JP2006276756A - 異物検査装置及び方法 - Google Patents

異物検査装置及び方法 Download PDF

Info

Publication number
JP2006276756A
JP2006276756A JP2005099447A JP2005099447A JP2006276756A JP 2006276756 A JP2006276756 A JP 2006276756A JP 2005099447 A JP2005099447 A JP 2005099447A JP 2005099447 A JP2005099447 A JP 2005099447A JP 2006276756 A JP2006276756 A JP 2006276756A
Authority
JP
Japan
Prior art keywords
light
foreign matter
detection
illumination light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005099447A
Other languages
English (en)
Inventor
Akira Tanaka
亮 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005099447A priority Critical patent/JP2006276756A/ja
Publication of JP2006276756A publication Critical patent/JP2006276756A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 検出系の構成の簡略化及び異物の検出精度を向上する。
【解決手段】 光源101からの照明光で被検体2の被検面2aを検出系7で検出し、光源101とは波長の異なる光源102からの照明光で被検面2aを検出系7で検出して、それぞれの検出結果を比較して、異物の判定を行う。
【選択図】 図5

Description

本発明は、半導体素子や液晶表示素子等のデバイスの製造工程において用いられるマスク等に付着した異物を検査する異物検査装置及び異物検査方法に関する。
半導体素子、液晶表示素子、その他のデバイスの製造工程では、フォトマスクやレチクル(以下、これらを総称する場合はマスクという)に形成されたパターンをウエハやガラスプレート(以下、これらを総称する場合は基板という)に転写する工程が繰り返し行われる。マスクに埃や塵等の異物が付着しているとマスクに形成されたパターンとともに異物の像が転写されてしまい、露光処理を行った複数の基板で同様の欠陥が生ずる虞がある。
マスクは、透明なガラス基板の一方の面にクロム等の遮光材料でパターンを形成し、このパターンが形成された面(以下、パターン面ということがある)への埃や塵等の異物の付着を防止するために、該パターン面側に離間してペリクルを架設して構成されることがある。このようなマスクの露出面、即ちマスクのガラス基板のパターン面と反対側の面(以下、非パターン面ということがある)、及び該ペリクルの外側の面(以下、ペリクル面ということがある)に異物が付着しているかどうかを、露光処理を行う前に検査する必要があり、このために異物検査装置が用いられる。
異物検査装置は、マスクの非パターン面やペリクル面を被検面として照明光を照射し、異物が付着している場合に異物によって生ずる散乱光をフォトディテクタ等の光検出素子によって検出することで異物の有無を検査する装置である。
より詳細には、異物検査装置は、被検体としてのマスクを第1方向(Y方向)に長手方向を有する細長い略矩形状の照明光で照明する照明装置と、該マスクを載置するとともに該第1方向に直交する第2方向(X方向)に移動するテーブルと、被検面上の異物により生じた散乱光を検出する該第1方向に沿って配列された複数の光検出素子及びテーブル上に載置されたマスクと該光検出素子との間に設けられた光学系とを有する検出系とを備えて構成され、マスクの一部を照明光で照明しつつマスクが載置されたテーブルを移動して、被検面上の異物により散乱された光を光検出素子で検出することにより、異物の有無を検査する。
図12は従来の異物検査装置における散乱光検出系の構成を示す図である。同図において、マスク(ガラス基板)2の被検面(非パターン面)2aに光源4からの照明光3が照射され、被検面2aに付着している異物Gで散乱された散乱光3aが光検出素子7の受光面に結像される。
ところで、異物検査装置を用いてマスクの非パターン面2aを検査する場合、図12に示されているように、被検面(非パターン面)2aに照射された照明光3の一部は該照明光3の入射角とマスク(ガラス基板)2の屈折率に応じた角度でマスク2内に進入する。そして、マスク2のパターン面には様々な空間周波数成分を持ったパターンPが形成されているため、該パターンPで回折され、非パターン面2aで屈折された光のうち該観察方向(光検出素子7を含む検出系の検査領域(照明領域)に対する光学的な指向方向をいう。以下同じ。)に進行する光3bが、異物Gにより散乱された光3aに対して、極めて近い位置関係で光検出素子7に入射する場合がある。異物検出においては、パターンPで回折された光は単なるノイズであり、光検出素子7による検出結果に悪影響を与えることになる。このように、異物Gからの光3aとパターンPからの光3bが極めて近い位置関係であると、これらの検出信号を電気的に正確に区別することが難しくなるとともに、光検出素子7の視野を制限するためのアパーチャなどのフィルタを設けても、これらがほぼ同時に光検出素子7に入射してしまうため、異物の検出を正確に行うことができない場合がある。
