WO2004036569A1 - 情報記録媒体およびその製造方法、並びに光学情報記録再生装置 - Google Patents

情報記録媒体およびその製造方法、並びに光学情報記録再生装置 Download PDF

Info

Publication number
WO2004036569A1
WO2004036569A1 PCT/JP2003/011172 JP0311172W WO2004036569A1 WO 2004036569 A1 WO2004036569 A1 WO 2004036569A1 JP 0311172 W JP0311172 W JP 0311172W WO 2004036569 A1 WO2004036569 A1 WO 2004036569A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
information
light
titanium oxide
information recording
Prior art date
Application number
PCT/JP2003/011172
Other languages
English (en)
French (fr)
Inventor
Teruhiro Shiono
Hiroaki Yamamoto
Seiji Nishino
Tsuneo Mitsuyu
Tatsuo Ito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03808873A priority Critical patent/EP1553577A4/en
Priority to JP2004544907A priority patent/JP4290650B2/ja
Priority to US10/518,144 priority patent/US20060072437A1/en
Publication of WO2004036569A1 publication Critical patent/WO2004036569A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Definitions

  • the present invention relates to an information recording medium, a method for manufacturing the same, and an optical information recording / reproducing apparatus.
  • This information recording medium has a recording layer 101 a to 101 d using a urethane-urea copolymer which is a photon mode recording material, a PVA (polyvinyl alcohol) film on a glass substrate 104.
  • An intermediate layer made of a polymethyl methacrylate (PMMA) film is alternately laminated with 102 a to 102 c.
  • a laser beam 108 is condensed on a desired recording layer by an objective lens 106 (a convergent beam 10 ⁇ is irradiated). ) Allows information to be recorded.
  • the laser beam 108 used here is a pulse laser beam having a pulse width of about 100 femtoseconds and a very high peak power. By condensing such a pulsed laser beam on the recording layer 101a to 101d, the recording layer 101a to 101 can be used by utilizing two-photon absorption, which is one of the nonlinear absorption phenomena. Information can be recorded in d.
  • the two-photon absorption is high in the part (focus point) where the power density of the convergent light is high.
  • a phenomenon occurs in which light having half the wavelength of the actually irradiated light is irradiated, and the information bit 105 is written.
  • signal reproduction can be performed.
  • this information recording medium since a plurality of recording layers are laminated in the optical axis direction (z-axis direction) of the objective lens, three-dimensional information can be recorded, and the recording capacity is increased.
  • the conventional information recording medium has a problem that the recording sensitivity of the recording layer is not good. Therefore, when writing once to form one information bit with one pulse, it is necessary to use a femtosecond laser with a very large peak power (about 1 OO kW) as the light source. There was a problem that the structure of this was complicated. When a light source with a lower peak power is used, it is necessary to repeatedly record the same place many times (for example, several tens to several thousand times) (accumulation recording is possible because a photon mode recording material is used). The problem that it becomes slow occurred. Disclosure of the invention
  • An information recording medium is an information recording medium including a recording unit capable of recording three-dimensional information, wherein the recording unit includes at least one recording layer, and the recording layer includes titanium oxide. It is characterized by the following.
  • the method for manufacturing an information recording medium includes a recording unit capable of recording three-dimensional information, the recording unit including at least one recording layer, and the recording layer including titanium oxide.
  • a method of manufacturing characterized by including a step of forming the recording layer by applying a paint containing titanium oxide.
  • the optical information recording / reproducing device of the present invention is capable of recording three-dimensional information.
  • An optical information recording / reproducing apparatus that includes a recording unit, wherein the recording unit includes at least one recording layer, and wherein the recording layer records and reproduces information on and from an information recording medium containing titanium oxide.
  • An optical information recording / reproducing apparatus which reproduces the information using a change in an optical constant.
  • FIG. 1 is an explanatory diagram showing a cross-sectional configuration of an information recording medium and a state in which information is recorded and reproduced in a first embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams showing the relationship between the thickness of the recording layer of the information recording medium and the reflectance according to the first embodiment of the present invention.
  • 3A to 3D are cross-sectional views of the information recording medium according to Embodiment 1 of the present invention in respective manufacturing steps.
  • FIG. 4 is a schematic configuration diagram illustrating an optical head of the optical information recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 5A is an explanatory diagram illustrating a cross-sectional configuration of an information recording medium and a state of recording and reproducing information in Embodiment 2 of the present invention.
  • FIG. 5B is a diagram illustrating recording of the information recording medium illustrated in FIG. 5A. It is an enlarged view of a layer.
  • FIG. 6 is a diagram showing the relationship between the thickness of the recording layer of the information recording medium and the reflectance according to Embodiment 2 of the present invention.
  • FIG. 7A is an explanatory diagram showing a cross-sectional configuration of an information recording medium and a state in which information is recorded and reproduced in Embodiment 3 of the present invention.
  • FIG. 3 is an enlarged view of a recording layer of the information recording medium shown in FIG.
  • FIG. 8 is a diagram showing a relationship between an energy one threshold and a peak power threshold and a pulse width of laser light at the time of 1-bit recording in the information recording medium of the embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing a cross-sectional configuration of a conventional information recording medium and a state of recording / reproducing a signal.
  • the recording layer contains titanium oxide (T i ⁇ 2 ) that changes its structure by absorbing a predetermined light, a laser having a very high peak power as in the related art is used. One pulse can form one information bit even if it is not light. Therefore, according to the present embodiment, it is possible to provide an information recording medium capable of performing high-speed recording with high sensitivity.
  • the titanium oxide may be at least one of an amorphous form and a crystalline form, and the crystalline form is selected from the group consisting of an anatase type, a brookite type, and a rutile type. At least one selected may be used. In particular, it is preferable that the titanium oxide is at least one selected from the group consisting of an anazygase type and a wurtzite type, which is stable, has high sensitivity, and is capable of changing the structure to the rutile type at a high speed. .
  • the recording layer preferably consists essentially of titanium oxide emissions (T I_ ⁇ 2).
  • the recording layer is substantially formed of only titanium oxide, for example, the recording layer contains titanium oxide and a low-refractive-index material (resin, inorganic material, etc.) having a lower refractive index than titanium oxide. Since the reflectivity is higher and the read light amount is larger than that of the medium, the quality of the reproduced signal is good.
  • the recording layer is substantially made of oxide.
  • tan means that the recording layer is formed only of titanium oxide except for impurity substances that were unintentionally mixed in during the formation of the recording layer. Specifically, for example, it is preferable that the recording layer contains 9 O wt% or more of titanium oxide.
  • the recording layer preferably contains titanium oxide and a low-refractive-index material having a smaller refractive index than titanium oxide. This is because the reflectance can be reduced to a desired value by controlling the content of titanium oxide contained in the recording layer. If the reflectivity can be reduced to a desired value, the number of recording layers is large (for example, including 10 to 50 recording layers). The amount of light entering each recording layer can be close to each other.
  • the recording layer preferably contains titanium oxide in an amount of 5 wt% or more and less than 100 wt%.
  • the recording sensitivity can be improved to a practical level.
  • the titanium oxide is granular, and the average particle size of the titanium oxide is preferably shorter than the wavelength of the recording light and the wavelength of the reproducing light. This is because light loss due to diffraction loss of recording light and reproduction light due to titanium oxide can be suppressed. Further, the average particle size of the titanium oxide is preferably shorter than 1 Z 4 of the wavelength of the recording light and the wavelength of the reproducing light. This is because the scattering loss in addition to the diffraction loss can be suppressed, so that the optical loss of the recording light and the reproduction light can be further reduced. In this case, a case where a part of the fine particles are aggregated and there are particles (agglomerates) whose apparent particle diameter is longer than the wavelength of the recording light and the wavelength of the reproducing light is included.
  • the apparent particle diameter is preferably shorter than the wavelength of the recording light and the wavelength of the reproducing light.
  • the low refractive index material is a resin
  • the recording layer can be easily formed, and the sensitivity of recording and reproduction can be increased by the heat insulating effect of the resin.
  • the low refractive index material is an inorganic material
  • the stability of the recording layer is preferably increased. This is because the anatase-type or brookite-type titanium oxide has a photocatalytic effect and may decompose organic materials by irradiation with ultraviolet rays, but inorganic materials do not have such a problem. .
  • the information recording medium of the present embodiment includes a plurality of recording layers, and the recording unit further includes a plurality of intermediate layers substantially transparent to recording light and reproduction light. Are alternately stacked to realize a multilayer structure.
  • the information recording medium of the present embodiment preferably further includes a protective layer substantially transparent to recording light and reproduction light, and the protective layer is preferably disposed on the light incident side of the recording unit. . This is because the recording section can be prevented from being scratched or dusted.
  • the information recording medium of the present embodiment further includes a protective layer substantially transparent to recording light and reproduction light, and the protective layer is disposed on the light incident side of the recording unit and included in the recording layer. It is preferable to use the same material as the low refractive index material used.
  • the intermediate layer is preferably made of the same material as the above low refractive index material. If the intermediate layer and the protective layer are formed from the same material as the low refractive index material included in the recording layer, for example, problems due to chemical reactions such as erosion do not occur, and the intermediate layer and the recording layer, and the protective layer and the recording layer This is because good boundaries can be formed for the layers.
  • the same material means the same kind of substance. For example, even when the molecular weight is different due to a difference in the degree of polymerization, the same material is used.
  • the same material is used in the information recording medium of the present embodiment.
  • information is recorded on a part of the recording layer, the wavelength of light for reproducing the recorded information is ⁇ , and the refraction of the portion of the recording layer where the information is recorded is
  • the refractive index is ⁇ ′
  • the refractive index of the portion of the recording layer where the above information is not recorded is ⁇
  • the thickness L of the recording layer is ⁇ / (2n) ⁇ L ⁇ 3 ⁇ / ( 4 ⁇ ′) or A / n ⁇ L ⁇ 5A / (4 ⁇ ′). This is because if the thickness L of the recording layer satisfies the above relationship, the contrast or the modulation factor of the reflectance is large, and the quality of the reproduced signal is improved.
  • the information recording medium of the present invention can be manufactured easily and at low cost.
  • the method of manufacturing an information recording medium according to the present embodiment further includes a step of forming an intermediate layer by applying a paint made of a material substantially transparent to recording light and reproduction light,
  • the step of forming the intermediate layer and the step of forming the intermediate layer can be repeated in a predetermined order and periodically by a predetermined number. According to this method, a multi-layer information recording medium having a plurality of recording layers and intermediate layers can be easily and at low cost.
  • optical information recording / reproducing apparatus of the present embodiment information can be recorded and reproduced on the information recording medium of the present invention.
  • the light source that emits the recording light is a pulse laser light source, and the pulse width is preferably 1 picosecond to 5 nanoseconds. Further, the peak power of the light source that emits the recording light is preferably 2 W or more and 300 W or less. This is because one information bit can be formed with one pulse on the information recording medium of the present embodiment.
  • information bits are three-dimensionally recorded on the recording portion of the information recording medium in an order that does not pass through the information pits recorded on the recording portion. For example, it is preferable to sequentially form information bits from a position farther away from the objective lens in the recording unit toward a position closer to the objective lens. By forming information bits in such an order, stray light such as scattered light and unnecessary diffracted light due to the information bits can be reduced.
  • the light source that emits the recording light and the light source that emits the reproduction light are common. This is because the light source becomes one and the configuration of the optical information recording / reproducing apparatus can be simplified.
  • the wavelength of the light source that emits the reproduction light is preferably from 0.388 m to 0.413 m.
  • the structural change of titanium oxide used when recording information on an information recording medium using the optical information recording / reproducing apparatus of the present embodiment may be a change from an anatase type or butulkite type to a rutile type. preferable. It may be a change from amorphous to an anazygous, butulkite or rutile type.
  • Embodiment 1 An information recording medium and a method of manufacturing the same, and an optical information recording / reproducing apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 shows a cross-sectional configuration of an information recording medium according to the present embodiment and a state in which information is recorded and reproduced.
  • 2A and 2B show the relationship between the thickness of the recording layer of the information recording medium of the present embodiment and the reflectance.
  • FIG. 3 shows sectional views of the information recording medium of the present embodiment in respective manufacturing steps.
  • FIG. 4 is a schematic configuration of an optical head of the optical information recording / reproducing apparatus according to the present embodiment. Is shown.
  • the recording unit 3 includes a plurality of recording layers 1a to 1f and a plurality of intermediate layers 2a to 2e, and the recording layers and the intermediate layers are alternately stacked. That is, the recording section 3 includes, from the substrate 9 side, a recording layer 1a, an intermediate layer 2a, a recording layer 1b, ..., a recording layer 1e, an intermediate layer 2e, and a recording layer 1f. The layers are stacked in this order.
  • the information recording medium of the present embodiment can record information in the thickness direction in addition to recording of planar information by including a plurality of recording layers in the recording unit 3.
  • the recording layer 1 will be referred to as an arbitrary one of the recording layers la to lf
  • the intermediate layer 2 will be referred to as an arbitrary one of the intermediate layers 2a to 2e.
  • the protective layer 4 is on the light incident side when recording and reproducing information.
  • a laser beam is condensed by the objective lens 6 on any of the recording layers 1 a to 1 f (convergent light 7) to form information bits 5.
  • the laser beam 8 is focused on the desired recording layers 1a to 1f by the objective lens 6 (convergent light 7), and the information is reproduced using the light reflected by the information bits 5.
  • the information recording medium of the present embodiment is characterized in that the recording layer 1 contains a titanium oxide (T I_ ⁇ 2).
  • T I_ ⁇ 2 a titanium oxide
  • the present inventors have found that titanium oxide changes its structure by irradiating a laser beam having a relatively low power, and that information recording and reading are performed by utilizing changes in optical constants accompanying the change in structure. The medium was obtained.
