WO2004045791A1 - コールドチャンバダイカスト成形機の射出装置及びその計量方法 - Google Patents

コールドチャンバダイカスト成形機の射出装置及びその計量方法 Download PDF

Info

Publication number
WO2004045791A1
WO2004045791A1 PCT/JP2003/014690 JP0314690W WO2004045791A1 WO 2004045791 A1 WO2004045791 A1 WO 2004045791A1 JP 0314690 W JP0314690 W JP 0314690W WO 2004045791 A1 WO2004045791 A1 WO 2004045791A1
Authority
WO
WIPO (PCT)
Prior art keywords
billet
melting
cylinder
molten metal
injection
Prior art date
Application number
PCT/JP2003/014690
Other languages
English (en)
French (fr)
Inventor
Misao Fujikawa
Original Assignee
Sodick Plustech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Plustech Co., Ltd. filed Critical Sodick Plustech Co., Ltd.
Priority to US10/535,478 priority Critical patent/US7137435B2/en
Priority to DE10393767T priority patent/DE10393767T5/de
Publication of WO2004045791A1 publication Critical patent/WO2004045791A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/28Melting pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Definitions

  • the present invention relates to an injection device for a cold-champer die-casting molding machine, and in particular, to supply a light metal material to a melting device in the form of a cylindrical short rod-shaped billet to melt the molten metal, pour the molten metal from the melting device into a plunger injection device, and measure it.
  • a method for weighing the cold champ die casting machine
  • Injection molding machines for light metal alloys such as magnesium, aluminum and zinc are generally called die-casting molding machines and are broadly classified into hot chamber systems and cold chamber systems.
  • the injection device is placed on the melting furnace, and one shot of the light metal material melt is sucked from the melting furnace into the injection sleeve of the injection device, and the molten metal is measured in the injection sleeve.
  • This is a method of injecting into a mold by a plunger. In this method, high-temperature molten metal is supplied stably to the injection sleeve.
  • the latter cold chamber method is a method in which an injection sleep is provided outside the melting furnace, the molten metal of the light metal material in the melting furnace is measured on an injection sleeve by a ladle or a pump, and the molten metal is injected by a plunger.
  • this method maintenance is easy because the injection unit is separated from the melting furnace.
  • the melting furnace has a large capacity compared to the capacity of the molded product, and the running cost during the molding operation must be large in order to maintain a large amount of molten metal in a predetermined heating state.
  • the maintenance work of the melting furnace must be performed in one day.
  • the molding material is a magnesium alloy
  • maintenance work to remove sludge mainly from oxides in the melting furnace from time to time is indispensable because magnesium in the molten state is very oxidized and easily ignites. Absent. Due to the large surface area of the molten metal in the melting furnace, the generation of the above-mentioned sludge cannot be sufficiently suppressed even if an inert gas is injected into the furnace due to the flame-retardant flux for preventing ignition and oxidation. It is. Moreover, this sludge increases the wear of the injection sleeve and the plunger. Therefore, an injection device capable of directly supplying a molding material without using a furnace has been proposed.
  • this injection apparatus is an injection device provided with a material supply device capable of supplying a light metal material in the form of a cylindrical short rod.
  • This injection apparatus is generally an apparatus for filling a mold in a semi-solid state with a molding material. According to this injection device, not only the problem of the melting furnace described above can be solved, but also, especially when the molding material is a magnesium alloy, the oxidation is greatly reduced.
  • a heating cylinder for accommodating a plurality of ingots formed in advance by another molding device to a size of one shot of injection molding and preheating, and a plunger are included.
  • an apparatus including an injection sleeve and a chute for transferring an ingot from a heating cylinder to the injection sleeve (for example, see Patent Document 1 in which the title is described later).
  • the ingot heated and softened by the heating cylinder is transferred to the injection sleeve, and the material in the semi-melted state by the injection sleeve is pressed by the plunger and injected into the mold.
  • Another one of the devices there is a device provided with a shaping hole for shaping a billet corresponding to an ingot into a diameter suitable for the inner diameter of the injection sleeve and a cutter plate at the end of the heating sleeve as the heating cylinder (Patent Document 1). 2).
  • the outside diameter of the billet is adjusted to the inside diameter of the injection sleeve, and the length of the billet is shaped to one shot size. The problem of the increase and the complexity of setting the preheating conditions corresponding thereto is solved. This is because it is not necessary to prepare an ingot for each molded product in advance.
  • Patent Document 3 an injection device different from the above method has been proposed (see Patent Document 3).
  • This injection device is equipped with a heating cylinder consisting of a high-temperature side cylinder on the molding die side (tip side close to the mold), a low-temperature side cylinder on the rear side, and a heat-insulating cylinder between them.
  • This is a device that inserts the molding material molded into the above-mentioned heating cylinder, melts it in the high-temperature side cylinder portion, and injects the molten molten metal by the unmelted molding material.
  • This molding material is named a self-consuming plunger because it is injected with the molding material itself rather than the plunger.
  • Such an injection device does not include a melting furnace, the configuration around the injection device is simplified and efficient melting is enabled. In addition, since no plunger is provided, it is possible to reduce wear on the ejection sleeve and to perform maintenance and inspection in a short time.
  • Patent Document 4 mainly discloses a projection device for preventing galling in glass molding.
  • Patent Document 1 is Japanese Patent Publication No. 2639555 (particularly from column 4, line 18 to column 5, line 3, FIG. 2).
  • No. 2 is Japanese Patent Application Laid-Open No. 2000-191911 (especially claim 1, see FIG. 1)
  • Patent Document 3 is Japanese Patent Application Laid-Open No. 5-21212531 (especially claim 1, and FIG. 1)
  • Patent Document 4 is Japanese Patent Application Laid-Open No. H5-2525858 (especially claim 1, FIG. 1).
  • both the hot-champer type and the cold-chamber type injection devices have the above-mentioned problems of the melting furnace.
  • the injection devices of Patent Document 1 and Patent Document 2 which do not include a melting furnace are not devices for injecting a molding material into a completely molten metal and injecting it. There is a restriction that it is not suitable. If the molding material is to be completely melted and the injection is to be performed after exceeding this restriction, a waiting time for completely changing the molding material to a molten state by the injection sleeve is required.
  • Patent Document 3 adopting the self-consuming plunger does not describe the length of the molding material and the supply of the molding material, and the following phenomena may possibly occur. Nevertheless, the solution is not disclosed.
  • the phenomenon is that during injection molding, high-pressure, low-viscosity molten metal backflows into the gap between the injection sleeve and the self-consumption type plunger and solidifies, and the solidified material fills the gap between the two to significantly increase frictional resistance. As a result, the movement of the plunger is hindered and the injection operation becomes impossible. This is because the injection device is both a melting device and an injection device, so that the molten metal must have a high pressure.
  • the phenomenon becomes more pronounced when the self-consuming plunger is inserted into a horizontally arranged injection sleeve, with the gap between them increasing on the upper side.
  • Self-consumable plungers must be made smaller than the inner diameter of the injection sleeve in anticipation of their thermal expansion.
  • the phenomenon is It is even more pronounced that the material is destroyed or reformed during the injection operation and grows more extensively and firmly. In particular, in the injection molding of a thin and complex shape, the above phenomenon becomes more remarkable because the injection is performed at a high speed and a high pressure.
  • Patent Document 4 does not solve the above-mentioned phenomenon in light metal molding, because it discloses a technique for preventing galling in glass molding.
  • the above-described galling prevention technology is a technology that simply forms a large number of grooves or spiral grooves on the cylinder side and cools through the grooves to promote cooling of the molding material.
  • glass is relatively wide. Since it exhibits a high-viscosity softened state in the temperature range, the molten metal does not immediately fill the above-mentioned grooves, and it is presumed that the functions and effects of the above-mentioned grooves and the like are actually exerted.
  • the present invention eliminates the need for the melting furnace of the injection device of the conventional cold chamber die casting molding machine, and supplies the light metal material in the form of a billet to inject the molding material into the injection sleeve in a molten state.
  • An injection device for a cold chamber die casting molding machine is a cold channnel having a plunger injection device for supplying a molten metal of a light metal material to a material supply port opened at an upper portion of an injection sleeve and injecting the molten metal by a plunger.
  • a plunger injection device for supplying a molten metal of a light metal material to a material supply port opened at an upper portion of an injection sleeve and injecting the molten metal by a plunger.
  • a melting device for melting the light metal material, and a pouring member for pouring molten metal from the melting device to the plunger injection device;
  • the melting device supplies the light metal material in the form of a cylindrical short rod-shaped billet to supply a molding material, and a billet supply device located at the rear of the billet supply device.
  • a billet insertion device having a pusher which pushes the billet forward while retracting at least a distance exceeding the length of one billet, and which is pushed forward by the pusher located in front of the billet supply device.
  • a melting cylinder for accommodating the plurality of billets and melting the billets from the tip side first to produce molten metal for several shots,
  • the pouring member includes a pouring hole for pouring the molten metal from a front end of a cylinder hole of the melting cylinder to the material supply port of the injection sleep;
  • the melting device pushes the pusher through the billet to supply one shot of the molten metal to the injection sleeve so that the molten metal is measured. It is composed.
  • the melting device of the injection device of the present invention can replenish the light metal material with a short rod-shaped billet, melt the billet by a minimum amount, and supply the molten metal to the injection sleeve. Supply. Therefore, not only is the heating energy required to melt the molten metal in the melting device small and efficient, but the temperature of the melting cylinder can be raised and solidified in a short time, so that the maintenance work of the injection device can be done quickly.
  • the size of the melting equipment is much smaller than that of a conventional melting furnace.
  • the light metal material is supplied in the form of billets, its handling is easy.
  • the billet is a magnesium material, there is an advantage that the billet is hardly oxidized.
  • the melting cylinder is constituted by a first melting cylinder, and most of the cylinder holes of the first melting cylinder except at least a base end thereof are formed.
  • a cylinder hole at the base end of the first melting cylinder is formed with an inner diameter that abuts against the enlarged diameter side surface of the unmelted tip of the billet to the extent that the pack flow of the molten metal is prevented.
  • the inner diameter is preferably slightly larger than the outer diameter.
  • the melting device is constituted by the first melting cylinder, and most of the cylinder holes except for at least the base end of the first melting cylinder are filled with molten metal at the time of measurement. Is formed to an inner diameter that abuts the enlarged side surface at the tip of the billet to such an extent that the backflow of the billet is prevented, and the cylinder hole at the base end is formed to an inner diameter slightly larger than the outer diameter of the billet. Therefore, the enlarged side surface functions as a “diameter seal” that not only prevents leakage of the molten metal to the rear and intrusion of air and the like into the molten metal, but also functions as a seal with low frictional resistance. And because the first melting cylinder and the pusher do not contact each other There is almost no wear, making maintenance work of the melting equipment easier. Such a melting cylinder is effective when used in a small injection molding machine because of its simple structure.
  • the melting device of the injection device of the cold-champer die casting molding machine according to the present invention includes:
  • the cooling member has a through hole having an inner diameter slightly larger than the outer diameter of the billet, and a cooling passage around the through hole;
  • the cooling sleeve may be configured to have an annular groove on an outer periphery of the billet to produce an annular solidified product of the molten metal by cooling the molten metal.
  • the melting device includes a cooling sleeve positioned between the second melting cylinder and the cooling member, and the cooling member is slightly larger than the outer diameter of the billet. It has a through hole with an inner diameter, a cylinder hole of the second melting cylinder is formed in an inner diameter that does not abut against the tip of the billet, and a cooling sleeve cools at least the molten metal to form an annular solidified material that is a solidified material of the molten metal.
  • annular solidified material has an annular groove
  • the annular solidified material satisfactorily prevents leakage of the molten metal backward and intrusion of air and the like into the molten metal as an annular solidified material seal J, as well as low frictional resistance. Also works as a seal.
  • Melting cylinders are particularly effective when used in large injection molding machines, as well as in small injection molding machines.
  • the pouring hole of the pouring member of the injection device communicates with a communication passage opening above the cylinder hole of the melting cylinder. It is preferable to be configured to be disposed in an inclined posture in which the tip portion is at a high position.
  • the pouring hole of the pouring member communicates with the communication passage opened above the cylinder hole of the melting cylinder, and the tip of the melting cylinder is at a high position. As it is placed in an inclined position, the air and gas remaining in the first inner melting cylinder are quickly purged, as well as the molten metal in the melting cylinder. The outflow phenomenon is prevented and the weighing becomes accurate.
  • a valve stem that moves up and down in the pouring hole of the pouring member to open and close a substantially lower end of the pouring hole, and measures the valve stem
  • An opening / closing device including a valve stem driving device that is opened only at times may be provided.
  • the valve stem opens the lower end of the pouring hole only at the time of weighing, unexpected melting of the molten metal in the pouring hole is prevented, and the weighing becomes accurate.
  • the opening and closing operation of the pouring hole of the opening and closing device and the pusher By performing the operations of pushing out the molten metal substantially simultaneously, the measurement may be performed in a state where the molten metal is always stored in the pouring hole.
  • FIG. 1 is a side view showing a cross section of the entire configuration of an injection device of a cold chamber die casting molding machine according to the present invention.
  • FIG. 2 is a side view showing a cross section of a first melting cylinder according to the first embodiment of the present invention.
  • FIG. 3 is a side view showing a cross section of a second melting cylinder according to a second embodiment of the present invention.