なお、マスク2のパターンPが形成された側に支持部材を介して架設されたペリクルの表面(ペリクル面)2cを被検面として異物検出を行う場合には、被検体2を裏返して同様に検出することになるが、この場合にも同様の問題が生じ得る。
このような問題を緩和するための従来技術としては、複数の照明系を設けて互いに異なる方向から照明光を同時に照射し、照明光方向別に光線分離してそれぞれを照明系に対応して設けられた検出系で検出するようにしたものが知られている(特開平10−221267号公報)。また、複数の照明光を同一方向から同時に照射して、照明光別に光線分離してそれぞれを照明系に対応して設けられた検出系で検出するようにしたものも知られている(特開平11−194097号公報)。
しかしながら、このような従来技術では、同時に照射されて被検面で散乱等された光を分離手段により光線分離して、照明光の数と同数の光検出素子によりそれぞれ検出する必要があるので、構成が複雑であり、コスト高を招くという問題があった。
本発明はこのような従来技術の問題点に鑑みてなされたものであり、検出系の構成の簡略化、及び異物検出の高精度化を図ることができるようにすることを目的とする。
特開平10−221267号公報 特開平11−194097号公報
以下、この項に示す説明では、本発明を、実施形態を表す図面に示す部材符号に対応付けて説明するが、本発明の各構成要件は、これら部材符号を付した図面に示す部材に限定されるものではない。
本発明の第1の観点によると、被検体(2)の被検面(2a)上に付着した異物を検査する異物検査装置(1)において、所定波長の第1照明光及び該第1照明光とは波長が異なる第2照明光を選択的に射出して前記被検面上の検査領域(IA)を照明する照明系(4,5,101,102)と、前記検査領域を観察するための単一の光検出装置(7)を有する検出系と、前記第1照明光で照明したときの前記光検出装置による第1検出結果と前記第2照明光で照明したときの前記光検出装置による第2検出結果とに基づいて、前記被検面上の異物を特定する処理装置(35)とを備える異物検査装置が提供される。
本発明では、第1照明光と第2照明光とは波長が互いに異なっているので、被検体内に入射されて該被検面と反対側の面に存在するパターン等で回折される光(以下、ノイズ光ということがある)は、第1照明光で照明した場合と第2照明光で照明した場合とでは、異なった性質のものとなり、両者の検出結果を比較することにより、異物での散乱光のうち光検出装置による観察方向に進行する光(以下、観察光ということがある)と該ノイズ光とを区別することができ、異物を正確に検出することができるようになる。加えて、本発明では、第1照明光と第2照明光とを選択的に照射して、これらのそれぞれを単一の光検出装置を有する検出系により検出するようにしたので、光線の分離手段や複数の光検出装置を有する検出系を設けることなく、被検面上の異物を正確に検出することができる。
本発明の第2の観点によると、被検体(2)の被検面(2a)上に付着した異物を検査する異物検査装置(1)において、照明光を射出して前記被検面上の検査領域を照明する照明系(4,5,101)と、前記検査領域を観察するための光検出装置(7)を有する検出系と、前記被検体と前記検出系との相対姿勢を調整する姿勢調整装置(9)と、前記姿勢調整装置により前記被検体を所定の第1姿勢に設定したときの前記光検出装置による第1検出結果と前記第1姿勢とは異なる第2姿勢に設定したときの前記光検出装置による第2検出結果とに基づいて、前記被検面上の異物を特定する処理装置(35)とを備える異物検査装置が提供される。
本発明では、姿勢が互いに異なる第1姿勢と第2姿勢で被検面を検出するようにしており、ノイズ光は、第1姿勢の場合と第2姿勢の場合とでは、異なった性質のものとなり、両者の検出結果を比較することにより、該観察光と該ノイズ光とを区別することができ、異物を正確に検出することができるようになる。従って、複数の照明系及び複数の検出系を設ける必要がなく、光学系の構成を簡略化することが可能である。
本発明によると、光学系の構成を簡略化できるとともに、異物の検査を正確に行うことができるようになるという効果がある。従って、本発明を用いて例えば露光処理に用いられるマスクの異物検査を行った場合にその付着の有無を正確に検査することができるので、露光処理を行う場合に複数の基板で同様の欠陥が生ずることを防止することをでき、歩留まりを向上することができるようになる。
以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本発明の第1実施形態に係る異物検査装置の概略構成を示す斜視図である。なお、以下の説明においては、図1中に示したXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸が被検体としてのマスク2の表面に平行な面に設定され、Z軸がマスク2の表面に直交する方向に設定される。本実施形態においては、比較的に小型のマスク(例えば、6インチマスク:□150mm)に付着した異物を検査する異物検査装置を例に挙げて説明する。
図1において、異物検査装置1は被検体としてのペリクル付マスク2の表面に付着した異物を検査する装置である。図示は省略しているが、ペリクルはマスク2のパターンが形成された面(パターン面)に埃、塵等の異物が付着するのを防止するための透明の薄板であり、マスク2のパターン面に支持部材を介して間隙を有して平行状態で架設されている。
