WO2004031430A1 - Ferritische stahllegierung - Google Patents

Ferritische stahllegierung Download PDF

Info

Publication number
WO2004031430A1
WO2004031430A1 PCT/CH2003/000651 CH0300651W WO2004031430A1 WO 2004031430 A1 WO2004031430 A1 WO 2004031430A1 CH 0300651 W CH0300651 W CH 0300651W WO 2004031430 A1 WO2004031430 A1 WO 2004031430A1
Authority
WO
WIPO (PCT)
Prior art keywords
percent
weight
alloy
steel
steel alloy
Prior art date
Application number
PCT/CH2003/000651
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Kramer
Original Assignee
Firth Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/529,325 priority Critical patent/US20060130938A1/en
Application filed by Firth Ag filed Critical Firth Ag
Priority to AU2003264228A priority patent/AU2003264228A1/en
Priority to DE50307092T priority patent/DE50307092D1/de
Priority to EP03798852A priority patent/EP1546427B1/de
Priority to JP2004540449A priority patent/JP2006501368A/ja
Publication of WO2004031430A1 publication Critical patent/WO2004031430A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the field of stainless high-alloy steels used in the watch industry.
  • Watch cases are usually made by punching them out of sheets and plates. In order to achieve their desired final shape, depending on the type of housing, they have to be severely cold compressed and annealed depending on the height of the housing. The same applies to the production of profiles for bracelets by cold rolling.
  • the work hardening behavior is of crucial importance for the cold massive forming.
  • steel is best suited for this type of forming, which is the least strain hardened at low yield strengths with increasing degree of deformation.
  • ferritic stainless steels behave similarly to unalloyed steels during massive forming.
  • the polishability of a steel ie its suitability for producing a highly polished surface, for example for housings, is another requirement for a watch steel. This requirement is only met to a limited extent by the austenitic steel No. 1.4435 used in the watch industry today.
  • Ferritic steels such as steel No. 1.4521 are even more difficult to polish than austenitic steels: the ferritic steels are stabilized almost exclusively with titanium or Nb in order to prevent the precipitation of Cr carbides at the grain boundaries.
  • titanium or niobium carbides of high hardness are eliminated, which destroy the polishability of the ferritic steel.
  • the precipitated carbide particles in the order of 5-10 ⁇ m are not removed during mechanical polishing and protrude from the surrounding, better polished surface as so-called craters. So-called polishing tails are formed, ie deposits of polishing paste in the polishing shadow of the carbide particles can be perceived by the naked eye as extremely annoying.
  • the stabilization of the steel structure by addition of Ti or Nb is therefore not applicable to a polishable ferritic chrome steel due to the negative influence on the polishability. Without Ti or Nb stabilizing the structure, the elimination of chromium carbides at the grain boundaries takes place so quickly due to the diffusion rate, which is 2 orders of magnitude higher for ferritic steels, that it cannot be prevented by rapid quenching from the solution annealing temperature.
  • the chrome carbides also form hard inclusions, which in turn destroy the polishability of a steel.
  • the polishability of a steel is also decisively influenced by the grain size. Coarse-grained steels cause a so-called "orange peel" during polishing, which is unacceptable for polished surfaces. The reason for this is the different properties of the randomly arranged grains (crystals) in the different directions. If the grain size measured in accordance with ASTM E 112 falls below the value 4 (> 80 ⁇ m), the human eye can recognize the crystal surfaces that have been removed differently during the polishing process as point-like particles and an image of an "orange peel" is formed.
  • Drilling and milling work also requires good machinability of the alloy.
  • Good corrosion resistance, especially in saline media, is another main requirement for watch steel.
  • Wristwatches have direct skin contact and are particularly at risk of corrosion due to the aggressive body sweat.
  • the degree of purity of a steel has a major impact on corrosion resistance.
  • Coarse and cellularly arranged non-metallic inclusions mean a weak point on the surface where the pitting can begin and then continue unhindered. For this reason, steels are often used in technology according to the electro-slag remelting process (ESR process), which reduces the non-metallic, corrosion-demanding particle sizes by approx. 2 units according to DIN 65602 leads, remelted.
  • ESR process electro-slag remelting process
  • steel alloys can be controlled in their chemical and mechanical properties by alloying metallic and non-metallic elements.
  • Molybdenum increases the corrosion resistance and the resistance to pitting corrosion in the presence of halide ions.
  • Silicon is more likely to be regarded as an undesirable impurity in polishable steels because it forms hard oxide inclusions.
  • silicon is a desirable alloying element if the alloy is to be soft magnetic.
  • N Nitrogen improves corrosion resistance. Since the yield point and the tendency to hardening are increased by the addition of N, the N content is usually limited to 0.2%. In austenitic steels, N additives should significantly delay the start of M 23 C 6 precipitation (PR Levey, PR, van Bennekom, A., Corrosion 51, 911-921 (1995)). On the other hand, the presence of nitrogen is disruptive if an alloy with soft magnetic properties is desired (see, for example, "Ullmann's Encyclopedia of Industrial Chemistry” Fifth Edition, Volume A16, page 26, left column, 2nd section).
  • carbon promotes the hardness of a steel, but on the other hand it is very strong
  • the presence of carbon is also very troublesome when an alloy with soft magnetic properties is desired (see, for example, "Ullmann's Encyclopedia of Industrial Chemistry” Fifth Edition, Volume A16, page 26, left column, 2nd section).
  • Ni-containing alloys typically 30 to 80 percent by weight
  • a ferritic steel due to its property as an austenite former.
  • allergic reactions to Ni-containing alloys have developed into a serious medical problem in industrialized countries. In Europe, for example, more than 20% of young women and 6% of young men suffer from a nickel allergy. This is important for the cases of wristwatches, since they lie directly on the skin.
  • the two-dimensional structure diagram of the chrome-nickel steels allows a rough estimate of which structure (austenite, ⁇ -ferrite, martensite or mixtures thereof) depending on the Cr content (plotted on the x-axis in the diagram) and the Ni content (plotted on the y-axis in the diagram).
  • This structure diagram can be expanded by taking additional elements into account; however, the additional elements are only taken into account summarily and as an estimate in the form of additional nickel or chromium equivalents.
  • the Schaeffler diagram A Schaeffler: MS Thesis, Univ. Of Wisconsin, June 1944; AL Schaeffler, The Welding Journal 26/10, 601-620 (1947); AL Schaeffler, Metal Progress vol.
  • a rudimentary estimate of the resistance of a Cr / Mo steel to pitting corrosion can also be obtained from a two-dimensional diagram (Grafen, H., Chem. Ing. Techn. 54, p. 108-119 (1982)).
  • Y-axis dependency of the limit potential for the start of pitting corrosion
  • X-axis Cr content
  • the molybdenum content is determined in the form of chromium equivalents (ibid., And Lorenz, K., Medawar, G.,
  • Thyssen Research 1, p. 97-108 (1969)) is also taken into account. An approximately linear correlation between the limit potential and the Cr (Mo) content is observed. This However, the diagram does not take any other alloy elements into account, and it does not allow any conclusions to be drawn as to whether it is a ferritic alloy or its machinability, polishability and magnetic properties.
  • the effective sum WS which is defined as follows:
  • Table 1 gives an overview of eight previously known concrete steels (indicated by their material numbers) and their contents of important alloying elements in percentages by weight. To the knowledge of the applicant, steel No. 1.4521 specified there is not watch steel.
  • the object of the present invention is to provide a polishable ferritic steel which has soft magnetic properties, in which the risk of polishing errors is minimized, which has mechanical properties comparable to steel No. 1.4521 and which has the same or improved corrosion resistance as steel No. 1.4435 regarding pitting and crevice corrosion.
  • the task is covered by a steel alloy, based on the alloy, at most 1.00 percent by weight silicon, 18.0 to 22.0 percent by weight chromium, 1.80 to 2.50 percent by weight molybdenum, 0.01 to 0.10 percent by weight nitrogen, at most 0.01 percent by weight titanium, at most 0.01 percent by weight niobium, at most 0.01 percent by weight aluminum and the remainder essentially iron.
  • a steel alloy based on the alloy, at most 1.00 percent by weight silicon, 18.0 to 22.0 percent by weight chromium, 1.80 to 2.50 percent by weight molybdenum, 0.01 to 0.10 percent by weight nitrogen, at most 0.01 percent by weight titanium, at most 0.01 percent by weight niobium, at most 0.01 percent by weight aluminum and the remainder essentially iron.
  • Preferred variants result from the dependent claims.
  • the steel alloys according to the invention are soft magnetic CrMoN steel alloys.
  • FIG. 1 shows current density-potential curves of a) a steel alloy according to the invention, and b) of a previously known steel alloy No. 1.4435. Measurement conditions: 3.2% NaCl, pH 4.0, 40 ° C.
  • X-axis potential in mV against saturated calomel electrode (SCE) as reference electrode;
  • Y axis the logarithm of the measured current density.
  • SCE saturated calomel electrode
  • the potential value given in the two figures is the limit potential at which pitting corrosion (strongly increasing anodic current) starts.
  • the term “high-alloy” has the meaning customary in the art, ie it denotes a steel in which the alloy elements are present in a total of 5 percent by weight or more.
  • the term “ferritic” has the meaning that at least 98 percent by volume, preferably at least 99.5 percent by volume and particularly preferably 100 percent by volume of the iron present in the alloys according to the invention is present as ferrite, the determination being carried out metallographically.
  • soft magnetic is used in the context of the present application for steel alloys according to the invention which bring about at least the same magnetic shielding as soft iron.
  • the metallic alloy elements chromium and molybdenum can be added to the alloys according to the invention by alloying suitable amounts of the pure elements into a pig iron or a raw steel by conventional methods.
  • chromium is present in 18.0 to 22.0 percent by weight, preferably in 19.5 to 20.5 percent by weight and particularly preferably in about 20 percent by weight, based on the finished alloy.
  • molybdenum is about 1.80 to about 2.50 percent by weight, preferably about 1.90 to 2.10 percent by weight and particularly preferably about 2 percent by weight. Percentages based on the finished alloy.
  • Nitrogen can be added by melting the steel alloy in a nitrogen atmosphere, by blowing nitrogen into the melt or by metering the addition of high-nitrogen master alloys.