  • FIG. 4 is a side sectional view showing a base of the second melting cylinder of FIG. 3 in an enlarged manner.
  • FIG. 5 is an enlarged sectional view showing the structure of the opening / closing device provided in the pouring member of the present invention.
  • FIG. 1 is a side view showing a cross section of the entire configuration of an injection device of a cold chamber die casting molding machine according to the present invention.
  • FIG. 2 is a side view showing a cross section of a first melting cylinder according to the first embodiment of the present invention.
  • FIG. 3 is a side view showing a cross section of a
  • FIG. 6 is a cross-sectional view of the billet supply device of the injection device of the cold chamber die casting molding machine according to the present invention, and is a cross-sectional view taken along the line XX of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the light metal material supplied to the injection device will be described.
  • the light metal material is formed in advance into a short rod-like shape obtained by cutting a cylindrical rod into predetermined dimensions.
  • Light metal materials of this shape are referred to below as billets.
  • Reference numeral 2 denotes the billet whose outer periphery and cut surface are finished smoothly.
  • the outside diameter of the billet 2 is determined when the billet 2 is heated by the melting cylinder 11 described later and slightly expanded. Is also formed to be smaller than the inner diameter of the base end side (right side in the figure) of the cylinder hole 11a of the melting cylinder 11 by 0.2 mm to 0.5 mm.
  • the length of the billet 2 is formed to a length corresponding to the injection volume of 10 shots or 10 shots of the injection molding, and is, for example, 30 Omm or 40 Omm for easy handling. O mm is formed. Since the light metal material is supplied in the form of such a billet, it is easy to handle such as storage and transportation. In particular, when the billet is a magnesium alloy material, there is an advantage that the material is less oxidized than the chip-shaped material used in the thixomolding method since the billet has a small surface area with respect to the volume of the billet.
  • the injection volume for one shot is the volume of the molten metal injected in one shot, and allows for the volume of the molded product, the volume of sprues and runners that accompany it, and the volume that will shrink. Volume.
  • the injection device 1 includes a melting device 10, a plunger injection device 20, and a pouring member 15 for pouring molten metal from the melting device 10 to the plunger ejection device 20. Including.
  • the melting device 10 is different from the injection device of the conventional cold chamber die casting machine in that the light metal material is supplied as the billet 2 described above.
  • the melting device 10 includes a melting cylinder 11, a billet supply device 40, and a billet insertion device 50, and the melting cylinder 11 and the billet insertion device 50 are fixed to a center frame member 90.
  • the center frame member 90 is a member that accommodates the billet supply device 40, and includes four rectangular side plates and one bottom plate. In one of the two opposing side plates 90a, a through hole 90b slightly larger than the outer diameter of the billet 2 is formed, and in the other, a through hole 9 through which a pusher 52a described later advances and retreats. 0 c is formed You.
  • the melting cylinder 11 is a long cylinder that accommodates a plurality of billets 2 sequentially inserted from the base end thereof, and most of the cylinder hole 11 a except for the base end will be described later. As shown in FIG. The end of the cylinder hole 11a is closed by an end plug 13 and communicates with a pouring hole 15a of a pouring member 15 described later.
  • the melting device 10 composed of the melting cylinder 11, the billet supply device 40, and the billet introduction device 50 is supplied one by one behind the melting cylinder 11 by the billet supply device 40.
  • the Biretsuto 2 that is inserted into the O connexion melting cylinders 1 1 to the pusher 5 2 a of Biretsuto insertion device 5 0, melts earlier from its distal end side.
  • the molten molten metal 3 is adjusted so that the molten metal 3 always has an amount of several shots.
  • the melting cylinder 11, the pouring member 15, the billet supply device 40 and the billet insertion device 50 will be described in further detail later.
  • the plunger injection device 20 is basically the same as the injection device of a conventional cold chamber die casting molding machine, and includes an injection sleeve 21, a plunger 22, and a plunger drive device 60.
  • the injection sleeve 21 and the plunger driving device 60 are fixed on one axis via a connecting member 64.
  • the injection sleeve 21 has a cylinder hole 21a for temporarily storing the molten metal 3 at the center thereof, and a material supply port 21h into which the molten metal 3 is injected at an upper portion thereof. Then, the tip side (left side in the figure) of the injection sleeve 21 penetrates the fixed platen 31 and the mold 32.
  • the plunger 22 is connected at its base end to the piston rod 62 of the plunger driving device 60 and is controlled to move back and forth in the injection sleeve 21.
  • a plunger injection device 20 fixes a center frame member 90 via a connection base member 92 on a plunger driving device 60 mounted on a moving base 91 on a machine base not shown. You To install the melting device 10. Then, the plunger injection device 20 injects the injected molten metal 3 into the cavities 34 of the molds 32, 33 by the plunger 22.
  • the injection sleeve 21, the plunger 22, the connecting member 64 and the plunger drive 60 will be described in more detail later.
  • the dies 3 2 and 3 3 are conventionally known dies.
  • heating heaters 12 a and 1 such as band heaters are used. 2b, 12c and 12d are wound around the melting cylinder 11.
  • the heater 18 and the heater 23 are wound around the pouring member 15 and the injection sleeve 21. Is done.
  • These heaters have a predetermined temperature set in the vicinity thereof based on the temperature of the feed pack of a temperature sensor (not shown). To control the temperature. For example, the temperatures of the heaters 23 and 18 are set to about 600 ° C.
  • the temperature settings of the heaters 12a, 12b, 12c, and 12d will be described later.
  • the melting cylinder 11 may be formed of ceramics or the like, and the heating heater may be an induction heating coil.
  • FIG. 2 is a side sectional view illustrating the first embodiment.
  • FIG. 3 is a side cross-sectional view illustrating the second embodiment, and
  • FIG. 4 is a side cross-sectional view showing the base of FIG. 3 in an enlarged manner.
  • the melting cylinder is a cylinder for molding a magnesium alloy
  • the cylinder is manufactured such that the gap between the large-diameter cylinder hole 11 and the billet 2 is about 1 mm to 2 mm.
  • the base end side cylinder hole 11 1 c is manufactured so that the gap is about 0.2 mm to 0.5 mm with respect to the heated billet 2 which has slightly expanded.
  • the position of the step 11 d is the diameter of the melting cylinder 111, the volume of the molten metal 3 to be stored, the set temperature of the heaters 12 c and 12 d, or the large-diameter cylinder hole 11 b Depending on the relationship with the gap with respect to the billet 2, it is formed in advance at different positions before and after as appropriate.
  • the diameter of the cylinder bore 1 This is the cylinder diameter that indicates one of the injection capabilities of the molding machine.
  • reference numeral 211 denotes a second melting cylinder according to the second embodiment.
  • the base of the melting cylinder 211 is fixed to the side plate 90a of the central frame member 90 together with a cooling sleeve 212 described later, and is firmly connected with bolts 21-13.
  • a cooling path 90 d through which the coolant circulates is formed around the through hole 90 b of the side plate 90 a of the central frame member 90. Therefore, since the side plate 90a also functions as a cooling member, it is also referred to as a cooling member 214 in the following description.
  • the cooling member 214 may be configured as a member different from the side plate 90a of the central frame member 90, and may be interposed between the melting cylinder 211 and the side plate 90a.
  • the gap between the through hole 90b and the billet 2 is formed so that, for example, when the billet 2 is made of a magnesium alloy, the gap between the slightly expanded billet 2 is about 0.2 mm to 0.5 mm. You. Due to the gap between the through holes 9Ob and the cooling action of the side plates 90a, the billet 2 is inserted into the through holes 90b without interference and the pressure of the molten metal 3 which rises slightly during measurement is increased. Even so, it is maintained in a non-softened state without deformation.
  • the cylinder hole 211a of the second melting cylinder 211 is formed several mm larger than the billet 2, for example, when the molding material is a magnesium alloy, the gap with the billet 2 is increased. It is formed large to be about 1 mm to 3 mm. The effect of the clearance will be described later.
  • the melting cylinder 211 has an annular convex portion 211 e bulging into a sleeve shape as shown in FIG.
  • a space 215 is formed between the melting cylinder 211 and the cooling member 214 when they are connected via the air. Then, a through hole or notch 2 1 1 f Are formed, and the heat trapped in the space 215 is radiated. Therefore, this space 2 15 functions as an adiabatic space between the cooling member 2 14 and the melting cylinder 2 11. .
  • the cooling sleeve 2 12 is a small-volume, substantially cylindrical shape that is located between the base end of the melting cylinder 2 11 and the side plate 90 a as the cooling member 2 14 and has a contact area for both as small as possible. Formed on the member. As shown in FIG. 4, the cooling sleeve 211 is fitted between a counterbore at the front end of the cooling member 214 and a counterbore at the base end of the melting cylinder 211. A temperature sensor (not shown) is attached to the cooling sleeve 2 12 to detect the temperature.
  • annular groove 211 a for solidifying and holding the molten metal 3 backflowed around the billet 2 is formed in the inner hole of the cooling sleeve 212.
  • the annular groove 2 12 a has a groove width of 2 O mm to 40 mm, preferably about 30 mm, and a groove depth dimension of a melting cylinder. It is formed so as to be about 3 mm or 4 mm with respect to the cylinder hole 2 11 a.
  • An inner hole 2 12 b of the cooling sleeve 2 12 on the front side of the annular groove 2 1 2 ′ a is formed with an inner diameter equal to the cylinder hole 2 1 1 a, and an inner hole 2 1 2 a on the rear side of the annular groove 2 1 2 a is formed.
  • a hole 211c is formed with an inner diameter equal to the hole 90b. Since such an annular groove 2 12 a is formed in the cooling sleeve 2 12 in contact with the cooling member 2 14, it is cooled strongly by the cooling member 2 14. The function and effect of such an annular groove 211a will be described later.
  • the annular groove 2 12a is formed so that it is entirely contained in the cooling sleeve 2 12 in FIG.
  • cooling sleeve 211 should be as rigid and thermally expandable as the melting cylinder 211 and the cooling member 211, and as good as possible in thermal conductivity. Is preferred.
  • the cooling sleeve 211 can be formed integrally with either the melting cylinder 211 or the cooling member 214.
  • the cooling sleep 2 12 does not hinder the strength even if it is a cylindrical member having a small volume as shown in the figure, that is, a relatively thin wall. This is because the molten solid 3 does not leak backward from the annular solidified product and the high pressure is not applied since the annular solidified product 201 described later is formed in the annular groove 212a.
  • the first and second melting cylinders 1 1 1 and 2 1 1 are wound around the above-mentioned heating heaters 12 a, 12 b, 12 c and 12 d.
  • the heaters 12 a, 12 b, and 12 c are set to the melting temperature of the billet 2.
  • the temperatures of these heaters are set to about 600 ° C. to about 65 ° C.
  • the temperature of the heater 12 d is set to be slightly different between the first melting cylinder 111 and the second melting cylinder 211.
  • the set temperature of the heater 12 d of the first melting cylinder 111 is set to 450 ° C. to 550 ° C. in order to suppress the softening of the billet 2 located at the base end of the melting cylinder 111. Adjusted appropriately to about C. This is because the magnesium alloy starts to soften substantially when heated to about 350 ° C. By being heated in this manner, the billet 2 is preheated to such a degree that it does not soften at the base end side of the melting cylinder 111, and is heated to a high temperature in a portion from the middle to the distal end side of the melting cylinder 111.
  • the side plate 90a of the center frame member 90 is not usually heated, but may be cooled by providing a cooling pipe in the same manner as the cooling path 90d in the second melting cylinder 211.
  • the heater 1 2d of the second melting cylinder 2 1 1 is attached to a position avoiding the vicinity of the base end of the melting cylinder 2 1 1 to which the cooling sleeve 2 1 2 is attached, and the cooling sleeve 2 1 2
  • the effect of heating on the temperature is suppressed as much as possible, and the set temperature is adjusted to around 550 ° C to 550 ° C.
  • the cooling sleeve 2 12 is suppressed in its heating and is strongly cooled by the cooling member 2 14. Therefore, the temperature of the cooling sleeve 212 is adjusted mainly by the setting of the cooling temperature of the cooling member 214, but is also adjusted by the heater 12d.
  • a pipe through which the cooling liquid passes may be wound around the cooling sleeve 2 12 to adjust the temperature individually. More specifically, for example, in forming a magnesium alloy, the billet 2 located in the cooling member 214 is cooled so that the temperature of the billet 2 does not exceed about 100 ° C to about 150 ° C. It is preferable to control the temperature of the billet 2 located in the leave 2 12 so as to be about 400 ° C. which is close to the temperature 350 ° C. at which softening occurs slightly.
  • the billet 2 is heated by the first melting cylinder 111 and the second melting cylinder 211, the billet 2 is melted first from its tip side and changes to the molten metal 3.
  • the temperature of the molten metal 3 is adjusted so that an injection volume for several shots is ensured even if the amount of the molten metal 3 is increased or decreased every time during the molding operation. In this way, the minimum amount of molten metal is melted and stored in the melting device 10, so that the amount of heated energy is small and efficient. Also, the temperature rise for Si solution and the temperature fall for solidification are short, minimizing the unnecessary waiting time for maintenance work. You. .Of course, the size of the melting equipment is much smaller than the conventional melting furnace.
  • one shot of molten metal is supplied from the melting cylinder 1 1 1 or 2 1 1 to the ejection sleeve 21, that is, when the molten metal 3 from the gap between the billet 2 and the molten cylinder 11 1 is measured.
  • the back lip must be securely blocked. For this reason, sealing is performed in both the first melting cylinder 11 1 and the second melting cylinder 2 11 1 by the method described below.
  • the tip of the softened billet 2 is substantially slightly expanded in diameter. Then, the molten metal 3 is sealed by appropriately contacting the side surface 2a of the enlarged tip with the wall surface of the cylinder hole 111b. The sealing action by the appropriate abutment of the two is realized by forming the gap between the cylinder hole 11 1 b and the billet 2 with appropriate dimensions. In this case, a small increase in pressure of the molten metal 3 at the time of measurement does not cause the diameter of the billet side surface 2a to be so large, which is convenient.
  • the small gap between the cylinder hole 1 1 1 c and the billet 2 of the base end rule minimizes the eccentricity of the billet 2 with respect to the cylinder hole 1 1 1 b and minimizes the gap between them. Furthermore, since the portion of the side surface 2a in contact with the cylinder hole 1 1 1b is kept in an appropriately softened state by the heating of the heaters 12a to 12d and the cooling by the cooling member 2 14, The side face 2a of the billet 2 abuts the cylinder hole 1 1 1b as a soft seal with a uniform diameter to prevent leakage of the molten metal 3 to the rear and entry of air and the like into the molten metal. Functions as a seal with low frictional resistance. Therefore, the enlarged side surface 2a in this embodiment is also referred to as an “expanded seal” hereinafter.
