WO2004048017A1 - Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder - Google Patents

Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder Download PDF

Info

Publication number
WO2004048017A1
WO2004048017A1 PCT/JP2003/010192 JP0310192W WO2004048017A1 WO 2004048017 A1 WO2004048017 A1 WO 2004048017A1 JP 0310192 W JP0310192 W JP 0310192W WO 2004048017 A1 WO2004048017 A1 WO 2004048017A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
particle size
powder
flake copper
size distribution
Prior art date
Application number
PCT/JP2003/010192
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Sakaue
Kunihiko Yasunari
Katsuhiko Yoshimaru
Original Assignee
Mitsui Mining & Smelting Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co.,Ltd. filed Critical Mitsui Mining & Smelting Co.,Ltd.
Priority to AU2003254924A priority Critical patent/AU2003254924A1/en
Priority to CA002506367A priority patent/CA2506367A1/en
Priority to KR1020047013938A priority patent/KR100613033B1/en
Priority to US10/536,012 priority patent/US20060137488A1/en
Priority to DE10393768T priority patent/DE10393768T5/en
Publication of WO2004048017A1 publication Critical patent/WO2004048017A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Definitions

  • the present invention relates to a flake copper powder, a method for producing the flake copper powder, and a conductive paste using the flake copper powder.
  • the invention according to the present application relates to flake copper powder, a method for producing the flake copper powder, and a conductive paste using the flake copper powder.
  • copper powder has been widely used as a raw material for conductive pastes.
  • the conductive paste has been applied to various electrical contact portions and the like as typified by the formation of circuits on printed wiring boards and the external electrodes of ceramic capacitors, and has been used as a means for ensuring electrical continuity.
  • copper powder has a substantially spherical shape.
  • such copper powder has a problem that when it is processed into a conductive paste, it is necessary to reduce the thickness of the electrodes and the like of the chip component and to improve the printed wiring board.
  • characteristics that can control the viscosity of the conductive paste are required.
  • the conductive paste is used to draw the conductor shape, etc. When formed, a high film density that does not increase the electrical resistance of the conductor circuit or the like is required, and at the same time, the ability to maintain the shape of the formed conductor circuit or the like has been desired.
  • Flake copper powder In order to respond to these market demands, instead of using copper powder of approximately spherical shape for copper powder used in the production of conductive paste, copper powder composed of flake-shaped particles (in this specification, Is simply referred to as “flake copper powder”.) Flake copper powder has a scaled or flattened shape, which increases the specific surface area of the particles and increases the contact area between the particles, reducing the electrical resistance and maintaining the shape of the conductor circuit, etc. was a very effective way to raise The contents described above are disclosed in Japanese Patent Application Laid-Open Nos. Hei 6-28 7762 and Hei 8-32 5612. It can be understood by referring to the above.
  • the following conductive paste quality is required. That is, when the chip component is dipped on the conductive paste, the conductive paste is spread around the surface of the chip component with good wettability, forms a uniform conductive paste film, and when pulled up, it is on the surface of the chip component.
  • the conductive paste film exhibits excellent thixotropic properties without flowing, maintains the state of being pulled up, and has the shape retention ability to maintain the shape of the conductive paste film as it is until the end of sintering. It will be required.
  • the conventional conductive paste using flake copper powder has been limited to use for forming a conductive circuit or the like having a thick and coarse pattern.
  • flake copper powder has been desired in the market, which can expand the use of flake copper powder to thin and fine conductor circuits.
  • FIG. 1 shows a scanning electron microscope observation image of the flake copper powder according to the present invention.
  • FIG. 2 shows a scanning electron microscope observation image of the conventional flake copper powder for comparison with the flake copper powder according to the present invention.
  • the present inventors have found that, as a problem of the conventional flake copper powder, coarse particles having a major axis exceeding 5 times the average particle diameter are mixed, and the thickness of the powder particles is uneven and uniform. Focusing on the fact that it is not a fine particle having a fine particle size distribution, the flake copper powder described below has been developed in consideration of the relationship between the powder characteristics and the thinning of the conductor circuit and the like. Hereinafter, the present invention will be described.
  • Fig. 2 shows the conventional flake copper powder (three types) observed with a scanning electron microscope. As can be seen from FIG. 2, the conventional copper powder has a small thickness, but the thickness is not uniform. In particular, the shape of the powder varies. Is large and lacks stability.
  • the unflaked spherical copper powder remains as it is, depending on the degree of flake formation. Therefore, it can be understood that the particle size distribution of the conventional flake copper powder shown in Fig. 2 is very prod- uct.
  • the conductive In the case where the circuit and the like are routed after being processed into a conductive paste, the film thickness of the circuit and the like can be reduced, and the film density is excellent, and the quality balance that improves the solvent removal as a conductive paste is improved.
  • Fig. 1 shows the flake copper powder (two types) according to the present invention observed by a scanning electron microscope.
  • Fig. 1 and Fig. 2 it is clear that the particle size of the flake copper powder in Fig. 1 is clearly uniform compared to the conventional flake copper powder shown in Fig. 2, and It turns out that it is a fine powder.
  • the particle size distribution may be sharp even at a level that can be visually recognized in the scanning electron microscope image.
  • the weight cumulative particle diameter D 5 by the laser diffraction scattering particle size distribution measuring method is 10 m or less
  • the weight cumulative particle diameter D 5 is the weight cumulative particle diameter D 5 as a result of earnest study. If the value is not less than 10, the thickness of the conductor shape of a circuit or the like drawn around by the conductive paste using the flake copper powder cannot be stably reduced and the filling property of the via hole cannot be improved. It turned out. Among them, the weight cumulative particle size D 5 . When it is 7 m or less, it is possible to obtain appropriate thixotropic performance when processed into a conductive paste, and it is possible to reduce the film thickness when processing into a conductive paste and routing circuits etc.
  • Decomposition as conductive paste It is excellent in quality balance to improve the quality, and particularly excellent in quality stability as a conductive base.
  • the inability to reduce the thickness of the conductor shape means that the presence of coarse particles and poor pick-and-mouth performance means that a thin conductor must be temporarily made using a conductive paste.
  • the measurement of the weight cumulative particle diameter D by the laser diffraction / scattering type particle size distribution measurement method is the length in the major axis direction of the flake copper powder flattened by plastic deformation.
  • the above-mentioned flake copper powder particles have an aspect ratio (average major axis average thickness) of 3 to 200.
  • the aspect ratio mentioned here is determined according to the degree of processing of the particles, but in general, the larger the value is, the smaller the particles of the flake copper powder tend to be, while the smaller the value is, The flake copper powder particles tend to be thicker. Therefore, when the aspect ratio (average major axis Z average thickness) is less than 3, the tendency to lack thixotropic performance in the viscosity characteristics when processed into a conductive paste becomes remarkable.
  • a feature of the flake copper powder according to the present invention is a weight cumulative particle diameter D 5 by a laser diffraction scattering type particle size distribution measuring method. The maximum weight cumulative particle size based on the value of
  • the value of D max is the weight cumulative particle size D 5 . It cannot be more than 5 times the value of. That is, the weight cumulative particle diameter D 5 by the laser diffraction scattering particle size distribution measuring method. [ Dmax ] / [ Dso ], which is the ratio of the maximum weight cumulative particle size Dmax , to 5 or less.
  • the flake copper powder according to the present invention is a product having a very sharp particle size distribution because the coarse particles observed in the conventional flake copper powder do not exist.
  • the flake copper powder described above is obtained by mechanically plastically deforming powder particles of a generally spherical copper powder into a flake shape. In general, certain manufacturing variations occur.
  • the powdered flake copper powder having the above-mentioned powder properties contains 70 wt% or more, the powder properties of the remaining flake copper powder are adjusted to the above-mentioned conditions. Even if the above condition is not satisfied, sufficient performance can be exhibited in the sense of processing into a conductive paste, reducing the thickness of the circuit to be routed, and ensuring the stability of the circuit shape.
  • Production method of flake copper powder according to the present invention> In order to produce flake copper powder stably as described above, it cannot be produced even by using a conventional production method.
  • the conventional flake copper powder is obtained by directly converting a substantially spherical copper powder obtained by a method such as a wet method typified by the hydrazine reduction method or a dry method typified by the atomization method into a pole mill, a bead mill, or the like.
  • the flakes are made by crushing the copper powder particles with media such as balls and beads in a crusher to plastically deform and flatten the powder particles into flakes.
  • the substantially spherical copper powder used initially is in a certain coagulated state, and even if the powder is subjected to compressive deformation without destroying the coagulated state, the coagulation of the powder and the same soil is performed.
  • the flake copper powder in the agglomerated state is obtained by compressive deformation while maintaining the state, and the particles do not become dispersed. Therefore, the present inventors have conceived of a method of first breaking the agglomeration state of copper powder in a substantially spherical state, performing a pulverizing treatment, and then compressing and deforming the powder particles into flakes.
  • the flakes are obtained by compressing and plastically deforming the copper powder with a high-technical energy-pole mill using a media piece with a particle size of 0.5 mm or less, using a copper powder. Method for producing flake copper powder.
  • the copper powder in the agglomerated state means that a certain agglomerated state is formed regardless of a so-called hydrazine reduction method, a wet method typified by an electrolytic method, or a dry method typified by an atomization method. It is expressed in this way.
  • the wet method There is a tendency that the formation of the aggregation state of the powder particles easily occurs. That is, in general, copper powder is produced by a wet method by using a copper sulfate solution as a starting material, reacting with a sodium hydroxide solution to obtain copper oxide, reducing the copper oxide by so-called hydrazine reduction, and washing the copper powder. This is performed by filtration and drying.
  • the dried copper powder is obtained in this manner, and the copper powder obtained by the wet method forms a certain agglomerated state in the manufacturing process.
  • the copper powder slurry referred to below refers to a slurry in which copper powder is generated by hydrazine reduction or the like and contains this.
  • separating the aggregated powder into primary particles as much as possible is referred to as “disintegration”.
  • the dried copper powder in the agglomerated state can be subjected to centrifugal force using a wind generator.
  • the term “wind centrifugal force using centrifugal force” here means that air is blown up, and the agglomerated copper powder is blown up in a circular orbit to cause circuit cycling. It is used to perform powder disintegration work by causing the powder particles to collide with each other in an air current due to centrifugal force.
  • Another method of crushing is to crush the copper powder slurry containing copper powder in the agglomerated state using a fluid mill utilizing centrifugal force.
  • the term "fluid mill using centrifugal force" used here means that copper powder slurry is made to flow at high speed in a circular orbit, and powder particles agglomerated by the centrifugal force generated at this time are exchanged in a solvent. It is used to carry out the crushing work.
  • the above-mentioned pulverization processing can be repeated a plurality of times as necessary, and the level of the pulverization processing can be arbitrarily selected according to the required quality.
  • the copper powder that has been subjected to the crushing process breaks down in agglomeration state and has new powder characteristics. Then, the cohesion degree described in the present specification will be described.
  • the value of cohesion represented by ZD IA is 1. 6 or less is the most preferable. If the degree of cohesion is less than 1.6, it can be said that almost complete monodisperse state can be secured.
  • Weight cumulative particle diameter D 5 obtained by using a laser diffraction scattering particle size distribution measuring method. It is considered that the value of is not really a direct observation of the diameter of each particle. Most of the copper powder particles are not so-called monodisperse powders, in which individual particles are completely separated, but a state in which a plurality of powder particles are aggregated and aggregated. It can be said that the laser one-time scattering particle size distribution measuring method regards the agglomerated particles as one particle (agglomerated particles) and calculates the weight cumulative particle size.
  • the average particle diameter D IA obtained by image processing the observation image of copper powder observed using a scanning electron microscope (SEM) is obtained directly from the SEM observation image. Particles can be reliably caught, but on the other hand, they do not reflect the existence of the aggregation state of the powder particles at all.
  • the present inventors have determined that the weight cumulative particle size D 5 of the laser diffraction scattering type particle size distribution measuring method.
  • the value calculated by D soZ D IA was determined as the degree of aggregation. That is, D 5 in the same lot of copper powder.
  • D! Assuming that the value of ⁇ can be measured with the same precision, and considering the theory described above, the presence of agglutination is reflected in the measured value D 5 . The value of It is considered that the value becomes larger than the value of A.
  • D 5 if granular aggregation state of the copper powder is completely eliminated, Yuki approaching the value of the infinitely D 1 A, a degree of aggregation.
  • the value of / DIA will approach 1. At the stage when the degree of agglomeration reaches 1, it can be said that this is a monodispersed powder in which the state of agglomeration of the powder has completely disappeared.
  • the cohesion degree may show a value of less than 1. Theoretically, in the case of a true sphere, the value is not less than 1, but in reality, it seems that a cohesion value of less than 1 is obtained instead of a true sphere.
  • the image analysis of the copper powder observed using a scanning electron microscope (SEM) in this specification was performed using an IP-100 PC manufactured by Asahi Engineering Co., Ltd.
  • the average particle diameter DIA was determined by performing circular particle analysis with an overlap degree of 20.
  • weight cumulative particle diameter D 5 of the laser diffraction scattering particle size distribution measuring method It can be used as a criterion index in consideration of the degree of processing of flakes based on That is, an appropriate weight cumulative particle size D 5 according to the degree of processing of the powder particles.
  • the high-energy ball mill referred to here means that the copper powder is dried by using media beads regardless of whether the copper powder is dried or copper powder slurry, as in a bead mill or an attritor. It is used as a generic term for devices that can compress and plastically deform grains. In the case of the present invention, the selection of the particle size and the material of the media piece is very important.
  • media beads with a particle size of less than 0.5 mm must be used.
  • the reason for defining the media bead size in this way is as follows. If the media beads have a particle size of more than 0.5 mm, the copper beads are likely to agglomerate when the media beads are compressed and plastically deformed inside the high energy pole mill. Coarse particles are compressed plastically deformed to produce coarse flake powder, and the particle size distribution becomes broad, making it impossible to obtain highly dispersible flake copper powder with a sharp particle size distribution. is there.
  • the flaked copper powder thus obtained can efficiently produce a product having the powder characteristics of the flaked copper powder according to the present invention.
  • the conductive paste produced using the flake copper powder has extremely excellent performance.