  • the nitrogen content is about 0.01 to 0.10 percent by weight, based on the alloy, more preferably about 0.05 to about 0.10 percent by weight and particularly preferably about 0.05 percent by weight.
  • Silicon can be present as SiO 2 (for example from the above deoxidation) in the alloy. Its content can be reduced by mechanically moving or shaking the molten steel under protective gas. This coagulates the Si0 2 and increases due to the lower density on the slag surface.
  • the silicon content according to the invention is at most about 1 percent by weight, preferably about 0.7 to 0.9 percent by weight and more preferably about 0.8 percent by weight, based on the alloy.
  • carbon is noticeably present as an admixture in the pig iron (4 to 4.5%) and can then, as is customary in the art, by adding oxygen or suitable amounts of iron oxides to the steel melt (conversion of the carbon to
  • Carbon monoxide can be reduced practically as desired. According to the invention, it is preferably present in a maximum of 0.025 percent by weight, particularly preferably in a maximum of 0.01 percent by weight, based on the alloy.
  • Sulfur comes from the smelting process (iron ore content of 'iron sulfides) and is mainly found in pig iron. mainly as manganese sulfide.
  • the alloys according to the invention it is preferably present in amounts of at most about 0.03 percent by weight, more preferably in at most 0.002 percent by weight.
  • Sulfur desulfurization can be achieved with sulfur, for example, mixtures of CaO and metallic magnesium.
  • the sulfur content can be at the upper limit of 0.03 percent by weight, preferably about 0.015 to 0.03 percent by weight, based on the alloy (so-called IMA grades), for which a regulated addition of sulfur can be made.
  • a melt metallurgy with the addition of Ca-Si powder can be used for the production of these embodiments, which converts the hard aluminum oxide inclusions into relatively soft mixed oxides of the CaSiAl type and forms finely divided manganese sulfides, by means of which the chip is broken during mechanical processing and thus the tool life is extended.
  • a controlled addition of sulfur lowers the corrosion resistance of these embodiments of the steel alloy according to the invention only slightly.
  • Niobium is according to the invention . present in at most about 0.01 percent by weight, preferably at most about 0.005 percent by weight, based on the finished alloy. This content can be achieved by ensuring that suitable scrap is used when the steel alloy according to the invention is melted (avoiding steels containing niobium).
  • manganese is preferred in at most about 1.00 percent by weight, more preferably at most about 0.40 percent by weight based on the finished alloy.
  • Phosphorus originally comes from apatite or other phosphate-containing minerals that were present in iron ore.
  • phosphate can be reduced to iron phosphide (mainly Fe 2 P) and as such can be found in pig iron or later steel.
  • the preferably low phosphorus content according to the invention of at most 0.04 percent by weight and preferably at most 0.02 percent by weight can be reduced in the production of the alloys according to the invention as is customary in the art, for example by adding CaO when smelting the ore, as a result of which the phosphate-containing minerals be separated in the slag.
  • the aluminum content according to the invention of at most about 0.01 percent by weight, preferably at most about 0.005 percent by weight, can be achieved if the deoxidation required in the melting process does not take place with aluminum but with silicon or in the AOD or VOD process (see below).
  • Nickel is preferably present in at most 0.10 percent by weight, more preferably in at most 0.05 percent by weight, based on the finished alloy.
  • Excess carbon, silicon and phosphorus are preferably removed at the same time as usual in the art by freshening with the addition of gaseous oxygen (conversion into oxides) and addition of CaO. Excess oxygen can then be removed as usual by using the Fresh in the form of VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) is carried out (removal of the excess oxygen by degassing in a vacuum or by blowing with argon).
  • VOD Vauum Oxygen Decarburization
  • AOD Aral Oxygen Decarburization
  • the setting of the titanium content according to the invention of at most about 0.01 percent by weight, preferably at most about 0.005 percent by weight, particularly preferably at most about 0.002 percent by weight, can be achieved by controlled use of scrap (avoidance of Ti-containing scrap, for example of the Ti-containing known in Europe) Steel No.1.4571). As a further measure, Ti contamination in the lining of the converters used during the melting process can be avoided.
  • the term "balance essentially iron” is intended to mean that the remaining percentages by weight of the alloy according to one of Claims 1 to 7, i.e. the percentages by weight, which are not contributed by elements mentioned by name in the corresponding claim, come almost exclusively from iron (typically at least 90 percent by weight, preferably at least 95 percent by weight and particularly preferably at least 99 of the rest or more).
  • the elements of the rest other than iron should be selected in such a quantity and quantity that the finished steel alloy is ferritic according to the invention.
  • the alloys according to the invention can be produced by customary processes. Reference is made, for example, to Chapter 2 in the section “Steels” of "Ullmann's Encyklopadie der Technischen Chemie” 4th edition, Verlag Chemie, and to the literature cited therein.
  • refreshments are preferably carried out in series using the AOD and VOD processes, the VOD refining also being able to serve for nitriding at the same time.
  • annealing is preferably carried out at temperatures of about 800 to 900 ° C., more preferably at about 850 ° C. during the thermoforming process in order to punctually enrich individual structural components and thus to avoid associated formation of inhomogeneities.
  • the so-called "soaking" of the hot-rolled slabs or extended preheating times before hot-rolling are suitable for this.
  • the alloys according to the invention are preferably subjected to annealing at temperatures at 750 to 850 ° C., preferably about 800 ° C. for about 0.5 to 2 hours, and a subsequent water cooling. This takes place due to diffusion processes a concentration equalization of the chromium in the matrix takes place in the area of the finely dispersed chromium nitride particles. By optimizing the nitrogen content, however, the chromium nitride excretion can be largely suppressed.
  • the steel alloys according to the invention can be polished reproducibly by means of the methods customary in the watch industry and would therefore be accepted as a raw material in the watch industry.
  • the preferred in the present invention steel alloys, either dissolved or typically in the form of finely precipitated chromium nitrides, • senix in the groES of about 1 micron, is present and therefore does not have a negative impact on polishability.
  • the steel alloys according to the invention typically have the following mechanical properties (sheet 6 mm thick, hot-rolled, annealed at 800 ° C. for 30 minutes, quenched in water):
  • the alloys according to the invention are therefore comparable with the standard steel quality No. 1.4521.
  • the content of associated oxides in the alloys according to the invention is correspondingly low. Due to the almost complete absence of titanium and niobium, the corresponding carbides are almost completely absent. On the other hand, the coordinated simultaneous addition of nitrogen together with the other alloy elements other than chromium means that no significant deposition of chromium carbides occurs and the alloy according to the invention is still ferritic despite the increased nitrogen content (austenite former).
  • the overall degree of purity of the steel alloy according to the invention of non-metallic oxide or carbide inclusions is set so high that remelting according to the ESR method mentioned at the beginning is no longer necessary; however, the remelting can, if desired, be carried out in the steel alloys according to the invention.
  • the steel alloys according to the invention are soft magnetic in the sense of the definition mentioned at the beginning.
  • the alloys according to the invention can be used in the watchmaking industry for the production of magnetically shielding housing parts, for example for wristwatches or for other watches in which magnetic shielding of the movement is important.
  • the steel alloys according to the invention in particular those of claim 7, are also suitable for the production of components for link bracelets.
  • housing part encompasses the components normally used for the production of a watch housing, in particular a housing of a wristwatch, that is to say, for example, the housing base and the housing shell.
  • housing part also includes the dial.
  • housing part encompasses both the component as it occurs in the finished watch and any blank or semi-finished product thereof, which is further processed into the finished component by further processing with optional use of other materials or semi-finished products made from the alloy according to the invention or other materials become.
  • Magnetically shielding watch housings according to the invention can consist of a housing base, a housing shell and a dial, all of which are made according to the invention Steel alloy are made.
  • the steel alloys according to the invention can thus be used both as a material for the components and as a shielding cage against magnetic fields.
  • the additional soft iron cage which is difficult to manufacture and which would have to be provided within the usual housing made of non-magnetic CrNi steel and which would lead to a higher height of the watch, can thus be omitted.
  • the steel variant of the 1.4521 according to the invention is also outstandingly suitable for powder metallurgical production according to the MIM (Metal Injection Molding) process, in particular because the nitrogen content required according to the invention can be supplied without problems in the compacting process (sintering) under a nitrogen atmosphere.
  • the MIM process is known per se in the technology of watchmaking.
  • a steel alloy which contains the required elements in the final quantities (these would be the elements which are mentioned in one of claims 1 to 7 by name), but which at most is still deficient in nitrogen, is ground to powder and slurried with a liquid binder.
  • This slurry is pressed, for example by means of an extruder, into a hollow mold, the hollow space of which has the shape of the housing part to be produced.
  • the binder is then preferably evaporated off with a vacuum and the powder residue remaining in the hollow mold is sintered. If the alloy powder was deficient in nitrogen, a nitrogen atmosphere of a suitable pressure is created during the sintering step, so that the alloy still absorbs nitrogen during the sintering. Choosing the appropriate nitrogen pressure in the finished To achieve a nitrogen concentration in the housing part which is in accordance with the invention can be determined by series of tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Powder Metallurgy (AREA)

