WO2004063734A1 - 欠陥検査装置および欠陥検査方法 - Google Patents

欠陥検査装置および欠陥検査方法 Download PDF

Info

Publication number
WO2004063734A1
WO2004063734A1 PCT/JP2003/015164 JP0315164W WO2004063734A1 WO 2004063734 A1 WO2004063734 A1 WO 2004063734A1 JP 0315164 W JP0315164 W JP 0315164W WO 2004063734 A1 WO2004063734 A1 WO 2004063734A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
defect
illumination
light
detection
Prior art date
Application number
PCT/JP2003/015164
Other languages
English (en)
French (fr)
Inventor
Sachio Uto
Minori Noguchi
Hidetoshi Nishiyama
Yoshimasa Oshima
Akira Hamamatsu
Takahiro Jingu
Toshihiko Nakata
Masahiro Watanabe
Original Assignee
Hitachi, Ltd.
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi High-Technologies Corporation filed Critical Hitachi, Ltd.
Priority to US10/536,715 priority Critical patent/US7417721B2/en
Publication of WO2004063734A1 publication Critical patent/WO2004063734A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention detects foreign matter present on a thin film substrate, a semiconductor substrate, a photomask or the like when manufacturing a semiconductor chip or a liquid crystal product, or a defect such as a defect (scratch) generated in a circuit pattern, and the like.
  • the present invention relates to a defect inspection apparatus and method for inspecting the state of occurrence of a defect such as a foreign substance in a device manufacturing process for analyzing a defect such as a defect and taking a countermeasure.
  • a semiconductor substrate has -Detect the scattered light from the foreign matter generated when foreign matter adheres to the semiconductor substrate by irradiating the laser and compare it with the inspection result of the same type of semiconductor substrate inspected immediately before. Further, there is disclosed an apparatus that eliminates false alarms due to patterns and enables highly sensitive and highly reliable inspection of foreign substances and defects. Further, as disclosed in Japanese Patent Application Laid-Open No. 63-135848 (Prior Art 2), a laser beam is irradiated on a semiconductor substrate to remove foreign matter that is generated when foreign matter is adhered on the semiconductor substrate. It is known to detect scattered light from the light and analyze the detected foreign matter by an analysis technique such as laser photoluminescence or secondary X-ray analysis (XMR).
  • XMR secondary X-ray analysis
  • the wafer is irradiated with coherent light to remove light emitted from the repetitive pattern on the wafer with a spatial filter, and emphasizes and detects foreign matter and defects that do not have repeatability.
  • a method for doing so is disclosed.
  • the circuit pattern formed on the wafer is irradiated from a direction inclined by 45 degrees with respect to the main straight line group of the circuit pattern, and the 0th-order diffracted light from the main straight line group enters the aperture of the objective lens.
  • a foreign matter inspection apparatus that does not allow the light to enter is known from Japanese Patent Application Laid-Open No. 1-117024 (prior art 3).
  • This prior art 3 also describes that other straight line groups, which are not the main straight line groups, are shielded by the spatial filter. Further, as a prior art relating to a defect inspection apparatus for foreign matter and the like and a method therefor, Japanese Patent Application Laid-Open No. 1-250847 (Prior Art 4), Japanese Patent Application Laid-Open No. 6-258239 (Prior Art 5), Japanese Patent Application Laid-Open Japanese Unexamined Patent Application Publication No. H8-210989 (Prior Art 7), Japanese Patent Application Laid-Open No. 8-271437 (Prior Art 8), and Japanese Patent Application Laid-Open No. 2000-105203 (Prior Art 9) are known. ing.
  • Prior Art 9 describes that the detection optical system is switched to change the detection pixel size.
  • the repetition pattern and the non-repetition It was not easy to detect minute foreign matter or defects on a substrate with mixed patterns with high sensitivity and high speed. That is, in the above-mentioned conventional techniques 1 to 9, there is a problem that the detection sensitivity (minimum detected foreign matter size) is low in a portion other than the repeated portion such as the memory cell portion. Further, in the above-mentioned prior arts 1 to 9, there is a problem that the detection sensitivity of a 0.1 m level fine foreign matter or defect in a region where the pattern density is high is low.
  • a first object of the present invention is to solve the above-mentioned problems by providing a substrate to be inspected such as a wafer having a transparent thin film formed on its surface, as well as a substrate to be inspected such as a wafer having a circuit pattern. It is an object of the present invention to provide a defect inspection apparatus and method capable of inspecting defects such as minute foreign substances and scratches at the level of 1 zm with high sensitivity and at high speed.
  • a second object of the present invention is to provide a defect inspection apparatus and a defect inspection method capable of inspecting a foreign substance or a defect with high sensitivity even in a region where the power density is high.
  • a third object of the present invention is to provide a defect inspection apparatus and a method thereof capable of inspecting a foreign substance or a defect or a thin film-like foreign substance that short-circuits between wirings with high sensitivity.
  • a fourth object of the present invention is to provide a defect inspection apparatus and a defect inspection method capable of classifying a foreign substance or a defect present on a substrate to be inspected.
  • the present invention provides a scanning stage that mounts a substrate to be inspected and runs in a predetermined direction, and irradiates an illumination light beam to the surface of the substrate to be inspected at a predetermined inclination angle.
  • an upper detection optical system having an upper photodetector for receiving the light and converting it into an upper image signal, and emits the light from the inspection target substrate in a direction inclined in a direction intersecting the illumination light flux in a plane.
  • a side imaging optical system for condensing the side reflected scattered light and forming an image, and receiving the side reflected scattered light image formed by the side imaging optics and converting the image into a side image signal
  • a detection optical system having a side detection optical system having a side photodetector; and an upper image signal obtained from the upper photodetector of the detection optical system, which is converted into an upper digital image signal.
  • a / D for converting the side image signal obtained from the side photodetector into the side digital image signal
  • a defect inspection apparatus comprising: a D converter; and a signal processing system that detects a defect based on each digital image signal converted by the A / D converter.
  • the present invention provides the illumination optical system, wherein the illumination light beam is a slit-like beam composed of substantially parallel light in a longitudinal direction as an illumination state on the substrate to be inspected, and the scanning stage is in a longitudinal direction. It is characterized in that it is configured to be substantially perpendicular to the traveling direction of the vehicle.
  • the present invention also provides a detection optical system above the detection optical system, comprising: a spatial filter that shields at least a repetition of a circuit pattern existing on a substrate to be inspected; It is characterized in that it is configured to be able to automatically set the size or the shape of the object. Further, the present invention is characterized in that, in the detection optical system above the detection optical system, the imaging magnification of the imaging optical system is variably configured. Further, the present invention is characterized in that, in the signal processing system, the upper digital image signal is merged with neighboring pixels, and a defect is detected based on the merged image signal. Further, the present invention is characterized in that the signal processing system includes a classification unit that classifies the detected defects by category.
  • the digital image signal converted by the A / D converter It is characterized by having classification means for classifying the category of the defect. Further, the present invention is characterized in that the signal processing system includes a size measuring means for measuring a size of the detected defect.
  • the present invention is characterized in that the defect inspection apparatus further comprises an optical microscope for observing an optical image on the inspection object. Further, the present invention is characterized in that an area or a mark indicating coordinates of a defect detected by the signal processing system is displayed on a screen observed by the optical microscope.
  • the present invention provides the illumination optical system, wherein the illumination light beam is configured to be able to irradiate the surface of the inspection target substrate by switching between a high tilt angle and a low tilt angle, and When illuminated at a high inclination angle and when illuminated at a low inclination angle, the defect is detected from the defect detection processing unit for detecting a defect based on the digital image signal converted by the A / D conversion unit and the defect detection processing unit.
  • a defect amount detected by the defect detection processing unit when illuminated at the high inclination angle and a defect detected by the defect detection processing unit when illuminated at a low inclination angle And a signal processing system having an integrated processing unit that classifies a defect category based on the acquired defect feature amount with respect to a defect identified as the same. Having prepared And it features.
  • the present invention provides a scanning stage for mounting a substrate to be inspected and traveling in a predetermined direction, and moving an illumination spot in a direction perpendicular to the traveling direction of the scanning stage with respect to the surface of the substrate to be inspected.
  • a detection optical system having a plurality of photomultiplier tubes, and a signal for converting a signal obtained from each photomultiplier tube of the detection optical system to a digital signal and detecting a defect based on the converted digital signal Processing system
  • a defect inspection apparatus comprising:
  • the present invention provides a scanning stage in which a substrate to be inspected is placed and travels in a predetermined direction, a plurality of light modulators for modulating each of a plurality of illumination light beams at different frequencies from each other, and the plurality of light modulators.
  • An optical deflector for deflecting a plurality of illumination light fluxes modulated by the optical modulator in a direction substantially perpendicular to the traveling direction of the scanning stage; and a plurality of illumination light fluxes deflected by the optical deflector to the inspection target substrate.
  • An illumination optical system having a condensing optical system for converging and irradiating a plurality of illumination spots on the surface of the object, and reflecting and scattering from the substrate to be inspected by scanning of the plurality of illumination spots irradiated by the illumination optical system. It has an imaging optical system that collects light and forms an image, and a photodetector that receives a reflected scattered light image by scanning a plurality of illumination spots formed by the imaging optical system and converts it into a signal.
  • a detection optical system, and the detection optical system A plurality of synchronous detection circuits for extracting a component corresponding to the frequency modulated by each of the optical modulators from the signal converted by the photodetector, and detecting a defect based on the signals extracted from the plurality of synchronous detection circuits
  • the detection optical system may include an optical fiber that guides a reflected scattered light image by scanning the plurality of illumination spots to be received, and a light beam that scans the plurality of illumination spots guided by the optical fiber. And a photomultiplier tube that receives an image and converts it into a signal.
  • an illumination optical system irradiates an illumination light beam onto a surface of a substrate to be inspected having a circuit pattern at a predetermined inclination angle, and reflects and scatters the light from the irradiated substrate to be inspected.
  • the light is condensed by an objective lens provided above and formed into an image by an upper image forming optical system, and the formed reflected scattered light is received by an upper photodetector and converted into a first image signal,
  • the converted first image signal is converted into a first digital image signal by an A / D converter, and a circuit pattern of the substrate to be inspected is converted based on the converted first digital image signal.
  • the illuminated reflected and scattered light from the substrate to be inspected is condensed by an imaging optical system in a direction inclined in a direction intersecting the illumination direction in a planar manner to form an image.
  • a test target substrate having a transparent film such as an oxide film formed on the surface or a test target substrate in which a repetitive pattern and a non-repetitive pattern are mixed is 0 It has the effect of being able to inspect defects such as minute foreign matter and scratches at the level of 1 zm with high sensitivity and at high speed.
  • short-circuiting between wirings as well as defects such as minute foreign matter and scratches at the level of 0.1 zm is performed on a substrate to be inspected in which a repeated pattern and a non-repeated pattern are mixed. This has the effect of enabling high-speed, high-precision inspection of defects such as foreign matter and thin-film foreign matter.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of a defect inspection apparatus according to the present invention.
  • FIG. 2 is a view showing the illumination optical system shown in FIG. 1, wherein (a) is a front view thereof, and (b) is a perspective view showing the entire illumination optical system.
  • FIG. 3 is a plan view showing the entire illumination optical system shown in FIG.
  • FIGS. 4B and 4C are diagrams showing an illumination method using four illumination beams.
  • FIG. 4A is a diagram showing an illumination method using a conical curved lens
  • FIGS. 4B and 4C are diagrams showing an illumination method using a cylindrical lens.
  • FIG. 5 is a diagram for explaining a state where it is difficult to detect a defect between wiring patterns when the illumination beams 220 and 230 are irradiated.
  • FIG. 6 is a view for explaining the state of generation of reflected scattered light when the oblique illumination beam 250 is irradiated on the transparent film.
  • FIG. 7 is an explanatory diagram of a variable operation of the variable magnification optical system shown in FIG.
  • FIG. 8 is an explanatory diagram for automatically setting a light-shielding pattern in a space fill.
  • FIG. 9 is a diagram showing an embodiment having an optical system for preventing plumming in the upper detection optical system.
  • FIG. 10 is a diagram showing an embodiment using a photomultiplier tube as a photodetector.
  • FIG. 11 is a schematic configuration diagram showing an embodiment of a side illumination optical system and a side detection optical system according to the present invention.
  • FIG. 12 is a diagram for explaining an embodiment in which an illumination spot is scanned in the optical system shown in FIG. 11 and a plurality of photomultiplier tubes are used as photodetectors.
  • FIG. 13 is a schematic configuration diagram showing another embodiment of the illumination optical system and the detection optical system according to the present invention.
  • FIG. 14 is a diagram showing a specific configuration of a signal processing system according to the present invention.
  • FIG. 15 is a configuration diagram of the pixel merging circuit shown in FIG.
  • FIG. 16 is a configuration diagram of the foreign matter detection processing unit shown in FIG.
  • FIG. 17 is a diagram for explaining a method of classifying defects such as foreign matters.
  • FIG. 18 is a diagram showing a display example of an inspection result when defects such as foreign matters are classified.
  • FIG. 19 is a diagram for explaining a method of measuring the size of a defect such as a foreign substance.
  • FIG. 20 is a view for explaining another embodiment relating to a method of calculating the amount of scattered light from a defect such as a foreign substance.
  • FIG. 21 is a diagram showing a sequence of another embodiment relating to classification of defects such as foreign matters.
  • FIG. 22 is a diagram showing a classification graph used for classifying defects such as foreign matters.
  • FIG. 23 is a diagram showing a sequence of still another embodiment relating to classification of defects such as foreign matters.
  • FIG. 24 is a diagram for explaining a method of classifying a defect such as a foreign substance from a plurality of types of feature amounts.
  • FIG. 25 is a diagram for explaining a method of setting a classification boundary.
  • FIG. 26 is a diagram showing a display example in the case of displaying the classification rate.
  • FIG. 27 is a diagram showing an example of a display in which the classification result of a defect such as a foreign substance and the size measurement result are described together.
  • FIG. 28 is a diagram showing an example of a display in which the size measurement result of a defect such as a foreign substance and the observed image of the foreign substance or the defect are also shown.
  • FIG. 29 is a diagram showing an example of a display in which the classification result rate of the defect such as a foreign substance is described together with the inspection result.
  • FIG. 30 is a diagram showing an inspection condition setting sequence in the defect inspection apparatus according to the present invention.
  • FIG. 31 is a diagram for explaining an optical condition setting screen.
  • FIG. 32 is a diagram showing an inspection condition setting screen.
  • FIG. 33 is a schematic configuration diagram of an embodiment provided with an observation optical microscope according to the present invention.
  • FIG. 34 is a view showing a screen observed by the observation optical microscope shown in FIG. 33.
  • the defect inspection apparatus can be used to detect various defects such as foreign matter, pattern defects, micro scratches, etc. on a substrate to be inspected such as a wafer in various types and various manufacturing processes. It is intended to enable inspection of a finer object and a larger object with high sensitivity and at high speed.
  • the defect inspection apparatus enables the irradiation angle ⁇ of the slit beam 201 illuminated by the illumination optical system 10 to be variable according to the inspection object.
  • the detection optical system 200 is arranged so that the surface to be inspected and the light receiving surface of the detector 26 have an image-forming relationship, and the magnification of the detection optical system 200 is made variable to detect the detection pixel size. Inspection is to be set to match the size of the defect.
  • the defect inspection apparatus has a function of classifying the difference into types of defects by using, for example, a difference in scattered light obtained from a defect by illumination light having different irradiation angles as a feature amount.
  • the defect inspection apparatus comprises an XYZ stage 31 for mounting and moving a substrate 1 to be inspected such as a wafer obtained from various types and various manufacturing processes.
  • the light emitted from the laser light source 11 is converted into a beam magnifying optical system 16 by a transport system 30 composed of 2, 3, 3, 3 4 and a controller 35.
  • an illumination optical system 10 that illuminates the substrate 1 to be inspected from multiple oblique directions through lenses, mirrors, etc., an objective lens 21, a spatial filter 22, and an image It consists of an optical system 23, an optical filter group 24 (shown in Fig.
  • a photodetector 26 such as a TDI image sensor, etc., and reflects light from the area illuminated by the illumination optical system 10.
  • Variable magnification detection optical system 20 for detecting diffracted light (or scattered light) imaging optical system 630 and photodetector 640
  • a signal processing system 40 for detecting foreign substances based on signals, an inspection condition, etc. are set, and a detection optical system 200 such as the above-mentioned illumination optical system 10 and a variable magnification detection optical system 20, and a transport system 30.
  • an overall control unit 50 that controls the entire signal processing system 40 and observation optical system 60.
  • the overall control section 50 is provided with input / output means 51 (including a keyboard network), display means 52, and a storage section 53.
  • this foreign matter inspection apparatus is provided with an automatic focus control system (not shown) so that an image on the surface of the wafer 1 is formed on the light receiving surface of the photodetectors 26 and 60.
  • the inspection apparatus is configured to be able to illuminate the surface of the inspection target substrate 1 from a plurality of directions.
  • the illumination optical system 10 the light L 0 emitted from the laser light source 11 is converted into a beam expanding optical system 16 including a concave lens 12 and a convex lens 13, and a conical curved surface for forming a slit light beam.
  • the slit beam 201 is planarized in one or more directions (from four directions in FIG. 3 through the lens 14 and the mirror 15). It is configured to irradiate the wafer (substrate to be inspected) 1 installed on the installation table 34.
  • the longitudinal direction of the slit beam 201 is oriented in the chip arrangement direction (for example, the Y direction).
  • the slit beam 201 is used as the illumination light because the scattered light from foreign objects and defects generated by the illumination is collectively collected by the light receiving elements arranged in a line. This is to speed up the inspection by performing detection. That is, as shown in FIG. 3, a slit beam 201 illuminated on a wafer 1 on which chips 202 are arranged in the scanning direction of the X stage 31 and the scanning direction of the Y stage 32 Has a shape that is narrow in the scanning direction X of the X stage 31 and wide in the vertical direction Y (scanning direction of the Y stage 32).
  • the illumination of the slit beam 201 by the illumination beams 220 and 230 from a direction inclined in a plane with respect to the Y direction is directed to the arrangement direction of the chips 202 with respect to the wafer 1.
  • a conical curved lens 14 (224 s2 34) is required.
  • This conical curved lens 14 (222, 234) has a different focal length at the longitudinal position, and a lens whose focal length is changed linearly, that is, the radius of curvature in the longitudinal direction changes continuously. Such a lens.
  • the slit beam is narrowed down in the X direction and collimated in the ⁇ direction. It can be illuminated at 210. Further, based on a command from the overall control unit 50, the mirror 15 (225, 235) and the mirror 702 are mechanically switched as shown in FIG. By changing the angle of one mirror 15 by rotating means (not shown), the illumination angle can be changed depending on the type of foreign matter or defect to be inspected on the substrate 1 to be inspected, for example. I have. In FIG. 2 (a), the laser position is illuminated to the illumination position 701 by the mirror 15.
  • the mirror 70 2 with a different angle from the mirror 150 is replaced with the mirror 15, and the mirror 70 2 is moved in the Z direction to irradiate the illumination position 70 1 with laser light. Just move it to At this time, since the distance from the convex lens 13 to the illumination position 70 1 changes, it is necessary to change the position of the convex lens 13 or change to a convex lens having a different focal length.
  • a slit beam 201 can be formed by the cylindrical lenses 2444 and 255 as shown in FIGS. 4 (b) and 4 (c). As described above, at any illumination angle, the slit beam 201 has an illumination area covering the pixel array 203 of the photodetectors 26, 640, and from any direction. Even when the illumination is performed, the slit beam 201 is configured to coincide on the wafer 1.
  • the diffracted light pattern generated from the circuit pattern in which the main straight lines are directed in the X and Y directions is converted by the spatial filter 22. It will be shaded.
  • the method of manufacturing the conically curved lens 14 is described in Japanese Patent Application Laid-Open No. 2000-105203, and a description thereof will not be repeated.
  • the illumination angle ⁇ and the illumination direction ⁇ of the illumination optical system 10 are changed according to the substrate 1 to be inspected placed on the stage based on a command from the overall control unit 50. .
  • the reason why the slit beam 201 is formed on the wafer 1 with a plurality of illumination angles is to cope with detection of various types of foreign substances and defects occurring on the surface of the wafer 1. That is, detection of a pattern defect or a foreign substance having a low height on the inspection target substrate 1 is targeted.
  • the illumination angle becomes higher, the amount of reflected diffraction light from the circuit board increases and the S / N ratio decreases, so the empirically obtained optimum value is applied.
  • the illumination angle is preferably set to a small angle, for example, about 1 to 5 degrees.
  • the illumination angle ⁇ is set to a small angle in this manner, the S / N ratio of the foreign matter on the outermost surface of the wafer is improved.
  • it is generally 4 A good setting is between 5 degrees and 55 degrees.
  • the illumination angle may be set to an intermediate value between the above-mentioned angles in order to detect the laser beam defects without bias.
  • the illumination direction ⁇ for example, in the case of the wiring process, when the illumination beams 220 and 230 are irradiated from a direction where ⁇ is around 45 degrees, as shown in FIG. Since there is a case where diffracted scattered light cannot be obtained from the foreign matter or defect 501, it is desirable to select the illumination 240 from a direction parallel to the wiring direction of the illumination circuit pattern (for example, the X direction). That is, by aligning the parallel direction of the illumination light 240 with the direction of the wiring pattern 500, it becomes easier to detect a foreign substance or a defect 501 between the wirings 500. Also, when the circuit pattern of the wafer 1 is not a wiring pattern but a contact hole or a capacitor, there is no specific direction. It is desirable to irradiate from around 5 degrees.
  • illumination optical system 10 will be specifically described.
  • FIGS. 2 (b) and 3 are plan views when four illumination optical systems 10 are configured using one laser light source 11.
  • the branching optical element 218 is composed of a mirror, a prosthesis, etc., and by moving its position in the Y direction, transmits or reflects the laser light L0 emitted from the laser light source 11 and guides it in three directions.
  • the first laser beam L 1 transmitted through the branch optical element 2 18 is split into a transmitted light and a reflected light by a branch optical element (eg, a polarizing beam splitter) 2 21 such as a half prism.
  • a branch optical element eg, a polarizing beam splitter
  • an illumination beam 230 with an inclination angle can be obtained from the direction inclined from the Y axis, and the light reflected by the other branch optical system 221 is reflected by a mirror 223, as shown in Fig. 4 (a).
  • the beam diameter correcting optics 222 and 232 are conically curved so that the slit beam 201 irradiated on the wafer 1 has the same size. This adjusts the beam diameter of the laser light incident on the surface lenses 222, 234.
  • a mirror 260 is provided instead of the half prism as the branching optical element 222, illumination from one side becomes possible.
  • the second laser beam L 2 reflected by the branching optical element 2 18 passes through the beam diameter correcting optical system 2 41, is reflected by the mirror 24 2 and the mirror 24 3, and As shown in (b), the beam is made incident on the cylindrical lens 244 and reflected by the mirror 245 to obtain an illumination beam 240 with an inclination angle of? from the X direction.
  • the third laser beam L 3 reflected by 18 is reflected by mirrors 25 1, 25 3, and 25 4, and a cylindrical lens as shown in Fig. 4 (c).
  • an illumination beam 250 having an inclination angle y from the Y direction can be obtained.
  • the illumination beam 240 can adjust the direction of illumination (X direction) when many wiring patterns formed on the wafer are parallel to the XY direction in the wiring process, for example. This makes it easier to detect foreign substances and defects 501 between the wirings 500 shown in FIG. Note that the wafer 1 may be rotated 90 degrees with respect to the wiring pattern in the Y direction.
  • the angle of inclination of the illumination beam 240 may be set at the above-mentioned intermediate angle or high angle from the viewpoint of detecting foreign matter and defects between wirings. Further, the inclination angle? May be switched in the same manner as ⁇ :.
  • the mirror 245 when illuminating from the X direction, it is possible to reduce the size of the mirror 245 by converging and converging in the X direction by the cylindrical lens 244. As a result, the mirror can be reduced. It is possible to illuminate even at a high angle by inserting one 245 between the periphery of the objective lens 21 and the wafer 1.
  • a transparent film 800 subjected to CMP (Chemical Mechanical Polishing) processing are used.
  • CMP Chemical Mechanical Polishing
  • the slit is formed by the illumination beam 250 based on the third laser light L3 as described above. This is to illuminate at an angle of inclination from the longitudinal direction ( ⁇ direction) of the shaped beam 201.
  • the angle of inclination of the illumination beam 250 is preferably about 5 degrees to about 10 degrees, which is a relatively low angle, in order to detect minute foreign matter and scratches on the oxide film 800.
  • the slit beam 201 has a drum shape with a narrow center width due to the inclination angle y.
  • the focal length of the cylindrical lens 255 in accordance with the inclination angle a, it is possible to obtain a slit-like beam whose center does not become thin.
  • illumination is performed only from the illumination beam 240, it can be realized by switching to the mirror unit in the branch optical element 218.
  • it can be realized by leaving the branch optical element 218 out of the optical path or by switching to the transmission section.
  • the second harmonic SHG and wavelength of a high-output YAG laser are 532 nm.
  • 532 nm it is not always necessary to use an ultraviolet laser, a far ultraviolet laser, a vacuum ultraviolet laser, an Ar laser, a nitrogen laser, a He—Cd laser, and an excimer laser.
  • a light source such as a semiconductor laser may be used. The advantage of using each laser is that if the laser wavelength is shortened, the resolution of the detected image increases, and high-sensitivity inspection becomes possible.
  • the NA of the objective lens 21 is about 0.4, and when the wavelength is about 0.17 ⁇ m, the NA of the objective lens 21 is 0.
  • a value of about 2 makes it possible to improve the detection sensitivity by allowing a large amount of diffracted light to enter the objective lens 21. Also, regarding the use of a semiconductor laser or the like, the size and cost of the device can be reduced.
  • variable magnification detection optical system (upper detection optical system) 20 of the detection optical system 200 will be described with reference to FIG. 1, FIG. 7, and FIG.
  • Magnification variable detection optics (upper detection optical system) 20 converts the light reflected and diffracted upward from the substrate 1 to be inspected, such as a wafer, into an objective lens 21, a space filter 22, an imaging optical system ( Variable magnification imaging optical system) 23, through an optical filter group 24 composed of an ND filter 24a and a polarizing plate 24b, etc., is configured to be detected by a photodetector 26 such as a TDI image sensor. .
  • the space filter 22 has a function of blocking the Fourier transform image due to the reflected and diffracted light from the repetitive pattern on the wafer 1 and passing the scattered light from the foreign object.
  • the space filter 22 is provided in the optical path of the detection optical system 200 by a mirror 90 that can be retracted during the inspection and a pupil observation optical system 70 composed of a projection lens 91 and a TV camera 92.
  • a reflected diffracted light image 901 from the repetitive diffracted light pattern 902 at the image position of the Fourier transform shown in FIG. 8 (a) is imaged, and disclosed in Japanese Patent Application Laid-Open No. 5-218163.