  • the clearance between the cylinder hole 11 1 b and the billet 2 is as described above.
  • the first melting cylinder 1 1 1 above should be sufficient for a small injection molding machine with a relatively small diameter of the melting cylinder 1 1 1 Can be adopted.
  • the melting cylinder 111 having a simple configuration composed of the above-described cylinder hole 1lib and 111c meets the demand for cost reduction required for a small injection molding machine.
  • the backflow phenomenon of the molten metal which is likely to occur in the melting cylinder of a large injection molding machine, does not significantly occur. This can be easily understood from the fact that the diameter of the billet 2 is large in the melting cylinder of a large injection molding machine, so that the circumferential length of the billet 2 becomes long and the gap between the back holes becomes larger.
  • the molten metal 3 is not sealed by the above-described “expanding seal”, but is solidified by the annular groove 21 a of the cooling sleeve 21. This is performed by the cyclic solidified material. This cyclic solids seal is described in more detail below.
  • the billet 2 in the cooling sleeve 2 12 is temperature-controlled to about 400 ° C near its softening temperature, and is strongly cooled on its outer periphery by the cooling sleeve 2 1 2 .
  • the billet 2 advances at a low speed as described later, and at this time, the molten metal 3 already melted at the tip side of the melting cylinder 2 11
  • the backflow around the billet 2 fills the annular groove 2 12 a and turns into solidified material.
  • This solid has the characteristics described below as cyclic solid 201.
  • the annular solidified product 201 is a product in which the molten metal 3 is solidified following the space between the annular groove 211a and the billet 2, so that, for example, the billet 2 and the melting cylinder 21 Even if there is a slight eccentricity with 1, the gap around billet 2 is filled without gap.
  • the annular solidified material 201 since most of the annular solidified material 201 is fitted in the annular groove 211a in a solidified state, the annular solidified material 201 may move or break with the billet 2 during measurement. No growth occurs on the proximal side of the annular groove 2a.
  • the billet of the annular solidified material 201 is formed.
  • the surface in contact with 2 is maintained in an appropriately softened state.
  • the bonding force or adhesive force of the annular solidified material 201 to the billet 2 is not so strong because the high-temperature molten metal 3 is rapidly solidified to the billet 2 at a relatively low temperature.
  • the inner diameter of the cylinder hole 2 11 1a of the melting cylinder 2 11 1 is set so that the tip of the softened billet 2 will not come into contact with the cylinder hole 2 A gap with the outer diameter of 2 is formed to about several mm.
  • the molten metal 3 wraps around the enlarged billet tip without being blocked, and the molten metal 3 is pushed out by the billet 2 while avoiding the space where the molten metal does not flow around.
  • the annular solidified material 201 seals the gap between the billet 2 and the melting cylinder 211 in a favorable and stable manner when the billet 2 advances and pushes the molten metal 3 in the subsequent measurement. .
  • the cyclic solidified material 201 Not to let air or the like intrude from between the cut 2 and the melting cylinder 2 11, not to leak the molten metal 3 to the rear, and to reduce frictional resistance when the billet 2 moves.
  • the sealing effect of the annular solid 201 is such that the light metal material, especially the magnesium alloy, rapidly changes from a solid to a liquid due to its large size, low thermal conductivity and small heat capacity / latent heat. Has been used successfully.
  • annular solidified material 201 described above reliably seals the molten metal 3 as an “annular solidified material seal”.
  • a melting cylinder 211 can be used not only in a small injection molding machine but also in a large injection molding machine having a larger diameter of the billet 2.
  • the melting cylinder 11 includes both the first melting cylinder 11 1 and the second melting cylinder 2 11 unless otherwise specified.
  • the communication passage 13b is formed between the portion of the upper surface of the plug portion of the end plug 13 cut off and the cylinder hole 11a so as to open above the cylinder hole 11a of the melting cylinder 11. Is formed as a space.
  • the cutting is, for example, cutting horizontally into a D-shaped cross section or cutting like a keyway.
  • the melting device 10 including the melting cylinder 11 is arranged in an inclined posture of about 3 degrees with its tip end positioned higher.
  • the position of the communication passage 13 b and the inclination of the melting cylinder 11 prevent the molten metal 3 melted in the melting cylinder 11 1 from flowing out to the injection sleeve 21 at unscheduled times except when measuring.
  • the weighing will be accurate. In this case, it is more preferable that not only the melting cylinder 11 but also the entire injection molding machine including the injection sleeve 21 and the mold clamping device 30 be disposed at a lower position in the rear.
  • the pouring member 15 includes an opening / closing device 70 as shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing the configuration around the pouring member 15.
  • the opening / closing device 70 includes a valve seat portion 15 b formed immediately near the lower end of the pouring hole 15 a of the pouring member 15 and a pouring hole 1 5a includes a valve stem 71 that opens and closes a, and a valve stem driving device 72 such as a fluid cylinder that drives the valve stem 71 forward and backward.
  • a gap serving as a flow path of the molten metal 3 is secured between the valve stem 71 and the pouring hole 15a.
  • the opening / closing device 70 having such a configuration will open the pouring hole 15a only when weighing, so that the molten metal 3 that may adhere to the side surface of the pouring hole 15a will be excluded during weighing. Prevent falling when not in time.
  • the pouring hole 15a is opened and closed immediately near its lower end, there is almost no side surface of the pouring hole 15a where the molten metal 3 can drop. In this way, the switching device 70 achieves accurate weighing.
  • the gas injection hole 17 is mounted on the cover 16 so that the valve rod 71 in the pouring hole 15a is not cooled.
  • the measurement may be performed in a state where the molten metal is always filled between the valve rod 71 and the pouring hole 15a.
  • the start timing and the end timing of the operation of pushing out the molten metal 3 of the billet 2 coincide with the timing of the opening / closing operation of the pouring hole 15a of the opening / closing device 70 that determines the start and end of the weighing operation. Is controlled as follows. With such weighing, weighing is more precisely controlled.
  • the filling of the pouring hole 15a with the molten metal eliminates any drop in the temperature of the pouring hole 15a and the valve stem 71, and prevents the molten metal from adhering to those side surfaces. is there. In addition, there is an effect that the melting efficiency of the molten metal 3 in the melting cylinder 11 is improved.
  • the molten metal 3 in the melting cylinder 11 that is in contact with the communication passage 13b is in contact with the inert gas, and a slight temperature drop can be avoided.
  • the billet 2 in the melting cylinder 11 can be pre-pressed, which facilitates melting.
  • FIG. 6 is a cross-sectional view of the center frame member 90 of FIG. 1 taken along the line XX, and is a cross-sectional view of the billet supply device.
  • This device includes, for example, a hopper 41 in which a large number of billets 2 are loaded in an aligned state, a shot 42 for sequentially dropping the billets 2 in an aligned state, and a shirting device 4 for receiving the billets 2 and dropping them one by one. 3 and a holding device 44 for holding the billet 2 concentrically around the axis of the melting cylinder 11.
  • a partition 41 a is provided so that the billet 2 falls without a delay.
  • a shutter plate 43a and a holding member 45 that opens and closes the holding device 44 constitute a two-stage upper and lower shutter, and the shutter plate 43a and the holding member 45 alternate.
  • the billet 2 is dropped one by one by opening and closing operation.
  • 4 3 b is an air syringe that moves the shirt plate 4 3 a It is a fluid cylinder such as a damper.
  • the holding device 4 4 is a set of holding members 45, 46 holding the billet 2 with a slight gap left and right from the left and right, and a fluid cylinder such as an air cylinder opening and closing one holding member 45. 47, and a guide member 48 that receives the billet 2 on its guide curved surface below the shutter 42 and guides it to the holding member 46 side.
  • substantially semicircular concave portions 45a, 46a having a diameter slightly larger than the outer diameter of the billet 2 are formed.
  • the centers of the recesses 45a and 46a substantially coincide with the centers of the cylinder holes 11a.
  • the billet 2 supplied from the hopper 41 is held by the holding device 44 so as to substantially coincide with the center of the cylinder hole 11a.
  • Such a billet supply device 40 holds the billets 2 in an aligned state and drops the billets 2 one by one. Therefore, the device that functions as described above is not limited to the device of the above embodiment. In some cases, the billet 2 is preheated at a low temperature outside the machine in order to dehumidify the surface. .
  • this device includes a hydraulic cylinder 51, a piston rod 52 that is controlled to move back and forth by the hydraulic cylinder 51, and a pusher 52 integrally formed at the tip of the piston rod. and a.
  • the maximum movement stroke of the pusher 52 a is set to a length slightly exceeding the entire length of the billet 2.
  • the pusher 52a moves forward one shot at a time during weighing.
  • the position and speed of the pusher 52a are detected by a position detecting device such as a linear scale (not shown), and are fed back and controlled by a control device (not shown).
  • the billet insertion device 50 described above uses the pusher 52 a when refilling the billet 2. Retract by a distance equal to or greater than the entire length of billet 2, to secure the space where billet 2 is supplied. Then, the pusher 52 a is advanced to insert the billet 2 into the melting cylinder 11. In addition, the billet insertion device 50 sequentially advances the pusher 52 a at the time of weighing, and feeds the molten metal 3 corresponding to the injection volume of one shot into the injection sleeve 21 by one advance.
  • Such a billet insertion device 50 is not limited to a hydraulic cylinder drive device as long as it is a device capable of operating the pusher 52a as described above. It may be an electric drive device that moves the pusher 52a by changing to a linear motion through a stitch or the like.
  • the connecting member 64 connecting the injection sleep 21 and the plunger driving device 60 is a cylindrical member, and has a through hole that fits with the plunger 22 at a position close to the front thereof with almost no gap.
  • a partition 64 a is provided.
  • a collecting pan 65 is detachably provided below the connecting member 64 in front of the partition wall 64 a in preparation for leakage of the molten metal 3, and an inert gas is injected above the same connecting member 64.
  • Injection holes 64b are provided.
  • the connecting member 64 having such a configuration forms a space 66 between the base end of the injection sleeve 21 and the partition wall 64a.
  • the molten metal is recovered by the recovery pan 65.
  • inert gas is injected into this space 66.
  • the air existing in the gap between the plunger 22 and the cylinder hole 21a on the proximal end side is purged. This purge creates a favorable environment for oxidation protection of the material, especially in the case of magnesium molding.
  • the amount of the inert gas to be supplied is small since it is supplied only to the space 66 and the small gap between the injection sleeve 21 and the plunger 22.
  • this device includes a hydraulic cylinder 61, a piston rod 62 that is controlled to move back and forth by the hydraulic cylinder 61, and a coupling 63 that connects the piston rod 62 and the plunger 22.
  • the plunger 22 is inserted from the base end side of the injection sleeve 21, and is driven back and forth by the piston rod 62 of the hydraulic cylinder 61.
  • the position of the plunger 22 is detected by a position detecting device such as a linear scale (not shown), and is fed-packed to a control device (not shown) to control the position.
  • the retreatable position of the plunger 22 is set at a position closer to the base end than the material supply port 21 h, and the maximum stroke is designed in advance according to the maximum injection volume of the ejection device 1.
  • a plunger drive device 60 is not limited to a hydraulic cylinder drive drive device, but is an electric drive device that moves the plunger 22 by changing the rotational motion of a servo motor into a linear motion via a ball screw or the like. May be.
  • the plunger 22 has a head portion 22a slightly smaller in diameter than the inner diameter of the injection sleeve 21 and a shaft portion 22b slightly smaller in diameter than its head portion 22a.
  • a plunger driving device 60 having a biston ring whose head portion 22 a is not shown in the figure is provided on the outer periphery thereof provides the plunger 22 at the time of weighing. After the metering, the plunger 22 is advanced to control the injection speed and injection volume of the molten metal 3 and, if necessary, the holding pressure.
  • the molding operation is performed as follows by the injection device 1 of the present invention configured as described above. For ease of understanding, the actual injection molding operation will be described first.
  • the weighing operation starts first. First, after the plunger 22 has retracted backward from the material supply port 21h, the pusher 52a advances the billet 2 by a predetermined amount. When the opening / closing device 70 is provided, the opening operation of the valve stem 71 is performed simultaneously. By this measuring operation, the molten metal 3 for one shot in the melting cylinder is supplied from the pouring member 15 to the injection sleeve 21. This operation is usually performed after the molded product formed in the previous molding cycle is taken out and clamped.
  • the pressure of the molten metal 3 does not increase. Therefore, the seal of the molten metal 3 is surely performed by the above-mentioned “expansion seal” or “annular solidified seal”. In particular, even when the molten metal 3 is always filled in the pouring hole 15a by the opening and closing device 70, the opening operation of the valve rod 71 is performed simultaneously, so that the pressure of the molten metal does not become particularly high.
  • the molten metal 3 measured in the injection sleep 21 is maintained in a molten state by the heater 23. At this time, the inert gas prevents oxidation of the molten metal.
  • the plunger 22 advances as before, and one shot of molten metal is injected into the cavity 34.
  • the conventionally known molded article is cooled, the mold is opened, and the molded article is taken out.
  • the mold is closed and the above measurement is performed again. .
  • the molten metal 3 in the melting cylinder 11 consumed at each measurement is melted and filled before the next measurement is started.
  • billet 2 moves forward one by one.
  • billet 2 is replenished.
  • the replenishment operation starts when the position detector of the pusher 52a detects that the pusher 52a has moved forward beyond the distance of one bite.
  • the billet insertion device 50 retracts the pusher 52 a by a distance equal to or more than the entire length of the billet 2 to secure a space for supplying the billet 2 behind the melting cylinder 11.
  • the bill supply device 40 supplies one bill 2 to the back of the melting cylinder 11, and the bill insertion device 50 pushes the bill 2 into the melting cylinder 11 to perform a replenishing operation. Complete.
  • the injection device of the cold chamber die casting molding machine of the present invention enables the molding material to be supplied in the form of a billet while employing the conventional plunger injection device as it is. Therefore, the injection apparatus of the present invention eliminates the need for a melting furnace in the melting apparatus while maintaining the injection characteristics of the cold chamber die-casting molding machine as it is, thereby facilitating material handling and efficiently melting the molding material. And weighing. In addition, the injection device of the present invention simplifies the injection device to facilitate its handling and also facilitates its maintenance work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