  • the recording layer 1 is formed substantially only of titanium oxide (T i 0 2), for example, a small low-refractive index than the titanium oxide recording layer is a titanium oxide It has higher input power than the information recording medium (Embodiment 2) described later formed using a refractive index material (resin, inorganic material, etc.). Light scattering loss or diffraction loss is small and reflectivity is high. That is, the information recording medium of the present embodiment has a large read light amount (high light use efficiency).
  • the second embodiment is superior to the second embodiment in that the quality of the reproduced signal is good.
  • the phrase “the recording layer is substantially made of titanium oxide” means that the recording layer is made of only titanium oxide except for impurities that are unintentionally mixed in during the formation of the recording layer. I do.
  • the recording layer contains 90 wt% or more of titanium oxide. Titanium oxide is at least one of amorphous and crystalline forms, and the crystalline form may be at least one selected from the group consisting of anatase type, prucite type, and rutile type.
  • the substrate 9 may be made of, for example, polycarbonate, PMMA, norpolene-based resin (for example, “ARTON” (manufactured by JSR Corporation)), or cycloolefin resin (for example, “ZONEX” (manufactured by Nippon Zeon Co., Ltd.)) Can be formed.
  • the intermediate layer 2 is not particularly limited as long as it is substantially transparent to recording light and reproduction light.
  • the intermediate layer 2 may be made of PMMA, a photopolymer resin, an ultraviolet curing resin, or polyester. Can be formed.
  • the material of the protective layer 4 is not particularly limited as long as it is substantially transparent to the recording light and the reproduction light.
  • the protective layer 4 can be formed of polycarbonate, PMMA, photopolymer resin, ultraviolet curable resin, polyester, or the like. . By providing the protective layer 4, the recording section 3 can be protected from scratches, dust, and the like.
  • the above-mentioned intermediate layer 2 and protective layer 4 are substantially transparent to the recording light and the reproduction light, which means that the recording light and the reproduction light are transmitted with little absorption except for scattering components.
  • the absorption rate per layer of the recording layer is preferably 1% or less, More preferably, it is 0.1% or less.
  • the protective layer 4 is formed from substantially the same material as the intermediate layer 2.
  • the same material means the same kind of substance. For example, even when the molecular weight is different due to a difference in the degree of polymerization, the same material is used.
  • the thickness of the substrate 9 is, for example, 1.1 mm
  • the thickness of the recording layers 1a to lf is, for example, 1 or less, respectively
  • the intermediate layers 2a to 2e are, respectively
  • the thickness of each of the protective layers 4 is, for example, about 3 m to 5 m
  • the thickness of the protective layer 4 is, for example, about 100 m.
  • a track groove for track support is formed in all layers or any layer.
  • the recording layer 1 When the recording layer 1 is irradiated with light having a wavelength shorter than the absorption edge wavelength (wavelength at which light absorption starts) of the titanium oxide contained in the recording layer 1, the titanium oxide absorbs the light.
  • the temperature of the recording layer reaches a predetermined temperature due to the heat generated by the light absorption, the structure of the titanium oxide changes, and the information bit 5 is formed on the recording layer 1 by the change of the optical constant accompanying the structure change.
  • amorphous titanium oxide changes to anatase-type or brookite-type titanium oxide, and when it reaches about 700 ° C, it becomes ana- or titanium-type. It changes to rutile type titanium oxide via lucite type.
  • the structural change from amorphous to the anatase type or wurtzite type can be performed with a relatively small laser power, and the structural change from the anatase type or wurtzite type to the rutile type can be performed with a larger laser power than the above laser power. I can do it.
  • the structural change from rutile to amorphous, anatase, and brookite is possible, but it is not possible to change directly from rutile to anatase or brookite.
  • the rutile-type titanium oxide is melted (at 180 ° C or higher) to make it amorphous, and then the structure is changed to the anazygose type and the brookite type.
  • the laser beam 8 needs to have a higher laser power.
  • the recording layer 1 undergoes a large refractive index change ⁇ n due to the above structural change.
  • the refractive index change ⁇ is 0.24. If the recording layer 1 of the information recording medium is made of, for example, anatase-type titanium oxide and the titanium oxide is irradiated with a laser beam to change the structure from the anatase type to the rutile type, the change in the refractive index is caused by this structural change.
  • the resulting micro area (rutile-type titanium oxide) can be used as information bit 5, but as described above, the part of recording layer 1 where information bit 5 (rutile-type titanium oxide) and information bit 5 are not formed (anatase). (Titanium oxide), the information can be reproduced with a good SN ratio.
  • the information bit 5 formed by the structural change from the anatase type or the wurtzite type to the rutile type is extremely stable because the structural change is a structural change from a metastable crystal form to a stable crystal form. Excellent long-term storage of information.
  • the above-mentioned structural change occurs due to relatively low power laser light, and the speed of the structural change from a crystal form to a crystal form, that is, dislocation Speed is relatively fast. Therefore, by utilizing the change in the optical constant accompanying the above structural change, it is possible to realize a writeonce information recording medium having excellent recording stability and capable of high-speed recording and high-sensitivity recording.
  • the recording layer 1 is, for example, a mixture of amorphous and crystalline forms, stable, high-sensitivity, and high-speed recording can be performed as long as the recording layer 1 contains the crystalline form (anatase type or brookite type) of titanium oxide. .
  • the information bit 5 containing rutile-type titanium oxide is considered to be capable of changing its structure to amorphous, anamorphic type, or wurtzite type by irradiation with the laser beam 8.
  • a possible information recording medium can also be realized.
  • the non-linear phenomenon is a phenomenon in which the absorption sensitivity of the recording layer 1 is not proportional to the energy of the irradiated light. For example, if the absorption sensitivity has a threshold value, the absorption sensitivity becomes the energy of the light.
  • n is 3 or more
  • the recording layer 1 in the condensing part absorbs two photons at the same time. It is as if light of a wavelength (predetermined wavelength) was irradiated. If the titanium oxide contained in the recording layer 1 absorbs the light of the above-mentioned predetermined wavelength and the structure of the titanium oxide changes due to the heat generated by the light absorption, the information bit 5 is changed by the change of the optical constant accompanying the structure change. Is formed. In information recording utilizing such a non-linear phenomenon, an area where light absorption occurs can be localized in a small area such as a focused spot, so that information bits 5 can be formed at a high density.
  • the absorption edge wavelength of anatase type titanium oxide or wurtzite type titanium oxide is 0.388 / im
  • the wavelength is When a pulse laser of 0.76 zm or less is irradiated, information can be recorded using the two-photon absorption phenomenon.
  • the absorption edge wavelength of anatase type titanium oxide or wurtzite type titanium oxide is 0.388 zm, and the absorption edge wavelength of rutile type titanium oxide is 0.413 31. Therefore, the recording layer 1 is substantially made of anatase-type titanium oxide or wurtzite-type titanium oxide, and in particular, for an information recording medium in which more information bits 5 (rutile-type titanium oxide) are formed in the three-dimensional direction, It is preferable to use light having a wavelength (for example, 0.65 m) longer than the absorption edge wavelength (0.413 lim) as the reproduction light. This is because light loss is small even when passing through a plurality of recording layers 1.
  • information reproduction using a semiconductor laser having the above wavelength is not suitable for an information recording medium in which more information bits 5 are formed in the three-dimensional direction because light absorption occurs, and the number of recording layers 1 is not sufficient. It is suitable for information recording media with relatively few.
  • the light has a wavelength of 0.5 or less including 0.405 ⁇ m
  • a recording medium on which information is recorded at a high density for example, the information bit 5 using the two-photon absorption phenomenon can be used for a high density information bit 5
  • the information on the information recording medium formed on the medium can be reproduced.
  • FIG. 2 the relationship between the thickness of the recording layer (the thickness of one of the recording layers selected from the plurality of recording layers 1a to 1f (see FIG. 1)) and the reflectance is shown. The relationship will be described.
  • the refractive index of the intermediate layer 2 is 1.6, and the wavelength of the emitted light is 0.65 m.
  • the reflectance which is a kind of optical constant, changes with the structural change of the titanium oxide.
  • Information can be reproduced by using the difference between the reflectance of the recording part (rutile titanium oxide) and the reflectance of the recording part (rutile titanium oxide).
  • the reflectance of the unrecorded portion of titanium oxide, that is, the recording layer in which the information bit 5 is not formed can be used as a focus error signal in a focus support.
  • the reflectances of the unrecorded portion and the recorded portion (information bit 5) in the recording layer 1 are periodically changed depending on the thickness thereof.
  • the reflectivity of the unrecorded portion of the recording layer 1 is as large as 18% at the thickness (m-0.5) ⁇ / (2 ⁇ ), and the reflectivity of the recording layer (information bit 5) of the recorded portion is It is as large as 25% at the thickness (m-0.5) ⁇ / (2 ⁇ ').
  • m is an integer.
  • the thickness of the recording layer is determined by the reflectance of the unrecorded part (anatase type titanium oxide). If the thickness of the recording part (rutile type titanium oxide) has a large difference with the reflectance,
  • the thickness of the recording layer is determined by, for example, the peak of the reflectance, It should be about ⁇ // 4 ⁇ '.
  • the thickness of the recording layer is made thinner than the above-mentioned thickness, and the light reflectance per layer is reduced. It is preferable to reduce the ratio of light incident on each layer.
  • the thickness of the recording layer may be set in the range of, for example, 5 nm or more and 50 nm or less according to the number of layers.
  • the reflectance change periods (the periods are ⁇ (2 ⁇ ) and ⁇ / ( 2 ⁇ )) is slightly different, for example, the second and third periods, that is, the thickness region where the second chevron curve is drawn in Fig. 2 ⁇ and the third chevron curve are drawn In the thickness region, there is a thickness region where the contrast or the modulation factor becomes larger than the thickness region of the first chevron curve. Therefore, if the thickness of the recording layer is selected from the above-mentioned contrast or the thickness region where the modulation factor is increased, the quality of the reproduced signal can be improved.
  • the region of the thickness L where the contrast or the modulation rate is large is ⁇ / (2n) ⁇ L ⁇ 3 ⁇ / (4 ⁇ ′) in the second chevron, and AZn in the third chevron. ⁇ L ⁇ 5 ⁇ / (4 ⁇ ′).
  • L is the thickness of the recording layer
  • is the wavelength of the reproducing light
  • ⁇ ' is the refractive index of the portion of the recording layer where information is recorded (recording portion)
  • is the recording layer. It is the refractive index of the part where no information is recorded (unrecorded part). Note that if the thickness of the recording layer is too large, the accuracy of the film thickness deteriorates. It is desirable to be within the box.
  • a substrate 9 is prepared (see FIG. 3A), and a coating containing titanium oxide is applied on the substrate 9 by using, for example, a method such as spin coating to form a recording layer 1a (FIG. 3B). See). Further, the intermediate layer 2a is formed thereon by applying a paint containing the material of the intermediate layer using a method such as spin coating (see FIG. 3C). Further, a recording layer lb, an intermediate layer 2b, a recording layer 1c,..., And a recording layer 1f are repeatedly formed thereon.
  • a coating containing the material of the protective layer 4 is applied to the recording layer 1f to form the protective layer 4, or the protective layer 4 is formed on the recording layer 1f by using a film forming method or the like ( See Figure 3D).
  • the intermediate layer or the recording layer is formed in excess, and the excess portion is formed.
  • a part of the recording unit 3 on the light incident side may be used as the protective layer 4. That is, a layer similar to the intermediate layers 2 a to 2 e is further formed on the recording layer 1 f to form the protective layer 4, or the recording layer 1 f is formed thick and a part thereof is formed as the protective layer 4. It is also possible to make it work. By doing so, it is not necessary to form the protective layer 4 in a separate step from the recording section 3, and the protective layer 4 can be made of substantially the same material as the recording section.
  • a coating containing titanium oxide for example, a suspension in which fine particles of anatase-type titanium oxide or brookite-type titanium oxide (average particle size: 5 nm to 50 nm) are dispersed in a dispersion medium such as water may be used. It can. Since the titanium oxide crystal has a crystal axis, it has polarization anisotropy with respect to the refractive index, but the recording layer 1 prepared using the above suspension in which titanium oxide fine particles are dispersed is used. In this case, since the direction of the crystal axis is random, the polarization anisotropy in the recording layer can be suppressed.
  • the optical head of the optical information recording / reproducing apparatus is provided with two types of light sources 20a and 20b for reproduction and recording.
  • a beam splitter 18 a, 18 b, a collimator lens 16, a focus error signal / track error signal detecting element 15, An upward mirror 12, a spherical aberration correction element 13, and an objective lens 6 are arranged.
  • the light source 20a is, for example, a semiconductor laser light source for reproduction with a wavelength of 0.405 m
  • the light source 2 Ob is, for example, a wavelength of 0.76; m with a pulse width of, for example, 1 picosecond. It is a semiconductor pulse laser light source for recording up to 10 nanoseconds.
  • the recording light source and the reproduction light source are provided separately, but the recording light source and the reproduction light source are shared by one light source.
  • a light source with a wavelength of 65 O nm is used, and pulse oscillation is performed for recording to emit a laser beam with a large peak power, and for reproduction, continuous oscillation is performed to emit a laser beam with a small peak power.
  • the laser beam 22 b emitted from the light source 20 b is bent in the Y-axis direction by the beam splitter 18 a, and becomes substantially parallel light by the collimator lens 16, and becomes a diffraction-type focus Error signal Z track Transmits through the error signal detection element 15 (using the 0th-order diffracted light), and the optical path is bent in the z-axis direction by the rising mirror 12. Then, fold in the z-axis direction The bent laser light 8 passes through the spherical aberration correction element 13 and is condensed (convergent light 7) on the recording section 3 of the information recording medium 21 by the objective lens 6, as shown in FIG. Information bit 5 is formed.
  • the information pits 5 are formed by using the change in the optical constant of the recording layer.
  • the information pit 5 uses the change in the refractive index and the reflectance of the recording layer 1 due to the change in the structure of titanium oxide. Thus, information bit 5 is formed.
  • an optical information recording / reproducing apparatus that records information on a conventional information recording medium
  • a light source for writing information (recording light)
  • the write energy is 25 to 1 per pulse.
  • the pulse width is relatively long, for example, from 1 picosecond to 5 nanoseconds, and the beak power is compared with, for example, from 2 W to 300 W.
  • Emit recording light with a pulse laser It can be used as a source.
  • the structure of a semiconductor laser as a light source can be simplified. This is because a semiconductor laser having a not so high peak power is hardly damaged at the emission end face. It is not clear why information can be recorded with low power.
  • information is not recorded only by two-photon absorption or multiphoton absorption. Or, it may be because the multi-photon absorption triggers a plasma generated by a strong electric field, which induces a structural change in the titanium oxide and promotes recording.