  • a conductor is formed using the conductive paste, even when the conductor thickness is reduced, the electric resistance of the formed conductor is kept low, and the stability of the conductor shape is excellent. Therefore, it is suitable for sintering circuits of printed wiring boards and sintering of external electrodes of ceramic capacitors.
  • a conductive paste is manufactured using the flake copper powder according to the present invention described above, the viscosity of the conductive paste is easily controlled, the change with time is reduced, and the conductive paste is excellent. It is easy to provide thixotropic properties. Therefore, the conductive paste using the flake copper powder according to the present invention uses the conventional flake copper powder when the type of the organic vehicle constituting the conductive paste and the content of the flake copper powder are the same. Good quality, incomparable to the case.
  • the level of the thixotropic property of the conductive paste varies depending on the purpose and method of use of the conductive paste. It is appropriately determined in consideration of the type of the organic vehicle constituting the sex paste, the content of the flake copper powder, the particle size of the flake copper powder particles, and the like.
  • Example 1 In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention.
  • the powder characteristics of the raw material powder used in this embodiment are as follows: the weight cumulative particle size D 5 according to the laser diffraction scattering type particle size distribution measuring method. Is 0.35 xm and the average particle diameter D IA obtained by image analysis is 0.20 m, thus D 5 . Cohesion calculated by ZD IA was filed at 1.7 5.
  • the above-mentioned raw material powder is circulated at a rotation speed of 6500 rpm using a commercial air classifier, Nisshin Engineering Co., Ltd. Grain work was performed.
  • the agglomeration degree calculated by / D IA was 1.50, confirming that sufficient pulverization was performed.
  • the characteristics of the flaked copper powder obtained as described above have a maximum particle size D max of 1.64 xm and an average particle size D 5 described below.
  • [D max ] / [Dso] . 4.1, no coarse grains exceeding 5 were observed, and the weight accumulation D 10 (0.26 m), D 5. (0. 40 / zm), D 9. (0.67 m), and SD / D 5 expressed using the standard deviation SD (0.15 ⁇ m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.38, and D .
  • the value represented by is 2.58.
  • the average thickness of the particles constituting the flake copper powder was 0.05 im.
  • the thickness of the flake copper powder is determined by manufacturing a sample in which flake copper powder is solidified with epoxy resin and observing the cross section of the sample with a scanning electron microscope at a magnification of 1000 ⁇ . Is directly observed, and the total thickness of the flake copper powder in the field of view is divided by the number of observed flake copper powder. In the following embodiments and comparative examples, a magnification enabling thickness observation is appropriately adopted, and the thickness of the flake copper powder is similarly used.
  • the average particle diameter (major axis) of the flake copper powder observed directly was 0.39 m.
  • the powder particles were observed with a scanning electron microscope (magnification: 500,000), and the average value of the major axis of the flake copper powder ascertained from the obtained observation image was obtained.
  • a magnification capable of observing the major axis is appropriately adopted, and the major axis of the flake copper powder is similarly used.
  • the average aspect ratio was 7.8. This average aspect ratio was determined as the above [average particle size] Z [average thickness]. Therefore, it is understood that the flake copper powder according to the present invention satisfies the requirements to be provided.
  • the present inventors manufactured a terbineol-based conductive paste using the obtained flake copper powder, and measured the rate of change in viscosity of the conductive paste.
  • the terpineol-based conductive paste produced here was composed of 65% by weight of flake copper powder and the balance of an organic vehicle as a binder resin, and was mixed to obtain a terpineol-based conductive paste. is there.
  • an organic vehicle having a composition of terpineol 93 wt% and ethyl cellulose 7 wt% was used.
  • the viscosity of the terbineol-based conductive paste thus obtained was measured immediately after production.
  • the viscosity in the present specification was measured at a rotational speed of 0.1111 and 1.0 rpm using RE-105 U, a viscometer manufactured by Toki Sangyo Co., Ltd.
  • a viscosity the viscosity measured at a rotation speed of 0.1 rpm
  • B viscosity the viscosity measured at a rotation speed of 1.0 rpm
  • Example 2 In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention.
  • the powder characteristics of the raw material powder used in this embodiment are as follows: the weight cumulative particle size D 5 according to the laser diffraction scattering type particle size distribution measuring method. Is 0.85 zm and the average particle size D IA obtained by image analysis is 0.48 m, thus D 5 . Cohesion, which is calculated by D IA was filed in 1.7 7.
  • the above-mentioned raw material powder is dispersed in pure water to form a copper powder slurry.
  • the copper powder slurry is produced using a commercially available centrifugal fluid mill, Taiheiyo Kikai Co., Ltd.
  • the powder was circulated at pm, and the particles in the agglomerated state collided with each other to perform the pulverization operation.
  • Is 0. 7 3 m an average particle diameter D IA obtained by image analysis 0. 49 m, therefore, D 5.
  • the substantially spherical raw powder is converted into flake copper. Powdered. However, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISP ERMAT D—5 2 26 that was used in Example 1, and the processing was performed for 10 hours. By compressing and plastically deforming the granules, the substantially spherical base powder was used as flake copper powder.
  • the present inventors manufactured a terpineol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared a conductive base.
  • Example 3 flake copper powder was produced by using the copper powder obtained from the raw material powder by the following method as a raw powder and using the production method according to the present invention.
  • the same raw material powder and raw powder as used in Example 2 were used in this embodiment. Therefore, the description of the powder characteristics of the original powder and the powder characteristics after the pulverization treatment is omitted here to avoid duplication.
  • the substantially spherical raw powder is converted into flake copper powder.
  • the processing time was changed using the VMG-GETZMANN DIS PERMAT D-5226, which is the medium dispersion mill in Example 1, and the processing was performed for 7 hours to compress the original powder particles.
  • the substantially spherical base powder was converted to flake copper powder.
  • the characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 5.36 m and an average particle size D 5 described below.
  • [D max ] / [D so] 3.6, no coarse particles with a value of 5 or more were observed, and the weight accumulation D 10 (0.67 m ), D 5. (1. 5 0 xm), D 9. (2.80 m), and S DZD S expressed using the standard deviation SD (0.79 urn) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.53, and D soZD i. The value represented by is 4.18.
  • the average thickness of the particles constituting the flake copper powder is 0.08 m, The diameter (major axis) was 1.3 and the average aspect ratio was 18.8. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
  • the present inventors manufactured a terbeneol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared a conductive paste.
  • the viscosity of the sample was measured.
  • the viscosity A was 420 Pa ⁇ s
  • Example 4 In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention.
  • the same raw material powder and raw powder as used in Example 2 were used in this embodiment. Therefore, the description of the powder characteristics of the original powder and the powder characteristics after the pulverization treatment is omitted here to avoid duplication.
  • the substantially spherical raw powder is converted into flake copper. Powdered. Then, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISP ERMAT D—5 2 2 6 in Example 1, and the processing was performed for 1 hour. By compressing and plastically deforming the powder, the substantially spherical base powder was converted into flake copper powder.
  • the characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 1.44 m and an average particle size D 5 described below.
  • [ Dmax ] ./ [Dso] 1.5, no coarse particles exceeding 5 were observed, and the weight accumulation by laser diffraction scattering particle size distribution measurement method D 10 (0.5 1 xm ), D 5Q (0. 9 5 m), D 9. (1.43 m), and SDZD 5 expressed using the standard deviation SD (0.43 n) of the particle size distribution measured by a laser diffraction scattering type particle size distribution measuring method. Is 0.45 and D soZDi. The value represented by is 2.80.
  • the average thickness of the particles constituting the flake copper powder is 0.19 m
  • the average particle diameter (major axis) of the flake copper powder directly observed is 0.9 m
  • the average aspect ratio is 4.7. Met. Therefore, It can be seen that it satisfies the requirements for flake copper powder according to the present invention.
  • Example 5 In the present embodiment, flake copper powder was produced by using the copper powder obtained from the raw material powder by the following method as a base powder and using the production method according to the present invention.
  • the weight cumulative particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method is 6. 84 m, the average particle diameter D IA obtained by image analysis 4. 20 m, thus D 5 . Cohesion calculated by ZD IA was filed in 1.6 3.
  • the raw material powder described above is circulated at a rotation speed of 6500 rpm using a commercial air classifier, Nisshin Engineering Co., Ltd. Pulverization work was performed.
  • Weight cumulative particle diameter D 5 of the laser diffraction scattering of raw powder ended in Kaitsubu working particle size distribution measurement method. Is 4. 9 2 ⁇ m, an average particle diameter D IA obtained by image analysis 4. 1 0 zm, therefore, D 5. The agglomeration degree calculated by / D IA was 1.20 , confirming that sufficient pulverization was performed.
  • the substantially spherical raw powder is converted into flake copper. Powdered. However, only the processing time was changed using the medium dispersion mill VMG—GETZMANN DISP ERMAT D—522 6 in Example 1, and the processing time was changed to 10 hours. Was compressed and plastically deformed, so that the roughly spherical base powder was made into flake copper powder.
  • the properties of the flake copper powder obtained as described above have a maximum particle diameter D max of 40.0 m and an average particle diameter D 5 described below.
  • [D max ] / [Dso] 4. Coarse grains to be located 5 or more 2 not observed, the weight accumulated D 10 by laser diffraction scattering particle size distribution measuring method (4. 7 5 m), D 5. (9. 5 0 ⁇ m), D 9. (12.83 nm), and SD / D 5 expressed using the standard deviation SD (3.23 m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Has a value of 0.34 and D / Di. The value represented by is 2.70.
  • the average thickness of the particles constituting the flake copper powder is 0.80 ⁇ m, the average particle diameter (major axis) of the flake copper powder directly observed is 9.2, and the average aspect ratio is 11.5. Met. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
  • the present inventors manufactured a terpineol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared the viscosities of the conductive paste.
  • the viscosity A was 9 OPa ⁇ s
  • Example 6 In the present embodiment, flake copper powder was produced using the copper powder obtained from the raw material powder by the following method as the original powder and using the production method according to the present invention.
  • the powder characteristics of the raw material powder used in this embodiment were as follows: the weight cumulative particle size D 50 of the laser diffraction scattering type particle size distribution measurement method was 4.24 ⁇ m, and the average particle size D IA obtained by image analysis was . 1 0 zxm, therefore, D 5. / D cohesion calculated by IA was filed at 2.0 2.
  • the above-mentioned raw material powder is circulated at a rotation speed of 6500 rpm by using a commercially available air classifier, Nisshin Engineering Co., Ltd. Pulverization work was performed.
  • the agglomeration degree calculated by / D IA was 1.40, confirming that sufficient pulverization was performed.
  • Example 2 a method similar to that of Example 1 was used. Approximately spherical base powder was made into flake copper powder by compressing and plastically deforming the powder particles. However, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISPE RMAT D—5 2 26 that was used in Example 1, and the processing was performed for 7 hours. By compressing the grains and plastically deforming them, the roughly spherical base powder was converted into flake copper powder.
  • the characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 20.733 m and an average particle size D 5 described below.
  • [ Dmax ] Z [Dso] 2.8, no coarse particles exceeding 5 were observed, and the weight cumulative particle size D 10 (3.87 Mm), D 5. (7. 3 0 rn), D 9. (8.5 / 51 nm), and SD / D 5 expressed using the standard deviation SD (2.34 m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.32, and .
  • the value represented by is 2.20.
  • the average thickness of the particles constituting the flake copper powder is 0.70 im, the average particle diameter (major axis) of the flake copper powder directly observed is 7.2 m, and the average aspect ratio is 10.3. Met. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
  • the present inventors manufactured a terbeneol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared the conductive paste.
  • the particles of copper powder were compressed with beads of 0.7 mm diameter and plastically deformed to form flake-like copper powder.
  • the powder properties of the resulting flake copper powder are shown in Table 1 as sample number 4.
  • This flake copper powder has a maximum particle size D max with an average particle size D 5 . It contains coarse grains of 5 times or more.
  • SD / D 5 expressed using the standard deviation SD (7. 17 ⁇ m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.87 and D ZDi. The value represented by is 4.04.
  • the average thickness of the particles constituting the flake copper powder is 0.75 xm
  • the average particle diameter (major axis) of the flake copper powder directly observed is 7.8 rn
  • the average aspect ratio is 10. It was 4. In other words, it is understood that the requirements that the flake copper powder according to the present invention should have are not satisfied.
  • the present inventors manufactured a terbineol-based conductive paste using the flake copper powder of Sample No. 4 and the same organic vehicle and mixing ratio as in Example 1, and prepared the conductive paste.
  • the viscosity was measured.
  • the A viscosity is 250 Pa ⁇ s
  • the B viscosity is 227 Pa ⁇ s
  • the performance is particularly inferior to the conductive paste described in the above embodiment, especially in terms of thixotropic performance, but it can be said that there is no extremely large difference. That is, the conventional flake copper powder has obtained a thixotropic performance by reducing the thickness of the flake copper powder, but the particle size distribution of the powder becomes a prod Because they contained extremely large coarse particles when viewed on the basis of, they were not used for forming thin electrodes, circuits, etc. that were thin and had a high film density. Industrial applicability
  • the flake copper powder according to the present invention it is possible to control the viscosity of the conductive paste to be manufactured, and to impart a well-balanced thixotropic property in relation to the viscosity. It is easy to control the conductor shape without reducing the thickness of the conductor formed using it, improving the film density, losing the electrical resistance. This makes it possible to form thin and fine circuit patterns, electrode shapes, etc., which were not possible in the past.
  • the method for producing flake copper powder according to the present invention it is possible to efficiently produce flake copper powder having an unprecedented fine particle and excellent particle size distribution. It is possible to dramatically improve the production yield of flaked copper powder.
  • the flake copper powder according to the present invention has a particle size distribution as sharp as never before, and according to the production method according to the present invention, the powder particles have an arbitrary aspect ratio. It is possible to optimize the thixotropic performance of flake copper powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A copper flake powder for a conductive paste, which has a thin particle thickness and powder characteristics applicable to formation of a fine electrode or circuit, and a method for producing such a copper flake powder are provided. Particles of a copper powder are plastically deformed to form the copper flake powder, which is characterized in that the weight cumulative particle diameter D50 measured by a laser diffraction/scattering particle size distribution measuring method is 10 μm or less, the value of SD/D50 is 0.55 or less and the value of D90/D10 is 4.5 or less, which values are expressed by using the weight cumulative particle diameters D10, D50, D90 measured by a laser diffraction/scattering particle size distribution measuring method.and the standard deviation SD of the particle size distribution measured by a laser diffraction/scattering particle size distribution measuring method. The copper flake powder can be stably produced by plastically deforming, i.e. compressing, medium beads of small particle size into flakes using a high-energy ball mill.