マグネシウム合金材料等の軽金属材料の供給とその融解が効率的に行われ、溶湯の計量が正確にできるコールドチャンバダイカスト成形機の射出装置が望まれる。このための射出装置の融解装置(10)は、軽金属材料をビレット(2)の形で補給するビレット供給装置(40)と、そのビレットを先端側から先に融解して数ショット分の溶湯(3)を生成する融解シリンダ(11)と、その融解シリンダにビレットを挿入する挿入装置(50)と、プランジャ射出装置(20)とを含み、1ショット分の溶湯をその融解装置からそのプランジャ射出装置に注湯部材(15)の開閉装置(70)を介して計量する。特に、融解シリンダ中の溶湯のシールは、ビレットの拡径した側面(2a)がシリンダ孔(111a)に適宜に当接することによって、又は冷却スリーブ(212)中の環状溝(212a)で固化した環状固化物(201)がビレットに当接することによって行われる。

Description

明細書 コールドチヤンバダイカスト成形機の射出装置及びその計量方法 技術分野
この発明は、 コールドチャンパダイカスト成形機の射出装置に関し、 特に 軽金属材料を円柱短棒形状のビレットの状態で融解装置に供給して融解し、 溶湯をその融解装置からプランジャ射出装置に注湯し計量する射出装置に関 する。 また、 この発明は、 そのコールドチャンパダイカスト成形機の計量方 法に関する。 背景技術
マグネシウム、 アルミニウム、 亜鉛等の軽金属合金の射出成形機は、 一般 にダイカスト成形機と呼称され、 ホットチャンバ方式とコールドチャンバ方 式に大きく分類される。 前者のホットチャンバ方式は、 射出装置を融解炉上 に配置し、 融解炉から 1ショット分の軽金属材料の溶湯を射出装置の射出ス リーブに吸引することによって計量してその溶湯を射出スリーブ中のプラン ジャによって金型に射出する方式である。 この方式においては、 高温の溶湯 が射出スリーブに安定して供給される。 一方、 後者のコールドチャンバ方式 は、 射出スリープを融解炉の外に備え、 ラドル若しくはポンプによって融解 炉中の軽金属材料の溶湯を射出スリーブに計量してその溶湯をプランジャに よって射出する方式である。 この方式においては、 射出装置が融解炉から分 離しているのでその保守点検が容易である。 ところが、 上記の方式においては融解炉が成形品の容量に比べて大容量と なり、 多量の溶湯を所定の加熱状態に維持するために成形運転中のランニン グコストが大きくならざるを得ない。 また、 温度の昇降に長時間を必要とす るので融解炉の保守作業が 1日がかりの作業にならざるを得ない。 特に成形 材料がマグネシウム合金である場合には、 溶融状態にあるマグネシウムが非 常に酸化されやすく発火しやすいことから、 融解炉中の酸化物を主とするス ラッジを時折除去する保守作業が欠かせない。 融解炉中の溶湯表面の面積が 大きいために、 発火防止や酸化防止のための防燃フラックスゃ不活性ガスが 融 ^炉中に注入されても上記のスラッジの発生が充分に抑えられないからで ある。 しかもこのスラッジは射出スリーブやプランジャの摩耗を増加する。 そこで、 解炉を採用しなくても成形材料を直接供給することができる射 出装置が提案されている。 例えば、 軽金属材料を円柱短棒形状のビレッ トの 形で供給できる材料供給装置を備えた射出装置である。 この射出装置は、 一 般的に成形材料を半凝固状態で金型に充填する装置である。 この射出装置に よれば、 上記の融解炉に係る問題点が解決されることはもちろん、 特に成形 材料がマグネシゥム合金である場合にその酸化も多いに減少する。
より具体的には、 この射出装置の一つとして、 あらかじめ別の成形装置で 射出成形の 1ショット分の大きさに成形されたインゴットを複数個収容して 予備加熱する加熱筒と、 プランジャを含む射出スリーブと、 加熱筒から射出 スリーブにインゴッ トを移送するシュートとを備えた装置がある (例えば、 後に文献名が記載される特許文献 1参照)。 この射出装置は、 加熱筒で加熱 されて軟化したインゴットを射出スリーブに移送して、 射出スリーブで半溶 融状態になった材料をプランジャで加圧して金型に射出する。 また、 もう一 つの装置として、 インゴットに相当するビレツトを射出スリーブの内径に適 合した直径に整形して切断する整形穴とカッタープレートとを上記加熱筒で ある加熱スリーブの先端に備えた装置がある (特許文献 2参照)。 この射出 装置では、 ビレツトの外径が射出スリーブの内径に合わされると共にビレツ トの長さが 1ショット分の大きさに整形されるので、 特許文献 1において問 題になる、 インゴットの製作種類の増加とそれに応じた予備加熱条件設定の 煩雑さという問題が解決される。 成形品ごとにあらかじめインゴットが用意 される必要が無いからである。
一方、 上記の方式と異なる射出装置が提案されている (特許文献 3参照) 。 この射出装置は、 成形型側 (金型に近い先端側) の高温側シリンダ部と、 後方側の低温側シリンダ部と、 その間の断熱シリンダ部とからなる加熱シリ ンダとを備え、 あらかじめ円柱棒状に成形された成形材料を前記加熱シリン ダに挿入して高温側シリンダ部で融解し、 融解された溶湯を未溶融のその成 形材料によって射出する装置である。 ブランジャでなく成形材料自体で射出 するところから、 この成形材料は自己消費型プランジャと命名されている。 このような射出装置は、 融解炉を備えないので射出装置周りの構成を簡素に すると共に効率的な融解を可能にする。 また、 プランジャを備えないので射 出スリーブの摩耗の低減や短時間の保守点検などを可能にする。
その後、 上記出願人は同様な射出装置の発明を更に提案している (特許文 献 4参照)。 この文献は主としてガラス成形におけるかじり防止のための射 出装置を開示するものである。
以上において引用された特許文献は、 特許文献 1が特許 2 6 3 9 5 5 2号 公報 (特にコラム 4第 1 8行からコラム 5第 3行、 第 2図参照)、 特許文献 2が特開 2 0 0 1— 1 9 1 1 6 8号公報 (特に請求項 1、 第 1図参照)、 特 許文献 3が特開平 5— 2 1 2 5 3 1号公報 (特に請求項 1、 第 1図参照)、 そして、 特許文献 4が特開平 5— 2 5 4 8 5 8号公報 (特に請求項 1、 第 1 図参照) である。
しカ しながら、 上記ホットチャンパ方式及ぴコールドチャンバ方式のいず れの射出装置も上記した融解炉の問題点を含んでいる。 また、 溶解炉を含ま ない上記特許文献 1及び特許文献 2の射出装置は、 成形材料を完全に融解し た溶湯にして射出する装置ではないために、 特に精密な薄物の成形品の成形 にあまり適さないという制約がある。 そして、 この制約を超えて成形材料を 完全に融解した溶湯にしてから射出しようとする場合には、 成形材料を射出 スリーブで完全に溶融状態に変化させる待ち時間が必要となる。
一方、 自己消費型プランジャを採用する上記特許文献 3は、 成形材料の長 さ及びその成形材料の供給について説明しておらず、 また、 つぎのような現 象が多分に発生する虞があるにもかかわらずその解決策を開示していなレ、。 その現象は、 射出成形する際に高圧で低粘度の溶湯が射出スリーブと自己消 費型プランジャの隙間にバックフローして固化し、 その固化物が両者の間に 充満して摩擦抵抗を著しく増大させる結果、 そのプランジャの移動が阻害さ れて射出動作が不能になる現象である。 この射出装置が融解装置であると共 に射出装置であるために溶湯が高圧にならざるを得ないからである。 その上 、 その現象は、 自己消費型プランジャが水平に配置された射出スリーブ中に 挿入される場合に両者の隙間が上側で大きくなることによってより顕著にな る。 自己消費型ブランジャはその熱膨張を見込んで射出スリーブの内径より 小さめに製作されざるを得ないからである。 また、 その現象は、 その固化物 が射出動作中に破壊したり再成したりしてより広範囲にかつ強固に成長する ことよってもより顕著になる。 特に薄肉で複雑形状の射出成形においては、 射出が高速高圧で行われるので上記現象の発生がより顕著になる。
類似する上記の特許文献 4も、 それがガラス成形におけるかじり防止技術 を開示するものであることから、 軽金属成形における上記の現象を解消して いるとは言い難い。 なぜなら、 上記のかじり防止技術は、 シリンダ側に多数 の溝若しくは螺旋溝を単に形成して、 これを介して冷却することによって成 形材料の冷却を促進する技術であるからである。 確かに、 ガラスの射出成形 においては、 ガラスが比較的広レ、?显度範囲での高粘度の軟化状態を呈するこ とから溶湯が上記の溝をすぐに埋めることが無く、 上記溝等の作用効果は実 際に奏されると推察される。 しカゝし、 軽金属材料の射出成形においては、 軽 金属材料がその材料特有の小さい熱容量と融解熱 (潜熱) 及び高い熱伝導率 によって速やかに融解固化すると共に軟化状態にある温度範囲が狭く、 その 溶湯がすぐに低粘度の流動性を呈するように変化する。 それで、 溶湯が上記 の溝等にすぐに充満して固化し、 その溝が冷却溝として機能しない。 したが つて、 上記の特許文献 3及び文献 4の射出装置は、 その文献に開示された構 成のままで軽金属溶湯を安定して射出するには未だ不充分でると言わざるを 得ない。
そこで、 この発明は、 従来のコールドチャンバダイカスト成形機の射出装 置の融解炉を不要にすると共に軽金属材料をビレットの形で供給して成形材 料を溶湯の状態で射出スリ一ブに注湯することができる射出装置を提案する ことによって、 軽金属材料を効率的に供給し融解すると共に射出スリーブに 射出成形の 1ショット分の溶湯を正確に計量する射出装置を提案することを 目的とする 発明の開示
この発明のコールドチャンバダイカスト成形機の射出装置は、 射出スリー ブの上部に開口する材料供給口に軽金属材料の溶湯を供給し、 プランジャに よつて該溶湯を射出するプランジャ射出装置を備えたコールドチヤンバダイ カスト成形機の射出装置において、
a ) 前記軽金属材料を融解する融解装置と、 前記融解装置 ら前記プランジ ャ射出装置に溶湯を注ぐ注湯部材とを更に備え、
b ) 前記融解装置が、 前記軽金属材料を円柱短棒形状のビレッ トの状態で補 給することによって成形材料の補給を行うビレツト供給装置と、 前記ビレツ ト供給装置の後方に位置して補給された前記ビレツトを前方に押し出す一方 で少なくともビレツト 1本分の長さを超える距離を後退するプッシャを有す るビレツト挿入装置と、 前記ビレツト供給装置の前方に位置して前記プッシ ャによって押し出された複数本の前記ビレッ トを収容すると共に該ビレッ ト をその先端側から先に融解して数ショット分の溶湯を生成す'る融解シリンダ とを含み、
c ) 前記注湯部材が、 前記融解シリンダのシリンダ孔の前端から前記射出ス リープの前記材料供給口に前記溶湯を注ぐ注湯孔を含んで、
d ) 前記プランジャ射出装置が前記プランジャを後退した後に前記融解装置 が前記ビレツトを介して前記プッシャを押し込んで 1ショット分の前記溶湯 を前記射出スリーブに供給することによって前記溶湯が計量されるように構 成される。 このような構成によって、 この発明の射出装置の融解装置は、 軽金属材料 を円柱短棒形状のビレッ トで補給することができると共にビレッ トを最小限 の量だけ融解してその溶湯を射出スリーブに供給する。 それで、 融解装置の 溶湯を融解する加熱エネルギが少なく効率的であることはもちろん、 短時間 で融解シリンダの昇温や固化ができるので射出装置の保守点検作業も速やか にできる。 また、 融解装置の大きさが従来の融解炉より格段に小さくなる。 加えて、 軽金属材料がビレッ トの形で供給されるので、 その取り扱いが容易 である。 特にビレットがマグネシゥム材料である場合には、 ビレットが酸化 しにくい利点もある。 ·
また、 この発明のコールドチャンバダイカスト成形機の射出装置は、 前記 融解シリンダが第 1の融解シリンダによつて構成され、 前記第 1の融解シリ ンダの少なくともその基端を除く大部分のシリンダ孔が前記ビレツトの未溶 融の先端の拡径した側面に前記溶湯のパックフローを阻止する程度に当接す る内径に形成されされ、 前記第 1の融解シリンダの基端側のシリンダ孔がビ レツトの外径より僅かに大きい内径に形成されると良い。
このような構成によって、 この発明の射出装置は、 その融解装置が第 1の 融解シリンダによつて構成され、 第 1の融解シリンダの少なくとも基端を除 く大部分のシリンダ孔が計量時の溶湯のバックフローを阻止する程度にビレ ットの先端の拡径した側面を当接させる内径に形成されると共に基端側のシ リンダ孔がビレッ トの外径より僅かに大きい内径に形成されるので、 その拡 径した側面は、 「拡径シール」 として溶湯の後方への漏れ出しと空気等の溶 湯中への侵入を防止することはもちろん摩擦抵抗の小さいシールとしても機 能する。 そして、 第 1の融解シリンダとプッシャとが互いに接触しないので 摩耗することがほとんど無く、 融解装置の保守点検作業が楽になる。 このよ うな融解シリンダは、 構造が簡単であるから小型の射出成形機において採用 されるときに効果的である。
また、 この発明のコールドチャンパダイカスト成形機の射出装置の前記融 解装置は、
a ) 前記ビレットを冷却する冷却部材と、 前記冷却部材の前方に固定される 第 2の融解シリンダと、 前記第 2の融解シリンダと前記冷却部材の間に位置 する冷却スリーブとを含み、
b ) 前記冷却部材が前記ビレツトの外径より僅かに大きい内径の透孔を備え ると共に該透孔の周囲に冷却路を備え、
c ) 前記第 2の融解シリンダの大部分のシリンダ孔が前記ビレツトの先端に 当接しない内径に形成され、
d ) 前記冷却スリーブが、 前記溶湯を冷却することによつて前記ビレッ トの 外周に前記溶湯の固化物である環状固化物を生成する環状溝を有するように 構成されても良い。
このような構成によって、 この発明の射出装置は、 その融解装置が第 2の 融解シリンダと冷却部材の間に位置する冷却スリーブとを含み、 その冷却部 材が前記ビレツトの外径より僅かに大きい内径の透孔を え、 第 2の融解シ リンダのシリンダ孔がビレツトの先端に当接しない内径に形成され、 冷却ス リーブが少なくとも溶湯を冷却することによって溶湯の固化物である環状固 化物を生成する環状溝を有するので、 その環状固化物は、 「環状固化物シー ル J として溶湯の後方への漏れ出しと空気等の溶湯中への侵入を良好に防止 することはもちろん摩擦抵抗の小さいシールとしても機能する。 このような 融解シリンダは、 小型の射出成形機に採用される場合はもちろん、 大型の射 出成形機に採用される場合に特に効果的である。