  • the distance p between the rectangular light-shielding portions 903 provided at the image position of the Fourier transform is changed by a mechanism not shown, and the Fourier transform is performed as shown in FIG. 8 (c).
  • the image is adjusted so that an image 904 having no bright spot due to the reflected diffracted light image from the circuit pattern is formed at the image forming position of the conversion.
  • the signal from the TV camera 92 is processed by the signal processing system 40, and the pitch p and the rotation direction of the light shielding unit 903 of the space filter 22 are adjusted based on the command of the overall control unit 50. Will be set automatically.
  • the light-shielding portion may be formed on a transparent substrate on a reduced scale by inverting black and white on a transparent substrate based on a signal from the TV camera 92.
  • This inspection system has a function to perform a foreign substance inspection at high speed and a function to perform low-speed and high-sensitivity inspection.
  • the test object whose circuit pattern is manufactured at a high density
  • a high-resolution image signal can be obtained in the area, so that high-sensitivity inspection can be performed.
  • a high-speed inspection can be realized with high sensitivity by reducing the magnification.
  • the magnification of the detection optical system 200 is changed based on a command from the overall control unit 50.
  • the imaging optical system (variable magnification imaging optical system) 23 is composed of a movable lens 401, 402, a fixed lens 403, and a moving mechanism 404.
  • the objective lens 21 It is characterized in that the magnification of the wafer surface imaged on the photodetector 26 can be changed without changing the position of the space filter 22 in the Z direction.
  • the magnification M of the variable magnification detection optical system 20 is given by the following equation (1), where f is the focal length of the objective lens 21 and f 2 is the focal length of the imaging optical system 23. Can be calculated.
  • FIG. 7 (b) shows a configuration in which the movable lenses 410 and 402 are positioned at specific positions in the moving mechanism 404.
  • the movable lens 404 It is also possible to control to position 1, 402 at an arbitrary position.
  • the moving mechanism 404 includes, for example, the lens holding portions 410, 420, the ball screws 41, 2, 42, and the motors 41, 1, 42 1 of the movable lenses 401, 402. It consists of.
  • the movable lens 410 is held by the lens holding section 410, the lens holding section 410 is rotated by the ball screw 4112 by the motor 4111, and the movable lens 4102 is held by the lens holding section 4
  • the lens holding portion 420 is independently moved to a predetermined position in the Z direction by the rotation of the ball screw 422 by the motor 421.
  • the movable portion 415 or 425 of the positioning sensor is placed at the tip of the movable lens 410 or 404.
  • a detection section 4 16 or 4 26 of the positioning sensor is provided, and the motor 4 1 1 or 4 2 1 is driven to move the lens holding section in the Z direction.
  • Each of the positioning sensors 416 or 426 provided at the position detects the positioning sensor movable section 415 or 425 to perform positioning.
  • the positioning sensor 440 is a limit sensor for the upper limit in the Z direction
  • the positioning sensor 430 is a limit sensor for the lower limit in the Z direction.
  • an optical or magnetic sensor can be considered.
  • magnification must be set according to the pattern density of the substrate 1 to be inspected placed on the stages 31 to 34. become. For example, when the circuit pattern has a high density, a high magnification is selected and a high-sensitivity inspection mode is selected. When the circuit pattern has a low density or high-speed inspection is required, a low magnification is selected.
  • variable magnification detection optical system 20 when the magnification is not changed frequently, the movable lens unit may be unitized and the unit may be replaced. In this case, adjustment and maintenance can be easily performed.
  • the ND filter 24a is used to adjust the amount of light detected by the photodetector 26, and the reflected light of high brightness is When light is received by the photodetector 26, the photodetector 26 becomes saturated, and stable foreign substance detection cannot be performed.
  • This ND filter 24a is not always necessary if the illumination light amount can be adjusted by the illumination optical system 10, but by using the ND filter 24a, the width of adjustment of the detected light amount can be increased, and various adjustments can be made.
  • the light intensity can be adjusted to be optimal for the object to be inspected.
  • the output can be adjusted from 1 W to 100 W with the laser light source 11, and if the ND filter 24 a has a 100% transmission filter and a 1% transmission filter, the light amount from 1 OmW to 100 W Can be adjusted, and a wide range of light intensity can be adjusted.
  • the polarizing plate 24b shields a polarized light component caused by reflected and diffracted light generated from the edge of the circuit pattern when polarized light is illuminated by the illumination optical system unit 10, and transmits a part of a polarized light component caused by reflected and diffracted light generated from a foreign substance. is there.
  • the photodetector 26 is an image sensor for receiving the upward reflected diffracted light condensed by the imaging optical system 23 and performing photoelectric conversion, such as a TV camera, a CCD linear sensor, or a TDI sensor. And anti-bullying TDI sensors and photomultiplier tubes.
  • a TV camera or a CCD linear sensor is preferable for an inexpensive inspection device, and for detecting weak light with high sensitivity, for example, 0.
  • a sensor with a TDI (Time Delay Integration) function or a photomultiplier tube is preferable.
  • the intensity of the reflected diffracted light from the circuit board will also differ depending on the inspection target area on the surface. That is, in the memory cell portion where the repetitive circuit pattern is formed and the peripheral portion, the intensity of the reflected diffracted light is higher in the peripheral portion.
  • the reflected and diffracted light of the circuit pattern from the memory cell can be erased more by the spatial filter 22.However, it is difficult to erase by the spatial filter 22 because there are various patterns in the peripheral area. become.
  • beam splitters 100 having different transmittance (eg, 99%) and reflectance (eg, 1%) are arranged at the position of the mirror 90, and the photodetectors 26, 101 are arranged in the respective optical paths. May be installed.
  • the beam splitter 100 may be constituted by a half mirror, and ND filters may be separately provided between the half mirror and the photodetectors 26 and 101 to change the amount of transmitted light.
  • ND filters may be separately provided between the half mirror and the photodetectors 26 and 101 to change the amount of transmitted light.
  • a defect such as a foreign substance is detected based on the image signal obtained by attenuating the amount of received light obtained from the photodetector 101
  • a defect such as a foreign substance may be detected based on an image signal obtained from the photodetector 26.
  • light receiving section rows 26'a which have different numbers of steps for extracting signals. It is also conceivable to use an element in which 26'b is formed. For example, a part 26'b for extracting the intensity signal of 1% of the accumulated light receiving element row of one stage, and a part for extracting the intensity signal of 99% of the remaining accumulated light receiving element array of 99 steps by the configuration in which divided into 2 6 5 a, even when strong light enters, it is possible to prevent causing Bull one timing, it its output signal in the signal processing system 4 0 as in the case of the It can be processed.
  • FIG. 10 shows a sensor in which photomultiplier tubes are arranged in a one-dimensional direction.
  • a microlens 5002 is attached to the imaging optical system 23 side of the photomultiplier tube 5001, and the imaging optical system 2
  • the configuration may be such that the reflected diffracted light condensed in 3 is detected.
  • the microlens 5002 has a function of condensing light in the same range as the photomultiplier tube surface onto the photomultiplier tube 501. Also, as shown in FIG.
  • an optical fiber 504 is attached via a jig 503 installed downstream of the microlens 504, and the optical fiber 504 is further mounted.
  • the photomultiplier tube 5001 may be attached to the output end.
  • the sensor pitch can be made smaller than that in FIG. 10 (a), so that a sensor with high resolution can be obtained.
  • a transparent film 800 is formed on the surface of the wafer in a multi-layering process, and a multi-layer wafer is formed by repeating a process of forming a circuit pattern thereon. Therefore, there is an increasing need for detecting foreign substances on the surface of the transparent film 800, such as microscopic foreign substances, defects 802 such as scratches, etc.
  • the illumination angle by reducing the illumination angle using the illumination beams 220 and 230, it is possible to suppress the influence of reflected light such as circuit pattern diffracted light from the base 81
  • the illumination angle when the illumination angle is reduced, most of the scattered light generated from the defect 802 comes out at a low angle as forward scattered light, so that the detection optical system 200 is not transmitted to the objective lens 21.
  • the defect 8002 on the transparent film 800 cannot be detected stably because the incidence is small. If forward scattered light is detected at a low angle, regular reflected light is detected. Therefore, the defect 802 cannot be detected.
  • the laser beam L3 having the expanded beam diameter is applied to the surface of the wafer 1 through the mirror 256 and the cylindrical lens 255.
  • it is irradiated as an illumination beam 250 at an illumination angle ⁇ of a low angle (about 5 to 10 degrees) to form a slit beam 201 having a longitudinal direction in the Y direction.
  • of a low angle (about 5 to 10 degrees)
  • the direction detection optical system 600 was installed. Therefore, the side detection optical system 600 detects a low angle (about 5 to 100 degrees) from a direction crossing the Y axis at an angle ⁇ (for example, about 80 to 100 degrees). It comprises an imaging optical system 630 having an optical axis of an angle ⁇ and a photodetector 640. Then, by setting the crossing angle ⁇ to around 90 degrees, the light receiving surface of the photodetector 640 changes the imaging relationship of the slit beam 201 to the imaging optical system 630.
  • the imaging magnification of the imaging optical system 630 can be set so that the light receiving surface of the photodetector 640 faces the entire illumination range of the slit beam 201. .
  • the side detection optical system 600 by forming the side detection optical system 600 into an imaging relationship at a low angle with respect to the slit beam 201, the influence of stray light from outside the slit beam region is prevented, and variable magnification detection is performed.
  • parallel processing can be performed, and inspection can be speeded up.
  • the photodetector 640 can be configured by a TDI sensor, a photomultiplier tube, or the like, similarly to the photodetector 26.
  • an automatic focus control system (not shown) is used so that the surface of the wafer 1 is at a fixed position in the ⁇ direction and the light receiving surface of the photodetector 640 captures the entire illumination range of the slit beam 201. Controlled.
  • a spatial filter in the optical path of the side detection optical system 600, it is possible to shield side-reflected diffracted light from a circuit pattern existing on a base or the like.
  • the imaging optical system 630 is devised, the range of the intersection angle ⁇ can be expanded. If the inclination angle is set to a low angle, the illumination beam 220 can be used.
  • the side detection optical system 600 is to detect scattered light in front of the side (in the direction of 135 degrees when viewed two-dimensionally).
  • the side detection optical system 600 may be provided between the mirrors 240 and 250 that do not interfere with the illumination system.
  • the side detection optical system 600 for imaging the side scattered light into the slit beam 201 mainly at a low angle and detecting it, the influence of the reflected light from the base is reduced. In this way, it is possible to accurately detect a minute foreign matter or scratch or the like 8002 on the transparent film 800.
  • the laser beam L3 is scanned at a high speed in the Y direction by a light deflecting means (light deflecting device) 720, and the condensing lens 730 is used to scan the surface of the wafer.
  • High-speed scanning is performed on the spot 701 condensed and irradiated at a low angle, and the side scattered light from a defect 802 such as a foreign substance or scratch is transmitted to an optical fiber or the like by a low-angle imaging lens 740.
  • An image is formed on the light receiving surface of the distributing means 750, and the formed optical image is guided by the distributing means 750 and detected by photoelectric conversion elements 760a to 76od such as a photomultiplier tube.
  • 740 to 760 is the side detection optical system 600 '.
  • FIG. 12 (b) by forming a plurality of spot scanning groups 71a to 71c on the wafer 1, high-speed inspection using a photomultiplier tube or the like is possible. Can be achieved.
  • the detection of the defect scattered light generated from each of the scanning spots 701a to 701c is performed by converting the light information guided by the distribution means 750 as shown in FIG. 12 (c) into a photomultiplier tube. Signals can be processed in parallel by picking up at a constant interval from 760a to 760d, and inspection can be performed at high speed.
  • the number of photomultiplier tubes can be reduced and the defect 802 can be detected without bias. That is, since the detection position of each photomultiplier tube in the Y direction on the wafer is determined by using the deflection signal of the light deflection means 720, the signal of the defect detected from each photomultiplier tube is spotted. 0 If detected in synchronization with high-speed scanning of 1, Good.
  • the laser beam L3 is divided into a plurality of laser beams 132a to 132d by a branching means 131 (131a to 31d), and each laser beam 132a to 132d is Based on the signal from 34d, the optical modulators 133a to 133d perform, for example, intensity modulation at different frequencies.
  • Each of the laser beams 135a-135d whose intensity has been modulated is reflected by mirrors 136a-136d and 137a-137d, and further deflected in the Y direction by an optical deflector 138 to form a condenser lens 139. And irradiate the wafer 1 as multi-spots 140a to 140d at an inclination angle.
  • each optical deflector gives an offset to the deflection angle so that the spots on the wafer 1 do not completely overlap in the Y direction.
  • multi-spots 140a to 140d are obtained, which are intensity-modulated at different frequencies from each other, incident at an inclination angle and scanned in the Y direction.
  • the side detection optical system includes an imaging lens 141 having an optical axis having an inclination angle of 0 in the X direction, a light receiving section 142, an optical fiber 143 connected to the light receiving section 142, and a photomultiplier tube 144. It consists of.
  • a photodetector can be configured by the light receiving unit 142, the optical fiber 143, and the photomultiplier tube 144.
  • 145 a to 145 d are synchronous detection circuits, each oscillator 134 a to 13
  • the photomultiplier tube 144 By detecting the frequency included in the signal component output from the photomultiplier tube 144 by the signal of each frequency applied to each of the optical modulators 133a to 133d obtained from 4d, It is possible to detect whether the defect is generated by scanning from a to 140 d. That is, the photomultiplier tube 144 receives the side scattered light from the defect 802 due to the multi-spot scanning.
  • each of the optical modulators 133a to 133d irradiates as a multi-spot 140a to 140d scanned by, for example, intensity modulation at different frequencies from each other.
  • the signals detected by the detector are detected by each of the synchronous detection circuits 145a to 145d, and the signal indicating the defect is extracted, so that the detection sensitivity is compared with the case of irradiating as a multi-spot by changing the wavelength. As a result, defects can be detected with uniformity, and the speed can be increased.
  • the inclination angle ⁇ and the detection angle ⁇ do not necessarily have to be low, and can be arbitrarily set in the range of 5 to 90 degrees. May be specified.
  • a plurality of detection heads obtained by uniting a scanning laser illumination system and a detection optical system are arranged in the arrangement direction of the chip 202, preferably at the tip of the chip. Inspection can be sped up even if installed together.
  • FIGS. 12 and 13 are also applicable to upward detection by the detection optical system 200.
  • the stages 31 and 32 are stages for moving the sample setting table 34 to the XY plane, and have a function of moving the entire surface of the substrate 1 to be inspected to the illumination area of the illumination optical system 10.
  • the stage 33 is a z-stage, and has a function of moving the sample stage 34 in the optical axis direction (Z direction) of the variable magnification detection optical system 20.
  • the sample mounting table 34 has a function of holding the wafer 1 and rotating the substrate 1 to be inspected in a plane direction.
  • the stage controller 35 has a function of controlling the stages 31, 32, 33, and the sample mounting table 34.
  • Signal processing system 40 is a photodetector A / D converter 1301 that performs A / D conversion of a signal switched and input from each of 26 and 640, a data storage unit 1302 that stores (i, j) the detected image signal that has been A / D converted, A threshold calculation unit 1303 that performs a threshold calculation process based on the detected image signal, a detected image signal 510 obtained from the data storage unit 1302 and a threshold image signal (Th (H), Th ( Hm), Th (Lm), Th (L)) 520 and foreign object detection processing units 1304a to 1304n that perform foreign object detection processing for each pixel merge, for example, low angle illumination Low-angle illumination by the beams 220 and 230, the amount of scattered light obtained from the defect detected by the detection optical system 200, high-angle illumination (including medium-angle illumination)-Upward detection (illumination beam 220 , 230,
  • Each of 304 ⁇ is, for example, corresponding to each of 1 ⁇ 1, 3 ⁇ 3, 5 ⁇ 5,. ⁇ 1307n and an inspection area processing unit 1308a ⁇ 1308n.
  • the present invention is characterized by foreign matter detection processing units 1304a to 1304n, a feature amount calculation circuit 1310, and an integration processing unit 1309.
  • the signals obtained by switching from each of the photodetectors 26 and 640 are digitized by the A / D converter 1301.
  • the detected image signal f (i, j) 510 is stored in the storage unit 1302, and the threshold value calculation processing unit 1303 Send to A threshold value calculation processing unit 1303 calculates a threshold image Th (i, j) 520 for foreign object detection, and a foreign object detection processing circuit based on signals processed by the pixel merge circuits 1305 and 1306 for each of various merge operators.
  • a foreign substance is detected.
  • the inspection area processing unit 1308 performs processing on the detected foreign substance signal and the threshold image according to the detection location.
  • the pixel merge circuits 1305a to 1305n and 1306a to 1306n of the foreign matter detection processing units 1304a to 1304n provided for each type of merge operator, the foreign matter detection processing circuits 1307a to 1307n, and the inspection area processing Based on the signals obtained from the sections 1308a to 1308n, the characteristic amount is calculated by the characteristic amount calculation circuit 1310 (for example, the amount of scattered light obtained by high-angle illumination and upward detection, the amount of scattered light obtained by low-angle illumination Scattered light quantity, low-angle illumination, scattered light quantity obtained by oblique detection, the number of detected pixels of defects, etc.), the foreign matter signal and the feature quantity are integrated by an integration processing unit 1309, and a result display unit 1311 displays the inspection result.
  • the characteristic amount calculation circuit 1310 for example, the amount of scattered light obtained by high-angle illumination and upward detection, the amount of scattered light obtained by low-angle illumination Scattered light quantity, low-angle illumination, scattered light quantity obtained by oblique detection, the number of detected pixels of defects,
  • the A / D converter 1301 is a circuit having a function of converting an analog signal obtained by the photodetectors 26, 640, and the like into a digital signal, and the number of conversion bits is desirably about 8 to 12 bits. This is because if the number of bits is small, the resolution of signal processing is low, making it difficult to detect minute light.On the other hand, if the number of bits is large, the A / D converter becomes expensive and the equipment price is high. This is because there is a disadvantage.
  • the data storage unit 1302 is a circuit for storing the digital signal that has been A / D converted.
  • the threshold calculation processing unit 1303 is described in JP-A-2000-105203. That is, the threshold calculation processing unit 1303 uses the values described below to detect the threshold image of the detection threshold (Th (H), Th (L)) and the verification threshold (Th (Hm), ⁇ h (Lm)). Is calculated using the following equation (2).
  • k is the coefficient (magnification) for setting the threshold value corresponding to the input data number n
  • k is the coefficient for verification.
  • m (m is smaller than 1)
  • the threshold image is set for each area set by the inspection area processing unit 1308a to 1308n. You may change the day. In short, in order to lower the detection sensitivity in a certain region, the threshold value in that region may be increased.
  • the pixel merging circuit sections 1305a to 1305n and 1306a to 1306n each include a different merging cell 1504.
  • the marshalling perimeter 1 504 includes a detection image signal f (i, j) 5 10 obtained from the data storage unit 1302, a detection threshold image Th (H) obtained from the threshold calculation processing unit 1303, and detection
  • the threshold image Th (L), the verification threshold image Th (Hm), and the threshold image signal 520 including the verification threshold image Th (Lm) are combined in a range of nxn pixels. This is a circuit that outputs an average value.
  • the pixel merge circuits 1305a and 1306a are composed of a merge operation for merging 1 ⁇ 1 pixels, for example, and the pixel merge circuits 1305b and 1306b merge, for example, 3 ⁇ 3 pixels.
  • the pixel merging circuits 1305 c and 1306 c are composed of, for example, a merger that merges 5 ⁇ 5 pixels.
  • the pixel merging circuits 1305 n and 1306 n are composed of, for example, nxn pixels. It consists of a marriage and a marriage.
  • a merge operator that merges 1 X 1 pixels outputs the input signals 510 and 520 as they are.
  • each pixel merge circuit unit 1306a to 1306n Requires four major opera night ops. Therefore, the detected image signals are output from the respective pixel merging circuit sections 1305a to 1305n to various merging circuits.
  • the merge processing is performed at Pele 1504, and the merged processing image signals 431a to 431 ⁇ are output.
  • four threshold image signals (Th (H), Th (Hm), Th (Lm), and Th (L)) are output from each pixel merge circuit unit 1306 a to 1 306 n in various formats.
  • Merge processing is performed in Opl to Opn, and merge processing is performed and output as threshold image signals 441a (441al to 441a4) to 441n (441nl to 441n4). Note that the operation in each pixel merge circuit section 1306a to 1306n is the same.
  • the effect of merging pixels will be described.
  • the foreign substance inspection apparatus of the present invention it is necessary to detect not only minute foreign substances but also large thin-film foreign substances spread over several / a range without overlooking them.
  • the detected image signal from the thin film-like foreign material does not necessarily become large, the SN ratio is low in the detected image signal of one pixel unit, and an overlook may occur. Therefore, assuming that the average detected image signal level of one pixel is S and the average variation is n / n, the detected image signal is obtained by extracting and convolving in units of nxn pixels corresponding to the size of the thin film foreign matter.
  • the level is n 2 XS
  • the variation (N) is nx.
  • the SN ratio is nxS /.
  • the detected image signal level is S
  • the variation is variable, so that the SN ratio is S / V. Therefore, by performing extraction and convolution operation in units of n ⁇ n pixels corresponding to the size of the thin film-like foreign matter, the SN ratio can be improved by n times.
  • the detected image signal level detected on a one-pixel basis is S, and the variation is variable. Therefore, the SN ratio is S / variable. Assuming that you cut out by convolution operation in units of nn pixels for one pixel unit about the fine foreign matter, the detected image signal level S / n 2 becomes, since the variation becomes nx beauty, SN ratio is S / n 3 / Become nervous. Therefore, with respect to a minute foreign matter of about one pixel unit, the signal-to-pixel unit as it is can improve the SN ratio.
  • the merge range is a square (nxn pixels)
  • the range of merging may be rectangular (nxm pixels). In this case, it is effective when detecting a directional foreign substance or when the detection pixels of the photodetectors 26 and 640 are rectangular, but signal processing is desired to be performed with square pixels.
  • FIG. 16 is a diagram showing one embodiment of the foreign matter detection processing circuit 1307.
  • FIG. 16 shows a pixel merge circuit unit 1305a and a pixel merge circuit unit 1306a for merging 1 ⁇ 1 pixels, and a pixel merge circuit unit 1305n and a pixel merge circuit unit 1306n for merging nxn pixels.
  • the foreign object detection processing circuits 1307a to 1307 ⁇ are compared with each other by a comparison circuit for comparing the magnitudes of the merge processing difference signals 471a to 471n and the merge processing threshold signals 441a to 441n in correspondence with each major operation.
  • the c comparison circuits 1601 a to 1601 n composed of 1601 a to 1601 ⁇ and a detection location determination processing unit 1602 a to 1602 n for specifying the detection location of the foreign matter include pixels obtained from the pixel merge circuits 1305 a to 1305 ⁇ .
  • the merged detection image signal is delayed by a delay memory 451 a to 451 n for delaying, for example, a chip repeatedly, and the pixel merged detection image signal 431 a to 431 n and the delay memory 451 a to 451 n.
  • a difference processing circuit 461 a to 461 n for forming a difference signal from the reference image signal obtained by merging the pixels is provided.
  • the comparison circuits 1601 a to l 601 n include the merge processing threshold images Th (H) (i, j) and Th (Hm) obtained from the four pixel merge circuits 0 p of the respective pixel merge circuits 1306 a to 1306 n.
  • the merge processing difference detection signals 471 a to 471 n are merged. If it is larger than the threshold image Th (i, j), it has a function of determining that it is a foreign substance.
  • four types of thresholds are used. Prepared, and for each merge operator, perform the foreign object judgment processing on the merge processing threshold images 1603, 1604, 1605, and 1606 using the comparison circuits 1601a to 1601n.
  • the detection location determination process is a process of identifying a chip in which a foreign substance or a defect is present in correspondence with various types of magic and calculating the position coordinates (i, j) thereof.
  • the idea of this processing is that the detection thresholds (Th (H), Th (L)) for detecting foreign matter or defects and the verification thresholds (Th (Hm), Th (Hm), Th (Hm), which are smaller than the detection thresholds). (Lm)) Using the results detected in), identify the chip in which foreign matter or defect is detected.
  • the inspection area processing units 1308 a to 1308n provide an area that does not need to be inspected for a foreign substance or a defect detection signal obtained by specifying a chip from the foreign substance detection processing circuits 1307 a to l 307 n. This is used to remove the data of an area (including the area), to change the detection sensitivity for each area (including the area within the chip), and to select the area to be inspected conversely.
  • the inspection region processing units 1308 a to 1308 ⁇ are, for example, a threshold calculation unit (not shown) of the threshold calculation processing unit 1303 when the detection sensitivity may be low among the regions on the inspection target substrate 1.
  • the foreign object detection processing circuits 1307a to 1307n may be used to set the threshold value of the foreign object in the area to be inspected based on the coordinates of the foreign object.
  • a method that leaves only one night may be used.
  • the area where the detection sensitivity may be low is, for example, an area where the density of the circuit pattern is low on the inspection target substrate 1.
  • the advantage of lowering the detection sensitivity is that the number of detections can be reduced efficiently. In other words, a highly sensitive inspection device may detect tens of thousands of foreign substances. At this time, what is really important is the foreign matter in the area where the circuit pattern exists, and taking measures against this important foreign matter is a shortcut to improving the yield of device manufacturing.
  • the inspection area processing unit 1308a to l308n does not significantly affect the yield such as the absence of the circuit pattern based on the CAD information or the threshold map information in the chip.
  • the method of extracting foreign matter may be not only a method of changing the detection sensitivity, but also a method of extracting important foreign matter according to the classification of foreign matter described later, and a method of extracting important foreign matter based on the size of foreign matter.
  • the integration processing unit 1309 integrates the foreign object detection results processed in parallel by the pixel merge circuits 135 and 1306, and differs from the feature amount calculated by the feature amount calculation circuit 1310. It has the function of integrating the object detection results and sending the results to the result display unit 1311.
  • This inspection result integration processing is preferably performed by PC or the like to make it easy to change the processing contents.
  • the feature amount calculation circuit 1310 will be described.
  • the feature amount is a value representing the feature of the detected foreign matter or defect
  • the feature amount calculation circuit 1310 is a processing circuit for calculating the feature amount.
  • the feature amount includes, for example, high-angle illumination, upward detection, low-angle illumination, upward detection and low-angle illumination, and the amount of reflected and diffracted light (scattered light) from a foreign object or defect (Dh, D 1)
  • Dh the amount of reflected and diffracted light from a foreign object or defect
  • FIG. 17 is a table showing the relationship between classification criteria and classification results.
  • FIG. 17 is an example using the detection result merged with 1 ⁇ 1 pixel and the detection result merged with 5 ⁇ 5 pixel.
  • the inspection result of 1 X.1 pixel and the inspection result of 5 X 5 pixels are obtained from the foreign matter detection processing circuits 1307a and 1307c by the signal processing circuit. Using these results, Figure 17 Classify according to.
  • FIG. 18 shows an embodiment of displaying the inspection results including the classification results.
  • the above inspection results are displayed as follows: foreign object position information 2501 obtained from the detection location judgment processing unit 1602a, 1602c, and category information of the classification result obtained from the integrated processing unit 1309. It consists of 2502 and the number of foreign substances of each category 2503.
  • This embodiment is an example in which the position information of a foreign substance 2501 indicates the position of the foreign substance, and the classification category is also displayed by a display symbol. The contents of the classification category of each symbol are shown in the classification result category information 2502. In addition, the number of foreign substances 2503 in each category indicates the number classified into each category. By thus changing the display for each category, there is an advantage that the distribution of each foreign substance can be understood at a glance.