Description

明 細 書  Specification
フレーク銅粉及びそのフレーク銅粉の製造方法並びにそのフレーク銅粉を用い た導電性ペースト 発明の属する技術分野 TECHNICAL FIELD The present invention relates to a flake copper powder, a method for producing the flake copper powder, and a conductive paste using the flake copper powder.
本件出願に係る発明は、 フレーク銅粉、 そのフレーク銅粉の製造方法、 そのフ レーク銅粉を用いた導電性ペース卜に関するものである。 背景技術  The invention according to the present application relates to flake copper powder, a method for producing the flake copper powder, and a conductive paste using the flake copper powder. Background art
従来から銅粉は、 導電性ペーストの原料として広く用いられてきた。 そして、 導電性ペース卜は、 プリント配線板の回路形成、 セラミックコンデンサの外部電 極に代表されるように各種電気的接点部等に応用され、 電気的導通確保の手段に 用いられてきた。  Conventionally, copper powder has been widely used as a raw material for conductive pastes. The conductive paste has been applied to various electrical contact portions and the like as typified by the formation of circuits on printed wiring boards and the external electrodes of ceramic capacitors, and has been used as a means for ensuring electrical continuity.
通常、 銅粉は略球形の形状をしているものであるが、 このような銅粉には、 導 電性ペーストに加工する場合にはチップ部品の電極等の薄層化、 プリント配線板 のビアホールの穴埋め性の向上等を達成するため、 導電性ペースト粘度の制御が できる特性が求められ、その導電性ペーストを用いて導体形状を引き回す等して、 固化又は焼成することで導体回路等の形成を行った場合には、 その導体回路等の 電気抵抗を上昇させることのない高い膜密度が要求され、 同時に、 形成した導体 回路等の形状の維持能力等も望まれてきた。  Normally, copper powder has a substantially spherical shape. However, such copper powder has a problem that when it is processed into a conductive paste, it is necessary to reduce the thickness of the electrodes and the like of the chip component and to improve the printed wiring board. In order to improve the fillability of via holes, etc., characteristics that can control the viscosity of the conductive paste are required.The conductive paste is used to draw the conductor shape, etc. When formed, a high film density that does not increase the electrical resistance of the conductor circuit or the like is required, and at the same time, the ability to maintain the shape of the formed conductor circuit or the like has been desired.
これらの市場要求に応えるため、 導電性ペーストの製造に用いる銅粉に、 略球 形の粉粒の銅粉を用いるのではなく、 フレーク状の粉粒で構成された銅粉 (本件 明細書においては、 単に 「フレーク銅粉」 と称する。) を用いることが検討され てきた。 フレーク銅粉は、 鱗片化又は扁平化した形状ゆえに、 粉粒の比表面積が 大きくなり、 粉粒同士の接触面積が大きくなるため、 電気的抵抗を減少させ、 導 体回路等の形状の維持能力を上げるには非常に有効な方法であった。 以上に述べ た如き内容は、 特開平 6— 2 8 7 7 6 2号公報、 特開平 8— 3 2 5 6 1 2号公報 等を参照することで理解することが可能となる。 しかしながら、 従来のフレーク銅粉は、 均一な粒径や厚さを備えるものでもな く、 微細な粉粒の製品は存在せず、 大きな粗粒が一定の割合で含まれ、 亀裂が見 られるものもあるという品質のもので、非常に広い粒度分布を持つ製品であった。 このような品質のフレーク銅粉では、 導電性ペース卜に加工したときの粘度コ ン卜ロールが困難であり、 導電性ペーストの管理が非常に煩雑であり、 導電性べ —ストの粘度が安定しないことから、 導電性ペーストのチクソトロピックな性質 も安定しないという欠点を有していた。 このチクソトロピックな性質は、 特に、 チップ部品の電極等をデイツピング法で形成する場合に重要なものとなるのであ る。 一例として、 積層セラミックコンデンサ等のチップ部品の外部電極は、 導電 性ペース卜にチップ自体をディップして、 引き上げることでチップ表面に外部電 極となる導電性ペーストの塗布を行っている。 In order to respond to these market demands, instead of using copper powder of approximately spherical shape for copper powder used in the production of conductive paste, copper powder composed of flake-shaped particles (in this specification, Is simply referred to as “flake copper powder”.) Flake copper powder has a scaled or flattened shape, which increases the specific surface area of the particles and increases the contact area between the particles, reducing the electrical resistance and maintaining the shape of the conductor circuit, etc. Was a very effective way to raise The contents described above are disclosed in Japanese Patent Application Laid-Open Nos. Hei 6-28 7762 and Hei 8-32 5612. It can be understood by referring to the above. However, conventional flake copper powder does not have a uniform particle size and thickness, and there is no product with fine powder, large coarse particles are contained at a certain ratio, and cracks are seen. The product had a very wide particle size distribution. With such quality flake copper powder, it is difficult to control the viscosity when processed into a conductive paste, the management of the conductive paste is very complicated, and the viscosity of the conductive paste is stable. Therefore, the thixotropic property of the conductive paste was not stable. This thixotropic property is particularly important when electrodes and the like of chip components are formed by a dipping method. As an example, for the external electrodes of chip components such as multilayer ceramic capacitors, the chip itself is dipped in a conductive paste and pulled up to apply a conductive paste to be an external electrode on the chip surface.
近年では、 チップ部品の小型化に伴い、 外部電極の薄層化が求められるように なってきた。 この薄層化を達成するためには、 次のような導電性ペースト品質が 求められる。 即ち、 チップ部品を導電性べ一ストにディップしたときには、 チッ プ部品の表面に導電性ペーストが濡れ性良く薄く付周り、 均一な導電性ペースト 被膜を形成し、 引き上げるとチップ部品の表面にある導電性ペースト被膜が流動 することのない優れたチクソトロピックな性質を示し、 引き上げられたままの状 態を維持し、 その導電性ペースト被膜形状がそのまま焼結加工終了まで維持され る形状保持能力が求められることになるのである。  In recent years, with the miniaturization of chip components, thinner external electrodes have been required. To achieve this thinning, the following conductive paste quality is required. That is, when the chip component is dipped on the conductive paste, the conductive paste is spread around the surface of the chip component with good wettability, forms a uniform conductive paste film, and when pulled up, it is on the surface of the chip component. The conductive paste film exhibits excellent thixotropic properties without flowing, maintains the state of being pulled up, and has the shape retention ability to maintain the shape of the conductive paste film as it is until the end of sintering. It will be required.
従来のフレーク銅粉を用いた導電性ペーストも、 上述した意味での優れたチク ソトロピックな性質を得ることは可能である。 しかし、 従来のフレーク銅粉は、 導電性ペース卜に加工して、 その導電性ペーストを用いて得られる焼結回路等の 電気抵抗改善という点でのある程度の目標は達成できても、 膜密度を上げられな いために電気抵抗の改善には限界がある。 また、 導電性ペース卜に加工して回路 形状を引き回し、 若しくはチップ部品の電極等をデイツピング法で形成する場合 等に、 最終的に焼結して得られる導体回路若しくは電極等のファイン化、 薄層化 に対応できず、 当該導体回路若しくは電極等の^状安定性及び表面状態までもが 問題となってきたのである。 従って、 従来のフレーク銅粉を用いた導電性ペース トは、 厚く且つ粗いパターンの導体回路等の形成に用いる等に限定されてきた。 これらのことから分かるように、 フレーク銅粉の用途を、 薄く且つファインな 導体回路等へと広げることのできる、 フレーク銅粉が市場で望まれてきたのであ る。 図面の簡単な説明 Conventional conductive pastes using flake copper powder can also obtain excellent thixotropic properties in the above sense. However, the conventional flake copper powder can be processed into a conductive paste, and even if the target of improving the electrical resistance of the sintering circuit and the like obtained by using the conductive paste can be achieved to some extent, the film density can be reduced. There is a limit to the improvement of electrical resistance because it cannot be increased. In addition, when the circuit is formed into a conductive paste and the circuit shape is routed, or when the electrodes and the like of the chip parts are formed by the dipping method, the conductor circuit or the electrodes and the like obtained by final sintering are made finer and thinner. It is not possible to cope with layering. It has become a problem. Therefore, the conventional conductive paste using flake copper powder has been limited to use for forming a conductive circuit or the like having a thick and coarse pattern. As can be seen from these facts, flake copper powder has been desired in the market, which can expand the use of flake copper powder to thin and fine conductor circuits. BRIEF DESCRIPTION OF THE FIGURES
図 1には、 本件発明に係るフレーク銅粉の走査型電子顕微鏡観察像を示してい る。 そして、 図 2には、 本件発明に係るフレーク銅粉と対比するための、 従来の フレーク銅粉の走査型電子顕微鏡観察像を示している。 発明の概要  FIG. 1 shows a scanning electron microscope observation image of the flake copper powder according to the present invention. FIG. 2 shows a scanning electron microscope observation image of the conventional flake copper powder for comparison with the flake copper powder according to the present invention. Summary of the Invention
そこで、 本件発明者等は、 従来のフレーク銅粉の持つ問題として、 長径が平均 粒径の 5倍を超えるような粗大粒が混入されており、粉粒の厚さが不均一であり、 均一な粒度分布を持つ微粒では無い点に着目して、 粉体特性と上記導体回路等の 薄層化との関係を考慮して、 以下に述べるフレーク銅粉を開発するに到ったので ある。 以下に本件発明を説明する。  Therefore, the present inventors have found that, as a problem of the conventional flake copper powder, coarse particles having a major axis exceeding 5 times the average particle diameter are mixed, and the thickness of the powder particles is uneven and uniform. Focusing on the fact that it is not a fine particle having a fine particle size distribution, the flake copper powder described below has been developed in consideration of the relationship between the powder characteristics and the thinning of the conductor circuit and the like. Hereinafter, the present invention will be described.
<本件発明に係るフレーク銅粉〉 本件発明者等は、 従来から存在するフレー ク銅粉を調査した結果、 そのフレーク銅粉の持つ諸特性は、 表 1に示す如きもの となる。 ここで、 D 10、 D 5。、 D9。及び Drnaxとは、 レーザー回折散乱式粒度分 布測定法を用いて得られる重量累積 1 0 %、 50 %、 90 %における粒径及び最 大粒径のことであり、 フレーク銅粉 0. 1 gを S Nディスパ一サント 546 8の 0. 1 %水溶液 (サンノプコ社製) と混合し、 超音波ホモジナイザ (日本精機製 作所製 US— 300 T) で 5分間分散させた後、 レーザー回折散乱式粒度分布 測定装置 M i c r o T r a c HR A 93 20— X 1 00型 (L e e d s + N o r t h r u p社製) を用いて測定したものである。 表 1. <Fresh copper powder according to the present invention> As a result of investigating the flake copper powder that has existed conventionally, the present inventors have obtained various properties of the flake copper powder as shown in Table 1. Where D 10 , D 5 . , D 9. And Drnax are the particle size and maximum particle size at a cumulative weight of 10%, 50%, and 90% obtained using the laser diffraction scattering particle size distribution measurement method, and 0.1 g of flake copper powder. Was mixed with a 0.1% aqueous solution of SN Dispersant 546 8 (manufactured by San Nopco) and dispersed with an ultrasonic homogenizer (US-300T manufactured by Nippon Seiki Seisakusho) for 5 minutes. The distribution was measured using a MicroTrac HR A9320—X100 (Made by Leeds + Northrup). table 1.
Figure imgf000006_0001
Figure imgf000006_0001
この表 1に示した結果を見る限り、 従来のフレーク銅粉にも種々の粉体特性が あり、 確かにその使用原料の粉体特性、 加工方法に応じて変化しているものと考 えられる。 この表 1の内でも、 まず注目すべきは標準偏差 S Dの値である。 この 標準偏差 S Dとは、 レーザ一回折散乱式粒度分布測定法を用いて得られる全粒径 データのバラツキを表す指標であり、 この値が大きな程、 バラツキが大きなもの となる。 従って、 ここで測定した 5ロットの標準偏差 SDの値は、 3. 8 6 m 〜 1 8. 3 1 xmの範囲でばらついていることが分かり、 ロット間の粒径分布の バラツキが非常に大きな事が分かる。 次に、 変動係数である S の値に着 目すると 0. 6 6〜0. 8 7の範囲でバラックという結果が得られており、且つ、 D ZDi。で表される値が 4. 6 2〜7. 6 1の範囲でバラックものとなってい る。 更に、 Dmaxの値は、 レーザー回折散乱式粒度分布測定法を用いて得られた 最大粒径を示すものであり、 最大 1 04. 7 0 imという大きな粗粒が含まれて いる事も分かる。 この従来のフレーク銅粉 (3種類) を、 走查電子顕微鏡で観察 したのが図 2である。 この図 2から分かるように、 従来の銅粉は、 その粉粒自体 の厚さは薄いものの、 その厚さにも均一性が無いものであり、 特に粉粒の形状サ ィズ自体にもバラツキが大きく安定性が無いものである。 しかも、 フレーク化の 度合いにより変わるが、 フレーク化されていない球状銅粉がそのまま残っている 状態も見てとれるのである。 従って、 図 2に示す従来のフレーク銅粉の、 粒度分 布は、 非常にプロ一ドなものになることが理解できるのである。 As can be seen from the results shown in Table 1, conventional flake copper powder also has various powder properties, and it is considered that it certainly changes depending on the powder properties of the raw materials used and the processing method. . The first thing to look out for in Table 1 is the value of the standard deviation SD. The standard deviation SD is an index indicating the variation of the total particle size data obtained by using the laser diffraction / scattering type particle size distribution measuring method. The larger the value, the larger the variation. Therefore, it can be seen that the standard deviation SD values of the five lots measured here vary in the range of 3.86 m to 18.31 xm, and the variation in the particle size distribution between lots is extremely large. I understand that. Next, when focusing on the value of S, which is the coefficient of variation, a result of barracks was obtained in the range of 0.66 to 0.87, and DZDi. The value represented by is barracks in the range of 4.62 to 7.61. Furthermore, the value of D max indicates the maximum particle size obtained by using the laser diffraction scattering particle size distribution measurement method, and it can be seen that a large coarse particle of up to 104.70 im is included. . Fig. 2 shows the conventional flake copper powder (three types) observed with a scanning electron microscope. As can be seen from FIG. 2, the conventional copper powder has a small thickness, but the thickness is not uniform. In particular, the shape of the powder varies. Is large and lacks stability. Moreover, it can be seen that the unflaked spherical copper powder remains as it is, depending on the degree of flake formation. Therefore, it can be understood that the particle size distribution of the conventional flake copper powder shown in Fig. 2 is very prod- uct.
これらの粉体特性を持つ従来のフレーク銅粉を用いて、 導電性ペーストを製造 し、 セラミックコンデンサの外部電極、 低温焼成セラミック基板の焼成回路等を 製造した場合には形状精度がバラツキ、 しかも、 当該外部電極及び焼成回路等の 厚さを薄くすることができないことになるのである。 そして、 本件発明者等が鋭意研究した結果、 フレーク銅粉の持つ粉体としての 特性を、 請求項に記載したように、 「レーザー回折散乱式粒度分布測定法による 重量累積粒径 D 5。が 1 0 / m以下であり、 レーザー回折散乱式粒度分布測定法に よる重量累積粒径 D 1 ()、 D 5。、 D 9。、 レーザー回折散乱式粒度分布測定法により 測定した粒度分布の標準偏差 S Dを用いて表される S D Z D 5。の値が 0 . 5 5以 下であり、 且つ、 D s o/ D i。で表される値が 4 . 5以下」 であるものとすれば、 導電性ペース卜に加工し回路等を引き回した場合に、 当該回路等の膜厚を薄する ことができ、 しかも膜密度に優れ、 且つ、 導電性ペーストとしての脱媒を良好に するという品質バランスの採れたチクソトロピックな性能を得ることが可能で、 その導電性ペース卜を用いて導体形成を行った場合にも、 その導体の抵抗を上昇 させることなく、 同時に、 形成する導体等の形状の精度を著しく改善できること が判明したのである。 この本件発明に係るフレーク銅粉 (2種類) を、 走査型電 子顕微鏡で観察したのが、 図 1である。 ここで、 図 1と図 2とを比較することで、 明らかに、 図 2に示す従来のフレーク銅粉に比べて、 図 1のフレーク銅粉の粉粒 のサイズが明らかに揃っており、しかも微細な粉粒であることが分かるのである。 しかも、 この走査電子顕微鏡像で視認できるレベルにおいても、 粒度分布がシャ —プであろうことが容易に理解できるのである。 Producing conductive paste using conventional flake copper powder with these powder properties However, when the external electrodes of the ceramic capacitor and the firing circuit of the low-temperature firing ceramic substrate are manufactured, the shape accuracy varies, and the thickness of the external electrodes and the firing circuit cannot be reduced. . As a result of the present inventors have made intensive studies, the characteristics of a powder having a flake copper powder, as described in claim, the weight-cumulative particle diameter D 5 by "laser diffraction scattering particle size distribution measuring method. Is 10 / m or less, and the weight cumulative particle size D 1 ( ), D 5 , D 9 by the laser diffraction scattering type particle size distribution measuring method, the standard of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method If the value of SDZD 5 expressed using the deviation SD is 0.55 or less, and the value expressed by D so / D i is 4.5 or less, the conductive In the case where the circuit and the like are routed after being processed into a conductive paste, the film thickness of the circuit and the like can be reduced, and the film density is excellent, and the quality balance that improves the solvent removal as a conductive paste is improved. It is possible to obtain thixotropic performance that has been When performing conductor formed using Bok also its without increasing the resistance of the conductor, at the same time, than it was found that the shape accuracy of the conductor or the like for forming can be remarkably improved. Fig. 1 shows the flake copper powder (two types) according to the present invention observed by a scanning electron microscope. Here, by comparing Fig. 1 and Fig. 2, it is clear that the particle size of the flake copper powder in Fig. 1 is clearly uniform compared to the conventional flake copper powder shown in Fig. 2, and It turns out that it is a fine powder. In addition, it is easy to understand that the particle size distribution may be sharp even at a level that can be visually recognized in the scanning electron microscope image.
