manufactured by Otsuka Chemical Co., Ltd.) is further finely ground by a jet mill, melting point: 224 ° C; active hydrogen equivalent
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Viscosity (Pa's) 300 400 300 480 ZOO Adhesive strength (MPa) 75 75 80 75 75 Port life (viscosity increase:%) 20 20 10 20 20 20 Curing Glass transition point (° C) 87 87 90 89 87 Liquid crystal contamination test (120 ° CX 1 hr.)
  • Example 1 when the liquid crystal sealant for the dropping method of the present invention shown in Example 1 is compared with the liquid crystal sealant for the dropping method shown in Example 4, both of them have a bisphenol S skeleton. Although the amount of elution is smaller, it can be seen that the amount of elution of the epoxy resin into the liquid crystal is further reduced in Example 1 having a structure to which ethylene oxide is added.
  • the amount of the eluate to the liquid crystal is greatly reduced while maintaining the properties as the sealant.
  • liquid crystal sealant To 100 g of the obtained liquid crystal sealant, 1 g of 5 / m glass fiber was added as a spacer, followed by mixing and stirring. This liquid crystal sealant is applied to a glass substrate of 5 mm x 5 mm, and a glass piece of 1.5 mm x 1.5 mm is stuck on the liquid crystal sealant. After irradiating with ultraviolet rays of cm 2, it was put into a 120 ° C. oven for 1 hour to be cured. The shear bond strength of the glass piece was measured. Pot life test
  • the obtained liquid crystal sealant was allowed to stand at 30 ° C., and the rate of increase in viscosity (%) with respect to the initial viscosity was measured.
  • Glass transition point The obtained liquid crystal sealant was sandwiched between polyethylene terephthalate (PET) films to form a thin film with a thickness of 60 ⁇ m.
  • PET polyethylene terephthalate
  • the film was irradiated with 3000 mJ / cm2 ultraviolet light by a UV irradiator, and then opened at 120 ° C. After curing for a long time, the PET film was peeled off after curing to obtain a sample.
  • the glass transition point was measured using a TMA tester (manufactured by Vacuum Riko Co., Ltd.). Liquid crystal elution test
  • the components of the sealant eluted in the liquid crystal due to the contact between the liquid crystal and the uncured sealant were quantified by gas chromatography.
  • Put 0.1 g of liquid crystal sealing agent in the sample bottle add 1 ml of liquid crystal (MLC, MLC-6866-100), and open at 120 ° C assuming the hardening condition of the sealing agent.
  • the contact processing was performed for an hour.
  • the contact processing conditions were 120 ° C without UV curing and 1 hour, assuming a light-shielding part in a liquid crystal dropping method combined with light and heat. Thereafter, the liquid crystal after the contact treatment was transferred to an empty sample bottle for 1 hour at room temperature.
  • the elution amount of the sealant component eluted in the liquid crystal was determined by gas chromatography using Penyu Decane as an internal standard substance.
  • the components of the sealant eluted in the liquid crystal upon contact of the liquid crystal with the epoxy resin synthesized by the method described above were quantified by gas chromatography. That is, 0.1 lg of bisphenol S epoxy resin is put in a sample bottle, liquid crystal (MLC-6 866-100, manufactured by Merck) is added, and then the curing conditions of the sealant are assumed. It was contact-treated for 1 hour with Co-Punch. Then, it was left at room temperature for 1 hour, and the liquid crystal after the contact treatment was transferred to an empty sample bottle. The epoxy resin eluted in the liquid crystal was analyzed by gas chromatography using Penyu Decane as an internal standard.
  • the bisphenol A type epoxy resin of Comparative Example B1 has an elution amount of 9.2 wt%.
  • the bisphenol S-type epoxy resin used in the present invention elutes only 0.6 wt%, and the amount of the epoxy resin eluted into the liquid crystal is greatly reduced to about 1/15. I have. It is clear that the use of bisphenol S-type epoxy resin is less likely to elute into the liquid crystal component than the bisphenol A-type epoxy resin.
  • Bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd .; E-404P, Epoxy equivalent 160g / eq, Hydrolysis amount 3 Oppm) is reacted with 100% equivalent of acrylic acid of epoxy group. After purification by liquid separation treatment of ion-exchanged water / toluene, toluene was distilled off to obtain acrylate of bisphenol F epoxy.
  • isofuric acid dihydrazide (trade name: IDH-S; a jet mill crushed grade manufactured by Otsuka Chemical Co., Ltd.) is further finely pulverized with a jet mill, melting point: 224, active hydrogen equivalent: 48.5 g / eq, average particle size Diameter 1. 1., maximum particle size 7 ⁇ m) 5.4 parts by weight, fused silica (Crystalite 1FF, Tatsumori Co., Ltd., average particle size 1.0 ⁇ m) 30 parts by weight
  • the mixture was kneaded with a main mold to obtain a liquid crystal sealant.
  • the viscosity (25 ° C) of the liquid crystal sealant was 48 OPa ⁇ s (measured with an R-type viscometer (manufactured by Toki Sangyo Co., Ltd.)). Comparative Example B 2
  • Bisphenol F-type epoxy resin (Nippon Kayaku Co., Ltd., RE-404P, Epoxy equivalent 160 gZeq, Hydrolysis amount 3 Op pm) is reacted with 100% equivalent of acrylic acid of epoxy group. After purification by liquid separation of exchanged water Z-toluene, toluene was distilled off to obtain acrylate of bisphenol F epoxy.
  • Obtained bisphenol F epoxy acrylate 80 parts by weight, bisphenol A type liquid epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-310P, epoxy equivalent 170 g / eq, hydrolyzable chlorine amount 120 ppm 20 parts by weight, 3,6-bis (2-methyl-12-morpholinopropionyl) -19-n-octylcarbazolyl (Adeka Optoma N-, manufactured by Asahi Denka Kogyo Co., Ltd.) as a radical-generating photopolymerization initiator 14 14) 1.8 parts by weight, aminosilane coupling agent (N—?
  • melt-crushed silica (Crystallite 1FF, Tatsumori Co., Ltd., average particle size 1.0 zm) 30
  • the mixture was kneaded with three rolls to obtain a liquid crystal sealant.