この実施形態では、ペリクル付マスク2のパターン面(ペリクルが設けられた面)と反対側の非パターン面を被検面2aとして検査するものとし、マスク2は被検面2aを上側に向けて、異物検査装置1に保持されている。なお、ペリクルの表面の異物検査は、マスク2の天地を逆にして異物検査装置1に載置することにより、非パターン面の検査と同様に行うことができるので、その説明は省略する。
マスク2の一方の側方(+Y側)には、照明装置4及び反射ミラー5を含む照明系が配置されている。照明装置4は、Y方向に長手方向を有する楕円形状の照明光3を下方(−Z方向)へ向けて照射する。反射ミラー5は照明装置4の下方に設けられており、照明装置4からの照明光3は該反射ミラー5で反射されて被検面2a上の線状の検査領域(照明領域)IAを所定の幅で照明するようになっている。
即ち、図2及び図3にその詳細が示されているように、照明装置4からの照明光3は反射ミラー5で反射されて、反射された照明光(反射光)はマスク2の被検面2aを斜め横方向から極めて小さな角度(この実施形態では、Z方向に対して89°の角度)で被検面2aに照射されることにより、マスク2の被検面2aのY方向の全体に渡るようにY方向に長手方向を有する細長い形状の検査領域IAを形成する。
照明光3の幅(X方向の最大寸法)は、なるべく小さく設定されるのがよく、後述する検出系による観察方向から見た寸法で、実用的には0.5mm〜2mm程度に設定される。この実施形態では1mmに設定している。照明光3の長手方向の寸法(Y方向の最大寸法)は、この実施形態では、照明装置4により射出され反射ミラー5で反射される前の照明光3の長手方向の寸法は4mm程度に設定されており、照明光3の被検面2aに対する入射角度は89°なので、被検面2a上における照明光の長手方向(Y方向)の長さは、被検体としてのマスク2のY方向の寸法(この実施形態では約150mm)よりも十分大きくなるが、概略矩形状とみなせる中央部の150mm程度が有効な照明光として使用される。
この照明装置4は、図4及び図5に示されているように、2個の光源101,102、反射ミラー103及びハーフミラー104等を備えて構成されている。光源101,光源102は例えばレーザダイオードからなり、その発振波長は互いに異なるように設定されている。一例として、光源101の発振波長が例えば780nmである場合、光源102の発振波長は580nmに設定することができる。光源101からの光は反射ミラー103で反射されて−Z方向に偏向され、ハーフミラー104を透過して、反射ミラー5を介して被検面2aに照射される。光源102からの光はハーフミラー104で反射されて−Z方向に偏向され、反射ミラー5を介して被検面2aに照射される。光源101,102による発振は、不図示の制御装置によって制御される。
なお、図4及び図5では、反射ミラー5は図示を省略している。また、光源101,102としては、レーザダイオードに限定されず、レーザダイオードを一次元的に所定の間隔をもって均等に配列したLEDアレイを用いてもよい。また、冷陰極蛍光管等の円柱状の光源を使用したものや、ハロゲンランプ等の光源からの光線を光ファイバにより導光し、光ファイバの照射部を検査領域の幅に合わせて広げたものを使用してもよい。
図1に戻り、被検面2aの検査領域IAに存在する異物からの散乱光は、光検出装置(この実施形態では、1次元ラインセンサかるなるセンサ7)を有する検出系で検出される。検出系は複数のレンズや反射ミラー等を有する結像光学系を備え(いずれも不図示)、当該散乱光はこの結像光学系を介して所定の縮小倍率(例えば、1/5)で複数の光検出素子を配列してなるセンサ7で検出される。センサ7としては、この実施形態では、MOS型の1次元センサを用いている。なお、センサ7としては、光検出素子を一次元的あるいは二次元的に配置したCCD(Charge Coupled Device)等を用いてもよい。結像光学系は、例えばライン状のマイクロレンズアレイを備え、ライン状の検査領域IAの像を縮小してセンサ7に結像させる。
センサ7は、図6に示すように、複数の光検出素子7aをY方向に一列に並べて構成される。この実施形態では、センサ7のY方向の全長は25mm程度に設定され、各光検出素子7aの長さ(Y方向の寸法)は500μm、幅50μm程度に設定されている。なお、本実施形態においては、センサ7の各素子7aが一次元的に配置された電気的な走査方向がY軸方向に設定され、後述する機械的な駆動装置によるマスクテーブル8の走査方向がY軸と直交するX軸方向として設定されている。
再び図1を参照する。ペリクル付マスク2はマスクテーブル8上にホルダ9を介して載置固定され、マスクテーブル8は駆動装置10によってX軸方向に移動される。駆動装置10はベース板11に固定した2本のリニアガイド11a,11b、ボールねじ12、及び駆動モータ13から構成され、マスクテーブル8はリニアガイド11a,11bでX軸方向に直動可能に支持されている。
ボールねじ12はベース板11のX軸方向の両端近傍に固定された支持板11c,11dに支持されており、支持板11c,11d間の中心にリニアガイド11a,11bと平行に回動可能に支持されている。そして、ボールねじ12に噛み合うナット12aがマスクテーブル8に固定されており、ボールねじ12は駆動モータ13により回動される。