  • the foreign matter size measuring method is based on the fact that there is a proportional relationship between the size of a foreign substance and the amount of light detected by the photodetector 26.
  • the detected light amount D is proportional to the sixth power of the foreign matter size G according to the Mie scattering theory. Therefore, the feature amount calculation circuit 1310 measures the foreign matter size by the following equation (3) based on the detected light amount D, the foreign matter size G, and the proportionality coefficient e, and the integrated processing unit 1310 Can be provided.
  • the proportionality coefficient e may be obtained in advance from the amount of light detected from a foreign substance having a known size and input.
  • FIG. 19 (a) shows a digital image signal (a signal of the photodetector 26) of the minute foreign matter obtained from the data storage section 1302 regarding the minute foreign matter detected by the foreign matter detection processing circuit 133. This is an image of the minute foreign matter portion created based on the A / D converted image signal.
  • the minute foreign matter part 260 1 indicates a signal of a minute foreign matter.
  • FIG. 19 (b) shows the A / D conversion values (shading values for each pixel) of the minute foreign matter portion 2601 in FIG. 19 (a) and its neighboring pixels.
  • This example is an example in which A / D conversion is performed in 8 bits, and a foreign matter signal unit 2602 indicates a detection signal from a minute foreign matter.
  • “2 55” at the center of the foreign matter signal section 2602 indicates that the analog signal is saturated, and “0” other than the foreign matter signal section 2602 indicates a signal other than a minute foreign matter.
  • the detection light amount D of the minute foreign matter the sum of each pixel value of the foreign matter signal portion 2602 shown in FIG. 19 (b) is calculated.
  • the detected light amount D of the minute foreign matter 2601 is “805” which is the sum of the pixel values.
  • FIG. Figure 20 is a three-dimensional representation of the Gaussian distribution.
  • CC can be expressed by the following equation (10).
  • the value of the signal sum of the foreign substance signal unit 2602 is used as the detected light amount, but the signal sum is not necessarily required, and the maximum value of the foreign substance signal unit 2602 may be used.
  • the advantage is that when the maximum value is used, the size of the electric circuit can be reduced, and when the signal sum is used, the sampling error of the signal can be reduced, and a stable result can be obtained.
  • the display screen may be displayed on the display means 52 provided in the overall control unit 50.
  • FIG. 21 shows a sequence for classifying foreign substances based on the result of the inspection performed twice by the integration processing unit 1309.
  • the wafer 1 is inspected under the first inspection condition (S221).
  • the coordinate data of the foreign matter obtained from the foreign matter detection processing circuit 1307 and the feature amount of each foreign matter obtained from the feature amount calculation circuit 1310 are stored in a storage device (not shown) (S222).
  • the wafer 1 is inspected under the second inspection condition different from the first inspection condition (S223), and in the second inspection, the coordinate data of the foreign matter obtained from the foreign matter detection processing circuit 1307 is obtained.
  • the characteristic amount of each foreign substance obtained from the characteristic amount calculation circuit 1310 is stored in a storage device (not shown) (S224).
  • the second inspection condition for example, when the first inspection condition irradiates the illumination light from an angle close to the wafer surface (low angle illumination), the second inspection condition is the wafer surface It is recommended to select the condition for irradiating the illumination light from an angle close to the normal of the object (high-angle illumination condition). Also, when wafer 1 is inspected under the second inspection condition, the feature amount at the coordinates where the foreign object is detected under the first inspection condition is stored regardless of whether foreign object is detected under the second inspection condition. I do.
  • the obtained coordinate data of the first inspection result is compared with the coordinate data of the obtained second inspection result (S225), and a foreign substance having similar coordinates is regarded as the same thing.
  • S226) the coordinate data obtained from the first inspection result is represented by X i
  • the coordinates obtained from the second inspection result are x 2 and y 2 and the comparison radius is r
  • the data that satisfies the following equation (12) can be determined to be the same.
  • r may be 0 or a value that takes into account the error associated with the device.
  • calculate the value on the left side of equation (12) from the coordinate data of several foreign substances and set the value calculated by equation (13) to r from the average value and standard deviation value.
  • the horizontal axis sets the amount of scattered light (D1), which is the characteristic amount obtained in the first inspection (low-angle illumination), and the vertical axis indicates the second inspection (high-angle illumination).
  • ) 6 is a graph in which the amount of scattered light (D h), which is the characteristic amount obtained in step (a), is set.
  • the horizontal axis sets the amount of scattered light (D1 ') obtained by the side detection optical system 600 with low-angle illumination and the vertical axis sets the scattered light obtained with high-angle illumination.
  • FIG. 22 It is a graph in which the light amount (D h ′) was set.
  • a point 3501 is a point plotted according to each characteristic amount of the foreign substance regarded as the same thing.
  • one point indicates one foreign substance.
  • a classification line 3502 is a classification curve for classifying foreign substances detected in the inspection.
  • FIG. 22 shows an example of division into two regions, that is, a region 3503 and a region 3504 by a classification line 3502.
  • FIG. 22 (a) when the detected foreign matter is plotted in the area 3503, it is classified as "large foreign matter, scratch", and is plotted in the area 3504. If it does, classify it as “small foreign matter”. Further, as shown in FIG.
  • the side detection optical system 600 When the amount of scattered light (D 1) is smaller, the detected object 450 1 0 is classified as a defect in the film existing inside the transparent film 800.
  • the detection sensitivity of the upper detection is lower than that of the side detection.
  • the classification line 3502 needs to be determined in advance. As a method of determining in advance, several detection objects that are known as large foreign matter or small foreign matter are plotted on the graph of Fig. 2 at several points, and a classification line 3502 is set so that the detection objects can be correctly classified. Just do it. Alternatively, a feature amount obtained from a foreign substance may be calculated by simulation, and a classification line 3502 may be set based on the calculation result.
  • a defect coordinate and a detected object on a wafer whose type is known by a review device such as an optical microscope for observation 60 or an SEM mounted on the inspection device are used. Classify.
  • the review equipment including 60 included in the inspection equipment can perform the classification in a short time, and when using the SEM, the classification can be performed with high resolution.
  • Examples of the type of the detected object include a foreign substance, a scratch, and a foreign substance in a transparent film.
  • the setting of the classification line 3501 is, for example, low angle
  • the threshold value is set to such a value that the amount of scattered light obtained by illumination does not erroneously detect electric noise in the detector 26 as a foreign substance.
  • the center of gravity of each of the large foreign matter and small foreign matter groups is calculated, and the standard deviation of each plot point is calculated.
  • FIG. 23 shows a sequence of an embodiment in which inspection is performed once and classification is performed using feature amounts calculated under three types of optical conditions.
  • the optical conditions of the foreign substance inspection device of the present invention are changed. This is, for example, the irradiation angle and illumination direction of the illumination optical system, and the detection direction (upward / oblique) of the detection optical system. Further, the magnification of the detection optical system may be changed, and the optical filter may be changed.
  • the condition with the above changes is the second optical condition.
  • the carrier 1 After changing the optical condition to the second optical condition, the carrier 1 is moved by the transport system 30 to the position of the coordinates of the stored foreign matter, and detected by the photodetector 26 under the second optical condition. Then, based on the detected image signal obtained by the A / D conversion, the characteristic amount calculating circuit 1310 calculates the characteristic amount of the foreign substance (S243). Further, the calculation is performed in the same manner when the feature value is calculated under the third optical condition (S244). At this time, it is desirable that the first optical condition, the second optical condition, and the third optical condition are different conditions.
  • Figure 24 illustrates the concept of the classification method.
  • Fig. 24 shows three types of features on three axes This is the set feature space.
  • feature amount 1 is a feature amount (for example, scattered light amount (Dh)) from a defect acquired under the first optical condition (for example, high-angle illumination)
  • feature amount 2 is The feature amount (for example, the amount of scattered light (D 1)) from the defect acquired under the optical condition 2 (for example, low-angle illumination)
  • the feature amount 3 is the third optical condition (for example, The feature amount (for example, the number of detected pixels: the planar area Q of the defect) obtained from the defect obtained under the angle illumination and the second optical condition (low-angle illumination).
  • FIG. 24 is an example in which three types of classification are performed from three types of feature amounts, so that it is sufficient that there are two or more classification boundaries.
  • the three types of features include the amount of scattered light from the defect caused by high-angle illumination (detected light amount) (D h), the amount of scattered light from the defect caused by low-angle illumination (detected light amount) (D 1),
  • D h the amount of scattered light from the defect caused by high-angle illumination
  • D 1 the amount of scattered light from the defect caused by low-angle illumination
  • the three feature quantities are the amount of scattered light from defects at high imaging magnification, the amount of scattered light from defects at low imaging magnification, and the number of detected pixels of the defect. It can be easily classified into the foreign matter defect category. In addition, it becomes possible to classify defects such as minute foreign matters and scratches (scratch defects) on the transparent film from the feature amount of the defect image obtained from the photodetector 640.
  • FIG. 24 shows an example in which classification boundaries 4501 and 4502 are set. As a classification method, first, the above-mentioned three feature values are plotted in the feature value space of FIG. 24 (S245 shown in FIG. 23).
  • the foreign substances belonging to the area divided by the classification boundaries 4501, 4502 are classified into categories (for example, foreign substance defects) a, and categories. It is classified as “b” (for example, scratch defect) b and “Category” (for example, circuit pattern defect) c (S246 shown in FIG. 25).
  • Fig. 24 shows an example in which about 30 defects are classified into category a , category b, and category c, and the display symbols of the defects classified into each category are changed. In other words, those classified into category a (for example, foreign matter defects) are " ⁇ ", those classified in category b (for example, scratch defects) are " ⁇ ”, and those classified into force category c (for example, circuit pattern defects) Is indicated by "X".
  • FIG. Figure 25 shows a two-dimensional feature space in which three types of features are set on one axis.
  • the feature space 460 1 is a graph for classifying from the relationship between the feature 1 and the feature 2
  • the feature spaces 4 602 and 460 3 are respectively the feature 1 and the feature 3
  • 6 is a graph for classifying based on the relationship between feature amounts 2 and 3.
  • FIG. 1 is a graph for classifying from the relationship between the feature 1 and the feature 2
  • the feature spaces 4 602 and 460 3 are respectively the feature 1 and the feature 3
  • 6 is a graph for classifying based on the relationship between feature amounts 2 and 3.
  • the characteristic amount of the foreign substance whose classification category is known is plotted in the characteristic amount space 4601, 4602, 4603.
  • the display symbols and the like are changed for each category to express the difference between the categories. For example, in Fig. 25, category a is displayed as " ⁇ ”, category b is displayed as “ ⁇ ”, and category c is displayed as "X”.
  • each feature space 4600 4602, 4603, set classification boundaries 4604, 4605, 4606 in the parts where the categories can be divided. I do.
  • classification boundaries 4604, 4605, 4606 in the parts where the categories can be divided.
  • category a is distributed at a position distant from the other categories b and c, so that the classification boundary 4 is used to classify category a and other categories b and c.
  • 604 is set, since the distributions of category b and category c overlap, it is not always necessary to set classification boundaries.
  • this feature space 460 1 is used to classify the category a or another category.
  • classification boundaries 4605 and 4606 are also set in the feature quantity spaces 4602 and 4603, and the classification boundaries are used when foreign matter is classified.
  • the method for setting the classification boundary has been described above. In this example, the case where the classification boundary is divided into two regions has been described.However, if the distribution of three or more categories is clearly divided, a plurality of classification boundaries are set to divide into multiple regions. May be. Further, the classification boundary may be set by a straight line or a curve.
  • the setting of the classification area may be manually set by the user, or may be automatically calculated and set.
  • the manual setting has the advantage that the user can arbitrarily determine it.
  • the automatic setting can reduce the setting error caused by humans.
  • the center of gravity of each category distribution is calculated, and a vertical bisector of a straight line connecting the centers of gravity may be used as a classification boundary. Also, the separation rate of each category may be displayed together in each feature space.
  • a display 4701 is a display of the separation rate.
  • the separation rate may indicate, for example, how much foreign matter of the same category is contained in an area separated by a separation boundary.
  • the advantage of displaying the separation rate is that the user can easily grasp the separation performance.
  • the present invention is not necessarily limited to three types. It can be used when multiple feature values can be acquired under one type of optical condition.
  • FIG. 27 is composed of the position information 3801 of the detected foreign substance or defect, the detected number of foreign substance or defect 3802, and the histogram 3803 of the detected foreign substance or defect size. Note that this embodiment shows a case where a flaw is detected as a defect.
  • the position information 3801 indicates the position of a foreign substance or a scratch on the wafer.
  • a foreign substance is indicated by a triangle and a scratch is indicated by a triangle.
  • the number of detections 3 8 0 2 is the number of foreign substances or scratches detected.
  • a graph 3803 is a histogram of the number of detected foreign substances or scratches and the size thereof.
  • Fig. 28 is composed of an inspection map 3901 showing the detection position of the detected object (foreign matter or defect), a histogram 3920 of the size of the detected object, and a review image 3900 of the foreign matter.
  • the inspection map 3901 and the histogram 3902 are examples in which all or some of the detected objects are displayed.
  • the review image 3903 is an example in which a sample is sampled for each size of the detected object, and a review image of the detected object is displayed.
  • 0.1 / 111 or more and 1 1] for foreign substances less than 1
  • the figure shows a case where six review images and six review images of foreign substances of 1 m or more are displayed.
  • the review image 390 3 may be an image obtained by reflected and diffracted light from a foreign substance detected by the detectors 26 and 64, or an optical microscope 60 or a white light source using a white light source described later.
  • the image may be an image obtained by a reviewing device using a computer.
  • an observation image may be obtained after the inspection based on the coordinates of the sampled detected object, and a clearer image than an image obtained by a laser beam may be obtained. It is.
  • a high-resolution microscope using ultraviolet light as a light source is desirable.
  • the position of the detected object displayed in the review image 3903 may be displayed together on the inspection map 3901, and the detection number of the detected object is also displayed in the review image 3903. You may. Also, in this embodiment, the case where the number of review images to be displayed is six is described, but it is not necessary to limit the number to six, and all the detected foreign substances or defects may be displayed. You may display only a fixed number of pieces.
  • Fig. 29 the detected objects are classified and displayed as foreign matter and flaws, and the accuracy rate of the classification is also shown.
  • Fig. 290 is composed of the number of detected items of each category 4001, the inspection map 400 showing the detected position of the detected object, and the detected object confirmation screen 4003.
  • the detection object confirmation screen 4003 further includes a confirmation screen section 400 of the detection object classified as a foreign substance by the defect inspection apparatus of the present invention and a confirmation screen section 400 of the detection object classified as a flaw. 05, a classification correct answer rate display section 400.
  • the confirmation screen sections 400 and 405 are further composed of an observation screen for detection object 407 and a classification correct answer determination section 408.
  • detected objects are classified into two categories.
  • the symbol "1" is displayed as a foreign substance
  • the symbol "2" is displayed as a flaw.
  • observation screens 407 are displayed on the confirmation screens 404 and 405, respectively. At this time, whether to display the information on the confirmation screen unit 4004 or 4005 is displayed based on the result of classification by the defect inspection apparatus of the present invention.
  • the user of the defect inspection apparatus of the present invention inputs the category determined by the user into the classification correct answer determination section 410 associated with each observation screen 407. In this example, the case where the check box of the category determined by the user is checked as the input method is shown. In this example, 1/6 is checked as a scratch (category "2"). Also, in the scratch confirmation screen section 4005, all are determined as scratches (category “2”).
  • the correct answer rate is displayed on the classification correct answer rate display section 4006.
  • This value indicates, for example, a rate at which the classification result of the defect inspection apparatus of the present invention matches the classification result of the user.
  • the classification is performed using the feature amount of the detection object in order to improve the classification accuracy.
  • the condition may be updated.
  • FIG. 30 is a diagram showing a flow for setting an inspection condition (inspection recipe).
  • the general control unit 50 sets the inspection conditions (inspection recipe) performed before the inspection is executed, by setting a chip layout setting (S211) corresponding to the inspection object and a rotation adjustment (S211) of the inspection object. 2), inspection area setting (S2 13), optical condition setting (S2 14), optical filter setting (S2 15), detection light amount setting (S2 16), signal It consists of processing condition setting (S2177).
  • S218 is the execution of the actual inspection.
  • the chip rate setting (S211) is performed by setting the chip size and the presence / absence of a chip on a wafer for the signal processing system 40 or the like in the overall control unit 50 using CAD information or the like. is there. This chip size needs to be set because it is the distance for performing the comparison process.
  • the rotation alignment setting (S 2 1 2) is performed by controlling the overall control unit 50 with respect to the transfer system 30, the arrangement direction of the chips on the wafer 1 placed on the stage, and the photodetector 26. This is a setting for rotating the wafer 1 in order to make the pixel direction parallel to the pixel direction, that is, to make the rotational deviation almost “0”.
  • the inspection area setting (S213) is performed by setting the inspection place on the wafer, which is controlled by the overall control unit 50 with respect to the signal processing system 40, and the detection sensitivity in the inspection area. It is to make settings. By performing this inspection area setting (S213), each area on the wafer can be inspected with optimal sensitivity.
  • the setting method is as described in the description of FIG.
  • the optical condition setting (S 2 14) is performed by controlling the direction and angle of the illumination light irradiating the wafer, which is controlled by the overall control unit 50 with respect to the illumination optical system 10 and the variable magnification detection optical system 20. Or the magnification of the variable magnification detection optical system 20.
  • setting in the optical condition setting window as shown in Fig. 31 is sufficient.
  • the optical condition setting screen includes an illumination direction condition 3001 of the illumination optical system, an illumination angle condition 3002 of the illumination optical system, and a detection optical system condition (including upward or oblique as the detection direction). 0 3.
  • FIG. 31 shows an example in which three types of illumination direction conditions 3001, three types of illumination angle conditions 3002, and two types of detection optical system conditions 3003 can be selected. is there.
  • the user of the present foreign matter inspection apparatus may select an appropriate condition by looking at the contents of the conditions 3001, 3002, and 3003. For example, if the inspection target 1 is a wafer in a metal film deposition process and you want to inspect foreign substances on the surface with high sensitivity, select the “deposition process” of the illumination direction condition 3001, and then It is only necessary to select “Surface foreign matter” of the illumination angle condition 3002 and select “upward detection (variable magnification): high-sensitivity inspection” for the detection optical system condition 3003.
  • FIG. 31 shows an example in which this is performed.
  • the “post-CMP process” of the illumination direction condition 301 is selected. What is necessary is to select “surface foreign matter” in the condition 3002 and select “oblique detection: high-speed inspection” in the detection optical system condition 3003.
  • the optical filter setting (S215) is controlled by the overall control unit 50 with respect to the detection optical system 200 and the like.
  • the philosophy is to set 24b. Since this spatial filter 22 is a filter for shielding the reflected and diffracted light from the repetitive pattern manufactured in the reciprocating device, it is better to set it for a wafer having a repetitive pattern. There is no need to set for wafers without the. Also, the polarizing element 24b is effective when used when the edge of the wiring pattern is etched near a right angle.
  • the detection light amount setting (S216) is performed by the overall control unit 50. This is a step of controlling the illumination optical system 10 or the variable magnification detection optical system 20 and adjusting the amount of light incident on the photodetector 26.
  • the reflected and scattered light from the circuit pattern manufactured on the wafer changes its scattered component depending on its pattern. Specifically, when the wafer surface is flat Does not generate much scattered light and is mostly specularly reflected light. On the other hand, when the roughness of the wafer surface is large, a large amount of scattered light is generated. Therefore, the reflected and scattered light from the circuit pattern changes depending on the state of the wafer surface, that is, the device manufacturing process. However, since there is a dynamic range of the photodetector 26, it is desirable to adjust so that a light amount corresponding to the dynamic range is incident. For example, it is desirable to adjust the amount of reflected and scattered light from the circuit pattern of the wafer to be about 110, which is the dynamic range of the photodetector 26.
  • the output light amount of the laser light source 11 may be adjusted, or the ND filter 24a may be used.
  • the signal processing condition setting (S 2 17) is to set conditions for detecting a defect such as a foreign substance, which is controlled by the overall control unit 50 with respect to the signal processing system 40.
  • the input may be manually performed from the design information of the object to be inspected, or the input assist function attached to the foreign substance inspection apparatus of the present invention may be used.
  • the information may be input, or information may be obtained from a host system via a network.
  • the processing condition setting (S2 17) does not necessarily need to be changed depending on the object to be inspected, and may be a constant value regardless of the object to be inspected. If the value is fixed, the time for setting the inspection conditions can be reduced, but it is desirable to tune each condition in order to achieve high sensitivity.
  • the inspection area setting (S213) does not necessarily need to be performed before the optical condition setting (S214), but may be set before the inspection step (S218).
  • FIG. 32 shows an example of a screen for setting the contents described above.
  • Fig. 32 shows the condition setting. Consists of a fixed sequence 4301, detailed conditions for each setting, 4302, a setting display change button 4303, and a help button 4304.
  • a condition setting sequence 4301 shows a flow of setting inspection conditions in the foreign substance inspection device of the present invention.
  • the user may set the conditions in order from “chip layout setting” in the condition setting sequence 4301.
  • the feature of the condition setting sequence 4301 is that the flow of the condition setting is indicated by an arrow 4305 so that the user can set the shortest order without making a mistake in the setting order.
  • Another feature is that it is divided into items that must be set and items that do not necessarily need to be set, that is, items that can be set to default values.
  • the button 430 6 indicates that the item must be set by indicating the frame in triples
  • the button 430 7 indicates the necessity of setting by indicating the frame in singles. This is an example showing that the item is low.
  • another feature is to specify which items are currently set by the user. For example, button 430 is distinguished from buttons 430 and 407 by shading the button. Specifying the current location has the advantage that the number of remaining setting items can be seen at a glance.
  • This embodiment is an example in which option condition setting 4309 is added to the sequence described with reference to FIG.
  • the contents of the optional condition setting 4309 are, for example, the setting of the condition of the foreign matter size measuring function and the setting of the classification condition of the foreign material and the defect.
  • the detailed condition 4302 is a screen for setting details of each condition item.
  • a place for inputting with a keyboard may be provided as in an input box 43110, or an input item may be input as an icon as in an input icon 431.
  • a selection method may be used.
  • the input icons 4 3 1 1 are shown as icons for three types of input items, and when the corresponding icon is pressed, another window appears to set detailed conditions. Furthermore, a method of selecting necessary items, such as an input check box 4 3 1 2, may be used.
  • the setting content display change button 4303 is a button for changing display items or customizing. For example, when there is an item that the user always wants to set or an item that wants to increase the number of setting contents, the user can use this setting display change button 4303 to change the setting, so that the user can use the screen easily. Inspection conditions can be set quickly.
  • the help button 4304 is a button for outputting information to help the user when the user does not understand the setting method or the setting contents. As a method, the contents of each setting item are provided by voice guidance and the operation method is
  • an observation optical microscope 60 composed of an objective lens 61, a half mirror 62, a light source 63 and a TV camera 64 is changed to an illumination optical system 10 and a detection optical system 200. The point is that they are juxtaposed.
  • the optical microscope 60 for observation can detect foreign matter on the wafer 1 detected by the signal processing system 40 of the defect inspection apparatus and stored in the storage device 53, for example. Defects (including false alarms) are moved into the field of view of the detection optical systems 61 to 63 of the observation optical microscope 60, and this image is enlarged and observed.
  • the advantage of arranging the observation optical microscope 60 side-by-side is that even if the wafer is not moved to a review device such as an SEM, defects such as foreign matter detected by the signal processing system 40 of the defect inspection device Just by moving 32, you can instantly observe a magnified image. In this way, by immediately enlarging and observing an object detected by the defect inspection apparatus, it is possible to quickly identify the cause of a defect such as a foreign substance.
  • the overall control unit 50 detects the position coordinates of each defect classified by the inspection result integration processing unit 1309 of the signal processing system 40, and stores it in the data storage unit 1302 or stores it.
  • the observation optical microscope 6 can be displayed based on the position coordinates of the defect and the defect image. It is possible to specify the position on the enlarged image captured by the 0 TV camera 64. As a result, in the observation optical microscope 60, the area or mark 67 indicating the above identified defect is displayed on the screen 66 of the color monitor 54 or 52, and the displayed area or mark 67 is displayed. By designating, the stages 31 and 32 move to move the defect into the field of view of the detection optical systems 61 to 63, and the enlarged observation of the defect at an invisible position can be performed immediately.
  • the detected defect By specifying an area or mark 67 indicating a defect on the enlarged image 66 captured by the TV camera 64 based on the position coordinates of the defect and the defect image thereof, the invisible defect is observed by the optical microscope 60 for observation. Detailed analysis can be performed as in the case of the review device, and as a result, the cause of the defect can be estimated. Of course, since the area or mark 67 indicating the identified defect is displayed on the color monitor 54 or 52, the detection optical system 200 and the signal processing system 40 are actually used even with the observation optical microscope 60. It is also possible to confirm whether or not a defect has been detected.
  • the light source 63 is a light source of visible light (for example, white light).
  • a microscope or a microscope using ultraviolet light as the light source 63 may be used.
  • a high-resolution microscope for example, a microscope using ultraviolet light, is desirable for observing minute foreign substances at the 0.1 l / m level.
  • using a visible light microscope has the advantage that color information of the foreign matter can be obtained and the foreign matter can be easily recognized.
  • a fine foreign substance having a level of 0.degree Defects such as scratches can be inspected with high sensitivity and at high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