  • the laser light 22a emitted from the light source 20a is The light passes through 18a and 18b, becomes almost parallel light by the collimating lens 16 and passes through the diffraction type focus error signal / track error signal detection element 15 (0th order diffracted light) Then, the optical path can be bent in the z-axis direction by the rising mirror 12. Then, the laser beam 8 bent in the z-axis direction passes through the spherical aberration correction element 13 and is condensed by the objective lens 6 on the recording section 3 of the information recording medium 21 (convergent light 7).
  • the light reflected by the information bit 5 formed on the recording layer 1 is turned in the opposite direction, passes through the objective lens 6, the spherical aberration correction element 13 and the rising mirror 1 and 2 in that order, and outputs the diffraction-type focus error signal /
  • the light is split into a plurality of lights by the track error signal detection element 15 (using the first-order diffracted light.
  • the track error signal detection element 15 using the first-order diffracted light.
  • the diffraction type focus error signal / track error signal detection element 15 In the optical path up to the beam splitter 18b, the split light is not shown.)
  • the light is converged by the collimating lens 16 and further deflected in the z-axis direction by the beam splitter 18b.
  • the plurality of branched lights 17 a to 17 c deflected in one z-axis direction pass through the respective pinholes 14 a to 14 c of the pinhole array 14 and the photodetectors 19 a to 19 c. Detected at 19 c.
  • the pinhole array 14 having a plurality of pinholes is installed at a position substantially at the focal point of the entire branched lights 17a to 17c. It may be arranged at a position corresponding to each focal point of 7 a to l 7 c.
  • the amount of light drops when the peripheral light of the branched lights 17 a to l 7 c is deleted.
  • APD active photodiode
  • each of the branched light beams 17a to 17c is detected by a photodetector 19a to 19c having an area smaller than that of each of the branched light beams 17a to 17c. Even if it does, the same effect can be obtained.
  • the split beams 17b and 17c corresponding to the track error signal are passed through the pinholes 14b and 14 of the pinhole array 14 to split the split beams 17b and 17c.
  • the split light 17a corresponding to the focus error signal is detected by the photodetectors 19b and 19c, and is not directly passed through a pinhole. You may.
  • an astigmatism method can be used as the focus detection method. If the area of the photodetector 19a at this time is smaller than the cross-sectional area of the branched light 17a at the detection position, higher-order aberration components can be reduced.
  • the information bits 5 are sequentially and three-dimensionally recorded in the recording unit 3 in such an order that the information bits 5 do not pass through the already recorded information bits 5.
  • the above-described order is realized by forming information bits 5 in order from the recording layer (the recording layer la in FIG. 1) disposed farthest from the objective lens 6 to the nearest recording layer. It is possible.
  • recording may be performed three-dimensionally in the z-axis direction, such as recording layer la, recording layer 1b, recording layer lc,.
  • the spherical aberration correction element 13 uses a liquid crystal element with a variable refractive index distribution or a beam expander that combines a concave lens and a convex lens and changes the distance between the two lenses in the optical axis direction over a short period of time. it can.
  • the recording order does not always have to be in the one z-axis direction when the unrecorded portion of the information bit 5 exists, as long as the convergent light 7 does not pass through the already recorded information bit 5.
  • FIG. 5A shows a cross-sectional configuration of the information recording medium and a state of recording / reproducing in the present embodiment.
  • FIG. 5B is an enlarged view of a recording layer of the information recording medium shown in FIG. 5A. 6 shows a relationship between the thickness of the recording layer of the information recording medium and the reflectance in the present embodiment.
  • a recording section 33 and a protective layer 34 are formed on a substrate 39 in the information recording medium of the present embodiment.
  • 31a to 31f are recording layers
  • 32a to 32e are intermediate layers.
  • the middle layer 32 is described.
  • the information recording medium according to the second embodiment is different from the information recording medium according to the first embodiment in that the recording layer 31 is different from the titanium oxide 311 and the titanium oxide 311 as shown in FIG. 5B. It is a mixture with the low-refractive-index material 310 having a small refractive index, and is characterized in that the titanium oxide 311 is granular and is dispersed in the low-refractive-index material 310. Mixing titanium oxide 311 with low refractive index material 310 By controlling the content of titanium oxide 311 contained in the recording layer 31 by changing the ratio, the refractive index and the amount of change in the refractive index of the recording layer before and after recording can be controlled.
  • the recording sensitivity is improved as compared with the conventional information recording medium.
  • the average particle diameter of the titanium oxide 311 is smaller than 1/4 of the wavelength of the incident light (for example, 0.405 / xm), for example, the fine particles having a diameter of 5 nm to 50 nm. It is considered that the non-linear phenomenon is easily caused by the quantum size effect and the effect peculiar to fine particles that the impurity level on the fine particle surface increases and the heat conversion efficiency is improved.
  • the average particle size of the titanium oxide 311 is preferably smaller than the wavelength of the incident light (recording light and reproducing light). This is to suppress light loss due to diffraction loss of recording light and reproduction light due to titanium oxide 311.
  • the average particle size of the titanium oxide 311 is 14 or less of the wavelength of the incident light (recording light and reproducing light). This is because the scattering loss in addition to the diffraction loss can be suppressed, so that the optical loss of the recording light and the reproduction light can be further reduced.
  • the average particle size of the titanium oxide 311 is 1/10 or less of the wavelength of the incident light (recording light and reproducing light). This is because the scattering loss can be further reduced.
  • the fine particles of titanium oxide 311 are preferably contained in the recording layer in a weight ratio of 5 wt% to less than 100 wt%.
  • the recording layer 31 is, for example, a thin film having a thickness of about 1 / m or less, if the recording layer 31 contains 5 wt% or more of titanium oxide 31, a practical level of recording sensitivity can be obtained in the recording layer 31. realizable.
  • the low refractive index material 310 may be a resin or an inorganic material as long as it is substantially transparent to recording light and reproduction light.
  • substantially transparent to recording light and reproduction light means that almost all of the recording light and reproduction light except for the scattered component are transmitted without absorption.
  • the absorption rate per one recording layer is preferably 1% or less, more preferably 0.1% or less.
  • the intermediate layer 32 is preferably formed of substantially the same material as the low-refractive-index material 310.
  • the protective layer 34 is also formed of a material substantially the same as the low refractive index material 310.
  • the cost of the information recording medium can be reduced, and problems such as chemical reaction, such as erosion, occur at the interface between the intermediate layer 32 and the recording layer 31 and the protective layer 34 and the recording layer 31. It is because it can suppress.
  • the same material means the same kind of substance. For example, the same material is used even when the molecular weight is different due to a difference in the degree of polymerization.
  • the low-refractive-index material 310 When a resin is used as the low-refractive-index material 310, the effect of increasing the recording and reproducing sensitivity is brought about by its heat insulating effect.
  • a resin having a refractive index of about 1.5 such as PMMA, a photopolymer resin, an ultraviolet curable resin, or polyester can be used.
  • the inorganic materials for example, it can be used S I_ ⁇ 2, C A_ ⁇ 2 or M g F like.
  • the recording layer 3 1 (unrecorded state) contains an analog-type or brookite-type titanium oxide, Si 2 , Ca 0 2 , and M g F
  • the substrate 39, the protective layer 34, and the intermediate layer 32 have the same functions as the substrate 9, the protective layer 4, and the intermediate layer 2 in the information recording medium of the first embodiment. It can be formed of the same material.
  • the recording layer 31 may include, for example, 5 Owt% of fine particles of titanium oxide 311 having an average particle diameter of 5 nm to 50 nm, and 50 wt% of the low refractive index material 310.
  • the information recording medium of the present embodiment as in the recording layer 1 of the information recording medium of the first embodiment, a non-linear phenomenon such as two-photon absorption is induced at the light-collecting portion of the recording layer 31, and the information is recorded on the recording layer 31.
  • the contained titanium oxide 311 absorbs light of a predetermined wavelength. When the titanium oxide 311 absorbs light and reaches a predetermined temperature, a structural change occurs in the titanium oxide 311, and an information bit 35 is formed by a change in an optical constant accompanying the structural change.
  • the low refractive index material 310 for example, when the low refractive index material 310 is high melting point S I_ ⁇ 2, etc., hardly varies even when subjected to recording light, but the low refractive index material 310 is a resin In this case, since the resin is easily deformed by heat, the resin is thermally deformed by receiving the recording light, and forms information bits 35 together with the titanium oxide.
  • the recording of information on the information recording medium of the present embodiment is the same as that of the first embodiment, so that the recording light has a write energy of 250 pJ per pulse as in the case of the first embodiment. If it is about 10 nJ, it is preferable that the peak power is, for example, about 2 W to 300 W, and the pulse width is, for example, 1 picosecond to 5 nanoseconds.
  • the thickness of the recording layer 31 (the thickness of one of the recording layers selected from the plurality of recording layers 31a to 31f (see FIG. 5A)) and the reflectivity Will be described.
  • the refractive index of the intermediate layer 32 is 1.6
  • the wavelength of the irradiated light is 0.65 / m.
  • the dashed line in Fig. 6 indicates an anatase type titanium oxide of 50 wt% and low refraction.
  • a reflectance of 6% can be obtained for the unrecorded portion and 8% for the recorded portion.
  • Increasing the weight ratio of the low-refractive material in the recording layer decreases the refractive index, so that the peak value of the reflectance also decreases.
  • the weight ratio of the low-refractive index material 310 is reduced to increase the reflectance. In this case, the quality of the reproduced signal is improved, but the number of recording layers is large (for example, including 10 to 50 recording layers).
  • the weight of the low refractive index material 310 It is preferable to increase the ratio to reduce light loss per layer.
  • each layer it is preferable to form each layer by applying a material as in the case of the first embodiment. This is because it can be manufactured easily and at low cost.
  • the recording layer 31 including the fine particles of titanium oxide 311 and the low refractive material 310 for example, the fine particles of titanium oxide 311 having an average particle diameter of 5 nm to 50 nm and the low refractive material 310
  • it may be formed by applying a suspension liquid (paint) dispersed in water, toluene or isopropyl alcohol (see FIG. 5).
  • the optical information recording / reproducing device shown in FIG. 4 can be used. Same as in the case.
  • FIG. 7A shows a cross-sectional configuration of the information recording medium according to the present embodiment and how recording / reproducing is performed
  • FIG. 7B shows a recording layer of the information recording medium shown in FIG. 7A.
  • a recording section 41 and a protective layer 44 are formed on a substrate 49.
  • the information recording medium of the present embodiment differs from the information recording media of Embodiments 1 and 2 in that the entire recording section 41 functions as a recording layer.
  • the information bits 45 are recorded on almost the same plane in the recording layer (recording section 41), and a plurality of such recording surfaces (4 la to 41f) are provided in the recording layer (recording section 41). It realizes three-dimensional information recording.
  • the recording layer 41 has a structure in which fine particles of titanium oxide 411 are dispersed in a low refractive index material 410.
  • the fine particles of titanium oxide 411 have the same properties and functions as the fine particles of titanium oxide 311 contained in recording layer 31 of the information recording medium described in the second embodiment.
  • the content of titanium oxide 411 is preferably 0.3 wt% to 1 wt%. This is because at 0.3 wt% or more, the recording sensitivity is improved, and at 10 wt%, the scattering loss can be suppressed and the light use efficiency can be increased.
  • the low-refractive-index material 410 has the same properties and functions as the low-refractive-index material 310 included in the recording layer 31 of the information recording medium of Embodiment 2, and uses the same material. Can be.
  • the substrate 49 and the protective layer 44 are formed of the same material as the low-refractive-index material 410 included in the recording layer 41, material management is easy, and manufacturing can be performed at low cost.
  • the recording light has a write energy of 250 ° per pulse, as in the case of the first embodiment. If it is about pJ to about 10 nJ, the peak power is preferably, for example, about 2 W to 300 W, and the pulse width is preferably, for example, 1 picosecond to 5 nanoseconds.
  • the information recording medium of the present embodiment similarly to the case of the second embodiment, a paint containing fine particles of titanium oxide 411 and a low refractive index material 410 is coated on a substrate 49.
  • a method of forming by applying, or a method of forming the recording layer 41 (recording portion) at a time by injection molding According to these methods, an information recording medium can be easily manufactured at low cost.
  • the optical information recording and reproducing apparatus shown in FIG. 4 can be used.
  • the present invention is not limited to these, and it is also possible to combine the configurations of the information recording medium and the manufacturing method thereof, and the optical information recording / reproducing apparatus of each embodiment. However, a similar effect can be obtained. Further, the information recording medium and the optical information recording / reproducing apparatus of the present invention include a rewritable type in addition to the additional type.
  • an optical disc has been described as an example of an information recording medium, but application to a card-shaped, drum-shaped, or tape-shaped product is also included in the scope of the present invention.
  • the objective lens and the collimating lens used in the above embodiment are named for convenience, and are the same as general lenses.
  • the information recording medium of the example is an example of the information recording medium shown in FIG. 1 described in the first embodiment.
  • a track groove (a groove for groove recording with a pitch of 0.32 ⁇ and a groove depth of 0.2 m) formed on the surface is formed on a substrate 9 of 1.1 mm thick polycarbonate made of polycarbonate.
  • a recording layer 3 is formed by alternately forming a recording layer of 0.01 m and an intermediate layer having a thickness of 3 m by a spin coating method (the recording layer 1 a to l ⁇ , the intermediate layer 2 a to 2 e). ), And a protective layer 4 made of a poly-pylonate having a thickness of 75 m was formed.
  • the recording layers l a to l ⁇ ⁇ are substantially composed of an analog-type titanium oxide, and the intermediate layers 2 a to 2 e are composed of an ultraviolet curable resin.
  • the information recording medium of this example was irradiated with a pulse laser beam having a wavelength of 65 nm while varying the pulse width, and the energy threshold and peak power threshold during 1-bit recording were measured. The results are shown. As the pulse width of the pulse laser beam became longer, the peak power threshold for recording one bit on the information recording medium tended to decrease. By setting the pulse width to 1 picosecond or more, the peak power threshold could be suppressed to 300 W or less. When the pulse width was 5 nanoseconds, information bits could be formed with a peak power threshold of 2 W.
  • the energy threshold required for 1-bit recording is the lowest at 250 nJ for a laser beam of 1 picosecond to 10 picoseconds, and tends to gradually increase as the pulse width becomes longer. Was seen. By setting the pulse width to 5 nanoseconds or less, the energy threshold was suppressed to 10 nJ or less.
  • the recording sensitivity is improved, and even if it is not a laser beam having a very high peak power as in the prior art, one pulse is required. Can form one information bit You. Therefore, it is possible to provide an information recording medium and an optical information recording / reproducing device capable of high sensitivity and high speed recording.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