Abstract

Stahllegierungen, die höchstens 1,00 Gewichtsprozent Sili­zium, 18,0 bis 22,0 Gewichtsprozent Chrom, 1,80 bis 2,50 Gewichtsprozent Molybdän, 0,01 bis 0,10 Gewichtsprozent Stickstoff, höchstens 0,01 Gewichtsprozent Titan, höchstens 0,01 Gewichtsprozent Niob, höchstens 0,01 Gewichtsprozent Aluminium und als Rest im Wesentlichen Eisen umfassen, sind ferritisch, aber trotzdem polierfähig und weisen mechani­sche Eigenschaften auf, die denjenigen der Standard-Stahl­legierung Nr. 1.9521 nahekommen. Die erfindungsgemässen Stahllegierungen werden unter anderem zu Uhrenbauteilen wie Gehäuseböden, Gehäuseschalen und Ziffernblättern verarbei­tet und ermöglichen so die Herstellung von Uhrengehäusen, die gleichzeitig das Uhrwerk magnetisch abschirmen.

Description

Ferritische Stahllegierung
Die vorliegende Erfindung betrifft das Gebiet der nichtrostenden hochlegierten Stähle, die in der Uhrenindustrie Verwendung finden.
Der grösste Teil der heutzutage getragenen Armbanduhren werden aus Gold, Edelstahl rostfrei und Titan gefertigt. Die Entwicklung der Uhrenstähle begann im Jahr 1925, als die englische Firma Firth Vickers Special Steels Ltd. den mit „DDQ" bezeichneten CrNi-Stahl auf den Markt brachte. Etwa zur gleichen Zeit entwickelte die Firma Krupp den Stahl V2A, der aber erst 50 Jahre später als Stahl Nr. 1.4301 in der Uhrenindustrie zum Einsatz kam. Der Stahl „DDQ" wurde dann Ende der 80er Jahre auf Grund der Forde- rung der Schweizer Uhrenindustrie nach einer verbesserten Korrosionsbeständigkeit vom heutzutage üblichen austeniti- schen Edelstahl Nr. 1.4435 abgelöst.
Uhrengehäuse werden üblicherweise durch Ausstanzen aus Blechen und Platten hergestellt. Um ihre gewünschte Endform zu erreichen, müssen sie je nach Gehäusetyp teilweise stark kalt gestaucht und je nach Höhe des Gehäuses zwischengeglüht werden. Das gleiche gilt auch für die Herstellung von Profilen für Armbänder durch Kaltwalzen. Für die Kaltmassivumformung ist das Kaltverfestigungsverhalten von ausschlaggebender Bedeutung. Ganz allgemein eignet sich der Stahl für diese Art der Umformung am besten, der sich bei niedrigen Dehngrenzwerten mit zunehmendem Verformungsgrad am wenigsten kaltverfestigt. Die ferritischen nicht- rostenden Stähle verhalten sich im geglühten Zustand bei der Massivumformung ähnlich wie unlegierte Stähle. Um die Teile eines Uhrwerks, die empfindlich auf magnetische Beeinflussung sind, vor starken magnetischen Feldern zu schützen, haben einige Uhrenhersteller in Uhrengehäuse aus Titan oder dem obigen Edelstahl des Typs 1.4435 (diese Werkstoffe besitzen selber keine magnetisch abschirmenden Eigenschaften) einen Weicheisen-Käfig eingebaut. Dieser Weicheisen-Käfig hat die Funktion eines Magnetfeldschutzes, der keine magnetischen Felder in die Uhr eindringen lässt. Damit kann eine Uhr zwar bis auf 80000 A/m mag- netfeldgeschützt werden; der dafür notwendige Aufwand ist aber beträchtlich, da dieser Weicheisenkäfig separat gefertigt werden uss und dann in das eigentliche Uhrengehäuse eingebaut wird, womit sich die Bauhöhe einer Armbanduhr deutlich vergrössert.
Die Polierbarkeit eines Stahls, d. h. seine Eignung zur Herstellung einer hochglanzpolierten Oberfläche beispielsweise für Gehäuse, ist eine weitere Forderung an einen Uhrenstahl. Von dem heutzutage in der Uhrenindustrie verwendeten austenitischen Stahl Nr. 1.4435 wird diese Forderung nur eingeschränkt erfüllt. Ferritische Stähle wie etwa der Stahl Nr. 1.4521 sind gar schlechter polierbar als austenitische Stähle: die ferritischen Stähle werden fast ausschliesslich mit Titan oder Nb stabilisiert, um die Aus- scheidung von Cr-Karbiden an den Korngrenzen zu verhindern. Dabei scheiden sich jedoch Titan- oder Niobkarbide von hoher Härte aus, die die Polierbarkeit des ferritischen Stahls zerstören. Die ausgeschiedenen Karbidteilchen in der Grössenordnung von 5-10 μm werden beim mechanischen Polie- ren nicht abgetragen und ragen als sogenannte Krater aus der umliegenden, besser polierten Oberfläche hervor. Es entstehen sogenannte Polierschwänze, d.h. Ablagerungen von Polierpaste im Polierschatten der Karbidteilchen, die mit dem blossen Auge als äusserst störend empfunden werden. Die Stabilisierung des Stahlgefüges durch Zusätze von Ti oder Nb ist wegen des negativen Einflusses auf die Polierbarkeit bei einem polierbaren ferritischen Chromstahl also nicht anwendbar. Ohne Stabilisierung des Gefüges durch Ti oder Nb läuft aber die Ausscheidung von Karbiden des Chroms an den Korngrenzen durch die bei ferritischen Stählen um 2 Zehnerpotenzen höhere Diffusionsgeschwindigkeit so schnell ab, dass sie auch durch schnelles Abschrecken von der Lösungs- glühtemperatur nicht verhindert werden kann. Auch die Chromkarbide bilden harte Einschlüsse, die wiederum die Polierbarkeit eines Stahls zunichte machen.
Die Polierbarkeit eines Stahles wird auch entschei- dend durch die Korngrösse beeinflusst. Grobkörnige Stähle bewirken beim Polieren eine sogenannte "Orangenhaut", die für polierte Oberflächen unakzeptabel ist. Ursache hierfür sind die in den verschiedenen Richtungen unterschiedlichen Eigenschaften der regellos angeordneten Körner (Kristalle) . Unterschreitet die nach ASTM E 112 gemessene Korngrösse den Wert 4 (> 80 μm) so kann das menschliche Auge die während des Poliervorgangs unterschiedlich abgetragenen Kristalloberflächen als punktförmige Teilchen erkennen und es entsteht das Bild einer "Orangenhaut".
Eine weitere Forderung im Pflichtenheft für einen Uhrenstahl ist eine gute Verarbeitbarkeit . Bei der Herstellung von Uhrengehäusen sind je nach Gehäusetyp eine Vielzahl von Kaltverformungsvorgängen mit Zwischenglühungen er- forderlich. Die Herstellung von Armbändern, wo z.B. mit
Bohren und Fräsen gearbeitet wird, erfordert ausserdem eine gute Zerspanbarkeit der Legierung. Eine gute Korrosionsbeständigkeit, besonders in salzhaltigen Medien ist eine weitere Hauptanforderung an einen Uhrenstahl. Armbanduhren haben direkten Hautkontakt und sind wegen des aggressiven Körperschweisses besonders stark korrosionsgefährdet . Der Reinheitsgrad eines Stahls hat einen grossen Einfluss auf die Korrosionsbeständigkeit. Grobe und zellenförmig angeordnete nichtmetallische Einschlüsse bedeuten eine Schwachstelle an der Oberfläche, an dem der Lochfrass beginnen kann und sich dann ungehindert fortsetzt. Aus diesem Grund werden Stähle in der Technik oft nach dem Elektro-Schlacke-Umschmelzverfahren (ESU-Verfah- ren) , das zu einer Absenkung der nichtmetallischen, korro- sionsfordernden Teilchengrössen um ca . 2 Einheiten nach DIN 65602 führt, umgeschmolzen.