明細: 欠陥検査装置および欠陥検査方法 技術分野
本発明は、 半導体チップや液晶製品を製造する際の薄膜基板、 半導体基板ゃフ ォトマスク等に存在する異物や回路パターンに生じる欠陥ゃキズ (スクラッチ)等 の欠陥を検出し、 前記検出された異物等の欠陥を分析して対策を施すデバイス製 造工程における異物等の欠陥の発生状況を検査する欠陥検査装置およびその方法 に関する。 背景技術
半導体製造工程では、 半導体基板 (ウェハ) 上に異物が存在すると配線の絶縁 不良や短絡などの不良原因になる。 さらに半導体素子の微細化に伴い、 より微細 な異物がキャパシ夕の絶縁不良やゲート酸化膜などの破壊の原因にもなる。 これ らの異物は、 搬送装置の可動部から発生するものや、 人体から発生するもの、 プ ロセスガスにより処理装置内で反応生成されたもの、 薬品や材料に混入していた ものなど種々の原因により種々の状態で混入される。
同様に液晶表示素子の製造工程でも、 パターン上に異物が混入したり、 何らか の欠陥が生じると、 表示素子として使えないものになってしまう。 プリント基板 の製造工程でも状況は同じであって、 異物の混入はパターンの短絡、 不良接続の 原因となる。
従来のこの種の半導体基板上の異物を検出する技術の 1つとして、 特開昭 6 2 — 8 9 3 3 6号公報 (従来技術 1 ) に記載されているように、 半導体基板上にレ —ザを照射して半導体基板上に異物が付着している場合に発生する異物からの散 乱光を検出し、 直前に検査した同一品種半導体基板の検査結果と比較することに より、 パターンによる虚報を無くし、 高感度かつ高信頼度な異物及び欠陥検査を 可能にするものが開示されている。 また、 特開昭 63— 135848号公報 (従 来技術 2) に開示されているように、 半導体基板上にレーザを照射して半導体基 板上に異物が付着している場合に発生する異物からの散乱光を検出し、 この検出 した異物をレーザフォトルミネッセンスあるいは 2次 X線分析 (XMR) などの 分析技術で分析す'るものが知られている。
また、 上記異物を検査する技術として、 ウェハにコヒーレント光を照射してゥ ェハ上の繰り返しパターンから射出する光を空間フィル夕で除去し、 繰り返し性 を持たない異物や欠陥を強調して検出する方法が開示されている。 また、 ウェハ 上に形成された回路パターンに対して該回路パターンの主要な直線群に対して 4 5度傾けた方向から照射して主要な直線群からの 0次回折光を対物レンズの開口 内に入射させないようにした異物検査装置が、特開平 1— 1 17024号公報 (従 来技術 3) において知られている。 この従来技術 3においては、 主要な直線群で はない他の直線群を空間フィル夕で遮光することについても記載されている。 ま た、 異物等の欠陥検査装置およびその方法に関する従来技術としては、 特開平 1 - 250847号公報 (従来技術 4) 、 特開平 6— 258239号公報 (従来技 術 5) 、 特開平 6— 324003号公報 (従来技術 6) 、 特開平 8— 21098 9号公報 (従来技術 7) 、 特開平 8 - 271437号公報 (従来技術 8) 、 特開 2000- 105203号公報 (従来技術 9) が知られている。 特に、 従来技術 9には、検出光学系を切り替えて検出画素サイズを変えることが記載されている。 また、 異物のサイズ測定技術としては、 特開 2001— 60607号公報 (従来 技術 10 ) 、 特開 2001— 264264号公報 (従来技術 1 1 ) が開示されて いる。 発明の開示
しかしながら、 上記従来技術 1〜9では、 繰り返しパターンや非繰り返しパ夕 ーンが混在する基板上の微細な異物または欠陥を、 高感度で、 かつ高速に検出す ることは容易にできなかった。 すなわち、 上記従来技術 1〜9では、 例えば、 メ モリのセル部等の繰り返し部分以外の部分では、 検出感度 (最小検出異物寸法) が低いという課題があった。 また、 上記従来技術 1〜9では、 パターン密度が高 い領域における 0 . 1 mレベルの微小異物または欠陥の検出感度が低いという 課題があった。 また、 上記従来技術 1〜 9では、 配線間を短絡する異物または欠 陥の検出感度や薄膜状の異物の検出感度が低いという課題があった。 また、 上記 従来技術 1 0〜1 1では、異物または欠陥の計測精度が低いという課題があった。 また、 上記従来技術 1 0 ~ 1 1では、 透明薄膜が形成されたウェハ表面上の異物 の検出感度が低いという課題があった。
本発明の第 1の目的は、 上記課題を解決すべく、 表面に透明薄膜が形成された ウェハ等の被検査対象基板はもとより、回路パターンを有するゥェハ等の被検査 対象基板に対して、 0 . 1 zmレベルの微小な異物ゃキズ等の欠陥を、高感度で、 しかも高速に検査できるようにした欠陥検査装置およびその方法を提供すること にある。
また、 本発明の第 2の目的は、 パ夕一ン密度が高い領域においても、 高感度に 異物または欠陥を検査できるようにした欠陥検査装置およびその方法を提供する ことにある。
また、 本発明の第 3の目的は、 配線間を短絡する異物または欠陥や薄膜状の異 物を高感度に検査できるようにした欠陥検査装置およびその方法を提供すること ある o
また、 本発明の第 4の目的は、 被検査対象基板上に存在する異物または欠陥を 分類できるようにした欠陥検査装置およびその方法を提供することにある。
上記目的を達成するために、本発明は、被検査対象基板を載置して所定方向に走 行する走査ステージと、 照明光束を被検査対象基板の表面に対して所定の傾斜角 度で照射する照明光学系と、 前記被検査対象基板から上方へ出射する上方反射散 乱光を集光する対物レンズと該対物レンズで集光された上方反射散乱光を結像さ せる上方用結像光学系と該上方用結像光学系で結像された上方反射散乱光像を受 光して上方用画像信号に変換する上方用光検出器とを有する上方検出光学系及び 前記被検査対象基板から前記照明光束に対して平面的に交差する方向で傾斜した 方向に出射する側方反射散乱光を集光して結像させる側方用結像光学系と該側方 用結像光学系で結像した側方反射散乱光像を受光して側方用画像信号に変換する 側方用光検出器とを有する側方検出光学系を備えた検出光学系と、 該検出光学系 の上方用光検出器から得られる上方用画像信号を上方用デジタル画像信号に変換 し、前記側方用光検出器から得られる側方用画像信号を側方用デジタル画像信号 に変換する A/D変換器と、 該 A/D変換器で変換された各デジタル画像信号に 基づいて欠陥を検出する信号処理系とを備えたことを特徴とする欠陥検査装置で ある。
また、 本発明は、 前記照明光学系において、 前記照明光束が、 前記被検査対象 基板上の照明状態として、 長手方向にはほぼ平行光からなるスリツト状ビームに して、 長手方向が前記走査ステージの走行方向に対してほぼ直角になるように構 成することを特徴とする。
また、 本発明は、 前記検出光学系の上方検出光学系において、 被検査対象基板 上に存在する回路パターンの少なくとも繰り返しを遮光する空間フィル夕を有し、 空間フィル夕の繰り返し遮光パ夕一ンの寸法若しくは形状を自動設定できるよう に構成することを特徴とする。 また、 本発明は、 前記検出光学系の上方検出光学 系において、 前記結像光学系の結像倍率を可変に構成することを特徴とする。 また、 本発明は、 前記信号処理系において、 前記上方用デジタル画像信号を近 傍画素でマージし、 該マージされた画像信号を基づいて、 欠陥を検出することを 特徴とする。 また、 本発明は、 前記信号処理系において、 前記検出された欠陥を カテゴリ別に分類する分類手段を備えることを特徴とする。 また、 本発明は、 前 記信号処理系において、 前記 A/D変換器で変換された各デジタル画像信号から 欠陥のカテゴリを分類する分類手段を有することを特徴とする。また、本発明は、 前記信号処理系において、 前記検出された欠陥のサイズを測定するサイズ測定手 段を備えることを特徴とする。
また、 本発明は、 前記欠陥検査装置において、 更に前記被検査対象物上の光学 像を観察する光学顕微鏡を備えたことを特徴とする。 また、 本発明は、 前記光学 顕微鏡において観察される画面上に前記信号処理系で検出された欠陥の座標を示 す領域若しくはマークを表示することを特徴とする。
また、 本発明は、 前記照明光学系において、 前記照明光束を前記被検査対象基 板の表面に対して高傾斜角度と低傾斜角度とで切り替えて照射できるように構成 し、 前記照明光学系で高傾斜角度で照明した際および低傾斜角度で照明した際前 記 A/D変換部で変換されたデジタル画像信号に基づいて欠陥を検出する欠陥検 出処理部と前記欠陥検出処理部から検出される欠陥についての特徴量を算出する 特徴量算出部と前記高傾斜角度で照明した際前記欠陥検出処理部から検出される 欠陥と低傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥とが同一 視される欠陥についてめ特徴量を前記特徴量算出部から取得し、 該取得された欠 陥の特徴量に基いて欠陥のカテゴリを分類する統合処理部とを有する信号処理系 とを備えたことを特徴とする。
また、 本発明は、 被検査対象基板を載置して所定の方向に走行させる走査ステ —ジと、 照明スポヅトを前記被検査対象基板の表面に対して前記走査ステージの 走行方向に直角方向に走査して照射する照明光学系と、 該照明光学系で照射され た照明スポットの走査による前記被検査対象基板からの反射散乱光を集光して結 像させる結像光学系と該結像光学系で結像された照明スポットの走査による反射 散乱光像を受光して導く複数の光ファイバと該複数の光ファィバで導かれた照明 スポゾ卜の走査による光像を受光して信号に変換する複数の光電子増倍管とを有 する検出光学系と、 該検出光学系の各光電子増倍管から得られる信号をデジタル 信号に変換し、該変換されたデジタル信号に基づいて欠陥を検出する信号処理系 とを備えたことを特徴とする欠陥検査装置である。
また、 本発明は、 被検査対象基板を載置して所定の方向に走行させる走査ステ ージと、 複数の照明光束の各々に対して互いに異なる周波数で変調させる複数の 光変調器と該複数の光変調器で変調された複数の照明光束を前記走査ステージの 走行方向にほぼ直角方向に対して偏向させる光偏向器と該光偏向器で偏向された 複数の照明光束を前記被検査対象基板の表面に対して複数照明スポットとして集 光して照射する集光光学系とを有する照明光学系と、 該照明光学系で照射された 複数照明スポットの走査による前記被検査対象基板からの反射散乱光を集光して 結像させる結像光学系と該結像光学系で結像された複数照明スポットの走査によ る反射散乱光像を受光して信号に変換する光検出器とを有する検出光学系と、 該 検出光学系の光検出器で変換された信号から前記各光変調器で変調された周波数 に相当する成分を抽出する複数の同期検波回路と該複数の同期検波回路から抽出 された信号に基づいて欠陥を検出する信号処理系とを備えたことを特徴とする欠 陥検査装置及びその方法である。
また、 本発明は、 前記検出光学系において、 前記光検出器を、 受光する複数照 明スポットの走査による反射散乱光像を導く光ファイバと該光ファイバで導かれ た複数照明スポットの走査による光像を受光して信号に変換する光電子増倍管と で構成することを特徴とする。
また、 本発明は、 照明光学系により照明光束を被検査対象基板の回路パ夕一ン を有する表面に対して所定の傾斜角度で照射し、 該照射された被検査対象基板か らの反射散乱光を上方に設けた対物レンズで集光して上方結像光学系で結像させ、 該結像された反射散乱光を上方用光検出器で受光して第 1の画像信号に変換し、 該変換された第 1の画像信号を A/D変換器により第 1のデジタル画像信号に変 換し、 該変換された第 1のデジタル画像信号に基づいて前記被検査対象基板の回 路パターンを有する表面上に存在する欠陥を検出する第 1の工程と、 照明光学系 により照明光束を被検査対象基板の透明膜の表面に対して所定の傾斜角度で照射 し、 該照射された被検査対象基板からの反射散乱光を、 平面的に前記照明方向に 対して交差する方向で傾斜した方向から結像光学系で集光して結像させ、 該結像 された反射散乱光を光検出器で受光して第 2の画像信号に変換し、 該変換された 第 2の画像信号を AZ D変換器により第 2のデジ夕ル画像信号に変換し、 該変換 された第 2のデジタル画像信号に基づいて前記被検査対象基板の透明膜の表面上 に存在する欠陥を検出する第 2の工程とを有することを特徴とする欠陥検査方法 である。
以上説明したように、 本発明によれば、 表面に酸化膜などの透明膜が形成され た被検査対象基板や、 繰り返しパターンと非繰り返しパターンとが混在する被検 査対象基板に対して、 0 . 1 zmレベルの微小な異物ゃキズ等の欠陥を、 高感度 で、 しかも高速に検査することができる効果を奏する。
また、 本発明によれば、 繰り返しパターンと非繰り返しパターンとが混在する 被検査対象基板に対して、 0 . 1 zmレベルの微小な異物ゃキズ等の欠陥はもと より、 配線間を短絡する異物等の欠陥や薄膜状の異物を、 高速で、 しかも高精度 に検査をすることができる効果を奏する。
また、 本発明によれば、 検出した異物等の欠陥の分類やサイズを測定すること ができる効果も奏する。 図面の簡単な説明
第 1図は、本発明に係る欠陥検査装置の一実施の形態を示す概略構成図である。 第 2図は、 第 1図に示す照明光学系を示す図で、 (a ) はその正面図であり、 ( b ) は照明光学系の全体を示す斜視図である。
第 3図は、 第 1図に示す照明光学系の全体を示す平面図である。
第 4図は、 4つの照明ビームの照明方法を示す図で、 (a )は円錐曲面レンズを 用いた照明方法を示した図、 (b ) ( c )は円筒レンズを用いた照明方法を示した 図である。 第 5図は、 照明ビーム 2 2 0、 2 3 0を照射した際配線パターン間の欠陥を検 出がしにくい状態を説明するための図である。
第 6図は、 透明膜上に斜方照明ビーム 2 5 0を照射した際の反射散乱光の発生 状況を説明するための図である。
第 7図は、 第 1図に示す倍率可変光学系の可変動作説明図である。
第 8図は、 空間フィル夕において遮光パターンを自動設定するための説明図で める。
第 9図は、 上方検出光学系におけるプルーミングを防止する光学系を備えた実 施例を示す図である。
第 1 0図は、 光検出器として光電子増倍管を用いた実施例を示す図である。 第 1 1図は、 本発明に係る側方用照明光学系と側方検出光学系の一実施例を示 した概略構成図である。
第 1 2図は、第 1 1図に示す光学系において照明スポットを走査し、光検出器と して複数の光電子増倍管で構成した実施例を説明するための図である。
第 1 3図は、 本発明に係る照明光学系と検出光学系の他の実施例を示した概略 構成図である。
第 1 4図は、 本発明に係る信号処理系の具体的構成を示す図である。
第 1 5図は、 第 1 4図に示す画素マージ回路の構成図である。
第 1 6図は、 第 1 4図に示す異物検出処理部の構成図である。
第 1 7図は、 異物等の欠陥の分類方法を説明するための図である。
第 1 8図は、異物等の欠陥を分類した場合の検査結果の表示例を示す図である。 第 1 9図は、 異物等の欠陥のサイズ測定方法を説明するための図である。
第 2 0図は、 異物等の欠陥からの散乱光量を算出する方法に関する別の実施例 を説明するための図である。
第 2 1図は、 異物等の欠陥の分類に関する別の実施例のシーケンスを示す図で ある 第 2 2図は、 異物等の欠陥の分類に用いる分類グラフを示す図である。
第 2 3図は、 異物等の欠陥の分類に関する更なる別の実施例のシーケンスを示 す図である。
第 2 4図は、 異物等の欠陥を複数種類の特徴量から分類する方法を説明するた めの図である。
第 2 5図は、 分類の境界を設定する方法を説明するための図である。
第 2 6図は、 分類率を表示する場合の表示例を示す図である。
第 2 7図は、 異物等の欠陥の分類結果とサイズ測定結果を併記した表示の例を 示す図である。
第 2 8図は、 異物等の欠陥のサイズ測定結果と異物または欠陥の観察画像を併 記した表示の例を示す図である。
第 2 9図は、 検査結果に異物等の欠陥の分類正解率を併記した表示の例を示す 図である。
第 3 0図は、 本発明に係る欠陥検査装置において検査条件設定シーケンスを示 す図である。
第 3 1図は、 光学条件設定画面を説明するための図である。
第 3 2図は、 検査条件設定画面を示す図である。
第 3 3図は、 本発明に係る観察用光学顕微鏡を付けた実施の形態の概略構成図 である。
第 3 4図は、 第 3 3図に示す観察用光学顕微鏡で観察される画面を示す図であ る。 発明を実施するための最良の形態
以下、 本発明に係る実施の形態について図面を用いて説明する。
本発明に係る欠陥検査装置は、 様々な品種や様々な製造工程におけるウェハ等 の被検査基板上における異物やパターン欠陥やマイクロスクラッチ等の様々な欠 陥を、 更に微細なものと大きなものとを高感度で、 かつ高速で検査できるように するものである。 そのためには、 本発明に係る欠陥検査装置として、 第 1図に示 す如く、 照明光学系 1 0によって照明するスリツト状ビーム 2 0 1の照射角度 α を被検査対象に応じて可変可能にすると共に、 被検査対象表面と検出器 2 6の受 光面を結像関係となるよう検出光学系 2 0 0を配置し、 また検出光学系 2 0 0の 倍率を可変にして検出画素サイズを検出欠陥の大きさに合わせるように設定して 検査することにある。
更に、 本発明に係る欠陥検査装置は、 例えば、 異なる照射角度の照明光によつ て欠陥から得られた散乱光の違いを特徴量とし、 欠陥の種類に分ける機能も有す る。
次に、 本発明に係る欠陥検査装置の実施の形態について具体的に説明する。 な お、 以下の実施の形態では、 半導体ウェハ上の小ダ大異物やパターン欠陥やマイ クロスクラッチ等の欠陥を検査する場合について説明するが、 半導体ウェハに限 らず、薄膜基板やフォトマスク、 T F T (Thin Film Transistor)、 P D P (Plasma Display Panel )等にも適用可能である。
ところで、 本発明に係る欠陥検査装置は、 第 1図に示すように、 様々な品種や 様々な製造工程から得られるゥヱハ等の被検査対象基板 1を載置、 移動させる X Y Zステージ 3 1、 3 2、 3 3、 3 4とコントローラ 3 5から構成される搬送系 3 0と、 第 2図 (a) に示すように、 レーザ光源 1 1から射出された光を、 ビー ム拡大光学系 1 6である大きさに拡大後、 レンズ、 ミラー等を介して、 複数の斜 め方向から被検査対象基板 1上に照明する照明光学系 1 0と、 対物レンズ 2 1、 空間フィルタ 2 2、結像光学系 2 3、光学フィル夕群 2 4 (第 7図(a )に示す)、 T D Iイメージセンサ等の光検出器 2 6から構成され、 照明光学系 1 0で照明さ れた領域からの反射回折光 (あるいは散乱光) を検出する倍率可変検出光学系 2 0並びに結像光学系 6 3 0及び光検出器 6 4 0等からなる側方検出光学系 6 0 0 等を備えた検出光学系 2 0 0と、 上記光検出器 2 6及び 6 4 0で検出された画像 信号に基いて異物を検出する信号処理系 4 0と、 検査条件などを設定し、 上記照 明光学系 1 0、 倍率可変検出光学系 2 0等の検出光学系 2 0 0、 搬送系 3 0、 信 号処理系 4 0及び観察光学系 6 0等の全体を制御する全体制御部 5 0とによって 構成される。 全体制御部 5 0には、 入出力手段 5 1 (キーボードゃネヅトワーク も含む) 、 表示手段 5 2、 記憶部 5 3が設けられている。
なお、 この異物検査装置には、 ウェハ 1の表面の像を光検出器 2 6や 6 4 0の 受光面に結像させるように自動焦点制御系 (図示せず) を備えている。
〔照明光学系 1 0〕
本検査装置では、 複数の方向から被検査対象基板 1の表面に照明可能な構成に なっている。照明光学系 1 0としては、レーザ光源 1 1から射出された光 L 0を、 凹レンズ 1 2及び凸レンズ 1 3等から構成されるビーム拡大光学系 1 6、 スリヅ ト光束を形成するための円錐曲面レンズ 1 4、 ミラー 1 5を介して、第 2図(a ) ( b ) に示す如く、 スリット状ビーム 2 0 1を平面的に 1つ以上の方向 (第 3図 においては 4方向から、試料設置台 3 4上に設置されたウェハ(被検査対象基板) 1に照射するように構成される。 このとき、 スリット状ビーム 2 0 1の長手方向 がチップの配列方向 (例えば Y方向) に向くように照明するよう構成される。 な お、 照明光として、 スリット状ビーム 2 0 1にするのは、 照明により発生する異 物や欠陥からの散乱光を、 一列に配置した受光素子で一括して検出することによ り、 検査の高速化を図るためである。 すなわち、 第 3図に示すように、 Xステー ジ 3 1の走査方向および Yステージ 3 2の走査方向に向けてチップ 2 0 2を配列 したウェハ 1上に照明されるスリツト状ビーム 2 0 1は、 Xステージ 3 1の走査 方向 Xに狭く、 その垂直方向 Y (Yステージ 3 2の走査方向) に広い形状を有す る。 そして、 このスリット状ビーム 2 0 1は、 光路中に例えば円筒レンズを設け ることにより、 X方向に光源の像が結像するように、 Y方向に平行光になるよう に照明される。 なお、 3方向の照明については、 特開 2 0 0 0— 1 0 5 2 0 3号 公報に記載されている。 ところで、 スリヅト状ビーム 2 0 1の長手方向をウェハ 1に対してチップの配 列方向に向けたのは、 光検出器 2 6の画素配列 2 0 3と Xステージ 3 1の走行方 向とを平行に保つことにより、 画像信号のチップ間比較を容易に行うと共に、 異 物の位置座標の算出も容易に行うことができ、 その結果、 異物の検査を高速に行 える効果を奏する。
特に、 平面的に Y方向に対して 傾いた方向からの照明ビーム 2 2 0 , 2 3 0 によるスリット状ビーム 2 0 1の照明を、 ウェハ 1に対してチップ 2 0 2の配列 方向に向け、 かつ Xステージ 3 1の走査方向 Xに対して直角になるように形成す るためには、 円錐曲面レンズ 1 4 ( 2 2 4 s 2 3 4 ) が必要となる。 この円錐曲 面レンズ 1 4 ( 2 2 4、 2 3 4 ) は、 長手方向の位置で焦点距離が異なり、 直線 的に焦点距離を変えたレンズ、 即ち長手方向の曲率半径が連続的に変化するよう なレンズである。 この構成により、 第 4図 (a ) に示すように斜めから照明 (角 度 α , 方向 øの傾きを両立) しても、 X方向に絞り込み、 Υ方向にコリメ一トさ れたスリット状ビーム 2 0 1で照明することができる。 更に、 全体制御部 5 0か らの指令に基づいて、 第 2図 (a) に示すようにミラ一 1 5 ( 2 2 5、 2 3 5 ) とミラー 7 0 2を機構的に切替えるかあるいは 1個のミラ一 1 5の角度を図示し ていない回転手段によって変えることによって、 照明角度ひを例えば被検査対象 基板 1上で検査対象とする異物や欠陥の種類によって変えられるように構成され ている。 第 2図 (a ) では、 ミラ一 1 5により照明位置 7 0 1にレーザ照明を照 射している。 照明角度 を変更する場合、 ミラ一 1 5とは角度の違うミラ一 7 0 2をミラー 1 5と入れ替え、 さらに、 照明位置 7 0 1にレーザ光を照射するため にミラー 7 0 2を Z方向に動かせば良い。 この時、 凸レンズ 1 3から照明位置 7 0 1までの距離が変わるため、 凸レンズ 1 3の位置を変えたり、 焦点距離の違う 凸レンズに変える必要がある。
更に、 X方向及び Y方向からの照明では、 第 4図 (b ) ( c ) に示すように円 筒レンズ 2 4 4、 2 5 5によりスリヅト状ビーム 2 0 1を形成することができる。 以上説明したように、 いかなる照明角の場合でも、 スリツト状ビーム 2 0 1は 光検出器 2 6、 6 4 0の画素配列 2 0 3をカバ一する照明領域を有し、 また何れ の方向からの照明であっても、 スリット状ビーム 2 0 1がウェハ 1上で一致する ように構成される。
これにより、 Y方向に平行光を有し、 かつ 0 = 4 5度付近の照明を実現するこ とができる。 特に、 スリツト状ビーム 2 0 1を Y方向に平行光にすることによつ て、 主要な直線群が X方向および Y方向を向いた回路パターンから発生する回折 光パターンが空間フィル夕 2 2によって遮光されることになる。
なお、 円錐曲面レンズ 1 4の製造方法については、 特開 2 0 0 0— 1 0 5 2 0 3号公報に記載されているので、 説明を省略する。
次に、 全体制御部 5 0からの指令に基づいて、 ステージ上に載置される被検査 対象基板 1に応じて照明光学系 1 0の照明角度 αおよび照明方向 øを変える実施 例について説明する。 ところで、 スリット状ビーム 2 0 1を複数の照明角度ひで ウェハ 1に形成するのは、 ウェハ 1の表面に発生している種々のタイプの異物や 欠陥検出に対応するためである。 即ち、 被検査対象基板 1上のパターン欠陥や高 さの低い異物検出を対象としている。 照明角度ひは、 高角度になると回路パ夕一 ンからの反射回折光量が増加して S/N比が低下するので、 経験的に求められた 最適値が適用される。 一例として、 ウェハ表面の高さの低い異物を主に検出した い場合には、 照明角度 は小さい角度が良く、 例えばひが 1度乃至は 5度程度に なるように設定する。 このように照明角度 ο:を小さい角度にすることにより、 ゥ ェハ最表面の異物の S N比が向上する。 また、 配線工程での配線間の異物ゃパ夕 ーン欠陥を主に検出したい場合には、 照明角度ひを大きくすると良いが、 回路パ ターンと異物の S/N比の関係から、 概ね 4 5度乃至 5 5度程度に設定するとよ い。 また、 検査対象の製造工程 (ェヅチング工程、 C M P工程など) と、 検出し たい異物や欠陥の種類とに対応関係がある場合には、 検査レシピの中にどちらの 照明角度に設定するか予め決めても良い。 また、 前述のゥヱハ表面の異物ゃパ夕 ーン欠陥を偏りなく検出するためには、 照明角度を前述した角度の中間値に設定 しても良い。
更に、 照明方向 øに関して、 例えば配線工程の場合、 øが 4 5度付近の方向か ら照明ビーム 2 2 0 , 2 3 0を照射した場合に第 5図に示すように配線 5 0 0間 の異物や欠陥 5 0 1からは回折散乱光が得られない場合が生じるので、 照明回路 パターンの配線方向に平行な方向 (例えば; X方向) からの照明 2 4 0を選択する のが望ましい。 つまり、 照明光 2 4 0の平行方向と配線パターン 5 0 0の方向を 合わせることにより、 配線 5 0 0間の異物や欠陥 5 0 1を検出しやすくなる。 ま た、 ウェハ 1の回路パターンが配線パターンではなく、 コンタクトホールやキヤ パシ夕等の場合は、 特定の方向性がないため、 照明ビーム 2 2 0 , 2 3 0をチヅ プに対し øが 4 5度付近の方向から照射することが望ましい。
更に、 照明光学系 1 0について具体的に説明する。