駆動モータ13としては、例えばステッピングモータ又はエンコーダを備えるサーボモータ等が使用される。駆動装置10は、センサ7及び結像光学系を含む検出系に対してマスク2をX軸方向に一次元的に移動走査させるものである。なお、図1においてはセンサ7及び結像光学系を含む検出系に対してマスク2を移動走査させる構成を図示したが、マスク2に対して照明装置4及び反射ミラー5を含む照明系、並びにセンサ7及び結像光学系を含む検出系を一次元的に移動走査させるように構成してもよい。なお、ここでは駆動モータ13には駆動モータ13の回転量を検出するエンコーダ14が設けられている。
マスクテーブル8の一端にはゲイン補正板15が取り付けられている。このゲイン補正板15はセンサ7の各光検出素子7aに設けられた増幅器のゲイン(増幅率)を補正する際に用いるものである。各増幅器の増幅率を補正することで、各セルの感度特性が補正される。ゲイン補正板15は照明装置4から射出される光を散乱させる材質、例えば白色の樹脂板で形成されている。ゲイン補正板15の上面はマスクテーブル8上に載置されたマスク2の表面高さとほぼ等しい高さに設定されている。
ここで、センサ7の検出信号を処理する信号処理回路について説明する。図7は、この異物検査装置が備える信号処理回路の構成を示すブロック図である。図7において、照明系ドライバ31は照明装置4内の光源101,102に選択的に電力を供給して、各光源101,102の発光を制御する。
センサ7に接続されたセンサドライバ32は、センサ7に対してクロック信号を含む駆動信号D1を供給してセンサ7を駆動するとともに、駆動信号D1の供給によってセンサ7から順次出力される検出信号D2を受けとる。センサドライバ32の出力端子はアナログデジタル変換器(以下、ADCという)33に接続されている。
Y座標カウンタ34は、センサクロック信号及びADCクロック信号を生成してセンサドライバ32及びADC33に対してそれぞれ供給する。また、Y座標カウンタ34は、センサドライバ32に供給するセンサクロック信号と同一のクロック信号をY座標データとして信号処理部35に供給する。ADC33はセンサ7から出力された散乱光強度を示す検出信号D2を例えば256階調にデジタル化し、散乱光強度データとして信号処理部35へ出力する。
モータドライバ36は、マスクテーブル8をX軸方向に移動させる駆動装置10を構成する駆動モータ13に対して駆動信号を供給してマスクテーブル8の移動を制御する。駆動モータ13の出力軸に連結したエンコーダ14は、駆動モータ13の回転量を示す信号をX座標カウンタ37に出力する。X座標カウンタ37は、エンコーダ14から出力される回転量を示す信号に基づいてマスクテーブル8のX方向の座標を示すX座標データを算出して信号処理部35に出力する。また、X座標カウンタ37は、X座標に同期してY座標カウンタ34に同期信号を出力する。Y座標カウンタ34は、X座標カウンタ37から出力された同期信号に基づいて、センサドライバ32へのスキャニング信号を発生する。また、ADC33にも同期信号を出力し、センサ7からの信号をデジタル化する。
信号処理部35は、ADC33から出力される光強度データ、Y座標カウンタ34から出力されるY座標データ、及びX座標カウンタ37から出力されるX座標データから、二次元の散乱光強度データを作成する。
ここで、この実施形態では、被検面2aを2回スキャンして、上述の散乱光強度データを2つ得る。まず、図4に示されているように、照明系ドライバ31を介して照明装置4の光源101が駆動され、第1照明光としての波長780nmの照明光が照射される。このとき光源102の発振は停止されている。この状態で、1回目のスキャンが実施され、第1検出結果としての散乱光強度データが作成され、信号処理部35が備える不図示のメモリに記録される。
次いで、図5に示されているように、照明系ドライバ31を介して照明装置4の光源102が駆動され、第2照明光としての波長580nmの照明光が照射される。このとき光源102の発振は停止されている。この状態で、2回目のスキャンが実施され、第2検出結果としての散乱光強度データが作成され、当該メモリに記録される。1回目のスキャン動作と2回目のスキャン動作とは、同一方向に行っても勿論良いが、全体としての処理速度の向上の点からは、例えば、1回目は+X方向に、2回目は−X方向に、というように、往復で実施することが好ましい。
信号処理部35は、メモリにそれぞれ記録された第1検出結果と第2検出結果とを、画素毎にあるいは所定数の画素をグループとして該グループ毎に比較し、2つの検出結果の双方において異物と推測されるものを最終的に異物と判定する。即ち、いずれか一方の検出結果のみにおいて異物と推測されるものは除外する。具体的には、第1検出結果と第2検出結果との間で、画素毎あるいはグループ毎に論理積を取り、所定の閾値以上であるものを最終的に異物と判定する。信号処理部35は、この判定結果に基づいて、被検面2a上の異物に関する分布図を作成し、CRT又は液晶ディスプレイ等の表示装置38に表示する。
上述した通り、第1検出結果と第2検出結果には、それぞれ実際の異物からの散乱光に加えてパターン等からの回折光によるノイズが含まれ、いずれか一方の検出結果のみではこれを異物と判定してしまうことになる。しかし、パターン等からの回折光は、照明光の波長が異なればその方向を含む性質が変化するため、本実施形態のように、波長の異なる2種類の照明光によりそれぞれ被検面2aをスキャンして、2つの検出結果を得て、これらを比較することにより、散乱光か回折光かを区別することができ、異物検出の精度を高くすることができる。