ここで、 「レーザー回折散乱式粒度分布測定法による重量累積粒径 D 5。が 1 0 m以下」 としているのは、 鋭意研究の結果、 当該重量累積粒径 D 5。が 1 0 以下でなければ、 当該フレーク銅粉を用いた導電性ペーストにより引き回す回路 等の導体形状の厚さを安定して薄くすることができず、 ビアホールの充填性の改 善もできないことが判明したのである。 中でも、 重量累積粒径 D 5。が 7 m以下 になると、 導電性ペーストに加工した際に適度なチクソトロピックな性能を得る ことが可能であり、 導電性ペーストに加工し回路等を引き回した場合に、 膜厚を 薄くすることができ、 しかも膜密度に優れ、 且つ、 導電性ペーストとしての脱媒 を良好にするという品質バランスに優れ、 導電性べ一ストとしての品質安定性に 特に優れるのである。 念のために記載しておくが、 導体形状の厚さを薄くするこ とができないとは、 粗大粒子の存在、 チクソ卜口ピックな性能に劣るため、 導電 性ペーストを用いて仮に薄い導体を形成しても薄膜層の形成がうまくいかず、 導 体内部での膜密度に劣るために形成した焼結回路の電気抵抗が上昇したり、 焼結 回路の端面の直線性が損なわれたり、 焼結回路等の表面状態が粗くなる等の不良 が発生することを言うのである。 なお、 このレーザ一回折散乱式粒度分布測定法 による重量累積粒径 D の測定に反映されるのは、 塑性変形により扁平化したフ レーク銅粉の粉粒の長径方向の長さであると考えられる。 Here, “the weight cumulative particle diameter D 5 by the laser diffraction scattering particle size distribution measuring method is 10 m or less” is the weight cumulative particle diameter D 5 as a result of earnest study. If the value is not less than 10, the thickness of the conductor shape of a circuit or the like drawn around by the conductive paste using the flake copper powder cannot be stably reduced and the filling property of the via hole cannot be improved. It turned out. Among them, the weight cumulative particle size D 5 . When it is 7 m or less, it is possible to obtain appropriate thixotropic performance when processed into a conductive paste, and it is possible to reduce the film thickness when processing into a conductive paste and routing circuits etc. Decomposition as conductive paste It is excellent in quality balance to improve the quality, and particularly excellent in quality stability as a conductive base. As a precautionary note, the inability to reduce the thickness of the conductor shape means that the presence of coarse particles and poor pick-and-mouth performance means that a thin conductor must be temporarily made using a conductive paste. Even if formed, the formation of a thin film layer does not work well, and the electrical resistance of the formed sintered circuit increases due to poor film density inside the conductor, the linearity of the end face of the sintered circuit is impaired, This means that defects such as roughening of the surface condition of the sintered circuit etc. occur. It is considered that the measurement of the weight cumulative particle diameter D by the laser diffraction / scattering type particle size distribution measurement method is the length in the major axis direction of the flake copper powder flattened by plastic deformation. Can be
そして、 上述したフレーク銅粉の粉粒は、 そのアスペクト比 (平均長径 平均 厚さ) が 3〜 2 0 0の粉粒となっていることが、 より好ましいのである。 ここで 言うアスペクト比は、 その粉粒の加工度に応じて定まるものではあるが、 一般的 に、 その値が大きな程フレーク銅粉の粉粒自体が薄い傾向にあり、 一方でその値 が小さい程フレーク銅粉の粉粒自体が厚い傾向にある。従って、ァスぺクト比(平 均長径 Z平均厚さ) が 3未満の場合には導電性ペーストに加工した際の粘度特性 においてチクソトロピックな性能に欠ける傾向が顕著になるのである。 一方、 ァ スぺクト比 (平均長径 Z平均厚さ) が 2 0 0を超える場合には、 粉粒自体の形状 が折れ曲がり、 亀裂を生じる等の形状不良が生じ、 粒度分布がブロードになり、 フレーク銅粉の粉粒自体の厚さも薄くなり過ぎて、 導電性ペース卜に加工する際 の、 バインダ一樹脂である有機ビヒクルとの均一な混合が困難となるのである。 更に、 本件発明に係るフレーク銅粉の特徴としては、 レーザー回折散乱式粒度 分布測定法による重量累積粒径 D 5。の値を基準としたときに、 最大重量累積粒径It is more preferable that the above-mentioned flake copper powder particles have an aspect ratio (average major axis average thickness) of 3 to 200. The aspect ratio mentioned here is determined according to the degree of processing of the particles, but in general, the larger the value is, the smaller the particles of the flake copper powder tend to be, while the smaller the value is, The flake copper powder particles tend to be thicker. Therefore, when the aspect ratio (average major axis Z average thickness) is less than 3, the tendency to lack thixotropic performance in the viscosity characteristics when processed into a conductive paste becomes remarkable. On the other hand, if the aspect ratio (average major axis Z average thickness) is more than 200, the shape of the powder itself is bent, cracks and other shape defects occur, and the particle size distribution becomes broad, The thickness of the flake copper powder itself becomes too thin, making it difficult to uniformly mix the organic vehicle, which is a binder resin, when processing into a conductive paste. Further, a feature of the flake copper powder according to the present invention is a weight cumulative particle diameter D 5 by a laser diffraction scattering type particle size distribution measuring method. The maximum weight cumulative particle size based on the value of
D m a xの値が、 重量累積粒径 D 5。の 5倍を超える値をとることが無いのである。 即ち、 レーザー回折散乱式粒度分布測定法による重量累積粒径 D 5。と、 最大重量 累積粒径 D m a xとの比である [ D m a x] / [ D s o] が 5以下となるのである。 この ことから、 本件発明に係るフレーク銅粉は、 従来のフレーク銅粉に見られた粗大 粒が存在しないため、 粒度分布が非常にシャープな製品となっているのである。 また、上述してきたフレーク銅粉は、通常の略球形の形状をした銅粉の粉粒を、 メカニカルに塑性変形させフレーク形状にしたものであるから、 製造過程におい て一定の製造上のバラツキを生じるのが通常である。 そこで、 本件発明者等が、 鋭意研究した結果、 上述した粉体特性を備えるフレーク銅粉を 7 0 w t %以上含 有していれば、 その他の残部フレーク銅粉の粉体特性が上述の条件を満たさない としても、 導電性ペーストに加工して、 引き回す回路等の厚さを薄くして、 当該 回路形状の安定性を確保する意味において十分な性能を発揮することができるの である。 ぐ本件発明に係るフレーク銅粉の製造方法〉 上述した如きフレーク銅粉を安 定して製造するためには、 従来の製造方法を用いても製造することは出来ないの である。 即ち、 従来のフレーク銅粉は、 ヒドラジン還元法に代表される湿式法や アトマイズ法に代表される乾式法等の手法で得られた略球形の銅粉を、 直接、 ポ —ルミル、 ビーズミル等の粉砕機にかけ、 メディァであるボ一ルやビーズにより 銅粉の粉粒を粉砕することで、 粉粒を塑性変形させ扁平化させ、 フレーク状にし たものである。 The value of D max is the weight cumulative particle size D 5 . It cannot be more than 5 times the value of. That is, the weight cumulative particle diameter D 5 by the laser diffraction scattering particle size distribution measuring method. [ Dmax ] / [ Dso ], which is the ratio of the maximum weight cumulative particle size Dmax , to 5 or less. From this, the flake copper powder according to the present invention is a product having a very sharp particle size distribution because the coarse particles observed in the conventional flake copper powder do not exist. In addition, the flake copper powder described above is obtained by mechanically plastically deforming powder particles of a generally spherical copper powder into a flake shape. In general, certain manufacturing variations occur. Therefore, as a result of the inventor's intensive studies, if the powdered flake copper powder having the above-mentioned powder properties contains 70 wt% or more, the powder properties of the remaining flake copper powder are adjusted to the above-mentioned conditions. Even if the above condition is not satisfied, sufficient performance can be exhibited in the sense of processing into a conductive paste, reducing the thickness of the circuit to be routed, and ensuring the stability of the circuit shape. Production method of flake copper powder according to the present invention> In order to produce flake copper powder stably as described above, it cannot be produced even by using a conventional production method. That is, the conventional flake copper powder is obtained by directly converting a substantially spherical copper powder obtained by a method such as a wet method typified by the hydrazine reduction method or a dry method typified by the atomization method into a pole mill, a bead mill, or the like. The flakes are made by crushing the copper powder particles with media such as balls and beads in a crusher to plastically deform and flatten the powder particles into flakes.
ところが、 この様な製造方法の場合には、 当初用いる略球形の銅粉自体が、 一 定の凝集状態にあり、 凝集状態を破壊することなく圧縮変形を行っても、 粉粒同 土の凝集状態が保たれたまま圧縮変形を受け、 凝集状態のままのフレーク銅粉が 得られ、 粉粒同士が分散した状態にはならないのである。 従って、 本件発明者等は、 まず略球形の状態の銅粉の凝集状態を破壊し、 解粒 処理を行い、その後、粉粒をフレーク状に圧縮変形する方法に想到したのである。 これに相当する製造方法が、 請求項に記載した、 「凝集状態にある銅粉を解粒処 理し、解粒処理の終了した凝集度 1 . 6以下の分散性に優れた銅粉の粉粒を用い、 当該銅粉の粉粒を、 粒径が 0 . 5 mm以下のメディアピーズを用いて高工ネルギ —ポールミルで圧縮し塑性変形させることで、 フレーク状にすることを特徴とす るフレーク銅粉の製造方法。」 である。  However, in the case of such a production method, the substantially spherical copper powder used initially is in a certain coagulated state, and even if the powder is subjected to compressive deformation without destroying the coagulated state, the coagulation of the powder and the same soil is performed. The flake copper powder in the agglomerated state is obtained by compressive deformation while maintaining the state, and the particles do not become dispersed. Therefore, the present inventors have conceived of a method of first breaking the agglomeration state of copper powder in a substantially spherical state, performing a pulverizing treatment, and then compressing and deforming the powder particles into flakes. The manufacturing method corresponding to this is described in the claim, "A powder of copper powder excellent in dispersibility having an agglomeration degree of 1.6 or less after the agglomeration of the copper powder in an agglomerated state. The flakes are obtained by compressing and plastically deforming the copper powder with a high-technical energy-pole mill using a media piece with a particle size of 0.5 mm or less, using a copper powder. Method for producing flake copper powder. "
凝集状態にある銅粉とは、 所謂ヒドラジン還元法、 電解法に代表される湿式法 であっても、 アトマイズ法に代表される乾式法等であっても、 一定の凝集状態が 形成されるため、 このように表現しているのである。 特に、 湿式法の場合には、 粉粒の凝集状態の形成が起こりやすい傾向にある。 即ち、 一般的に湿式法による 銅粉の製造は、 硫酸銅溶液を出発原料として、 水酸化ナトリウム溶液を用いて反 応させ、 酸化銅を得て、 これを所謂ヒドラジン還元する等して、 洗浄、 濾過、 乾 燥することで行われる。 このようにして乾燥した銅粉が得られるのであるが、 こ のように湿式法で得られる銅粉の粉体は、 製造過程において一定の凝集状態を形 成するのである。 また、 以下で言う銅粉スラリーとは、 ヒドラジン還元する等し て銅粉が生成し、 これを含有したスラリー状態になったものを言う。 この凝集し た状態の粉体を、 できるだけ一次粒子に分離することを、本件明細書では「解粒」 と称しているのである。 The copper powder in the agglomerated state means that a certain agglomerated state is formed regardless of a so-called hydrazine reduction method, a wet method typified by an electrolytic method, or a dry method typified by an atomization method. It is expressed in this way. In particular, in the case of the wet method, There is a tendency that the formation of the aggregation state of the powder particles easily occurs. That is, in general, copper powder is produced by a wet method by using a copper sulfate solution as a starting material, reacting with a sodium hydroxide solution to obtain copper oxide, reducing the copper oxide by so-called hydrazine reduction, and washing the copper powder. This is performed by filtration and drying. The dried copper powder is obtained in this manner, and the copper powder obtained by the wet method forms a certain agglomerated state in the manufacturing process. In addition, the copper powder slurry referred to below refers to a slurry in which copper powder is generated by hydrazine reduction or the like and contains this. In the present specification, separating the aggregated powder into primary particles as much as possible is referred to as “disintegration”.
単に解粒作業を行うことを目的とするのであれば、 解粒の行える手段として、 高エネルギーポールミル、 高速導体衝突式気流型粉碎機、 衝撃式粉砕機、 ゲージ ミル、 媒体攪拌型ミル、 高水圧式粉碎装置等種々の物を用いることが可能と考え られる。 ところが、 本件発明者等が鋭意研究した結果、 以下に述べる二つの解粒 手法を採用することが、 解粒処理の信頼性の観点から好ましいと判断した。 この 二つの方法に共通することは、 銅粉の粉粒が装置の内壁部、 攪拌羽根、 粉砕媒体 等の部分と接触することを最小限に抑制し、 凝集した粉粒同士の相互の衝突現象 を利用して解粒を行う点である。 即ち、 装置の内壁部、 攪拌羽根、 粉碎媒体等の 部分と接触し、 粉粒の表面を傷つけ、 表面粗さを増大させることを可能な限り抑 制するのである。 そして、 十分な粉粒同士の衝突を起こさせることで、 凝集状態 にある粉粒を解粒すると同時に、 粉粒同士の衝突による粉粒表面の平滑化も可能 となるのである。  If the purpose is simply to perform the pulverization work, as a means to perform the pulverization, a high-energy pole mill, high-speed conductor impingement type air flow type pulverizer, impact type pulverizer, gauge mill, medium agitation type mill, It is considered possible to use various things such as a hydraulic mill. However, as a result of earnest studies by the present inventors, it has been determined that it is preferable to employ the following two pulverization methods from the viewpoint of the reliability of the pulverization processing. What is common to these two methods is that it minimizes the contact of copper powder particles with the inner wall of the equipment, stirring blades, grinding media, etc. This is the point that the granulation is performed by using the method. In other words, contact with parts such as the inner wall of the device, stirring blades, and the grinding media, and damaging the surface of the granules and increasing the surface roughness are suppressed as much as possible. By causing sufficient collisions between the particles, it is possible to break up the particles in the agglomerated state and to smooth the surface of the particles due to the collision between the particles.
解粒処理を行う一つの手法としては、 凝集状態にある乾燥した銅粉を、 遠心力 を利用した風力サ一キユレ一夕を用いて行うことができる。 ここで言う 「遠心力 を利用した風力サ一キユレ一夕」 とは、 エアをブロワ一して、 凝集した銅粉を円 周軌道を描くように吹き上げてサーキユレ一ションさせ、 このときに発生する遠 心力により粉粒同士を気流中で相互に衝突させ、 解粒作業を行うために用いるも のである。 このときに、 遠心力を利用した市販の風力分級器を用いることも可能 である。 係る場合、 あくまでも分級を目的としたものではなく、 風力分級器がェ ァをブロワ一して、 凝集した銅粉を円周軌道を描くように吹き上げるサーキユレ 一夕の役割を果たすのである。 As one method of performing the pulverizing treatment, the dried copper powder in the agglomerated state can be subjected to centrifugal force using a wind generator. The term “wind centrifugal force using centrifugal force” here means that air is blown up, and the agglomerated copper powder is blown up in a circular orbit to cause circuit cycling. It is used to perform powder disintegration work by causing the powder particles to collide with each other in an air current due to centrifugal force. At this time, it is also possible to use a commercially available air classifier that uses centrifugal force. In such a case, it is not intended for classification, and the air classifier blows the air and blows the agglomerated copper powder in a circular orbit. It plays the role of an evening.
また、 もう一つの解粒手法としては、 凝集状態にある銅粉を含有した銅粉スラ リーを、 遠心力を利用した流体ミルを用いて解粒処理するのである。 ここで言う 「遠心力を利用した流体ミル」 とは、 銅粉スラリーを円周軌道を描くように高速 でフローさせ、 このときに発生する遠心力により凝集した粉粒同士を溶媒中で相 互に衝突させ、 解粒作業を行うために用いるのである。  Another method of crushing is to crush the copper powder slurry containing copper powder in the agglomerated state using a fluid mill utilizing centrifugal force. The term "fluid mill using centrifugal force" used here means that copper powder slurry is made to flow at high speed in a circular orbit, and powder particles agglomerated by the centrifugal force generated at this time are exchanged in a solvent. It is used to carry out the crushing work.