まず、 照明方向 を変更する方法について説明する。 第 2図 (b ) 及び第 3図 は 1つのレーザ光源 1 1を用いて 4つの照明光学系 1 0を構成した場合の平面図 である。 分岐光学要素 2 1 8はミラ一、 プロズム等で構成され、 位置を Y方向に 移動させることによって、 レーザ光源 1 1から出射したレーザ光 L 0を透過また は反射して 3方向に導く。分岐光学要素 2 1 8を透過した第 1のレーザ光 L 1は、 ハーフプリズム等の分岐光学要素 (例えば偏光ビームスプリッ夕) 2 2 1で透過 光と反射光に分岐され、 例えば透過した光は、 ミラ一 2 3 1、 ビーム径補正光学 系 2 3 2、 ミラ一 2 3 3、 第 4図 (a ) に示す円錐曲面レンズ 2 3 4を介して再 びミラ一 2 3 5で反射させることによって Y軸から 傾いた方向から傾斜角度 の照明ビーム 2 3 0を得ることができ、他方の分岐光学系 2 2 1で反射した光は、 ミラ一 2 2 3、 第 4図 (a ) に示す円錐曲面レンズ 2 2 4を介して再びミラー 2 2 5で反射させることによって Y軸から ø傾いた方向から傾斜角度ひの照明ビー ム 2 2 0を得ることができる。 なお、 ビーム径補正光学系 2 2 2及び 2 3 2は、 ウェハ 1に照射されるスリツト状ビーム 2 0 1が同じ大きさになるように円錐曲 面レンズ 2 2 4、 2 3 4に入射するレーザ光のビーム径を調節するものである。 また、 分岐光学要素 2 2 1としてのハーフプリズムの代わりにミラ一 2 6 0を設 置すれば、 一方からの照明が可能となる。 また、 分岐光学要素 (例えば偏光ビー ムスプリヅ夕) 2 2 1の後方に波長板(え / 2板) 2 2 6、 2 3 6を挿入すること によって照射するレーザ光の偏光方向をそろえることも可能となる。
ところで、 分岐光学要素 2 1 8で反射された第 2のレーザ光 L 2は、 ビーム径 補正光学系 2 4 1を通過後、 ミラ一 2 4 2及びミラー 2 4 3で反射されて第 4図 ( b ) に示すように円筒レンズ 2 4 4に入射させ、 ミラー 2 4 5で反射させるこ とによって X方向から傾斜角度/?の照明ビーム 2 4 0を得ることができ、 分岐光 学要素 2 1 8で反射された第 3のレ一ザ光 L 3はミラ一 2 5 1、 ミラ一 2 5 3及 びミラ一 2 5 4で反射されて第 4図 (c ) に示すように円筒レンズ 2 5 5に入射 させ、 ミラ一 2 5 6で反射させることによって Y方向から傾斜角度 yの照明ビー ム 2 5 0を得ることができる。 上記照明ビーム 2 4 0は、 例えば配線工程におい て、 ウェハ上に形成された配線パターンが X Y方向に平行となって多く形成され ている場合に、 照明の方向 (X方向) を合わせることが可能となり、 第 5図に示 す配線 5 0 0間の異物や欠陥 5 0 1を検出しやすくしている。 なお、 Y方向の配 線パターンに対しては、ウェハ 1を 9 0度回転させればよい。そして、照明ビーム 2 4 0の傾斜角度 ?としては、 配線間の異物や欠陥を検出する点から、 上記中間 角度や高角度で形成すればよい。 また、 傾斜角度 ?を α:と同様に、 切替えるよう に構成してもよい。このように、 X方向から照明する際、円筒レンズ 2 4 4によつ て X方向に集束して絞られる関係によりミラ一 2 4 5を小型化することが可能と なり、その結果、該ミラ一 2 4 5を対物レンズ 2 1の周囲とウェハ 1との間に入り 込ませることにより高角度でも照明することが可能となる。
特に、 本発明においては、 第 6図を用いて後述するように、 例えば C M P (Chemical Mechanical Polishing) 加工が施された透明膜 (例えば酸化膜) 8 0 0上の微小異物やスクラッチ等 8 0 2を下地パターン 8 0 1からの散乱光の影響 を受けることを少なくするように Y方向に対して交差する方向 ωから斜方検出す るために、 上述したように第 3のレ一ザ光 L 3を基に照明ビーム 2 5 0により、 スリット状ビーム 2 0 1の長手方向 (Υ方向) から傾斜角度ァで照明するように したことにある。 この照明ビーム 2 5 0の傾斜角度ァとしては、 酸化膜 8 0 0上 の微小異物やスクラッチ等を検出する関係で、 比較的低角度の 5度〜 1 0度付近 が好ましい。 ところで、 焦点距離が一様な円筒レンズ 2 5 5を用いた場合には、 傾斜角度 yを有する関係で、 スリツト状ビーム 2 0 1は中心の幅が細くなつた鼓 形状となる。 しかし、 円筒レンズ 2 5 5の焦点距離を傾斜角度ァに合わせて変え ることによって中央が細くならないスリヅト状ビームを得ることができる。 ここで、 照明ビーム 2 4 0からのみ照明する場合には、 分岐光学要素 2 1 8に おいてミラー部に切り換えることによって実現することができる。 また、 照明ビ —ム 2 2 0、 2 3 0によって 2方向から照明する場合には、 光路から分岐光学要 素 2 1 8を退出させるか、 または透過部に切り換えることによって実現すること ができる。
なお、 レ一ザ光源 1 1としては、 異物を高感度に検査でき、 また、 メンテナン スコストが安いことを考慮すると、 高出力の YA Gレ一ザの第 2高調波 S H G、 波長 5 3 2 nmを用いるのが良いが、 必ずしも 5 3 2 nmである必要はなく、 紫 外光レーザや遠紫外光レーザや真空紫外光レーザ、 A rレーザや窒素レーザ、 H e— C dレーザやエキシマレ一ザ、 半導体レーザ等の光源であっても良い。 各レ —ザを用いた場合の利点としては、 レーザ波長を短波長化すれば検出像の解像度 が上がるため、 高感度な検査が可能となる。 なお、 波長を 0 . 3 4 ^m程度にし た場合には対物レンズ 2 1の N Aを 0 . 4程度、 波長を 0 . 1 7〃m程度にした 場合には対物レンズ 2 1の N Aを 0 . 2程度にするのが、 回折光を多く対物レン ズ 2 1に入射させて検出感度を向上させることができる。 また、 半導体レーザ等 の使用に関しては、 装置の小型化、 低コスト化を実現できる。
〔検出光学系 2 0 0〕 まず、 検出光学系 2 0 0の倍率可変検出光学系 (上方検出光学系) 2 0につい て第 1図、 第 7図及び第 8図を用いて説明する。 倍率可変検出光学 (上方検出光 学系) 2 0は、 ウェハ等の被検査対象基板 1から上方に反射回折された光を、 対 物レンズ 2 1、 空間フィル夕 2 2、 結像光学系 (倍率可変結像光学系) 2 3、 N Dフィルタ 2 4 a及び偏光板 2 4 b等からなる光学フィル夕群 2 4を通して、 T D Iイメージセンサ等の光検出器 2 6で検出するように構成される。
空間フィル夕 2 2は、 ウェハ 1上の繰り返しパターンからの反射回折光による フーリエ変換像を遮光して異物からの散乱光を通過する機能を有し、 対物レンズ
2 1の空間周波数領域、 すなわちフーリエ変換の結像位置 (射出瞳に相当する) に配置される。
次に、 瞳観察光学系 7 0を用いた空間フィル夕 2 2の自動設定について第 1図 及び第 8図を用いて説明する。 即ち、 空間フィル夕 2 2は、 検出光学系 2 0 0の 光路中に、 検査中は退避可能なミラ一 9 0と、 投影レンズ 9 1、 T Vカメラ 9 2 からなる瞳観察光学系 7 0により、 例えば第 8図 (a ) に示すフーリエ変換の結 像位置における繰り返し回折光パターン 9 0 2からの反射回折光像 9 0 1を撮像 し、特開平 5— 2 1 8 1 6 3号公報にも記載されているようにフーリエ変換の結 像位置に設けた矩形形状の遮光部 9 0 3の間隔 pを図示していない機構で変化さ せて、 第 8図 (c ) に示すようにフーリエ変換の結像位置において回路パターン からの反射回折光像による輝点のない像 9 0 4になるように調整されるものであ る。 これらは、 T Vカメラ 9 2からの信号を信号処理系 4 0で処理して全体制御 部 5 0の指令に基づいて空間フィル夕 2 2の遮光部 9 0 3のピッチ pや回転方向 が調整されて自動設定されることになる。 なお、 上記遮光板によらず、 T Vカメ ラ 9 2からの信号に基づいて透明基板上に白黒反転させて遮光部を縮尺形成して も良い。
本検査装置では、 異物検査を高速に行う機能と低速で高感度な検査を行う機能 を有している。 つまり、 回路パターンが高い密度で製造されている被検査対象物 または領域は、 検出光学系の倍率を高くすることにより高分解能の画像信号が得 られるので、 高感度の検査が行える。 また、 回路パターンが低い密度で製造され ている被検査対象物または領域は、 倍率を下げることにより、 高感度のまま高速 検査を実現できるものである。これにより、検出すべき異物の大きさと、検出画素 の大きさを最適化でき、異物以外からのノイズを排除し、異物からの散乱光のみを 効率よく検出できるという効果を奏する。 つまり、 本検査装置ではウェハ 1に上 方に設置されている検出光学系 2 0 0の倍率を簡単な構成で可変できるようにな つている。
次に、 検出光学系 2 0 0の倍率を可変する動作について第 7図を用いて説明す る。 検出光学系 2 0 0の倍率の変更は全体制御部 5 0からの指令に基づいて行わ れる。 結像光学系 (倍率可変結像光学系) 2 3は、 可動レンズ 4 0 1、 4 0 2、 固定レンズ 4 0 3、 移動機構 4 0 4で構成され、 倍率変更時は対物レンズ 2 1お よび空間フィル夕 2 2の位置を Z方向に変化させることなく、光検出器 2 6上に 結像されるウェハ表面の倍率を可変できることを特徴としている。即ち、倍率変更 時にも被検査対象基板 1と光検出器 2 6との相対位置を変える必要がなく、倍率 変更時の駆動機構 4 0 4を簡単な構成でもって倍率を変えることができ、 更に、 フ一リエ変換面の大きさも変わらないので、 空間フィル夕 2 2の位置を変更しな くても良い利点を有する。
倍率可変検出光学系 2 0の倍率 Mは、 対物レンズ 2 1の焦点距離 4 0 5を f い 結像光学系 2 3の焦点距離 4 0 6を f 2とすると次に示す( 1 )式で算出できる。
M = f 2/ f ! ( 1 ) 従って、 倍率可変検出光学系 2 0を倍率 Mにするためには、 f tは固定値であ るから、 f 2が (M/f J になる位置に動かすことになる。
次に、 移動機構 4 0 4の詳細を第 7図 (b ) で説明する。 第 7図 (b ) は、 移 動機構 4 0 4において、 可動レンズ 4 0 1及び 4 0 2を特定の場所に位置決めす る構成を示している。 しかしながら、 移動機構 4 0 4において、 可動レンズ 4 0 1、 4 0 2を任意の位置に位置決めするように制御することも可能である。また、 移動機構 4 0 4は、 例えば、 可動レンズ 4 0 1、 4 0 2のレンズ保持部 4 1 0、 4 2 0、ボールネジ 4 1 2、 4 2 2、モー夕 4 1 1、 4 2 1で構成される。即ち、 可動レンズ 4 0 1はレンズ保持部 4 1 0で保持され、 レンズ保持部 4 1 0はモー 夕 4 1 1によるボールネジ 4 1 2の回転により、 また可動レンズ 4 0 2はレンズ 保持部 4 2 0に保持され、 レンズ保持部 4 2 0はモ一夕 4 2 1によるボールネジ 4 2 2の回転により、 Z方向の所定の位置にそれそれ独立して移動する。
そして、 可動レンズ 4 0 1又は 4 0 2を保持しているレンズ保持部 4 1 0又は 4 2 0の先端に位置決めセンサの可動部 4 1 5又は 4 2 5を、 可動レンズ 4 1 0 又は 4 2 0の停止位置に位置決めセンサの検出部 4 1 6又は 4 2 6を設け、 モー 夕 4 1 1又は 4 2 1を駆動してレンズ保持部を Z方向に移動させ、 予め所望の倍 率の位置に設けられた各位置決めセンサ 4 1 6又は 4 2 6が位置決めセンサ可動 部 4 1 5又は 4 2 5を検出して位置決めする。 なお、 位置決めセンサ 4 4 0は Z 方向上限のリミットセンサ、 位置決めセンサ 4 3 0は Z方向下限のリミットセン サである。 ここで、 位置決めセンサとしては、 光学的、 磁気的センサ等が考えら れる。
これらの動作は、 全体制御部 5 0からの指令に基づいて行われるが、 ステ一ジ 3 1〜3 4上に載置される被検査対象基板 1のパターン密度に応じて倍率を設定 することになる。 例えば、 回路パターンが高密度の場合は高い倍率を選択して高 感度の検査モードとし、 回路パターンが低密度の場合や高速検査の必要がある場 合は低い倍率を選択するものである。
また、 倍率の変更が頻繁でない場合の倍率可変検出光学系 2 0の別の実施例と しては、 可動レンズ部分をユニット化し、 ユニット交換することも考えられる。 この場合、 調整、 メンテナンスが容易に行えるメリヅトを奏する。
次に光学フィル夕群 2 4について説明する。 N Dフィル夕 2 4 aは、 光検出器 2 6で検出される光量を調整するためのものであり、 高輝度の反射光が光検出器 26に受光されると、光検出器 26は飽和状態となり、安定した異物検出ができな い。この NDフィル夕 24 aは、照明光学系 10で照射光量を調整できる場合は、 必ずしも必要ではないが、 NDフィル夕 24aを用いることにより、 検出光量の 調整幅を大きくすることができ、 様々な被検査対象に最適になるように光量を調 整できる。 例えば、 レーザ光源 11で 1Wから 100Wまで出力を調整でき、 ま た、 NDフィル夕 24aとして、 100%透過フィル夕、 1%透過フィル夕を用 意しておけば、 1 OmWから 100Wまでの光量調整ができ、 幅広い光量調整が できる。
偏光板 24bは、 照明光学系部 10で偏光照明した際、 回路パターンのエッジ から生じる反射回折光による偏光成分を遮光し、 異物から生じる反射回折光によ る偏光成分の一部分を透過するものである。
次に光検出器 26について説明する。 光検出器 26は、 結像光学系 23によつ て集光された上方反射回折光を受光し、 光電変換するためのィメージセンサであ り、 例えば、 TVカメラや CCDリニアセンサや TD Iセンサやアンチブル一ミ ング TD Iセンサや光電子増倍管である。
ここで、 光検出器 26、 640の選択方法しては、 安価な検査装置にする場合 には T Vカメラや C C Dリニアセンサが良く、 高感度に微弱な光を検出する場合 は、例えば、 0. l /m程度以下の極微小な異物を検出する場合は、 TDI (Time Delay Integration)機能を持ったセンサや光電子増倍管が良い。
次に、光検出器におけるダイナミックレンジ向上の実施例について説明する。と ころで、 ゥ工ハ上の検査対象領域によっても回路パ夕一ンからの反射回折光の強 度には差が生じることになる。即ち、繰り返し回路パターンが形成されたメモリセ ル部とその周辺部では、 周辺部の方が反射回折光強度が強くなつている。 また、 メモリセル部からの回路パターンの反射回折光は空間フィル夕 22によってより 多く消去可能であるが、 周辺部等には様々なパターンが存在するため空間フィル 夕 22では消去することが難しいことになる。 このような状況にあるため、 例え ば検査対象領域が周辺部等に到って光検出器 2 6で受光する光のダイナミックレ ンジが大きくなつた場合、 つまり、 センサが飽和するような光が入射する場合に は、 アンチブル一ミング機能を付随したセンサが良いが、 特開 2 0 0 0 - 1 0 5 2 0 3号公報に記載されているように、第 9図(a )に示す如く、検出光学系 2 0 の光路の例えばミラー 9 0の位置に透過率 (例えば 9 9 %)と反射率 (例えば 1 %) の異なるビ一ムスプリヅ夕 1 0 0を配置し、 それそれの光路に光検出器 2 6、 1 0 1を設置しても良い。 勿論、 上記ビームスプリヅ夕 1 0 0をハーフミラーで構 成し、該ハーフミラ一と光検出器 2 6 , 1 0 1との間に個別に NDフィル夕を設け て透過光量を互いに変えることもできる。 この場合、 周辺部等からセンサが飽和 するような強い光が入射した場合には、 光検出器 1 0 1から得られる受光光量を 減衰させた画像信号を基に異物等の欠陥を検出し、 メモリセル部については光検 出器 2 6から得られる画像信号を基に異物等の欠陥を検出すればよい。 なお、 光 検出器 1 0 1から得られる画像信号(比較的背景が強調される画像信号となる。) を基に異物等の欠陥を検出する方法としては、 信号処理におけるチップ比較によ つてほぼ同じレベルである背景の画像信号を消去して、 ランダムに発生する異物 等の欠陥を示す信号を抽出する方法である。 これにより、 照明強度を変化させて 何回も検査することなく、メモリセル部はもとより、周辺部等においても、異物等 の欠陥を検出できることになる。
また、 T D Iセンサを用いる場合では、 第 9図 (b ) に示すように、 例えば 1 0 0段の受光素子列のうち、 信号を取り出す段数の異なる受光部列 2 6 ' a ( 2 6 )、 2 6 ' bを形成した素子を用いることも考えられる。例えば、 1段の蓄積さ れた受光素子列の 1 %の強度信号を取り出す部分 2 6 ' bと、 残りの 9 9段の蓄 積された受光素子列の 9 9 %の強度信号を取り出す部分 2 6 5 aとに分けた構成 にすることにより、強い光が入射した場合でも、ブル一ミングを起こすことを防止 でき、 それそれの出力信号を上記の場合と同様に信号処理系 4 0で処理すること が可能となる。 次に、光電子増倍管を用いる場合の実施例について第 1 0図を用いて説明する。 第 1 0図は、 光電子増倍管を一次元方向にならべたセンサを示す。 この場合、 高 感度な一次元センサとして用いることができるので、高感度な検査が可能となる。 この時の構成としては、 第 1 0図 (a ) に示すように、 光電子増倍管 5 0 0 1の 結像光学系 2 3側にマイクロレンズ 5 0 0 2を取り付け、 結像光学系 2 3で集光 される反射回折光を検出する構成にすれば良い。 ここで、 マイクロレンズ 5 0 0 2は、 光電子増倍管面と同等の範囲の光を光電子増倍管 5 0 0 1に集光する機能 を持つ。 また、 第 1 0図 (b ) のように、 マイクロレンズ 5 0 0 2の下流に設置 した治具 5 0 0 3を介して光ファイバ 5 0 0 4を取りつけ、 さらに光ファイバ 5 0 0 4の出力端に光電子増倍管 5 0 0 1を取り付ける構成にしても良い。 この場 合、 光ファイバの直径は光電子増倍管の直径よりも小さいため、 第 1 0図 (a ) よりもセンサピッチを小さくできるため、 分解能の高いセンサにすることができ る。
次に、 検出光学系 2 0 0における側方検出光学系 6 0 0について第 1図及び第 1 1図を用いて説明する。即ち、異物検査においては、半導体の高集積化により近 年増加傾向の多層ウェハも検査する必要が生じてきている。第 6図に示すように、 ウェハの表面には、 多層化の工程で透明膜 (例えば酸化膜) 8 0 0が形成され、 その上に回路パターンが形成される工程の繰り返しにより多層ウェハが作られる c そこで、 ゥヱハ上の異物検査としては、 透明膜 8 0 0の表面の微小異物ゃスクラ ツチ等の欠陥 8 0 2を検出するニーズが高まっている。
基本的には、照明ビーム 2 2 0 , 2 3 0を用いて照明角ひを小さくすることによ つて、 下地 8 0 1からの回路パターン回折光等の反射光の影響を抑えることが可 能であるが、照明角ひを小さくすることにより欠陥 8 0 2から発生られる散乱光 の多くは前方散乱光として低い角度で出ることになるため、 検出光学系 2 0 0の 対物レンズ 2 1への入射が少なくなつて透明膜 8 0 0上の欠陥 8 0 2を安定して 検出できない。 また、 前方散乱光を低い角度で検出したのでは、 正反射光を検出 することになるので、 欠陥 8 0 2を検出することができない。
そこで、本発明では、上述したように、第 1 1図に示す如く、ビーム径が拡大さ れたレーザ光 L 3をミラ一 2 5 6、 円筒レンズ 2 5 5を介してウェハ 1の表面に 対して低角度(5度〜 1 0度程度)の照明角ァで照明ビーム 2 5 0として照射し、 Y方向に長手方向を有するスリット状ビーム 2 0 1を形成する。 なお、 第 1図お よび第 2図(b )に示すように、照明光路において、 円筒レンズ 2 5 5をミラ一 2 5 6の前に設けた方が好ましい。 そして、 ウェハ 1の表面に形成された透明膜 8 0 0上に存在する微小異物やスクラッチ等 8 0 2から発生する照明ビーム 2 5 0 に対する主として側方散乱光を低角度で検出できるように側方検出光学系 6 0 0 を設置した。そのため、該側方検出光学系 6 0 0は、 Y軸に対して角度 ω (例えば 8 0度〜 1 0 0度程度)で交差する方向から低角度(5度〜 1 0度程度)の検出角 度 Θの光軸を有する結像光学系 6 3 0および光検出器 6 4 0から構成される。 そ して、 上記交差角 ωを 9 0度付近にすることによって、 光検出器 6 4 0の受光面 は、 スリツト状ビーム 2 0 1に対して結像光学系 6 3 0による結像関係を有し、 しかも結像光学系 6 3 0の結像倍率を、 光検出器 6 4 0の受光面がスリット状ビ ーム 2 0 1の全照明範囲を臨むように設定することが可能となる。 このように側 方検出光学系 6 0 0をスリツト状ビーム 2 0 1に対して低角度で結像関係にする ことによって、スリヅト状ビーム領域以外からの迷光の影響を防止し、倍率可変検 出光学系 2 0と同様に並列処理が可能となり、 検査の高速化を図ることが可能と なる。なお、光検出器 6 4 0は、光検出器 2 6と同様に、 T D Iセンサや光電子増 倍管等で構成することができる。
また、 検査中は、 ウェハ 1の表面が Ζ方向で一定の位置となり、 光検出器 6 4 0の受光面がスリット状ビーム 2 0 1の全照明範囲をとらえるように図示しない 自動焦点制御系により制御される。 また、 側方検出光学系 6 0 0の光路中に空間 フィル夕を設置することにより、 下地等に存在する回路パターンからの側方反射 回折光を遮光することも可能である。 また、 結像光学系 6 3 0に工夫を施せば、 上記交差角 ωの範囲を広げることが 可能となる。 また、 照明ビームとしては傾斜角度ひを低角度にすれば、 照明ビー ム 2 2 0を用いることも可能である。この場合、側方検出光学系 6 0 0によって検 出するのは、 側方前方 (平面的に見て 1 3 5度方向) 散乱光を検出することにな る。また、照明ビームとして 2 3 0を用いた場合には、側方検出光学系 6 0 0を照 明系と干渉しないミラ一 2 4 5とミラ一 2 2 5との間に設ければよい。
以上説明したように、 側方散乱光を主に低角度でスリット状ビーム 2 0 1に結 像させて検出する側方検出光学系 6 0 0を設けることにより、 下地からの反射光 の影響を抑えて、 透明膜 8 0 0上の微小異物やスクラッチ等の欠陥 8 0 2を精度 良く検出できることになる。
また、 第 1 2図 (a ) に示すように、 例えばレーザ光 L 3を光偏向手段 (光偏 向器) 7 2 0により Y方向に高速走査して集光レンズ 7 3 0でウェハの表面に低 角度ァで集光照射されたスポット 7 0 1が高速走査され、異物やスクラッチ等の 欠陥 8 0 2からの側方散乱光を低角度 0の結像レンズ 7 4 0で光ファイバ等の分 配手段 7 5 0の受光面に結像させ、 該結像した光像を上記分配手段 7 5 0で導い て光電子増倍管等の光電変換素子 7 6 0 a〜7 6 O dで検出してもよい。 この実 施例の場合、 7 4 0〜 7 6 0が側方検出光学系 6 0 0 ' となる。この場合、第 1 2 図(b )に示すように、複数のスポヅト走査群 7 0 1 a〜7 0 1 cをウェハ 1上に 形成することで、 光電子増倍管等を用いて検査の高速化が図れる。 また、 各走査 スポヅト 7 0 1 a〜7 0 1 cから発生する欠陥散乱光の検出は、 第 1 2図 (c ) で示す如く分配手段 7 5 0で導かれる光情報を、 光電子増倍管 7 6 0 a〜7 6 0 dで一定間隔でピックアップすることにより信号の並列処理ができ、高速に検査 が行われる。その結果、光電子増倍管の数を減らして偏りなく欠陥 8 0 2を検出す ることができる。即ち、各光電子増倍管のウェハ上における Y方向の検出位置は光 偏向手段 7 2 0の偏向信号を用いることにより決まっているので、 各光電子増倍 管から検出される欠陥の信号をスポット 7 0 1の高速走査に同期して検出すれば よい。
また、 レ一ザ光 L 3を分岐手段 131 (131 a〜l 31 d) で複数のレーザ 光 132 a〜 132 dに分割し、 各レーザ光 132 a〜132 dを、 発振器 13 4 a〜l 34 dからの信号に基づいて光変調器 133 a〜 133 dで互いに異な る周波数で例えば強度変調する。 そして、 これら強度変調された各レーザ光 13 5 a〜135 dをミラ一 136 a~136 d、 137 a~ 137 dで反射させ、 更に光偏向器 138で Y方向に偏向させて集光レンズ 139で集光させて傾斜角 ァでウェハ 1上にマルチスポヅト 140 a〜l 4 Odとして照射する。 ここで、 各光偏向器はウェハ 1上で Y方向にスポットが完全に重ならないように偏向角に オフセットを与えている。 これにより、 互いに異なる周波数で強度変調され、 傾 斜角度ァで入射されて Y方向に走査されたマルチスポット 140 a〜l 40 dが 得られることになる。 これに対して側方検出光学系としては、 X方向で傾斜角 0 の光軸を有する結像レンズ 141、 受光部 142、 該受光部 142に接続された 光ファイバ 143、 及び光電子増倍管 144で構成される。 なお、 これら受光部 142、 光ファイバ 143及び光電子倍増管 144によって光検出器を構成する ことができる。 145 a〜145 dは同期検波回路で、 各発振器 134 a〜 13
4 dから得られる各光変調器 133 a〜l 33 dに印加した各周波数の信号によ つて光電子増倍管 144から出力される信号成分に含まれる周波数を検波するこ とによって、 どのスポヅト 140 a〜 140 dの走査によって発生した欠陥なの かを検出できることになる。即ち、光電子増倍管 144は、マルチスポット走査に よる欠陥 802からの側方散乱光を受光することになるが、 各同期検波回路 14
5 a〜l 45 dから検波して出力される欠陥を示す信号により光偏向器 138に よるどのスポヅト 140 a〜 140 dの走査によるものかを弁別することが可能 となる。その結果、信号処理系 40は、光偏向器 138を制御する制御回路 146 からの偏向信号 (ウェハ上の走査信号に相当する) に基づいて欠陥が発生した Y 軸方向の位置座標を算出することができることになる。 以上説明したように、 光変調器 1 3 3 a〜 1 3 3 dの各々で互いに異なる周波 数で例えば強度変調して走査されたマルチスポヅト 1 4 0 a〜l 4 0 dとして照 射し、 光検出器で検出された信号を各同期検波回路 1 4 5 a〜l 4 5 dによって 検波して欠陥を示す信号を抽出することによって、 波長を変えてマルチスポヅト として照射する場合に比較して検出感度を一様にして欠陥を検出することができ ることになり、 高速化を図ることが可能となる。
また、 被検査対象物 1の表面に透明膜 8 0 0が形成されていない場合は、 傾斜 角度ァ、 検出角度 Θは必ずしも低角の必要はなく、 5〜9 0度の範囲で任意に設 定してもよい。
また、 複数のレーザスポットを走査する代わりに、 走査レーザ照明系と検出光 学系とをュニット化した複数の検出へッドをチップ 2 0 2の配列方向に、 好まし くはチヅプのピヅチに合わせて設置しても検査を高速化することができる。
以上、 第 1 2図および第 1 3図に示す技術は、 検出光学系 2 0 0による上方検 出にも適用可能である。
〔搬送系 3 0〕
次に、 搬送系 3 0について説明する。 ステージ 3 1、 3 2は試料設置台 3 4を X Y平面に移動させるためのステージであり、 照明光学系 1 0の照明エリアに被 検査対象基板 1の全面を移動させることができる機能を持つ。 また、 ステージ 3 3は zステージであり、 倍率可変検出光学系 2 0の光軸方向 (Z方向) に試料設 置台 3 4を移動させることができる機能を持つ。 また、 試料設置台 3 4は、 ゥェ ハ 1を保持するとともに、被検査対象基板 1を平面方向に回転させる機能を持つ。 また、 ステージコントローラ 3 5はステージ 3 1、 3 2、 3 3、 試料設置台 3 4 を制御する機能を持つ。