本発明の情報記録媒体は、3次元的な情報の記録が可能な記録部を含んでおり、前記記録部(3)は、記録層(1a~1f)を少なくとも1層含み、前記記録層(1a~1f)は、酸化チタンを含んでいる。酸化チタンは、アナターゼ型およびブルッカイト型のうちの少なくとも1種であることが好ましい。記録層(1a~1f)は、実質的に酸化チタンから形成されていてもよいし、酸化チタンと、酸化チタンよりも屈折率の小さい低屈折率材料とを含んでいてもよい。

Description

明 細 書 情報記録媒体およびその製造方法、 並びに光学情報記録再生装置 技術分野
本発明は、 情報記録媒体およびその製造方法、 並びに光学情報記録再 生装置に関する。 背景技術
情報を 3次元的に記録することが可能な情報記録媒体として、 従来、 図 9に示す記録媒体があった (河田善正他: "多層膜構造を有する有機 記録媒体を用いた 3次元光メモリ" 、 Optics Japan 2000 講演予稿 集 p.95-96、 7pB12 (2000 年) ) 。 この情報記録媒体は、 ガラス基板 1 04上に、 フォトンモ一ド記録材料であるウレタン一ウレァ共重合体を 用いた記録層 1 0 1 a〜 1 0 1 dと、 P VA (ポリビニルアルコール) 膜とポリメチルメタァクリレート (PMMA) 膜とからなる中間層 1 0 2 a〜 1 0 2 cとを交互に積層したものである。
この情報記録媒体の記録層 1 0 1 a〜 1 0 1 dのうち、 所望の記録層 に、 対物レンズ 1 0 6でレーザ光 1 0 8を集光する (収束光 1 0 Ίを照 射する) ことにより、 情報を記録することができる。 ここで用いられる レーザ光 1 0 8は、 パルス幅が約 1 0 0フエムト秒でピークパワーが非 常に高いパルスレーザ光である。 このようなパルスレーザ光を記録層 1 0 1 a〜 1 0 1 dに集光することにより、 非線形吸収現象の 1つである 2光子吸収を利用して記録層 1 0 1 a〜 l 0 1 dに情報を記録できる。 具体的には、 記録層 1 0 1 a〜 1 0 1 dにおける収束光 1 0 7の照射 領域のうち、 収束光のパワー密度の高い部分 (集光点) で 2光子吸収が 起こり、 実際に照射された光の波長の半分の波長を有する光が照射され たような現象が生じて情報ビット 1 0 5が書き込まれる。 情報ビット 1 0 5に低パワーの光を集光し、 その反射光を、 対物レンズ 1 0 6を介し て光検出器 (図示せず) で検出することにより、 信号再生を行うことが できる。 この情報記録媒体は、 記録層が対物レンズの光軸方向 (z軸方 向) に複数積層されているので、 3次元的な情報の記録が可能となり、 記録容量が増大する。
しかし、 上記従来の情報記録媒体は、 記録層の記録感度が良くないと いう問題があった。 このため、 1パルスで 1つの情報ビットを形成する 1回書きをする場合、 光源として、 ピークパワーが非常に大きい (約 1 O O k W程度の) フェムト秒レ一ザを用いる必要があり、 光源の構造が 複雑になるという問題があつた。 ピークパワーがそれより小さい光源を 用いる場合は、 同じ場所を多数回 (例えば数十〜数千回) 繰り返し記録 する必要があり (フォトンモード記録材料を用いているため蓄積記録が 可能) 、 書き込み速度が遅くなるという問題が生じていた。 発明の開示
本発明の情報記録媒体は、 3次元的な情報の記録が可能な記録部を含 む情報記録媒体であって、 前記記録部が記録層を少なくとも 1層含み、 前記記録層が酸化チタンを含むことを特徴とする。
本発明の情報記録媒体の製造方法は、 3次元的な情報の記録が可能な 記録部を含み、 前記記録部が記録層を少なくとも 1層含み、 前記記録層 が酸化チタンを含む情報記録媒体の製造方法であって、 酸化チタンを含 む塗料を塗布することにより前記記録層を形成する工程を含むことを特 徵とする。
本発明の光学情報記録再生装置は、 3次元的な情報の記録が可能な記 録部を含み、 前記記録部が記録層を少なくとも 1層含み、 前記記録層が 酸化チタンを含む情報記録媒体に対して情報の記録および再生を行う光 学情報記録再生装置であって、 記録光を出射する光源と、 再生光を出射 する光源と、 前記記録光を出射する光源および前記再生光を出射する光 源から出射された光を前記情報記録媒体に集光する対物レンズと、 前記 情報記録媒体で反射した光を検出する光検出器とを備え、 前記酸化チタ ンの構造変化により生じる前記酸化チタンの光学定数の変化を利用して 前記記録部に情報を記録し、 前記酸化チタンの光学定数の変化を利用し て前記情報を再生することを特徴とする光学情報記録再生装置。 図面の簡単な説明
図 1は、 本発明の実施の形態 1における情報記録媒体の断面構成およ び情報を記録 Z再生する様子を示す説明図である。
図 2 Aおよび図 2 Bは、 本発明の実施の形態 1における情報記録媒体 の記録層の厚さと反射率との関係を示す図である。
図 3 A〜図 3 Dは、 本発明の実施の形態 1における情報記録媒体の各 製造工程における断面図である。
図 4は、 本発明の実施の形態 1の光学情報記録再生装置の光学へッド を示す略構成図ある。
図 5 Aは、 本発明の実施の形態 2における情報記録媒体の断面構成お よび情報を記録 Z再生する様子を示す説明図であり、 図 5 Bは、 図 5 A に示す情報記録媒体の記録層の拡大図である。
図 6は、 本発明の実施の形態 2における情報記録媒体の記録層の厚さ と反射率との関係を示す図である。
図 7 Aは、 本発明の実施の形態 3における情報記録媒体の断面構成お よび情報を記録 Z再生する様子を示す説明図であり、 図 7 Bは、 図 7 A に示す情報記録媒体の記録層の拡大図である。
図 8は、 本発明の実施例の情報記録媒体における 1ビット記録時のェ ネルギ一閾値およびピークパワー閾値とレーザ光のパルス幅との関係を 示す図である。
図 9は、 従来の情報記録媒体の断面構成および信号を記録/再生する 様子を示す説明図である。 発明を実施するための最良の形態
本実施の形態の情報記録媒体は、 記録層が所定の光を吸収して構造変 化する酸化チタン (T i〇2 ) を含んでいるので、 従来のように非常に 高いピークパワーを有するレーザ光でなくても、 1パルスで 1つの情報 ビットを形成できる。 したがって、 本実施の形態によれば、 高感度で高 速記録が可能な情報記録媒体を提供できる。
本実施の形態の情報記録媒体において、 酸化チタンは、 アモルファス および結晶形のうちの少なくとも一種であってもよいし、 上記結晶形は 、 アナタ一ゼ型、 ブルッカイト型、 およびルチル型からなる群から選ば れる少なくとも 1種であってもよい。 特に、 酸化チタンは、 安定、 高感 度、 且つ高速で、 ルチル型への構造変化が可能な、 アナ夕一ゼ型および ブルツカイト型からなる群から選ばれる少なくとも 1種であることが好 ましい。
本実施の形態の情報記録媒体において、 記録層は、 実質的に酸化チタ ン (T i〇2) からなることが好ましい。 記録層が実質的に酸化チタン のみから形成されていると、 例えば、 記録層が酸化チタンと酸化チタン よりも屈折率の小さい低屈折率材料 (樹脂、 無機材料等) とを含む後述 の情報記録媒体よりも、 反射率が高く、 読み出し光量が大きいため、 再 生信号の品質が良い。 尚、 本明細書において、 記録層が実質的に酸化チ タンからなるとは、 記録層が、 記録層の形成時に意図せずに混入した不 純物質を除いて酸化チタンのみから形成されていることを意味する。 具 体的には、 例えば記録層に、 酸化チタンが 9 O w t %以上含まれている ことが好ましい。
本実施の形態の情報記録媒体において、 記録層は、 酸化チタンと、 酸 化チタンよりも屈折率の小さい低屈折率材料とを含んでいることが好ま しい。 記録層に含まれる酸化チタンの含有量を制御することにより、 反 射率を所望の値へと小さくできるからである。 反射率を所望の値へと小 さくできれば、 記録層の層数が多い (例えば、 1 0〜 5 0層の記録層を 含む) 情報記録媒体において、 1層当たりの光の損失を減らして、 各記 録層へ入る光の量を互いに近づけることができる。
本実施の形態の情報記録媒体において、 記録層は、 酸化チタンを 5 w t %以上 1 0 0 w t %未満含んでいることが好ましい。 記録層における 酸化チタンの含有量を 5 w t %以上とすることで、 記録感度を実用レべ ルにまで向上させることができるからである。
酸化チタンは粒状であり、 酸化チタンの平均粒径は、 記録光の波長お よび再生光の波長よりも短いことが好ましい。 酸化チタンによる記録光 および再生光の回折損失による光損失を抑制できるからである。 さらに 、 酸化チタンの平均粒径は、 記録光の波長および再生光の波長の 1 Z 4 よりも短いことが好ましい。 回折損失に加えて散乱損失も抑制できるの で、 記録光および再生光の光損失をより少なくすることができるからで ある。 尚、 この場合、 微粒子の一部が凝集してみかけの粒径が記録光の 波長および再生光の波長よりも長い粒子 (凝集塊) が存在する場合も含 まれるが、 このように、 微粒子が凝集している場合でも、 上記みかけの 粒径は、 記録光の波長および再生光の波長よりも短いことが好ましい。 本発明の情報記録媒体において、 低屈折率材料が樹脂である場合、 記 録層の形成が容易であり、 樹脂の断熱効果により記録および再生の感度 を高めることができる点において好ましい。 低屈折率材料が無機材料で ある場合、 記録層の安定性が高まり好ましい。 アナ夕ーゼ型またはブル ッカイト型の酸化チタンには光触媒作用があるため、 紫外線の照射によ り有機材料を分解する可能性があるが、 無機材料にはそのような問題が 無いからである。
また、 本実施の形態の情報記録媒体は、 記録層を複数含み、 記録部は 、 記録光および再生光に対して実質的に透明な複数の中間層をさらに含 み、 記録層と中間層とが交互に積層されており、 多層構造を実現してい る。
また、 本実施の形態の情報記録媒体は、 記録光および再生光に対して 実質的に透明な保護層をさらに含み、 保護層が記録部の光の入射側に配 置されていることが好ましい。 記録部を傷やほこり等から防ぐことがで きるからである。
また、 本実施の形態の情報記録媒体は、 記録光および再生光に対して 実質的に透明な保護層をさらに含み、 保護層は、 記録部の光の入射側に 配置され、 記録層に含まれる低屈折率材料と同じ材料からなることが好 ましい。 また、 記録層が、 酸化チタンと、 酸化チタンよりも屈折率の小 さい低屈折率材料とを含む場合、 中間層は、 上記低屈折率材料と同じ材 料からなることが好ましい。 中間層や保護層を、 記録層に含まれる低屈 折率材料と同じ材料から形成すれば、 例えば、 侵食等の化学反応による 問題が生じることがなく、 中間層と記録層、 保護層と記録層について良 好な境界面を形成できるからである。 また、 情報記録媒体の低コスト化 も実現できるからである。 ここで、 同じ材料とは同種類の物質という意 味であって、 例えば重合度の違いで分子量が異なる場合であっても同じ 材料である。 本実施の形態の情報記録媒体においては、 記録層の一部に情報が記録 され、 記録された情報を再生する光の波長を λ とし、 記録層のうちの 上記情報が記録された部分の屈折率を η ' とし、 記録層のうちの上記情 報が記録されていない部分の屈折率を ηとしたとき、 記録層の厚さ Lは 、 λ / ( 2 n ) < L < 3 λ / ( 4 η ' ) 、 または A / n < L < 5 A / ( 4 η ' ) の関係を満たしていることが好ましい。 記録層の厚さ Lが、 上記関係を満たしていると、 反射率のコントラストまたは変調率が大き く、 再生信号の品質が向上するからである。
本実施の形態の情報記録媒体の製造方法によれば、 本発明の情報記録 媒体を容易に、 且つ低コストで作製できる。
本実施の形態の情報記録媒体の製造方法においては、 記録光および再 生光に対して実質的に透明な材料からなる塗料を塗布することにより中 間層を形成する工程をさらに含み、 記録層を形成する工程と中間層を形 成する工程とを、 所定の順序で、 かつ所定の数だけ周期的に繰り返すこ ともできる。 この方法によれば、 記録層と中間層とを複数備えた多層構 造の情報記録媒体を、 容易に、 且つ低コストで作製できる。
本実施の形態の光情報記録再生装置によれば、 本発明の情報記録媒体 に対して情報の記録および再生を行うことができる。
本実施の形態の光情報記録再生装置において、 記録光を出射する光源 がパルスレーザ光源であり、 パルス幅が 1ピコ秒以上 5ナノ秒以下であ ることが好ましい。 また、 記録光を出射する光源のピークパワーが、 2 W以上 3 0 0 W以下であることが好ましい。 本実施の形態の情報記録媒 体に対して 1パルスで 1つの情報ビットを形成できるからである。 本実施の形態の光学情報記録再生装置においては、 非線形吸収現象を 利用して情報記録媒体の記録部に情報ビットを形成することが好ましく 、 非線形現象は、 2光子吸収または多光子吸収を含むことが好ましい。 本実施の形態の光情報記録再生装置においては、 前記記録部に記録さ れている情報ピットを通過しない順序で、 情報記録媒体の記録部に情報 ビットを 3次元的に記録することが好ましく、 例えば、 記録部内の対物 レンズからより離れた位置から近い位置に向って、 順に、 情報ビットを 形成することが好ましい。 このような順序で情報ビットを形成すること により、 情報ビットによる散乱光や不要回折光等の迷光を減らすことが できるからである。
本実施の形態の光学情報記録再生装置において、 記録光を出射する光 源と、 再生光を出射する光源とが共通であることが好ましい。 光源が一 つとなり光学情報記録再生装置の構成をより簡単にできるからである。 本実施の形態の光学情報記録再生装置において、 再生光を出射する光 源の波長は 0 . 3 8 8 m〜0 . 4 1 3 mであることが好ましい。 本実施の形態の光学情報記録再生装置を用いて情報記録媒体へ情報を 記録する際に利用する酸化チタンの構造変化は、 アナタ一ゼ型またはブ ツルカイト型からルチル型への変化であることが好ましい。 ァモルファ スからアナ夕一ゼ型、 ブツルカイト型またはルチル型への変化であって もよい。
以下、 本発明の実施の形態について、 図面を参照しながら説明する。