上述した解粒処理は、必要に応じて複数回を繰り返して行うことも可能であり、 要求品質に応じて、 解粒処理のレベルの任意選択が可能である。 解粒処理の施さ れた銅粉は、 凝集状態が破壌され新たな粉体特性を備えることになるのである。 そして、 本件明細書に言う凝集度に関して説明する。 レーザー回折散乱式粒度分 布測定法による重量累積粒径 D 5。と走査型電子顕微鏡像の画像解析により得られ る平均粒径 D I Aとを用いて D 5。Z D I Aで表される凝集度の値が 1 . 6以下とする ことが、 最も望ましいのである。 ここで言う凝集度が 1 . 6以下となると、 殆ど 完全な単分散の状態が確保できていると言えるためである。 The above-mentioned pulverization processing can be repeated a plurality of times as necessary, and the level of the pulverization processing can be arbitrarily selected according to the required quality. The copper powder that has been subjected to the crushing process breaks down in agglomeration state and has new powder characteristics. Then, the cohesion degree described in the present specification will be described. Weight cumulative particle size D5 by laser diffraction scattering particle size distribution measurement method. D 5 with an average particle diameter D IA that obtained by image analysis of a scanning electron microscope image and. The value of cohesion represented by ZD IA is 1. 6 or less is the most preferable. If the degree of cohesion is less than 1.6, it can be said that almost complete monodisperse state can be secured.
レーザー回折散乱式粒度分布測定法を用いて得られる重量累積粒径 D 5。の値 は、 真に粉粒の一つ一つの径を直接観察したものではないと考えられる。 殆どの 銅粉を構成する粉粒は、 個々の粒子が完全に分離した、 いわゆる単分散粉ではな く、 複数個の粉粒が凝集して集合した状態になっているからである。 レ一ザ一回 折散乱式粒度分布測定法は、 凝集した粉粒を一個の粒子 (凝集粒子) として捉え て、 重量累積粒径を算出していると言えるのである。 Weight cumulative particle diameter D 5 obtained by using a laser diffraction scattering particle size distribution measuring method. It is considered that the value of is not really a direct observation of the diameter of each particle. Most of the copper powder particles are not so-called monodisperse powders, in which individual particles are completely separated, but a state in which a plurality of powder particles are aggregated and aggregated. It can be said that the laser one-time scattering particle size distribution measuring method regards the agglomerated particles as one particle (agglomerated particles) and calculates the weight cumulative particle size.
これに対して、 走査型電子顕微鏡 (S E M) を用いて観察される銅粉の観察像 を画像処理することにより得られる平均粒径 D I Aは、 S E M観察像から直接得る ものであるため、 一次粒子が確実に捉えられることになり、 反面には粉粒の凝集 状態の存在を全く反映させていないことになる。 On the other hand, the average particle diameter D IA obtained by image processing the observation image of copper powder observed using a scanning electron microscope (SEM) is obtained directly from the SEM observation image. Particles can be reliably caught, but on the other hand, they do not reflect the existence of the aggregation state of the powder particles at all.
以上のように考えると、 本件発明者等は、 レーザー回折散乱式粒度分布測定法 の重量累積粒径 D 5。と画像解析により得られる平均粒径 D I Aとを用いて、 D s oZ D I Aで算出される値を凝集度として捉えることとしたのである。 即ち、 同一ロッ 卜の銅粉において D 5。と D! Λとの値が同一精度で測定できるものと仮定して、 上 述した理論で考えると、 凝集状態のあることを測定値に反映させる D 5。の値は、 Aの値よりも大きな値になると考えられる。 Considering the above, the present inventors have determined that the weight cumulative particle size D 5 of the laser diffraction scattering type particle size distribution measuring method. Using the average particle size D IA obtained by image analysis and the average particle size D IA , the value calculated by D soZ D IA was determined as the degree of aggregation. That is, D 5 in the same lot of copper powder. And D! Assuming that the value of Λ can be measured with the same precision, and considering the theory described above, the presence of agglutination is reflected in the measured value D 5 . The value of It is considered that the value becomes larger than the value of A.
このとき、 D 5。の値は、 銅粉の粉粒の凝集状態が全くなくなるとすれば、 限り なく D 1 Aの値に近づいてゆき、 凝集度である D 5。/ D I Aの値は、 1に近づくこと になる。 凝集度が 1となった段階で、 粉粒の凝集状態が全く無くなった単分散粉 と言えるのである。 但し、 現実には、 凝集度が 1未満の値を示す場合もある。 理 論的に考え真球の場合には、 1未満の値にはならないのであるが、 現実には、 真 球ではなく 1未満の凝集度の値が得られることになるようである。 なお、 本件明 細書における走査型電子顕微鏡(S E M)を用いて観察される銅粉の画像解析は、 旭エンジニアリング株式会社製の I P— 1 0 0 0 P Cを用いて、 円度しきい値 1 0、重なり度 2 0として円形粒子解析を行い、平均粒径 D I Aを求めたものである。 以上のようにして解粒処理の終了した略球形の銅粉を、 高エネルギーポールミ ルを用いて処理することで、 銅粉の粉粒を圧縮して塑性変形させ、 フレーク銅粉 とするのである。 従って、 この最終的な製品であるフレーク銅粉のレーザ一回折 散乱式粒度分布測定法の重量累積粒径 D 5。が 1 O ^ m以下であり、 上述した粉粒 の適正なァスぺクト比を得るためには、圧縮変形前の解粒処理の終了した銅粉(以 下、 「元粉」 と称する。) のレーザー回折散乱式粒度分布測定法の重量累積粒径 D 5。を基準として、 フレーク化の加工度を考慮して判断指標として用いることが 可能である。 即ち、 粉粒の加工度に応じて適正な重量累積粒径 D 5。を持つ元粉を 用いることで、 圧縮変形後の重量累積粒径 D 5 Q及び厚さ等の粉体特性を適正なも のとできるのである。 In this case, D 5. The value, D 5 if granular aggregation state of the copper powder is completely eliminated, Yuki approaching the value of the infinitely D 1 A, a degree of aggregation. The value of / DIA will approach 1. At the stage when the degree of agglomeration reaches 1, it can be said that this is a monodispersed powder in which the state of agglomeration of the powder has completely disappeared. However, in reality, the cohesion degree may show a value of less than 1. Theoretically, in the case of a true sphere, the value is not less than 1, but in reality, it seems that a cohesion value of less than 1 is obtained instead of a true sphere. The image analysis of the copper powder observed using a scanning electron microscope (SEM) in this specification was performed using an IP-100 PC manufactured by Asahi Engineering Co., Ltd. The average particle diameter DIA was determined by performing circular particle analysis with an overlap degree of 20. By processing the roughly spherical copper powder that has been de-pulverized as described above using a high-energy pole mill, the copper powder powder is compressed and plastically deformed into flake copper powder. is there. Therefore, the final product, the flake copper powder, has a weight cumulative particle size D 5 according to the laser-diffraction scattering particle size distribution measurement method. Is less than 1 O m, and in order to obtain an appropriate aspect ratio of the above-mentioned powder particles, copper powder that has been subjected to pulverization before compression deformation (hereinafter referred to as “source powder”). weight cumulative particle diameter D 5 of the laser diffraction scattering particle size distribution measuring method. It can be used as a criterion index in consideration of the degree of processing of flakes based on That is, an appropriate weight cumulative particle size D 5 according to the degree of processing of the powder particles. By using the raw powder with is to the powder properties such as weight cumulative particle diameter D 5 Q and the thickness after the compression deformation can and also appropriate for.
ここで言う高エネルギーボールミルとは、 ビーズミル、 アトライタ一等のよう に銅粉を乾燥させた状態で行うか、 銅粉スラリーの状態で行うかは問わず、 メデ ィァビーズを用いて、 銅粉の粉粒を圧縮して塑性変形させることのできる装置の 総称として用いているものである。 そして、 本件発明の場合には、 メディアピー ズの粒径及び材質の選定が非常に重要となる。  The high-energy ball mill referred to here means that the copper powder is dried by using media beads regardless of whether the copper powder is dried or copper powder slurry, as in a bead mill or an attritor. It is used as a generic term for devices that can compress and plastically deform grains. In the case of the present invention, the selection of the particle size and the material of the media piece is very important.
まず、 粒径が 0 . 5 mm以下のメディアビーズを用いなければならない。 この 様にメディアビーズの粒径を規定したのは、 次のような理由からである。 メディ ァビーズの粒径が 0 . 5 mmを超えると、 高エネルギーポールミルの内部で、 メ ディアビーズが圧縮し塑性変形させる際の銅粉の粉粒が凝集し易くなり、 結果と して凝集粒子を圧縮塑性変形させるために粗大フレーク粉粒が生じることにな り、 粒度分布がブロードになるため、 粒度分布がシャープな分散性の高いフレー ク銅粉を得ることが出来なくなるのである。 First, media beads with a particle size of less than 0.5 mm must be used. The reason for defining the media bead size in this way is as follows. If the media beads have a particle size of more than 0.5 mm, the copper beads are likely to agglomerate when the media beads are compressed and plastically deformed inside the high energy pole mill. Coarse particles are compressed plastically deformed to produce coarse flake powder, and the particle size distribution becomes broad, making it impossible to obtain highly dispersible flake copper powder with a sharp particle size distribution. is there.
更に、 メディアビーズは、 比重が 3 . 0〜6 . 5 g Z c m 3のものを用いるこ とが好ましい。 メディアビーズの比重が 3 . 0 g Z c m 3未満の場合には、 メデ ィァビーズの重量が軽くなりすぎて、 銅粉の粉粒の圧縮変形に長時間を要し、 生 産性を考慮すれば、 工業的に採用できる条件ではないのである。 これに対し、 メ ディアビーズの比重が 6 . 5 g / c m 3を超える場合には、 メディアビーズの重 量が重くなり、 銅粉の粉粒の圧縮変形力が大きくなり、 粉粒同士を凝集させやす くなると共に、変形後のフレーク銅粉の厚さの不均一が生じやすくなるのである。 このようにして得られたフレーク銅粉は、 本件発明に係るフレーク銅粉の持つ 粉体特性を備える製品を効率よく製造することができるものとなるのである。 そ して、 このフレーク銅粉を用いて製造した導電性ペーストは、 非常に優れた性能 を持つことになる。 当該導電性ペーストを用いて導体を形成する場合、 導体厚さ を薄くしても、 形成する導体の電気抵抗を低く維持し、 且つ、 導体形状の安定性 に優れたものとなるのである。 従って、 プリント配線板の焼結回路、 セラミック コンデンサの外部電極の焼結形成に適したものとなるのである。 ぐ導電性ペースト> 以上述べてきた本件発明に係るフレーク銅粉を用いて、 導電性ペーストを製造すると、 導電性ペーストの粘度制御が容易で且つ経時変化 が少なくなり、 導電性ペース卜に優れたチクソトロピックな性質を付与すること が容易となるのである。 従って、 本件発明に係るフレーク銅粉を用いた導電性べ 一ストは、 導電性ペーストを構成する有機ビヒクルの種類、 フレーク銅粉の含有 量等を同じとすると、 従来のフレーク銅粉を用いた場合とは比較にならないほど の、 良好な品質のものとなるのである。 Furthermore, the media beads specific gravity 3. Less than six. 5 g Z cm is preferred and Mochiiruko things 3. If the specific gravity of the media beads is less than 3.0 g Z cm 3 , the weight of the media beads becomes too light, and it takes a long time to compress and deform the copper powder particles. It is not a condition that can be industrially adopted. On the other hand, when the specific gravity of the media beads exceeds 6.5 g / cm 3 , the weight of the media beads increases, the compressive deformation force of the copper powder particles increases, and the powder particles aggregate. In addition to being easily formed, the thickness of the flake copper powder after the deformation is likely to be uneven. The flaked copper powder thus obtained can efficiently produce a product having the powder characteristics of the flaked copper powder according to the present invention. Then, the conductive paste produced using the flake copper powder has extremely excellent performance. When a conductor is formed using the conductive paste, even when the conductor thickness is reduced, the electric resistance of the formed conductor is kept low, and the stability of the conductor shape is excellent. Therefore, it is suitable for sintering circuits of printed wiring boards and sintering of external electrodes of ceramic capacitors. When a conductive paste is manufactured using the flake copper powder according to the present invention described above, the viscosity of the conductive paste is easily controlled, the change with time is reduced, and the conductive paste is excellent. It is easy to provide thixotropic properties. Therefore, the conductive paste using the flake copper powder according to the present invention uses the conventional flake copper powder when the type of the organic vehicle constituting the conductive paste and the content of the flake copper powder are the same. Good quality, incomparable to the case.
導電性ペース卜のチクソトロピックな性質をどのレベルにするかは、 導電性べ 一ストの使用目的、 使用方法に応じて変化するものであり、 一般的には、 先にも 述べたように導電性ペース卜を構成する有機ビヒクルの種類、 フレーク銅粉の含 有量、 フレーク銅粉の粉粒の持つ粒径等を勘案して、 適宜定められるのである。 発明を実施するための最良の形態 The level of the thixotropic property of the conductive paste varies depending on the purpose and method of use of the conductive paste. It is appropriately determined in consideration of the type of the organic vehicle constituting the sex paste, the content of the flake copper powder, the particle size of the flake copper powder particles, and the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施形態を通じて、 本件発明に関し、 より詳細に説明する。 実施例 1 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。  Hereinafter, the present invention will be described in more detail with reference to embodiments. Example 1: In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention.
この実施形態で用いた原料粉の粉体特性は、 レーザー回折散乱式粒度分布測定 法の重量累積粒径 D5。は 0. 3 5 xmであり、 画像解析により得られる平均粒径 DIAは 0. 20 m、 従って、 D5。ZD IAで算出される凝集度は 1. 7 5であつ た。 The powder characteristics of the raw material powder used in this embodiment are as follows: the weight cumulative particle size D 5 according to the laser diffraction scattering type particle size distribution measuring method. Is 0.35 xm and the average particle diameter D IA obtained by image analysis is 0.20 m, thus D 5 . Cohesion calculated by ZD IA was filed at 1.7 5.
上述する原料粉を、 市販の風力分級機である日清エンジニアリング社製の夕一 ポクラシフアイャを用いて、 回転数 6 500 r pmでサーキュレーシヨンさせ、 凝集状態にある粉粒同士を衝突させて解粒作業を行った。  The above-mentioned raw material powder is circulated at a rotation speed of 6500 rpm using a commercial air classifier, Nisshin Engineering Co., Ltd. Grain work was performed.
この結果、 解粒作業の終了した銅粉 (元粉) のレーザー回折散乱式粒度分布測 定法の重量累積粒径 D5。は 0. 30 mであり、 画像解析により得られる平均粒 径 DIAは 0. 20 m、 従って、 D5。/D IAで算出される凝集度は 1. 50であ り、 十分な解粒処理が行われていることが確認できた。 As a result, the weight-cumulative particle diameter D of the laser diffraction scattering particle size distribution measurement method of the terminated copper powder Kaitsubu work (raw powder) 5. Is 0.30 m, and the average particle diameter D IA obtained by image analysis is 0.20 m, thus D 5 . The agglomeration degree calculated by / D IA was 1.50, confirming that sufficient pulverization was performed.
次に、 この解粒処理した元粉 30 0 gを、 媒体分散ミルである VMG— GET Z MANN社製の D I S P E RMAT D— 5226を用いて、 比重が 5. 8 g /じ1113の 0. 3 mm径のジルコニアビ一ズ 8 0 0 gをメディァビーズとして用 い、 溶媒に 1 20 gのメタノール、 5 gの力プリン酸を混合して用いて、 回転数 2000 r pmで 3時間処理し、 元粉の粉粒を圧縮して塑性変形させる事で、 略 球形の元粉をフレーク銅粉とした。 Next, 0 raw powder 30 0 g treated this deagglomeration using is medium dispersion mill VMG- GET Z MANN Co. DISPE RMAT D- 5226, specific gravity 5. 8 g / Ji 111 3. Using 800 g of zirconia beads having a diameter of 3 mm as media beads, the mixture was treated with a mixture of 120 g of methanol and 5 g of phosphoric acid for 3 hours at a rotation speed of 2000 rpm. By compressing and plastically deforming the powder of the base powder, the substantially spherical base powder was used as flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 1. 64 xmであって以下に述べる平均粒径 D5。の比である [Dmax] / [Dso] =.4. 1であり 5以上となる粗大粒は見られず、 レーザ一回折散乱式粒度分布測定法に よる重量累積 D10 (0. 2 6 m)、 D5。 (0. 40 /zm)、 D9。 (0. 6 7 m)、 及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標準偏 差 SD (0. 1 5 ^m) を用いて表される S D/D5。の値が 0. 3 8であり、 D 。で表される値が 2 . 5 8となっている。 The characteristics of the flaked copper powder obtained as described above have a maximum particle size D max of 1.64 xm and an average particle size D 5 described below. [D max ] / [Dso] =. 4.1, no coarse grains exceeding 5 were observed, and the weight accumulation D 10 (0.26 m), D 5. (0. 40 / zm), D 9. (0.67 m), and SD / D 5 expressed using the standard deviation SD (0.15 ^ m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.38, and D . The value represented by is 2.58.