Es ist bekannt, dass Stahllegierungen durch Zulegieren von metallischen und nichtmetallischen Elementen in ihren chemischen und mechanischen Eigenschaften gesteuert werden können.
Die Einflüsse jedes einzelnen Legierungs- und Spurenelements für sich auf die mechanischen, chemischen und magnetischen Eigenschaften und das Gefüge eines Stahls sind bekannt (siehe z.B. Kapitel 2.2 in "Nichtrostende Stähle - Eigenschaften, Verarbeitung, Anwendung, Normen", 2. Auflage, Herausgeber "Edelstahl-Vereinigung e.V.", Verlag Stahl-Eisen; und "Stahlschlüssel" 18. Auflage 1998, Kapitel 1, von C.W. Wegst, Verlag Stahlschlüssel, Wegst GmbH) .
Im Folgenden werden kurz bekannte Legierungselemente und ihre Wirkungen auf Stähle betrachtet, wenn sie einzeln zulegiert werden. Chrom wirkt zunächst passivierend auf den Stahl und stellt deshalb das Hauptlegierungselement für alle nichtrostenden Stähle dar.
Molybdän erhöht die Korrosionsbeständigkeit und die Beständigkeit gegen Lochkorrosion in Anwesenheit von Halo- genidionen.
Silizium ist in polierbaren Stählen eher als uner- wünschte Verunreinigung anzusehen, da es harte Oxideinschlüsse bildet. Andererseits ist Silizium ein erwünschtes Legierungselement, wenn die Legierung weichmagnetisch sein soll .
Stickstoff verbessert die Korrosionsbeständigkeit. Da durch N-Zusatz die Streckgrenze und die Verfestigungsneigung angehoben wird, wird der N-Gehalt meist auf 0,2% begrenzt. N-Zusätze sollen in austenitischen Stählen den Beginn der M23C6-Ausscheidung deutlich verzögern (P. R. Levey, P.R., van Bennekom, A. , Corrosion 51, 911-921 (1995)). Andererseits ist die Anwesenheit von Stickstoff störend, wenn eine Legierung mit weichmagnetischen Eigenschaften gewünscht wird (siehe z.B. "Ullmann's Encyclopedia of Indus- trial Chemistry" Fifth Edition, Band A16, Seite 26, linke Spalte 2. Abschnitt).
Mangan ist ein Austenitbildner . In einem ferritischen Stahl ist seine Anwesenheit daher eher unerwünscht.
Schwefel fördert in geringen Spuren zwar die Zerspan- barkeit des Stahls, was im Hinblick auf die Fertigung von speziellen Uhrenteilen wie beispielsweise Armbändern wich- tig sein kann. In grösseren Mengen verschlechtert er aber die Korrosionsbeständigkeit des Stahls.
Kohlenstoff fördert als Beimengung zwar die Härte ei- nes Stahls, ist aber andererseits ein sehr starker
Austenitbildner und verringert die spanende Bearbeitbarkeit und Polierbarkeit durch die Ausscheidung von Chromkarbiden an den Korngrenzen. Die Anwesenheit von Kohlenstoff ist ebenfalls sehr störend, wenn eine Legierung mit weichmagne- tischen Eigenschaften gewünscht wird (siehe z.B. "Ullmann's Encyclopedia of Industrial Chemistry" Fifth Edition, Band A16, Seite 26, linke Spalte 2. Abschnitt).
Von Standpunkt der weichmagnetischen Eigenschaften einer Stahllegierung wäre als wichtiges Legierungselement Nickel (typisch 30 bis 80 Gewichtsprozent) wünschenswert, dieses ist aber andererseits aufgrund seiner Eigenschaft als Austenitbildner für einen ferritischen Stahl eher ungeeignet. Ausserdem haben sich allergische Reaktionen auf Ni- haltige Legierungen in den Industrieländern zu einem ernsten medizinischen Problem entwickelt. In Europa leiden beispielsweise mehr als 20% der jungen Frauen und 6% der jungen Männer unter einer Nickelallergie. Dies ist bei Gehäusen von Armbanduhren von Bedeutung, da diese direkt auf der Haut anliegen.
Reines, unlegiertes Eisen (Weicheisen) ist als weichmagnetisches Material ebenfalls günstig, aber bekanntermas- sen nicht korrosionsbeständig.
Das zweidimensionale Gefügediagramm der Chromnickelstähle erlaubt eine grobe Abschätzung, welches Gefüge (Austenit, δ-Ferrit, Martensit oder Mischungen davon) sich in Abhängigkeit vom Cr-Gehalt (im Diagramm auf der x-Achse aufgetragen) und vom Ni-Gehalt (im Diagramm auf der y-Achse aufgetragen) bildet. Dieses Gefügediagramm kann durch Berücksichtigung weiterer Elemente erweitert werden; die zu- sätzlichen Elemente werden aber nur summarisch und abschätzungsweise in Form zusätzlicher Nickel- bzw. Chrom-Äquivalente berücksichtigt. In dieser Form ist es als Schaeffler- Diagramm bekannt (A. L. Schaeffler: M. S. Thesis, Univ. of Wisconsin, Juni 1944; A. L. Schaeffler, The Welding Journal 26/10, 601-620 (1947); A. L. Schaeffler, Metal Progress vol. 56 s. 680A,B (1949)). Da hier die Umrechnung der Menge an zusätzlichen Elementen in äquivalente Mengen Chrom und Nickel mittels empirisch bestimmter Faktoren (siehe z.B. Briggs, J.Z., Parker, D., Climax Molybdenum Company Seiten 6-7 (1965) ) als Erfahrungswerte erfolgt, ist eine präzise Voraussage des Gefüges bei einer konkreten Legierung trotzdem nicht möglich. Insbesondere lässt sich aus dem Schaeffler-Diagramm nicht auf die Korrosionsbeständigkeit oder die mechanischen und magnetischen Eigenschaften einer Legierung schliessen.
Eine rudimentäre Abschätzung der Beständigkeit eines Cr/Mo-Stahls gegen Lochfrasskorrosion lässt sich ebenfalls aus einem zweidimensionalen Diagramm gewinnen (Grafen, H., Chem. Ing. Techn. 54, p. 108-119 (1982)). In diesem Diagramm wird die Abhängigkeit des mittels Stromdichte-Potenzial-Kurven bestimmten Grenzpotenzials für den Beginn der Lochfrasskorrosion (Y-Achse) gegen den Cr-Gehalt (X-Achse) aufgetragen. Der Gehalt an Molybdän wird dabei in Form von Chromäquivalenten (ibid., und Lorenz, K., Medawar, G.,
Thyssen-Forschung 1, p. 97-108 (1969)) mitberücksichtigt. Es wird eine in etwa lineare Korrelation zwischen dem Grenzpotenzial und dem Cr (Mo) -Gehalt beobachtet. Dieses Diagramm berücksichtigt aber keine weiteren Legierungselemente, und es erlaubt keine Rückschlüsse, ob es sich um eine ferritische Legierung handelt, oder auf deren Bearbeitbarkeit, Polierbarkeit und magnetische Eigenschaften.
Die Wirksumme WS, die folgendermassen definiert ist:
WS = Gew% Cr + 3,3 x Gew% Mo + 16 x Gew% N,
ist eine Masszahl zur groben Abschätzung der Korrosionsbeständigkeit von Stählen. Da Schweissabsonderungen auf der Haut einen stärkeren Korrosionsangriff darstellen als der 0,9-%ige Salzgehalt des Blutes, sollten Uhrenstähle zumindest den Wirksummenwert von 26 eines Implantatstahls er- reichen.