(実施の形態 1 )
本発明の実施の形態 1の情報記録媒体およびその製造方法、 並びに光 学情報記録再生装置について、 図 1〜図 4を用いて説明する。
図 1は、 本実施の形態の情報記録媒体の断面構成および情報を記録お ょぴ再生する様子を示している。 図 2 Aおよび図 2 Bは、 本実施の形態 の情報記録媒体の記録層の膜厚と反射率との関係を示している。 図 3は 、 本実施の形態の情報記録媒体の各製造工程における断面図を示してい る。 図 4は本実施の形態の光学情報記録再生装置の光へッドの概略構成 を示している。
図 1に示すように、 本実施の形態の情報記録媒体には、 基板 9上に記 録部 3および保護層 4が形成されている。 記録部 3は、 複数の記録層 1 a〜 1 f と複数の中間層 2 a〜2 eとを含み、 記録層と中間層とが交互 に積層されている。 すなわち、 記録部 3には、 基板 9側から、 記録層 1 a、 中間層 2 a、 記録層 1 b、 · · ·、 記録層 1 e、 中間層 2 e、 およ び記録層 1 f がこの順に積層されている。 本実施の形態の情報記録媒体 は、 記録部 3に複数の記録層を含むことで、 平面的な情報の記録に加え て、 厚さ方向への情報の記録が可能である。 尚、 以下、 記録層 l a〜 l f のうちの任意の記録層について述べるときは記録層 1とし、 中間層 2 a〜 2 eのうちの任意の中間層について述べるときは中間層 2とする。 図 1に示すように、 本実施の形態の情報記録媒体は、 情報の記録時お よび再生時には、 保護層 4が光の入射側となる。 記録時には、 レーザ光 を対物レンズ 6により記録層 1 a〜 1 f のいずれかに集光して (収束光 7 ) 、 情報ビット 5を形成する。 再生時には、 レーザ光 8を対物レンズ 6により所望の記録層 1 a〜 1 f に集光し (収束光 7 ) 、 情報ビット 5 によって反射された光を利用して情報を再生する。
本実施の形態の情報記録媒体は、 記録層 1が酸化チタン (T i〇2) を含んでいることを特徴としている。 本発明者らは、 比較的低パワーの レーザ光を照射することにより酸化チタンが構造変化することを見出し 、 その構造変化に伴う光学定数の変化を利用して情報が記録および再生 される情報記録媒体を得た。
本実施の形態の情報記録媒体では、 記録層 1が実質的に酸化チタン ( T i 02) のみから形成されているため、 例えば、 記録層が酸化チタン と酸化チタンよりも屈折率の小さい低屈折率材料 (樹脂、 無機材料等) とを用いて形成された後述の情報記録媒体 (実施の形態 2 ) よりも、 入 射光の散乱損失または回折損失が少なく反射率が高い。 すなわち、 本実 施の形態の情報記録媒体は、 読み出し光量が大きく (光利用効率が高く
) 、 再生信号の品質が良い点において実施の形態 2よりも優れている。 尚、 本明細書において、 記録層が実質的に酸化チタンからなるとは、 記録層が、 記録層の形成時に意図せずに混入した不純物質を除いて酸化 チタンのみから形成されていることを意味する。 具体的には、 例えば記 録層に、 酸化チタンが 9 0 w t %以上含まれていることが好ましい。 酸化チタンは、 アモルファスおよび結晶形のうちの少なくとも一種で あり、 前記結晶形は、 アナターゼ型、 プルッカイト型、 およびルチル型 からなる群から選ばれる少なくとも 1種であってもよい。
基板 9は、 例えば、 ポリ力一ポネート、 P M M A、 ノルポルネン系樹 脂 (例えば、 「アートン」 (J S R株式会社製) ) 、 またはシクロォレ フィン樹脂 (例えば、 「ゼォネックス」 (日本ゼオン株式会社製) ) 等 にて形成できる。
中間層 2は、 記録光および再生光に対して実質的に透明であればよく 、 その材料について特に制限はないが、 例えば、 P MM A、 フォトポリ マー樹脂、 紫外線硬化樹脂、 またはポリエステル等にて形成できる。 保護層 4についても、 記録光および再生光に対して実質的に透明であ れば材料について特に制限はないが、 例えば、 ポリカーボネート、 P M M A、 フォトポリマー樹脂、 紫外線硬化樹脂またはポリエステル等にて 形成できる。 保護層 4を設けることで、 記録部 3を傷やほこり等から防 ぐことができる。
尚、 上記中間層 2および保護層 4について、 記録光および再生光に対 して実質的に透明であるとは、 記録光および再生光のうち散乱成分を除 いてほとんどを吸収しないで透過させることをいう。 具体的には、 例え ば記録層一層あたりについて吸収率が 1 %以下であることが好ましく、 0 . 1 %以下であることがより好ましい。
保護層 4は、 中間層 2と実質的に同じ材料から形成されていることが 好ましい。 同じ材料を選択することによって、 情報記録媒体の低コスト 化を実現できるからである。 尚、 ここで、 同じ材料とは、 同種類の物質 という意味であって、 例えば重合度の違いで分子量が異なる場合であつ ても同じ材料である。
本実施の形態の情報記録媒体では、 基板 9の厚さは、 例えば 1 . l m mであり、 記録層 1 a〜 l f の厚さは、 それぞれが例えば 1 以下で あり、 中間層 2 a〜 2 eの厚さは、 それぞれが例えば 3 m〜 5 m程 度であり、 保護層 4の厚さは、 例えば 1 0 0 m程度である。 記録層 1 には、 全ての層またはいずれかの層にトラックサ一ポ用のトラック溝が 形成されている。
次に、 本実施の形態の情報記録媒体に対する情報の記録について説明 する。
記録層 1に、 記録層 1に含まれる酸化チタンの吸収端波長 (光の吸収 が生じ始める波長) より短い波長の光を照射すると、 酸化チタンが光を 吸収する。 この光吸収により生じた熱により記録層が所定の温度に達す ると、 酸化チタンが構造変化し、 その構造変化に伴う光学定数の変化に より、 記録層 1に情報ビット 5が形成される。
例えば、 アナ夕ーゼ型酸化チタン (屈折率 n = 2 . 5 2 ) は、 レーザ 光を受けて凡そ 7 0 0 °Cに到達すると、 ルチル型酸化チタン (屈折率 n = 2 . 7 6 ) へと変化する。 ブルッカイト型酸化チタン (屈折率 n = 2 . 6 5 ) では凡そ 7 0 O :に到達するとルチル型酸化チタン (屈折率 n = 2 . 7 6 ) へと変化する。 アモルファスの酸化チタンでは凡そ 3 0 0 °Cに到達すると、 アナターゼ型酸化チタンまたはブルッカイト型酸化チ タンへと変化し、 凡そ 7 0 0 °Cにまで達すると、 アナ夕ーゼ型またはブ ルッカイト型を経てルチル型酸化チタンへと変化する。 すなわち、 ァモ ルファスからアナターゼ型またはブルツカイト型への構造変化は、 比較 的小さなレーザパワーで行え、 アナターゼ型またはブルツカイト型から ルチル型への構造変化は、 上記レーザパワーよりもより大きなレーザパ ヮ一で行える。
ルチル型からアモルファス、 アナターゼ型、 ブルッカイト型への構造 変化も可能であると考えられるが、 ルチル型からアナタ一ゼ型またはブ ルッカイト型へは、 直接変化させることはできない。 ルチル型酸化チタ ンを溶融 (1 8 0 0 °C以上) して一旦アモルファスとした後、 アナ夕一 ゼ型、 ブルッカイト型へと構造変化させることとなるので、 ルチル型を アナ夕ーゼ型またはブルツカイト型へと変化させるためには、 レーザ光 8にはより大きなレ一ザパワーのものが必要である。
記録層 1は、 上記構造変化に伴い大きな屈折率変化 Δ nを生じる。 例 えば、 アナターゼ型からルチル型への構造変化では、 屈折率変化 Δ ηは 0 . 2 4である。 情報記録媒体の記録層 1に、 例えば、 アナターゼ型酸 化チタンを用い、 酸化チタンにレーザ光を照射して、 アナターゼ型から ルチル型へと構造変化させれば、 この構造変化により屈折率変化を生じ た微小領域 (ルチル型酸化チタン) を情報ビット 5とすることができる が、 上記のとおり、 情報ビット 5 (ルチル型酸化チタン) と情報ビット 5が形成されていない記録層 1の部分 (アナターゼ型酸化チタン) との 屈折率差が大きいため、 良好な S N比で情報を再生できる。
また、 アナターゼ型またはブルツカイト型からルチル型への構造変化 により形成された情報ビッ卜 5は、 上記構造変化が準安定な結晶形から 安定な結晶形への構造変化であるため、 非常に安定で情報の長期保存性 に優れている。 また、 比較的低パワーのレーザ光により上記構造変化が 生じ、 さらに、 結晶形から結晶形への構造変化の速度、 すなわち転位の 速度は比較的速い。 したがって、 上記構造変化にともなう光学定数の変 化を利用すれば、 記録安定性に優れ、 高速記録および高感度記録可能な w r i t e o n c eの情報記録媒体を実現できる。
尚、 記録層 1が、 例えば、 アモルファスと結晶形の混合物であっても 、 上記結晶形 (アナターゼ型またはブルッカイト型) の酸化チタンを含 む限り、 安定、 高感度、 且つ高速記録が可能である。
ルチル型酸化チタンを含む情報ビット 5は、 上記のとおり、 レーザ光 8の照射により、 アモルファスやアナ夕一ゼ型またはブルツカイト型へ の構造変化も可能であると考えられるため、 R e w r i t a b 1 e記録 可能な情報記録媒体も実現できる。
記録光を記録層 1に集光すると、 光パワー密度 (光子密度) の高い集 光部で、 非線形現象が高い確率で誘起される。 尚、 ここでいう非線形現 象とは、 記録層 1の吸収感度が照射した光のエネルギーに比例しない現 象のことであり、 例えば、 吸収感度に閾値がある場合、 吸収感度が光の エネルギーのほぼ 2乗特性となる 2光子吸収や、 ほぼ n乗特性 (nは 3 以上) となる多光子吸収が発生する場合、 2光子吸収や多光子吸収がき つかけとなりプラズマが生じる場合、 およびこれらが組み合わされる場 合等に生じる現象を含んでいる。 例えば、 記録光の集光部において記録 層 1に 2光子吸収が発生する場合、 集光部における記録層 1は二つの光 子を同時に吸収するので、 記録層 1に、 あたかも記録波長の半分の波長 (所定の波長) の光が照射されたようになる。 記録層 1に含まれる酸化 チタンが、 上記所定の波長の光を吸収し、 この光吸収により生じた熱に より酸化チタンが構造変化すれば、 その構造変化に伴う光学定数の変化 によって情報ビット 5が形成される。 このような非線形現象を利用した 情報の記録は、 光の吸収の生じる領域を集光スポット程度の微小な領域 に局在化できるので、 情報ビット 5を高密度に形成できる。 例えば、 アナターゼ型酸化チタンまたはブルツカイト型酸化チタンの 吸収端波長はいずれも 0. 3 8 8 /imであるので、 記録層 1がアナター ゼ型またはブルッカイト型の酸化チタンを含む場合、 例えば、 波長が 0 . 7 6 zm以下のパルスレーザを照射すると、 2光子吸収現象を利用し て情報を記録できる。
次に、 本実施の形態の情報記録媒体に対する情報の再生について説明 する。
アナターゼ型酸化チタンまたはブルツカイト型酸化チタンの吸収端波 長はいずれも 0. 3 8 8 zmであり、 ルチル型酸化チタンの吸収端波長 は 0. 4 1 3 Π1である。 したがって、 記録層 1が実質的にアナターゼ 型酸化チタンまたはブルツカイト型酸化チタンからなり、 特に 3次元方 向により多くの情報ビット 5 (ルチル型酸化チタン) が形成された情報 記録媒体に対しては、 再生光として、 それらの吸収端波長 (0. 4 1 3 lim) よりも長い波長 (例えば、 0. 6 5 ^m) の光を用いる事が好ま しい。 複数の記録層 1を通過しても光の損失が少ないからである。
再生時に、 アナタ一ゼ型酸化チタンまたはブルツカイト型酸化チタン の吸収端波長と、 ルチル型酸化チタンの吸収端波長との間の波長 (0. 3 8 8 fim〜 0. 4 1 3 m) の光、 例えば、 0. 4 0 5 mの半導体 レーザを用いると、 アナタ一ゼ型酸化チタンおよびブルッカイト型酸化 チタンは、 その光に対して透明であるが、 ルチル型酸化チタン (情報ビ ット 5) については光の吸収が生じる。 この点を生かせば、 屈折率変化 と吸収係数変化とを利用して読み出しのコントラストを高めることがで きる。 ただし、 上記波長の半導体レーザを用いた情報の再生は、 3次元 方向により多くの情報ビット 5が形成された情報記録媒体に対しては光 の吸収が生じるため適さず、 記録層 1の層数が比較的少ない情報記録媒 体に適している。 また、 0. 40 5 ^mを含む 0. 5 以下の波長の光であれば、 情 報が高密度に記録された記録媒体、 例えば、 2光子吸収現象を利用して 情報ビット 5が高密度に形成された情報記録媒体の情報を再生できる。 次に、 図 2を用いて、 記録層の厚さ (複数の記録層 1 a〜 1 f のうち から選ばれるいずれか 1層の記録層の厚さ (図 1参照) ) と反射率との 関係について説明する。
ただし、 図 2に示した例では、 中間層 2の屈折率は 1. 6であり、 照 射した光の波長は 0. 6 5 mである。 図 2における破線は、 アナ夕一 ゼ型酸化チタン (未記録状態、 屈折率 n= 2. 52) の反射率を示し、 実線は、 ルチル型酸化チタン (記録状態、 屈折率 n' = 2. 7 6) の反 射率を示している。 すなわち、 実線は、 情報ビット 5における反射率を 示している (図 1参照) 。
図 2に示すように、 本実施の形態の情報記録媒体では、 酸化チタンの 構造変化に伴い、 光学定数の一種である反射率が変化しているので、 記 録層 1における未記録部分 (アナタ一ゼ型酸化チタン) の反射率と、 記 録部分 (ルチル型酸化チタン) の反射率との差を利用して情報を再生で きる。 また、 未記録部分の酸化チタン、 すなわち、 情報ビット 5が形成 されていない記録層についての反射率は、 フォーカス誤差信号として、 フォーカスサ一ポに用いることができる。
図 2 Aおよび図 2 Bに示すように、 記録層 1における未記録部分およ び記録部分 (情報ビット 5) の反射率は、 それぞれ、 その厚さとの関係 で周期的に変化している。 記録層 1における未記録部分の反射率は、 厚 さ (m— 0. 5) λ/ (2 η) において 1 8 %と大きく、 記録部分の記 録層 (情報ビット 5) の反射率は、 厚さ (m— 0. 5) λ/ (2 η' ) において 2 5 %と大きい。 ただし、 mは整数である。