例えば、図4に示されているように、光源101からの照明光3によるパターンPでの回折光3bがセンサ7に入射してしまうような場合であっても、図5に示されているように、光源101とは波長の異なる光源102からの照明光3で照明した場合にはパターンPでの回折光3bの回折ないし屈折方向が変化し、センサ7には入らないようにすることができるので、これにより散乱光か回折光かを区別することができるのである。
一例として、図8に光源101からの照明光3の照射による検出結果(分布図MAP1)と、図9に光源102からの照明光3の照射による検出結果(分布図MAP2)を示す。図8において、異物と推測される部分(同図中○で表示)のうち、Gaは回折光によるノイズであり、その余のものは異物での散乱光であるものとすると、図9に示すように、波長を変えて検出することにより、回折光によるノイズGaは消失するので、これら2つの検出結果を比較することにより、異物検出の精度を向上することができる。
ここで、光源101から射出する照明光の波長と、光源102から射出する照明光の波長は、下記の(1)式及び(2)式を用いて選定される。これらの式を満足するように、2つの光の波長を選定することにより、誤検出を防止することができる。
(cosθb/cosθa)=(λb/λa) … (1)
(tanθb−tanθa)×h×cosθd>(t/β) … (2)
(1)式及び(2)式において、λaは光源101から射出する照明光の波長を、λbは光源102から射出する照明光の波長を、θaは波長λaの照明光のパターンPによる回折光の回折角を、θbは波長λbの照明光のパターンPによる回折光の回折角を、θdは検出角(検出系の検査領域に対する指向方向と被検面2aとのなす角度)を、tは光検出装置(センサ7)の受光部の寸法(受光部の画素の配列方向に直交する方向の幅であり、受光部の前段に視野を制限するアパーチャが設けられている場合にはその幅)を、hはマスク2の厚さ(被検面2aとパターン面2bとの間の寸法)を、βは検出系に含まれる結像光学系の倍率を示している。
一例として、マスクの厚さh=6.35mm、受光素子の寸法t=500μm、結像光学系の倍率β=0.12、検出角θd=85度、一方の照明光(光源101からの照明光とする)の波長λa=780nmとすると、他方の照明光(光源102からの照明光とする)の波長λbは、λb<590nm又はλb>812nmとなり、この範囲で波長λbを選定することにより、誤検出を生じることなく、異物の検出を行うことができる。
なお、上述した第1実施形態に係る異物検査装置は、マスク2の片面のみを検査する構成であったが、図1のマスク2を保持するための構成を改良して、マスク2を載せ替えることなく、両面を同時に検査できるように構成することができる。この場合には、図4及び図5に示されているように、マスク2のペリクル面2c側を検査するため、照明装置4’及び反射ミラー(5)等を含む照明系及びセンサ7’及び結像光学系等を含む検出系を下側にも設ける。照明装置4’は照明装置4と同様に、光源101、102、反射ミラー103、ハーフミラー104を備え、光源101,102から波長の異なる照明光をそれぞれ照射して、2つの検出結果から異物を判定することは、上記の場合と同様である。
また、上述した第1実施形態に係る異物検査装置では、2回のスキャンにより第1照明光(光源101による照明光)による検出結果と第2照明光(光源102による照明光)による検出結果とを得ていた。従って、異物検出の精度は向上するものの、検査に要する時間は1回のスキャンで検査するものと比較して2倍かかることになる。これを改善するためには、スキャン速度との関係で、第1照明光の照射と第2照明光の照射を極めて短い周期で切り換え、それぞれについて別々にデータ処理することにより、1回のスキャン動作で2つの検出結果を得られるようにすれば良い。例えば、スキャン速度を10mm/秒とした場合に、1/10秒程度で切り換えるようにすると良い。この実施形態では、光源101,102として半導体レーザを用いているので、このような高速切換も容易に実現することができる。
なお、スキャン中は光源101及び光源102の双方を発振状態としておき、光源101及び光源102の光路上にシャッターを設けて、該シャッターを高速動作させることにより、光源101からの照明光の照射と光源102からの照明光の照射とを切り換えるようにしても良い。シャッターとしては、例えば、略半円弧状の光遮断部と光透過部を有する略円板状の部材を、光遮断部及び光透過部の一方が光源101からの照明光の光路上に位置しているときに他方が光源102からの照明光の光路上に位置するように配置して、これを高速回転させるようにしたものを用いることができる。
次に、本発明の第2実施形態について説明する。上述した第1実施形態では、互いに異なる波長の2つの照明光をそれぞれ被検面に照射して、これらをそれぞれ検出した2つの検出結果に基づいて判定を行うことにより、異物検出の精度を向上させていた。これに対して、この第2実施形態では、単一の照明光を被検体としてのマスクに照射し、照明系及び検出系に対するマスクの姿勢を変更して、互いに異なる2つの姿勢でそれぞれ検出した2つの検出結果に基づいて判定を行うことにより、同様に異物検出の精度を向上させるようにしている。