また、 この発明のコールドチャンバダイカスト成形機は、 その射出装置の 前記注湯部材の前記注湯孔が前記融解シリンダの前記シリンダ孔の上部に開 口する連通路によって連通すると共に前記融解シリンダがその先端部を高い 位置とする傾斜した姿勢に配置されるように構成されることが好ましい。 このような構成によって、 この発明の射出装置は、 その注湯部材の注湯孔 が融解シリンダのシリンダ孔の上部に開口する連通路によって連通すると共 に融解シリンダがその先端部を高い位置とする傾斜した姿勢に配置されるの で、 最初の内融解シリンダ中に残留する空気やガスが速やかにパージされる ことはもちろん、 融解シリンダ中の溶湯が計量時を除く予定しない時機に射 出スリーブに流出する現象が阻止されて計量が正確になる。
また、 前記融解装置と前記プランジャ射出装置との間には、 前記注湯部材 の前記注湯孔の中で昇降して前記注湯孔の略下端を開閉する弁棒と、 前記弁 棒を計量時にのみ開口する弁棒駆動装置とを含む開閉装置が設けられても良 い。
このような構成によって、 弁棒が計量時にのみ注湯孔の下端を開口するの で、 注湯孔中の溶湯の予定しない垂れ落ちが防止されて計量が正確になる。 また、 前記注湯部材の前記注湯孔を開閉する前記開閉装置が備えられたコ 一ルドチャンバダイカスト成形機の射出装置の計量方法において、 前記開閉 装置の前記注湯孔の開閉動作と前記プッシャの前記溶湯を押し出す動作が略 同時に行われることによって、 前記溶湯が前記注湯孔中に常時貯留された状 態で計量が行われるようにしても良い。 このような計量方法によって、 開閉装置の注湯孔の開閉動作とプッシャの 溶湯を押し出す動作が略同時に行われるので、 溶湯の注湯孔中での固化が防 止されることはもちろん注湯孔ゃ弁棒への付着も回避されて、 計量がより正 確に制御される。 図面の簡単な説明
第 1図はこの発明のコールドチャンバダイカスト成形機の射出装置の全体 構成を断面で示す側面図である。 第 2図はこの発明の第 1の実施形態に係る 第 1の融解シリンダの断面を示す側面図である。 第 3図はこの発明の第 2の 実施形態に係る第 2の融解シリンダの断面を示す側面図である。 第 4図は第 3図の第 2の融解シリンダの基部をより拡大して示す側面断面図である。 第 5図はこの発明の注湯部材に設けられる開閉装置の構成を拡大して示す断面 図である。 第 6図はこの発明のコールドチャンバダイカスト成形機の射出装 置のビレツト供給装置の断面図で、 第 1図の X— X矢視断面図ある。 発明を実施するための最良の形態
以下、 この発明に係るコールドチャンバダイカスト成形機の射出装置が、 図示の実施形態を参照して説明される。
最初に射出装置に供給される軽金属材料が説明される。 軽金属材料は、 円 柱の棒材を所定寸法に切断したような形状の短棒形状にあらかじめ形成され る。 この形状の軽金属材料は以下においてビレットと称される。 2がそのビ レットであり、 その外周及ぴ切断面が平滑に仕上げられる。 ビレツト 2の外 径は、 後に説明される融解シリンダ 1 1で加熱されて僅かに膨張したときで も融解シリンダ 1 1のシリンダ孔 1 1 aの基端側 (図中右側) の内径より 0 . 2 mmないし 0 . 5 mm小さくなるように形成される。 ビレット 2の長さ は、 射出成形の 1 0数ショット分ないしは数 1 0ショット分の射出容積に相 当する長さに形成され、 その取り扱いやすさのために例えば 3 0 O mmない し 4 0 O mm程度に形成される。 軽金属材料がこのようなビレツトの形で供 給されるので、 その保管や運搬等の取り扱いは容易である。 特に、 ビレット がマグネシウム合金材料である場合には、 ビレツトの体積に対する表面積が 小さいので、 その材料がチクソモールド法で使用されるチップ形状の材料よ り酸化しにくい利点もある。 なお、 1ショット分の射出容積は、 1回のショ ットで射出される溶湯の湯量であり、 成形品の容積とそれに付随するスプル やランナ等の容積、 及び収縮するであろう容積を見込む容積である。
つぎに、 この発明に係るコールドチャンパダイカスト成形機の射出装置の 実施形態の概略が説明される。 この射出装置 1は、 第 1図に示すように、 融 解装置 1 0と、 プランジャ射出装置 2 0と、 融解装置 1 0からプランジャ射 出装置 2 0に溶湯を注ぐ注湯部材 1 5とを含む。
融解装置 1 0は、 軽金属材料が上記のビレツト 2として供給される点で従 来のコールドチャンバダイカスト成形機の射出装置と異なる。 この融解装置 1 0は、 融解シリンダ 1 1とビレット供給装置 4 0とビレット挿入装置 5 0 とを含み、 融解シリンダ 1 1とビレット揷入装置 5 0とが中央枠部材 9 0に 固定される。 中央枠部材 9 0は、 ビレット供給装置 4 0を収容する部材で、 矩形の 4つの側板と 1つの底板で構成される。 対向する 2つの側板 9 0 aの 一方には、 ビレット 2の外径より僅かに大きい透孔 9 0 bが形成され、 もう 一方には、 後に説明されるプッシャ 5 2 aが進退する透孔 9 0 cが形成され る。 融解シリンダ 1 1は、 その基端から順次挿入されるビレット 2を複数本 収容する長さの長尺のシリンダであり、 そのシリンダ孔 1 1 aの少なくとも 基端を除く大部分は、 後に説明されるようにビレット 2より大径に形成され る。 シリンダ孔 1 1 aの先端は、 エンドプラグ 1 3によって塞がれると共に 後に説明される注湯部材 1 5の注湯孔 1 5 aに連通する。 このように、 融解 シリンダ 1 1とビレツト供給装置 4 0とビレツト揷入装置 5 0とから成る融 解装置 1 0は、 ビレット供給装置 4 0によつて融解シリンダ 1 1の後方に 1 個ずつ補給されたビレツト 2をビレツト挿入装置5 0のプッシャ 5 2 aによ つて融解シリンダ 1 1中に挿入して、 その先端側から先に融解する。 融解さ れた溶湯 3は、 後に説明されるように常時数ショット分の湯量になるように 調整される。 融解シリンダ 1 1、 注湯部材 1 5、 ビレット供給装置 4 0及び ビレツト挿入装置 5 0は後に更に詳細に説明される。
プランジャ射出装置 2 0は、 従来のコールドチャンバダイカスト成形機の 射出装置と基本的に同じ装置であり、 射出スリーブ 2 1とプランジャ 2 2と ブランジャ駆動装置 6 0とを含む。 射出スリーブ 2 1とプランジャ駆動装置 6 0は、 接続部材 6 4を介して 1軸上に固定される。 射出スリーブ 2 1は、 その中心に溶湯 3を一時的に貯留するシリンダ孔 2 1 aを有し、 その上部に 溶湯 3が注入される材料供給口 2 1 hを有する。 そして、 射出スリーブ 2 1 の先端側 (図中左側) が固定プラテン 3 1と金型 3 2に貫通する。 プランジ ャ 2 2は、 その基端でプランジャ駆動装置 6 0のピストンロッド 6 2に接続 されて射出スリーブ 2 1中で前後に移動制御される。 このようなプランジャ 射出装置 2 0は、 図示省略した機台上の移動ベース 9 1に載置されたプラン ジャ駆動装箧 6 0上で連結ベース部材 9 2を介して中央枠部材 9 0を固定す ることによって融解装置 1 0を搭載する。 そして、 プランジャ射出装置 2 0 は注入された溶湯 3をプランジャ 2 2によって金型 3 2、 3 3のキヤビティ 3 4に射出する。 射出スリーブ 2 1、 プランジャ 2 2、 接続部材 6 4及びプ ランジャ駆動装置 6 0は後に更に詳細に説明される。 なお、 金型 3 2、 3 3 は従来公知の金型であり、 金型 3 2が型締装置 3 0の固定プラテン 3 1に固 定され、 開閉する金型 3 3と組み合わされてキヤビティ 3 4を形成する。 融解シリンダ 1 1の先端近傍に固定された注湯部材 1 5の注湯孔 1 5 aは 、 ェンドプラグ 1 3に形成された連通路 1 3 a、 1 3 bを介してシリンダ孔 1 1 aに連通する。 そして、 注湯部材 1 5の下部と材料供給口 2 1 hとが力 バー 1 6によって覆われる。 また、 不活性ガスを注入する注入孔 1 7が連通 路 1 3 a又は注湯孔 1 5 a若しくはカバー 1 6に用意される。 例えば、 第 1 図ではエンドプラグ 1 3にこの注入孔 1 7が形成され、 後述される第 5図で はカバー 1 6に設けられる。 この注入孔 1 7から不活性ガスが注入されるこ とによって注湯孔 1 5 aや射出スリーブ 2 1中の空気がパージされる。 この パージによって、 特にマグネシウム合金等の酸化しやすい成形材料の酸化が 防止される。
概略このように構成された射出装置 1において、 融解シリンダ 1 1に挿入 された複数本のビレット 2のその先端側を先に融解するために、 例えば、 バ ンドヒータ等の加熱ヒータ 1 2 a、 1 2 b、 1 2 c、 1 2 dが融解シリンダ 1 1に卷回される。 そして、 その溶湯 3を注湯部材 1 5や射出スリーブ 2 1 の中で融解状態に維持するために、 注湯部材 1 5や射出スリーブ 2 1に加熱 ヒータ 1 8や加熱ヒータ 2 3が卷回される。 これらの加熱ヒータは、 図示省 略された温度センサのフィードパック温度を基にその近傍を設定された所定 の温度に制御する。 例えば、 加熱ヒータ 2 3と加熱ヒータ 1 8の温度は、 ビ レツト 2がマグネシウム合金である場合に 6 0 0 °Cないし 6 5 0 °C程度に設 定される。 加熱ヒータ 1 2 a、 1 2 b、 1 2 c、 1 2 dの温度設定は、 後に 説明される。 なお、 融解シリンダ 1 1がセラミックス等から形成されて、 加 熱ヒータが誘導加熱コイルとなっても良い。
つぎに、 この発明の特徴を最も示す融解装置 1 0に係る実施形態がより詳 細に説明される。 まず融解シリンダ 1 1の 2つの実施形態が説明される。 第 2図はその第 1の実施形態を例示する側面断面図である。 第 3図は第 2の実 施形態を例示する側面断面図であり、 第 4図は第 3図の基部をより拡大して 示す側面断面図である。
第 2図の 1 1 1は第 1の実施形態に係る第 1の融解シリンダである。 この シリンダ 1 1 1のシリンダ孔 1 1 1 aの少なくとも基端を除く大部分はビレ ット 2より数 mm程度大径のシリンダ孔 1 1 1 bに形成され、 その基端側は ビレツト 2より僅かに大径のシリンダ孔 1 1 1 cに形成される。 そして、 そ れらの間に段差 1 1 1 dが形成される。 特に、 この融解シリンダがマグネシ ゥム合金を成形するシリンダである場合には、 大径のシリンダ孔 1 1 1 の ビレツト 2に対する隙間は 1 mmないし 2 mm程度になるように製作される 。 そして、 基端側のシリンダ孔 1 1 1 cは、 加熱されて僅かに膨張したビレ ット 2に対して隙間が 0 . 2 mmないし 0 . 5 mm程度になるように製作さ れる。 また、 段差 1 1 1 dの位置は、 融解シリンダ 1 1 1の口径、 貯留する 溶湯 3の湯量、 加熱ヒータ 1 2 c、 1 2 dの設定温度、 あるいは大径のシリ ンダ孔 1 1 1 bのビレツト 2に対する隙間との関係で、 適宜前後に異なる位 置にあらかじめ形成される。 なお、 基端個]のシリンダ孔 1 1 1 cの直径は射 出成形機の射出能力の 1つを示すシリンダ口径となる。
第 3図の 2 1 1は第 2の実施形態に係る第 2の融解シリンダである。 この 融解シリンダ 2 1 1は、 後に説明される冷却スリーブ 2 1 2と共にその基部 が中央枠部材 9 0の側板 9 0 aに固定されて、 ボルト 2 1 3にて強固に結合 される。 特にこの実施形態では、 中央枠部材 9 0の側板 9 0 aの透孔 9 0 b の周囲に冷却液が循環する冷却路 9 0 dが形成される。 それで、 側板 9 0 a は、 冷却部材としても機能することから以下の説明において冷却部材 2 1 4 とも称される。 もちろん、 この冷却部材 2 1 4は、 中央枠部材 9 0の側板 9 0 aと異なる部材に構成されて、 融解シリンダ 2 1 1と側板 9 0 aとの間に 介装されても良い。 透孔 9 0 bのビレッ ト 2に対する隙間は、 例えばビレッ ト 2がマグネシウム合金である場合に、 僅かに膨張したビレツト 2に対して 0 . 2 mmないし 0 . 5 mm程度になるように形成される。 この透孔 9 O b の隙間と側板 9 0 aの冷却作用とによって、 ビレッ ト 2は、 透孔 9 0 bに干 渉することなく挿入されると共に計量時に若干上昇する溶湯 3の圧力によつ ても変形しない非軟化状態に維持される。
上記の第 2の融解シリンダ 2 1 1のシリンダ孔 2 1 1 aは、 ビレッ ト 2よ り数 mm大きく形成され、 例えば、 成形材料がマグネシウム合金である場合 には、 ビレッ ト 2との隙間が 1 mmないし 3 mm程度になるように大きめに 形成される。 この隙間による作用効果は後に説明される。 また、 融解シリン ダ 2 1 1は、 その外周周縁に第 4図に示されるようなスリーブ形状に膨出す る環状凸部 2 1 1 eを備えて、 冷却部材 2 1 4に冷却スリープ 2 1 2を介し て接続される際に融解シリンダ 2 1 1と冷却部材 2 1 4の間に空間 2 1 5を 形成する。 そして、 この環状凸部 2 1 1 eに透孔若しくは切り欠き 2 1 1 f が複数個形成されて、 この空間 2 1 5に籠もる熱が放熱される。 したがって 、 この空間 2 1 5は冷却部材 2 1 4と融解シリンダ 2 1 1との間の断熱空間 として機能する。 .
一方、 冷却スリーブ 2 1 2は、 融解シリンダ 2 1 1の基端と冷却部材 2 1 4としての側板 9 0 aとの間にあって両者に対する接触面積をできる限り小 さくした小容積の略筒状の部材に形成される。 この冷却スリーブ 2 1 2は、 第 4図のように、 冷却部材 2 1 4の前端の座ぐり穴と、 融解シリンダ 2 1 1 基端の座ぐり穴との間に揷嵌される。 冷却スリーブ 2 1 2には、 図示省略さ れた温度センサが取り付けられてその温度が検出される。