  • Liquid crystal sealant viscosity 25 ° C was 200 Pa ⁇ s (measured with an R-type viscometer (manufactured by Toki Sangyo Co., Ltd.))
  • liquid crystal sealant of the present invention which is excellent in application workability to the substrate and bonding property, has a long pot life, strong adhesive strength, low liquid crystal contamination, and excellent gap forming ability, in the liquid crystal dropping method.
  • the production of liquid crystal display cells with improved yield and productivity has become possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Epoxy Resins (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 液晶シール剤およびそれを用いた液晶表示セル 技術分野
本発明は、 液晶シール剤及びそれを用いた液晶表示セル、 更に液晶シール剤等 に適する組成物に関する。 より詳しくは、 液晶滴下工法による液晶表示セルの製 造に好適な液晶シール剤及びそれを用いて製造された液晶表示セル及ぴ液晶シ一 ル剤等に適する組成物に関する。 背景技術
近年の液晶表示セルの大型化に伴い、 液晶表示セルの製造法として、 より量産 性の高い、 いわゆる液晶滴下工法が提案されている (特開昭 6 3 - 1 7 9 3 2 3 号公報及び特開平 1 0— 2 3 9 6 9 4号公報を参照)。 それらの方法においては、 一方の基板に形成された液晶シール剤の堰の内側に液晶を滴下した後、 もう一方 の基板を貼り合わせることにより液晶が封止された液晶表示セルが製造される。 しかし、液晶滴下工法は、液晶シール剤が未硬ィ匕の状態で液晶に接触するため、 液晶表示セル製造時に液晶シール剤の成分が液晶に溶解して液晶の比抵抗を低下 させてしまうという問題点があり、 液晶表示セルの量産方法として本格的には普 及していない。
液晶滴下工法において、 液晶シ一ル剤の貼り合わせ後の硬化方法として、 熱硬 化法、光硬化法、光熱硬化併用法の 3つの方法が考えられている。熱硬ィ匕法では、 加熱による液晶の膨張により低粘度ィ匕した硬化途中の液晶シール剤から液晶が漏 れてしまうという問題と低粘度ィ匕した液晶シール剤の成分が液晶に溶解してしま うという問題があり、 これらの問題は解決が困難であり、 いまだ実用化されてい ない。
一方、 光硬化法に用いられる液晶シール剤としては、 光重合開始剤の種類によ り力チオン重合型とラジカル重合型の 2種類が挙げられる。 カチォン重合型の液 晶シール剤については、 光硬化の際にイオンが発生するため、 これを液晶滴下ェ 法に使用した場合、 接触状態の液晶中にイオン成分が溶出し、 液晶の比抵抗を低 下させるという問題がある。 又、 ラジカル重合型の液晶シール剤については光硬 化時の硬化収縮が大きいために、接着強度が十分でないという問題がある。更に、 カチオン重合型とラジカル重合型の両方の光硬化法に関わる問題点として、 液晶 表示セルのアレイ ¾ί反のメタル配線部分やカラ一フィルター基板のブラヅクマト リヅクス部分により液晶シール剤に光が当たらない遮光部分が生じるため、 遮光 部分が未硬化になるという問題が生じる。
このように熱硬ィ匕法、 光硬ィ匕法は様々な問題点を抱えており、 現実には光熱硬 化併用法が最も実用的な工法と考えられている。 光熱硬化併用法は、 基板に挟ま れた液晶シール剤に光を照射して一次硬ィヒさせた後、 加熱して二次硬化させるこ とを特徴とする。 光熱硬化併用法に用いる液晶シール剤に要求される特性として は、 光照射前後、 加熱硬化前後の各工程において液晶シール剤が液晶を汚染しな いことが重要であり、 特に先に述べた遮光部分に対する対策、 すなわち、 光硬ィ匕 しなかった部分が熱硬化する際のシール剤成分の液晶溶出に対する対策が必要に なってくる。 その解決方法としては、 ①シ一ル剤成分が溶出する前に低温速硬化 させる、 ②シール剤を液晶組成物に溶出し難い成分で構成する等が考えられる。 当然、 低温速硬化とすることは同時に使用時のポットライフが悪くなることを意 味するので実用上大きな問題となる。故にポットライフが長く液晶汚染性の低い 液晶シール剤を実現する為には、 液晶組成物に溶出し難い成分で構成することが 必要になってくる。 しかしながら、 一般によく知られているエポキシ樹脂、 例え ばビスフエノ一ル Αエポキシ樹脂やビスフエノ一ル Fエポキシ樹脂は液晶との相 溶性が良いため、 汚染性の観点からシール剤構成成分として適しているとは言い 難い。
特開 2 0 0 1— 1 3 3 7 9 4号公報では、 滴下工法用液晶シール剤として、 樹脂 主成分に特開平 5 - 2 9 5 0 8 7号公報記載の部分 (メタ) ァクリレ一ト化した ビスフエノール A型エポキシ樹脂を使用する提案がなされている。 しかしながら (メタ) ァクリレート化することにより液晶への溶解性は低下するものの充分と は言い難く、 また未反応で残存した原料エポキシ樹脂が液晶を汚染する問題も解 決することが困難である。 以上述べてきたように、 従来提案されてきた液晶滴下工法用の光熱硬化併用型 液晶シール剤は、 液晶汚染性、 接着強度、 室温での可使時間、 低温硬化性等のす ぺてについて満足の得られるものではない。
本発明の目的は、 液晶滴下工法による液晶表示装置に用いられる液晶シール剤 の開発、 特に一方の基板に形成された液晶シール剤の堰の内側に液晶を滴下した 後、 もう一方の基板を貼り合わせて、 液晶シール部に光照射後、 加熱硬化する液 晶滴下工法による液晶表示装置に用いられる液晶シール剤の開発にある。 すなわ ち、 本発明は、 製造工程を通して液晶に対して極めて汚染性が低く、 基板への塗 布作業性、貼り合わせ性、接着強度、 室温での可使時間(ポットライフ)、低温硬 化性に優れる液晶シ一ル剤を提案することを目的とする。 発明の開示
本発明者らは前記した課題を解決すべく鋭意研究を重ねた結果、 一般式 (1 ) で表わされるエポキシ樹脂(a) (即ち、 ビスフエノール S型のエポキシ樹脂もし くは構造中にアルキレンォキサイド単位を有するエポキシ樹脂)、熱硬化剤(b )、 及び平均粒径 3〃m以下の充填材 (c ) を含有する液晶シール剤が前記目的を達 するものであることを見出し、 本発明を完成させたものである。
即ち、 本発明は、
1 . 一般式 ( 1 )
Figure imgf000005_0001
(式中、 aは 2 ~ 4の整数、 nは 0〜3 (平均値)、 Rは炭素数 2〜 6の二価炭化 水素基、 Aは多価芳香族基、 Gはグリシジル基を表す。但し、 nが 0の場合は、 一般式 ( 1 ) で表されるエポキシ樹脂 ( a) はビスフエノール S型である。) で表されるエポキシ樹脂 (a)、 熱硬化剤 (b )、 及び平均粒径 3〃 m以下の充填 材 (c ) を含有することを特徴とする液晶シール剤, 2. 多価芳香族基が、 2〜 3価のフエノールもしくはナフト一ル残基、 2〜4個の ベンゼン環又はナフ夕レン環 (ベンゼン環又はナフ夕レン環上に、 置換基として 炭素数 1〜 6の脂肪族基を有していてもよく、 該環上の結合手の合計が 2〜 4個 である)が、単結合、炭素数 1〜3の二価の脂肪族炭化水素残基 (フヱニル置換を 有してもよい)、 酸素原子もしくはィォゥ原子 (スルホニルになっていてもよい) を介して結合した 2〜 4価の芳香族基又はノポラヅク樹脂のヒドロキシ基を除い た残基である上記第 1項に記載の液晶シール剤、
3. 多価芳香族基が式
一 p h— X— p n—
{式中、 phはフエ二レン基(置換基として炭素数 1〜6の脂肪族基を有してい てもよい)、 Xは一 0—、 — S―、 -S (0) 2—又は式
-C 3) (R4) -
(式中、 R3及び R4はそれそれ独立に水素原子又はメチル基を示すか、 又は R3 及び R4が結合して、 C (R3) (R4)でフルオレン環を示す)
で示される架橋基を示す }
で示される 2価の芳香族基である上記第 2項に記載の液晶シール剤、 2
4. 一般式 (1)で表されるエポキシ樹脂 (a) がビスフエノール S型であり、 且つ nが 0〜3 (平均値) である上記第 1項に記載の液晶シール剤、
5. エポキシ樹脂 (a) が一般式 (2)
Figure imgf000006_0001
(式中、 n1 n2は各々独立に 0. 5〜3を表し、 Rは炭素数 2〜 6の二価炭化 水素基、 Rjs R2は各々独立に水素原子又は炭素数 1〜 6の 1価炭化水素基、 G はグリシジル基を表す)
で表されるェポキシ樹脂である上記第 4項に記載の液晶シール剤、
6. エポキシ樹脂 (a) が一般式 (3)
Figure imgf000007_0001
(式中、 nls n2は各々独立に 0. 5〜3を表し、 Rは炭素数 2〜 6の二価炭化 水素基、 Gはグリシジル基を表す)
で表されるェポキシ樹脂である上記第 5項に記載の液晶シ一ル剤、
7. エポキシ樹脂 (a) が一般式 (4)
Figure imgf000007_0002
(式中、 、 n2は各々独立に 0. 5〜3の正数を表し、 : は炭素数 2〜 6の二 価炭化水素基、 Gはグリシジル基を表す)
で表されるエポキシ樹脂である上記第 1項に記載の液晶シール剤、
8. — 0— R—がー 0— CH2CH2—である上記第 1項〜第 7項の何れか 1項に 記載の液晶シール剤、
9. nが 1〜1. 5である上記第 1項、 第 4項に記載の液晶シール剤、
10. 熱硬化剤 (b) が多官能ジヒドラジド類又は多価フエノール化合物である 上記第 1項〜第 7項の何れか 1項に記載の液晶シール剤、
11. 多官能ジヒドラジド類がィソフタル酸ジヒドラジド、 バリンヒダントイン 骨格を有するジヒドラジド類又はアジピン酸ジヒドラジドである上記第 10項に 記載の液晶シール剤、
12.エポキシ樹脂 (a) と熱硬化剤(b) との配合比が、 該ェポキシ樹脂(a) のエポキシ基 1当量に対し、 該熱硬化剤 (b)の活性水素当量 0. 8〜3当量で あり、 平均粒径 3〃m以下の充填材 (c)の液晶シール剤中の含有量が 5〜40 重量%である上記第 1項〜第 11項の何れか 1項に記載の液晶シール剤、 13.更に (メタ) アクリル基を含有する硬ィ匕性樹脂(d)、 ラジカル発生型光重 合開始剤 (e) を成分として含有する上記第 1項〜第 12項の何れか 1項に記載 の液晶シール剤、
14. (メタ)ァクリル基を含有する硬化性樹脂 ( d )が芳香族エポキシ樹脂の(メ 夕) ァクリレートである上記第 13項に記載の液晶シ一ル剤、
15. 芳香族エポキシ樹脂の (メタ) ァクリレートがビスフエノ一ル型エポキシ ί趣旨の (メタ) ァクリレートである上記第 14項に記載の液晶シール剤、
16. (メタ) アクリル基を含有する硬ィ匕性樹脂 (d)が、 一般式 (1) において nがゼロでないエポキシ樹旨 (a) の (メタ) ァクリレートである上記第 13項 (こ記載の液晶シール剤、
17. ラジカル型光重合開始剤 (e) が力ルバゾ一ル系光重合開始剤又はァクリ ジン系光重合開始剤である上記第 13項〜第 16項の何れか 1項に記載の液晶シ ール剤、
18. 更にシランカップリング剤 (f ) を含有する上記第 1項〜第 17項の何れ か 1項に記載の液晶シール剤、
19. 更にイオン捕捉剤 (g) を含有する上記第 1項〜第 18項の何れか 1項に 記載の液晶シール剤、
20. イオン捕捉剤が、 酸ィ匕ビスマス系イオン捕捉剤、 酸ィ匕アンチモン系イオン 捕捉剤、 リン酸チタン系イオン捕捉剤、 リン酸ジルコニウム系イオン捕捉剤、 ハ ィ ドロタルサイ 卜系イオン捕捉剤からなる群から選ばれた少なくとも 1種類であ る上記第 19項に記載の液晶シール剤、
21. 液晶シール剤中の含有量がエポキシ樹脂 (a) 成分 5〜80%、 熱硬化剤 (b)成分 2〜20%、及び平均粒径 3 m以下の充填材(c)成分 5〜 50 %、 (メタ) ァクリル基を含有する硬化性樹脂 (d) 成分 5〜80%、 ラジカル発生 型光重合開始剤 (e)成分 1〜3%、 シランカップリング剤 (f ) 成分 2〜2%、 イオン捕捉剤 (g) 成分 0. 2〜20%である上記第 19項又は 20 項に記載の液晶シール剤、
22. 上記第 1項〜第 21項の何れか 1項に記載の液晶シール剤の硬化物でシ一 ルされた液晶表示セル、
23. 2枚の基板により構成される液晶表示セルにおいて、 一方の基板に形成さ れた上記第 1項〜第 22項の何れか 1項に記載の液晶シール剤の堰の内側に液晶 を滴下した後、 もう一方の基板を貼り合わせ、 次いで該液晶シール剤を硬化する ことを特徴とする液晶表示セルの製造方法、
24 · 一般式 ( 1 )
Figure imgf000009_0001
(式中、 aは 2〜4の整数、 nは 0〜3 (平均値)、 Rは炭素数 2〜 6の二価炭化 水素基、 Aは多価芳香族基、 Gはグリシジル基を表す。但し、 nが 0の場合は、 一般式 (1) で表されるエポキシ樹脂 (a) はビスフエノール S型である。) で表されるエポキシ樹脂(a)、 熱硬化剤 (b)、 及び平均粒径 3〃 m以下の充填 材 (c) を含有することを特徴とする組成物、
25. 更に (メタ)アクリル基を含有する硬化性樹脂(d)、 ラジカル発生型光重 合開始剤(e)、 シランカップリング剤 (f )及びイオン捕捉剤 (g) を含有する ことを特徴とする上記第 24項に記載の組成物、
に関する。 発明を実施するための最良の形態
本発明の液晶シール剤及び組成物は、 一般式 (1) で表わされるエポキシ樹脂 (a)、 熱硬化剤 (b)、 及び平均粒径 3〃111以下の充填材 (c) を含有すること を特徴とする。