記録層の厚さを、 未記録部分 (アナタ一ゼ型酸化チタン) の反射率と 記録部分 (ルチル型酸化チタン) の反射率との差が大きい厚さとすれば
、 良好な SN比で情報を再生できる点において、 好ましい。 例えば、 記 録層の層数が少ない (例えば、 4〜9層の記録層を含む) の情報記録媒 体では、 記録層の厚さを、 例えば、 反射率のピークがあらわれる、 λ/ 4η〜λ//4η' 程度とすればよい。 一方、 記録層の層数が多い (例え ば、 10〜50層の記録層を含む) 情報記録媒体では、 記録層の厚さを 上記厚さよりも薄くして、 1層あたりの光の反射率を減らし、 各層に入 射する光の割合を近くすることが好ましい。 この場合、 記録層の厚さは 、 層数に応じて、 例えば、 5 nm以上 50 nm以下の範囲で設定すれば よい。
また、 図 2Aに示すように、 未記録部分 (アナタ一ゼ型酸化チタン) と記録部分 (ルチル型酸化チタン) とでは、 反射率変化の周期 (周期は それぞれ λΖ (2 η) 、 λ / (2 η ' ) ) が若干異なるため、 例えば、 2周期目や 3周期目、 すなわち、 図 2 Αにおける第 2番目の山形曲線が 描かれた厚さ領域や第 3番目の山形曲線が描かれた厚さ領域では、 第 1 番目の山形曲線の厚さ領域より、 コントラストまたは変調率が大きくな る厚さ領域が存在する。 したがって、 記録層の厚さを、 上記コントラス 卜または変調率が大きくなる厚さ領域のうちから選択すれば、 再生信号 の品質を高めることができる。
上記コントラストまたは変調率が大きい厚さ Lの領域は、 2番目の山 形曲線では、 λ / (2 n) <L< 3 λ/ (4 η ' ) であり、 3番目の山 形曲線では AZn<L< 5 λ/ (4 η ' ) である。 ただし、 Lは記録層 の厚さであり、 λは再生光の波長であり、 η' は記録層のうちの情報が 記録された部分 (記録部分) の屈折率であり、 ηは記録層のうちの情報 が記録されていない部分 (未記録部分) の屈折率である。 尚、 記録層の 厚さが厚すぎると、 膜厚の精度が悪くなるので、 記録層の厚さは上記範 囲内であることが望ましい。
次に、 本実施の形態の情報記録媒体の製造方法について、 図 3 A〜図 3 Dを用いて説明する。
まず、 基板 9を用意し (図 3 A参照) 、 基板 9上に、 例えばスピンコ ート等の方法を用いて、 酸化チタンを含む塗料を塗布して記録層 1 aを 形成する (図 3 B参照) 。 さらにその上に、 スピンコート等の方法を用 いて、 中間層の材料を含む塗料を塗布することにより、 中間層 2 aを形 成する (図 3 C参照) 。 さらにその上に、 同様に記録層 l b、 中間層 2 b、 記録層 1 c · · ·、 記録層 1 f を繰り返し形成する。 最後に、 保護 層 4の材料を含む塗料を、 記録層 1 f に塗布して保護層 4を形成するか 、 またはフィルム形成法等を用いて記録層 1 f 上に保護層 4を形成する (図 3 D参照) 。 このように、 材料を塗布して記録層 1および中間層 2 を形成することにより、 容易に、 かつ低コストで本実施の形態の情報記 録媒体を作製できる。
また、 中間層または記録層を余剰に形成し、 余剰に形成した部分
(つまり記録部 3の一部であって、 光が入射する側の部分) を保護層 4 としてもよい。 すなわち、 記録層 1 f 上に中間層 2 a〜 2 eと同様の層 をさらに形成して保護層 4とするか、 または、 記録層 1 f を厚く形成し てその一部を保護層 4として機能させることも可能である。 このように すれば、 記録部 3と別工程で保護層 4を形成する必要がなくなり、 保護 層 4を記録部と実質的に同じ材料とすることができる。
酸化チタンを含む塗料としては、 例えば、 アナターゼ型酸化チタンま たはブルッカイト型酸化チタンの微粒子 (平均粒径 5 n m〜 5 0 n m) が水等の分散媒に分散した懸濁液を用いることができる。 酸化チタンの 結晶は、 結晶軸をもっため、 屈折率について偏光異方性があるが、 酸化 チタンの微粒子が分散された上記懸濁液を用いて作製された記録層 1に おいては、 結晶軸の方向がランダムとなるので、 記録層における偏光異 方性を抑制できる。
次に、 本実施の形態の光学情報記録再生装置および情報記録再生方法 について説明する。
図 4に示すように、 本実施の形態の光学情報記録再生装置の光学へッ ドには、 再生用と記録用の 2種類の光源 2 0 a、 2 O bが設けられ、 光 源 2 0 a、 2 0 bから情報記録媒体 2 1までの光路中に、 ビームスプリ ッタ 1 8 a、 1 8 b , コリメ一夕レンズ 1 6、 フォーカス誤差信号/ト ラック誤差信号検出素子 1 5、 立ち上げミラー 1 2、 球面収差補正素子 1 3、 対物レンズ 6が配置されている。 光源 2 0 aは、 例えば、 波長 0 . 4 0 5 mの再生用の半導体レーザ光源であり、 光源 2 O bは、 例え ば、 波長 0 . 7 6; mで、 パルス幅が例えば 1ピコ秒〜 1 0ナノ秒の記 録用の半導体パルスレーザ光源である。
尚、 本実施の形態の光学情報記録再生装置においては、 記録用の光源 と再生用の光源とを別に設けているが、 記録用の光源および再生用の光 源を一つの光源で兼用することも可能である。 この場合、 例えば波長 6 5 O n mの光源を用い、 記録用にはパルス発振させてピークパワーの大 きいレーザ光を出射し、 再生用には連続発振させてピークパワーの小さ いレーザ光を出射するように設定することにより、 本実施の形態の情報 記録媒体の記録および再生を実現できる。 これにより光源が一つとなり 装置の構成をより簡単にできる。
記録時においては、 光源 2 0 bから出射されたレーザ光 2 2 bは、 ビ —ムスプリッ夕 1 8 aにより Y軸方向に折り曲げられ、 コリメータレン ズ 1 6により略平行光となり、 回折型のフォーカス誤差信号 Zトラック 誤差信号検出素子 1 5を透過 (0次回折光利用) して、 立ち上げミラー 1 2によって光路を z軸方向に折り曲げられる。 そして、 z軸方向に折 り曲げられたレーザ光 8は、 球面収差補正素子 1 3を通過して、 対物レ ンズ 6によって情報記録媒体 2 1の記録部 3に集光 (収束光 7 ) し、 図 1に示すような情報ビット 5が形成される。 情報ピット 5は、 記録層の 光学定数の変化を利用して形成されるが、 本実施の形態では、 酸化チタ ンの構造変化に伴う記録層 1の屈折率変化や反射率変化等を利用して情 報ビット 5が形成される。
従来の情報記録媒体に対して情報を記録する光学情報記録再生装置に おいては、 1パルスで 1情報ビット 5を形成する 1パルス書きをするた めには、 情報の書き込み光源 (記録光を出射する光源) として、 パルス 幅が約 1 0 0フェムト秒で、 ピ一クパワーが約 1 0 0 k Wの大出力パル スレーザを出力可能な光源が必要であつたが、 例えば、 記録層が実質的 にアナタ一ゼ型酸化チタンからなる本実施の形態の情報記録媒体に対し て情報を記録する、 本実施の形態の光学情報記録再生装置おいては、 書 き込みエネルギーが 1パルス当たり 2 5 0 p J〜 1 0 n J程度であると すれば、 パルス幅が例えば 1ピコ秒以上 5ナノ秒以下と比較的長パルス であり、 ビークパワーが、 例えば 2 W以上 3 0 0 W以下と比較的小さい パルスレーザを、 記録光を出射する光源として用いることができる。 こ のように、 比較的低いピークパワーで情報を記録可能とすることにより 、 光源である半導体レーザの構造を簡単にできる。 ピークパワーがそれ ほど高くない半導体レーザは、 出射端面破壊がされにくいからである。 尚、 低パワーで情報を記録できる理由については明らかではないが、 本実施の形態の情報記録媒体においては、 2光子吸収または多光子吸収 のみにより情報が記録されるのではなく、 この 2光子吸収または多光子 吸収がきっかけで強電界によりプラズマが発生して、 酸化チタンの構造 変化が誘発され、 記録が促進されているためと思われる。
再生時においては、 光源 2 0 aから出射されたレーザ光 2 2 aは、 ビ 一ムスプリッ夕 1 8 aと 1 8 bを透過して、 コリメ一夕レンズ 1 6によ り略平行光となり、 回折型のフォーカス誤差信号/トラック誤差信号検 出素子 1 5を透過 (0次回折光利用) して、 立ち上げミラー 1 2によつ て光路を z軸方向に折り曲げられる。 そして、 z軸方向に折り曲げられ たレーザ光 8は、 球面収差補正素子 1 3を通過して、 対物レンズ 6によ つて情報記録媒体 2 1の記録部 3に集光 (収束光 7 ) する。 記録層 1に 形成された情報ビット 5によって反射された光は、 逆方向に折り返し、 対物レンズ 6、 球面収差補正素子 1 3、 立ち上げミラ一 1 2を順に通過 し、 回折型フォーカス誤差信号/トラック誤差信号検出素子 1 5によつ て、 複数の光に分岐され (1次回折光利用。 ただし、 図 4においては簡 略化のため、 回折型フォーカス誤差信号/トラック誤差信号検出素子 1 5からビ一ムスプリッタ 1 8 bまでの光路において分岐光は図示せず。 ) 、 コリメ一夕レンズ 1 6により収束光となり、 さらにビ一ムスプリッ 夕 1 8 bにより一 z軸方向に偏向される。 一 z軸方向に偏向された複数 の分岐光 1 7 a〜 1 7 cは、 ピンホールアレイ 1 4のそれぞれのピンホ —ル 1 4 a〜 1 4 cを通過して光検出器 1 9 a〜 1 9 cで検出される。 また、 本実施の形態においては、 複数のピンホールを有するピンホー ルアレイ 1 4を分岐光 1 7 a〜l 7 c全体のほぼ焦点の位置に設置して いるが、 別々のピンホールを分岐光 1 7 a〜l 7 cのそれぞれの焦点に 対応する位置に配置してもよい。 ピンホール 1 4 a〜 1 4 cの大きさを それぞれ分岐光 1 7 a〜l 7 cよりも小さくすることによって、 収束光 1 7 a〜 1 7 cの中心部の光のみを検出し、 収束光 1 7 a〜1 7 cの周 辺付近に分布する不要な高次収差光を除去することができる。 これによ り、 再生信号だけでなくサーポの誤差信号の S / Nまでも向上させるこ とができる。
尚、 分岐光 1 7 a〜l 7 cの周辺光を削除すると光量が低下するため 、 この場合は光検出器 1 9 a〜 1 9 cに A P D (アバランシェフオトダ ィオード) を用いて信号強度を強めることが好ましい。 記録層が多層設 けられている情報記録媒体の場合、 材料の制限で検出光量が大きくとれ ないので、 その理由からも A P Dを用いることが好ましい。
また、 ピンホールアレイ 1 4の代わりに、 それぞれの分岐光 1 7 a〜 1 7 cより小さい面積の光検出器 1 9 a〜 1 9 cで分岐光 1 7 a〜 1 7 cをそれぞれ検出するようにしても、 同様の効果が得られる。
さらに、 トラック誤差信号に対応する分岐光 1 7 b、 1 7 cのみをピ ンホールアレイ 1 4のピンホール 1 4 b、 1 4じに通過させて、 分岐光 1 7 b、 1 7 cを光検出器 1 9 b、 1 9 cで検出し、 フォーカス誤差信 号に対応する分岐光 1 7 aはピンホールを通さないで、 例えば 4分割の 光検出器 1 9 aで直接検出するようにしてもよい。 このような配置では 、 フォーカス検出法として、 例えば非点収差法を用いることができる。 また、 この時の光検出器 1 9 aの面積は、 検出位置での分岐光 1 7 aの 断面積より小さくすると高次収差成分を減らすことができる。
本実施の形態では、 既に記録された情報ビット 5を通過しない順で、 記録部 3内に、 順次、 情報ビット 5を 3次元的に記録するようにした。 このような順序で記録することにより、 情報ビット 5による、 散乱光、 不要回折光等の迷光を減らすことができる。 具体的には、 対物レンズ 6 からもっとも離れた位置に配置された記録層 (図 1では、 記録層 l a ) から順に、 近い記録層へと情報ビット 5を形成することにより、 上記順 序は実現可能である。 図 1に示す情報記録媒体では、 記録層 l a、 記録 層 1 b、 記録層 l c、 · · · というように、 — z軸方向に 3次元的に記 録すればよい。 この時、 収束光 7が通過する記録層 1の厚さが情報ビッ ト 5の記録深さにより異なるので、 光源 2 0 a、 光源 2 O bから対物レ ンズ 6までの光路中に設けた球面収差補正素子 1 3で、 記録深さに応じ て球面収差量を制御しながら記録することが好ましい。 これにより、 良 好な情報ビット 5を形成できる。 球面収差補正素子 1 3には、 屈折率分 布が可変である液晶素子、 または凹レンズと凸レンズとを組み合わせて ァクチユエ一夕で両レンズの光軸方向の間隔を可変にしたビームエキス パンダー等を利用できる。
尚、 記録順については、 情報ビット 5の未記録部分が存在する場合は 、 収束光 7が既に記録された情報ビット 5を通過しないのであれば、 常 に一 z軸方向でなくともよい。
(実施の形態 2 )
本発明の実施の形態 2の情報記録媒体およびその製造方法について図 5および図 6を用いて説明する。 図 5 Aは、 本実施の形態における情報 記録媒体の断面構成および記録ノ再生する様子を示しており、 図 5 Bは 、 図 5 Aに示す情報記録媒体の記録層の拡大図であり、 図 6は、 本実施 の形態における情報記録媒体の記録層の厚さと反射率との関係を示して いる。
図 5 Aに示すように、 本実施の形態の情報記録媒体には、 基板 3 9上 に記録部 3 3および保護層 3 4が形成されている。 図 5 Aにおいて、 3 1 a〜 3 1 f は記録層であり、 3 2 a〜 3 2 eは中間層である。 尚、 以 下、 記録層 3 1 a〜 3 1 f のうち任意の記録層について述べるときは記 録層 3 1とし、 中間層 3 2 a〜 3 2 eのうちの任意の中間層について述 ベるときは中間層 3 2とする。