冷却スリーブ 2 1 2の内孔には、 第 4図のように、 ビレット 2の周りでバ ックフローした溶湯 3を固化して保持するための環状溝 2 1 2 aが形成され る。 この環状溝 2 1 2 aは、 例えば、 ビレツト 2がマグネシウム合金である 場合に、 その溝幅が 2 O mmないし 4 0 mm、 好ましくは 3 0 mm程度に、 またその溝深さ寸法が融解シリンダのシリンダ孔 2 1 1 aに対して 3 mmな いし 4 mm程度になるように形成される。 そして、 環状溝 2 1 2' aより前方 側の冷却スリーブ 2 1 2の内孔 2 1 2 bがシリンダ孔 2 1 1 aに等しい内径 に形成され、 環状溝 2 1 2 aより後方側の内孔 2 1 2 cが透孔 9 0 bに等し い内径に形成される。 このような環状溝 2 1 2 aは、 冷却部材 2 1 4に接し た冷却スリーブ 2 1 2に形成されるので、 冷却部材 2 1 4によって強力に冷 却される。 このような環状溝 2 1 2 aの作用効果は後に説明される。 なお、 環状溝 2 1 2 aは、 それが第 4図で冷却スリーブ 2 1 2中にすべて含まれる ように形成されているが、 融解シリンダ 2 1 1側、 あるいは冷却部材 2 1 4 側のいずれかに接するように形成されても良い。 特に、 上記の冷却スリーブ 2 1 2の材質は、 融解シリンダ 2 1 1、 冷却部 材 2 1 4と剛性的、 熱膨張的に均等な材質であると共にできるだけ熱伝導度 の良好な材質であることが好ましい。 このことは、 冷却スリーブ 2 1 2が融 解シリンダ 2 1 1又は冷却部材 2 1 4のいずれかと一体に形成され得ること を意味する。 また、 冷却スリープ 2 1 2は、 図示された小容積の、 すなわち 比較的に薄肉の筒状部材であっても強度的に支障が無い。 環状溝 2 1 2 aに 後述される環状固化物 2 0 1が形成されるので、 この環状固化物から後方に 溶湯 3が漏れ出さず高圧がかからないからである。
上記のような第 1, 第 2の融解シリンダ 1 1 1、 2 1 1に卷回される、 カロ 熱ヒータ 1 2 a、 1 2 b、 1 2 c、 1 2 dの内、 先端側の 3個の加熱ヒータ 1 2 a、 1 2 b , 1 2 cは、 ビレット 2の融解温度に設定される。 例えば、 ビレツト 2がマグネシウム合金である場合、 これらの加熱ヒータの温度は 6 0 0 °Cないし 6 5 0 °C程度に設定される。 一方、 加熱ヒータ 1 2 dの温度は 、 第 1の融解シリンダ 1 1 1と第 2の融解シリンダ 2 1 1とで若干異なる温 度に設定される。
まず、 第 1の融解シリンダ 1 1 1の加熱ヒータ 1 2 dの設定温度は、 融解 シリンダ 1 1 1の基端に位置するビレツト 2の軟化を抑えるために 4 5 0 °C から 5 5 0 °C程度に適宜調整される。 マグネシウム合金が 3 5 0 °C程度に加 熱されたときから実質的に軟化し始めるからである。 このように加熱される ことによって、 ビレツト 2は、 融解シリンダ 1 1 1の基端側で軟化しない程 度に予備加熱され融解シリンダ 1 1 1の中程から先端側にかけての部分で高 温に加熱され、 シリンダ孔 2 1 1 a中で前方へ移動する間にその先端側で 6 0 0 °Cないし 6 5 0 °Cの溶湯 3に急速に融解する。 なお、 この実施形態では 、 中央枠部材 9 0の側板 9 0 aは通常加熱されないが、 第 2の融解シリンダ 2 1 1における冷却路 9 0 dと同様に冷却管路が設けられて冷却される場合 もある。
一方、 第 2の融解シリンダ 2 1 1の加熱ヒータ 1 2 dは、 冷却スリーブ 2 1 2が装着される融解シリンダ 2 1 1の基端付近を避けた位置に取り付けら れて冷却スリーブ 2 1 2に対する加熱の影響ができるだけ抑えられ、 その設 定温度が 5 0 0 °Cないし 5 5 0 °C前後に調整される。 それで、 冷却スリーブ 2 1 2は、 その加熱が抑えられると共に冷却部材 2 1 4によって強く冷却さ れる。 したがって、 冷却スリーブ 2 1 2の温度は、 主として冷却部材 2 1 4 の冷却温度設定によって調整されることになるが、 この加熱ヒータ 1 2 dに よっても補助的に調整される。 もちろん、 冷却スリーブ 2 1 2に冷却液の通 る配管が卷回されて、 個別に温度調整されてもよい。 より具体的には、 例え ばマグネシウム合金の成形において、 冷却部材 2 1 4中に位置するビレツト 2の温度が 1 0 0 °Cから 1 5 0 °C程度を上回らないように冷却され、 冷却ス リーブ 2 1 2内に位置するビレツト 2の温度が僅かに軟化が発生する温度 3 5 0 °Cに近い 4 0 0 °C程度になるように温度制御されると良い。
上記のようにビレット 2が第 1の融解シリンダ 1 1 1、 第 2の融解シリン ダ 2 1 1で加熱されるので、 ビレツト 2はその先端側から先に融解して溶湯 3に変化する。 そして、 この溶湯 3の湯量は成形運転中の計量の度に増減し たとしても数ショット分の射出容積が確保されるように温度調整される。 こ うして、 融解装置 1 0で最小限の溶湯が融解されて貯留されるので加熱エネ ルギが少なく効率的である。 また、 Si解のための昇温及び固化のための降温 が短時間で済むので、 保守点検作業での無駄な待ち時間が最小限に抑えられ る。 .もちろん、 融解装置の大きさは従来の融解炉より格段に小さくなる。 ところで、 1ショット分の溶湯が融解シリンダ 1 1 1あるは 2 1 1から射 出スリーブ 2 1に供給、 すなわち計量される際に、 ビレッ ト 2と融 ンリン ダ 1 1の隙間からの溶湯 3のバックフ口一は確実に阻止されなければならな い。 このため、 第 1の融解シリンダ 1 1 1、 第 2の融解シリンダ 2 1 1いず れにおいてもつぎに説明されるような方式によってシールが行われる。
まず、 第 1の実施形態においては、 計量時の溶湯 3の若干の圧力上昇によ つて、 軟ィ匕したビレッ ト 2の先端は実質的に若干拡径する。 そして、 拡径し た先端の側面 2 aはシリンダ孔 1 1 1 bの壁面に適宜に当接することによつ て溶湯 3をシールする。 この両者の適宜な当接によるシール作用は、 シリン ダ孔 1 1 1 bとビレッ ト 2の隙間が適切な寸法に形成されることによって実 現される。 この場合、 計量時の溶湯 3の圧力上昇が小さいことは上記のビレ ット側面 2 aの拡径をそれほど引き起こさないので都合が良い。 その上、 基 端ィ則のシリンダ孔 1 1 1 cとビレット 2の隙間が小さいことは、 ビレット 2 のシリンダ孔 1 1 1 bに対する偏心を抑えてそれらの隙間を等しく最小限に 抑える。 更に、 側面 2 aのシリンダ孔 1 1 1 bに接する部位が加熱ヒータ 1 2 aないし 1 2 dの加熱と冷却部材 2 1 4による冷却によって適度に軟ィ匕し た状態に保たれるので、 ビレツト 2の側面 2 aは、 一様に拡径した軟らかい シールとして適度にシリンダ孔 1 1 1 bに当接し、 溶湯 3の後方への漏れ出 じと空気等の溶湯中への侵入を防止する摩擦抵抗の小さいシールとして機能 する。 したがって、 この実施態様における拡径した側面 2 aは、 以後におい て 「拡径シール」 とも称される。
この実施形態では、 シリンダ孔 1 1 1 bとビレツト 2の隙間が上記した成 形条件に合わせてあらかじめ適正に設定されなければならないが、 融解シリ ンダ 1 1 1の口径が比較的小さい射出容積の少ない小型の射出成形機におい て上記の第 1の融解シリンダ 1 1 1は充分に採用され得る。 なぜなら、 上記 のシリンダ孔 1 l i bと 1 1 1 cとから成る単純な構成の融解シリンダ 1 1 1が、 小型の射出成形機に要求されるコストの低減要求に合致するからであ る。 しかも、 小型の射出成形機においては、 大型の射出成形機の融解シリン ダにおいて発生しやすい溶湯のバックフロー現象が顕著に発生しないからで ある。 このことは、 特に大型の射出成形機の融解シリンダでビレット 2の直 径が大きいためにその周長が長くなつてバックフ口一する隙間がより大きく なることから容易に理解されることである。
一方、 第 2の実施形態においては、 溶湯 3のシールは、 既述した 「拡径シ ール」 によって行われるのではなく、 冷却スリーブ 2 1 2の環状溝 2 1 2 a で溶湯 3が固化した環状固化物によって行われる。 この環状固化物によるシ ールはつぎにより詳細に説明される。
冷却スリーブ 2 1 2中のビレッ ト 2は、 マグネシゥム合金である場合にそ の軟化温度近くの 4 0 0 °C程度に温度制御され、 その外周で冷却スリーブ 2 1 2によって強力に冷却されている。 この状態で最初に射出装置 1の運転が 開始される際にビレツト 2が後述されるように低速で前進するが、 このとき 、 融解シリンダ 2 1 1の先端側で既に融解している溶湯 3は、 ビレツト 2の 周りでバックフローして環状溝 2 1 2 aに充満して固化物に変化する。 この 固化物は、 環状固化物 2 0 1としてつぎに説明されるような特徴を有する。 まず、 この環状固化物 2 0 1は、 溶湯 3が環状溝 2 1 2 aとビレッ ト 2の 空間に倣って固化した物であるから、 たとえビレット 2と融解シリンダ 2 1 1との間に僅かな偏心があっても、 ビレツト 2の周りの間隙を隙間なく埋め る。 また、 環状固化物 2 0 1の大部分が固化した状態で環状溝 2 1 2 aに嵌 つているために、 環状固化物 2 0 1が計量の際にビレツト 2と共に移動した り壊れたりすることがなく、 環状溝 2 1 2 aより基端側に成長することもな い。 また、 計量の際に前進したビレット 2の外周面がその外周とシリンダ孔 2 1 1 bの間隙の溶湯 3によってつぎの計量までに急速に加熱されるので、 環状固化物 2 0 1のビレッ ト 2に接する表面が適度に軟化した状態に維持さ れる。 また、 環状固化物 2 0 1のビレツト 2に対する結合力あるいは付着力 は、 高温の溶湯 3が比較的低い温度にあるビレツト 2に対して急速に固化し た物であるからそれほど強くない。
加えて、 軟化したビレツト 2の先端が前進時に僅かに拡径してもシリンダ 孔 2 1 1 aに当接することがないように、 融解シリンダ 2 1 1のシリンダ孔 2 1 1 aの内径とビレツト 2の外径との隙間が数 mm程度に形成される。 そ れで、 溶湯 3が拡径したビレツト先端に塞がれることなくその背後に回り込 み、 この溶湯 3の回り込みが溶湯の回り込まない空間の発生を回避してビレ ット 2によって押し出される溶湯の計量容積の変動を抑える。 このことは、 成形運転中にビレット 2の先端の拡径部分がその成長と圧壊を繰り返してシ リンダ孔 2 1 1 aに当接したりしなかったりする逆の場合を想定することに よって容易に理解されるであろう。 この場合には、 実質的に押し出しピスト ンとなる部分の面積が変動するからである。
こうして、 環状固化物 2 0 1は、 後続して行われる計量においてビレツト 2が前進して溶湯 3を押し出すときにビレット 2と融解シリンダ 2 1 1との 間の隙間を良好に安定してシールする。 そして、 環状固化物 2 0 1は、 ビレ ット 2と融解シリンダ 2 1 1との間から空気等を侵入させないことはもちろ ん溶湯 3を後方に漏らすこともなく、 かつビレツト 2の移動時の摩擦抵抗を 低減する。 環状固化物 2 0 1のこのようなシール作用は、 軽金属材料、 特に マグネシウム合金の、 大きレ、熱伝導率と小さ!/、熱容量及ぴ潜熱とによって急 速に固体から液体に相変化する特性をうまく利用している。
以上説明した環状固化物 2 0 1は、 「環状固化物シール」 として溶湯 3の シールを確実に行う。 それで、 このような融解シリンダ 2 1 1は、 小型の射 出成形機においても採用できることはもちろん、 ビレツト 2の直径がより太 レ、大型の射出成形機にも採用できる。
つぎに、 この発明の融解シリンダ 1 1に関連する他の構成要素の特徴的な 実施形態が説明される。 以下の説明において、 融解シリンダ 1 1は、 特に記 載がない限り第 1の融解シリンダ 1 1 1と第 2の融解シリンダ 2 1 1の両方 を含む。
まず、 融解シリンダ 1 1の先端のエンドプラグ 1 3に形成された連通路 1 3 bの配置位置と融解シリンダ 1 1の取り付け姿勢とに係る実施形態が第 1 図で説明される。 連通路 1 3 bは、 融解シリンダ 1 1のシリンダ孔 1 1 aの 上部で開口するように、 エンドプラグ 1 3の栓部分の上面の一部を切除した 部分とシリンダ孔 1 1 aとの間の空間として形成される。 この場合の切除は 、 例えば、 断面 D字の形状に水平に切除することあるいはキー溝のように切 除することである。 また、 融解シリンダ 1 1を含む融解装置 1 0は、 その先 端側をより高い位置とした、 3度程度の傾斜姿勢に配置される。 このような 連通路 1 3 bの位置によって、 最初に射出装置 1の運転が開始される際に融 解シリンダ 1 1中に混入していた空気やガス等がそのシリンダから容易にパ ージされる。 溶湯中の空気やガス等が上方に集まりやすいからである。 また
、 連通路 1 3 bの位置と融解シリンダ 1 1の傾斜によつて融解シリンダ 1 1 中で融解された溶湯 3が計量時を除く予定しない時機に射出スリーブ 2 1側 に流出する現象が阻止されて、 計量が正確になる。 この場合、 融解シリンダ 1 1のみならず射出スリーブ 2 1ゃ型締装置 3 0を含めた射出成形機全体が その後方でより低位にィ頃斜した姿勢に配置されるとなお良い。