一般式 (1) におけ Rで表わされる炭素数 2〜 6の二価炭化水素基としては飽 和、 不飽和、 鎖状、 環状もしくはそれらの組み合わせ何れでもよいが通常炭素数 2〜 6のアルキレン基が好ましい。
一般式 (1) における Aで表わされる多価芳香族基としては、 フエノール性のヒ ドロキシ基を 2以上有する芳香族多価アルコールのヒドロキシ基を除いた芳香族 残基であれば特に制限はない。例えば、 2〜 3価のフヱノ一ル残基、 2〜4個のベ ンゼン璟又はナフタレン環 (ベンゼン環又はナフ夕レン環上に、 置換基として炭 素数 1〜 6の脂肪族基を有していてもよく、 該環上の結合手の合計が 2〜 4個で ある)が、 単結合、 炭素数 1~3の二価の脂肪族炭化水素残基(フエニル置換を有 してもよい)、酸素原子もしくはィォゥ原子 (スルホニルになっていてもよい) を 介して結合した 2〜4価の芳香族基又はノボラヅク樹脂のヒドロキシ基を除いた 残基が挙げられる。 より好ましくは多価芳香族基が式
-ph-X-ph-
{式中、 phはフエ二レン基 (置換基として炭素数 1〜6の脂肪族基を有してい てもよい)、 Xは— 0—、 一 S—、 — S (0) 2—又は式
- C (R3) (R4) -
(式中、 R3及び R4はそれそれ独立に水素原子又はメチル基を示すか、 又は R3 及び R4が結合して、 C (R3) (R4) でフルオレン璟を示す)
で示される架橋基を示す }
で示される 2価の芳香族基が挙げられる。
本発明で用いられるエポキシ樹脂 (a) は、 一般式 (1) において nが 0のと き (該エポキシ樹脂 (a) がビスフエノール S型エポキシ樹脂のとき) は、 原料 となるビスフエノール S、 ビス C 1〜C 6炭ィ匕水素基置換フエノール S (ペンゼ ン核上に C 1〜 C 6炭化水素置換を有するビスフエノ一ル S ) 等のビスフエノー ル S類、 該ビスフエノ一ル S類にアルキレンォキサイド等を反応させて得られる ビス (ヒドロキシ.一アルコキシフエニル) スルホン類もしくはビスフエノール S ノボラック等のビスフエノール S類を骨格分子に含むノボラヅク等にェピハロヒ ドリンを反応させることにより得られる。 また、 nが 0以外のときは、 まず、 原 料となる芳香族多価アルコール、 好ましくは、 上記 Aの説明で挙げた基に対応す る芳香族多価アルコール、 より好ましくはフエノール化合物 (モノ又は多価フエ ノールが架橋基を介して結合した芳香族多価アルコール又は多価フエノール) に アルキレンォキサイ ドを付加させ、 次いで得られた化合物の水酸基をェピハロヒ ドリンと反応させて得られる。 原料となる芳香族多価アルコールとしては芳香族多価アルコ一ルであれば特に制 限されるものではないが、 多価フヱノ一ル化合物が好ましく、 それらの例として は、 例えばビスフエノール A、 ビスフエノール F、 ビスフエノール E、 ビスフエ ノール S、 ビスフエノールフルオレン、 ビスクレゾ一ルフルォレン、 ォキシジフ ェノ一ルおよびチォジフェノール等のビスフエノール類、フエノ—ルノボラック、 クレゾールノボラヅク、 ビスフエノール Aノボラック、 ビスフエ-ノール Fノボラ ヅクおよびトリフエノールメタン骨格を有するフエノールノボラック等のノボラ ヅク類、 カテコール、 レゾルシン、 ハイド口キノンおよびピロガロール等のヒド 口キシ基を 2〜 3有する多価フエノ一ル、 ビフヱノール等が挙げられる。 好まし くはビスフエノール型 (ビフヱノールも含む) 2価アルコールが挙げられ、 ビス フエノ一ル八、 ビスフエノール F、 ビスフエノ一ル 、 ビスフエノール S、 ビス フエノ一ルフルオレン、 ォキシジフエノ一ル、 チォジフエノール、 ビフエノール であり、 更に好ましくはビスフエノール Sおよびビスフエノールフルオレンであ る。 ェピハロヒドリンとしては特に限定はしないが、 ェビクロルヒドリン、 5— メチルェピクロルヒドリン、 ェピブ口モヒドリン、 ーメチルェピブロモヒドリ ン等が挙げられるが、 好ましいのはェピクロルヒドリンである。
フエノール化合物に付加させるアルキレンオキサイ ドとしては、一般式 (1)の R に対応するアルキレンォキサイ ドであれば特に制限はない。 通常エチレンォキサ ィド、 プロピレンォキサイ ド、 テトラメチレンォキサイド、 メチルエチレンォキ サイ ド、 へキサメチレンォキサイ ド等の炭素数 2〜 6のアルキレンォキサイドを 挙げることができ、耐熱性、機械強度の観点からエチレンォキサイドが好ましい。 同様に付加するアルキレンォキサイドはフエノール 1当量につきアルキレンォキ サイ ド 0 . 5〜3当量が好ましく、 更に好ましくは 1 . 0〜1 . 5当量である。 本発明の液晶シール剤は熱硬化剤 (b ) を含有する。 熱硬化剤としては加熱に より、 通常は 5 0 °C以上に加熱することによりエポキシ樹脂と反応して硬化物を 形成するものであれば特に限定されるものではない。 通常加熱した時に液晶シ一 ル剤が液晶を汚染することなく均一に速やかに反応を開始すること、 使用時には 室温下における絰時的な粘度変化が少ないことが重要であり、 これらの条件を満 たすものが好ましい。 熱硬化条件としては液晶滴下方式の場合、 封入される液晶 の特性低下を最小限に留める為、 一般に 1 2 0 °C以下の温度で、 1時間程度での 低温硬化能が求められている。 以上の点を鑑みて、 本発明の液晶シール剤におけ る熱硬化成分として特に多官能ジヒドラジド類、 多価フエノール類を使用するこ とが好ましい。
多官能ジヒドラジド類とは分子中に 2個以上のヒドラジド基を有するものを指 し、 何れも使用できる。 一般的には、 炭素数 2〜 2 0の脂肪族又は芳香族炭ィ匕水 素骨格上に酸ヒドラジド基を 2以上、通常 2〜4個有する酸ヒドラジドが挙げられ る。 なお該酸ヒドラジド基は該炭化水素骨格上に形成されたヒダントイン骨格上 に、 C 1〜C 3アルキレンを介して結合していてもよい。 また、 芳香族炭化水素 骨格のときは骨格中に 1〜2個の窒素原子を含んでいてもよい。
多官能ジヒドラジド類の具体例としては、 例えば、 シユウ酸ジヒドラジド、 マロ ン酸ジヒドラジド、 コハク酸ジヒドラジド、 アジピン酸ジヒドラジド、 アジピン 酸ジヒドラジド、 ピメリン酸ジヒドラジド、 スベリン酸ジヒドラジド、 ァゼライ ン酸ジヒドラジド、 セバシン酸ジヒドラジド、 ドデカンニ酸ジヒドラジド、 へキ サデカン酸ジヒドラジド、 マレイン酸ジヒドラジド、 フマル酸ジヒドラジド、 ジ グリコール酸ジヒドラジド、 酒石酸ジヒドラジド、 リンゴ酸ジヒドラジド等の脂 肪酸骨格からなる二塩基酸ジヒドラジド類、 ィソフタル酸ジヒドラジド、 テレフ 夕ル酸ジヒドラジド、 2 , 6—ナフトェ酸ジヒドラジド、 4 , 4一ビスベンゼン ジヒドラジド、 1 , 4—ナフトェ酸ジヒドラジド、 2 , 6—ピリジンジヒドラジ ド、 1 , 2 , 4—ベンゼントリヒドラジド、 ピロメリット酸テトラヒドラジド、 1 , 4 , 5 , 8—ナフトェ酸テトラヒドラジド等の芳香族ジヒドラジド類、 1 , 3—ビス (ヒドラジノカルボノエチル) 一 5—イソプロピルヒダントイン等のバ リンヒダントィン骨格を有するジヒドラジド類が挙げられるが、 これらに限定さ れるものではない。 多官能ジヒドラジド類を硬化剤として使用する場合には、 粒 径を細かくして均一に分散することが好ましい。 多官能ジヒドラジド類のうち、 特に好ましいのはィソフ夕ル酸ジヒドラジド、 バリンヒダントィン骨格を有する ジヒドラジド類であり、 その平均粒径は、 大きすぎると狭ギャップの液晶セル製 造時に上下ガラス基板の貼り合わせ時のギヤヅプ形成がうまくできない等の不良 要因となるため、 平均粒径で、 以下が好ましく、 より好ましくは 2 m以 下である。 また、 同様な理由から最大粒径は 8 im以下が好ましく、 より好まし くは 5 zm以下である。硬ィ匕剤の粒径はレーザ一回折'散乱式粒度分布測定器(乾 式) (株式会社セイシン企業製; L M S - 3 0 ) により測定できる。
また、 多価フエノール化合物を硬ィ匕剤として使用する場合には、 均一系として 使用することが好ましい。 好ましい多価フエノール化合物の例としては、 フエノ —ル ·ホルムアルデヒド重縮合物、 クレゾールホルムアルデヒド重縮合物、 ヒド ロキシペンズアルデヒド · フエノ一ル重縮合物、 クレゾ 'ール ·ナフトール ·ホル ムアルデヒド重縮合物、 レゾルシン'ホルマリン重縮合物、 フルフラール ·フエノ —ル重縮合物、 α—ヒドロキシフエニル一 ω—ヒドロポリ (ビフエ二ルジメチレ ンーヒドロキシフエ二レン) 等の多官能ノボラック類、 ビスフヱノール Α、 ビス フエノール F、 ビスフエノール S、 チォジフエノール、 4, 4 ' ービフエニルフ ヱノール、 ジヒドロキシナフ夕レン等が挙げられるがこれらに限定されるもので はない。
本発明の液晶シール剤中、 熱硬化剤 (b ) の配合比は、 活性水素当量で、 ェポ キシ樹脂 (a ) に対して 0 . 8〜3 . 0当量が好ましく、 より好ましくは 0 . 9 〜2 . 0当量である。 熱硬化剤 (b ) の量がこの程度のとき、 接着力が強く、 ガ ラス転移等も高く、 十分なポットライフを有し好ましい。
本発明で使用する充填材( c )としては、充填剤の役割を果たすものであれば、 特に限定されるものではなく、 例えば溶融シリカ、 結晶シリカ、 シリコンカーバ ィド、 窒化珪素、 窒化ホウ素、 炭酸カルシウム、 炭酸マグネシウム、 硫酸バリゥ ム、 硫酸カルシウム、 マイ力、 タルク、 クレー、 アルミナ、 酸化マグネシウム、 酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、 珪酸アルミニウム、 珪酸リチウムアルミニウム、 珪酸ジルコニウム、 チタン酸バ リウム、 ガラス繊維、 炭素繊維、 二硫化モリプデン、 アスベスト等が挙げられ、 好ましくは溶融シリカ、 結晶シリカ、 窒化珪素、 窒化ホウ素、 炭酸カルシウム、 硫酸バリウム、 硫酸カルシウム、 マイ力、 タルク、 クレー、 アルミナ、 水酸化ァ ルミ二ゥム、 珪酸カルシウム、 珪酸アルミニウムであり、 更に好ましくは溶融シ リカ、 結晶シリカ、 アルミナ、 タルク等である。 前記の充填剤は 2種以上を混合 して用いても良い。 これらの充填材の平均粒径は、 上下ガラス基板を貼り合わせ て液晶セルを製造する際の、 適当なギャップ形成のし易さを考慮すると、 3 zm 以下のものが好ましい。
本発明で使用される充填材 (c ) の液晶シール剤中の含有量は、 液晶セルのギ ヤップ形成のし易さ、 ガラス基板に対する接着強度、 耐湿信頼性、 吸湿後の接着 強度の維持等を考慮すると、 通常 5〜4 0重量%、 好ましくは 1 5〜2 5重量%
(ある。
本発明の液晶シール剤はその他の成分として、 下記するように、 光硬化性樹 脂、 ラジカル発生型光重合開始剤およびィォン補足剤、 有機溶媒その他の添加剤 などを含むことができる。 従って本発明のシール剤の好ましい組成の一つはシ一 ル剤全体に対して、一般式( 1 )で示されるエポキシ樹脂( a )が 5 %〜 8 5 %、 好ましくは 1 0 %〜5 0 %、 熱硬化剤 (b ) が、 活性水素当量で、 エポキシ樹脂
( a )に対して 8〜3 . 0当量、好ましくは 0 . 9〜2 . 0当量、充填材( c ) が 5〜4 0重量%、 好ましくは 1 5〜2 5重量%および残部がその他の成分であ り、 0〜8 8 %程度である。
本発明の液晶シール剤を液晶滴下方式に適用する為には、 光熱併用硬化系とす ることが好ましい。 光熱硬化併用系では、 基板に挟まれた液晶シール剤に光を照 射して一次硬ィ匕させた後、 加熱して二次硬化させることを特徴とする。 光熱併用 硬化系とすることを目的として本発明の液晶シール剤に、(メタ)アクリル基を含 有する硬化性樹脂( d )、ラジカル発生型光重合開始剤( e )を含有させてもよい。
(ここで「(メタ) アクリル」 とは「アクリル」及び/又は「メタクリル」 を意味 する。 以下同様。)
(メタ) アクリル基を含有する硬ィ匕性樹脂 ( d ) は特に限定されるものではな いが、 2官能以上のエポキシ樹脂を (メタ) アクリル化したものが好ましい。 2 官能以上のエポキシ樹脂としては、 例えばビスフエノール A型エポキシ樹脂、 ビ スフエノ一ル F型エポキシ樹脂、 ビスフエノール S型エポキシ樹脂、 チォジフエ ノール型エポキシ樹脂、 フエノールノボラック型エポキシ樹旨、 クレゾ一ルノボ ラック型エポキシ樹脂、 ビスフエノール Aノボラック型エポキシ樹脂、 ビスフエ ノール Fノボラック型エポキシ樹脂、 脂環式エポキシ樹脂、 脂肪族鎖状エポキシ 樹脂、 グリシジルエステル型エポキシ樹脂、 グリシジルァミン型エポキシ樹脂、 ヒダントイン型エポキシ樹脂、 イソシァヌレート型エポキシ翻旨、 トリフエノー ルメタン骨格を有するフエノ一ルノボラック型エポキシ樹脂、 その他、 二官能フ ェノ一ル類のジグリシジルェ一テル化物、 二官能アルコール類のジグリシジルェ 一テル化物、 およびそれらのハロゲン化物、 水素添加物などが挙げられる。 これ らのうち液晶に対する溶解性が小さいものが好ましく、 具体的には 2官能以上の 芳香族エポキシ樹脂 (反応性水酸基を有する芳香族化合物とェピハ口ヒドリンを 反応させて得られるエポキシ樹脂。 反応性水酸基を有する芳香族化合物としては 特に限定されないが、 前記エポキシ樹脂 (a) の項で説明した芳香族多価アルコ —ルが挙げられ、 例えばビスフエノール A、 ビスフエノール F、 ビスフエノール E、ビスフエノール S、ビスフエノールフルオレン、ビスクレゾールフルオレン、 ォキシジフエノ一ルぉよびチォジフエノール等のビスフエノ一ル類、 フエノ一ル ノボラック、 クレゾ一ルノボラック、 ビスフエノール Aノボラック、 ビスフエノ ール Fノボラヅクおよびトリフヱノールメ夕ン骨格を有するフエノールノボラヅ ク等のノボラヅク類、 カテコール、 レゾルシン、 ハイ ドロキノンおよびピロガロ —ル等の多価フエノール、 ビフエノール等が挙げられる。)の(メタ) ァクリレー 卜が好ましく、 更に好ましくは 2官能の芳香族エポキシ樹脂の (メタ) ァクリレ —ト、 具体的にはビスフエノ一ル型エポキシ樹脂の (メタ) ァクリレート、 レゾ ルシンの (メ夕) ァクリレートである。 アルキレンォキサイ ド単位を有するェポ キシ樹脂 (a) の (メ夕) ァクリレートも好ましい。 なおビスフエノール型ェポ キシ樹脂としては前記エポキシ樹脂 (a) の項で説明したビスフエノール型 (ビ フエノ一ルも含む) 2価アルコール若しくはそれにアルキレンォキサイ ドなどを 反応させて得られる芳香族基を有する 2価アルコールにェピクロルヒドリンを反 応させて得られるエポキシ樹脂が好ましい。 より具体的には下記式 (5 ) G - 0— (- R - 0 -) n - p h-X- p h - (一 0— R— ) n- 0 - G ( 5 )