この第2実施形態に係る異物検出装置の構成は、図1〜図7に示した第1実施形態に係る異物検出装置とほぼ同様であるので、相違する部分についてのみ説明する。即ち、第1実施形態の異物検出装置の照明装置4は2つの光源101,102を備えていたが、図10及び図11に示すように、この第2実施形態の異物検出装置は単一の光源101のみを備えている。また、この実施形態では、図1におけるマスク2を保持するホルダ9は、X軸回り、Y軸回り、Z軸回りにそれぞれ微少回転できるように、姿勢調整テーブル(不図示)を備えており、マスク2を保持する保持部はこの姿勢調整テーブルを介してステージ8上に設置されている。この姿勢調整テーブルにより、不図示の制御装置による制御に基づいて、保持されたマスク2の姿勢を任意に調整することができるようになっている。
図10に示されているように、姿勢調整ステージを制御して、マスク2の姿勢を所定の第1姿勢に設定した状態で1回目のスキャンを実施し、第1検出結果としての散乱光強度データを作成する。次いで、図11に示されているように、マスク2の姿勢を当該第1姿勢とは異なる第2姿勢に設定した状態で2回目のスキャンを実施し、第2検出結果としての散乱光強度データを作成する。1回目のスキャン動作と2回目のスキャン動作とは、同一方向に行っても勿論良いが、全体としての処理速度の向上の点からは、例えば、1回目は+X方向に、2回目は−X方向に、というように、往復で実施することが好ましい。姿勢の調整は、X軸回り、Y軸回り、Z軸回り、又はこれらの2以上の組み合わせにおいて行われる。
そして、上述した第1実施形態と同様に、第1検出結果と第2検出結果との間で、画素毎あるいはグループ毎に論理積を取り、所定の閾値以上であるものを最終的に異物と判定し、この判定結果に基づいて、被検面上の異物に関する分布図を作成する。
この場合においても、第1検出結果と第2検出結果には、それぞれ実際の異物からの散乱光に加えてパターン等からの回折光によるノイズが含まれ、いずれか一方の検出結果のみではこれを異物と判定してしまうことになる。しかし、パターン等からの回折光は、照明光に対する相対姿勢が異なればその方向を含む性質が変化するため、本実施形態のように、互いに異なる2つの姿勢でそれぞれ被検面2aをスキャンして、2つの検出結果を得て、これらを比較することにより、散乱光か回折光かを区別することができ、異物検出の精度を高くすることができる。
例えば、図10に示されているように、光源101からの照明光3によるパターンPでの回折光3bがセンサ7に入射してしまうような場合であっても、図11に示されているように、相対姿勢が異なれば、パターンPでの回折光3bの回折ないし屈折方向が変化し、センサ7には入らないようにすることができるので、これにより散乱光か回折光かを区別することができるのである。
なお、図11では、図示の都合から、一例としてY軸回りに回転させた状態を示しており、また回転量がかなり誇張されて示されている。回転量(姿勢調整量)θyは、実際にはごく僅かである。なお、姿勢調整のための基準軸としては、その調整量は僅かであるから、X軸回り又はY軸回りに行っても勿論良いが、ここでは図2及び図3に示したような照明方法を採用した関係で、X軸回り又はY軸回りに姿勢調整すると被検面2a上での照明領域の形状が変化してしまうため、Z軸回りに行うようにしている。
このZ軸回りの適正な姿勢調整量θzは、検査対象であるレチクル上に形成されたパターンの状態(パターンピッチや形状、パターン密度など)や、異物検査装置側の構造(検出角θdや受光部の寸法tなど)に依存するものである。換言すれば、上記レチクルパターンの分布状態や異物検査装置の構造を入力パラメータとしながら、それらパラメータの値によって適正回転量θzが変化するものである。
一例として、異物検査装置の検出角θd=85度、受光部の寸法t=500μmの異物検査装置を使用する場合の適正回転量θzは、被検査対象レチクル上に形成されたレチクルパターンにもよるが、概ね、数mrad〜数百mradの範囲の何れかとなる。
なお、上述した第2実施形態では、照明光は単一として、被検体としてのマスクの姿勢を変更して2つの検出結果を得るようにしたが、上述した第1実施形態と同様に2つの光源101,102を有する照明装置4を設けて、波長の変更と姿勢の変更を組み合わせて、2つのあるいは3つ以上の検出結果を得て、これらの比較から異物の判定を行うようにしても良い。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
本発明の第1実施形態に係る異物検査装置の概略構成を示す斜視図である。 本発明の第1実施形態の照明装置による照明方法を説明するための側面図である。 本発明の第1実施形態の照明装置による照明方法を説明するための平面図である。 本発明の第1実施形態の照明装置の構成及び回折光がセンサに入射する場合を模式的に表した図である。 本発明の第1実施形態の照明装置の構成及び回折光がセンサに入射しない場合を模式的に表した図である。 本発明の第1実施形態のセンサの構成を示す斜視図である。 本発明の第1実施形態に係る異物検査装置が備える信号処理回路の構成を示すブロック図である。 本発明の第1実施形態の第1照明光で照明した場合の検査結果を示す図である。 本発明の第1実施形態の第2照明光で照明した場合の検査結果を示す図である。 本発明の第2実施形態の第1姿勢において回折光がセンサに入射する場合を模式的に表した図である。 本発明の第1実施形態の第2姿勢において回折光がセンサに入射しない場合を模式的に表した図である。 従来の異物検査装置の概略構成及び問題点を説明するための図である。
符号の説明
1…異物検査装置
2…マスク
2a…非パターン面
2b…パターン面
3…照明光
3a…観察光
3b…ノイズ光
4…照明装置
5…反射ミラー
6…レンズ
7…センサ
8…マスクテーブル
9…ホルダ(姿勢調整装置)
10…駆動装置
P…パターン
G…異物
101,102…光源