そして、 このフレーク銅粉を構成する粉粒の平均厚さは 0 . 0 5 i mであった。 この厚さは、 フレーク銅粉をエポキシ樹脂で固めた試料を製造し、 その試料の断 面を走査型電子顕微鏡で 1 0 0 0 0倍の倍率で観察することで、 フレーク銅粉の 厚さを直接観察し、 視野内にあるフレーク銅粉の厚さの総和を、 観察されたフレ ーク銅粉の個数で除したものである。 なお、 以下の実施形態及び比較例において は、 厚さ観察の可能な倍率を適宜採用し、 同様フレーク銅粉の厚さとしている。 また、 このフレーク銅粉の直接観察した平均粒径 (長径) は、 0 . 3 9 mであ つた。 ここでは、 粉粒を走査型電子顕微鏡 (倍率 5 0 0 0倍) で観察し、 得られ た観察像から確認できるフレーク銅粉の長径の平均値として求めた。 このフレー ク銅粉の長径に関し、 以下の実施形態及び比較例では、 長径の観察の可能な倍率 を適宜採用し、 同様フレーク銅粉の長径としている。 そして、 平均アスペクト比 は 7 . 8であった。 この平均アスペクト比は、 上記の [平均粒径] Z [平均厚さ] として求めたものである。 従って、 本件発明に係るフレーク銅粉の具備すべき要 件を満足するものであることが分かるのである。  The average thickness of the particles constituting the flake copper powder was 0.05 im. The thickness of the flake copper powder is determined by manufacturing a sample in which flake copper powder is solidified with epoxy resin and observing the cross section of the sample with a scanning electron microscope at a magnification of 1000 ×. Is directly observed, and the total thickness of the flake copper powder in the field of view is divided by the number of observed flake copper powder. In the following embodiments and comparative examples, a magnification enabling thickness observation is appropriately adopted, and the thickness of the flake copper powder is similarly used. The average particle diameter (major axis) of the flake copper powder observed directly was 0.39 m. Here, the powder particles were observed with a scanning electron microscope (magnification: 500,000), and the average value of the major axis of the flake copper powder ascertained from the obtained observation image was obtained. Regarding the major axis of the flake copper powder, in the following embodiments and comparative examples, a magnification capable of observing the major axis is appropriately adopted, and the major axis of the flake copper powder is similarly used. And the average aspect ratio was 7.8. This average aspect ratio was determined as the above [average particle size] Z [average thickness]. Therefore, it is understood that the flake copper powder according to the present invention satisfies the requirements to be provided.
更に、 本件発明者等は、 得られたフレーク銅粉を用いてテルビネオール系の導 電性ペーストを製造し、 導電性ペース卜の粘度の変化率を測定したのである。 こ こで製造したテルピネオール系導電性ペーストは、 フレーク銅粉を 6 5 w t %、 残部をバインダー樹脂である有機ビヒクルの組成として、 これらを混鍊してテル' ピネオール系導電性ペーストを得たのである。 このときの有機ビヒクルは、 テル ピネオ一ル 9 3 w t %、 ェチルセルロース 7 w t %の組成を持つものを用いた。 このようにして得られたテルビネオール系導電性ペース卜の製造直後の粘度を 測定した。 本件明細書における粘度は、 東機産業社製の粘度計である R E— 1 0 5 Uを用いて、 0 . 1 111及び1 . 0 r p mの回転数で測定したものである。 以下、 0 . 1 r p mの回転数で測定した粘度を 「A粘度」、 1 . O r p mの回転 数で測定した粘度を 「B粘度」 と称することとする。 即ち、 A粘度が 3 8 0 P a • s、 B粘度が 1 6 0 P a · sであった。 更に、 導電性ペース卜のチクソトロピ ックな性能を示す指標として用いる粘度比 (= [A粘度] / [ B粘度] ) を求め ると 2 . 4となっている。 この粘度比の値が大きいほど、 導電性ペーストのチク ソトロピックな性能が良好なものと言えるのである。 実施例 2 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。 Further, the present inventors manufactured a terbineol-based conductive paste using the obtained flake copper powder, and measured the rate of change in viscosity of the conductive paste. The terpineol-based conductive paste produced here was composed of 65% by weight of flake copper powder and the balance of an organic vehicle as a binder resin, and was mixed to obtain a terpineol-based conductive paste. is there. At this time, an organic vehicle having a composition of terpineol 93 wt% and ethyl cellulose 7 wt% was used. The viscosity of the terbineol-based conductive paste thus obtained was measured immediately after production. The viscosity in the present specification was measured at a rotational speed of 0.1111 and 1.0 rpm using RE-105 U, a viscometer manufactured by Toki Sangyo Co., Ltd. Hereinafter, the viscosity measured at a rotation speed of 0.1 rpm is referred to as “A viscosity”, and the viscosity measured at a rotation speed of 1.0 rpm is referred to as “B viscosity”. That is, the A viscosity was 380 Pa · s, and the B viscosity was 160 Pa · s. Further, the viscosity ratio (= [A viscosity] / [B viscosity]) used as an index indicating the thixotropic performance of the conductive paste is 2.4. The larger the value of this viscosity ratio, the more the conductive paste It can be said that the sootropic performance is good. Example 2: In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention.
この実施形態で用いた原料粉の粉体特性は、 レーザー回折散乱式粒度分布測定 法の重量累積粒径 D 5。は 0. 8 5 zmであり、 画像解析により得られる平均粒径 DIAは 0. 48 m、 従って、 D5。 D IAで算出される凝集度は 1. 7 7であつ た。 The powder characteristics of the raw material powder used in this embodiment are as follows: the weight cumulative particle size D 5 according to the laser diffraction scattering type particle size distribution measuring method. Is 0.85 zm and the average particle size D IA obtained by image analysis is 0.48 m, thus D 5 . Cohesion, which is calculated by D IA was filed in 1.7 7.
上述する原料粉を、 純水中に分散させ銅粉スラリーとして、 これを市販の遠心 力を利用した流体ミルである太平洋機ェ社製のフアイン · フローミルを用いて、 回転数 3 0 0 0 r pmでサーキュレーションさせ、 凝集状態にある粉粒同士を衝 突させて解粒作業を行った。  The above-mentioned raw material powder is dispersed in pure water to form a copper powder slurry. The copper powder slurry is produced using a commercially available centrifugal fluid mill, Taiheiyo Kikai Co., Ltd. The powder was circulated at pm, and the particles in the agglomerated state collided with each other to perform the pulverization operation.
この結果、 解粒作業の終了した銅粉 (元粉) のレーザー回折散乱式粒度分布測 定法の重量累積粒径 D5。は 0. 7 3 mであり、 画像解析により得られる平均粒 径 DIAは 0. 49 m、 従って、 D5。ZD IAで算出される凝集度は 1. 49であ り、 十分な解粒処理が行われていることが確認できた。 As a result, the weight-cumulative particle diameter D of the laser diffraction scattering particle size distribution measurement method of the terminated copper powder Kaitsubu work (raw powder) 5. Is 0. 7 3 m, an average particle diameter D IA obtained by image analysis 0. 49 m, therefore, D 5. Cohesion calculated by ZD IA 1. Ri 49 der, sufficient deagglomeration process has it confirmed that have been made.
次に、 この解粒処理した元粉 5 0 0 gを用いて、 実施例 1と同様の方法で、 元 粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉とした。 但し、 実施例 1での媒体分散ミルである VMG— GE T ZMANN社製の D I S P ERMAT D— 5 2 2 6を用いての、 処理時間のみを変更し、 1 0時間処理 して、 元粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉 とした。  Next, by using 500 g of the pulverized raw powder and compressing and plastically deforming the powder of the raw powder in the same manner as in Example 1, the substantially spherical raw powder is converted into flake copper. Powdered. However, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISP ERMAT D—5 2 26 that was used in Example 1, and the processing was performed for 10 hours. By compressing and plastically deforming the granules, the substantially spherical base powder was used as flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 1 5. 5 6 mであって以下に述べる平均粒径 D5。の比である [Dmax] / [Dso] =4. 7であり 5以上となる粗大粒は見られず、 レーザー回折散乱式粒度分布測定法に よる重量累積 D10 ( 1. 5 1 m), D5。 (3. 3 3 m), D9。 (6. 0 3 m)、 及びレーザ一回折散乱式粒度分布測定法により測定した粒度分布の標準偏 差 SD (1. 6 8 m) を用いて表される S D ZD 5。の値が 0. 5 0であり、 D soZDi。で表される値が 3. 9 9となっている。 そして、 このフレーク銅粉を構 成する粉粒の平均厚さは 0. 02 /xm、 このフレーク銅粉の直接観察した平均粒 径 (長径) は、 2. 8 m, 平均アスペクト比は 140であった。 従って、 本件 発明に係るフレーク銅粉の具備すべき要件を満足するものであることが分かるの である。 The characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 15.56 m and an average particle size D 5 described below. Is the ratio of [D max] / [Dso] = 4. 7 in there 5 or become coarse grain is not observed, the weight accumulated D 10 by laser diffraction scattering particle size distribution measuring method (1. 5 1 m) , D 5. (3. 3 3 m), D 9. (6. 0 3 m), and SD ZD 5 represented using standard deviation SD of the particle size distribution measured (1. 6 8 m) by laser first diffraction scattering particle size distribution measuring method. Is 0.50 and D soZDi. The value represented by is 3.99. And make this flake copper powder The average thickness of the formed powder particles was 0.02 / xm, the average particle diameter (major axis) of the flake copper powder directly observed was 2.8 m, and the average aspect ratio was 140. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
更に、 本件発明者等は、 得られたフレーク銅粉を用いて、 実施例 1と同様の有 機ビヒクル及び混合比率を採用して、 テルピネオール系の導電性ペーストを製造 し、 導電性べ一ストの粘度を測定したのである。 その結果、 A粘度が 6 00 P a • s、 B粘度が 143 P a · sであった。 従って、 粘度比 (= [A粘度] / [B 粘度]) が 4. 2となっている。 実施例 3 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。 この実施形態 で用いた原料粉及び元粉は、 実施例 2と同様のものを用いた。 従って、 元粉の粉 体特性及び解粒処理後の粉体特性に関しては、 重複した記載を避けるため、 ここ での説明は省略する。  Further, the present inventors manufactured a terpineol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared a conductive base. Was measured for viscosity. As a result, the A viscosity was 600 Pa · s and the B viscosity was 143 Pa · s. Therefore, the viscosity ratio (= [A viscosity] / [B viscosity]) is 4.2. Example 3 In this embodiment, flake copper powder was produced by using the copper powder obtained from the raw material powder by the following method as a raw powder and using the production method according to the present invention. The same raw material powder and raw powder as used in Example 2 were used in this embodiment. Therefore, the description of the powder characteristics of the original powder and the powder characteristics after the pulverization treatment is omitted here to avoid duplication.
次に、 この解粒処理した元粉 50 0 gを用いて、 実施例 1と同様の方法で、 元 粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉とした。 但し、 実施例 1での媒体分散ミルである VMG— GETZMANN社製の D I S PERMAT D— 5226を用いての、 処理時間のみを変更し、 7時間処理し て、 元粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉と した。  Next, by using 500 g of the pulverized raw powder and compressing and plastically deforming the powder of the raw powder in the same manner as in Example 1, the substantially spherical raw powder is converted into flake copper powder. And However, only the processing time was changed using the VMG-GETZMANN DIS PERMAT D-5226, which is the medium dispersion mill in Example 1, and the processing was performed for 7 hours to compress the original powder particles. By performing plastic deformation, the substantially spherical base powder was converted to flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 5. 36 mであって以下に述べる平均粒径 D 5。の比である [Dmax] / [D so] = 3. 6であり 5以上となる粗大粒は見られず、 レーザー回折散乱式粒度分布測定法に よる重量累積 D10 (0. 6 7 m), D5。 ( 1. 5 0 xm)、 D9。 (2. 8 0 m)、 及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標準偏 差 SD (0. 79 urn) を用いて表される S DZDS。の値が 0. 53であり、 D soZD i。で表される値が 4. 1 8となっている。 そして、 このフレーク銅粉を構 成する粉粒の平均厚さは 0. 08 m、 このフレーク銅粉の直接観察した平均粒 径 (長径) は 1. 3 、 平均アスペクト比は 1 8. 8であった。 従って、 本件 発明に係るフレーク銅粉の具備すべき要件を満足するものであることが分かるの である。 The characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 5.36 m and an average particle size D 5 described below. [D max ] / [D so] = 3.6, no coarse particles with a value of 5 or more were observed, and the weight accumulation D 10 (0.67 m ), D 5. (1. 5 0 xm), D 9. (2.80 m), and S DZD S expressed using the standard deviation SD (0.79 urn) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.53, and D soZD i. The value represented by is 4.18. The average thickness of the particles constituting the flake copper powder is 0.08 m, The diameter (major axis) was 1.3 and the average aspect ratio was 18.8. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
更に、 本件発明者等は、 得られたフレーク銅粉を用いて、 実施例 1と同様の有 機ビヒクル及び混合比率を採用して、 テルビネオ一ル系の導電性ペーストを製造 し、 導電性ペース卜の粘度を測定したのである。 その結果、 A粘度が 42 0 P a • s、 B粘度が 1 3 0 P a · sであった。 従って、 粘度比 (= [A粘度] / [B 粘度]) が 3. 2となっている。 実施例 4 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。 この実施形態 で用いた原料粉及び元粉は、 実施例 2と同様のものを用いた。 従って、 元粉の粉 体特性及び解粒処理後の粉体特性に関しては、 重複した記載を避けるため、 ここ での説明は省略する。  Further, the present inventors manufactured a terbeneol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared a conductive paste. The viscosity of the sample was measured. As a result, the viscosity A was 420 Pa · s, and the viscosity B was 130 Pa · s. Therefore, the viscosity ratio (= [A viscosity] / [B viscosity]) is 3.2. Example 4: In the present embodiment, flake copper powder was manufactured using the copper powder obtained from the raw material powder by the following method as a base powder and using the manufacturing method according to the present invention. The same raw material powder and raw powder as used in Example 2 were used in this embodiment. Therefore, the description of the powder characteristics of the original powder and the powder characteristics after the pulverization treatment is omitted here to avoid duplication.
次に、 この解粒処理した元粉 5 0 0 gを用いて、 実施例 1と同様の方法で、 元 粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉とした。 伹し、 実施例 1での媒体分散ミルである VMG— GE T ZMANN社製の D I S P ERMAT D— 5 2 2 6を用いての、 処理時間のみを変更し、 1時間処理し て、 元粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉と した。  Next, by using 500 g of the pulverized raw powder and compressing and plastically deforming the powder of the raw powder in the same manner as in Example 1, the substantially spherical raw powder is converted into flake copper. Powdered. Then, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISP ERMAT D—5 2 2 6 in Example 1, and the processing was performed for 1 hour. By compressing and plastically deforming the powder, the substantially spherical base powder was converted into flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 1. 44 mであって以下に述べる平均粒径 D5。の比である [Dmax]. / [Dso] = 1. 5であり 5以上となる粗大粒は見られず、 レーザー回折散乱式粒度分布測定法に よる重量累積 D10 (0. 5 1 xm)、 D5Q (0. 9 5 m)、 D9。 ( 1. 4 3 m)、 及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標準偏 差 SD (0. 43 n ) を用いて表される S DZD 5。の値が 0. 45であり、 D soZDi。で表される値が 2. 8 0となっている。 そして、 このフレーク銅粉を構 成する粉粒の平均厚さは 0. 1 9 m、 このフレーク銅粉の直接観察した平均粒 径 (長径) は 0. 9 m、 平均アスペクト比は 4. 7であった。 従って、 本件発 明に係るフレーク銅粉の具備すべき要件を満足するものであることが分かるので ある。 The characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 1.44 m and an average particle size D 5 described below. [ Dmax ] ./ [Dso] = 1.5, no coarse particles exceeding 5 were observed, and the weight accumulation by laser diffraction scattering particle size distribution measurement method D 10 (0.5 1 xm ), D 5Q (0. 9 5 m), D 9. (1.43 m), and SDZD 5 expressed using the standard deviation SD (0.43 n) of the particle size distribution measured by a laser diffraction scattering type particle size distribution measuring method. Is 0.45 and D soZDi. The value represented by is 2.80. The average thickness of the particles constituting the flake copper powder is 0.19 m, the average particle diameter (major axis) of the flake copper powder directly observed is 0.9 m, and the average aspect ratio is 4.7. Met. Therefore, It can be seen that it satisfies the requirements for flake copper powder according to the present invention.