(式中 G、 R、 n, p hおよび Xは前記したと同じ意味を有する)
で示されるエポキシ横 ¾旨が好ましい。
また、 本発明は、 上記以外の従来公知のエポキシ樹脂との併用を制限するもの ではない。 例えば、 ビスフエノール F型エポキシ樹脂、 脂環式エポキシ樹脂、 ト リグリシジルイソシァネート、 含複素環エポキシ樹脂、 水添ビスフエノール A型 エポキシ樹脂等があげられ、 本発明の特性を失わせない範囲でこれらのエポキシ 樹脂を併用しても構わない。通常は前記エポキシ樹脂(a ) (上記をシール剤中に おけるエポキシ樹脂全量に対して 5 0〜1 0 0重量% (以下同じ) の範囲、 好ま しくは 8 0〜1 0 0 %の範囲、 より好ましくは 9 0〜1 0 0 %の範囲である。 光熱併用硬化系も含めて本発明の液晶シール剤は、 エポキシ樹脂由来の加水分 解性塩素量が 6 0 0 p p m以下、 より好ましくは 3 0 0 p p m以下であるものが 好ましい。 下限はできるだけ 1 0 O p p m以下と少ない方がよいが、 技術的な問 題や、 コストなどから、 通常は 3 0 0 p p m程度で十分である。 この程度の加水 分解性塩素含有のときは、シール剤からの塩素での液晶汚染の心配はあまりない。 加水分解性塩素量は、 例えば次のようにして定量される。 まず、 約 0 . 5 gのェ ポキシ樹脂を 2 O m lのジォキサンに溶解し、 1 1^の1{ 011/ェ夕ノ一ル溶液5 m 1で 3 0分還流した後、 0 . 0 1 N硝酸銀溶液で滴定することにより定量する ことができる。 なお、 エポキシ樹脂由来の加水分解性塩素は、 上記のエポキシ樹 脂(a ) 由来のものと、 (メタ) ァクリレート製造時に使用するエポキシ樹脂由来 のものおよびその他のエポキシ樹脂を併用する場合にはそれ由来のものがある。 ここでいうェポキシ樹脂由来の加水分解性塩素量とは、 その総量のことである。 本発明において使用するエポキシ (メタ) ァクリレートは、 前述したエポキシ 樹脂に (メタ) アクリル酸を、 触媒と重合防止剤の存在下に、 エステル化させる ことにより得られる。 反応時は希釈溶剤としてトルエン、 キシレンなどの芳香族 炭化水素;酢酸ェチル、 酢酸プチルなどのエステル類; 1 , 4一ジォキサン、 テ トラヒドロフランなどのェ一テル類;メチルェチルケトン、 メチルイソブチルケ トンなどのケトン類;プチルセ口ソルプアセテート、 カルビトールアセテート、 ジエチレングリコ一ルジメチルエーテル、 プロピレングリコ一ルモノメチルェ一 テルアセテートなどのグリコール誘導体;シクロへキサノン、 シクロへキサノー ルなどの脂環式炭化水素及び石油エーテル、 石油ナフサなどの石油系溶剤類の 1 種又は 2種以上を加えても良い。 これらの希釈溶剤を使用する場合、 反応終了後 に減圧留去する必要があるため沸点が低く且つ揮発性が高い溶剤が好ましく、 具 体的にはトルエン、 メチルェチルケトン、 メチルイソプチルケトン、 カルビトー ルアセテートの使用が好ましい。 反応を促進させる為に触媒を使用することが好 ましい。 使用しうる触媒としては、 例えばペンジルジメチルァミン、 トリェチル ァミン、ベンジルトリメチルアンモニゥムクロライ ド、トリフエニルホスフィン、 トリフエニルスチビン等が挙げられる。 その使用量は反応原料混合物に対して、 好ましくは、 0 . 1〜1 0重量%、 特に好ましくは 0 . 3〜5重量%である。 反 応中 (メタ) アクリル基の重合を防止する為に、 重合禁止剤を使用することが好 ましい。 重合防止剤としては、 例えば、 メトキノン、 ハイ ドロキノン、 メチルハ ィドロキノン、 フエノチアジン、 ジブチルヒドロキシトルェン等が挙げられる。 その使用量は反応原料混合物に対して好ましくは 0 . 0 1〜1重量%、 特に好ま しくは 0 . 0 5〜0 . 5重量%である。 反応温度は、 通常 6 0〜: L 5 0 °C、 特に 好ましくは 8 0〜1 2 0 °Cである。 また、 反応時間は好ましくは 5〜 6 0時間で ある。
反応性及び粘度の制御のために (メタ) アクリル基を含有する硬化性樹脂とし て (メタ) アクリル酸エステルのモノマ一及び/又はオリゴマ一を併用しても良 い。 そのようなモノマ一、 オリゴマーとしては、 例えば、 ジペン夕エリスリト一 ルと (メタ) ァクリル酸の反応物、 ジペン夕エリスリ トール '力プロラクトンと (メタ) アクリル酸の反応物等が挙げられるが、 液晶に対する汚染性が低いもの ならば特に制限されるものではない。
本発明の液晶シール剤に用いられるラジカル発生型光重合開始剤 ( e ) として は、 液晶の特性に比較的影響が小さい i線 (3 6 5 n m) 付近に感度を持ち、 な お且つ液晶汚染性が低い開始剤であることが好ましい。 使用しうるラジカル発生 型光重合開始剤としては、 例えば、 ベンジルジメチルケ夕一ル、 1—ヒドロキシ シクロへキシルフェニルケトン、 ジェチルチオキサントン、 ベンゾフヱノン、 2 —ェチルアンスラキノン、 2—ヒドロキシ一 2—メチルプロピオフエノン、 2— メチルー 〔4— (メチルチオ) フエニル〕 —2—モルフォリノ一 1—プロパン、 2, 4, 6—トリメチルペンゾィルジフエニルホスフィンオキサイド、 3, 6 - ビス (2—メチルー 2—モルホリノプロピオニル) 一 9—n—ォクチルカルバゾ —ル、 1 , 7—ビス ( 9—ァクリジル) ヘプタン等があげられ、 好ましいものと しては、 例えば 3 , 6—ビス ( 2—メチル一 2—モルホリノプロピオニル) 一 9 - n—ォクチルカルバゾ一ル等の力ルバゾ一ル系光重合開始剤、 1, 7—ビス( 9 ーァクリジル) ヘプ夕ン等のァクリジン系光重合開始剤があげられる。
本発明の液晶シール剤中、 (メタ) アクリル基を含有する硬ィ匕性樹脂 ( d )成分 に対するラジカル発生型光重合開始剤 ( e ) の配合比は、 通常 (d ) 成分 1 0 0 重量部に対して 0 . 1〜1 0重量部、 好ましくは◦. 5〜3重量部である。 ラジ カル発生型光重合開始剤の量が 0 , 1重量部より少ないと光硬化反応が充分でな くなり、 1 0重量部より多くなると液晶に対する開始剤による汚染や硬化樹脂特 性の低下が問題になる虞がある。
本発明の液晶シール剤は、 その接着強度を向上させるために、 シランカツプリ ング剤 (f ) を含有することが好ましい。 使用しうるシランカップリング剤とし ては、 例えば 3―グリシドキシプロピルトリメトキシシラン、 3—グリシドキシ プロピルメチルジメトキシシラン、 3—グリシドキシプロピルメチルジメトキシ シラン、 2— ( 3, 4—エポキシシクロへキシル) ェチルトリメ トキシシラン、 N—フエニル一ァ一ァミノプロビルトリメトキシシラン、 N— ( 2—アミノエチ ル) 3—ァミノプロピルメチルジメトキシシラン、 N— ( 2一アミノエチル) 3 —ァミノプロピルメチルトリメトキシシラン、 3—ァミノプロピルトリエトキシ シラン、 3—メルカプトプロビルトリメトキシシラン、 ビニルトリメトキシシラ ン、 N— ( 2 - (ビニルペンジルァミノ) ェチル) 3—ァミノプロピルトリメト キシシラン塩酸塩、 3—メ夕クリロキシプロビルトリメトキシシラン、 3—クロ 口プロビルメチルジメトキシシラン、 3—クロ口プロビルトリメトキシシラン等 のシランカップリング剤が挙げられる。 これらシランカップリング剤は 2種以上 を混合して用いても良い。 これらのうち、 より良好な接着強度を得るためにはシ ランカップリング剤がァミノ基を有するシランカップリング剤であることが好ま しい。 シランカップリング剤を使用する事により接着強度が向上し、 耐湿信頼性 が優れた液晶シール剤が得られる。
本発明の液晶シール剤には必要に応じて更にイオン捕捉剤 (g ) を含有せしめ てもよい。 イオン捕捉剤の添加は液晶シール剤の不純物無機イオンを吸着、 固定 化し液晶に溶出する無機ィォンを低減するため、 液晶の比抵抗値の低下を防く、効 果がある。 イオン捕捉剤としては、 イオン捕捉能を有する無機化合物であること が好ましい。 ここで言うイオン捕捉能は、 リン酸、 亜リン酸、 有機酸ァニオン、 ハロゲンァニオン、 アルカリ金属カチオン、 アルカリ土類金属カチオン等を捕捉 することによりイオン性不純物を減少させるものである。 用いうるィォン捕捉剤 としては、例えば一般式 B iOX (OH) Y (Ν03) [ここで、 Xは 0. 9〜: L .
1、 Υは 0. 6〜0. 8、 Ζは 0. 2〜0. 4の正数である] で表される酸ィ匕ビ スマス系イオン捕捉剤、 酸ィ匕ァンチモン系ィオン捕捉剤、 リン酸チタン系イオン 捕捉剤、 リン酸ジルコニウム系イオン捕捉剤、一般式 MgXAlY(OH)2X+3Y-2Z
(C03)Z-mH20 [ここで、 X、 Y、 Ζは 2 Χ+ 3 Υ— 2 Ζ≥ 0を満たす正数、 mは正数である]で表されるハイ ドロタルサイト系ィォン捕捉剤等が挙げられる。 これらのイオン捕捉剤は、 例えば、 IXE- 100 (東亞合 «式会社製、 リン 酸ジルコニウム系イオン捕捉剤)、 IXE-300 (東亞合離式会社製、酸化ァ ンチモン系イオン捕捉剤)、 IXE-400 (東亞合成株式会社製、 リン酸チタン 系イオン捕捉剤)、 IXE- 500 (東亞合^ ¾式会社製、酸ィ匕ビスマス系イオン 捕捉剤)、 IXE-600 (東亞合成株式会社製、 酸化アンチモン -酸化ビスマス 系イオン捕捉剤)、 DHT-4A (ハイドロタルサイ ト系イオン捕捉剤、協和化学 工業株式会社)、キヨ一ワード KW— 2000 (ハイ ドロタルサイト系イオン捕捉 剤、 協和化学工業株式会社) として市販されている。 これらは単独でも 2種以上 を混合して用いても良い。 イオン捕捉剤は液晶シール剤組成物中で通常 0. 2〜 20重量%を占める割合で用いるのが好ましい。
本発明による液晶シール剤には、さらに必要に応じて、有機溶媒、有機充填材、 応力緩和材、 ならびに顔料、 レペリング剤、 消泡剤などの添加剤を配合すること ができる。
本発明の液晶シール剤の各構成成分の比率は特に限定されるものではないが、 好ましくは、 シール剤 (組成物) 全量に対する各成分の含量が、 一般式 (1) に おいて nがゼロでない (構造中にアルキレンォキサイ ド単位を有する) エポキシ 樹脂 (a)成分 5〜80%、、 熱硬化剤 (b)成分 2〜20%、 及び平均粒径 3 m以下の充填材(c)成分 5〜50%、 (メタ) ァクリル基を含有する硬化性樹脂 (d) 成分 5〜80%、、 ラジカル発生型光重合開始剤 (e) 成分 0. 1〜3%、 シランカップリング剤 (f ) 成分 0. 2〜20%、 イオン捕捉剤 (g) 成分 0. 2〜2%である。この本発明の液晶シール剤を得るには、例えば(a)、(d)、(e) 成分を前記した混合割合で溶解混合する。次いでこの混合物に( b )、( c )、( f )、 ( g) 成分等の所定量を添加し、 公知の混合装置、 例えば 3本ロール、 サンドミ ル、 ボールミル等により均一に混合することにより本発明の液晶シール剤を製造 することができる。 必要により、 混合が終わったあと夾雑物を除く為に、 濾過処 理を施してもよい。
本発明の液晶セルは、 基板に所定の電極を形成した一対の基板を所定の間隔に 対向配置し、 周囲を本発明の液晶シール剤でシールし、 その間隙に液晶が封入さ れたものである。 封入される液晶の種類は特に限定されない。 ここで、 基板とし てはガラス、 石英、 プラスチック、 シリコン等からなる少なくとも一方に光透過 性がある組み合わせの基板から構成される。 その製法は、 例えば本発明の液晶シ —ル剤に、 グラスファイバ一等のスぺ一サ一 (間隙制御材) を添加後、 該一対の 基板の一方にディスペンサー等により該液晶シール剤を堰状に塗布した後、 該液 晶シール剤堰の内側に液晶を滴下し、 真空中にてもう一方のガラス基板を重ね合 わせ、 ギャップ出しを行う。 ギヤヅプ形成後、 紫外線照射機により液晶シール部 に紫外線を照射させて光硬化させる。 紫外線照射量は、 通常 5 0 0〜 6 0 0 0 m J/ c m2、好ましくは 1 0 0 0〜4 0 0 0 m J/ c m2の照射量である。その後、 9 0〜1 3 0 °Cで 1〜2時間硬化することにより本発明の液晶表示セルを得るこ とができる。 スぺーサ一としては、 例えばグラスファイバ一、 シリカビーズ、 ポ リマ一ビーズ等があげられる。 その直径は、 目的に応じ異なるが、 通常 2〜8〃 m、 好ましくは 4〜7 2 mである。 その使用量は、 本発明の液晶シール剤 1 0 0 βに,対し通常 0 . 1〜4重量部、 好ましくは 0 . 5〜2重量部、 更に、 好ま しくは 0 . 9〜: L . 5重量部程度である。
本発明の液晶シール剤は、製造工程を通して液晶に対して極めて汚染性が低く、 基板への塗布作業性、 貼り合わせ性、 接着強度、 室温での使用可能時間 (ポット ライフ)、低温硬化性に優れる。このようにして得られた本発明の液晶表示セルは、 液晶汚染による表示不良が無く、 接着性、 耐湿信頼性に優れたものである。 実施例
以下に実施例により本発明を更に詳しく説明するが、 本発明はそれらに限定さ れるものではない。 合成例 1 : 4, 4, —置換 EO付力卩ピス Sエポキシ樹脂 (エポキシ樹脂 A) の合 成