〔信号処理系 4 0〕
次に、 光検出器 2 6および 6 4 0等からの出力信号を処理するための信号処理 系 4 0の内容について第 1 4図を用いて説明する。 信号処理系 4 0は、 光検出器 26および 640の各々から切替えられて入力される信号を A/D変換する A/ D変換器 1301、 A/D変換された検出画像信号: (i, j) を記憶するデー 夕記憶部 1302、 上記検出画像信号に基いて閾値算出処理をする閾値算出処理 部 1303、 上記データ記憶部 1302から得られる検出画像信号 510と閾値 算出処理部 1303から得られる閾値画像信号 (Th (H) , Th (Hm) , T h (Lm) , Th (L) ) 520とを基に画素マージ毎に異物検出処理を行う異 物検出処理部 1304 a〜 1304 n、 例えば、 低角度照明 ·上方検出 (照明ビ ーム 220、 230による低角度照明 '検出光学系 200による上方検出) によ つて欠陥から検出して得られた散乱光量、 高角度照明 (中角度照明も含む) -上 方検出 (照明ビーム 220, 230、 240による高角度照明 ·検出光学系 20 による上方検出) によって欠陥から検出して得られた散乱光量、 低角度照明 -斜 方検出 (照明ビーム 250による低角度照明 ·側方検出光学系 600による斜方 検出) によつて欠陥から検出して得られた散乱光量及び欠陥の広がりを示す検出 画素数等の特徴量を算出する特徴量算出回路 1310、 該特徴量算出回路 131 0から得られる各マージ毎の特徴量を基に、 半導体ゥヱハ上の小/犬異物ゃパ夕 —ン欠陥やマイクロスクラッチ等の欠陥を各種欠陥に分類する統合処理部 130. 9、 および結果表示部 1311から構成される。 異物検出処理部 1304 a〜l
304ηの各々は、 例えば 1x 1、 3x3、 5x5、 … Χ ηのマ一ジォペレ一 夕の各々に対応させて、 画素マージ回路部 1305 a〜 1305 n、 1306 a 〜 1306 n、 異物検出処理回路 1307a~1307 n、 および検査領域処理 部 1308 a〜 1308 nを備えて構成される。
特に、 本発明においては、 異物検出処理部 1304 a〜 1304 n、 特徴量算 出回路 1310、 および統合処理部 1309を特徴とする。
次に動作を説明する。 まず光検出器 26、 640の各々から切替えられて得ら れた信号を A/D変換器 1301でデジタル化する。 この検出画像信号 f (i, j) 510をデ一夕記憶部 1302に保存すると共に、 閾値算出処理部 1303 に送る。 閾値算出処理部 1303で異物検出のための閾値画像 Th (i, j) 5 20を算出し、 各種マージオペレータ毎に、 画素マージ回路 1305、 1306 で処理された信号を基に、 異物検出処理回路 1307で異物を検出する。 検出さ れた異物信号や閾値画像を検査領域処理部 1308により、 検出場所による処理 を施す。 同時に、 各種マージオペレータ毎に設けられた異物検出処理部 1304 a〜 1304 nの、 画素マージ回路 1305 a〜 1305 n、 1306 a〜 13 06 n、 異物検出処理回路 1307 a〜 1307 n、 検査領域処理部 1308 a 〜1308 nから得られた信号を基に、 特徴量算出回路 1310で特徴量 (例え ば、 高角度照明 ·上方検出により得られた散乱光量、 低角度照明 ·上方検出によ り得られた散乱光量、 低角度照明,斜方検出により得られた散乱光量、 欠陥の検 出画素数等) を算出し、 前記異物信号と前記特徴量を統合処理部 1309で統合 し、 結果表示部 1311に検査結果を表示する。
以下に詳細を述べる。 まず、 A/D変換器 1301は光検出器 26、 640等 で得られたアナログ信号をデジタル信号に変換する機能を有する回路であるが、 変換ビヅト数は 8ビヅトから 12ビヅト程度が望ましい。 これは、 ビヅト数が少 ないと信号処理の分解能が低くなるため、 微小な光を検出するのが難しくなる一 方、 ビッ ト数が多いと A/D変換器が高価となり、 装置価格が高くなるというデ メリットがあるからである。 次に、 データ記憶部 1302は、 A/D変換された デジ夕ル信号を記憶しておくための回路である。
なお、 閾値算出処理部 1303については、 特開 2000— 105203号公 報に記載されている。即ち、閾値算出処理部 1303では、次に説明する値を用い て、 検出閾値 (Th (H) , Th (L) )、 および検証閾値 (Th (Hm) , Τ h (Lm) ) の閾値画像が、 次の (2)式を用いて算出される。 なお、 入力デ一 夕の標準偏差値は(び (AS) = " (∑AS2/n-∑AS/n) )で算出され、 入力デ一夕の平均値は (〃 (AS) =∑AS/n) で算出される。 さらに、 入力 データ数 nに対応した閾値を設定するための係数 (倍率) を k、 検証用の係数を m (mは 1より小さいものとする。 ) とする。
Th (H)
Figure imgf000031_0001
〃一 kx r または
Th (Hm) =mx ( z + kx cr) 若しくは Th (Lm) =mx (//— kx σ) (2) また、 検査領域処理部 1308 a〜 1308 nから設定された領域毎に閾値画 像デ一夕を変更してもよい。 要するに、 ある領域において検出感度を低くするに は、 その領域における閾値を高めれば良い。
次に、 信号の画素マージ回路部 1305、 1306について第 1 5図及び第 1 6図を用いて説明する。 画素マージ回路部 1305 a〜 1305 n、 1 306 a 〜 1306 nは、 各々異なるマージォペレ一夕 1 504で構成される。 マ一ジォ ペレ一夕 1 504は、 デ一夕記憶部 1302から得られる検出画像信号 f (i, j ) 5 10と、 閾値算出処理部 1303から得られる検出閾値画像 Th (H) 、 検出閾値画像 Th (L) 、 検証閾値画像 Th (Hm) 、 および検証閾値画像 Th (Lm) からなる閾値画像信号 520との各々を nxn画素の範囲で結合する機 能であり、 例えば、 nxn画素の平均値を出力する回路である。 ここで、 画素マ —ジ回路部 1305 a、 1306 aは例えぼ 1 x 1画素をマージするマージオペ レー夕で構成され、 画素マージ回路部 1305 b、 1306 bは例えば 3 X 3画 素をマージするマ一ジォペレ一夕で構成され、 画素マージ回路部 1305 c、 1 306 cは例えば 5 X 5画素をマージするマージォペレ一夕で構成され、 …画素 マージ回路部 1305 n、 1306 nは例えば nxn画素をマ一ジするマ一ジォ ペレ一夕で構成される。 1 X 1画素をマージするマージオペレータは、 入力信号 5 10、 520をそのまま出力することになる。
閾値画像信号については、上記の如く、 4つの画像信号(Th (H) , Th (H m) , Th (Lm) , Th (L) ) からなるため、 各画素マージ回路部 1306 a〜 1306 nにおいて 4つのマ一ジォペレ一夕 Opが必要となる。 従って、 各 画素マージ回路部 1305 a〜 1305 nからは、 検出画像信号が各種マージォ ペレ一夕 1504でマージ処理してマージ処理検出画像信号 431 a〜431η として出力されることになる。 他方、 各画素マージ回路部 1306 a〜l 306 nからは、 4つの閾値画像信号 (Th (H) , Th (Hm) , Th (Lm) , T h (L) ) が各種マ一ジォペレ一夕 Op l〜Opnでマージ処理してマージ処理 閾値画像信号 441a (441al~441 a4) 〜441n (441nl〜4 41 n4) として出力されることになる。 なお、 各画素マージ回路部 1306 a 〜 1306 n内のマ一ジォペレ一夕は同じものである。
ここで、 画素をマージする効果を説明する。 本発明の異物検査装置では、 必ず しも微小異物だけではなく、 数/ の範囲に広がった大きな薄膜状の異物も見逃 すことなく検出する必要がある。 しかし、 薄膜状異物からの検出画像信号は、 必 ずしも大きくならないために、 1画素単位の検出画像信号では SN比が低く、 見 逃しが生じることがある。 そこで、 1画素平均の検出画像信号レベルを Sとし、 平均のばらつきをび/ nとすると、 薄膜状異物の大きさに相当する nxn画素の 単位で切出して畳み込み演算をすることによって、 検出画像信号レベルは n 2 X Sとなり、ばらつき(N)は nxびとなる。従って、 SN比は nx S/びとなる。 他方、 薄膜状異物について 1画素単位で検出しょうとすると、 検出画像信号レべ ルは Sとなり、 ばらつきはびとなるため、 SN比は、 S /びとなる。 従って、 薄 膜状異物の大きさに相当する n X n画素の単位で切出して畳み込み演算をするこ とによって、 SN比を n倍向上させることができる。
1画素単位程度の微小異物については、 1画素単位で検出される検出画像信号 レベルは Sとなり、 ばらつきはびとなるので、 SN比は S/びとなる。 仮に、 1 画素単位程度の微小異物について n n画素の単位で切出して畳み込み演算をす ると、 検出画像信号レベルは S/n2となり、 ばらつきは nxびとなるため、 S N比は S/n3/びとなる。 従って、 1画素単位程度の微小異物については、 画 素単位の信号そのままの方が、 SN比として向上が図れる。
なお、 本実施例では、 マージの範囲を正方形 (nxn画素) にした例で説明し たが、 マージの範囲を長方形 (nxm画素) にしても良い。 この場合、 方向性の ある異物の検出や、 光検出器 26、 640での検出画素が長方形であるが、 信号 処理は正方形画素で処理したい場合に有効である。
また、 本実施例で説明したマ一ジォペレ一夕の機能は、 nxn画素の平均値を 出力する実施例で説明したが、 nxn画素の最大値や最小値、 または中央値を出 力しても良い。 中央値を用いた場合は、 安定した信号が得られる。 さらに、 出力 値として n X n画素の平均値に特定の値を乗算または除算した値としても良い。 次に、 第 16図は異物検出処理回路 1307の一実施例を示した図である。 第 16図においては、 1 X 1画素をマージする画素マージ回路部 1305 aおよび 画素マージ回路部 1306 a並びに nxn画素をマージする画素マージ回路部 1 305 nおよび画素マージ回路部 1306 nについて示す。
そして、 異物検出処理回路 1307a〜 1307ηは、 各マ一ジォペレ一夕に 対応させて、 マージ処理差分信号 471 a〜471 nとマージ処理閾値信号 44 1 a〜441 nとの大小を比較する比較回路 1601 a〜 1601ηと、 異物の 検出場所を特定する検出場所判定処理部 1602 a〜 1602 nとで構成される c 比較回路 1601 a〜 1601 nには、 画素マージ回路 1305 a〜 1305η から得られる画素マージされた検出画像信号について、 繰り返される例えばチッ プ分遅延させる遅延メモリ 451 a〜451 nと、 上記画素マージされた検出画 像信号 431 a〜431 nと上記遅延メモリ 451 a〜451 nによって遅延さ れた画素マージされた参照画像信号との差分信号を形成する差分処理回路 461 a〜461 nとが設けられている。従って、比較回路 1601 a〜l 601 nは、 各画素マージ回路部 1306 a〜 1306 nの 4つの画素マージ回路 0 pから得 られるマージ処理閾値画像 Th (H) (i, j)、 Th (Hm) (i, j)、 T h (Lm) (i, j)、 Th (L) ( i , j ) とを比較する回路であり、 例えば、 マージ処理差分検出信号 471 a〜471 nがマージ処理閾値画像 T h ( i , j ) よりも大きければ異物として判定する機能を持つ。 本実施例では、 閾値を 4種類 用意し、 マージオペレータ毎に、 マージ処理閾値画像 1 603、 1604、 16 05、 1 606に対し、 比較回路 1601 a〜 1 60 1 nで異物の判定処理を行
Ό。
次に、 検出場所判定処理部 1602 a〜 1 602 nについて説明する。 検出場 所判定処理は、 各種マ一ジォペレ一夕に対応させて異物又は欠陥の存在するチヅ プを特定してその位置座標( i , j )を算出する処理である。本処理の考え方は、 異物または欠陥を検出するための検出閾値 (Th (H) , Th (L) ) と、 該検 出閾値よりも値の小さい閾値である検証閾値 (Th (Hm) , Th (Lm) ) で 検出した結果を用いて、 異物または欠陥が検出されたチップを特定する。
次に、 検査領域処理部 1308 a〜: 1308 nについて説明する。 検査領域処 理部 1308 a〜l 308 nは、 異物検出処理回路 1307 a〜l 307 nから チップを特定して得られる異物又は欠陥検出信号に対して、 検査する必要がない 領域 (チップ内の領域も含む) のデータを除去する場合や、 検出感度を領域 (チ ップ内の領域も含む) 毎に変える場合、 また、 逆に検査したい領域を選択する場 合に用いる。 検査領域処理部 1308 a〜 1 308ηは、 例えば、 被検査対象基 板 1上の領域のうち、 検出感度が低くても良い場合には、 閾値算出処理部 130 3の閾値算出部 (図示せず) から得られる該当領域の閾値を高く設定しても良い し、 異物検出処理回路 1307 a〜 1307 nから出力される異物のデ一夕から 異物の座標を基にして検査したい領域の異物のデ一夕のみを残す方法でも良い。 ここで、 検出感度が低くても良い領域というのは、 例えば、 被検査対象基板 1 において回路パターンの密度が低い領域である。 検出感度を低くする利点は、 検 出個数を効率良く減らすことである。 つまり、 高感度な検査装置では、 数万個の 異物を検出する場合がある。 この時、 本当に重要なのは回路パターンが存在する 領域の異物であり、 この重要な異物を対策することがデバィス製造の歩留り向上 への近道である。 しかしながら、 被検査対象基板 1上の全領域を同一感度で検査 した場合、 重要な異物と重要でない異物が混じるために、 重要な異物を容易に抽 出することができない。 そこで、 検査領域処理部 1 3 0 8 a〜l 3 0 8 nは、 チ ップ内の C A D情報または閾値マヅプ情報に基いて、 回路パ夕一ンが存在しない ような、 歩留りにあまり影響しない領域の検出感度を低くすることにより、 効率 良く重要異物を抽出することができる。 ただし、 異物の抽出方法は、 検出感度を 変更する方法だけでなく、 後述する異物の分類により、 重要異物を抽出しても良 いし、 異物サイズを基に重要異物を抽出しても良い。
次に、 統合処理部 1 3 0 9およびその検査結果表示部 1 3 1 1について説明す る。 統合処理部 1 3 0 9では、 画素マージ回路 1 3 0 5、 1 3 0 6で並列処理さ れた異物検出結果を統合したり、 特徴量算出回路 1 3 1 0で算出した特徴量と異 物検出結果を統合し、 結果表示部 1 3 1 1に結果を送る機能を有する。 この検査 結果統合処理は、 処理内容を変更し易くするために: P C等で行うのが望ましい。 まず、 特徴量算出回路 1 3 1 0について説明する。 この特徴量とは、 検出され た異物や欠陥の特徴を表す値であり、 特徴量算出回路 1 3 1 0は、 前記特徴量を 算出する処理回路である。 特徴量としては、 例えば、 高角度照明 ·上方検出、 低 角度照明 ·上方検出及び低角度照明 ·斜方検出によって得られた異物又は欠陥か らの反射回折光量 (散乱光量) (D h , D 1 ) 、 検出画素数、 異物検出領域の形 状や慣性主軸の方向、 ウェハ上の異物の検出場所、 下地の回路パターン種類、 異 物検出時の閾値等がある。
次に、 統合処理部 1 3 0 9での D F Cの実施例について説明する。
即ち、 統合処理部 1 3 0 9は、 各種画素マージされた異物検出信号が入力され ているので、 第 1 7図に示すように、 異物を、 「大異物」 、 「微小異物」 、 「高 さの低い異物」 として分類することが可能となる。 第 1 7図は、 分類基準と分類 結果の関係を示した表である。 第 1 7図は 1 X 1画素でマージ処理された検出結 果と 5 X 5画素でマージ処理された検出結果を用いた例である。 即ち、 異物検出 処理回路 1 3 0 7 a、 1 3 0 7 cからは、 信号処理回路により 1 X.1画素での検 査結果と 5 X 5画素での検査結果が得られる。 これらの結果を用いて、 第 1 7図 に従って分類を行う。 つまり、 ある異物が 1 X 1画素でも 5 X 5画素でも検出し た場合は 「大異物」 として分類する。 また、 1 X 1画素では検出したが、 5 X 5 画素では検出しなかった場合は 「微小異物」、 さらに 1 X 1画素では検出しなか つたが、 5 X 5画素では検出した場合は「高さの低い異物」 として分類する。 第 1 8図は、 上記分類結果を含んだ検査結果の表示の実施例を示す。 上記検査 結果の表示は、 検出場所判定処理部 1 6 0 2 a、 1 6 0 2 cから得られる異物の 位置情報 2 5 0 1、 統合処理部 1 3 0 9から得られる分類結果のカテゴリ情報 2 5 0 2およびカテゴリ毎の異物数 2 5 0 3で構成される。 本実施例は、 異物の位 置情報 2 5 0 1で異物の位置を示すと共に、 表示記号により分類カテゴリも併せ て表示した例である。 また、 各記号の分類カテゴリの内容は、 分類結果カテゴリ 情報 2 5 0 2に示している。 また、 カテゴリ毎の異物数 2 5 0 3は各カテゴリに 分類された個数を表している。 このようにカテゴリ毎に表示を変えることによつ て、 各異物の分布が一目でわかるという利点がある。
次に、 本発明に係る異物のサイズ測定方法の実施例について説明する。 本方法 は、 異物サイズと光検出器 2 6で検出される光量には比例関係があることを利用 した方法である。 つまり、 特に異物が小さい場合、 M i eの散乱理論に従い、 検 出光量 Dは異物サイズ Gの 6乗に比例するという関係がある。 従って、 特徴量算 出回路 1 3 1 0は、 検出光量 D、 異物サイズ G、 および比例係数 eを基に、 次に 示す (3 ) 式で異物サイズを測定し、 統合処理部 1 3 0 9に提供することができ る。
G = £ X J) ( 1 6 ) ( 3 ) なお、 比例係数 eは、 予め、 サイズが既知の異物からの検出光量から求めてお いて入力しておけば良い。
次に、 検出光量 Dの算出方法の一実施例を第 1 9図を用いて説明する。 第 1 9 図 (a ) は、 異物検出処理回路 1 3 0 7で検出される微小異物についてのデータ 記憶部 1 3 0 2から得られる微小異物のデジタル画像信号 (光検出器 2 6の信号 を A/D変換した画像信号) を基に作成した微小異物部の画像である。 微小異物 部 260 1が微小異物の信号を示している。 第 1 9図 (b) は、 第 19図 (a) の微小異物部 2601とその近傍画素の A/D変換値 (画素毎の濃淡値) を示し ている。 本例は、 8b i tで A/D変換した例であり、 異物信号部 2602が微 小異物からの検出信号を示している。ここで、異物信号部 2602の中央部の「2 55」 はアナログ信号が飽和していることを示しており、 異物信号部 2602以 外の 「0」 の部分は微小異物以外からの信号を示している。 微小異物の検出光量 Dの算出方法としては、 第 1 9図 (b) に示す異物信号部 2602の各画素値の 和を計算する。 例えば、 第 1 9図 (b) の例では、 微小異物 2601の検出光量 Dは、 各画素値の和である 「805」 となる。
次に、 検出光量 Dの算出方法の他の実施例について説明する。 本実施例の考え 方は、 第 1 9図 (b) における異物信号部 2602の飽和部をガウス分布近似で 補正し、 検出光量の算出精度を向上することにある。 補正方法について、 第 20 図を用いて説明する。 第 20図はガウス分布を 3次元的に表現した図である。 第 20図は、 y = y。で信号が飽和した場合を示しており、以下で説明する方法は、 第 20図における y = y。より下の部分、 つまり、 V3の部分の検出光量が得られ た場合に、 ガウス分布全体の検出光量を算出する方法である。 まず、 第 20図の ガウス分布全体の体積を Vい y = y。より上の部分の体積を V2、 y = y。より下 の部分の体積を V3とする。 また、 第 20図のガウス分布の X軸で断面形状が次 の (4) 式で得られるものとする。
y=exp (一 χ2/2/σ2) (4) この時、 は y軸周りに積分することにより、 次の (5) 式で表される。 ν1= 2 χπχ σ2 (5) さらに、 V2は、 次の (6) 式で表される。
ν2= 2 χττχ σ-2 (y0x l o g (y0) + l - y0) (6) なお、 上記の式における 「l o g」 は自然対数を計算することを示している。 ここで、 体積比 Vi/Vsを CCと書きなおすと、 CCは次の (7)式で計算でき るので、 上記 (5) 式及び (6) 式から、 次の (8) 式で算出される。
CC = V (V!-V2) (7) CC= 1/ (y0x (1一 log (y0) ) ) (8) ここで、 飽和部の信号幅を SWとすると、 次の (9) 式であるので、 CCは次 の (10) 式で表すことができる。
y0=exp (一 SW2Z2/び2) (9) CC = exp (SW2/2/cr2) / ( 1 + S W2/2 /び2) (10) 従って、 第 19図 (b) に示すように得られた検出光量が V3であった場合、 ガウス分布全体の体積 V は、 次の (11)式で算出でき、 を補正後の検出光 量 Dとするれば良い。 なお、 飽和部の信号幅 SWを算出する必要がある。
ν! = ν3 exp (SW2/2/cr2) / (l + SW2/2/a2) ( 11) 以上、 検出光量 Dの算出方法について説明したが、 倍率可変検出光学系 20の 視野が広い場合、 視野内のレンズ歪みにより誤差が生じる場合がある。 この場合 は、 視野内のレンズ歪みに応じた補正を加えても良い。
なお、 本実施例では、 検出光量として異物信号部 2602の信号和の値を用い たが、必ずしも信号和である必要はなく、異物信号部 2602の最大値でも良い。 利点としては、 最大値を用いた場合は電気回路規模を小さくできることであり、 信号和を用いた場合は信号のサンプリング誤差を低減でき、 安定した結果が得ら れることである。
なお、 表示画面は、 全体制御部 50に設けられた表示手段 52に表示させても よい。
次に、 統合処理部 1309で行う異物又は欠陥の分類の他の実施例を第 21図 及び第 22図を用いて説明する。 第 21図は、 統合処理部 1309が検査を 2回 行った結果を基に異物を分類するシーケンスを示している。
まず、 第 1の検査条件にてウェハ 1を検査する (S 221) 。 第 1の検査で、 異物検出処理回路 1307から得られた異物の座標データと、 特徴量算出回路 1 310から得られた各異物の特徴量を記憶装置 (図示せず) に保存する (S 22 2) 。 次に、 第 1の検査条件とは違う第 2の検査条件にてウェハ 1を検査し (S 223) 、 第 2の検査で、 異物検出処理回路 1307から得られた異物の座標デ —夕と、 特徴量算出回路 1310から得られた各異物の特徴量を記憶装置 (図示 せず) に保存する (S 224) 。 この時、 第 2の検査条件としては、 たとえば、 第 1の検査条件がウェハ表面に近い角度から照明光を照射した場合 (低角度照明 の場合) は、 第 2の検査条件としては、 ウェハ面の法線に近い角度から照明光を 照射する条件 (高角度照明条件) を選択すると良い。 また、 第 2の検査条件にて ゥェハ 1を検査する場合は、第 2の検査条件での異物検出の有無に係らず、第 1の 検査条件で異物が検出された座標での特徴量を記憶する。
次に、 前記得られた第 1の検査結果の座標データと、 前記得られた第 2の検査 結果の座標デ一夕を比較し (S 225)、 座標が近い異物を同一物と見なし、 そ れそれの特徴量から分類を行う (S 226) o ここで、 座標デ一夕が近いことを 判断する方法の一実施例としては、 第 1の検査結果から得られる座標デ一夕を X iおよび 第 2の検査結果から得られる座標デ一夕を x2および y2、 比較半径 を rとすると、 次の (12)式に当てはまるデータを同一物と判断すれば良い。 (x!-x2) 2+ (y!-y2) 2<r2 (12) ここで rは 0または、 装置に付随する誤差分を考慮した値にすれば良い。 測定 方法としては、 例えば、 数点の異物の座標データで (12) 式の左辺の値を計算 し、 その平均値と標準偏差値から、 (13) 式で算出した値を rに設定すれば良 い ο
r 2 =平均値 +3 X標準偏差 (13) さらに、 同一物と見なした異物情報から異物を分類する方法を第 22図を用い て説明する。 第 22図 (a) は横軸に前記第 1の検査 (低角度照明) で得られた 特徴量である散乱光量 (D1) を設定し、 縦軸には前記第 2の検査 (高角度照明) で得られた特徴量である散乱光量(D h)を設定したグラフである。第 2 2図(b ) は横軸に低角度照明で側方検出光学系 6 0 0により得られた散乱光量 (D 1 ' ) を設定し、縦軸には高角度照明で得られた散乱光量(D h' )を設定したグラフで ある。 第 2 2図において、 点 3 5 0 1は前記同一物と見なした異物の各特徴量に 応じてプロットした点である。 本実施例では、 1点が 1個の異物を示している。 また、 分類線 3 5 0 2は検査において検出した異物を分類するための分類曲線で ある。 第 2 2図は分類線 3 5 0 2によって、 2つの領域、 つまり、 領域 3 5 0 3 と領域 3 5 0 4に分割した例である。 分類方法としては、 第 2 2図 (a ) におい て、 前記検出された異物が領域 3 5 0 3にプロットされる場合は 「大異物、 スク ラヅチ」 として分類し、 領域 3 5 0 4にプロヅトされる場合は、 「小異物」 とし て分類する。また、第 2 2図(b )に示すように、低角度照明での散乱光量(D 1 ) 及び高角度照明での散乱光量(D h)に比べ、側方検出光学系 6 0 0での散乱光量 (D 1, ) が、 より小さい場合の検出物 4 5 1 0は透明膜 8 0 0内部に存在する 膜中欠陥として分類する。 ところで、 上方検出で低角度照明の場合はウェハでの 照明ビームの広がりにより照度が低下し、感度が下がるため、上方検出は、側方検 出より検出感度が低くなる。
ここで、 分類線 3 5 0 2は、 事前に決めておく必要がある。 事前に決める方法 としては、 予め大異物か小異物か分かっている検出物を第 2 2図のグラフに数点 プロットして、 前記検出物を正しく分けられるように分類線 3 5 0 2を設定すれ ば良い。 または、 異物から得られる特徴量をシミュレーションで計算し、 その結 果から分類線 3 5 0 2を設定しても良い。ここで、異物種類の確認方法としては、 例えば、 検査装置に搭載の観察用光学顕微鏡 6 0や S E M等のレビュー装置によ り欠陥座標とその種類が分かっているウェハ上の検出物を用いて分類する。 検査 装置に搭載の 6 0を含むレビュー装置では、短時間の分類が可能であり、 S E Mを 用いた場合は、解像度良く分類が行える。検出物の種類としては、 例えば、 異物、 スクラッチ、透明膜中の異物等である。 分類線 3 5 0 1の設定は、例えば、 低角度 照明で得られる散乱光量が、 検出器 2 6における電気ノイズを異物として誤検出 しない程度の値にしきい値が設定される。 また、 まず、 大異物と、 小異物の集団 について、 それそれ重心位置を算出し、各プロット点の標準偏差を求める。 次に、 各重心位置を結んだ直線の距離を L、 それそれの重心位置から標準偏差の半径を r K r 2として、 L x ( r 1 / ( r 1 + r 2 ) ) になる直線上の点での垂直 2 等分線を分類線 3 5 0 2とする。