Tabelle 1 gibt eine Übersicht über acht vorbekannte konkrete Stähle (angegeben mittels ihrer Werkstoff-Nummern) sowie ihre Gehalte an wichtigen Legierungselementen in Ge- wichtsprozenten. Der dort angegebene Stahl Nr. 1.4521 ist nach Kenntnis der Anmelderin kein Uhrenstahl.
ω
-Q EH
Figure imgf000010_0001
Figure imgf000010_0002
Aufgabe der vorliegenden Erfindung ist es, einen polierbaren ferritischen Stahl bereitzustellen, der weichmagnetische Eigenschaften aufweist, bei dem das Risiko von Polierfehlern minimiert wird, der dem Stahl Nr. 1.4521 vergleichbare mechanische Eigenschaften aufweist und der eine gegenüber dem Stahl Nr. 1.4435 gleiche oder verbesserte Korrosionsbeständigkeit bezüglich Lochfrass und Spaltkorrosion aufweist.
Die Aufgabe wird durch eine Stahllegierung umfassend, bezogen auf die Legierung, höchstens 1,00 Gewichtsprozent Silizium, 18,0 bis 22,0 Gewichtsprozent Chrom, 1,80 bis 2,50 Gewichtsprozent Molybdän, 0,01 bis 0,10 Gewichtsprozent Stickstoff, höchstens 0,01 Gewichtsprozent Titan, höchstens 0,01 Gewichtsprozent Niob, höchstens 0,01 Gewichtsprozent Aluminium und als Rest im Wesentlichen Eisen gelöst. Bevorzugte Varianten ergeben sich aus den abhängigen Ansprüchen.
Bei den erfindungsgemässen Stahllegierungen handelt es sich um weichmagnetische CrMoN-Stahllegierungen.
Beschreibung der Figur
Figur 1 zeigt Stromdichte-Potenzial-Kurven von a) einer erfindungsgemässen Stahllegierung, und b) von einer vorbekannten Stahllegierung Nr. 1.4435. Messbedingungen: 3,2% NaCl, pH 4,0, 40°C. X-Achse: Potenzial in mV gegen gesättigte Kalomelelektrode (SCE) als Referenzelektrode; Y- Achse: der Logarithmus der gemessenen Stromdichte. Der in den beiden Figur angegebene Potenzialwert ist das Grenzpotenzial, bei dem die Lochfrasskorrosion (stark ansteigender anodischer Strom) einsetzt. Der Begriff "hochlegiert" hat im Rahmen der vorliegenden Anmeldung die in der Technik übliche Bedeutung, d.h. er bezeichnet einen Stahl, bei dem die Legierungselemente in insgesamt 5 Gewichtsprozenten oder mehr vorkommen.
Der Begriff "ferritisch" hat im Rahmen der vorliegenden Anmeldung die Bedeutung, dass mindestens 98 Volumenprozent, bevorzugt mindestens 99,5 Volumenprozent und besonders bevorzugt 100 Volumenprozent des in den erfindungsge- mässen Legierungen vorhandenen Eisens als Ferrit vorliegen, wobei die Bestimmung metallographisch vorgenommen wird.
Der Begriff "weichmagnetisch" wird im Rahmen der vorliegenden Anmeldung für erfindungsgemässe Stahllegierungen verwendet, die eine mindestens gleich starke magnetische Abschirmung wie Weicheisen bewirken.
Die metallischen Legierungselemente Chrom und Molybdän können den erfindungsgemässen Legierungen durch Zulegieren geeigneter Mengen der Reinelemente zu einem Roheisen oder zu einem Rohstahl nach üblichen Verfahren beigefügt werden.
Chrom ist erfindungsgemäss in 18,0 bis 22,0 Gewichtsprozent, bevorzugt in 19,5 bis 20,5 Gewichtsprozenten und besonders bevorzugt in etwa 20 Gewichtsprozenten, bezogen auf die fertige Legierung, vorhanden.
Molybdän ist erfindungsgemäss in etwa 1,80 bis etwa 2,50 Gewichtsprozenten, bevorzugt in etwa 1,90 bis 2,10 Gewichtsprozenten und besonders bevorzugt in etwa 2 Gewichts- Prozenten, bezogen auf die fertige Legierung, vorhanden.
Stickstoff kann durch Erschmelzen der Stahllegierung in einer Stickstoffatmosphäre, durch Einblasen von Stick- stoff in die Schmelze oder durch dosierten Zusatz hochstickstoffhaltiger Vorlegierungen zugeführt werden. Erfindungsgemäss beträgt der Gehalt an Stickstoff etwa 0,01 bis 0,10 Gewichtsprozent, bezogen auf die Legierung, eher bevorzugt etwa 0,05 bis etwa 0,10 Gewichtsprozent und beson- ders bevorzugt etwa 0,05 Gewichtsprozenten.
Silizium kann als Si02 (beispielsweise von der obigen Desoxidation) in der Legierung vorhanden sein. Sein Gehalt kann verringert werden, indem die Stahlschmelze unter Schutzgas mechanisch bewegt oder geschüttelt wird. Dadurch koaguliert das Si02 und steigt aufgrund der geringeren Dichte an die Schlackenoberfläche. Der Gehalt an Silizium beträgt erfindungsgemäss höchstens etwa 1 Gewichtsprozent, bevorzugt etwa 0,7 bis 0,9 Gewichtsprozent und eher bevor- zugt etwa 0,8 Gewichtsprozent, bezogen auf die Legierung.
Kohlenstoff ist von dem Verhüttungsprozess her als Beimengung im Roheisen selber merklich (4 bis 4,5 %) vorhanden und kann anschliessend, wie in der Technik üblich, durch Zugabe von Sauerstoff oder geeigneter Mengen Eisen- oxide zur Stahlschmelze (Umwandlung des Kohlenstoffs zu
Kohlenmonoxid) praktisch beliebig verringert werden. Erfindungsgemäss bevorzugt ist er in höchstens 0,025 Gewichtsprozenten, besonders bevorzugt in höchsten 0,01 Gewichtsprozenten, bezogen auf die Legierung, vorhanden.
Schwefel stammt vom Verhüttungsprozess her (Gehalt des Eisenerzes an' Eisensulfiden) und ist im Roheisen haupt- sächlich als Mangansulfid vorhanden. In den erfindungsgemässen Legierungen ist er bevorzugt in Mengen von höchstens etwa 0,03 Gewichtsprozenten, eher bevorzugt in höchstens 0,002 Gewichtsprozenten vorhanden. Die Erzielung so tiefer Schwefelgehalte kann durch Entschwefelung der Schmelze mit beispielsweise Mischungen von CaO und metallischem Magnesium erreicht werden. In einer anderen besonderen Ausführungsform der erfindungsgemässen Stahllegierung mit besserer Zerspanbarkeit bei noch akzeptabler Polierbarkeit kann der Schwefelgehalt an der Obergrenze von 0,03 Gewichtsprozenten, bevorzugt bei etwa 0,015 bis 0,03 Gewichtsprozenten, bezogen auf die Legierung, liegen (sogenannte IMA- Güten) , wozu ein geregelter Schwefelzusatz vorgenommen werden kann . Für die Herstellung dieser Ausführungsformen kann eine Schmelzmetallurgie unter Zusatz von Ca-Si-Pulver eingesetzt werden, die die harten Aluminiumoxid-Einschlüsse in relativ weiche Mischoxide des Typs CaSiAl umwandelt und fein verteilte Mangansulfide bildet, durch die der Span bei der mechanischen Bearbeitung gebrochen und damit die Stand- zeit der Werkzeuge verlängert wird. Ein geregelter Schwefelzusatz erniedrigt die Korrosionsbeständigkeit dieser Ausführungsformen der erfindungsgemässen Stahlegierung nur geringfügig.