温度計、滴下ロート、冷却管、攪拌器を取り付けたフラスコに 45 4, —ビス(2 ーヒドロキシェチルォキシ) ジフエニルスルホン (日華ィ匕学製;商品名 SEO— 2、 融点 183。C、 純度 99. 5%) 169部、 ェピクロルヒドリン 370部、 ジメチルスルホキシド 185部、 テトラメチルアンモニゥムクロライド 5部を加 ぇ撹袢下で溶解し、 50°Cにまで昇温した。 次いでフレーク状の水酸ィ匕ナトリウ ム 60部を 100分かけて分割添加した後、 更に 50°Cで 3時間、 後反応を行つ た。 反応終了後水 400部を加えて水洗を行った。 油層から口一タリ一エバポレ —夕一を用いて 130°Cで減圧下、 過剰のェピクロルヒドリンなどを留去した。 残留物にメチルイソプチルケトン 450部を加え溶解し、 70 °Cにまで昇温した。 撹拌下で 30 %の水酸化ナトリゥム水溶液 10部を加え、 1時間反応を行った後、 水洗を 3回行い、 ロー夕リーエバポレーターを用いて 180°Cで減圧下メチルイ ソプチルケトンを留去し、 下記式 (6) で表される液状エポキシ樹脂 A 2 12部 を得た。 得られたエポキシ樹脂のエポキシ当量は 238 g/e q、 25°Cにおけ る粘度は 1 1340 OmP a · sであった。
Figure imgf000021_0001
(式中、 Gはグリシジル基を表す。) 合成例 2 :エチレンォキサイド付加ビスフエノールフルオレンエポキシ樹 '脂 (ェ ポキシ樹脂 B) の合成 温度計、 滴下ロート、 冷却管、 攪拌器を取り付けたフラスコに窒素ガスパージを 施しながらビスフエノキシエタノールフルオレン (大阪ガス株式会社製;商品名
B P E F、 白色固体、 融点 1 2 4〜1 2 6 ) 2 2 0部をェピクロルヒドリン 3 7
0部に溶解させ、 テトラメチルアンモニゥムクロライド 5部を添加した。 更に 4
5 °Cに加熱しフレーク状水酸化ナトリウム 6 0部を 1 0 0分かけて分割添加し、 その後、 更に 4 5 で 3時間反応させた。 反応終了後水洗を 2回行い生成塩なと" を除去した後、 ロータリ一エバポレ一夕一を使用し、 1 3 0。Cに加熱し減圧下で 過剰のェピクロルヒドリン等を留去し、 残留物に 5 5 2部のメチルイソプチルケ トンを加え溶解した。 このメチルェチルケトンの溶液を 7 0。Cに加熱し 3 0重 量%の水酸化ナトリゥム水溶液 1 0部を添加し 1時間反応させた後、 洗浄液の p
Hが中性となるまで水洗を繰り返した。 更に水層は分離除去し、 ロータリーエバ ポレー夕一を使用して油層から加熱減圧下メチルェチルケトンを留去し、 下記式
( 7 )で表されるエポキシ樹脂 Bを得た。得られたエポキシ樹脂は半固形であり、 エポキシ当量は 2 9 4 g/ e qであった
Figure imgf000022_0002
Figure imgf000022_0001
(式中、 Gはグリシジル基を表す。) 合成例 a : 2 , 4, 一置換 E O付加ビス Sエポキシ樹脂(エポキシ樹脂 E ) の合 成
温度計、滴下口一ト、冷却管、攪拌器を取り付けたフラスコに 2 , 4 5 —ビス (2 ーヒドロキシェチルォキシ) ジフエニルスルホン (水酸基当量: 2 0 9、 日華化 学製) 1 6 9部、 ェピクロルヒドリン 3 7 0部、 ジメチルスルホキシド 1 8 5部 を加え撹拌下で溶解し、 5 0 °Cにまで昇温した。 次いでフレーク状の水酸化ナト リウム 6 0部を 1 0 0分かけて分割添加した後、 更に 5 0 °Cで 3時間、 後反応を 行った。 反応終了後水 400部を加えて水洗を行った。 油層から口一タリ一エバ ポレー夕一を用いて 130°Cで減圧下、 過剰のェピクロルヒドリンなどを留去し た。 残留物にメチルイソプチルケトン 450部を加え溶解し、 70°Cにまで昇温 した。 撹拌下で 30 %の水酸化ナトリゥム水溶液 10部を加え、 1時間反応を行 つた後、 水洗を 3回行い、 口一夕リーエバポレー夕一を用いて 180°Cで減圧下 メチルイソプチルケトンを留去し、 下記式 (8) で表される液状エポキシ樹脂 A 220部を得た。 得られたエポキシ樹脂のエポキシ当量は 232 g/e qであつ た。
Figure imgf000023_0001
(8) 合成例 β:ァリル基で置換された: ΕΟ付加ビス Sエポキシ樹脂(エポキシ樹脂 F) の合成
温度計、 滴下ロート、 冷却管、 攪拌器を取り付けたフラスコに下記式 (9) の化 合物 (水酸基当量 209) 125. 4部、 ェピクロルヒドリン 222部、 ジメチ ルスルホキシド 1 1 1部を加え撹拌下で溶解し、 50°Cにまで昇温した。 次いで フレーク状の水酸化ナトリウム 36. 4部を 100分かけて分割添カ卩した後、 更 に 50°Cで 3時間、 後反応を行った。 反応終了後水 400部を加えて水洗を行つ た。 油層から口一タリ一エバポレ一夕一を用いて 130°Cで減圧下、 過剰のェピ クロルヒドリンなどを留去した。 残留物にメチルイソプチルケトン 318部を加 え溶解し、 70°Cにまで昇温した。 撹拌下で 30%の水酸ィ匕ナトリウム水溶液 6 部を加え、 1時間反応を行った後、 水洗を 3回行い、 口一夕リーエバポレーター を用いて 180°Cで減圧下メチルイソプチルケトンを留去し、 下記式 (10) で 表される液状エポキシ樹脂 E 153部を得た。 得られたエポキシ樹脂のエポキシ 当量は 265 g/e qであった。 合成例 原料
HO-H2C-H2C-0 O— CH2-CH2-OH
(9)
Figure imgf000024_0001
(10) 実験例 1 :液晶溶出物テスト
液晶と高沸点成分からなるエポキシ樹脂の接触により液晶に溶出するシール剤 構成成分をガスクロマトグラフィ一で定量した。 すなわち、 サンプル瓶に高沸点 成分からなるエポキシ樹脂を 0. lg入れ、 液晶 (メルク社製、 MLC-686 6-100) 1mlを加えた後、 シール剤の硬化条件を想定して 120°Cオーブ ンに 1時間接触処理した。 その後、 1時間室温にて放置し、 空のサンプル瓶に接 触処理後の液晶を移し替えた。 この液晶に溶出したエポキシ樹脂を、 ペン夕デカ ンを内部標準物質に用い、 ガスクロマトグラフィーにて液晶に対する溶出量 (w t %) を定量した。結果を表 1に示す。 表 1 溶出量 (wt%)
エポキシ樹脂 A 0. 05
エポキシ樹脂 B 0. 47
エポキシ樹脂 C 9. 17 エポキシ樹脂 D 0. 58
エポキシ樹脂 E 0. 80 エポキシ樹脂 A:合成例 1
エポキシ樹脂 B :合成例 2
エポキシ樹脂 C : RE-310P (日本ィ匕薬株式会社製;エポキシ当量 170 g /eq、 液状ビスフエノール A型エポキシ樹脂)
エポキシ樹脂 D : EBPS-300 (日本化薬株式会社製;エポキシ当量 233 g/eq、 ビスフエノール S型エポキシ樹脂)
エポキシ樹脂 E :合成例 a 表 1から明らかなように、 従来液晶シール剤に用いられてきたビスフエノール A 型エポキシ樹脂 (エポキシ樹脂 C) の液晶への溶出量は極めて多いが、 エチレン ォキサイ ドを付加した構造のエポキシ樹脂 (エポキシ樹脂 B) の溶出量は非常に 少なくなつている。 また、 ビスフエノール S型エポキシ樹脂 (エポキシ樹脂 D) の溶出量はそれ自体少ないが、 エチレンォキサイ ドを付加した構造としたェポキ シ樹脂 Aの液晶への溶出量は更に 1 / 10以下になっていることが分かる。 実施例 1
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 RE— 404P、 ェ ポキシ当量 160 g/e q、 加水分解量 3 Op m) に対して、 エポキシ基の 1 00%当量のァクリル酸を反応させ、 イオン交換水/トルエンの分液処理により 精製後、 トルェンを留去してビスフエノール Fエポキシのァクリレートを得た。 得られたビスフエノール Fエポキシのァクリレート 80重量部、 合成例のェポキ シ樹脂 Aを 20重量部、 ラジカル発生型光重合開始剤として 3, 6—ビス (2— メチルー 2—モルホリノプロピオニル) — 9—n—ォクチルカルバゾ一ル (旭電 化工業 (株) 製、 アデカオブトマー N— 1414) 1. 8重量部、 アミノシラン カップリング剤 (N- 3 (アミノエチル) ァ一ァミノプロビルトリメトキシシラ ン、 信越シリコーン (株) 製、 KBM- 603) 1. 2重量部、 を 90°Cで加熱 溶解し、 樹脂液を得た。 室温に冷却後、 イソフタル酸ジヒドラジド (商品名 ID H-S;大塚化学 (株) 製ジェヅトミル粉砕グレードを更にジェヅトミルで微粉 砕したもの、 融点 224°C、 活性水素当量 48. 5 g/eq, 平均粒径 1 , 7 u m、 最大粒径 7〃 m) 4. 1重量部、 溶融破砕シリカ (龍森 (株) 製、 クリスタ ライト IFF、 平均粒径 1. Oum) 30重量部、 IXE— 100 (東亞合淑朱 式会社製、 リン酸ジルコニウム系イオン捕捉剤) 1重量部を添加して 3本ロール により混練して本発明の液晶シール剤を得た。 液晶シール剤の粘度 (25°C) は 30 OPa · sであった (R型粘度計 (東機産業 (株) 製) で測定)。 実施例 2
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 RE— 404P、 ェ ポキシ当量 160 g/e q、 加水分解量 3 Oppm) に対して、 エポキシ基の 1 00%当量のアクリル酸を反応させ、 イオン交換水 Zトルエンの分液処理により 精製後、 トルエンを留去してビスフエノール Fエポキシのァクリレートを得た。 得られたビスフヱノール Fエポキシのァクリレート 80重量部、 合成例のェポキ シ樹脂; Bを 20重量部、 ラジカル発生型光重合開始剤として 3 , 6—ビス ( 2— メチル— 2—モルホリノプロピオニル) — 9—n—ォクチルカルバゾール (旭電 化工業 (株) 製、 アデカオプトマ一 N— 1414) 1. 8重量部、 アミノシラン カップリング剤 (N— /? (アミノエチル) ァーァミノプロビルトリメトキシシラ ン、 信越シリコーン (株) 製、 KBM— 603) 1. 2重量部、 を 90°Cで加熱 溶解し、 樹脂液を得た。 室温に冷却後、 イソフタル酸ジヒドラジド (商品名 ID H-S;大塚化学 (株) 製ジェットミル粉砕グレードを更にジェットミルで微粉 碎したもの、 融点 224°C、 活性水素当量 48. 5 g/eq 平均粒径 1. 7 μ. m、 最大粒径 7 m) 3. 3重量部、 溶融破砕シリカ (龍森 (株) 製、 クリス夕 ライ ト IFF、 平均粒径:!. Oum) 30重量部、 IXE— 100 (東亞合 β¾¾ 式会社製、 リン酸ジルコニウム系イオン捕捉剤) 1重量部を添加して 3本ロール により混練して本発明の液晶シール剤を得た。 液晶シール剤の粘度 (25°C) は 40 OPa · sであった (R型粘度計 (東機産業 (株) 製) で測定)。 実施例 3
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 E-404PS ェ ポキシ当量 160 g/e q、 加水分解量 30ppm) に対して、 エポキシ基の 1 00 %当量のァクリル酸を反応させ、 ィオン交換水/トルェンの分液処理により 精製後、 トルエンを留去してビスフエノール Fエポキシのァクリレートを得た。 得られたビスフエノール Fエポキシのァクリレ一ト 80重量部、 合成例のェポキ シ樹旨 Aを 20重量部、 ラジカル発生型光重合開始剤として 33 6—ビス (2— メチルー 2—モルホリノプロピオニル) 一 9—n—ォクチルカルバゾ一ル (旭電 化工業 (株) 製、 アデカオプトマ一 N— 1414) 1. 8重量部、 アミノシラン カヅプリング剤 (N-/3 (アミノエチル) ァーァミノプロビルトリメトキシシラ ン、 信越シリコーン (株) 製、 KBM-603) 1. 2重量部、 を 90°Cで加熱 溶解し、 樹脂液を得た。 室温に冷却後、 アジピン酸ジヒドラジド (商品名 ADH ― S ;大塚化学 (株) 製ジェットミル粉砕グレードを更にジェヅトミルで微粉碎 したもの、融点 181°C、活性水素当量 43. 5 g/eq、平均粒径 1. 3〃m、 最大粒径 5 m) 3. 8重量部、 溶融破砕シリカ (龍森 (株) 製、 クリス夕ライ ト 1 FF、 平均粒径 1. 0 m) 30重量部、 IXE— 100 (東亞合成株式会 社製、 リン酸ジルコニウム系イオン捕捉剤) 1重量部を添加して 3本ロールによ り混練して本発明の液晶シール剤を得た。 液晶シール剤の粘度 (25°C) は 30 OPa · sであった (R型粘度計 (東機産業 (株) 製) で測定)。 実施例 4
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 RE— 404P、 ェ ポキシ当量 160 g/e , 加水分解量 3 Oppm) に対して、 エポキシ基の 1 00%当量のアクリル酸を反応させ、 イオン交換水 Zトルエンの分液処理により 精製後、 トルエンを留去してビスフエノール Fエポキシのァクリレートを得た。 得られたビスフヱノール Fエポキシのァクリレート 80重量部、 実験例で用いた エポキシ樹脂 D (EBPS-300 ; 日本化薬株式会社製) を 20重量部、 ラジ カル発生型光重合開始剤として 3, 6—ビス (2—メチルー 2—モルホリノプロ ピオニル) —9一 n—ォクチルカルバゾール (旭電化工業 (株) 製、 アデカオプ トマ一 N— 1414) 1. 8重量部、 アミノシランカップリング剤 (N— /? (ァ ミノェチル)ァ一ァミノプロビルトリメトキシシラン、信越シリコーン (株)製、 KBM-603) 1. 2重量部、 を 90°Cで加熱溶解し、 樹脂液を得た。 室温に 冷却後、 イソフ夕ル酸ジヒドラジド (商品名 IDH— S ;大塚化学 (株) 製ジェ ヅトミル粉砕グレ一ドを更にジェヅトミルで微粉砕したもの、 融点 224°Cヽ 活 性水素当量 48. 5 g/eq, 平均粒径 1. 7 ヽ 最大粒径 7 zm) 4. 2重 量部、 溶融破砕シリ力 (龍森 (株) 製、 クリスタライト 1 F F、 平均粒径 1. 0 j m) 30重量部、 IXE- 100 (東亞合成株式会社製、 リン酸ジルコニウム 系イオン捕捉剤) 1重量部を添加して 3本ロールにより混練して本発明の液晶シ 一ル剤を得た。 液晶シール剤の粘度 (25°C) は 48 OPa · sであった (R型 粘度計 (東機産業 (株) 製) で測定)。 比較例 1