なお、 本実施例では、 2回検査を行う例を説明したが、 特徴量の種類 (例えば 検出画素数:欠陥の面積 Qに相当する) を増やした方が分類性能の向上が図れる 場合は、 3回以上検査を行って異物の特徴量 (検出画素数) を取得しても良い。 次に、 検査結果統合処理部 1 3 0 9で行う異物又は欠陥の分類の更に他の実施 例を第 2 3図を用いて説明する。 第 2 3図は 1回検査を行い、 3種類の光学条件 で算出した特徴量を用いて分類する実施例のシーケンスを示している。
まず、 第 1の光学条件でゥヱハ 1に対して検査を行い (S 2 4 1 ) 、 異物検出 処理回路 1 3 0 7から得られた異物の座標デ一夕と、 特徴量算出回路 1 3 1 0か ら得られた各異物の特徴量も保存しておく (S 2 4 2 ) 。 次に、 本発明の異物検 査装置の光学条件を変える。これは、例えば、照明光学系の照射角度や照明方向、 検出光学系による検出方向 (上方ゃ斜方) である。 また、 検出光学系の倍率を変 えても良く、 光学フィルタを変えても良い。 以上のような変更を加えた条件を第 2の光学条件とする。
光学条件を第 2の光学条件に変更した後、 前記保存しておいた異物の座標の位 置に搬送系 3 0でゥヱハ 1を動かし、 第 2の光学条件で、 光検出器 2 6で検出し て A/D変換して得られる検出画像信号を基に特徴量算出回路 1 3 1 0において 異物の特徴量を算出する (S 2 4 3 ) 。 さらに、 第 3の光学条件で特徴量を算出 する場合も同様に行う (S 2 4 4 )。この時、第 1の光学条件、第 2の光学条件、 第 3の光学条件はそれそれ違う条件であることが望ましい。
分類方法の考え方を第 2 4図で説明する。 第 2 4図は 3種類の特徴量を 3軸に 設定した特徴量空間である。 3軸の内容としては、 例えば、 特徴量 1が第 1の光 学条件 (例えば高角度照明) で取得した欠陥からの特徴量 (例えば散乱光量 (D h) ) であり、 特徴量 2が第 2の光学条件 (例えば低角度照明) で取得した欠陥 からの特徴量(例えば散乱光量(D 1 ) )、 また、特徴量 3が第 3の光学条件(例 えば第 1の光学条件である高角度照明および第 2の光学条件である低角度照明) で取得した欠陥からの特徴量 (例えば検出画素数:欠陥の平面的な面積 Q ) であ る。この特徴量空間において、 (分類カテゴリ数— 1 )個の分類境界を設定する。 第 2 4図は、 3種類の特徴量から 3種類の分類を行う例であるので、 分類境界は 2個以上あれば良い。
特に、 3種類の特徴量として、 高角度照明による欠陥からの散乱光量 (検出光 量) (D h) 、 低角度照明による欠陥からの散乱光量 (検出光量) (D 1 ) 、 上 記高角度照明時における欠陥の検出画素数および上記低角度照明時における欠陥 の検出画素数とすることによって、 少なくとも、 3つのカテゴリ (異物欠陥、 キ ズ欠陥、 回路パターン欠陥) に分類することが可能となる。 しかも、 特徴量とし て、 欠陥の検出画素数 (欠陥の平面的な面積 Q ) をとつているので、 第 2 2図に 示すように、 異物欠陥の力テゴリを大異物と小異物とに分類することも可能とな る。
また、 3つの特徴量として、 高結像倍率における欠陥からの散乱光量、 低結像 倍率における欠陥からの散乱光量、 欠陥の検出画素数とすることによって、 少な くとも大異物欠陥のカテゴリと小異物欠陥のカテゴリとに容易に分類することが 可能となる。 また、 光検出器 6 4 0から得られる欠陥画像の特徴量から透明膜上 の微小異物やスクラッチ (キズ欠陥) 等の欠陥を分類することが可能となる。 さて、 第 2 4図は、 分類境界 4 5 0 1、 4 5 0 2を設定した例である。 分類方 法としては、 まず、 上述の 3つの特徴量を第 2 4図の特徴量空間にプロットする (第 2 3図に示す S 2 4 5 ) 。 そして、 分類境界 4 5 0 1, 4 5 0 2によって分 けられた領域に属する異物を、 それそれカテゴリ (例えば異物欠陥) a、 カテゴ リ (例えばキズ欠陥) b、 カテゴリ (例えば回路パターン欠陥) cとして分類す る (第 2 5図に示す S 2 4 6 ) 。 第 2 4図では、 3 0個程度の欠陥を、 カテゴリ a、 カテゴリ b、 カテゴリ cに分類し、 それそれのカテゴリに分類された欠陥の 表示記号を変えた例である。 つまり、 カテゴリ aに分類されたもの (例えば異物 欠陥) は 「〇」 、 カテゴリ bに分類されたもの (例えばキズ欠陥) は 「▲」 、 力 テゴリ cに分類されたもの(例えば回路パターン欠陥)は「X」で表示している。 次に、 分類境界の設定方法について第 2 5図で説明する。 第 2 5図は 3種類の 特徴量をそれそれ 1軸に設定した 2次元特徴量空間である。 特徴量空間 4 6 0 1 は特徴量 1と特徴量 2の関係から分類するためのグラフであり、 特徴量空間 4 6 0 2 , 4 6 0 3はそれそれ、 特徴量 1と特徴量 3、 特徴量 2と特徴量 3の関係か ら分類するためのグラフである。
分類境界の設定方法としては、 まず、 分類カテゴリが既知である異物の特徴量 を特徴量空間 4 6 0 1 , 4 6 0 2, 4 6 0 3にプロヅトする。 ここで、 特徴量空 間にプロットするときは、 カテゴリ毎に表示記号等を変えて、 カテゴリの違いを 表現する。 例えば、 第 2 5図では、 カテゴリ aは 「〇」 、 カテゴリ bは 「▲」、 カテゴリ cは 「X」 で表示した例である。
次に、 各特徴量空間 4 6 0 1、 4 6 0 2、 4 6 0 3において、 カテゴリを分け ることができる部分に分類境界 4 6 0 4、 4 6 0 5 , 4 6 0 6を設定する。 ここ で、 複数のカテゴリが重なっている場合は、 分類境界を設定する必要はない。 例 えば、 特徴量空間 4 6 0 1において、 カテゴリ aは他のカテゴリ b, cから離れ た位置に分布しているため、 カテゴリ aと他のカテゴリ b , cとを分類するため に分類境界 4 6 0 4を設定するが、 カテゴリ bとカテゴリ cとは分布が重なって いるので、 必ずしも分類境界を設定する必要はない。 異物の分類時には、 この特 徴量空間 4 6 0 1を用いて、 カテゴリ aか他のカテゴリかを分類する。 同様に、 特徴量空間 4 6 0 2 , 4 6 0 3においても分類境界 4 6 0 5 , 4 6 0 6を設定し、 異物の分類時に前記分類境界を用いる。 以上、 分類境界の設定方法について説明した。 本例では、 分類境界として、 2 個の領域に分ける場合で説明したが、 3個以上のカテゴリの分布が明確に分かれ ている場合は、 複数の領域に分けるために分類境界を複数個設定しても良い。 ま た、 分類境界は直線で設定しても良いし、 曲線で設定しても良い。 また、 分類領 域の設定は、ユーザが手動で設定しても良いし、自動で算出して設定しても良い。 手動で設定する場合は、 ユーザが任意に決めることができる利点があり、 自動で 設定する場合は、 人による設定誤差が低減できる。 ここで、 自動で設定する方法 としては、例えば、 1個の特徴量空間において、各カテゴリ分布の重心を算出し、 重心間を結んだ直線の垂直二等分線を分類境界にすれば良い。 また、 各特徴量空 間に各カテゴリの分離率を一緒に表示しても良い。
'分離率を表示した例を第 2 6図に示す。 第 2 6図において、 表示 4 7 0 1が分 離率の表示である。 ここで、 分離率とは、 例えば、 分離境界によって分離された 領域内に同一カテゴリの異物がどの程度含まれているかを表示すれば良い。 分離 率を表示することの利点は、 ユーザが分離性能を容易に把握できることである。 なお、 本実施例では、 3種類の光学条件で算出した特徴量を用いた場合につい て説明したが、 必ずしも 3種類に限定する必要はなく、 複数種類の光学条件で特 徴量を算出する場合や 1種類の光学条件で複数の特徴量を取得できる場合に用い ることができる。
次に、 全体制御部 5 0が例えば表示手段 5 2に表示する信号処理系 4 0から得 られる検査結果の表示に関する別の実施例について説明する。
第 2 7図は、 検出した異物または欠陥の位置情報 3 8 0 1と、 異物または欠陥 の検出個数 3 8 0 2、 検出した異物または欠陥サイズのヒストグラム 3 8 0 3で 構成されている。 なお、 本実施例では欠陥としてキズを検出した場合を示してい ο
詳細には、 位置情報 3 8 0 1はウェハ上での異物またはキズの位置を示してい る。なお、本実施例では異物を〇で、キズを▲で表示した例を示している。また、 検出個数 3 8 0 2は異物またはキズの検出個数である。 さらに、 グラフ 3 8 0 3 は異物またはキズの検出個数とサイズのヒストグラムである。 本発明の欠陥検査 装置での検出物をこのように表示することにより、 異物または欠陥の分布が一目 でわかる。
第 2 8図は、検出物(異物又は欠陥)の検出位置を示した検査マップ 3 9 0 1、 検出物のサイズのヒストグラム 3 9 0 2、 異物のレビュー像 3 9 0 3で構成され ている。本実施例では、検査マップ 3 9 0 1とヒストグラム 3 9 0 2については、 検出した検出物の全数または一部を表示した例である。 また、 レビュー像 3 9 0 3は検出物のサイズ毎にサンプリングし、 その検出物のレビュー像を表示する例 であり、 本実施例では 0 . 1 / 111以上1 1](1未満の異物のレビュ一像を6個、 1 m以上の異物のレビュー像を 6個表示した場合を示している。
ここで、 レビュー像 3 9 0 3は検出器 2 6、 6 4 0が検出する異物からの反射 回折光で得られる像でも良いし、 後述する白色光源を用いた光学顕微鏡 6 0また は白色光源を用いたレビュー装置による像でも良い。 レーザ光による像を表示す る場合、 画像を検査中に記憶装置 5 3 , 1 3 0 2等に残しておけば、 検査直後に 表示ができ、 検出物の確認を迅速に行うことができる利点がある。 また、 光学顕 微鏡 6 0による像を表示する場合は、 前記サンプリングされた検出物の座標を基 に、 検査後に観察画像を取れば良く、 レーザ光による像に比べて鮮明な像が得ら れる。 特に、 l /m未満の異物または欠陥を観察する場合は、 光源に紫外線を用 いた、 解像度の高い顕微鏡が望ましい。
また、 前記レビュー像 3 9 0 3で表示した検出物の位置を検査マップ 3 9 0 1 上に併せて表示しても良く、 レビュー像 3 9 0 3には検出物の検出番号を併せて 表示しても良い。 また、 本形態では、 表示するレビュー像が 6個ずつの場合で説 明したが、 6個に限定する必要は無く、 検出した異物または欠陥を全数表示して も良いし、 検出個数に対し、 一定割合の個数分だけ表示しても良い。
第 2 9図は、 検出物を異物とキズとに分類して表示し、 分類の正解率も併せて 表示した例である。 第 2 9図は、 分類された各カテゴリの検出個数 4 0 0 1、 検 出物の検出位置を示した検査マップ 4 0 0 2、 検出物の確認画面 4 0 0 3で構成 されており、 検出物の確認画面 4 0 0 3は、 さらに、 本発明の欠陥検査装置で異 物に分類された検出物の確認画面部 4 0 0 4とキズに分類された検出物の確認画 面部 4 0 0 5、 分類正解率表示部 4 0 0 6から構成されている。 確認画面部 4 0 0 4と 4 0 0 5は、 さらに、 検出物の観察画面 4 0 0 7と分類正解判定部 4 0 0 8から構成されている。
本実施例では検出物を 2つのカテゴリに分類した例であり、 検査マップ 4 0 0 2において、 記号 「1」 を異物、 記号「2」 をキズとして表示している。
次に、 分類正解率の算出方法を説明する。 まず、 本発明の欠陥検査装置で検査 した後、 確認画面部 4 0 0 4、 4 0 0 5にそれぞれ観察画面 4 0 0 7が表示され る。 この時、 確認画面部 4 0 0 4と 4 0 0 5のどちらに表示するかは、 本発明の 欠陥検査装置で分類した結果に基づいて表示する。 次に、 本発明の欠陥検査装置 のユーザは、 それそれの観察画面 4 0 0 7に付随している分類正解判定部 4 0 0 8にユーザが判断したカテゴリを入力する。 本例では、 入力方法として、 ユーザ が判断したカテゴリのチェックボックスにチェヅクする場合を示しており、 異物 の確認画面部 4 0 0 4では、 5 / 6が異物 (カテゴリ 「1」 ) としてチェヅクさ れ、 1 / 6がキズ(カテゴリ 「2」) としてチェヅクされている例である。また、 キズの確認画面部 4 0 0 5では、 全てキズ (カテゴリ 「2」 ) として判断されて いる例である。
以上のチェックが為されたあと、 分類正解率表示部 4 0 0 6に正解率が表示さ れる。 この値は、 例えば、 本発明の欠陥検査装置での分類結果とユーザの分類結 果とが一致した率を表示する。 この後、 本発明の欠陥検査装置での分類結果とュ 一ザの分類結果とがー致しなかった検出物については、 該検出物の特徴量を用い て、 分類精度を向上させるために、 分類条件を更新しても良い。
〔全体制御部 5 0〕 次に、 全体制御部 5 0などにおいて実行される検査条件 (検査レシピ) 設定等 について第 3 0図〜第 3 2図を用いて説明する。第 3 0図は、検査条件 (検査レシ ピ)を設定するためのフローを示す図である。まず、全体制御部 5 0において検査 実行前に行われる検査条件 (検査レシピ)の設定は、 被検査対象に合わせるチヅプ レイァゥト設定 (S 2 1 1 ) と、 被検査対象の回転合わせ (S 2 1 2 ) と、 検査 領域設定 (S 2 1 3 ) と、 光学条件設定 (S 2 1 4 ) と、 光学フィル夕設定 (S 2 1 5 ) と、 検出光量設定 ( S 2 1 6 ) と、 信号処理条件設定 ( S 2 1 7 ) とで 構成される。 なお、 S 2 1 8は、 実際の検査の実行である。
次に、 全体制御部 5 0が実行する各設定について説明する。 まず、 チップレイ ァゥト設定 (S 2 1 1 ) は、 全体制御部 5 0において、 C A D情報等により、 信 号処理系 4 0などに対してチップサイズやウェハ上のチップの有無を設定するこ とである。 このチップサイズは、 比較処理を行う距離であるため設定が必要であ る。 次に、 回転合わせ設定 (S 2 1 2 ) は、 全体制御部 5 0が搬送系 3 0に対し て制御する、 ステージに載置されたウェハ 1上のチップの並び方向と光検出器 2 6の画素方向とを平行にする、 つまり、 回転ずれをほぼ「0」 にするためにゥェ ハ 1を回転させるための設定である。 この回転合わせを行うことにより、 ウェハ 1上の繰返しパターンがー軸方向に並ぶため、 チップ比較信号処理を容易に行う ことができる。 次に、 検査領域設定 (S 2 1 3 ) は、 全体制御部 5 0が信号処理 系 4 0に対して制御する、 ウェハ上の検査を行う場所の設定や、 検査領域におけ る検出感度の設定を行うことである。 この検査領域設定 (S 2 1 3 ) を行うこと により、 ウェハ上の各領域を最適な感度で検査することができる。 設定方法は第 1 5図の説明で述べた通りである。
次に、 光学条件設定 (S 2 1 4 ) は、 全体制御部 5 0が照明光学系 1 0や倍率 可変検出光学系 2 0に対して制御する、 ウェハに照射する照明光の方向や角度を 選択したり、 倍率可変検出光学系 2 0の倍率を選択することである。 選択方法と しては、 例えば、 第 3 1図に示すような光学条件設定ウィンドウで設定すれば良 い。 該光学条件設定画面は、 照明光学系の照明方向条件 3 0 0 1と照明光学系の 照明角度条件 3 0 0 2と検出光学系条件 (検出方向である上方か斜方かも含まれ る) 3 0 0 3で構成されている。 第 3 1図では、 照明方向条件 3 0 0 1として 3 種類、 照明角度条件 3 0 0 2として 3種類、 さらに、 検出光学系条件 3 0 0 3は 2種類の選択を行えるようにした例である。 本異物検査装置のユーザは、 条件 3 0 0 1、 3 0 0 2、 3 0 0 3の内容を見て、 適切な条件を選択すればよい。 例え ば、 被検査対象 1が金属膜デポジション工程のウェハで、 表面の異物を高感度に 検査したいならば、 照明方向条件 3 0 0 1の条件の 「デポ工程」 を選択し、 さら に、 照明角度条件 3 0 0 2の条件の 「表面異物」 を選択し、 検出光学系条件 3 0 0 3の条件を 「上方検出 (倍率可変) :高感度検査」 を選択すれば良く、 これら の選択を行った例が第 3 1図である。 また、 被検査対象 1が酸化膜の異物ゃスク ラッチ等の欠陥を高感度に検査したい場合には、照明方向条件 3 0 0 1の条件の 「C M P後工程」を選択し、 さらに、照明角度条件 3 0 0 2の条件の「表面異物」 を選択し、 検出光学系条件 3 0 0 3の条件を 「斜方検出:高速検査」 を選択すれ ば良い。
次に、 光学フィル夕設定 ( S 2 1 5 ) は、 全体制御部 5 0が検出光学系 2 0 0 等に対して制御する、 第 1図に示す空間フィル夕 2 2や偏光素子等の光学フィル 夕 2 4 bを設定することである。 この空間フィル夕 2 2は、 ゥヱハに製作された 繰返しパターンからの反射回折光を遮光するためのフィル夕であるので、 繰返し パターンが存在するウェハに対しては設定した方が良いが、 繰返しパターンが無 いウェハに対しては設定する必要はない。 また、 偏光素子 2 4 bは配線パターン のェッジが直角に近い状況でェヅチングされている場合に用いると効果的である 次に、 検出光量設定 (S 2 1 6 ) は、 全体制御部 5 0が照明光学系 1 0又は倍 率可変検出光学系 2 0に対して制御する、 光検出器 2 6に入射する光量を調整す る工程である。 ウェハに製作された回路パターンからの反射散乱光は、 そのパ夕 —ン形状により散乱される成分が変わる。 具体的には、 ウェハ表面が平らな場合 は、 散乱光はあまり発生せず、 ほとんどが正反射光となる。 それに対し、 ウェハ 表面の凸凹が大きい場合は、 散乱光が多く発生する。 従って、 回路パターンから の反射散乱光はウェハ表面の状態、 つまり、 デバイス製造工程によって変わるわ けである。 しかしながら、 光検出器 2 6のダイナミックレンジが存在するため、 このダイナミックレンジに合わせた光量を入射するように調整するのが望ましい。 例えば、 ウェハの回路パターンからの反射散乱光量が光検出器 2 6のダイナミツ クレンジの 1 1 0程度になるように調整するのが望ましい。 ここで、 光検出器 2 6へ入射する光量の調整方法としては、 レーザ光源 1 1の出力光量を調整して も良いし、 N Dフィル夕 2 4 aで調整しても良い。
次に、 信号処理条件設定 ( S 2 1 7 ) は、 全体制御部 5 0が信号処理系 4 0に 対して制御する、 異物等の欠陥の検出条件の設定を行うことである。
以上の設定が終了した後、 検査工程 (S 2 1 8 ) で検査を行えば、 ユーザが所 望の条件で検査を行うことができる。
ただし、 本実施例で説明した内容を設定する方法としては、 例えば、 被検査対 象の設計情報から人手で入力しても良いし、 本発明の異物検査装置に付属の入力 アシスト機能を用いて入力しても良く、 また、 上位システムからネットワークを 介して情報を取得しても良い。
さらに、 上述した設定のうち、 検査領域設定 (S 2 1 3 ) 、 光学条件設定 (S 2 1 4 ) 、 光学フィル夕設定 (S 2 1 5 ) 、 検出光量設定 (S 2 1 6 ) 、 信号処 理条件設定 (S 2 1 7 ) は必ずしも被検査対象によっては変更する必要はなく、 被検査対象に依らず一定値でも良い。 一定値にした場合、 検査条件を設定する時 間を短縮することができるが、 高感度にするためには、 各条件をチューニングす るのが望ましい。 また、 検査領域設定 (S 2 1 3 ) は必ずしも光学条件設定 (S 2 1 4 ) の前に行う必要はなく、 検査工程 (S 2 1 8 ) の前までに設定すれば良 い。
以上説明した内容を設定する画面の例を第 3 2図に示す。 第 3 2図は、 条件設 定シーケンス 4 3 0 1、 各設定内容の詳細条件 4 3 0 2、 設定内容表示変更ボタ ン 4 3 0 3、 ヘルプボタン 4 3 0 4で構成されている。
次に詳細について説明する。 まず、 条件設定シーケンス 4 3 0 1は、 本発明の 異物検査装置における検査条件の設定の流れを示している。 ユーザは条件設定シ 一ケンス 4 3 0 1の 「チヅプレイアウト設定」 から順に条件を設定すれば良い。 条件設定シーケンス 4 3 0 1の特徴は、 条件設定の流れを矢印 4 3 0 5で示す ことにより、 ユーザが設定順序を間違えることなく、 最短の順序で設定できるよ うにしていることである。 また、 別の特徴として、 必ず設定すべき項目と必ずし も設定する必要の無い項目、つまり、既定値で良い項目に分けていることである。 表示を分けることにより、 最小限の設定項目が分かり、 ュ一ザがすく、検査結果が 必要な場合は、 設定必須項目のみ設定して検査すれば良く、 また、 検出感度をチ ユーニングしたい場合は、 設定必須ではない項目について条件を設定すれば良い ため、 ユーザの要望に応じて条件設定の度合いを変えることができる。 例えば、 ポタン 4 3 0 6は枠を 3重で示すことにより、 必ず設定すべき項目であることを 示し、 また、 ボタン 4 3 0 7は枠を 1重で示すことにより、 設定の必要性が低い 項目であることを示した実施例である。 さらに、 別の特徴として、 ユーザが現在 どの項目を設定しているかを明示することである。 例えば、 ボタン 4 3 0 8はボ タンに影をつけることによって、 ボタン 4 3 0 6、 4 3 0 7と区別している。 こ のように、 現在の場所を明示することによって、 残りの設定項目数が一目で分か る利点がある。
なお、 本実施例では第 3 0図で説明したシーケンスに、 オプション条件設定 4 3 0 9を追加した例である。このオプション条件設定 4 3 0 9の内容は、例えば、 異物のサイズ測定機能の条件設定や異物や欠陥の分類条件の設定である。
次に、 詳細条件 4 3 0 2は各条件項目の詳細を設定する画面である。 項目の入 力または選択方法としては、 入力ボックス 4 3 1 0のようにキーボードで入力す る場所を設けても良いし、 入力アイコン 4 3 1 1のようにアイコンで入力項目を 選択する方式にしても良い。 なお、 入力アイコン 4 3 1 1は 3種類の入力項目に 対し、それぞれアイコンで示し、該当アイコンを押すと別ウィンドウが出てきて、 詳細の条件設定を行う例である。 さらに、 入力チェックボックス 4 3 1 2のよう に、 必要な項目を選択する方法でも良い。
また、 設定内容表示変更ボタン 4 3 0 3は表示項目の変更またはカス夕マイズ を行うボタンである。 例えば、 ユーザがいつも設定したい項目や、 設定内容数を 増やしたい項目があった時に、 この設定内容表示変更ボタン 4 3 0 3を使って変 更できるようにする事により、 ユーザは使いやすい画面することができ、 検査条 件をすばやく設定することができる。 さらに、 ヘルプボタン 4 3 0 4はュ一ザが 設定方法や設定内容がわからなくなった場合に、 ユーザを助ける情報を出力する ボタンである。 手法としては、 各設定項目の内容を音声案内したり、 操作方法を
M P E G等の動画で見せても良い。 また、 ネットワークや電話回線を通じて、 ォ ンラインで本発明の異物検査装置を製造したメーカの設計者と話ができるように しても良い。
〔顕微鏡を付けた実施の形態〕
本発明に係る観察用光学顕微鏡を備えた欠陥検査装置に関する実施の形態を第 1図及び第 3 3図を用いて説明する。 本実施の形態は、 対物レンズ 6 1、 ハーフ ミラ一 6 2、光源 6 3及び T Vカメラ 6 4で構成される観察用光学顕微鏡 6 0を、 照明光学系 1 0および検出光学系 2 0 0に対して並設した点にある。 この観察用 光学顕微鏡 6 0は、 ステージ 3 I s 3 2を動かすことにより、 欠陥検査装置の信 号処理系 4 0で検出されて例えば記憶装置 5 3に記憶されたウェハ 1上の異物等 の欠陥 (虚報も含む) を、 観察用光学顕微鏡 6 0の検出光学系 6 1〜6 3の視野 内に移動させ、 この画像を拡大観察するものである。
観察用光学顕微鏡 6 0を並設したことの利点は、 S E Mなどのレビュー装置に ウェハを移動させなくても、 欠陥検査装置の信号処理系 4 0で検出した異物等の 欠陥をステージ 3 1、 3 2を移動させるだけで即座に拡大観察できることである。 このように、 欠陥検査装置での検出物を即座に拡大観察することによって、 すば やく異物等の欠陥の発生原因を特定することができることにある。
しかしながら、 観察用光学顕微鏡 6 0の T Vカメラ 6 4で撮像して例えばパソ コンと共用のカラ一モニタ 5 4または 5 2に第 3 4図に示す画面 6 6として拡大 表示しても、回路パターンが存在する関係で、欠陥検査装置での検出物である発生 原因を特定する欠陥が、 欠陥の種類によっては良く見えない場合が生じる。 そこ で、 全体制御部 5 0は、 信号処理系 4 0の検査結果統合処理部 1 3 0 9で分類さ れた各欠陥の位置座標が検出されてデ一夕記憶部 1 3 0 2または記憶装置 5 3に 記憶された欠陥の画像と共に表示装置 5 2に例えば 2 5 6 X 2 5 6の画素列画像 として表示できるので、 この欠陥の位置座標および欠陥の画像を基に観察用光学 顕微鏡 6 0の T Vカメラ 6 4で撮像される拡大画像上における位置を特定するこ とが可能となる。その結果、観察用光学顕微鏡 6 0において、上記特定された欠陥 を示す領域若しくはマーク 6 7をカラ一モニター 5 4または 5 2の画面 6 6に表 示し、 該表示された領域若しくはマーク 6 7を指定することによって、 ステージ 3 1、 3 2が移動して欠陥を検出光学系 6 1〜6 3の視野内に移動させ、 見え難 い位置での欠陥の拡大観察が即座に行えることになる。 要するに、 詳細解析しよ うとする欠陥の位置座標およびその欠陥画像については検出光学系 2 0 0から検 出される欠陥画像信号を基に信号処理系 4 0で検出できるので、 該検出された欠 陥の位置座標およびその欠陥画像を基に T Vカメラ 6 4で撮像される拡大画像 6 6上において欠陥を示す領域若しくはマーク 6 7を特定することによって、 その 見え難い欠陥について観察用光学顕微鏡 6 0によってレビュー装置と同様に詳細 解析することが可能となり、その結果、欠陥の発生原因を推定することが可能とな る。勿論、カラ一モニター 5 4または 5 2上に特定された欠陥を示す領域若しくは マーク 6 7が表示されるので、 観察用光学顕微鏡 6 0でも検出光学系 2 0 0及び 信号処理系 4 0が実際欠陥を検出したか否かの確認も可能となる。
なお、 観察用光学顕微鏡 6 0としては、 光源 6 3が可視光 (例えば白色光) の 顕微鏡でも良いし、 紫外光を光源 6 3とした顕微鏡でも良い。 特に、 0 . l /m レベルの微小な異物を観察するためには、 高解像度の顕微鏡、 例えば、 紫外光を 用いた顕微鏡が望ましい。 また、 可視光の顕微鏡を用いると異物の色情報が得ら れ、 異物の認識を容易に行えるという利点がある。 産業上の利用の可能性
本発明によれば、 表面に酸化膜などの透明膜が形成された被検査対象基板や、 繰り返しパターンと非繰り返しパターンとが混在する被検査対象基板に対して、 0 . レベルの微小な異物ゃキズ等の欠陥を、 高感度で、 しかも高速に検査 することができる。