Claims (8)

  1. 被検体の被検面上に付着した異物を検査する異物検査装置において、
    所定波長の第1照明光及び該第1照明光とは波長が異なる第2照明光を選択的に射出して前記被検面上の検査領域を照明する照明系と、
    前記検査領域を観察するための単一の光検出装置を有する検出系と、
    前記第1照明光で照明したときの前記光検出装置による第1検出結果と前記第2照明光で照明したときの前記光検出装置による第2検出結果とに基づいて、前記被検面上の異物を特定する処理装置と
    を備えることを特徴とする異物検査装置。
  2. 前記第1照明光及び前記第2照明光による照明を交互に切り換えつつ前記被検面上を走査検出して、一度の走査により前記第1検出結果及び前記第2検出結果を得るようにしたことを特徴とする請求項1に記載の異物検査装置。
  3. 被検体の被検面上に付着した異物を検査する異物検査方法において、
    所定波長の第1照明光により前記被検面上の検査領域を照明して該検査領域を観察する光検出装置による第1検出結果を得る第1工程と、
    前記第1照明光とは波長の異なる第2照明光により前記被検面上の前記検査領域を照明して前記光検出装置による第2検出結果を得る第2工程と、
    前記第1検出結果と前記第2検出結果とに基づいて、前記被検面上の異物を特定する第3工程と
    を備えることを特徴とする異物検査方法。
  4. 前記第1照明光及び前記第2照明光による照明を交互に切り換えつつ前記被検面上を走査検出して、一度の走査により前記第1工程及び前記第2工程を行うようにしたことを特徴とする請求項3に記載の異物検査方法。
  5. 被検体の被検面上に付着した異物を検査する異物検査装置において、
    照明光を射出して前記被検面上の検査領域を照明する照明系と、
    前記検査領域を観察するための光検出装置を有する検出系と、
    前記被検体と前記検出系との相対姿勢を調整する姿勢調整装置と、
    前記姿勢調整装置により前記被検体を所定の第1姿勢に設定したときの前記光検出装置による第1検出結果と前記第1姿勢とは異なる第2姿勢に設定したときの前記光検出装置による第2検出結果とに基づいて、前記被検面上の異物を特定する処理装置と
    を備えることを特徴とする異物検査装置。
  6. 前記姿勢調整装置による前記被検体の姿勢の調整は、前記被検面に実質的に直交する軸回りに行うことを特徴とする請求項5に記載の異物検査装置。
  7. 被検体の被検面上に付着した異物を検査する異物検査方法において、
    所定の第1姿勢に設定された前記被検体の前記被検面上の検査領域に照明光を射出して、該検査領域を観察して第1検出結果を得る第1工程と、
    前記第1姿勢とは異なる第2姿勢に設定された前記被検体の前記被検面上の前記検査領域に照明光を射出して、該検査領域を観察して第2検出結果を得る第2工程と、
    前記第1検出結果と前記第2検出結果とに基づいて、前記被検面上の異物を特定する第3工程と
    を備えることを特徴とする異物検査方法。
  8. 前記第1姿勢と前記第2姿勢とは、前記被検面に実質的に直交する軸回りに異なる姿勢であることを特徴とする請求項7に記載の異物検査方法。
JP2005099447A 2005-03-30 2005-03-30 異物検査装置及び方法 Pending JP2006276756A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099447A JP2006276756A (ja) 2005-03-30 2005-03-30 異物検査装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099447A JP2006276756A (ja) 2005-03-30 2005-03-30 異物検査装置及び方法