ビスフエソ一ル F型エポキシ樹脂 (日本ィ匕薬株式会社製、 RE-404P, ェ ポキシ当量 160 g/e q、 カロ水分解量 30 ppm) に対して、 エポキシ基の 1 00%当量のアクリル酸を反応させ、 イオン交換水 Zトルエンの分液処理により 精製後、 トルエンを留去してビスフエノ一ル Fエポキシのァクリレートを得た。 得られたビスフエノール Fエポキシのァクリレート 80重量部、 実験例のェポキ シ樹脂 C (RE-310P ; 日本化薬株式会社製) を 20重量部、 ラジカル発生 型光重合開始剤として 3 , 6—ビス( 2—メチルー 2—モルホリノプロピオニル) — 9— n—ォクチルカルバゾール (旭電化工業 (株) 製、 アデカオプトマ一 N— 1414) 1. 8重量部、 アミノシランカヅプリング剤(N— 5 (アミノエチル) ァーァミノプロビルトリメトキシシラン、 信越シリコーン (株) 製、 KBM-6 03) 1. 2重量部、 を 90°Cで加熱溶解し、 樹脂液を得た。 室温に冷却後、 ィ ソフタル酸ジヒドラジド (商品名 IDH-S ;大塚化学 (株) 製ジェヅトミル粉 砕グレードを更にジェットミルで微粉碎したもの、 融点 224°C;、 活性水素当量
48. 5 g/eq、 平均粒径 1. 7〃m、 最大粒径 7/zm) 5. 7重量部、 溶融 破砕シリカ (龍森 (株) 製、 クリスタライト 1 FF、 平均粒径 1. Oum) 30 重量部、 IXE— 100 (東亞合成株式会社製、 リン酸ジルコニウム系イオン捕 捉剤) 1重量部を添カ卩して 3本ロールにより混練して本発明の液晶シ一ル剤を得 た。 液晶シール剤の粘度 (25。C) は 20 OPa · sであった (R型粘度計(東 機産業 (株) 製) で測定)。 実験例 2
次に、 実施例 1、 2及び比較例 1、 2の液晶シール剤について、 液晶溶出物テ スト、 接着強度テスト、 ポヅトライフテストを実施し、 またガラス転移点を測定 した。 結果を表 2に示す。 表 2
実施例 1 実施例 2 実施例 3 実施例 4 比較例 1 粘度 (Pa ' s) 300 400 300 480 ZOO 接着強度 (MP a) 75 75 80 75 75 ポヅトライフ (粘度増: % ) 20 20 10 20 20 硬化物のガラス転移点 (°C) 87 87 90 89 87 液晶汚染性テスト ( 120°CX 1 hr.)
溶出物定量 (ppm)
エポキシ樹脂 A 50 - 50 - - エポキシ樹脂: B — 200 — 一 一 エポキシ樹脂 C — — — 一 6000 エポキシ樹脂 D - - - 250 - ビスフエノール F 450 450 430 450 450 エポキシジァクリレート
ィソフタル酸ジヒドラジド 未検出 未検出 .― 未検出 未検出 (IDH)
アジピン酸ジヒドラジド - ― 未検出 ― 一 (ADH)
合計 500 650 480 700 6450 表 2から明らかなように、 実施例 1、 2に示される本発明の滴下工法用液晶シー ル剤と比較例 2に示されるビスフエノ一ル A型エポキシ樹脂を使用した滴下工法 用液晶シール剤を対比すると、 接着強度、 ポットライフ、 ガラス転移点ではほぼ 同じ数値を示している。 しかし、 液晶への溶出物量を見ると、 比較例 1の液晶シ ール剤では 6 4 5 0 p pmであるのに対し、 実施例 1の液晶シール剤では 5 0 0 P m、実施例 2の液晶シール剤では 6 5 0 p p mであり、大幅に減少している。 また、 実施例 1に示される本発明の滴下工法用液晶シール剤と実施例 4に示され る滴下工法用液晶シール剤を対比すると、 双方ともビスフエノール S骨格を有す るが故に液晶への溶出量は少なくなつているが、 エチレンォキサイドを付加した 構造とした実施例 1の方がエポキシ樹脂の液晶への溶出量は一段と少なくなつて いることが分かる。
すなわち、 本発明の滴下工法用液晶シール剤では、 シール剤としての特性を維持 したまま、 液晶への溶出物の量が大幅に減少していることがわかる。
なお、 各テストは下記の方法で実施した。 接着強度テスト
得られた液晶シール剤 1 0 0 gにスぺ一サ一として 5 /mのグラスファイバー 1 gを添加して混合撹拌を行う。 この液晶シール剤を 5 O mmx 5 O mmのガラ ス基板上に塗布し、 その液晶シール剤上に 1 . 5 mmx l . 5 mmのガラス片を 貼り合わせ UV照射機により 3 0 0 O mJ/c m2 の紫外線を照射した後、 1 2 0 °Cオーブンに 1時間投入して硬化させた。 そのガラス片のせん断接着強度を測 定した。 ポットライフテスト
得られた液晶シール剤を 3 0 °Cにて放置し、 初期粘度に対しての粘度増加率 (%) を測定した。 ガラス転移点 得られた液晶シール剤をポリエチレンテレフタレ一ト (PET) フィルムに挟 み厚み 60〃mの薄膜としたものに UV照射機により 3000mJ/cm2の紫 外線を照射した後、 120°Cオープンに 1時間投入して硬化させ、 硬化後 PET フィルムを剥がしてサンプルとした。 TMA試験機 (真空理工株式会社製) 引つ 張りモ一ドにてガラス転移点を測定した。 液晶溶出物テスト
液晶と未硬化のシ一ル剤の接触により液晶に溶出したシール剤構成成分をガス クロマトグラフィ一で定量した。 サンプル瓶に液晶シ一ル剤を 0. 1 g入れ、 液 晶 (メルク社製、 MLC— 6866— 100) 1mlを加えた後、 シール剤の硬 化条件を想定して 120°Cオープンに 1時間接触処理した。 接触処理条件は光熱 併用液晶滴下方式における遮光部を想定して、 UV硬化なしの 120°C;、 1時間 としたものである。 その後、 1時間室温にて放置し、 空のサンプル瓶に接触処理 後の液晶を移し替えた。 この液晶に溶出したシール剤構成成分をペン夕デカンを 内部標準物質に用い、 ガスクロマトグラフィ一にて溶出量を定量した。 合成例 B:ビスフエノール Sグリシジルエーテル化物の合成
ビスフエノール S 1250 g、 ェピクロルヒドリン 2654 g、 メタノール 4 36 g、 水 125 gを加え窒素雰囲気下で撹拌しながら 60°Cにまで昇温し、 溶 解した。 次いでフレーク状の水酸化ナトリウム 445 gを 100分かけて分割添 加した後、 更に 65°Cで 3時間、 後反応を行った。 反応終了後、 70°Cの湯水を 2400 gを加えて水洗した後油層から 130°Cで減圧下、 過剰のェピクロルヒ ドリンなどを留去した。残留物にメチルイソプチルケトン 2900 g、 水 133 g を加え溶角 し、 70°Cにまで昇温した。 撹拌下で 30%の水酸ィ匕ナトリウム 水溶液 133 gを加え、 1時間反応を行った後、水 3600 gで水洗を 3回行い、 180°Cで減圧下メチルイソプチルケトンを留去し、 ビスフエノール Sグリシジ ルエーテル化物 1810 gを得た。得られたエポキシ樹脂のエポキシ当量は 18 1 /e qであった。 実験例 B 1 :液晶溶出物テスト
液晶と上記記載の方法で合成したエポキシ樹脂の接触により液晶に溶出するシ ール剤構成成分をガスクロマトグラフィ—で定量した。 すなわち、 サンプル瓶に ビスフエノール Sエポキシ樹脂を 0. lg入れ、 液晶 (メルク社製、 MLC-6 866 - 100) lmlを加えた後、 シール剤の硬化条件を想定して 120。Cォ 一プンに 1時間接触処理した。 その後、 1時間室温にて放置し、 空のサンプル瓶 に接触処理後の液晶を移し替えた。 この液晶に溶出したエポキシ樹脂を、 ペン夕 デカンを内部標準物質に用い、 ガスクロマトグラフィ一にて液晶に対する溶出量
(wt%) を定量した。 比較例にはビスフエノール A型液状エポキシ樹脂を用い た (比較例 B 1 )。 結果を表 B 1に示す。
(表 B 1)
合成例 比較例 1
溶出量 (wt%) 0. 6 9. 2
表 B 1から明らかなように、 比較例 B 1のビスフエノール A型エポキシ樹脂で は、 溶出量が 9. 2wt%に達する。 これに対し、 本発明で使用するビスフエノ —ル S型エポキシ樹脂では、 溶出量が 0. 6wt%にすぎず、 エポキシ樹脂の液 晶中への溶出量が約 1/15と大幅に減少している。 ビスフエノール S型ェポキ シ樹脂を用いると、 ビスフエノール A型エポキシ樹脂に比べ、 液晶成分に溶出し にくいことが明らかである。 実施例 B 1
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 ; E— 404P、 ェ ポキシ当量 160g/eq、 加水分解量 3 Op pm) に対して、 エポキシ基の 1 00%当量のァクリル酸を反応させ、 イオン交換水/トルエンの分液処理により 精製後、 トルエンを留去してビスフエノール Fエポキシのァクリレートを得た。 得られたビスフエノール Fエポキシのァクリレート 80重量部、 合成例のビスフ ェノール Sエポキシ樹脂 20重量部、 ラジカル発生型光重合開始剤として 3 , 6 一ビス (2—メチル一2—モルホリノプロピオニル) 一9一 n—ォクチルカルバ ゾ一ル (旭電化工業 (株) 製、 アデカオプトマ一 N— 1414) 1. 8重量部、 アミノシランカップリング剤 (N— (アミノエチル) ァ一ァミノプロピルトリ メトキシシラン、 信越シリコーン (株) 製、 KBM- 603) 1. 2重量部、 を 90°Cで加熱溶解し、 樹脂液を得た。 室温に冷却後、 イソフ夕ル酸ジヒドラジド (商品名 IDH— S;大塚化学 (株) 製ジエツトミル粉砕グレードを更にジエツ トミルで微粉砕したもの、 融点 224 、 活性水素当量 48. 5g/eq、 平均 粒径 1. Ί 、 最大粒径 7〃m) 5. 4重量部、 溶融破砕シリカ (龍森 (株) 製、 クリスタライト 1FF、 平均粒径 1. 0〃m) 30重量部を添加して 3本口 ールにより混練して液晶シール剤を得た。 液晶シール剤の粘度 (25°C) は 48 OPa · sであった (R型粘度計 (東機産業 (株) 製) で測定)。 比較例 B 2
ビスフエノール F型エポキシ樹脂 (日本化薬株式会社製、 RE— 404P、 ェ ポキシ当量 160 gZeq、 加水分解量 3 Op pm) に対して、 エポキシ基の 1 00 %当量のァクリル酸を反応させ、 イオン交換水 Zトルエンの分液処理により 精製後、 トルエンを留去してビスフヱノール Fエポキシのァクリレートを得た。 得られたビスフエノール: Fエポキシのァクリレート 80重量部、 ビスフエノール A型液状エポキシ樹脂 (日本化薬 (株) 製、 RE— 310P、 エポキシ当量 17 0 g/e q、 加水分解性塩素量 120 p pm) 20重量部、 ラジカル発生型光重 合開始剤として 3, 6—ビス (2—メチル一2—モルホリノプロピオニル) 一9 —n—ォクチルカルバゾ一ル (旭電化工業 (株) 製、 アデカオプトマ一 N— 14 14) 1. 8重量部、 アミノシランカップリング剤 (N— ? (アミノエチル) γ —ァミノプロビルトリメトキシシラン、 信越シリコーン (株) 製、 ΚΒΜ-60 3) 1. 2重量部、 を 90°Cで加熱溶解し、 樹脂液を得た。 室温に冷却後イソフ タル酸ジヒドラジド (商品名 IDH-S;大塚化学 (株) 製ジェットミル粉砕グ レ一ドを更にジェットミルで微粉砕したもの、融点 224°C、活性水素当量 48. 5 g/eq, 平均粒径 1. Ί im 最大粒怪 7〃m) 5. 7重量部、 溶融破砕シ リカ (龍森 (株) 製、 クリスタライ ト 1 FF、 平均粒径 1. 0 zm) 30重量部 を添加して 3本ロールにより混練して液晶シール剤を得た。 液晶シール剤の粘度 (25°C) は 200 P a · sであった (R型粘度計(東機産業(株)製)で測定) 実験例 B 2
次に、 実施例 1及び比較例 2の液晶シール剤について、 液晶溶出物テスト、 接 着強度テスト、 ボヅ卜ライフテストを実施し、 またガラス転移点を測定した。 結 果を表 2に示す。 表 B 2
実施例 B 比較例 B 2 粘度 (Pa · s) 480 200 接着強度 (MP a) 75 75
ポヅトライフ (粘度増: %) 20 20
硬化物のガラス転移点 (°C) 89 87 液晶汚染性テスト (120°Cx lhi7.)
溶出物定量 (ppm)
ビスフエノール Aエポキシ樹脂 一 6000 ビスフエノール Sエポキシ樹脂 250
ビスフエノール Fエポキシジァクリレート 450 450 イソフタル酸ジヒドラジド (IDH) 未検出 未検出 合計 700 6450 表 B 2から明らかなように、 実施例 B 1に示される本発明の滴下工法用液晶シ —ル剤と比較例 2に示される公知の部分 (メタ) ァクリレート化したビスフエノ —ル A型エポキシ樹脂を使用した滴下工法用液晶シール剤を対比すると、 接着強 度、 ポットライフ、 ガラス転移点ではほぽ同じ数値を示している。 しかし、 液晶 への溶出物量を見ると、 比較例 2の液晶シール剤では 6450 p pmであるのに 対し、 実施例 1の液晶シール剤では 700 ppmであり、 大幅に減少している。 すなわち、 本発明の滴下工法用液晶シール剤では、 シール剤としての特性を維持 したまま、 液晶への溶出物の量が大幅に減少していることがわかる。 産業上の利用可能性
基板への塗布作業性と貼り合わせ性に優れ、 ポットライフが長く、 強い接着強 度、 低液晶汚染性、 ギヤヅプ形成能に優れた本発明の液晶シール剤を液晶滴下ェ 法に使用することにより、 歩留まり、 生産性が向上した液晶表示セルの製造が可 目 ^になった。