Niob ist erfindungsgemäss. in höchstens etwa 0,01 Ge- wichtsprozenten, bevorzugt höchstens etwa 0,005 Gewichtsprozenten, bezogen auf die fertige Legierung, vorhanden. Dieser Gehalt kann erzielt werden, indem bei der Erschmel- zung der erfindungsgemässen Stahllegierung auf geeigneten Schrotteinsatz (Vermeidung niobhaltiger Stähle) geachtet wird.
Erfindungsgemäss bevorzugt ist Mangan in höchstens etwa 1,00 Gewichtsprozenten, eher bevorzugt in höchstens etwa 0,40 Gewichtsprozenten, bezogen auf die fertige Legierung, vorhanden.
Phosphor stammt ursprünglich von Apatit oder anderen phosphathaltigen Mineralien, die im Eisenerz vorhanden waren. Während der Verhüttung kann Phosphat zu Eisenphosphid (hauptsächlich Fe2P) reduziert werden und als solches im Roheisen oder später Stahl vorkommen. Der erfindungsgemäss bevorzugt niedrige Gehalt an Phosphor von höchstens 0,04 Gewichtsprozenten und bevorzugt höchstens 0,02 Gewichtsprozenten kann bei der Herstellung der erfindungsgemässen Legierungen wie in der Technik üblich verringert werden, indem beispielsweise bei der Verhüttung des Erzes CaO zugegeben wird, wodurch die phosphathaltigen Mineralien in der Schlacke abgetrennt werden.
Der erfindungsgemässe Aluminiumgehalt von höchstens etwa 0,01 Gewichtsprozenten, bevorzugt höchstens etwa 0,005 Gewichtsprozenten kann erreicht werden, wenn die im Schmelzprozess erforderliche Desoxidation nicht mit Aluminium sondern mit Silizium oder im AOD- oder VOD-Verfahren (siehe unten) erfolgt.
Nickel ist bevorzugt in höchstens 0,10 Gewichtspro- zenten, eher bevorzugt in höchstens 0,05 Gewichtsprozenten, bezogen auf die fertige Legierung, vorhanden.
Bevorzugt werden überschüssiger Kohlenstoff, Silizium und Phosphor gleichzeitig wie in der Technik üblich durch Frischen unter Zusatz von gasförmigem Sauerstoff (Überführung in Oxide) und Zugabe von CaO entfernt. Überschüssiger Sauerstoff kann dann wie üblich entfernt werden, indem das Frischen in Form des VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) durchgeführt wird (Entfernen des überschüssigen Sauerstoffs durch Entgasen im Vakuum bzw. durch Ausblasen mit Argon) .
Die Einstellung des erfindungsgemässen Titangehalts von höchstens etwa 0,01 Gewichtsprozent, bevorzugt höchstens etwa 0,005 Gewichtsprozent, besonders bevorzugt von höchstens etwa 0,002 Gewichtsprozent kann durch kontrol- lierten Schrotteinsatz (Vermeidung von Ti-haltigem Schrott, z.B. von dem im europäischen Raum bekannten Ti-haltigen Stahl Nr.1.4571) ermöglicht werden. Als weitere Massnahme können Ti-Verunreinigungen in der Ausmauerung der bei der Erschmelzung benutzten Konverter vermieden werden.
Der Begriff "Rest im Wesentlichen Eisen" soll im Rahmen der vorliegenden Anmeldung bedeuten, dass die verbleibenden Gewichtsprozente der Legierung nach einem der Ansprüche 1 bis 7, d.h. die Gewichtsprozente, die nicht von im entsprechenden Anspruch namentlich genannten Elementen beigesteuert sind, fast ausschliesslich vom Eisen (typisch zu mindestens 90 Gewichtsprozenten, bevorzugt zu mindestens 95 Gewichtsprozenten und besonders bevorzugt zu mindestens 99 des Restes oder mehr) stammen.
Die von Eisen verschiedenen Elemente des Restes sollten so und in derjenigen Menge gewählt werden, dass die fertige Stahllegierung erfindungsgemäss ferritisch ist. Hierzu kann das eingangs erwähnte Schaeffler-Diagramm, un- ter Zuhilfenahme der von Briggs und Parker aufgestellten Nickel- und Chromäquivalente weiterer Elemente, erste Anhaltspunkte liefern. Im Einzelfall kann mittels experimenteller Nachprüfung gemäss den eingangs erwähnten Messver- fahren festgestellt werden, ob die erhaltene Legierung tatsächlich erfindungsgemäss ferritisch ist oder nicht.
Die erfindungsgemässen Legierungen können nach übli- chen Verfahren hergestellt werden. Es wird beispielhaft auf Kapitel 2 im Abschnitt "Stähle" von "Ullmann's Encyklopädie der Technischen Chemie" 4. Auflage, Verlag Chemie, sowie auf die darin zitierte Literatur verwiesen.
Bevorzugt werden bei der Herstellung der erfindungs- gemässen Stähle Frischungen im AOD- und VOD-Verfahren hin- tereinandergeschaltet durchgeführt, wobei die VOD-Frischung gleichzeitig noch zur Nitrierung dienen kann.
Inhomogenitäten im Gefüge führen bei hochlegierten Stählen zur punktuellen Anreicherung einzelner Gefügebestandteile. Dies kann zu unerwünschten Schwankungen in der Gefügeausbildung und in den physikalischen und mechanischen Eigenschaften führen. Vorzugsweise werden deshalb bei der Herstellung der erfindungsgemässen Stahllegierungen, wie in der Technik üblich, Glühungen bei Temperaturen von etwa 800 bis 900°C, eher bevorzugt bei etwa 850°C während des Warm- formungsprozesses durchgeführt, um die punktuelle Anreicherung einzelner Gefügebestandteile und die damit verbundene Bildung von Inhomogenitäten zu vermeiden. Hierfür bieten sich das sogenannte „soaking" der Warmwalzbrammen oder verlängerte Vorwärmzeiten vor dem Warmwalzen an.
Bevorzugt werden die erfindungsgemässen Legierungen nach der Warm- oder Kaltformung einer Glühung bei Temperaturen bei 750 bis 850°C, bevorzugt etwa 800°C für etwa 0,5 bis 2 Stunden, und einer anschliessenden Wasserabkühlung unterzogen. Dadurch findet aufgrund von Diffusionsvorgängen ein Konzentrationsausgleich des Chroms in der Matrix im Bereich der feindispers ausgeschiedenen Chromnitrid-Teilchen statt. Durch eine Optimierung des Stickstoffgehaltes kann jedoch die Chromnitrid-Ausscheidung weitgehend unterdrückt werden.
Die erfindungsgemässen Stahllegierungen lassen sich reproduzierbar mittels der in der Uhrenindustrie üblichen Verfahren polieren und würden daher in der Uhrenindustrie als Vormaterial akzeptiert. Der in der Grössenordnung von bis zu 0,1% zulegierte Stickstoff ist bei den Glühtemperaturen, die bei den erfindungsgemässen Stahllegierungen bevorzugt angewendet werden, entweder gelöst oder in Form von feinst ausgeschiedenen Chromnitriden, typisch in der Grös- senordnung von ca. 1 μm, vorhanden und führt daher zu keiner negativen Beeinflussung der Polierbarkeit.
Die erfindungsgemässen Stahllegierungen, insbesondere diejenigen der Ansprüche 3 bis 7 , weisen typisch die fol- genden mechanischen Eigenschaften auf (Blech mit 6 mm Dicke, warmgewalzt, geglüht bei 800°C während 30 min, abgeschreckt in Wasser) :
Streckgrenze Rp0.2 420 MPa Zugfestigkeit Rm 603 MPa