Publications (1)

Publication Number Publication Date
JP2006276756A true JP2006276756A (ja) 2006-10-12

Family

ID=37211551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099447A Pending JP2006276756A (ja) 2005-03-30 2005-03-30 異物検査装置及び方法

Country Status (1)

Country Link
JP (1) JP2006276756A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232964A (ja) * 2006-02-28 2007-09-13 Laserfront Technologies Inc フォトマスクの欠陥修正方法及び欠陥修正装置
JP2010133864A (ja) * 2008-12-05 2010-06-17 Nikon Corp 異物検出装置及び方法、並びに露光装置及び方法
WO2022004232A1 (ja) * 2020-06-30 2022-01-06 株式会社ヴィーネックス 異物・欠陥検査装置、異物・欠陥検査における画像生成装置、及び異物・欠陥検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261540A (ja) * 1988-08-29 1990-03-01 Nikon Corp 欠陥検査装置
JPH03153054A (ja) * 1989-11-10 1991-07-01 Seiko Epson Corp 異物検査装置及び異物検査方法
JP2002116155A (ja) * 2000-10-10 2002-04-19 Hitachi Ltd 異物・欠陥検査装置及び検査方法
JP2004177284A (ja) * 2002-11-27 2004-06-24 Hitachi Ltd 欠陥検査装置および欠陥検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261540A (ja) * 1988-08-29 1990-03-01 Nikon Corp 欠陥検査装置
JPH03153054A (ja) * 1989-11-10 1991-07-01 Seiko Epson Corp 異物検査装置及び異物検査方法
JP2002116155A (ja) * 2000-10-10 2002-04-19 Hitachi Ltd 異物・欠陥検査装置及び検査方法
JP2004177284A (ja) * 2002-11-27 2004-06-24 Hitachi Ltd 欠陥検査装置および欠陥検査方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232964A (ja) * 2006-02-28 2007-09-13 Laserfront Technologies Inc フォトマスクの欠陥修正方法及び欠陥修正装置
JP2010133864A (ja) * 2008-12-05 2010-06-17 Nikon Corp 異物検出装置及び方法、並びに露光装置及び方法
WO2022004232A1 (ja) * 2020-06-30 2022-01-06 株式会社ヴィーネックス 異物・欠陥検査装置、異物・欠陥検査における画像生成装置、及び異物・欠陥検査方法

Similar Documents

Publication Publication Date Title
US6639201B2 (en) Spot grid array imaging system
US9606071B2 (en) Defect inspection method and device using same
JP5112650B2 (ja) チャックに対する光ビームの位置のドリフトを決定する方法およびシステム
JP2020025126A (ja) イメージングシステム
KR101300733B1 (ko) 다중 병렬 공초점 시스템
US20080204736A1 (en) Defect Inspection Method and Defect Inspection Apparatus
KR20090073039A (ko) 이미지 형성 방법, 이미지 형성 장치, 및 화상 형성 장치
JP2018146239A (ja) 欠陥検査装置、および欠陥検査装置の製造方法
KR20090117660A (ko) 다중 표면 검사 시스템 및 방법
EP0894262B1 (en) Optical inspection device and lithographic apparatus provided with such a device
US20220291140A1 (en) Defect inspection device and defect inspection method
JP2008058248A (ja) 回折光検出装置および検査システム
JP5548848B2 (ja) 検査装置、検査方法、及び半導体装置の製造方法
KR101017510B1 (ko) 이물검사장치
JP2006276756A (ja) 異物検査装置及び方法
US11372222B2 (en) Confocal microscope and method for taking image using the same
EP1058111A2 (en) Optical inspection system and method
JP4654408B2 (ja) 検査装置、検査方法及びパターン基板の製造方法
CN111855662B (zh) 一种晶圆缺陷检测装置及方法
JP2001083098A (ja) 光学的表面検査機構及び光学的表面検査装置
KR20080023183A (ko) 기판 표면 에러를 광학적으로 검출하기 위한 장치
WO2005052687A1 (ja) 異物検査装置及び方法並びに露光装置
JPH11183151A (ja) 透明シート検査装置
JP2010014467A (ja) 表面検査装置および表面検査方法
JP2021167794A (ja) 欠陥検査装置、欠陥検査方法、散乱光検出系

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111