このような実施態様において、 注湯部材 1 5が第 5図に示されるような開 閉装置 7 0を含むと更に良い。 第 5図はその注湯部材 1 5周りの構成を拡大 して示す断面図である。 この図において、 開閉装置 7 0は、 注湯部材 1 5の 注湯孔 1 5 aの下端直近に形成された弁座部分 1 5 bと、 弁座部分 1 5 に 接離して注湯孔 1 5 aを開閉する弁棒 7 1と、 弁棒 7 1を進退駆動する流体 シリンダ等の弁棒駆動装置 7 2とを含む。 弁棒 7 1と注湯孔 1 5 aの間には 溶湯 3の流路となる隙間が確保される。 そして、 流体シリンダ 7 2が融解シ リンダ 1 1の上部に固定されたブラケット 7 3に固定され、 弁棒 7 1の上端 が流体シリンダ 7 2のビストンロッド 7 2 aにカップリング 7 4によって結 合される。 このような構成の開閉装置 7 0は、 計量する際にのみ注湯孔 1 5 aを開口することによって、 注湯孔 1 5 aの側面に付着することがある溶湯 3が計量時を除く予定しない時機に落下することを防止する。 その上、 注湯 孔 1 5 aがその下端直近で開閉されるので、 溶湯 3の落下が発生し得る注湯 孔 1 5 aの側面そのものがほとんど無い。 こうして、 開閉装置 7 0は正確な 計量を実現する。 なお、 開閉装置 7 0が取り付けられる場合にはガス注入孔 1 7がカバ一 1 6に取り付けられて、 注湯孔 1 5 a中の弁棒 7 1が冷却され ないように配慮される。 このような開閉装置 7 0が取り付けられる場合には、 弁棒 7 1と注湯孔 1 5 aの間に溶湯が常に充満した状態で計量が行われるようにしても良い。 こ の場合、 ビレット 2の溶湯 3の押し出し動作の開始のタイミング及び終了の タイミングが、 計量動作の開始及び終了を決定する開閉装置 7 0の注湯孔 1 5 aの開閉動作のタイミングに一致するように制御される。 このような計量 によって、 計量はより正確に制御される。 注湯孔 1 5 aに溶湯が充満するこ とによつて注湯孔 1 5 aや弁棒 7 1の温度低下が全く無くなり、 溶湯がそれ らの側面に付着することが回避されるからである。 その上、 融解シリンダ 1 1中での溶湯 3の融解効率が向上する作用効果もある。 第 1に、 連通路 1 3 bに接する融解シリンダ 1 1中の溶湯 3が不活性ガスに触れて、 僅かであつ ても温度低下が避けられるからである。 第 2に、 融解シリンダ 1 1中のビレ ット 2を予圧することが可能になって融解しやすいからである。
つぎに、 ビレット供給装置 4 0が説明される。 第 6図は、 第 1図の中央枠 部材 9 0での X— X矢視断面図であり、 ビレツト供給装置の断面図である。 この装置は、 例えば、 ビレット 2が整列状態で多数装填されるホッパ 4 1と 、 ビレット 2を整列状態で順次落下させるシユート 4 2と、 ビレット 2を一 且受け止めて 1個ずつ落下させるシャツタ装置 4 3と、 ビレツト 2を融解シ リンダ 1 1の軸中心に同心に保持する保持装置 4 4とからなる。 ホッパ 4 1 中には、 ビレツト 2が滞ることなく落下するように、 葛折れの仕切り 4 1 a が配設される。 シャツタ装置 4 3は、 シャツタプレート 4 3 aと保持装置 4 4の開閉する側の保持部材 4 5とで上下 2段のシャッタを構成し、 シャッタ プレート 4 3 aと保持部材 4 5の交互の開閉動作によってビレツト 2を 1個 ずつ落下させる。 4 3 bはシャツタプレート 4 3 aを進退させるエアシリン ダ等の流体シリンダである。 保持装置 4 4は、 ビレツト 2を左右から僅かな 隙間を余して挟むように保持する 1組の保持部材 4 5、 4 6と、 片側の保持 部材 4 5を開閉するエアシリンダ等の流体シリンダ 4 7と、 シユート 4 2の 下方にてビレツト 2をその案内曲面にて受け止めて保持部材 4 6側に案内す るガイド部材 4 8とを含む。 保持部材 4 5、 4 6のお互いに対向する内側側 面には、 ビレツト 2の外径より僅かに大きい直径の略半円円弧状の凹部 4 5 a , 4 6 aが形成されて、 保持部材 4 5が閉じたときにその凹部 4 5 a , 4 6 aの中心がシリンダ孔 1 1 aの中心に略一致する。 それで、 ホッパ 4 1か ら補給されたビレツト 2は、 保持装置 4 4によってシリンダ孔 1 1 aの中心, に略一致するように保持される。 このようなビレット供給装置 4 0は、 ビレ ット 2を整列状態で保持してビレツト 2を 1個ずつ落下させる。 したがって 、 上記のように機能する装置であれば上記実施形態の装置に限定されない。 なお、 ビレツ .ト 2は、 その表面の除湿を目的に機外で低温で予備加熱される 場合もある。 .
つぎにビレット揷入装置 5 0が説明される。 この装置は、 例えば第 1図の ように、 油圧シリンダ 5 1と、 油圧シリンダ 5 1によって前後に移動制御さ れるピス トンロッ ド 5 2と、 ピス トンロッ ド先端に一体に形成されたプッシ ャ 5 2 aとを含む。 プッシャ 5 2 aの最大移動ストロークはビレツ ト 2の全 長を若干超える長さに設定される。 また、 プッシャ 5 2 aは計量時に 1ショ ット分ずつ逐次前進する。 プッシャ 5 2 aの位置や速度は、 図示省略された 例えばリニアスケールなどの位置検出装置によって検出され、 図示省略され た制御装置にフィ一ドバックされて制御される。
上記のビレット挿入装置 5 0は、 ビレット 2の補給時にプッシャ 5 2 aを ビレツト 2の全長以上の距離後退させて、 ビレツト 2の供給される空間を確 保する。 そして、 プッシャ 5 2 aを前進させてビレット 2を融解シリンダ 1 1の中に挿入する。 また、 ビレット挿入装置 5 0は、 計量時にプッシャ 5 2 aを逐次前進させて、 1回の前進で 1ショット分の射出容積に相当する溶湯 3を射出スリーブ 2 1に送り込む。 このようなビレット揷入装置 5 0は、 上 記のようなプッシャ 5 2 aの動作を可能にする装置である限りにおいて油圧 シリンダ駆動の駆動装置に限定されず、 サーボモータの回転運動をポールね じ等を介して直線運動に変えてプッシャ 5 2 aを移動する電動駆動装置であ つても良い。
上記のような融解装置 1 0に組み合わされるプランジャ射出装置 2 0の各 構成要素が、 第 1図でより詳細に説明される。 これらの構成要素は、 従来の コールドチヤンバダイカスト成形機の射出装置に共通するものであるから、 以下に説明される構成のみに限定されるものではない。
最初にプランジャ射出装置 2 0の全体構成が説明される。 射出スリープ 2 1とブランジャ駆動装置 6 0とを接続する接続部材 6 4は、 筒状の部材であ り、 その前方に近い位置にプランジャ 2 2とほとんど隙間のない状態で嵌り 合う透孔を有する隔壁 6 4 aを備える。 そして、 隔壁 6 4 aより前方の接続 部材 6 4の下側に溶湯 3の漏れ出しに備えて回収パン 6 5が着脱自在に用意 され、 同じ接続部材 6 4の上側に不活性ガスが注入される注入孔 6 4 bが設 けられる。 このような構成の接続部材 6 4は、 射出スリーブ 2 1の基端と隔 壁 6 4 aとの間に空間 6 6を形成する。 このような構成によって、 万一、 溶 湯 3が射出スリーブ 2 1の基端から僅かに漏れ出ることがあっても、 溶湯は この回収パン 6 5に回収される。 また、 この空間 6 6に不活 ¾ガスが注入さ れてプランジャ 2 2と基端側のシリンダ孔 2 1 aの間隙に存在する空気がパ ージされる。 このパージは、 特に、 マグネシウム成形の場合に材料の酸化防 止のための好ましい環境を作り出す。 供給される不活性ガスの量は、 上記空 間 6 6及び射出スリーブ 2 1とブランジャ 2 2の間の僅かな間隙に供給され るだけであるから僅かで済む。
つぎにプランジャ駆動装置 6 0が説明される。 この装置は、 例えば第 1図 のように、 油圧シリンダ 6 1と、 油圧シリンダ 6 1によって前後に移動制御 されるピストンロッド 6 2と、 ピストンロッド 6 2とプランジャ 2 2を結合 するカツプリング 6 3とを含む。 プランジャ 2 2は、 射出スリーブ 2 1の基 端側から挿通され、 油圧シリンダ 6 1のビストンロッド 6 2によって前後に 駆動される。 プランジャ 2 2の位置は、 図示省略された例えばリニアスケー ルなどの位置検出装置によって検出され、 図示省略された制御装置にフィ一 ドパックされてその位置が制御される。 プランジャ 2 2の後退可能な位置は 、 材料供給口 2 1 hより基端側の位置に設定され、 その最大ストロークは射 出装置 1の最大射出容積に合わせてあらかじめ設計される。 このようなブラ ンジャ駆動装置 6 0は、 油圧シリンダ駆動の駆動装置に限らず、 サーボモー タの回転運動をボールねじ等を介して直線運動に変えてプランジャ 2 2を移 動する電動駆動装置であっても良い。
プランジャ 2 2は、 射出スリーブ 2 1の内径より僅かに小径のへッド部 2 2 aとそのヘッド部 2 2 aより僅かに小径のシャフト部 2 2 bを備える。 そ して、 へッド部 2 2 aが図示省略されたビストンリングをその外周に備える このようなプランジャ駆動装置 6 0は、 計量時にプランジャ 2 2を材料供 給口 2 1 hより後方まで後退させ、 計量後にプランジャ 2 2を前進させて溶 湯 3の射出速度と射出容量を制御し、 必要に応じて保圧圧力を制御する。 以上のように構成されたこの発明の射出装置 1によって、 成形運転はつぎ のように行われる。 理解されやすいように、 本番の射出成形動作が先に説明 される。 この動作が行われるとき、 複数本のビレット 2があらかじめ融解シ リンダ 1 1に供給されており、 数ショット分の射出容積に応じた溶湯 3が融 解シリンダ 1 1の前方に既に確保されている。 この状態で、 最初に計量動作 が開始される。 まず、 プランジャ 2 2が材料供給口 2 1 hより後方まで後退 してから、 プッシャ 5 2 aがビレット 2を所定量前進させる。 開閉装置 7 0 が備えられる場合には弁棒 7 1の開口動作が同時に行われる。 この計量動作 によって融解シリンダ中の 1ショット分の溶湯 3が注湯部材 1 5から射出ス リーブ 2 1に供給される。 この動作は、 通常、 先の成形サイクルで成形され た成形品が取り出されて型締めされた後に行われる。 計量中に注湯部材 1 5 の注湯孔 1 5 aが開口されているので溶湯 3の圧力が高くなることが無い。 それで、 溶湯 3のシールは上記した 「拡径シール」、 あるいは 「環状固化物 シール」 によって確実に行われる。 特に開閉装置 7 0によって注湯孔 1 5 a の中に溶湯 3が常時充満している場合でも、 弁棒 7 1の開口動作が同時に行 われるので、 溶湯の圧力が特段に高圧にならない。
射出スリープ 2 1に計量された溶湯 3は、 加熱ヒータ 2 3によって溶融状 態に維持される。 このとき、 不活性ガスは溶湯の酸化を防止する。 つぎに、 プランジャ 2 2が従来通りに前進して 1ショット分の溶湯がキヤビティ 3 4 に射出される。 つぎに、 従来公知の成形品の冷却が行われ、 型開きされて成 形品が取り出される。 つぎに型閉じされて再び上記のような計量が行われる 。 計量の度に消費される融解シリンダ 1 1中の溶湯 3は、 つぎの計量が始ま るまでの間に融解され ¾[充される。
上記のような計量が繰り返される度にビレツ ト 2は逐次前進する。 やがて ビレッ ト 1本分の溶湯の射出が行われると、 ビレッ ト 2の補給が行われる。 この補給動作は、 プッシャ 5 2 aがビレツト 1本分の距離を超えて前進した ことをプッシャ 5 2 aの位置検出器が検出したときに始まる。 まず、 ビレツ ト揷入装置 5 0がプッシャ 5 2 aをビレット 2の全長以上の距離後退させて ビレツト 2が供給される空間を融解シリンダ 1 1の後方に確保する。 つぎに 、 ビレッ ト供給装置 4 0が 1本のビレッ ト 2を融解シリンダ 1 1後方に供給 し、 ビレッ ト挿入装置 5 0がそのビレッ ト 2を融解シリンダ 1 1中に押し込 んで補給動作が完了する。 このとき、 融解シリンダ 1 1中の溶湯 3に空気が 侵入することや溶湯 3がバックフローすることは、 上記の 「拡径シール」 あ るいは 「環状固化物シール」 によって阻止される。 また、 ビレット 2の側面 や端面が平滑に仕上げられているので空気がビレツトと共に入り込むことも 無い。 それで、 ー且パージが終了した後に空気が融解シリンダ 1 1中に侵入 することは無い。
つぎに、 上記射出成形運転前の準備段階の動作が説明される。 最初に不活 性ガスが注入されて融解シリンダ 1 1中の空気がパージされる。 つぎに、 あ らかじめホッパ 4 1に貯蔵されていたビレツト 2が、 ビレツト供給装置 4 0 によつて融解シリンダ 1 1の後方に供給され、 ビレット挿入装置 5 0によつ て融解シリンダ 1 1の中に挿入される。 この最初の挿入はビレツト 2が融解 シリンダ 1 1中で一杯になるまで連続的に行われる。 挿入された複数本のビ レツト 2は、 融解シリンダ 1 1の中で前方に押し込まれると共に加熱ヒータ 1 2 aないし 1 2 dによって加熱されることによって先端側に位置する部分 力 ら先に融解し始める。 やがて数ショット分の溶湯 3が確保されると、 ブラ ンジャ 2 2が後退しプッシャ 5 2 aが前進して溶湯 3が射出スリープ 2 1に 送り込まれる。 溶湯 3が射出スリーブ 2 1中に供給されると、 つぎに上記の 射出に準ずる動作が同様に行われて、 最初に溶湯 3を生成する際に融解シリ ンダ 1 1の中に混入した空気や不活性ガスがパージされる。 このパージが完 了した後に予備成形が何回か行われ、 成形条件が調整されて成形前の準備動 作が完了する。
以上説明したこの発明は、 上記実施の形態に限定されるものではなく、 こ の発明の趣旨に基づいて種々変形させることが可能であり、 それらをこの発 明の範囲から排除するものではない。 特に具体的な装置について、 本発明の 趣旨に添った基本的な機能を有するものは、 本発明に含まれる。 産業上の利用可能性
以上説明したように、 この発明のコールドチャンバダイカスト成形機の射 出装置は、 従来のブランジャ射出装置をそのまま採用しながら成形材料をビ レットの形状で供給することを可能にしている。 それで、 この発明の射出装 置は、 コールドチャンバダイカスト成形機の射出に関する特徴をそのまま引 き継ぎながら融解装置において融解炉を不要にして、 材料の取り扱いを容易 にすると共に成形材料の効率的な融解と計量を実現する。 その上、 この発明 の射出装置は、 射出装置の簡素化によってその取り扱いを容易にすると共に その保守作業も楽にする。