Claims

請求の範囲
1 . 被検査対象基板を載置して所定方向に走行する走査ステージと、
照明光束を被検査対象基板の表面に対して所定の傾斜角度で照射する照明光学 系と、
前記被検査対象基板から上方へ出射する上方反射散乱光を集光する対物レンズ と該対物レンズで集光された上方反射散乱光を結像させる上方用結像光学系と該 上方用結像光学系で結像された上方反射散乱光像を受光して上方用画像信号に変 換する上方用光検出器とを有する上方検出光学系及び前記被検査対象基板から前 記照明光束に対して平面的に交差する方向で傾斜した方向に出射する側方反射散 乱光を集光して結像させる側方用結像光学系と該側方用結像光学系で結像した側 方反射散乱光像を受光して側方用画像信号に変換する側方用光検出器とを有する 側方検出光学系を備えた検出光学系と、
該検出光学系の上方用光検出器から得られる上方用画像信号を上方用デジタル 画像信号に変換し、前記側方用光検出器から得られる側方用画像信号を側方用デ ジ夕ル画像信号に変換する A/D変換器と、 該 A/D変換器で変換された各デジ タル画像信号に基づいて欠陥を検出する信号処理系とを備えたことを特徴とする 欠陥検査装置。
2 . 前記照明光学系において、 前記照明光束を複数で構成し、 各々の照明光束を 前記被検査対象基板に対して平面的に互いに異なる方向から照射するように構成 したことを特徴とする請求項 1記載の欠陥検査装置。
3 . 前記照明光学系において、 前記照明光束がレーザ光源から出射されたレーザ 光束であることを特徴とする請求項 1記載の欠陥検査装置。
4 . 前記照明光学系において、 前記照明光束が、 前記被検査対象基板上の照明状 態として、 長手方向にはほぼ平行光からなるスリット状ビームにして、 長手方向 が前記走査ステージの走行方向に対してほぼ直角になるように構成することを特 徴とする請求項 1記載の欠陥検査装置。
5 . 前記検出光学系の上方検出光学系において、 被検査対象基板上に存在する回 路パターンの少なくとも繰り返しを遮光する空間フィル夕を有し、 空間フィル夕 の繰り返し遮光パ夕一ンの寸法若しくは形状を自動設定できるように構成するこ とを特徴とする請求項 1記載の欠陥検査装置。
6 . 前記検出光学系の上方検出光学系において、 前記結像光学系の結像倍率を可 変に構成することを特徴とする請求項 1記載の欠陥検査装置。
7 . 前記検出光学系の上方検出光学系において、 前記結像光学系の結像倍率を可 変に構成することを特徴とする請求項 5記載の欠陥検査装置。
8 . 前記検出光学系の上方検出光学系において、 前記上方用検出器を T D Iィメ ージセンサで構成することを特徴とする請求項 1記載の欠陥検査装置。
9 . 前記検出光学系の上方検出光学系において、 前記上方用検出器を T D Iィメ —ジセンサで構成することを特徴とする請求項 5記載の欠陥検査装置。
1 0 . 前記信号処理系において、 前記上方用デジタル画像信号を近傍画素でマー ジし、 該マージされた画像信号を基づいて、 欠陥を検出することを特徴とする請 求項 1記載の欠陥検査装置。
1 1 . 前記信号処理系において、 前記検出された欠陥をカテゴリ別に分類する分 類手段を備えることを特徴とする請求項 1記載の欠陥検査装置。
1 2 . 前記信号処理系において、 前記検出された欠陥をカテゴリ別に分類する分 類手段を備えることを特徴とする請求項 8記載の欠陥検査装置。
1 3 . 前記信号処理系において、 前記検出された欠陥のサイズを測定するサイズ 測定手段を備えることを特徴とする請求項 1記載の欠陥検査装置。
1 4 . 前記信号処理系において、 前記検出された欠陥のサイズを測定するサイズ 測定手段を備えることを特徴とする請求項 8記載の欠陥検査装置。
1 5 . 請求項 1記載の欠陥検査装置において、 更に、 前記被検査対象物上の光学 像を観察する光学顕微鏡を備えたことを特徴とする欠陥検査装置。
1 6 . 前記光学顕微鏡において観察される画面上に前記信号処理系で検出された 欠陥の座標を示す領域若しくはマークを表示することを特徴とする請求項 1 5記 載の欠陥検査装置。
1 7 . 前記照明光学系において、 前記照明光束を前記被検査対象基板の表面に対 して高傾斜角度と低傾斜角度とで切り替えて照射できるように構成し、
前記照明光学系で高傾斜角度で照明した際および低傾斜角度で照明した際前記 A/D変換部で変換されたデジタル画像信号に基づいて欠陥を検出する欠陥検出 処理部と前記欠陥検出処理部から検出される欠陥についての特徴量を算出する特 徴量算出部と前記高傾斜角度で照明した際前記欠陥検出処理部から検出される欠 陥と低傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥とが同一視 される欠陥についての特徴量を前記特徴量算出部から取得し、 該取得された欠陥 の特徴量に基いて欠 ιίのカテゴリを分類する統合処理部とを有する信号処理系と を備えたことを特徴とする請求項 1記載の欠陥検査装置。
1 8 . 前記統合処理部において、 前記欠陥についての特徴量が、 検出光量と平面 的な面積とで構成することを特徴とする請求項 1 7記載の欠陥検査装置。
1 9 . 前記信号処理系において、 前記 A/D変換器で変換された各デジタル画像 信号から欠陥のカテゴリを分類する分類手段を有することを特徴とする請求項 1 記載の欠陥検査装置。
2 0 . 被検査対象基板を載置して所定の方向に走行させる走査ステージと、 照明スポットを前記被検査対象基板の表面に対して前記走査ステージの走行方 向に直角方向に走査して照射する照明光学系と、
該照明光学系で照射された照明スポヅトの走査による前記被検査対象基板から の反射散乱光を集光して結像させる結像光学系と該結像光学系で結像された照明 スポットの走査による反射散乱光像を受光して導く複数の光フアイバと該複数の 光ファイバで導かれた照明スポットの走査による光像を受光して信号に変換する 複数の光電子増倍管とを有する検出光学系と、 該検出光学系の各光電子増倍管から得られる信号をデジタル信号に変換し、該 変換されたデジタル信号に基づいて欠陥を検出する信号処理系とを備えたことを 特徴とする欠陥検査装置。
2 1 . 被検査対象基板を載置して所定の方向に走行させる走査ステージと、 複数の照明光束の各々に対して互いに異なる周波数で変調させる複数の光変調 器と該複数の光変調器で変調された複数の照明光束を前記走査ステージの走行方 向にほぼ直角方向に対して偏向させる光偏向器と該光偏向器で偏向された複数の 照明光束を前記被検査対象基板の表面に対して複数照明スポットとして集光して 照射する集光光学系とを有する照明光学系と、
該照明光学系で照射された複数照明スポットの走査による前記被検査対象基板 からの反射散乱光を集光して結像させる結像光学系と該結像光学系で結像された 複数照明スポットの走査による反射散乱光像を受光して信号に変換する光検出器 とを有する検出光学系と、
該検出光学系の光検出器で変換された信号から前記各光変調器で変調された周 波数に相当する成分を抽出する複数の同期検波回路と該複数の同期検波回路から 抽出された信号に基づいて欠陥を検出する信号処理系とを備えたことを特徴とす る欠陥検査装置。
2 2 . 前記照明光学系において、 複数の照明光束を作る分岐光学系を有すること を特徴とする請求項 2 1記載の欠陥検査装置。
2 3 . 前記検出光学系において、 前記光検出器を、 受光する複数照明スポットの 走査による反射散乱光像を導く光ファイバと該光ファイバで導かれた複数照明ス ポットの走査による光像を受光して信号に変換する光電子増倍管とで構成するこ とを特徴とする請求項 2 1記載の欠陥検査装置。
2 4 . 照明光学系により照明光束を被検査対象基板の回路パターンを有する表面 に対して所定の傾斜角度で照射し、 該照射された被検査対象基板からの反射散乱 光を上方に設けた対物レンズで集光して上方結像光学系で結像させ、 該結像され た反射散乱光を上方用光検出器で受光して第 1の画像信号に変換し、 該変換され た第 1の画像信号を A/D変換器により第 1のデジタル画像信号に変換し、 該変 換された第 1のデジタル画像信号に基づいて前記被検査対象基板の回路パターン を有する表面上に存在する欠陥を検出する第 1の工程と、
照明光学系により照明光束を被検査対象基板の透明膜の表面に対して所定の傾 斜角度で照射し、 該照射された被検査対象基板からの反射散乱光を、 平面的に前 記照明方向に対して交差する方向で傾斜した方向から結像光学系で集光して結像 させ、 該結像された反射散乱光を光検出器で受光して第 2の画像信号に変換し、 該変換された第 2の画像信号を A/D変換器により第 2のデジタル画像信号に変 換し、 該変換された第 2のデジタル画像信号に基づいて前記被検査対象基板の透 明膜の表面上に存在する欠陥を検出する第 2の工程とを有することを特徴とする 欠陥検査方法。
2 5 . 前記第 1及び第 2の工程において、 被検査対象基板の表面に対して該被検 査対象基板の走行方向に対してほぼ直角方向に長手方向を有するスリット状ビー ムを照射することを特徴とする請求項 2 4記載の欠陥検査方法。
2 6 . 複数の照明光束の各々に対して複数の変調器の各々で互いに異なる周波数 で変調させた複数の照明光束を前記走査ステージの走行方向にほぼ直角方向に対 して光偏向器で偏向させて被検査対象基板の表面に対して複数照明スポットとし て集光して照射する照明ステップと、
該照明ステップにおいて照射された複数照明スポツトの走査による前記被検査 対象基板からの反射散乱光を結像光学系により集光して結像させ、 該結像された 複数照明スポットの走査による反射散乱光像を光検出器により受光して信号に変 換する検出ステップと、
該検出ステップにおいて前記光検出器で変換された信号から複数の同期検波回 路の各々で前記各光変調器で変調された周波数に相当する成分を抽出し、 該抽出 された信号に基づいて欠陥を検出する信号処理ステップとを有することを特徴と する欠陥検査方法 c
PCT/JP2003/015164 2002-11-27 2003-11-27 欠陥検査装置および欠陥検査方法 WO2004063734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/536,715 US7417721B2 (en) 2002-11-27 2003-11-27 Defect detector and defect detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-344327 2002-11-27
JP2002344327A JP4183492B2 (ja) 2002-11-27 2002-11-27 欠陥検査装置および欠陥検査方法

Publications (1)

Publication Number Publication Date
WO2004063734A1 true WO2004063734A1 (ja) 2004-07-29

Family

ID=32705852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015164 WO2004063734A1 (ja) 2002-11-27 2003-11-27 欠陥検査装置および欠陥検査方法

Country Status (3)

Country Link
US (5) US7417721B2 (ja)
JP (1) JP4183492B2 (ja)
WO (1) WO2004063734A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719671B2 (en) * 2006-02-24 2010-05-18 Hitachi High-Technologies Corporation Foreign matter inspection method and foreign matter inspection apparatus
JP2011517487A (ja) * 2008-03-18 2011-06-09 ケーエルエー−テンカー・コーポレーション 小さな反射屈折対物レンズを用いる分割視野検査システム
CN111007079A (zh) * 2019-12-25 2020-04-14 电子科技大学 一种提高高反射光学元件缺陷检测分辨率的方法

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183492B2 (ja) * 2002-11-27 2008-11-19 株式会社日立製作所 欠陥検査装置および欠陥検査方法
JP4901090B2 (ja) * 2004-10-06 2012-03-21 株式会社ニコン 欠陥検査方法及び欠陥検出装置
US7643137B2 (en) 2003-03-26 2010-01-05 Nikon Corporation Defect inspection apparatus, defect inspection method and method of inspecting hole pattern
DE112004001024T5 (de) * 2003-06-10 2006-06-01 Ade Corp., Westwood Verfahren und System zur Klassifizierung von an einer Oberfläche eines Substrats auftretenden Defekten unter Verwendung einer grafischen Darstellung von Vielkanal-Daten
US7002677B2 (en) * 2003-07-23 2006-02-21 Kla-Tencor Technologies Corporation Darkfield inspection system having a programmable light selection array
JP4521240B2 (ja) * 2003-10-31 2010-08-11 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置
JP4564312B2 (ja) * 2004-09-14 2010-10-20 パナソニック株式会社 撮像方法、撮像装置、及びパターン検査装置
JP2006170908A (ja) * 2004-12-17 2006-06-29 Hitachi High-Technologies Corp 欠陥検査方法及び欠陥検査装置
KR100638965B1 (ko) * 2004-12-29 2006-10-26 동부일렉트로닉스 주식회사 금속 잔류물 검사 장비 및 방법
JP4713185B2 (ja) * 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ 異物欠陥検査方法及びその装置
JP2006276756A (ja) * 2005-03-30 2006-10-12 Nikon Corp 異物検査装置及び方法
JP4988223B2 (ja) * 2005-06-22 2012-08-01 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
JP2007071803A (ja) * 2005-09-09 2007-03-22 Hitachi High-Technologies Corp 欠陥観察方法及びその装置
JP2007107960A (ja) * 2005-10-12 2007-04-26 Hitachi High-Technologies Corp 欠陥検査装置
US7864178B2 (en) * 2005-11-09 2011-01-04 National Instruments Corporation Creating machine vision inspections using a state diagram representation
JP4996856B2 (ja) 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
US9068917B1 (en) * 2006-03-14 2015-06-30 Kla-Tencor Technologies Corp. Systems and methods for inspection of a specimen
JP2007248086A (ja) 2006-03-14 2007-09-27 Hitachi High-Technologies Corp 欠陥検査装置
JP5279992B2 (ja) * 2006-07-13 2013-09-04 株式会社日立ハイテクノロジーズ 表面検査方法及び装置
JP4928862B2 (ja) * 2006-08-04 2012-05-09 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP5221858B2 (ja) * 2006-08-30 2013-06-26 株式会社日立ハイテクノロジーズ 欠陥検査装置、及び欠陥検査方法
JP4924931B2 (ja) * 2006-12-14 2012-04-25 凸版印刷株式会社 ステンシルマスクの検査方法および装置
US7847927B2 (en) 2007-02-28 2010-12-07 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
JP5581563B2 (ja) * 2007-03-08 2014-09-03 株式会社日立製作所 照明装置並びにそれを用いた欠陥検査装置及びその方法並びに高さ計測装置及びその方法
JP4597155B2 (ja) * 2007-03-12 2010-12-15 株式会社日立ハイテクノロジーズ データ処理装置、およびデータ処理方法
JP2008261790A (ja) 2007-04-13 2008-10-30 Hitachi High-Technologies Corp 欠陥検査装置
JP5132982B2 (ja) 2007-05-02 2013-01-30 株式会社日立ハイテクノロジーズ パターン欠陥検査装置および方法
US7923645B1 (en) 2007-06-20 2011-04-12 Amkor Technology, Inc. Metal etch stop fabrication method and structure
US7951697B1 (en) 2007-06-20 2011-05-31 Amkor Technology, Inc. Embedded die metal etch stop fabrication method and structure
US8008641B2 (en) * 2007-08-27 2011-08-30 Acushnet Company Method and apparatus for inspecting objects using multiple images having varying optical properties
JP4797005B2 (ja) 2007-09-11 2011-10-19 株式会社日立ハイテクノロジーズ 表面検査方法及び表面検査装置
US7958626B1 (en) 2007-10-25 2011-06-14 Amkor Technology, Inc. Embedded passive component network substrate fabrication method
JP4958114B2 (ja) * 2007-12-28 2012-06-20 キヤノンItソリューションズ株式会社 情報処理装置、情報処理方法、コンピュータプログラム
US8285025B2 (en) * 2008-03-25 2012-10-09 Electro Scientific Industries, Inc. Method and apparatus for detecting defects using structured light
JP5303217B2 (ja) * 2008-08-29 2013-10-02 株式会社日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置
JP5469839B2 (ja) * 2008-09-30 2014-04-16 株式会社日立ハイテクノロジーズ 物体表面の欠陥検査装置および方法
US7623229B1 (en) * 2008-10-07 2009-11-24 Kla-Tencor Corporation Systems and methods for inspecting wafers
JP2010217129A (ja) 2009-03-19 2010-09-30 Hitachi High-Technologies Corp 検査方法および検査装置
JP5331586B2 (ja) 2009-06-18 2013-10-30 株式会社日立ハイテクノロジーズ 欠陥検査装置および検査方法
US8629384B1 (en) * 2009-10-26 2014-01-14 Kla-Tencor Corporation Photomultiplier tube optimized for surface inspection in the ultraviolet
JP5216752B2 (ja) 2009-11-18 2013-06-19 株式会社日立ハイテクノロジーズ 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置
JP5204172B2 (ja) * 2010-08-30 2013-06-05 株式会社日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置
JP2012117814A (ja) * 2010-11-29 2012-06-21 Hitachi High-Technologies Corp 欠陥検査装置および欠陥検査方法
US8791501B1 (en) 2010-12-03 2014-07-29 Amkor Technology, Inc. Integrated passive device structure and method
JP5287891B2 (ja) * 2011-02-04 2013-09-11 株式会社ニコン 欠陥検査方法
JP2011180145A (ja) * 2011-03-28 2011-09-15 Hitachi High-Technologies Corp 欠陥検査装置
KR101800493B1 (ko) * 2011-04-26 2017-11-22 케이엘에이-텐코 코포레이션 데이터베이스 기반 셀-대-셀 레티클 검사
WO2012151112A1 (en) * 2011-05-05 2012-11-08 Emd Millipore Corporation Apparatus and method for increasing collection efficiency in capillary based flowcytometry
US8964088B2 (en) 2011-09-28 2015-02-24 Semiconductor Components Industries, Llc Time-delay-and-integrate image sensors having variable intergration times
JP5869817B2 (ja) 2011-09-28 2016-02-24 株式会社日立ハイテクノロジーズ 欠陥検査方法および欠陥検査装置
US9644942B2 (en) * 2012-11-29 2017-05-09 Mitsubishi Hitachi Power Systems, Ltd. Method and apparatus for laser projection, and machining method
US9057965B2 (en) 2012-12-03 2015-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of generating a set of defect candidates for wafer
CN103901037B (zh) * 2012-12-28 2017-01-11 杨高林 检测***
US9885670B2 (en) 2013-01-11 2018-02-06 Hitachi High-Technologies Corporation Inspection apparatus and adjusting method
KR20150056713A (ko) * 2013-11-15 2015-05-27 삼성전자주식회사 영상표시장치의 비파괴 검사 시스템 및 방법과 이를 위한 비파괴 검사 장치
WO2015080480A1 (ko) * 2013-11-29 2015-06-04 (주)넥스틴 웨이퍼 영상 검사 장치
KR101521837B1 (ko) * 2013-12-09 2015-05-26 주식회사 메디코어스 엑스선 데이터 획득 시스템
WO2015120027A1 (en) * 2014-02-04 2015-08-13 Nsk Americas, Inc. Apparatus and method for inspection of a mid-length supported steering column assembly
US9506873B2 (en) * 2014-04-15 2016-11-29 Kla-Tencor Corp. Pattern suppression in logic for wafer inspection
US9518934B2 (en) * 2014-11-04 2016-12-13 Kla-Tencor Corp. Wafer defect discovery
US9702827B1 (en) * 2014-11-20 2017-07-11 Kla-Tencor Corp. Optical mode analysis with design-based care areas
JP2016120535A (ja) * 2014-12-24 2016-07-07 株式会社ディスコ 加工装置
JP5987074B2 (ja) * 2015-02-17 2016-09-06 京セラドキュメントソリューションズ株式会社 画像読取装置および画像形成装置
US9874526B2 (en) * 2016-03-28 2018-01-23 Kla-Tencor Corporation Methods and apparatus for polarized wafer inspection
CN110168351A (zh) * 2016-10-30 2019-08-23 维也纳大学 使用多路复用的扫描时间聚焦的高速深部组织成像***
JP6867015B2 (ja) * 2017-03-27 2021-04-28 株式会社日立ハイテクサイエンス 自動加工装置
TWI655408B (zh) * 2017-08-10 2019-04-01 兆強科技股份有限公司 基板螺絲高度偵測系統及其方法
JP2019158345A (ja) * 2018-03-07 2019-09-19 株式会社東芝 検査システム、検査方法、プログラム、及び記憶媒体
KR102160170B1 (ko) * 2018-11-21 2020-09-25 에스케이실트론 주식회사 웨이퍼 표면의 파티클 측정 장치 및 방법
CN110288584B (zh) * 2019-06-27 2023-06-23 常州固高智能装备技术研究院有限公司 基于机器视觉的陶瓷热浸镀铝表面缺陷检测方法及装置
US20220148145A1 (en) * 2020-11-06 2022-05-12 Carl Zeiss Industrial Metrology, Llc Surface inspection system and method for differentiating particulate contamination from defects on a surface of a specimen
US20230134909A1 (en) * 2021-11-04 2023-05-04 SK Hynix Inc. Defect inspection system and semiconductor fabrication apparatus including a defect inspection apparatus using the same
CN116609342A (zh) * 2023-01-31 2023-08-18 眉山博雅新材料股份有限公司 一种工件缺陷检测方法和***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129399A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 表面付着粒子検出装置
JPH06242012A (ja) * 1993-02-16 1994-09-02 Toshiba Corp 異物検査装置
JPH0783840A (ja) * 1993-09-13 1995-03-31 Nikon Corp 回転型欠陥検査装置
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000162141A (ja) * 1998-11-27 2000-06-16 Hitachi Ltd 欠陥検査装置および方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781956B2 (ja) 1985-10-16 1995-09-06 株式会社日立製作所 半導体用基板上の異物検出装置
JP2609594B2 (ja) 1986-11-28 1997-05-14 株式会社日立製作所 欠陥検査装置
JPH0786465B2 (ja) 1987-10-30 1995-09-20 株式会社日立製作所 異物検出方法及び装置
US4877326A (en) 1988-02-19 1989-10-31 Kla Instruments Corporation Method and apparatus for optical inspection of substrates
US5225886A (en) * 1989-09-18 1993-07-06 Hitachi, Ltd. Method of and apparatus for detecting foreign substances
US5233191A (en) * 1990-04-02 1993-08-03 Hitachi, Ltd. Method and apparatus of inspecting foreign matters during mass production start-up and mass production line in semiconductor production process
US5274434A (en) * 1990-04-02 1993-12-28 Hitachi, Ltd. Method and apparatus for inspecting foreign particles on real time basis in semiconductor mass production line
US5293538A (en) * 1990-05-25 1994-03-08 Hitachi, Ltd. Method and apparatus for the inspection of defects
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US5463459A (en) * 1991-04-02 1995-10-31 Hitachi, Ltd. Method and apparatus for analyzing the state of generation of foreign particles in semiconductor fabrication process
JP3275425B2 (ja) 1993-03-09 2002-04-15 株式会社日立製作所 欠陥検出装置およびその方法
JP2847458B2 (ja) * 1993-03-26 1999-01-20 三井金属鉱業株式会社 欠陥評価装置
JP3435187B2 (ja) 1993-05-12 2003-08-11 株式会社日立製作所 欠陥検査方法及びその装置
JPH07229844A (ja) * 1994-02-22 1995-08-29 Nikon Corp 異物検査装置
JP3269288B2 (ja) * 1994-10-31 2002-03-25 松下電器産業株式会社 光学的検査方法および光学的検査装置
JP3593375B2 (ja) 1995-02-07 2004-11-24 株式会社日立製作所 微小欠陥検出方法及びその装置
JP3381924B2 (ja) * 1995-03-10 2003-03-04 株式会社 日立製作所 検査装置
JP3379855B2 (ja) 1995-03-30 2003-02-24 株式会社日立製作所 異物検査方法及びその装置
US6512578B1 (en) * 1997-07-10 2003-01-28 Nikon Corporation Method and apparatus for surface inspection
US6201601B1 (en) * 1997-09-19 2001-03-13 Kla-Tencor Corporation Sample inspection system
US6587193B1 (en) * 1999-05-11 2003-07-01 Applied Materials, Inc. Inspection systems performing two-dimensional imaging with line light spot
JP3793668B2 (ja) 1999-08-24 2006-07-05 株式会社日立製作所 異物欠陥検査方法及びその装置
JP3904796B2 (ja) 2000-03-14 2007-04-11 株式会社日立製作所 異物または欠陥検査装置、および、異物または欠陥検査方法
JP3996728B2 (ja) * 2000-03-08 2007-10-24 株式会社日立製作所 表面検査装置およびその方法
JP2002090312A (ja) * 2000-09-21 2002-03-27 Hitachi Ltd 欠陥分析システム
JP2002303586A (ja) * 2001-04-03 2002-10-18 Hitachi Ltd 欠陥検査方法及び欠陥検査装置
JP4183492B2 (ja) * 2002-11-27 2008-11-19 株式会社日立製作所 欠陥検査装置および欠陥検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129399A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 表面付着粒子検出装置
JPH06242012A (ja) * 1993-02-16 1994-09-02 Toshiba Corp 異物検査装置
JPH0783840A (ja) * 1993-09-13 1995-03-31 Nikon Corp 回転型欠陥検査装置
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000162141A (ja) * 1998-11-27 2000-06-16 Hitachi Ltd 欠陥検査装置および方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719671B2 (en) * 2006-02-24 2010-05-18 Hitachi High-Technologies Corporation Foreign matter inspection method and foreign matter inspection apparatus
US7986405B2 (en) 2006-02-24 2011-07-26 Hitachi High-Technologies Corporation Foreign matter inspection method and foreign matter inspection apparatus
US8422009B2 (en) 2006-02-24 2013-04-16 Hitachi High-Technologies Corporation Foreign matter inspection method and foreign matter inspection apparatus
JP2011517487A (ja) * 2008-03-18 2011-06-09 ケーエルエー−テンカー・コーポレーション 小さな反射屈折対物レンズを用いる分割視野検査システム
CN111007079A (zh) * 2019-12-25 2020-04-14 电子科技大学 一种提高高反射光学元件缺陷检测分辨率的方法

Also Published As

Publication number Publication date
US8508727B2 (en) 2013-08-13
US20060124874A1 (en) 2006-06-15
US20110310382A1 (en) 2011-12-22
US20100259751A1 (en) 2010-10-14
US8228495B2 (en) 2012-07-24
JP2004177284A (ja) 2004-06-24
US8013989B2 (en) 2011-09-06
US20120262709A1 (en) 2012-10-18
US20090033924A1 (en) 2009-02-05
JP4183492B2 (ja) 2008-11-19
US7417721B2 (en) 2008-08-26
US7768634B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
JP4183492B2 (ja) 欠陥検査装置および欠陥検査方法
JP4996856B2 (ja) 欠陥検査装置およびその方法
US7859656B2 (en) Defect inspection method and system
US7369223B2 (en) Method of apparatus for detecting particles on a specimen
US7672799B2 (en) Defect inspection apparatus and defect inspection method
US7453561B2 (en) Method and apparatus for inspecting foreign particle defects
JP4387089B2 (ja) 欠陥検査装置および欠陥検査方法
JP3904581B2 (ja) 欠陥検査装置およびその方法
JP2000105203A (ja) 欠陥検査装置およびその方法
JPS6182147A (ja) 表面検査方法及び装置
US6553323B1 (en) Method and its apparatus for inspecting a specimen
KR20120092181A (ko) 결함 검사 방법 및 그 장치
JP3981696B2 (ja) 欠陥検査装置およびその方法
KR100374762B1 (ko) 결함 검사 장치 및 그 방법
JP3904565B2 (ja) 欠陥検査装置およびその方法
JP4523310B2 (ja) 異物識別方法及び異物識別装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006124874

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10536715

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10536715

Country of ref document: US