更に、 本件発明者等は、 得られたフレーク銅粉を用いて、 実施例 1と同様の有 機ビヒクル及び混合比率を採用して、 テルビネオール系の導電性ペーストを製造 し、 導電性ペース卜の粘度を測定したのである。 その結果、 A粘度が 3 5 0 P a • s、 B粘度が 1 2 5 P a · sであった。 従って、 粘度比 (= [A粘度] / [B 粘度]) が 2. 8となっている。 実施例 5 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。  Further, the present inventors manufactured a terbineol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared a conductive paste. The viscosity was measured. As a result, the viscosity A was 350 Pa · s and the viscosity B was 125 Pa · s. Therefore, the viscosity ratio (= [A viscosity] / [B viscosity]) is 2.8. Example 5: In the present embodiment, flake copper powder was produced by using the copper powder obtained from the raw material powder by the following method as a base powder and using the production method according to the present invention.
この実施形態で用いた原料粉の粉体特性は、 レーザー回折散乱式粒度分布測定 法の重量累積粒径 D 50は 6. 84 mであり、 画像解析により得られる平均粒径 DIAは 4. 2 0 m、 従って、 D5。ZDIAで算出される凝集度は 1. 6 3であつ た。 Powder properties of the raw material powder used in this embodiment, the weight cumulative particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method is 6. 84 m, the average particle diameter D IA obtained by image analysis 4. 20 m, thus D 5 . Cohesion calculated by ZD IA was filed in 1.6 3.
上述する原料粉を、 市販の風力分級機である日清エンジニアリング社製の夕一 ボクラシフアイャを用いて、 回転数 6 50 0 r pmでサーキュレーシヨンさせ、 凝集状態にある粉粒同士を衝突させて解粒作業を行つた。  The raw material powder described above is circulated at a rotation speed of 6500 rpm using a commercial air classifier, Nisshin Engineering Co., Ltd. Pulverization work was performed.
この結果、 解粒作業の終了した元粉のレーザー回折散乱式粒度分布測定法の重 量累積粒径 D5。は 4. 9 2 ^ mであり、 画像解析により得られる平均粒径 D IAは 4. 1 0 zm、 従って、 D5。/DIAで算出される凝集度は 1. 20であり、 十分 な解粒処理が行われていることが確認できた。 As a result, Weight cumulative particle diameter D 5 of the laser diffraction scattering of raw powder ended in Kaitsubu working particle size distribution measurement method. Is 4. 9 2 ^ m, an average particle diameter D IA obtained by image analysis 4. 1 0 zm, therefore, D 5. The agglomeration degree calculated by / D IA was 1.20 , confirming that sufficient pulverization was performed.
次に、 この解粒処理した元粉 5 0 0 gを用いて、 実施例 1と同様の方法で、 銅 粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉とした。 但し、 実施例 1での媒体分散ミルである VMG— GETZMANN社製の D I S P ERMAT D— 5 2 2 6を用いての、 処理時間のみを変更し、 1 0時間処理 して、 元粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉 とした。  Next, by using 500 g of the pulverized raw powder and compressing and plastically deforming the powder of the copper powder in the same manner as in Example 1, the substantially spherical raw powder is converted into flake copper. Powdered. However, only the processing time was changed using the medium dispersion mill VMG—GETZMANN DISP ERMAT D—522 6 in Example 1, and the processing time was changed to 10 hours. Was compressed and plastically deformed, so that the roughly spherical base powder was made into flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 40. 0 0 mであって以下に述べる平均粒径 D5。の比である [Dmax] / [Dso] =4. 2であり 5以上となる粗大粒は見られず、 レーザー回折散乱式粒度分布測定法に よる重量累積 D10 (4. 7 5 m), D5。 (9. 5 0 ^m)、 D9。 (1 2. 8 3 nm), 及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標準 偏差 SD (3. 2 3 m) を用いて表される S D/D 5。の値が 0. 34であり、 D /Di。で表される値が 2. 7 0となっている。 そして、 このフレーク銅粉を 構成する粉粒の平均厚さは 0. 8 0 ^m、 このフレーク銅粉の直接観察した平均 粒径 (長径) は 9. 2 、 平均アスペクト比は 1 1. 5であった。 従って、 本 件発明に係るフレーク銅粉の具備すべき要件を満足するものであることが分かる のである。 The properties of the flake copper powder obtained as described above have a maximum particle diameter D max of 40.0 m and an average particle diameter D 5 described below. [D max ] / [Dso] = 4. Coarse grains to be located 5 or more 2 not observed, the weight accumulated D 10 by laser diffraction scattering particle size distribution measuring method (4. 7 5 m), D 5. (9. 5 0 ^ m), D 9. (12.83 nm), and SD / D 5 expressed using the standard deviation SD (3.23 m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Has a value of 0.34 and D / Di. The value represented by is 2.70. The average thickness of the particles constituting the flake copper powder is 0.80 ^ m, the average particle diameter (major axis) of the flake copper powder directly observed is 9.2, and the average aspect ratio is 11.5. Met. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
更に、 本件発明者等は、 得られたフレーク銅粉を用いて、 実施例 1と同様の有 機ビヒクル及び混合比率を採用して、 テルピネオール系の導電性ペーストを製造 し、 導電性ペーストの粘度を測定したのである。 その結果、 A粘度が 9 O P a · s、 B粘度が 6 0 P a · sであった。従って、 粘度比(= [A粘度] Z [B粘度]) が 1. 5となっている。 実施例 6 : 本実施形態では、 原料粉から以下の方法で得られた銅粉を元粉とし て、 本件発明に係る製造方法を用いて、 フレーク銅粉を製造した。  Further, the present inventors manufactured a terpineol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared the viscosities of the conductive paste. Was measured. As a result, the viscosity A was 9 OPa · s, and the viscosity B was 60 Pa · s. Therefore, the viscosity ratio (= [A viscosity] Z [B viscosity]) is 1.5. Example 6: In the present embodiment, flake copper powder was produced using the copper powder obtained from the raw material powder by the following method as the original powder and using the production method according to the present invention.
この実施形態で用いた原料粉の粉体特性は、 レーザー回折散乱式粒度分布測定 法の重量累積粒径 D 50は 4. 24 ^mであり、 画像解析により得られる平均粒径 D IAは 2. 1 0 zxm、 従って、 D5。/D IAで算出される凝集度は 2. 0 2であつ た。 The powder characteristics of the raw material powder used in this embodiment were as follows: the weight cumulative particle size D 50 of the laser diffraction scattering type particle size distribution measurement method was 4.24 ^ m, and the average particle size D IA obtained by image analysis was . 1 0 zxm, therefore, D 5. / D cohesion calculated by IA was filed at 2.0 2.
上述する原料粉を、 市販の風力分級機である日清エンジニアリング社製のター ポクラシフアイャを用いて、 回転数 6 5 0 0 r pmでサーキユレ一ションさせ、 凝集状態にある粉粒同士を衝突させて解粒作業を行つた。  The above-mentioned raw material powder is circulated at a rotation speed of 6500 rpm by using a commercially available air classifier, Nisshin Engineering Co., Ltd. Pulverization work was performed.
この結果、 解粒作業の終了した銅粉 (元粉) のレーザー回折散乱式粒度分布測 定法の重量累積粒径 D5。は 2. 8 0 xmであり、 画像解析により得られる平均粒 径 DIAは 2. 0 0 m、 従って、 D5。/DIAで算出される凝集度は 1. 40であ り、 十分な解粒処理が行われていることが確認できた。 As a result, the weight-cumulative particle diameter D of the laser diffraction scattering particle size distribution measurement method of the terminated copper powder Kaitsubu work (raw powder) 5. Is 2. an 8 0 xm, the average particle diameter D IA obtained by image analysis 2. 0 0 m, therefore, D 5. The agglomeration degree calculated by / D IA was 1.40, confirming that sufficient pulverization was performed.
次に、 この解粒処理した元粉 5 0 0 gを用いて、 実施例 1と同様の方法で、 元 粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉とした。 但し、 実施例 1での媒体分散ミルである VMG— GE T ZMANN社製の D I S P E RMAT D— 5 2 2 6を用いての、 処理時間のみを変更し、 7時間処理し て、 元粉の粉粒を圧縮して塑性変形させる事で、 略球形の元粉をフレーク銅粉と した。 Next, using 500 g of the pulverized raw powder, a method similar to that of Example 1 was used. Approximately spherical base powder was made into flake copper powder by compressing and plastically deforming the powder particles. However, only the processing time was changed using the medium dispersion mill VMG—GET ZMANN DISPE RMAT D—5 2 26 that was used in Example 1, and the processing was performed for 7 hours. By compressing the grains and plastically deforming them, the roughly spherical base powder was converted into flake copper powder.
以上のようにして得られたフレーク銅粉の特性は、 最大粒径 Dmaxが 2 0. 7 3 mであって以下に述べる平均粒径 D5。の比である [Dmax] Z [Dso] = 2. 8であり 5以上となる粗大粒は見られず、 レーザー回折散乱式粒度分布測定法に よる重量累積粒径 D 10 ( 3. 8 7 Mm), D 5。 (7. 3 0 rn), D 9。 (8. 5 1 nm), 及びレーザー回折散乱式粒度分布測定法により測定した粒度分布の標 準偏差 S D ( 2. 3 4 m) を用いて表される S D/D 5。の値が 0. 3 2であり、
Figure imgf000021_0001
。で表される値が 2. 2 0となっている。 そして、 このフレーク銅粉を 構成する粉粒の平均厚さは 0. 7 0 im、 このフレーク銅粉の直接観察した平均 粒径 (長径) は 7. 2 m、 平均アスペクト比は 1 0. 3であった。 従って、 本 件発明に係るフレーク銅粉の具備すべき要件を満足するものであることが分かる のである。
The characteristics of the flake copper powder obtained as described above have a maximum particle size D max of 20.733 m and an average particle size D 5 described below. [ Dmax ] Z [Dso] = 2.8, no coarse particles exceeding 5 were observed, and the weight cumulative particle size D 10 (3.87 Mm), D 5. (7. 3 0 rn), D 9. (8.5 / 51 nm), and SD / D 5 expressed using the standard deviation SD (2.34 m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.32, and
Figure imgf000021_0001
. The value represented by is 2.20. The average thickness of the particles constituting the flake copper powder is 0.70 im, the average particle diameter (major axis) of the flake copper powder directly observed is 7.2 m, and the average aspect ratio is 10.3. Met. Therefore, it is understood that the requirements of the flake copper powder according to the present invention are satisfied.
更に、 本件発明者等は、 得られたフレーク銅粉を用いて、 実施例 1と同様の有 機ビヒクル及び混合比率を採用して、 テルビネオ一ル系の導電性ペーストを製造 し、 導電性ペーストの粘度を測定したのである。 その結果、 A粘度が 1 1 2 P a • s、 B粘度が 7 0 P a * sであった。 従って、 粘度比 (= [A粘度] / [B粘 度]) が 1. 6となっている。 比較例: 本実施形態では、実施例 1で用いた凝集状態にある乾燥した原料粉を、 解粒処理することなく、 実施例 1と同様に W i l l y A. B a c h o f e n AG M a s c h i n e n f a b r i k製のダイノーミル KDL型を用いて、 0. 7 mm径のビーズによって、 銅粉の粉粒を圧縮して塑性変形させる事でフレ ーク状の銅粉にした。 この結果得られたフレーク銅粉の粉体特性が、 表 1の試料 番号 4として示したものである。 このフレーク銅粉は、 最大粒径 Dmaxが平均粒 径 D 5。の 5倍以上の粗大粒を含むものである。 改めて、 ここで試料番号 4として示したフレーク銅粉の粉体特性を示しておく と、 重量累積粒径 D10 (2. 8 1 m), D5。 (8. 2 0 rn), D9。 (2 1. 3 8 Aim), 最大粒径 Dmax ( 52. 3 3 ^m)、 [Dmax] / [D so] = 6. 4で あり 5以上の値となる。 更に、 レーザー回折散乱式粒度分布測定法により測定し た粒度分布の標準偏差 SD (7. 1 7 ^m) を用いて表される S D/D5。の値が 0. 87であり、 D ZDi。で表される値が 4. 04となっている。 そして、 こ のフレーク銅粉を構成する粉粒の平均厚さは 0. 7 5 xm、 このフレーク銅粉の 直接観察した平均粒径 (長径) は 7. 8 rn, 平均アスペクト比は 1 0. 4であ つた。 即ち、 本件発明に係るフレーク銅粉の具備すべき要件を満足するものでな いことが分かるのである。 このようなフレーク銅粉を導電性ペーストの製造に用 いると、 有機ビヒクルの配合を変化させても導電性ペースト粘度の制御が困難と なり、高密度配線回路等の引き回しには用いることが出来ないのが明らかである。 そこで、 本件発明者等は、 試料番号 4のフレーク銅粉を用いて、 実施例 1と同 様の有機ビヒクル及び混合比率を採用して、 テルビネオール系の導電性ペースト を製造し、 導電性ペーストの粘度を測定した。 その結果、 A粘度が 250 P a · s、 B粘度が 227 P a · sであり、 粘度比 (= [A粘度] Z [B粘度]) が 1. 1となっている。 この結果を見る限り、 特にチクソトロピックな性能に限って言 えば、 上記実施形態に記載した導電性ペーストと比べ劣ると考えられるが、 極め て大きな差異はないと言える。 即ち、 従来のフレーク銅粉は、 フレーク銅粉の粉 粒の厚さを薄くすることでチクソ卜口ピックな性能を得てきたが、 粉粒の粒度分 布がプロ一ドとなり、 平均粒径を基準として見た場合の極めて大きな粗粒が含ま れるものであったため、 薄くて、 膜密度の高い微細な電極、 回路等の形成に用い られていなかつたのである。 産業上の利用可能性 Further, the present inventors manufactured a terbeneol-based conductive paste using the obtained flake copper powder and the same organic vehicle and mixing ratio as in Example 1, and prepared the conductive paste. Was measured for viscosity. As a result, the viscosity A was 112 Pa · s and the viscosity B was 70 Pa * s. Therefore, the viscosity ratio (= [A viscosity] / [B viscosity]) is 1.6. Comparative Example: In this embodiment, the dyno mill KDL manufactured by Willy A. Bachofen AG Maschinenfabrik was used in the same manner as in Example 1 without subjecting the dried raw material powder in the agglomerated state used in Example 1 to pulverization. Using a mold, the particles of copper powder were compressed with beads of 0.7 mm diameter and plastically deformed to form flake-like copper powder. The powder properties of the resulting flake copper powder are shown in Table 1 as sample number 4. This flake copper powder has a maximum particle size D max with an average particle size D 5 . It contains coarse grains of 5 times or more. Here again, the powder properties of the flake copper powder shown as Sample No. 4 are shown as follows: weight cumulative particle diameter D 10 (2.81 m), D 5 . (8. 2 0 rn), D 9. (2.3.8 Aim), maximum particle size D max (52.3 3 ^ m), [D max ] / [D so] = 6.4, which is a value of 5 or more. Furthermore, SD / D 5 expressed using the standard deviation SD (7. 17 ^ m) of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. Is 0.87 and D ZDi. The value represented by is 4.04. The average thickness of the particles constituting the flake copper powder is 0.75 xm, the average particle diameter (major axis) of the flake copper powder directly observed is 7.8 rn, and the average aspect ratio is 10. It was 4. In other words, it is understood that the requirements that the flake copper powder according to the present invention should have are not satisfied. When such flake copper powder is used in the production of conductive paste, it is difficult to control the viscosity of the conductive paste even if the composition of the organic vehicle is changed, and it can be used for routing high-density wiring circuits. Clearly not. Thus, the present inventors manufactured a terbineol-based conductive paste using the flake copper powder of Sample No. 4 and the same organic vehicle and mixing ratio as in Example 1, and prepared the conductive paste. The viscosity was measured. As a result, the A viscosity is 250 Pa · s, the B viscosity is 227 Pa · s, and the viscosity ratio (= [A viscosity] Z [B viscosity]) is 1.1. From these results, it can be considered that the performance is particularly inferior to the conductive paste described in the above embodiment, especially in terms of thixotropic performance, but it can be said that there is no extremely large difference. That is, the conventional flake copper powder has obtained a thixotropic performance by reducing the thickness of the flake copper powder, but the particle size distribution of the powder becomes a prod Because they contained extremely large coarse particles when viewed on the basis of, they were not used for forming thin electrodes, circuits, etc. that were thin and had a high film density. Industrial applicability
本件発明に係るフレーク銅粉を用いることで、 製造する導電性ペース卜粘度制 御を可能とし、 粘度との関係におけるバランスの採れたチクソトロピックな性質 を付与することができ、 その導電性ペーストを用いて形成する導体の薄層化、 膜 密度の改善、 電気的抵抗性を損なうことなく、 しかも、 導体形状の制御が容易と なるため、 従来不可能であった薄く且つファインな回路パターン、 電極形状等の 形成が可能となるのである。 また、 本件発明に係るフレーク銅粉の製造方法を用 いることで、 従来にない微粒で粒度分布に優れたフレーク銅粉の効率の良い製造 が可能となり、 更に、 本件発明に係る粉体特性を備えたフレーク銅粉の製造歩留 まりを飛躍的に向上させることが可能となるのである。 以上のことから分かるよ うに、 本件発明に係るフレーク銅粉は、 その粒度分布が従来にないほどにシヤー プであり、 本件発明に係る製造方法によれば粉粒のァスぺクト比を任意に変える ことが可能であり、 結果としてフレーク銅粉のチクソトロピックな性能の最適な 設計が可能となるのである。 By using the flake copper powder according to the present invention, it is possible to control the viscosity of the conductive paste to be manufactured, and to impart a well-balanced thixotropic property in relation to the viscosity. It is easy to control the conductor shape without reducing the thickness of the conductor formed using it, improving the film density, losing the electrical resistance. This makes it possible to form thin and fine circuit patterns, electrode shapes, etc., which were not possible in the past. In addition, by using the method for producing flake copper powder according to the present invention, it is possible to efficiently produce flake copper powder having an unprecedented fine particle and excellent particle size distribution. It is possible to dramatically improve the production yield of flaked copper powder. As can be seen from the above, the flake copper powder according to the present invention has a particle size distribution as sharp as never before, and according to the production method according to the present invention, the powder particles have an arbitrary aspect ratio. It is possible to optimize the thixotropic performance of flake copper powder.