実施の形態 2の情報記録媒体が実施の形態 1の情報記録媒体と異なる のは、 図 5 Bに示すように記録層 3 1が、 酸化チタン 3 1 1と、 酸化チ タン 3 1 1よりも屈折率の小さい低屈折率材料 3 1 0との混合体であり 、 上記酸化チタン 3 1 1が粒状であり、 上記低屈折率材料 3 1 0中に分 散している点である。 酸化チタン 3 1 1と低屈折率材料 3 1 0との混合 比をかえて、 記録層 3 1に含まれる酸化チタン 3 1 1の含有量を制御す ることにより、 屈折率、 および記録層における記録前後の屈折率変化量 を制御することができる。
また、 本実施の形態の情報記録媒体によれば、 従来の情報記録媒体よ りも記録感度が向上する。 これは、 酸化チタン 3 1 1の平均粒子径が、 入射光の波長 (例えば、 0 . 4 0 5 /x m) の 1 / 4より小さい、 例えば 、 5 n m〜 5 0 n mの微粒子であることによって、 量子サイズ効果や、 微粒子表面の不純物準位が増えて熱変換効率が良くなる、 という微粒子 に特有の効果により、 容易に非線形現象が引き起こされるからであると 考えられる。
酸化チタン 3 1 1の平均粒径は、 入射光 (記録光および再生光) の波 長よりも小さいことが好ましい。 これは、 酸化チタン 3 1 1による記録 光および再生光の回折損失による光損失を抑制するためである。 特に、 酸化チタン 3 1 1の平均粒径を、 入射光 (記録光および再生光) の波長 の 1 4以下とすることが好ましい。 回折損失に加えて散乱損失も抑制 できるので、 記録光および再生光の光損失をより少なくすることができ るからである。 さらには、 酸化チタン 3 1 1の平均粒径を、 入射光 (記 録光および再生光) の波長の 1 / 1 0以下とすることが好ましい。 より 一層、 散乱損失を少なくすることができるからである。
酸化チタン 3 1 1の微粒子は、 記録層において重量比で 5 w t %〜 1 0 0 w t %未満含まれていることが好ましい。 記録層 3 1が、 例えば約 1 / m以下の薄膜である場合、 記録層 3 1に酸化チタン 3 1 1が 5 w t %以上含まれていれば、 記録層 3 1において実用レベルの記録感度を実 現できる。
低屈折率材料 3 1 0は、 記録光および再生光に対して実質的に透明な 材料であれば、 樹脂または無機材料のいずれであってもよい。 ここで、 記録光および再生光に対して実質的に透明であるとは、 記録光および再 生光のうち散乱成分を除いてほとんどを吸収なしに透過させることをい う。 具体的には、 例えば記録層一層あたりについて吸収率が 1 %以下で あることが好ましく、 吸収率 0 . 1 %以下であることがより好ましい。 低屈折率材料 3 1 0として樹脂を用いる場合、 中間層 3 2は、 低屈折 率材料 3 1 0と実質的に同じ材料から形成されていることが好ましい。 さらに保護層 3 4についても、 低屈折材料 3 1 0と実質的に同じ材料か ら形成されていることが好ましい。 情報記録媒体の低コスト化を実現で き、 また、 中間層 3 2と記録層 3 1、 保護層 3 4と記録層 3 1との境界 面において、 化学反応、 例えば侵食等の問題が生じることを抑制できる からである。 ここで、 同じ材料とは同種類の物質という意味であって、 例えば重合度の違いで分子量が異なる場合であっても同じ材料である。
また、 低屈折率材料 3 1 0として樹脂を用いる場合、 その断熱効果に より記録および再生の感度を高める効果が生じる。 樹脂としては、 例え ば、 P MM A、 フォトポリマ一樹脂、 紫外線硬化樹脂、 ポリエステル等 の屈折率が 1 . 5前後のものが使用可能である。
無機材料としては、 例えば、 S i〇2、 C a〇2、 または M g F等を 用いることができる。 記録層 3 1 (未記録状態) がアナ夕一ゼ型または ブルッカイト型の酸化チタンを含む場合には、 低屈折率材料 3 1 0とし て S i〇2、 C a 0 2、 および M g Fからなる群から選ばれる少なくと も 1種の無機材料等を用いると、 記録層を安定化でき好ましい。 アナ夕 ーゼ型またはブルツカイト型の酸化チタン 3 1 1には光触媒作用がある ため、 紫外線の照射により有機材料を分解する可能性があるが、 無機材 料ではそのような問題が生じないからである。
基板 3 9、 保護層 3 4、 および中間層 3 2は、 実施の形態 1の情報記 録媒体における基板 9、 保護層 4、 および中間層 2と同様の機能を有し 、 同様の材料にて形成できる。 記録層 31は、 例えば、 平均粒径が 5 n m〜50 nmの酸化チタン 31 1の微粒子を 5 Owt %と、 低屈折率材 料 310を 50wt %とを含んでいてもよい。
次に、 本実施の形態の情報記録媒体に対する情報の記録について説明 する。
本実施の形態の情報記録媒体は、 実施の形態 1の情報記録媒体の記録 層 1のように、 記録層 31の集光部で 2光子吸収等の非線形現象が誘起 されて、 記録層 31に含まれる酸化チタン 31 1が所定の波長の光を吸 収する。 酸化チタン 311が光を吸収して所定の温度に達すると、 酸化 チタン 31 1について構造変化が生じ、 その構造変化に伴う光学定数の 変化によって情報ビット 35が形成される。
尚、 低屈折率材料 310については、 例えば、 低屈折率材料 310が 融点が高い S i〇2等である場合、 記録光を受けても変化しにくいが、 低屈折率材料 310が樹脂である場合、 樹脂は熱により変形しやすいた め、 記録光を受けて熱変形し、 酸化チタンと相俟って情報ビット 35を 形成する。
本実施の形態の情報記録媒体に対する情報の記録については、 実施の 形態 1の場合と同様であるため、 記録光は、 実施の形態 1の場合と同様 に、 書き込みエネルギーが 1パルス当たり 250 p J〜10 n J程度で あるとすれば、 ピークパワーが例えば 2 W以上 300W以下程度、 パル ス幅が例えば 1ピコ秒以上 5ナノ秒以下であることが好ましい。
次に、 図 6を用いて、 記録層 31の厚さ (複数の記録層 31 a〜31 f のうちから選ばれるいずれか 1層の記録層の厚さ (図 5 A参照) ) と 反射率との関係について説明する。 ただし、 図 6に示した例では、 中間 層 32の屈折率は 1. 6であり、 照射した光の波長は 0. 65 / mであ る。 図 6における破線は、 アナタ一ゼ型酸化チタン 50w t %と低屈折 率材料 (S i 0 2 ) 5 0 w t %とを含む記録層 3 1の未記録部分 (屈折 率 n = 2 . 0 6 ) の反射率を示し、 実線は、 記録部分(屈折率 n ' = 2 - 1 6、 アナタ一ゼ型酸化チタンが全てルチル型酸化チタンに変化して いれば、 記録部分は、 ルチル型酸化チタン 5 O w t %と低屈折率材料 ( S i O 2 ) を 5 0 w t %含む)の反射率を示している。 すなわち、 実線 は、 情報ピット 5における反射率を示している (図 5参照) 。
図 6に示すように、 未記録部分については 6 %、 記録部分については 8 %の反射率を得ることができる。 記録層における低屈折材料の重量比 を増やせば屈折率が小さくなるため、 反射率のピーク値も小さくなる。 例えば、 記録層の層数が比較的少ない (例えば、 4〜 9層の記録層を含 む) 情報記録媒体では、 低屈折率材料 3 1 0の重量比を少なくして、 反 射率を高くする方が、 再生信号の品質が良くなるが、 記録層の層数が多 い (例えば、 1 0〜 5 0層の記録層を含む) 情報記録媒体では、 低屈折 率材料 3 1 0の重量比を増やして、 1層当たりの光の損失を減らす方が 好ましい。
本実施の形態の情報記録媒体の製造方法も、 実施の形態 1の場合と同 様に、 材料を塗布することにより各層を形成することが好ましい。 容易 に且つ低コストで作製できるからである。 酸化チタン 3 1 1の微粒子と 低屈折材料 3 1 0を含む記録層 3 1についても、 例えば、 平均粒径が 5 n m〜 5 0 n mの酸化チタン 3 1 1の微粒子と低屈折材料 3 1 0とが例 えば、 水や、 トルエンまたはイソプロピルアルコール等に分散された懸 濁液 (塗料) を塗布して形成すればよい (図 5参照) 。
また、 本実施の形態の情報記録媒体に対して情報の記録および再生を 行う場合も、 図 4に示した光学情報記録再生装置を用いることができ、 記録再生方法についても、 実施の形態 1の場合と同様である。
(実施の形態 3 ) 本発明の実施の形態 3の情報記録媒体およびその製造方法について図 7を用いて説明する。 図 7 Aは、 本実施の形態における情報記録媒体の 断面構成および記録/再生する様子を示し、 図 7 Bは、 図 7 Aに示す情 報記録媒体の記録層を示している。
図 7 Aに示すように、 本実施の形態の情報記録媒体は、 基板 49上に 記録部 41および保護層 44が形成されている。 本実施の形態の情報記 録媒体が実施の形態 1および 2の情報記録媒体と異なるのは、 記録部 4 1の全体が記録層として機能している点である。 記録層 (記録部 4 1) 内のほぼ同一平面上に情報ビット 45を記録し、 このような記録面 (4 l a〜4 1 f ) を記録層 (記録部 4 1) 内に複数設けることで、 3次元 的な情報の記録を実現している。
本実施の形態の情報記録媒体は、 図 7 Bに示すように、 記録層 41は 、 低屈折率材料 41 0に酸化チタン 4 1 1の微粒子が分散された構造を している。 酸化チタン 41 1の微粒子は、 実施の形態 2で説明した情報 記録媒体の記録層 3 1に含まれる酸化チタン 3 1 1の微粒子と同様の性 質および機能を有している。 ただし、 本実施の形態の情報記録媒体では 、 酸化チタン 4 1 1の含有量は 0. 3w t %〜 1 Ow t %であることが 好ましい。 これは、 0. 3 w t %以上で記録感度が向上し、 1 0w t % で散乱損失を抑えて光利用効率を高めることができるからである。 低屈 折率材料 41 0は、 実施の形態 2の情報記録媒体の記録層 3 1に含まれ る低屈折率材料 3 1 0と同様の性質および機能を有し、 同様の材料を用 いることができる。 基板 49と保護層 44とを記録層 4 1に含まれる低 屈折率材料 41 0と同じ材料にて形成する場合には、 材料管理が容易で あり、 低コストで製造できる。 また、 保護層 44と記録層 (記録部 41 ) との境界面において、 化学反応、 例えば侵食等の問題が生じることを 抑制できる。 本実施の形態の情報記録媒体に対する情報の記録については、 実施の 形態 1の場合と同様であるため、 記録光は、 実施の形態 1の場合と同様 に、 書き込みエネルギーが 1パルス当たり 2 5 0 p J〜1 0 n J程度で あるとすれば、 ピークパワーが例えば 2 W以上 3 0 0 W以下程度、 パル ス幅が例えば 1ピコ秒以上 5ナノ秒以下であることが好ましい。
本実施の形態の情報記録媒体を製造する方法としては、 実施の形態 2 の場合と同様に、 酸化チタン 4 1 1の微粒子と低屈折率材料 4 1 0とを 含む塗料を基板 4 9上に塗布することにより形成する方法や、 記録層 4 1 (記録部) を射出成形により一度に形成する方法がある。 これらの方 法によれば、 容易に、 且つ低コストで情報記録媒体を作製できる。 また、 本実施の形態の情報記録媒体に対して情報の記録および再生を 行う場合も、 図 4に示した光学情報記録再生装置を用いることができる 以上、 実施の形態 1〜 3において本発明の実施の形態を説明したが、 本発明はこれらに限定されるものではなく、 それぞれの実施の形態の情 報記録媒体およびその製造方法、 並びに光学情報記録再生装置の構成を 組み合わせることも可能であり、 同様の効果を奏することもできる。 ま た、 本発明の情報記録媒体および光学情報記録再生装置には、 追加型以 外に書き換え型も含まれる。
また、 実施の形態 1〜3においては、 情報記録媒体として光ディスク を例に挙げて説明したが、 カード状やドラム状、 テープ状の製品に応用 することも、 本発明の範囲に含まれる。
尚、 上記実施の形態で用いた対物レンズとコリメ一夕レンズは便宜上 名づけたものであり、 一般にいうレンズと同じである。
(実施例)
次に、 本実施の形態の情報記録媒体の一実施例について説明する。 本 実施例の情報記録媒体は、 実施の形態 1で説明した図 1に示す情報記録 媒体の一例である。
表面にトラック溝 (ピッチ 0 . 3 2 μ ιη、 溝深さ 0 . 2 mのグルー ブ記録用の溝) が形成された厚さ 1 . 1 mmのポリカーボネートからな る基板 9上に、 厚さ 0 . 0 1 mの記録層と、 厚さ 3 mの中間層とを 交互にスピンコート法で形成して記録部 3を形成し (記録層 1 a〜l ί 、 中間層 2 a〜2 e ) 、 さらに厚さ 7 5 mのポリ力一ポネートからな る保護層 4を形成した。 記録層 l a〜l ίは、 実質的にアナ夕一ゼ型酸 化チタンからなり、 中間層 2 a〜2 eは、 紫外線硬化樹脂からなる。 図 8には、 本実施例の情報記録媒体に対し、 パルス幅を変化させて波 長 6 5 0 n mのパルスレーザ光を照射し、 1ビッ卜記録時のエネルギー 閾値およびピークパワー閾値を測定した結果が示されている。 パルスレ —ザ光のパルス幅が長くなるに従い、 情報記録媒体に 1ビットを記録す るピ一クパワーの閾値が低下する傾向が見られた。 パルス幅を 1ピコ秒 以上とすることにより、 ピークパワー閾値を 3 0 0 W以下に抑えること ができた。 パルス幅を 5ナノ秒としたときには、 ピ一クパワー閾値 2 W で情報ビットを形成できた。
一方、 1ビットの記録に必要なエネルギー閾値は、 1ピコ秒〜 1 0ピ コ秒のレーザ光に対して最も低く 2 5 0 n Jであり、 それよりパルス幅 が長くなると徐々に大きくなる傾向がみられた。 パルス幅を 5ナノ秒以 下とすることにより、 エネルギー閾値を 1 0 n J以下に抑えることがで きた。
産業上の利用の可能性
本発明の光情記録媒体およびその製造方法、 並びに光学情報記録再生 装置によれば、 記録感度が向上し、 従来のように非常に高いピークパヮ 一を有するレ一ザ光でなくても 1パルスで 1つの情報ビットを形成でき る。 したがって、 高感度および高速記録が可能な情報記録媒体および光 学情報記録再生装置を提供できる。