Bruchdehnung A0 28%
Härte HB 30 188
Die erfindungsgemässen Legierungen sind damit ver- gleichbar mit der Standard-Stahlqualität Nr. 1.4521.
Durch das erfindungsgemässe Zulegieren von Stickstoff anstelle von Niob oder Titan wird die Ausscheidung relativ^ grosser Niob- oder Titankarbide, die die Polierfähigkeit zerstören, ausgeschlossen. Weiterhin wird die Ausscheidung von Chromkarbiden an den Korngrenzen unterdrückt. Dies geschieht durch eine Veränderung der Ausscheidungskinetik, die eine energetisch bevorzugte Ausscheidung der Chromnitride anstelle von Chromkarbiden bewirkt. Bei einer Überschreitung der Löslichkeitsgrenze für Stickstoff in der Stahllegierung scheiden sich sehr fein dispers Chromnitrid- Teilchen mit Durchmessern um 1 μm und kleiner aus, die je- doch wegen ihrer Feinheit das Polierverhalten nicht negativ beeinflussen.
Aufgrund des geringen Gehalts an Titan und Aluminium ist der Gehalt an zugehörigen Oxiden in den erfindungsge- mässen Legierungen, wie durch Prüfmethoden M (globulare Oxide, DIN 50602) bestimmbar, entsprechend niedrig. Durch das nahezu völlige Fehlen von Titan und Niob fehlen auch die entsprechenden Karbide nahezu völlig. Andererseits wird durch den abgestimmten gleichzeitigen Zusatz von Stickstoff zusammen mit den übrigen, von Chrom verschiedenen Legierungselementen erreicht, dass keine wesentliche Abscheidung von Chromkarbiden eintritt und die erfindungsgemässe Legierung trotz des erhöhten Gehalts an Stickstoff (Austenitbildner) noch ferritisch ist. Der Reinheitsgrad der erfin- dungsgemässen Stahllegierung von nichtmetallischen Oxidoder Karbideinschlüssen wird insgesamt so hoch eingestellt, dass ein Umschmelzen nach dem eingangs erwähnten ESU-Ver- fahren nicht mehr erforderlich ist; das Umschmelzen kann aber, sofern gewünscht, bei den erfindungsgemässen Stahlle- gierungen trotzdem durchgeführt werden.
Die erfindungsgemässen Stahllegierungen sind weichmagnetisch im Sinne der eingangs erwähnten Definition. Die erfindungsgemäss bevorzugten Stahllegierungen der Ansprüche 3 bis 7 übersteigen mit ihrer Wirksumme, wie eingangs definiert, den von der Medizin her geforderten Min- destwert für Implantatstähle von 26.
Aufgrund der guten Polierbarkeit und weichmagnetischen Eigenschaften der erfindungsgemässen Legierungen können diese in der Uhrenindustrie zur Herstellung von magne- tisch abschirmenden Gehäuseteilen, beispielsweise für Armbanduhren oder für andere Uhren, bei denen eine magnetische Abschirmung des Uhrwerks wichtig ist, verwendet werden. Die erfindungsgemässen Stahllegierungen, insbesondere diejenigen des Anspruchs 7, eignen sich auch zur Herstellung von Bauteilen für Gliederarmbänder.
' Der Begriff "Gehäuseteil" umfasst im Rahmen der vorliegenden Anmeldung die üblicherweise für die Herstellung eines Uhrengehäuses, insbesondere eines Gehäuses einer Arm- banduhr, verwendeten Bauteile, also z.B. den Gehäuseboden und die Gehäuseschale. Der Begriff "Gehäuseteil" umfasst im Rahmen der vorliegenden Anmeldung aber auch das Zifferblatt. Der Begriff "Gehäuseteil" umfasst sowohl das Bauteil, wie es in der fertigen Uhr vorkommt, als auch ein allfälliger Rohling oder ein Halbfabrikat davon, die durch Weiterverarbeitung unter wahlweise Mitverwendung von anderen Materialien oder Halbfabrikaten aus der erfindungsgemässen Legierung oder anderen Materialien zum fertigen Bauteil weiterverarbeitet werden.
Magnetisch abschirmende erfindungsgemässe Uhrengehäuse können aus einem Gehäuseboden, einer Gehäuseschale und einem Ziffernblatt, die alle aus der erfindungsgemässen Stahllegierung gefertigt sind, bestehen. Die erfindungsgemässen Stahllegierungen lassen sich somit gleichzeitig als Werkstoff für die Bauteile wie auch als Abschirm-Käfig gegen magnetische Felder nutzen. Der aufwändig zu fertigende zusätzliche Weicheisen-Käfig, der innerhalb des üblichen Gehäuses aus nichtmagnetischem CrNi-Stahl vorgesehen werden müsste und der zu einer höheren Bauhöhe der Uhr führen würde, kann dadurch entfallen.
Die erfindungsgemässe Stahlvariante des 1.4521 eignet sich auch hervorragend für die pulvermetallurgische Fertigung nach dem MIM-Verfahren (Metal Injection Moulding) insbesondere deshalb, weil beim Kompaktierungsprozess (Sintern) unter Stickstoffatmosphäre der erfindungsgemäss er- forderliche Stickstoffgehalt problemlos zugeführt werden kann. Das MIM-Verfahren ist an sich in der Technik der Uhrenherstellung bekannt. Zur Herstellung eines erfindungsgemässen Uhrenbauteils wird eine Stahlegierung, die erforderlichen Elemente in den endgültigen Mengen enthält (dies wä- ren die Elemente, die in einem der Ansprüche 1 bis 7 namentlich genannt sind) , die aber allenfalls an Stickstoff noch unterschüssig ist, zu Pulver gemahlen und mit einem flüssigen Bindemittel aufgeschlämmt . Diese Aufschlämmung wird mittels beispielsweise eines Extruders in eine Hohl- form gepresst, deren Hohlraum die Form des herzustellenden Gehäuseteils aufweist. Anschliessend wird das Bindemittel vorzugsweise unter Anlegen von Vakuum abgedampft und der in der Hohlform verbleibende Pulverrückstand versintert. Während des Schrittes der Versinterung wird, sofern das Legie- rungspulver an Stickstoff unterschüssig war, eine Stick- stoffatmosphäre von geeignetem Druck angelegt, so dass die Legierung während dem Versintern noch Stickstoff aufnimmt. Die Wahl des geeigneten Drucks Stickstoff, um im fertigen Gehäuseteil eine Stickstoffkonzentration zu erzielen, die erfindungsgemäss ist, kann durch Versuchsreihen ermittelt werden.
HerStellungsbeispiel
Im Folgenden wird ein Beispiel für die Herstellung einer erfindungsgemässen Stahllegierung gegeben:
Erschmelzung von ca. 5 t im Induktionsofen
Sekundär-Metallurgie im VOD-Konverter
Kokillenguss in Brammenform 1250 X 250 X 1270 in mm
Chemische Analyse
Vorwärmen in Kammerofen auf Walztemperatur von ca.
1080°C
Vorwalzen auf 120 mm Dicke g Allseitiges Schleifen der Bramme h Vorwärmen im Durchlaufofen bei 1080°C
Walzen auf Quarto auf gewünschte Enddicken von 3-12 mm
Glühen bei 750-850°C k Abschrecken in Wasser 1 Entzundern m Prüfung der mechanischen Eigenschaften, Rpo,2 Rm A, Z n Metallographische Bestimmung der Korngröße o Bestimmung des Reinheitsgrades P Prüfung der Polierbarkeit q Richten r Abteilen auf Endabmessung s Freigabe