Claims

請 求 の 範 囲
1. 一般式 ( 1 )
Figure imgf000036_0001
(式中、 aは 2〜4の整数、 nは 0〜3 (平均値)、 ; Rは炭素数 2〜 6の二価炭化 水素 Aは多価芳香族基、 Gはグリシジル基を表す。 但し、 nが 0の場合は、 一般式 (1)で表されるエポキシ樹脂 (a)はビスフエノール S型である。) で表されるエポキシ樹脂 (a)、 熱硬化剤 (b)、 及び平均粒径 3 /m以下の充填 材 (c) を含有することを特徴とする液晶シール剤。
2. 多価芳香族基が、 2〜 3価のフエノ一ルもしくはナフト一ル残基、 2〜4個の ベンゼン璟又はナフ夕レン環 (ベンゼン璟又はナフ夕レン環上に、 置換基として 炭素数 1〜6の脂肪族基を有していてもよく、 該環上の結合手の合計が 2〜 4個 である)が、単結合、炭素数 1〜3の二価の脂肪族炭化水素残基(フヱニル置換を 有してもよい)、 酸素原子もしくはィォゥ原子 (スルホニルになっていてもよい) を介して結合した 2〜 4価の芳香族基又はノボラック樹脂のヒド口キシ基を除い た残基である請求の範囲第 1項に記載の液晶シール剤。
3. 多価芳香族基が式
— p h-X-p h-
{式中、 phはフエ二レン基 (置換基として炭素数 1〜6の脂肪族基を有してい てもよい)、 Xは—◦—、 — S—、 — S (0) 2—又は式
— C (R3) (R4) -
(式中、 R3及び R4はそれそれ独立に水素原子又はメチル基を示すか、 又は R3 及び R4が結合して、 C (R3) (R4)でフルオレン環を示す)
で示される架橋基を示す }
で示される 2価の芳香族基である請求の範囲第 2項に記載の液晶シール剤。
4. 一般式 (1)で表されるエポキシ樹脂 (a) がビスフエノール S型であり、 且つ nが 0〜3 (平均値) である請求の範囲第 1項に記載の液晶シール剤 c 5. エポキシ樹脂 (a) が一般式 (2)
Figure imgf000037_0001
(式中、 11 n2は各々独立に 0.
5〜3を表し、 Rは炭素数 2〜6の二価炭化 水素基、 R R2は各々独立に水素原子又は炭素数 1〜6の 1価炭化水素基、 G はグリシジル基を表す。)
で表されるエポキシ樹 ίである請求の範囲第 4項に記載の液晶シール剤。
6. エポキシ樹脂 (a) が一般式 (3)
Figure imgf000037_0002
(式中、 、 n2は各々独立に 0. 5〜3を表し、 Rは炭素数 2〜 6の二価炭化 水素基、 G "はグリシジル基を表す。)
で表されるエポキシ樹脂である請求の範囲第 5項に記載の液晶シール剤。
7. エポキシ樹脂 (a) が一般式 (4)
Figure imgf000037_0003
(式中、 11 n2は各々独立に 0. 5〜 3の正数を表し、 : Rは炭素数 2〜6の: 価炭化水素基、 Gはグリシジル基を表す。 ) で表されるエポキシ樹脂である請求の範囲第 1項に記載の液晶シール剤。
8. 一 0— R—が— 0— CH2CH2—である請求の範囲第 1項〜第 7項の何れか 1項に記載の液晶シール剤。
9. nが 1〜1. 5である請求の範囲第 1項、 第 4項に記載の液晶シール剤。
10. 熱硬化剤 (b) が多官能ジヒドラジド類又は多価フヱノール化合物である 請求の範囲第 1項〜第 7項の何れか 1項に記載の液晶シール剤。
11. 多官能ジヒドラジド類がィソフタル酸ジヒドラジド、 バリンヒダントイン 骨格を有するジヒドラジド類又はアジピン酸ジヒドラジドである請求の範囲第 1 0項に記載の液晶シール剤。
12. エポキシ樹脂 (a) と熱硬化剤(b) との配合比が、 該エポキシ樹脂(a) のエポキシ基 1当量に対し、 該熱硬化剤 (b) の活性水素当量 0. 8〜3当量で あり、 平均粒径 3〃m以下の充填材 (c) の液晶シール剤中の含有量が 5〜40 重量%である請求の範囲第 1項〜第 7項の何れか 1項に記載の液晶シール剤。
13. 更に(メタ)アクリル基を含有する硬ィ匕性樹脂(d)、 ラジカル発生型光重 合開始剤 (e) を成分として含有する請求の範囲第 1項〜第 7項の何れか 1項に 記載の液晶シール剤。
14. (メタ)ァクリル基を含有する硬ィ匕性樹脂(d)が芳香族エポキシ樹脂の(メ 夕) ァクリレートである請求の範囲第 13項に記載の液晶シール剤。
15. 芳香族エポキシ樹旨の (メタ) ァクリレートがビスフエノール型エポキシ 樹脂の (メタ) ァクリレートである請求の範囲第 14項に記載の液晶シール剤。
16. (メタ) アクリル基を含有する硬ィ匕性樹脂(d) が、 一般 (1) において nがゼロでないエポキシ樹脂 (a) の (メタ) ァクリレートである請求の範囲第 13項に記載の液晶シール剤。
17. ラジカル型光重合開始剤 (Θ) が力ルバゾ一ル系光重合開始剤又はァクリ ジン系光重合開始剤である請求の範囲第 13項に記載の液晶シール剤。
18. 更にシランカップリング剤 (f ) を含有する請求の範囲第 1項〜第 7項及 び第 13項の何れか 1項に記載の液晶シール剤。
19. 更にイオン捕捉剤 (g) を含有する請求の範囲第 1項〜第 7項、 第 13項 及び第 18項の何れか 1項に記載の液晶シール剤。
20. イオン捕捉剤が、 酸ィ匕ビスマス系イオン捕捉剤、 酸化アンチモン系イオン 捕捉剤、 リン酸チタン系イオン捕捉剤、 リン酸ジルコニウム系イオン捕捉剤、 ハ ィドロタルサイト系イオン捕捉剤からなる群から選ばれた少なくとも 1種類であ る請求の範囲第 19項に記載の液晶シール剤。
21. 液晶シール剤中の含有量がエポキシ樹脂 (a)成分 5〜80%、 熱硬化剤 (b)成分 2〜20%、及び平均粒径 3 μ m以下の充填材( c )成分 5〜 50 %、 (メタ) アクリル基を含有する硬化性樹脂 (d)成分 5〜80%、 ラジカル発生 型光重合開始剤 (e)成分 1〜3%ヽ シランカップリング剤 (f ) 成分
2-2%. イオン捕捉剤 (g)成分 0. 2〜20%である請求の範囲第 19項に 記載の液晶シール剤。
22. 請求の範囲第 1項〜第 7項、 第 13項、 第 18項及び第 19項の何れか 1 項に記載の液晶シール剤の硬化物でシールされた液晶表示セル。
23. 2枚の基板により構成される液晶表示セルにおいて、 一方の基板に形成さ れた請求の範囲第 1項〜第 7項、、第 13項、第 18項及び第 19項の何れか 1項 に記載の液晶シール剤の堰の内側に液晶を滴下した後、 もう一方の基板を貼り合 わせ、 次いで該液晶シール剤を硬化することを特徴とする液晶表示セルの製造方 法。
2 . 一般式 ( 1 )
Α· ■HoRt OG (1)
(式中、 aは 2〜4の整数、 nは 0〜3 (平均値)、 Rは炭素数 2〜 6の二価炭化 水素基、 Aは多価芳香族基、 Gはグリシジル基を表す。但し、 nが 0の場合は、 一般式 (1)で表されるエポキシ樹脂 (a) はビスフエノール S型である。) で表されるエポキシ樹脂 (a)、 熱硬化剤 (b)、 及び平均粒径 3〃 m以下の充填 材 (c) を含有することを特徴とする組成物。
25.更に(メタ) アクリル基を含有する硬化性樹脂(d)、 ラジカル発生型光重 合開始剤 (e)s シランカップリング剤 (f )及びイオン捕捉剤(g) を含有する ことを特徴とする請求の範囲第 24項に記載の組成物。
PCT/JP2004/004972 2003-04-08 2004-04-06 液晶シール剤およびそれを用いた液晶表示セル WO2004090621A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005505290A JP4211942B2 (ja) 2003-04-08 2004-04-06 液晶シール剤およびそれを用いた液晶表示セル
US10/552,183 US7521100B2 (en) 2003-04-08 2004-04-06 Liquid crystal sealing agent and liquid crystalline display cell using the same
CA002521615A CA2521615A1 (en) 2003-04-08 2004-04-06 Liquid crystal sealing agent and liquid crystalline display cell using the same
EP04725989A EP1612597B1 (en) 2003-04-08 2004-04-06 Liquid crystal sealing agent and liquid crystalline display cell using the same
CNB2004800092506A CN100424571C (zh) 2003-04-08 2004-04-06 液晶密封剂及使用该液晶密封剂的液晶显示单元
DE602004015758T DE602004015758D1 (de) 2003-04-08 2004-04-06 Flüssigkristalldichtmittel und flüssigkristalline anzeigezelle damit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003103590 2003-04-08
JP2003103566 2003-04-08
JP2003-103566 2003-04-08
JP2003-103590 2003-04-08

Publications (1)

Publication Number Publication Date
WO2004090621A1 true WO2004090621A1 (ja) 2004-10-21

Family

ID=33161527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004972 WO2004090621A1 (ja) 2003-04-08 2004-04-06 液晶シール剤およびそれを用いた液晶表示セル

Country Status (9)