Claims

請求の範囲 The scope of the claims
1. 銅粉の粉粒を塑性変形させフレーク化したフレーク銅粉において、 1. Flake copper powder, which is formed by plastically deforming copper powder particles into flakes,
レーザー回折散乱式粒度分布測定法による重量累積粒径 D 5。が 1 0 im以下で あり、 レーザー回折散乱式粒度分布測定法による重量累積粒径 D1()、 D5Q、 D90、 レーザ一回折散乱式粒度分布測定法により測定した粒度分布の標準偏差 SDを用 いて表される S D/D SQの値が 0. 5 5以下であり、 且つ、
Figure imgf000024_0001
。で表され る値が 4. 5以下であることを特徴とするフレーク銅粉。
Weight cumulative particle diameter D 5 by a laser diffraction scattering particle size distribution measuring method. Is 10 im or less, and the cumulative weight particle size D 1 () , D 5Q , D 90 by the laser diffraction scattering type particle size distribution measuring method, the standard deviation SD of the particle size distribution measured by the laser diffraction / scattering type particle size distribution measuring method The value of SD / D SQ expressed by using is less than 0.55, and
Figure imgf000024_0001
. A flake copper powder, wherein the value represented by is 4.5 or less.
2. 当該粉粒のアスペクト比 (平均長径ノ平均厚さ) が 3〜200である請求 項 1に記載のフレーク銅粉。 2. The flake copper powder according to claim 1, wherein the powder particles have an aspect ratio (average major axis / average thickness) of 3 to 200.
3. レーザ一回折散乱式粒度分布測定法による重量累積粒径 D 5。と最大重量累 積粒径 Dmaxとの比である [Dmax] / [Dso] が 5以下である請求項 1又は請求 項 2に記載のフレーク銅粉。 3. Weight cumulative particle size D 5 by laser diffraction / scattering particle size distribution measurement method. 3. The flake copper powder according to claim 1, wherein a ratio of [D max ] / [Dso], which is a ratio between the maximum weight accumulated particle diameter D max and [D max ], is 5 or less.
4. 請求項 1〜請求項 3のいずれかに記載のフレーク銅粉を 70 w t %以上の 存在率で含むフレーク銅粉。 4. A flake copper powder containing the flake copper powder according to any one of claims 1 to 3 at an abundance of 70 wt% or more.
5. 請求項 1〜請求項 4のいずれかに記載のフレーク銅粉の製造方法であって、 凝集状態にある銅粉を解粒処理し、 解粒処理の終了した凝集度 1. 6以下の分 散性に優れた銅粉の粉粒を用い、 5. The method for producing flake copper powder according to any one of claims 1 to 4, wherein the copper powder in an agglomerated state is pulverized, and the coagulation degree after the pulverization processing is 1.6 or less. Using copper powder particles with excellent dispersibility,
当該銅粉の粉粒を、 粒径が 0. 5mm以下のメディアビーズを用いて高工ネル ギーポールミルで圧縮し塑性変形させることで、 フレーク状にすることを特徴と するフレーク銅粉の製造方法。  A method for producing flake copper powder, wherein the copper powder is formed into flakes by compressing and plastically deforming the copper powder with media beads having a particle size of 0.5 mm or less by a high-energy energy pole mill.
6. メディアビーズは、 比重が 3. 0 g/cm3〜6. 5 g/cm3である請求 項 5に記載のフレーク銅粉の製造方法。 6. Media bead has a specific gravity 3. 0 g / cm 3 ~6. 5 g / cm 3 A method of manufacturing a flaky copper powder according to claim 5.
7 . 請求項 1〜請求項 4のいずれかに記載のフレーク銅粉を用いて製造した導 電性ペースト。 7. A conductive paste produced using the flake copper powder according to any one of claims 1 to 4.
PCT/JP2003/010192 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder WO2004048017A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003254924A AU2003254924A1 (en) 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
CA002506367A CA2506367A1 (en) 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
KR1020047013938A KR100613033B1 (en) 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
US10/536,012 US20060137488A1 (en) 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
DE10393768T DE10393768T5 (en) 2002-11-22 2003-08-11 A copper flake powder, a method of producing the flake copper powder, and a conductive paste using the flake copper powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-338990 2002-11-22
JP2002338990A JP4145127B2 (en) 2002-11-22 2002-11-22 Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder

Publications (1)

Publication Number Publication Date
WO2004048017A1 true WO2004048017A1 (en) 2004-06-10

Family

ID=32375760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010192 WO2004048017A1 (en) 2002-11-22 2003-08-11 Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder

Country Status (9)

Country Link
US (1) US20060137488A1 (en)
JP (1) JP4145127B2 (en)
KR (1) KR100613033B1 (en)
CN (1) CN1292861C (en)
AU (1) AU2003254924A1 (en)
CA (1) CA2506367A1 (en)
DE (1) DE10393768T5 (en)
TW (1) TWI236393B (en)
WO (1) WO2004048017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580800B (en) * 2014-02-14 2017-05-01 三井金屬鑛業股份有限公司 Copper powder
CN107414070A (en) * 2017-08-10 2017-12-01 上海交通大学 A kind of uniform-spherical graphene/monocrystalline copper composite powder and preparation method thereof

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540945B2 (en) * 2003-06-26 2010-09-08 住友大阪セメント株式会社 Coating for forming metal thin film, metal thin film and method for producing the same
JP4859362B2 (en) * 2004-11-04 2012-01-25 三井金属鉱業株式会社 Flake nickel powder, method for producing the same, and conductive paste
JP4613362B2 (en) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 Metal powder for conductive paste and conductive paste
JP5144022B2 (en) * 2006-03-24 2013-02-13 三井金属鉱業株式会社 Copper powder manufacturing method and copper powder obtained by the manufacturing method
KR101552354B1 (en) 2006-04-05 2015-09-10 니혼 이타가라스 가부시키가이샤 Flaky particle and brightening pigment and cosmetic preparation coating composition resin composition and ink composition each containing these
JP5563732B2 (en) * 2007-01-19 2014-07-30 日本光研工業株式会社 Smooth flaky powder, highly bright pigment and method for producing the same
JP4922793B2 (en) * 2007-03-09 2012-04-25 アルファーサイエンティフィック株式会社 Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
CN100493781C (en) * 2007-04-06 2009-06-03 深圳市危险废物处理站 Method of producing sheet shaped silver-plated copper powder
CN101919005A (en) 2007-09-13 2010-12-15 汉高股份两合公司 Electrically conductive composition
US8295033B2 (en) 2010-01-21 2012-10-23 George Van Straten Mobile electricity generator using solar, wind, and fuel-generated power
US8854794B2 (en) 2010-01-21 2014-10-07 George Van Straten Mobile electricity generator using solar panels
JP5820202B2 (en) * 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP5563607B2 (en) * 2012-01-20 2014-07-30 東洋アルミニウム株式会社 Flaky conductive filler
JP5794222B2 (en) * 2012-02-03 2015-10-14 株式会社村田製作所 Ceramic electronic components
JP5799948B2 (en) * 2012-02-03 2015-10-28 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
WO2013161966A1 (en) * 2012-04-27 2013-10-31 太陽インキ製造株式会社 Electroconductive composition
KR101565639B1 (en) * 2013-02-20 2015-11-03 삼성전기주식회사 Multi-layered ceramic electronic parts
JP6180769B2 (en) * 2013-03-29 2017-08-16 トクセン工業株式会社 Flaky microparticles
CN103273056B (en) * 2013-05-27 2016-01-20 中国科学院过程工程研究所 A kind of flake copper and preparation method thereof
JP2015035581A (en) * 2013-07-10 2015-02-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2015034309A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
CN103773984B (en) * 2014-01-23 2015-10-14 上海交通大学 The powder metallurgy process of Ultra-fine Grained alloy prepared by a kind of micro-nano lamination
DE102014008756A1 (en) * 2014-06-12 2015-12-17 Pfisterer Kontaktsysteme Gmbh Device for contacting an electrical conductor and connection or connection device with such a device
CN104117681B (en) * 2014-07-31 2016-02-10 宁波广博纳米新材料股份有限公司 A kind of preparation method of ultra-fine copper sheet
JP5941588B2 (en) * 2014-09-01 2016-06-29 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
JP6222189B2 (en) * 2014-12-05 2017-11-01 Jfeスチール株式会社 Alloy steel powder and sintered body for powder metallurgy
KR20170110613A (en) * 2015-02-06 2017-10-11 토쿠센 코교 가부시키가이샤 Conductive fine particles
JP6060225B1 (en) * 2015-07-27 2017-01-11 三井金属鉱業株式会社 Copper powder and method for producing the same
US11040416B2 (en) * 2015-09-07 2021-06-22 Showa Denko Materials Co., Ltd. Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
KR20170029843A (en) 2015-09-08 2017-03-16 창원대학교 산학협력단 Method for manufacturing metal powder having particle shape modified by milling process
CN105405490A (en) * 2015-12-23 2016-03-16 东洋油墨Sc控股株式会社 Conductive paste for laser processing, conductive sheet, fabrication method of signal layout line and electronic device
US10630100B2 (en) 2016-01-29 2020-04-21 George A. Van Straten Electricity generator having linearly deployed solar panels
CN106363165B (en) * 2016-09-05 2019-02-15 国核电力规划设计研究院 A kind of sheet of copper particle and preparation method thereof, catalyst, electrode
EP3837068A2 (en) * 2018-08-13 2021-06-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Thin copper flakes for conductive inks
CN110071050B (en) * 2019-04-24 2021-09-24 深圳第三代半导体研究院 Chip interconnection structure and preparation method thereof
KR102647464B1 (en) 2019-05-24 2024-03-13 제이에프이 스틸 가부시키가이샤 Iron alloy sintered body and iron mixed powder for powder metallurgy
WO2023008118A1 (en) * 2021-07-27 2023-02-02 日本板硝子株式会社 Flaky particles and brilliant pigment
CN117597316A (en) * 2021-07-27 2024-02-23 日本板硝子株式会社 Flake-like particles and lustrous pigments
CN114888294B (en) * 2022-05-14 2023-04-25 安徽纳洛米特新材料科技股份有限公司 Industrial production method of flaky nano nickel powder
CN117440868A (en) 2022-05-18 2024-01-23 三井金属矿业株式会社 Copper powder and method for producing same
CN116021010A (en) * 2023-02-01 2023-04-28 苏州星翰新材料科技有限公司 Preparation method of flaky copper powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456701A (en) * 1990-06-26 1992-02-24 Fukuda Metal Foil & Powder Co Ltd Manufacture of flaky metal powder
JPH04314802A (en) * 1991-04-12 1992-11-06 Daido Steel Co Ltd Production of flake powder
JPH08325612A (en) * 1995-05-30 1996-12-10 Mitsui Mining & Smelting Co Ltd Fine flake copper powder and its production
US20020050186A1 (en) * 1998-08-31 2002-05-02 Mitsui Mining & Smelting Company, Ltd. Fine copper powder and process for producing the same
JP2003119501A (en) * 2001-08-07 2003-04-23 Mitsui Mining & Smelting Co Ltd Flake copper powder, manufacturing method therefor, and flake copper paste using the flake copper powder
JP2003257245A (en) * 2002-03-06 2003-09-12 Dowa Mining Co Ltd Foil piece shape copper powder and conductive paste using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136106B2 (en) * 1998-08-31 2008-08-20 三井金属鉱業株式会社 Flat micro copper powder and method for producing the same
CN1358593A (en) * 2000-12-09 2002-07-17 甘肃雷诺换热设备有限公司 Method for reducing atomized copper powder bulk loading density

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456701A (en) * 1990-06-26 1992-02-24 Fukuda Metal Foil & Powder Co Ltd Manufacture of flaky metal powder
JPH04314802A (en) * 1991-04-12 1992-11-06 Daido Steel Co Ltd Production of flake powder
JPH08325612A (en) * 1995-05-30 1996-12-10 Mitsui Mining & Smelting Co Ltd Fine flake copper powder and its production
US20020050186A1 (en) * 1998-08-31 2002-05-02 Mitsui Mining & Smelting Company, Ltd. Fine copper powder and process for producing the same
JP2003119501A (en) * 2001-08-07 2003-04-23 Mitsui Mining & Smelting Co Ltd Flake copper powder, manufacturing method therefor, and flake copper paste using the flake copper powder
JP2003257245A (en) * 2002-03-06 2003-09-12 Dowa Mining Co Ltd Foil piece shape copper powder and conductive paste using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580800B (en) * 2014-02-14 2017-05-01 三井金屬鑛業股份有限公司 Copper powder
CN107414070A (en) * 2017-08-10 2017-12-01 上海交通大学 A kind of uniform-spherical graphene/monocrystalline copper composite powder and preparation method thereof

Also Published As

Publication number Publication date
CN1292861C (en) 2007-01-03
DE10393768T5 (en) 2005-10-20
CA2506367A1 (en) 2004-06-10
TWI236393B (en) 2005-07-21
JP4145127B2 (en) 2008-09-03
US20060137488A1 (en) 2006-06-29
TW200408475A (en) 2004-06-01
AU2003254924A1 (en) 2004-06-18
KR100613033B1 (en) 2006-08-16
KR20040086853A (en) 2004-10-12
JP2004169155A (en) 2004-06-17
CN1642680A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
WO2004048017A1 (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
JP5148821B2 (en) Flake silver powder production method and flake silver powder produced by the production method
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4841987B2 (en) Flake silver powder and method for producing the same
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP4109520B2 (en) Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder
JP4662760B2 (en) Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP2003119501A (en) Flake copper powder, manufacturing method therefor, and flake copper paste using the flake copper powder
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP2003123537A (en) Mixed copper powder, method of manufacturing the mixed copper powder, copper paste using the mixed copper powder and printed circuit board using the copper paste
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JP3932336B2 (en) Method for producing copper powder for conductive paste
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP4185267B2 (en) Copper powder, method for producing the copper powder, copper paste using the copper powder, and printed wiring board using the copper paste
WO2020059291A1 (en) Easily-crushable copper powder and manufacturing method therefor
TWI830525B (en) Silver powder, silver powder manufacturing method and conductive paste
JP4831518B2 (en) Method for producing nickel powder
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JP2001203121A (en) Nickel powder and method of manufacturing the same and conductive paste
WO2022190968A1 (en) Flaky silver powder and manufacturing method thereof, and electrically conductive paste
JP2022136985A (en) Flaky silver powder and method of producing the same, and conductive paste
JP2000048644A (en) Inorganic powder and its manufacture
JP2007165326A (en) Copper powder for conductive paste and manufacturing method thereof
JP2004035296A (en) Superfine lead oxide powder and its production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047013938

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038058448

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047013938

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2506367

Country of ref document: CA

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: 2006137488

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10536012

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10536012

Country of ref document: US