Claims

請 求 の 範 囲
1 . 3次元的な情報の記録が可能な記録部を含む情報記録媒体であつ て、
前記記録部は、 記録層を少なくとも 1層含み、
前記記録層は、 酸化チタンを含むことを特徴とする情報記録媒体。
2 . 前記酸化チタンは、 アモルファスおよび結晶形のうちの少なくと も一種であり、 前記結晶形は、 アナタ一ゼ型、 ブルッカイト型、 および ルチル型からなる群から選ばれる少なくとも 1種である請求項 1に記載 の情報記録媒体。
3 . 前記酸化チタンは、 アナターゼ型およびブルッカイト型からなる 群から選ばれる少なくとも 1種である請求項 1に記載の情報記録媒体。
4 . 前記記録層は、 実質的に酸化チタンからなる請求項 1に記載の情 報記録媒体。
5 . 前記記録層は、 前記酸化チタンと、 前記酸化チタンよりも屈折率 の小さい低屈折率材料とを含む請求項 1に記載の情報記録媒体。
6 . 前記記録層は、 前記酸化チタンを 5 w t %以上 1 0 0 w t %未満 含む請求項 5に記載の情報記録媒体。
7 . 前記酸化チタンは粒状であり、 前記酸化チタンの平均粒径は、 記 録光の波長および再生光の波長よりも短い請求項 5に記載の情報記録媒 体。
8 . 前記酸化チタンの平均粒径は、 前記記録光の波長および前記再生 光の波長の 1 / 4よりも短い請求項 7に記載の情報記録媒体。
9 . 前記低屈折率材料は、 樹脂である請求項 5に記載の情報記録媒体 。
1 0 . 前記低屈折率材料は、 無機材料である請求項 5に記載の情報記 録媒体。
1 1. 前記記録層を複数含み、 前記記録部は、 記録光および再生光に 対して実質的に透明な複数の中間層をさらに含み、 前記記録層と前記中 間層とが交互に積層された請求項 1に記載の情報記録媒体。
1 2. 記録光および再生光に対して実質的に透明な保護層をさらに含 み、 前記保護層が前記記録部の光の入射側に配置された請求項 1に記載 の情報記録媒体。
1 3. 記録光および再生光に対して実質的に透明な保護層をさらに含 み、 前記保護層は、 前記記録部の光の入射側に配置されており、 前記低 屈折率材料と同じ材料からなる請求項 5に記載の情報記録媒体。
14. 前記記録層は、 前記酸化チタンと、 前記酸化チタンよりも屈折 率の小さい低屈折率材料とを含み、 前記中間層は、 前記低屈折率材料と 同じ材料からなる請求項 1 1に記載の情報記録媒体。
1 5. 前記記録層の一部に情報が記録され、 前記情報を再生する再生 光の波長を λ とし、 前記記録層のうちの前記情報が記録された部分の 屈折率を η' とし、 前記記録層のうちの前記情報が記録されていない部 分の屈折率を ηとしたとき、 前記記録層の厚さ Lは、 λ/ (2 n) <L
< 3 λ / (4 η ' ) 、 または A/n<L< 5 A/ (4 η ' ) の関係を 満たす請求項 1に記載の情報記録媒体。
1 6. 3次元的な情報の記録が可能な記録部を含み、 前記記録部が記 録層を少なくとも 1層含み、 前記記録層が酸化チタンを含む情報記録媒 体の製造方法であって、
酸化チタンを含む塗料を塗布することにより前記記録層を形成するェ 程を含むことを特徴とする情報記録媒体の製造方法。
1 7. 記録光および再生光に対して実質的に透明な材料からなる塗料 を塗布することにより中間層を形成する工程をさらに含み、 前記記録層を形成する工程と前記中間層を形成する工程とを、 所定の 順序で、 且つ所定の数だけ交互に繰り返す請求項 1 6に記載の情報記録 媒体の製造方法。
1 8 . 3次元的な情報の記録が可能な記録部を含み、 前記記録部が記 録層を少なくとも 1層含み、 前記記録層が酸化チタンを含む情報記録媒 体に対して情報の記録および再生を行う光学情報記録再生装置であって 記録光を出射する光源と、
再生光を出射する光源と、
前記記録光を出射する光源および前記再生光を出射する光源から出射 された光を前記情報記録媒体に集光する対物レンズと、
前記情報記録媒体で反射した光を検出する光検出器とを備え、 前記酸化チタンの構造変化により生じる前記酸化チタンの光学定数の 変化を利用して前記記録部に情報を記録し、 前記酸化チタンの光学定数 の変化を利用して前記情報を再生することを特徴とする光学情報記録再 生装置。
1 9 . 前記記録光を出射する光源がパルスレーザ光源であり、 パルス 幅が 1ピコ秒以上 5ナノ秒以下である請求項 1 8に記載の光学情報記録 再生装置。
2 0 . 前記記録光を出射する光源のピ一クパワーが、 2 以上3 0 0 W以下である請求項 1 8に記載の光学情報記録再生装置。
2 1 . 非線形吸収現象を利用して前記情報記録媒体の記録部に情報ビ ッ卜を形成する請求項 1 8に記載の光学情報記録再生装置。
2 2 . 前記非線形現象が、 2光子吸収または多光子吸収を含む請求項 2 1に記載の光学情報記録再生装置。
2 3 . 前記記録部に記録されている情報ビットを通過しない順序で、 前記情報記録媒体の記録部に情報ビットを 3次元的に記録する請求項 1 8に記載の光学情報記録再生装置。
2 4 . 前記記録部内の対物レンズからより離れた位置から近い位置に 向って、 順に、 情報ビットを記録する請求項 2 3に記載の光学情報記録 再生装置。
2 5 . 前記記録光を出射する光源と、 前記再生光を出射する光源とが 共通である請求項 1 8に記載の光学情報記録再生装置。
2 6 . 前記再生光を出射する光源の波長が、 0 . 3 8 8 ^ m〜0 . 4
1 3 x mである請求項 1 8に記載の光学情報記録再生装置。
2 7 . 前記酸化チタンの構造変化は、 アナ夕ーゼ型またはブツルカイ ト型からルチル型への変化である請求項 1 8に記載の光学情報記録再生 装置。
2 8 . 前記酸化チタンの構造変化は、 アモルファスからアナタ一ゼ型 、 ブツルカイト型またはルチル型への変化である請求項 1 8に記載の光 学情報記録再生装置。
PCT/JP2003/011172 2002-10-16 2003-09-01 情報記録媒体およびその製造方法、並びに光学情報記録再生装置 WO2004036569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03808873A EP1553577A4 (en) 2002-10-16 2003-09-01 INFORMATION RECORDING MEDIUM, PROCESS FOR ITS MANUFACTURE AND OPTICAL INFORMATION RECORDING AND REPRODUCTION DEVICE
JP2004544907A JP4290650B2 (ja) 2002-10-16 2003-09-01 情報記録媒体およびその製造方法、並びに光学情報記録再生装置
US10/518,144 US20060072437A1 (en) 2002-10-16 2003-09-01 Information recording process for producing the same and optical information recording and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002301601 2002-10-16
JP2002-301601 2002-10-16

Publications (1)

Publication Number Publication Date
WO2004036569A1 true WO2004036569A1 (ja) 2004-04-29

Family

ID=32105024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011172 WO2004036569A1 (ja) 2002-10-16 2003-09-01 情報記録媒体およびその製造方法、並びに光学情報記録再生装置

Country Status (5)

Country Link
US (1) US20060072437A1 (ja)
EP (1) EP1553577A4 (ja)
JP (1) JP4290650B2 (ja)
CN (1) CN100407314C (ja)
WO (1) WO2004036569A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055249A1 (ja) * 2005-11-08 2007-05-18 Matsushita Electric Industrial Co., Ltd. 情報記録媒体及びその製造方法並びに光学情報記録再生装置
US8238221B2 (en) 2007-02-16 2012-08-07 Sanyo Electric Co., Ltd. Optical pickup device and recording/reproduction device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120256A1 (en) * 2003-02-25 2006-06-08 Matsushita Electric Industrial Co., Ltd Optical information recording carrier
KR100707216B1 (ko) * 2006-05-18 2007-04-13 삼성전자주식회사 광 기록 매체 및 데이터 저장 방법
CA2680371A1 (en) 2007-03-15 2008-09-18 Basf Se Heat-sensitive coating compositions based on resorcinyl triazine derivatives
ES2377852T3 (es) * 2007-08-22 2012-04-02 Datalase Ltd Composición de revestimiento sensible al láser
US8900414B2 (en) * 2007-11-07 2014-12-02 Datalase, Ltd. Fiber products
JP5645832B2 (ja) 2008-10-27 2014-12-24 データレース リミテッドDatalase Ltd. 基材にマーキングするためのレーザー感受性水性組成物
JP2012022735A (ja) 2010-07-13 2012-02-02 Fujifilm Corp 光情報記録媒体の記録再生方法
JP5406134B2 (ja) 2010-07-13 2014-02-05 富士フイルム株式会社 光情報記録媒体およびその製造方法
JP5396343B2 (ja) 2010-07-13 2014-01-22 富士フイルム株式会社 光情報記録媒体およびその製造方法
JP5476329B2 (ja) 2011-03-25 2014-04-23 富士フイルム株式会社 光情報記録媒体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101398A (ja) * 1991-10-11 1993-04-23 Hitachi Ltd 3次元記録再生装置
JPH05273690A (ja) * 1992-03-24 1993-10-22 Mitsubishi Cable Ind Ltd 光記録媒体
JPH05307222A (ja) * 1992-04-30 1993-11-19 Mitsubishi Cable Ind Ltd 光記憶媒体
JPH06333259A (ja) * 1993-03-26 1994-12-02 Fuji Xerox Co Ltd 光学的記録情報再生装置及び光多層記録媒体
JPH0778353A (ja) * 1992-11-26 1995-03-20 Matsushita Electric Ind Co Ltd 光ディスクおよび光ディスク装置
JPH08220688A (ja) * 1995-02-13 1996-08-30 Central Glass Co Ltd 三次元光メモリーガラス素子及びその記録方法
JPH11232706A (ja) * 1998-02-19 1999-08-27 Japan Science & Technology Corp 三次元光メモリー媒体及びその製造方法
JP2000036133A (ja) * 1998-07-17 2000-02-02 Toshiba Corp 光学式記録媒体、装置及び読み取り方法
JP2000081682A (ja) * 1998-07-01 2000-03-21 Mitsubishi Chemicals Corp 光メモリ素子
JP2002288901A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 光記録媒体及び光記録装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899333A (en) * 1964-04-15 1975-08-12 Itek Corp Photosensitive composition containing TiO{HD 2 {B having a particle size of about 25 millimicrons and the use thereof in physical development
JPS62219230A (ja) * 1986-03-19 1987-09-26 Hitachi Maxell Ltd 磁気記録媒体
JPH0823941B2 (ja) * 1988-11-08 1996-03-06 パイオニア株式会社 光学式情報記録担体及びその製造方法
US5563873A (en) * 1992-11-26 1996-10-08 Matsushita Electric Industrial Co., Ltd. Multilayer optical disk and apparatus
US5559784A (en) * 1993-03-26 1996-09-24 Fuji Xerox Co., Ltd. Multi-layer optical information detection by two laser beam and optical multilayer recording medium
JP2877704B2 (ja) * 1994-11-01 1999-03-31 旭化成工業株式会社 光情報記録媒体
JPH0970570A (ja) * 1995-09-05 1997-03-18 Fuji Photo Film Co Ltd 記録材料用支持体の製造方法
JPH09259470A (ja) * 1996-03-21 1997-10-03 Toshiba Corp 貼合せ情報記録媒体
US5889756A (en) * 1996-07-25 1999-03-30 Kabushiki Kaisha Toshiba Phase change optical recording medium
US6229785B1 (en) * 1996-09-09 2001-05-08 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, its manufacturing method, optical information recording/reproducing method and optical information recorder/reproducer
JP2000030305A (ja) * 1998-04-30 2000-01-28 Mitsubishi Chemicals Corp 情報記録媒体及びその再生方法、再生装置
US6337117B1 (en) * 1998-07-01 2002-01-08 Mitsubishi Chemical Corporation Optical memory device
JP2000030652A (ja) * 1998-07-10 2000-01-28 Hitachi Ltd 試料の観察方法およびその装置
WO2000013178A1 (fr) * 1998-08-28 2000-03-09 Nippon Telegraph And Telephone Corporation Support d'enregistrement opto-magnetique, son procede de fabrication et dispositif opto-magnetique d'enregistrement et de reproduction d'informations
WO2001093258A2 (en) * 2000-06-02 2001-12-06 Trid Store Ip Llc Multilayer recordable optical medium with fluorescent reading
US6768710B2 (en) * 2000-12-18 2004-07-27 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method and apparatus for recording information thereon
JP3995993B2 (ja) * 2001-06-22 2007-10-24 パイオニア株式会社 光ピックアップのフォーカシング制御装置及び方法
WO2003085657A1 (fr) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'information et son procede de production, et appareil d'enregistrement/reproduction d'information optique

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101398A (ja) * 1991-10-11 1993-04-23 Hitachi Ltd 3次元記録再生装置
JPH05273690A (ja) * 1992-03-24 1993-10-22 Mitsubishi Cable Ind Ltd 光記録媒体
JPH05307222A (ja) * 1992-04-30 1993-11-19 Mitsubishi Cable Ind Ltd 光記憶媒体
JPH0778353A (ja) * 1992-11-26 1995-03-20 Matsushita Electric Ind Co Ltd 光ディスクおよび光ディスク装置
JPH06333259A (ja) * 1993-03-26 1994-12-02 Fuji Xerox Co Ltd 光学的記録情報再生装置及び光多層記録媒体
JPH08220688A (ja) * 1995-02-13 1996-08-30 Central Glass Co Ltd 三次元光メモリーガラス素子及びその記録方法
JPH11232706A (ja) * 1998-02-19 1999-08-27 Japan Science & Technology Corp 三次元光メモリー媒体及びその製造方法
JP2000081682A (ja) * 1998-07-01 2000-03-21 Mitsubishi Chemicals Corp 光メモリ素子
JP2000036133A (ja) * 1998-07-17 2000-02-02 Toshiba Corp 光学式記録媒体、装置及び読み取り方法
JP2002288901A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 光記録媒体及び光記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553577A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055249A1 (ja) * 2005-11-08 2007-05-18 Matsushita Electric Industrial Co., Ltd. 情報記録媒体及びその製造方法並びに光学情報記録再生装置
JPWO2007055249A1 (ja) * 2005-11-08 2009-04-30 パナソニック株式会社 情報記録媒体及びその製造方法並びに光学情報記録再生装置
US8054727B2 (en) 2005-11-08 2011-11-08 Panasonic Corporation Information recording medium and method for manufacturing the same, and optical information recording/reproducing device
US8238221B2 (en) 2007-02-16 2012-08-07 Sanyo Electric Co., Ltd. Optical pickup device and recording/reproduction device

Also Published As

Publication number Publication date
JPWO2004036569A1 (ja) 2006-02-16
CN100407314C (zh) 2008-07-30
EP1553577A4 (en) 2007-11-21
JP4290650B2 (ja) 2009-07-08
CN1689091A (zh) 2005-10-26
EP1553577A1 (en) 2005-07-13
US20060072437A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
KR101098700B1 (ko) 정보 기록 매체 및 그 제조 방법, 및 기록 재생 방법, 광학정보 기록 재생 장치
JP4584265B2 (ja) 情報記録媒体及び光学情報記録再生装置
CN101171633B (zh) 信息记录介质以及光学信息记录再生装置
US7313080B2 (en) Information recording medium and its production method, and optical information recording reproducing apparatus
CN101421784B (zh) 光学信息记录再生装置
JP4290650B2 (ja) 情報記録媒体およびその製造方法、並びに光学情報記録再生装置
JP6075288B2 (ja) 情報記録媒体、情報装置、及び情報記録媒体の製造方法
JP4084660B2 (ja) 光記録媒体および光記録再生方法
JP5793717B2 (ja) 光学情報再生装置、光学情報再生方法及び情報記録媒体
EP1696429B1 (en) Optical information reproduction device
EP1411508A2 (en) Holographic recording medium
US20080205236A1 (en) Optical information recording medium and optical information reproducing method
JP4199731B2 (ja) 光記録媒体、光情報処理装置および光記録再生方法
CN111508533A (zh) 基于纳米光刻光盘及其物理存储介质结构和写入读出方法
JP4442178B2 (ja) ホログラム記録媒体
WO2008139453A2 (en) Optical data carrier with reference layer
US20060120256A1 (en) Optical information recording carrier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004544907

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003808873

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006072437

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10518144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038243601

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003808873

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10518144

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003808873

Country of ref document: EP