Country Link
US (1) US7521100B2 (ja)
EP (1) EP1612597B1 (ja)
JP (1) JP4211942B2 (ja)
KR (1) KR101064344B1 (ja)
CN (1) CN100424571C (ja)
CA (1) CA2521615A1 (ja)
DE (1) DE602004015758D1 (ja)
TW (1) TWI348062B (ja)
WO (1) WO2004090621A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835333A1 (en) * 2005-01-06 2007-09-19 Nippon Kayaku Kabushiki Kaisha Liquid crystal sealing material and liquid crystal display cells made by using the same
KR100787718B1 (ko) 2006-12-29 2007-12-21 제일모직주식회사 가압착 공정성이 우수한 이방전도성 필름용 조성물, 그에 의한 이방 전도성 필름, 이를 이용한 가압착 방법
JP2007334174A (ja) * 2006-06-19 2007-12-27 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
JP2008074910A (ja) * 2006-09-19 2008-04-03 Osaka Gas Co Ltd 封止用エポキシ樹脂及びその用途
JP2008096710A (ja) * 2006-10-12 2008-04-24 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
WO2011083537A1 (ja) * 2010-01-07 2011-07-14 株式会社Adeka ポリグリシジルエーテルの製造方法
JP2011150181A (ja) * 2010-01-22 2011-08-04 Nippon Kayaku Co Ltd 熱硬化型液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
JP2011164297A (ja) * 2010-02-08 2011-08-25 Three Bond Co Ltd 液晶滴下工法用シール剤
JP2015028184A (ja) * 2014-10-02 2015-02-12 協立化学産業株式会社 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物
JP2016109998A (ja) * 2014-12-10 2016-06-20 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
WO2022270453A1 (ja) * 2021-06-21 2022-12-29 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548647B2 (ja) * 2003-10-03 2010-09-22 日本化薬株式会社 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN101002137A (zh) * 2004-08-11 2007-07-18 日本化药株式会社 液晶用密封剂及使用该密封剂的液晶显示单元
JP5290523B2 (ja) * 2004-10-20 2013-09-18 日本化薬株式会社 放射線硬化性樹脂、液晶シール剤およびそれを用いた液晶表示セル
JP5007227B2 (ja) * 2005-07-07 2012-08-22 日本化薬株式会社 光電変換素子用シール剤及びそれを用いた光電変換素子
EP1932894A1 (en) * 2005-09-02 2008-06-18 Dainippon Ink And Chemicals, Inc. Photocurable composition for sealing agent, liquid crystal sealing agent, and liquid crystal panel
KR101274622B1 (ko) * 2006-09-26 2013-06-14 삼성디스플레이 주식회사 밀봉제 및 이를 이용한 액정 표시 장치
KR101239047B1 (ko) * 2007-01-26 2013-03-04 주식회사 엘지화학 플루오렌계 고차가지형 고분자 수지
KR101341137B1 (ko) * 2007-07-30 2013-12-13 삼성디스플레이 주식회사 밀봉제 및 이를 이용한 표시 장치
KR101490484B1 (ko) * 2008-09-26 2015-02-05 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
JP5008682B2 (ja) * 2009-01-21 2012-08-22 株式会社Adeka 光硬化性樹脂と熱硬化性樹脂を含有する液晶滴下工法用シール剤
TWI395027B (zh) * 2009-05-01 2013-05-01 Ind Tech Res Inst 框膠組成物
US8410188B2 (en) * 2009-07-13 2013-04-02 Adeka Corporation Sealant for one-drop fill process
KR101220047B1 (ko) * 2009-10-12 2013-01-08 금호석유화학 주식회사 액정 표시 소자용 실란트 조성물
CN102822731B (zh) * 2010-12-13 2016-04-20 Dic株式会社 阳离子固化型液晶密封剂以及液晶显示元件
JP5645765B2 (ja) * 2011-07-03 2014-12-24 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
CN102898840B (zh) * 2011-07-28 2015-07-08 北京科化新材料科技有限公司 绝缘硅橡胶组合物
CN103430086B (zh) * 2011-08-17 2014-09-03 积水化学工业株式会社 液晶显示元件用密封剂以及液晶显示元件
CN103013125B (zh) * 2011-09-26 2015-07-08 北京科化新材料科技有限公司 一种绝缘硅橡胶组合物
TWI576360B (zh) * 2012-08-27 2017-04-01 Nippon Kayaku Kk A liquid crystal sealant and a liquid crystal display cell using the liquid crystal sealant
ES2688532T3 (es) 2013-01-18 2018-11-05 Basf Se Composiciones de recubrimiento a base de dispersión acrílica
KR102171397B1 (ko) 2013-12-30 2020-10-29 엘지디스플레이 주식회사 터치장치의 제조방법 및 그 수지 조성물
TWI717446B (zh) * 2016-01-07 2021-02-01 日商積水化學工業股份有限公司 液晶顯示元件用密封劑、上下導通材料及液晶顯示元件
KR20180129753A (ko) * 2016-04-20 2018-12-05 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 액정 표시 소자용 시일제의 제조 방법, 상하 도통 재료, 및 액정 표시 소자
TWI749075B (zh) * 2016-10-04 2021-12-11 日商味之素股份有限公司 密封用樹脂組成物及密封用薄片
KR20190077220A (ko) * 2017-12-25 2019-07-03 닛뽄 가야쿠 가부시키가이샤 디스플레이용 봉지제 및 그것을 이용한 액정 디스플레이

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075109A (ja) * 1999-06-16 2001-03-23 Ricoh Co Ltd プラスチック基板液晶表示素子用シール剤、該シール剤を用いたプラスチック基板液晶表示装置とプラスチック基板液晶表示装置の製造方法
JP2001133794A (ja) * 1999-11-01 2001-05-18 Kyoritsu Kagaku Sangyo Kk Lcdパネルの滴下工法用シール剤
JP2002317172A (ja) * 2001-04-20 2002-10-31 Nippon Kayaku Co Ltd 液晶表示装置用シール材樹脂組成物

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284574A (en) 1979-06-15 1981-08-18 Ciba-Geigy Corporation Diglycidyl ethers of di-secondary alcohols, their preparation, and curable compositions containing them
JPS61186376A (ja) 1985-02-15 1986-08-20 Agency Of Ind Science & Technol 新規ポリエポキシ化合物
JPH0820627B2 (ja) 1987-01-20 1996-03-04 松下電器産業株式会社 液晶表示素子の製造法
US4845172A (en) * 1987-08-19 1989-07-04 Ciba-Geigy Corporation Co-advanced resins from copolymers of polyethers of polyhydric phenols and diglycidyl ethers of di-secondary alcohols
JPH0823691B2 (ja) 1989-02-24 1996-03-06 日本合成化学工業株式会社 感光性樹脂組成物
US5150239A (en) 1990-02-09 1992-09-22 Canon Kabushiki Kaisha One-pack type epoxy sealant with amine-type curing agent, for liquid crystal cell, display apparatus and recording apparatus
JP3162179B2 (ja) 1992-04-17 2001-04-25 協立化学産業株式会社 液晶表示装置の枠シール剤組成物
JPH0673164A (ja) 1992-07-16 1994-03-15 Mitsui Toatsu Chem Inc 液晶封止用樹脂組成物及び液晶封止用セルの製造方法
US6010824A (en) 1992-11-10 2000-01-04 Tokyo Ohka Kogyo Co., Ltd. Photosensitive resin composition containing a triazine compound and a pre-sensitized plate using the same, and photosensitive resin composition containing acridine and triazine compounds and a color filter and a pre-sensitized plate using the same
JP3200481B2 (ja) 1992-11-18 2001-08-20 ナミックス株式会社 液晶表示パネル用シール材及びそれを用いた液晶表示パネル
JPH0713135A (ja) 1993-06-28 1995-01-17 Dainippon Ink & Chem Inc 液晶デバイス及びその製造方法
KR0163981B1 (ko) 1993-06-29 1999-01-15 사또오 아키오 필름제 액정셀 봉지용 수지조성물
JPH0833357A (ja) 1994-07-12 1996-02-02 Mitsubishi Electric Corp 静電フィルムアクチュエータの製造方法
JP2846842B2 (ja) 1995-06-22 1999-01-13 松下電器産業株式会社 液晶シール材及び液晶表示装置
JPH10239694A (ja) 1997-02-24 1998-09-11 Hitachi Ltd 液晶表示装置の製造方法
KR100635710B1 (ko) 1997-08-01 2007-06-12 니폰 가야꾸 가부시끼가이샤 흑색 액정시일제 및 액정 셀
JPH11133443A (ja) * 1997-08-01 1999-05-21 Nippon Kayaku Co Ltd 黒色液晶シール剤及び硬化膜
JPH11109388A (ja) 1997-10-03 1999-04-23 Hitachi Ltd 液晶表示装置の製造方法
EP0938026B1 (en) 1998-02-18 2009-05-27 DSM IP Assets B.V. Photocurable liquid resin composition
EP1061402B1 (en) 1999-06-16 2004-12-22 Ricoh Company, Ltd. Sealing material for liquid crystal display using plastic substrate
JP2001172475A (ja) 1999-12-16 2001-06-26 Jsr Corp 光散乱性膜形成用組成物および光散乱性膜
WO2001098411A1 (fr) * 2000-06-21 2001-12-27 Mitsui Chemicals Inc. Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques
JP4099955B2 (ja) 2000-10-02 2008-06-11 オムロン株式会社 (高分子/液晶)複合膜表示装置及びその製造方法
JP4860831B2 (ja) 2001-03-01 2012-01-25 株式会社リコー 光硬化型エポキシ樹脂組成物および光硬化型表示素子用シール剤
JP3965989B2 (ja) 2001-12-12 2007-08-29 三菱化学株式会社 ヘテロ環含有化合物およびこれを含む組成物
WO2003072628A1 (en) 2002-02-27 2003-09-04 Hitachi Chemical Co., Ltd. Encapsulating epoxy resin composition, and electronic parts device using the same
JP3870825B2 (ja) 2002-02-27 2007-01-24 日立化成工業株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
CN100519650C (zh) 2002-02-27 2009-07-29 日立化成工业株式会社 封装用环氧树脂组合物及使用该组合物的电子组件
JP4224765B2 (ja) 2002-10-21 2009-02-18 Dic株式会社 エポキシ樹脂組成物およびその成形硬化物
US20060004140A1 (en) * 2002-11-06 2006-01-05 Toyohumi Asano Sealing material for liquid crystal and liquid crystal display cell using same
JP4536318B2 (ja) 2002-12-16 2010-09-01 新日鐵化学株式会社 カラーフィルタ保護膜用材料およびカラーフィルタ保護膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075109A (ja) * 1999-06-16 2001-03-23 Ricoh Co Ltd プラスチック基板液晶表示素子用シール剤、該シール剤を用いたプラスチック基板液晶表示装置とプラスチック基板液晶表示装置の製造方法
JP2001133794A (ja) * 1999-11-01 2001-05-18 Kyoritsu Kagaku Sangyo Kk Lcdパネルの滴下工法用シール剤
JP2002317172A (ja) * 2001-04-20 2002-10-31 Nippon Kayaku Co Ltd 液晶表示装置用シール材樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1612597A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312419B1 (ko) * 2005-01-06 2013-09-27 니폰 가야꾸 가부시끼가이샤 액정 실링제 및 이것을 사용한 액정표시 셀
EP1835333A4 (en) * 2005-01-06 2008-05-21 Nippon Kayaku Kk SHEATHING MATERIAL FOR LIQUID CRYSTALS AND LIQUID CRYSTAL DISPLAY CELLS USING THE SAME
EP1835333A1 (en) * 2005-01-06 2007-09-19 Nippon Kayaku Kabushiki Kaisha Liquid crystal sealing material and liquid crystal display cells made by using the same
JP2007334174A (ja) * 2006-06-19 2007-12-27 Nippon Kayaku Co Ltd 液晶シール剤及びそれを用いた液晶表示セル
JP2008074910A (ja) * 2006-09-19 2008-04-03 Osaka Gas Co Ltd 封止用エポキシ樹脂及びその用途
JP2008096710A (ja) * 2006-10-12 2008-04-24 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
KR100787718B1 (ko) 2006-12-29 2007-12-21 제일모직주식회사 가압착 공정성이 우수한 이방전도성 필름용 조성물, 그에 의한 이방 전도성 필름, 이를 이용한 가압착 방법
US8889803B2 (en) 2008-01-25 2014-11-18 Mitsui Chemicals, Inc. Polymerizable epoxy composition, and sealing material composition comprising the same
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
JP2011140458A (ja) * 2010-01-07 2011-07-21 Adeka Corp ポリグリシジルエーテルの製造方法
WO2011083537A1 (ja) * 2010-01-07 2011-07-14 株式会社Adeka ポリグリシジルエーテルの製造方法
JP2011150181A (ja) * 2010-01-22 2011-08-04 Nippon Kayaku Co Ltd 熱硬化型液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
JP2011164297A (ja) * 2010-02-08 2011-08-25 Three Bond Co Ltd 液晶滴下工法用シール剤
JP2015028184A (ja) * 2014-10-02 2015-02-12 協立化学産業株式会社 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物
JP2016109998A (ja) * 2014-12-10 2016-06-20 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
WO2022270453A1 (ja) * 2021-06-21 2022-12-29 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子
JP7219370B1 (ja) * 2021-06-21 2023-02-07 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子

Also Published As

Publication number Publication date
TW200500751A (en) 2005-01-01
CN100424571C (zh) 2008-10-08
EP1612597B1 (en) 2008-08-13
CN1771460A (zh) 2006-05-10
DE602004015758D1 (de) 2008-09-25
KR101064344B1 (ko) 2011-09-14
KR20050116399A (ko) 2005-12-12
US7521100B2 (en) 2009-04-21
EP1612597A1 (en) 2006-01-04
JPWO2004090621A1 (ja) 2006-07-06
EP1612597A4 (en) 2007-03-28
TWI348062B (en) 2011-09-01
US20060208219A1 (en) 2006-09-21
CA2521615A1 (en) 2004-10-21
JP4211942B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
WO2004090621A1 (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP5778038B2 (ja) 硬化性樹脂組成物
JP4490282B2 (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP4531566B2 (ja) 液晶シール剤組成物及びそれを用いた液晶表示パネルの製造方法
KR101194558B1 (ko) 액정 실란트 및 그것을 사용하여 제조한 액정표시 셀
JP5290523B2 (ja) 放射線硬化性樹脂、液晶シール剤およびそれを用いた液晶表示セル
JP5490726B2 (ja) 液晶滴下工法用シール剤
JP4977896B2 (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP2007010769A (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP4815027B1 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル
JP2004037937A (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP2015200729A (ja) 放射線硬化型樹脂組成物、その硬化物及びその用途
JP5748273B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
KR102041123B1 (ko) 액정표시소자용 실란트 조성물
JP2010282094A (ja) アダマンタン骨格を有するエポキシ化合物を含有する組成物及びこれを用いてなる液晶シール剤
JP4208068B2 (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP2018105989A (ja) 表示素子用封止剤及びそれを用いた表示素子
TW202007751A (zh) 電子零件用封裝劑
JP2014006324A (ja) 液晶シール剤及びそれを用いた液晶表示セル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005505290

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004725989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2521615

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10552183

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057019112

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048092506

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057019112

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004725989

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10552183

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004725989

Country of ref document: EP