Claims

請求の範囲
1. 射出スリーブ (2 1) の上部に開口する材料供給口 (2 1 h) に軽金 属材料の溶湯を供給し、 プランジャ (2 2) によって該溶湯を射出するブラ ンジャ射出装置 (20) を備えたコールドチャンバダイカスト成形機の射出 装置 (1) において、
a) 前記軽金属材料を融解する融解装置 (1 0) と、 前記融解装置から前記 プランジャ射出装置に溶湯を注ぐ注湯部材 (1 5) とを更に備え、 b) 前記融解装置が、 前記軽金属材料を円柱短棒形状のビレッ ト (2) の状 態で補給することによって成形材料の補給を行うビレツト供給装置 (40) と、 前記ビレッ ト供給装置の後方に位置して補給された前記ビレットを前方 に押し出す一方で少なくともビレツ ト 1本分の長さを超える距離を後退する プッシャ (5 2 a) を有するビレッ ト挿入装置 (5 0) と、 前記ビレッ ト供 給装置の前方に位置して前記プッシャによって押し出された複数本の前記ビ レツトを収容すると共に該ビレツトをその先端側から先に融解して数ショッ ト分の溶湯 (3) を生成する融解シリンダ (1 1) とを含み、
c) 前記注湯部材が、 前記融解シリンダのシリンダ孔 (1 1 a) の前端から 前記射出スリーブの前記材料供給口に前記溶湯を注ぐ注湯孔 (1 5 a) を含 んで、
d ) 前記プランジャ射出装置が前記ブランジャを後退した後に前記融解装置 が前記ビレッ トを介して前記プッシャを押し込んで 1ショット分の前記溶湯 を前記射出スリーブに供給することによって前記溶湯が計量されることを特 徴とするコールドチャンバダイカスト成形機の射出装置。
2. 前記融解シリンダが第 1の融解シリンダ (1 1 1) によって構成され 、 前記第 1の融解シリンダの少なくともその基端を除く大部分のシリンダ孔 (1 1 1 b) が前記ビレツトの未溶融の先端の拡径した側面 (2 a) に前記 溶湯のパックフローを阻止する程度に当接する内径に形成され、 前記第 1の 融解シリンダの基端側のシリンダ孔が (1 1 1 c) ビレツトの外径より僅か に大きい内径に形成されることを特徴とする請求の範囲第 1項記載のコール ドチャンバダイカスト成形機の射出装置。
3. 前記融解装置が、
a) 前記ビレットを冷却する冷却部材 (2 1 4) と、 前記冷却部材の前方に 固定される第 2の融解シリンダ (2 1 1) と、 前記第 2の融解シリンダと前 記冷却部材の間に位置する冷却スリーブ (2 1 2) とを含み、
b ) 前記冷却部材が前記ビレッ トの外径より僅かに大きい内径の透孔 ( 90 b) を備えると共に該透孔の周囲に冷却路 (90 d) を備え、
c ) 前記第 2の融解シリンダの大部分のシリンダ孔 (2 1 1 a) が前記ビレ ットの先端に当接しない内径に形成され、
d ) 前記冷却スリーブが、 前記溶湯を冷却することによつて前記ビレッ トの 外周に前記溶湯の固化物である環状固化物 (20 1) を生成する環状溝 (2 1 2 a) を有することを特徴とする請求の範囲第 1項記載のコールドチャン バダイカスト成形機の射出装置。
4. 前記注湯部材の前記注湯孔が、 前記融解シリンダの前記シリンダ孔の 上部に開口する違通路 (1 3 b) によつて連通すると共に前記融解シリンダ がその先端部を高い位置とする傾斜した姿勢に配置されることを特徴とする 請求の範囲第 1項記載のコールドチャンバダイカスト成形機の射出装置。
5. 前記融解装置と前記プランジャ射出装置との間には、 前記注湯部材の 前記注湯孔の中で昇降して前記注湯孔の略下端を開閉する弁棒 (7 1 ) と、 前記弁棒を計量時にのみ開口する弁棒駆動装置 (7 2 ) とを含む開閉装置 ( 7 0 ) が設けられることを特徴とする請求の範囲第 1項記載のコールドチヤ ンバダイカスト成形機の射出装置。
6 . 前記請求の範囲第 5項記載のコールドチャンバダイカス ト成形機の射 出装置の計量方法において、 前記開閉装置の前記注湯孔の開閉動作と前記プ ッシャの前記溶湯を押し出す動作が略同時に行われることによって、 前記溶 湯が前記注湯孔中に常時貯留された状態で計量が行われることを特徴とする コールドチャンパダイカスト成形機の射出装置の計量方法。
PCT/JP2003/014690 2002-11-18 2003-11-17 コールドチャンバダイカスト成形機の射出装置及びその計量方法 WO2004045791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/535,478 US7137435B2 (en) 2002-11-18 2003-11-17 Enhanced cold chamber die casting molding machine
DE10393767T DE10393767T5 (de) 2002-11-18 2003-11-17 Spritzgießeinheit in einer Kaltkammer-Druckgussmaschine und darin angewandtes Dosierverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-333077 2002-11-18
JP2002333077A JP4272413B2 (ja) 2002-11-18 2002-11-18 コールドチャンバダイカスト成形機の射出装置及びその計量方法

Publications (1)

Publication Number Publication Date
WO2004045791A1 true WO2004045791A1 (ja) 2004-06-03

Family

ID=32321682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014690 WO2004045791A1 (ja) 2002-11-18 2003-11-17 コールドチャンバダイカスト成形機の射出装置及びその計量方法

Country Status (5)

Country Link
US (1) US7137435B2 (ja)
JP (1) JP4272413B2 (ja)
CN (1) CN1325200C (ja)
DE (1) DE10393767T5 (ja)
WO (1) WO2004045791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081269A (zh) * 2015-09-21 2015-11-25 昆山子申机电设备有限公司 镁合金半固态射出成型机构

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038235A (ja) * 2005-08-01 2007-02-15 Toyo Mach & Metal Co Ltd 溶融金属成形装置
JP4504282B2 (ja) * 2005-08-19 2010-07-14 日精樹脂工業株式会社 金属成形機の材料押出供給装置
JP4516535B2 (ja) * 2006-02-13 2010-08-04 東洋機械金属株式会社 溶融金属成形装置
CN100355519C (zh) * 2006-07-07 2007-12-19 瑞玛泰(北京)科技有限公司 镁合金液态金属控制装置
JP4210298B2 (ja) * 2006-12-18 2009-01-14 日精樹脂工業株式会社 金属成形機の材料溶解保持装置における棒状材料溶解方法
JP2008188627A (ja) * 2007-02-05 2008-08-21 Toyo Mach & Metal Co Ltd ダイカストマシンの制御方法
JP2008254045A (ja) * 2007-04-06 2008-10-23 Toyo Mach & Metal Co Ltd 溶融金属成形装置
JP2008296274A (ja) * 2007-06-04 2008-12-11 Toyo Mach & Metal Co Ltd 溶融金属成形装置
DE102007058254A1 (de) * 2007-11-26 2009-05-28 Klein, Friedrich, Prof. Dr. Dr. h.c. Gießkolbenstange für eine Gießmaschine
JP4666317B2 (ja) * 2008-01-16 2011-04-06 日精樹脂工業株式会社 金属成形用射出装置の棒状材料溶解保持装置
JP4679614B2 (ja) * 2008-08-05 2011-04-27 美和ロック株式会社 ダイカストマシン
US20120111523A1 (en) * 2010-11-05 2012-05-10 Bochiechio Mario P Melting unit for a die casting system
JP5768616B2 (ja) 2011-09-20 2015-08-26 トヨタ自動車株式会社 ダイカスト装置
WO2013048429A1 (en) * 2011-09-30 2013-04-04 Crucible Intellectual Property Llc Injection molding of amorphous alloy using an injection molding system
US20130340967A1 (en) * 2012-06-26 2013-12-26 GM Global Technology Operations LLC Advanced Feed System for Semi Solid Casting
US8813816B2 (en) * 2012-09-27 2014-08-26 Apple Inc. Methods of melting and introducing amorphous alloy feedstock for casting or processing
US8813814B2 (en) * 2012-09-28 2014-08-26 Apple Inc. Optimized multi-stage inductive melting of amorphous alloys
JP6157408B2 (ja) * 2014-05-22 2017-07-05 三菱電機株式会社 溶融金属吐出装置および溶融金属吐出方法
US10252307B2 (en) * 2015-05-15 2019-04-09 Nittan Valve Co., Ltd. Highly-viscous substance dispensing method and highly-viscous substance dispensing apparatus
JP6579617B2 (ja) * 2015-09-11 2019-09-25 株式会社ソディック 軽金属射出成形機の射出装置
SE539619C2 (en) * 2016-02-03 2017-10-17 Core Link Ab Method and apparatus for trimming cores
JP6300882B1 (ja) * 2016-10-27 2018-03-28 株式会社ソディック 溶融装置
JP6335243B2 (ja) * 2016-10-27 2018-05-30 株式会社ソディック 射出成形機
JP6308695B1 (ja) * 2016-12-07 2018-04-11 株式会社ソディック 射出成形機
JP6544875B1 (ja) * 2018-06-07 2019-07-17 株式会社ソディック 軽金属射出成形機の射出装置
JP6590425B1 (ja) * 2018-10-05 2019-10-16 株式会社ソディック 軽金属射出成形機の射出装置およびその射出制御方法
CN113579196A (zh) * 2021-07-15 2021-11-02 伯乐智能装备有限公司 一种轻合金改性产品的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849211U (ja) * 1971-10-13 1973-06-28
JPS609563A (ja) * 1983-06-28 1985-01-18 Hanano Shoji Kk ダイカスト方法及び装置
US20030000676A1 (en) * 2001-07-02 2003-01-02 Tetsuichi Motegi Pouring apparatus for castings
JP2004050269A (ja) * 2002-07-23 2004-02-19 Sodick Plastech Co Ltd 軽金属射出成形機の射出装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849211A (ja) 1971-10-27 1973-07-11
US4356940A (en) 1980-08-18 1982-11-02 Lester Engineering Company Apparatus for dispensing measured amounts of molten metal
US4534403A (en) 1980-10-14 1985-08-13 Harvill John I Hot chamber die casting machine
GB8334653D0 (en) 1983-12-30 1984-02-08 Dynacast Int Ltd Injection moulding and casting method
JP2639552B2 (ja) * 1988-04-01 1997-08-13 東芝機械株式会社 半溶融金属射出成形装置
JPH03106547A (ja) * 1989-09-19 1991-05-07 Shin Nippon Denki Sangyo Kk ダイカスト用誘導溶解保持装置
JP2546077B2 (ja) * 1991-03-25 1996-10-23 宇部興産株式会社 金型鋳造装置
JPH05212531A (ja) 1992-02-07 1993-08-24 Sumitomo Heavy Ind Ltd 金属基複合材料の成形方法
JPH05238765A (ja) 1992-02-28 1993-09-17 Sumitomo Heavy Ind Ltd 成形方法、それに使用される自己消耗型プランジャ及び成形装置
JPH05254858A (ja) 1992-03-09 1993-10-05 Sumitomo Heavy Ind Ltd 成形方法
JP3817786B2 (ja) 1995-09-01 2006-09-06 Tkj株式会社 合金製品の製造方法及び装置
JP3405626B2 (ja) 1995-10-17 2003-05-12 本田技研工業株式会社 半凝固金属の射出成形方法、及び装置
US6152159A (en) 1997-01-14 2000-11-28 Frank W. Schaefer, Inc. Valve assembly and method for use in delivery of molten metal
JPH10296417A (ja) 1997-04-22 1998-11-10 Ube Ind Ltd 半溶融金属の成形装置
US5983978A (en) * 1997-09-30 1999-11-16 Thixomat, Inc. Thermal shock resistant apparatus for molding thixotropic materials
JP3258617B2 (ja) 1997-11-21 2002-02-18 株式会社日本製鋼所 金属材料の射出装置
US5983976A (en) 1998-03-31 1999-11-16 Takata Corporation Method and apparatus for manufacturing metallic parts by fine die casting
JP3975020B2 (ja) 1999-03-09 2007-09-12 有限会社リムテック 溶融金属材料供給装置とそれを利用した金属材料成形装置
JP3500452B2 (ja) 1999-12-28 2004-02-23 日精樹脂工業株式会社 アルミニウムの射出成形機
JP3504628B2 (ja) 2001-04-04 2004-03-08 住友重機械工業株式会社 マグネシウム成形機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849211U (ja) * 1971-10-13 1973-06-28
JPS609563A (ja) * 1983-06-28 1985-01-18 Hanano Shoji Kk ダイカスト方法及び装置
US20030000676A1 (en) * 2001-07-02 2003-01-02 Tetsuichi Motegi Pouring apparatus for castings
JP2004050269A (ja) * 2002-07-23 2004-02-19 Sodick Plastech Co Ltd 軽金属射出成形機の射出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081269A (zh) * 2015-09-21 2015-11-25 昆山子申机电设备有限公司 镁合金半固态射出成型机构

Also Published As

Publication number Publication date
US7137435B2 (en) 2006-11-21
CN1711145A (zh) 2005-12-21
DE10393767T5 (de) 2005-10-27
JP4272413B2 (ja) 2009-06-03
US20060042772A1 (en) 2006-03-02
CN1325200C (zh) 2007-07-11
JP2004167499A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
WO2004045791A1 (ja) コールドチャンバダイカスト成形機の射出装置及びその計量方法
KR100877116B1 (ko) 경금속 사출성형기의 사출장치
JP4012442B2 (ja) 軽金属射出成形機の射出装置
HUT56509A (en) Method and apparatus for die casting metal alloys
CN111001810B (zh) 轻金属射出成形机的射出装置及其射出控制方法
US5697422A (en) Apparatus and method for cold chamber die-casting of metal parts with reduced porosity
JP3477124B2 (ja) 金属射出成形機における離型剤の塗布方法および金属射出成形用金型
KR20210116565A (ko) 다이캐스트 머신, 금형 구비 다이캐스트 머신, 다이캐스트 머신용 제어 장치 및 다이캐스트 방법
KR102199231B1 (ko) 경금속 사출 성형기의 사출 장치
JP3812820B2 (ja) ダイカスト鋳造機及びダイカスト鋳造方法
JP4175602B2 (ja) 鋳造用注湯装置
JP2002263815A (ja) 金属製品成形用金型における粉体離型剤の塗布方法および金属製品成形用金型
US20030094257A1 (en) Shutterless injection molding method and apparatus
JP2009166054A (ja) 成形方法及び成形機
US11370019B2 (en) Backflow prevention device of light metal injection device and backflow prevention method of light metal injection device
JP2004249344A (ja) 軽合金の射出成形方法及び射出成形装置
JP3954914B2 (ja) 軽合金の射出成形方法及び射出成形装置
JP3720822B2 (ja) 金属射出成形方法及び装置
JP5344469B2 (ja) 軽金属射出成形機の射出装置
JP2003211260A (ja) 軽金属材料の射出方法および軽金属射出成形機の射出装置
JP2017052001A (ja) 軽金属射出成形機の射出装置
JP2009166056A (ja) 成形方法及び成形機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE US

ENP Entry into the national phase

Ref document number: 2006042772

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038A34325

Country of ref document: CN

Ref document number: 10535478

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10535478

Country of ref document: US