Claims

Patentansprüche
1. Hochlegierte ferritische Stahllegierung umfassend, bezogen auf die Legierung, höchstens 1,00 Gewichtsprozent Silizium, 18,0 bis 22,0 Gewichtsprozent Chrom, 1,80 bis 2,50 Gewichtsprozent Molybdän, 0,01 bis 0,10 Gewichtsprozent Stickstoff, höchstens 0,01 Gewichtsprozent Titan, höchstens 0,01 Gewichtsprozent Niob, höchstens 0,01 Gewichtsprozent Aluminium und als Rest im Wesent- liehen Eisen.
2. Stahllegierung nach Anspruch 1, umfassend, bezogen auf die Legierung, höchstens 0,005 Gewichtsprozent Titan, höchstens 0,005 Gewichtsprozent Aluminium, höchstens 0,005 Gewichtsprozent Niob, höchstens 1,00 Gewichtsprozent Mangan, höchstens 0,04 Gewichtsprozent Phosphor und höchstens 0,025 Gewichtsprozent Kohlenstoff.
3. Stahllegierung nach Anspruch 1 oder 2, umfas- send, bezogen auf die Legierung, 19,5 bis 20,5 Gewichtsprozent Chrom, 1,90 bis 2,10 Gewichtsprozent Molybdän und 0,05 bis 0,10 Gewichtsprozent Stickstoff.
4. Stahllegierung nach einem der Ansprüche 1 bis 3, umfassend, bezogen auf die Legierung, etwa 0,8 Gewichtsprozent Silizium, etwa 20 Gewichtsprozent Chrom, etwa 2 Gewichtsprozent Molybdän, etwa 0,05 Gewichtsprozent Stickstoff und höchstens 0,002 Gewichtsprozent Titan.
5. Stahllegierung nach einem der vorangehenden Ansprüche, umfassend, bezogen auf die Legierung, höchstens 0,10 Gewichtsprozent Nickel.
6. Stahllegierung nach einem der vorangehenden Ansprüche, umfassend, bezogen auf die Legierung, höchstens 0,03 Gewichtsprozente Schwefel.
7. Stahllegierung nach Anspruch 6, umfassend, bezogen auf die Legierung, 0,015 bis 0,03 Gewichtsprozente Schwefel.
8. Gehäuseteil für Uhren, bestehend aus einer
Stahllegierung nach einem der Ansprüche 1 bis 7.
9. Gehäuseteil nach Anspruch 8, in Form eines Gehäusebodens oder einer Gehäuseschale.
10. Ziffernblatt bestehend aus einer Stahllegierung nach einem der Ansprüche 1 bis 7.
11. Bauteil für Gliederarmbänder, bestehend aus ei- ner Stahllegierung nach einem der Ansprüche 1 bis 7.
12. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 7 zur magnetischen Abschirmung von Uhren.
13. Verfahren zur Herstellung eines Gehäuseteils für Uhren, dadurch gekennzeichnet, dass eine Stahllegierung in Pulverform gemäss einem der Ansprüche 1 bis 7, die aber wahlweise an Stickstoff unterschüssig sein kann, mit einem flüssigen Bindemittel aufgeschlämmt wird, die Aufschlämmung in eine dem Gehäuseteil entsprechende Hohlform eingefüllt wird, das Bindemittel verdampft und der Pulverrückstand in der Form versintert wird; mit der Massgabe, dass wenn die Legierung in Pulverform an Stickstoff unterschüssig ist, das Versintern in einer stickstoffhaltigen Atmosphäre durchgeführt wird.
PCT/CH2003/000651 2002-10-04 2003-09-30 Ferritische stahllegierung WO2004031430A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/529,325 US20060130938A1 (en) 2002-10-04 2003-03-30 Ferritic steel alloy
AU2003264228A AU2003264228A1 (en) 2002-10-04 2003-09-30 Ferritic steel alloy
DE50307092T DE50307092D1 (de) 2002-10-04 2003-09-30 Ferritische stahllegierung
EP03798852A EP1546427B1 (de) 2002-10-04 2003-09-30 Ferritische stahllegierung
JP2004540449A JP2006501368A (ja) 2002-10-04 2003-09-30 フェライト鋼合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1659/02 2002-10-04
CH16592002 2002-10-04

Publications (1)

Publication Number Publication Date
WO2004031430A1 true WO2004031430A1 (de) 2004-04-15

Family

ID=32046629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000651 WO2004031430A1 (de) 2002-10-04 2003-09-30 Ferritische stahllegierung

Country Status (8)

Country Link
US (1) US20060130938A1 (de)
EP (1) EP1546427B1 (de)
JP (1) JP2006501368A (de)
CN (1) CN1325687C (de)
AT (1) ATE360103T1 (de)
AU (1) AU2003264228A1 (de)
DE (1) DE50307092D1 (de)
WO (1) WO2004031430A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837414A1 (de) * 2006-03-17 2007-09-26 Seiko Epson Corporation Dekoratives Produkt und Uhr

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212602B2 (ja) * 2007-09-14 2013-06-19 セイコーエプソン株式会社 機器およびハウジング材の製造方法
EP2813906A1 (de) * 2013-06-12 2014-12-17 Nivarox-FAR S.A. Bauteil für Uhrwerk
US10063074B2 (en) 2016-04-01 2018-08-28 Hewlett-Packard Development Company, L.P. Electronic wearable device electrode pad with collection well
JP7413685B2 (ja) 2019-09-05 2024-01-16 セイコーエプソン株式会社 金属材料、時計用部品および時計
JP7404721B2 (ja) 2019-09-05 2023-12-26 セイコーエプソン株式会社 金属材料、時計用部品および時計
JP7272233B2 (ja) 2019-10-30 2023-05-12 セイコーエプソン株式会社 時計用部品および時計
JP7294074B2 (ja) 2019-11-11 2023-06-20 セイコーエプソン株式会社 オーステナイト化フェライト系ステンレス鋼、時計用部品、および、時計
JP2021096076A (ja) * 2019-12-13 2021-06-24 セイコーエプソン株式会社 時計用外装部品、時計、および、時計用外装部品の製造方法
JP2021096079A (ja) 2019-12-13 2021-06-24 セイコーエプソン株式会社 ハウジングおよび機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379061A1 (de) * 1989-01-18 1990-07-25 Eta SA Fabriques d'Ebauches Ausstattungsteil für eine Uhr und Verfahren zu dessen Herstellung
JPH07244172A (ja) * 1994-03-03 1995-09-19 Seiko Instr Inc 時計部品の製造方法
JPH07252605A (ja) * 1994-03-10 1995-10-03 Nippon Steel Corp 切削性と耐食性に優れたフェライト系ステンレス鋼

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848323A (en) * 1955-02-28 1958-08-19 Birmingham Small Arms Co Ltd Ferritic steel for high temperature use
GB1359629A (en) * 1971-10-26 1974-07-10 Deutsche Edelstahlwerke Gmbh Corrosion-resistant ferritic chrome steel
US3953201A (en) * 1974-03-07 1976-04-27 Allegheny Ludlum Industries, Inc. Ferritic stainless steel
US4340424A (en) * 1974-04-23 1982-07-20 Daido Tokushuko Kabushiki Kaisha Ferritic stainless steel having excellent machinability and local corrosion resistance
JPS5188413A (en) * 1975-02-01 1976-08-03 Kotaishokuseifueraitosutenresuko
FR2705596B1 (fr) * 1993-05-24 1995-07-13 Impac Technologies Procédé de moulage par injection de barbotines et dispositif pour sa mise en Óoeuvre.
KR0169172B1 (ko) * 1994-02-15 1999-01-15 아키모토 유우미 철-크롬계 합금
JP3589036B2 (ja) * 1997-08-05 2004-11-17 Jfeスチール株式会社 深絞り性と耐リジング性に優れたフェライト系ステンレス鋼板およびその製造方法
JPH11323502A (ja) * 1998-05-12 1999-11-26 Sumitomo Metal Ind Ltd 加工性と靭性に優れたフェライト系ステンレス鋼およびその鋳片
EP0964071A1 (de) * 1998-06-12 1999-12-15 Asulab S.A. Ferritischer rostfreier Stahl und Aussenteil für eine Uhr aus diesem Stahl

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379061A1 (de) * 1989-01-18 1990-07-25 Eta SA Fabriques d'Ebauches Ausstattungsteil für eine Uhr und Verfahren zu dessen Herstellung
JPH07244172A (ja) * 1994-03-03 1995-09-19 Seiko Instr Inc 時計部品の製造方法
JPH07252605A (ja) * 1994-03-10 1995-10-03 Nippon Steel Corp 切削性と耐食性に優れたフェライト系ステンレス鋼

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; HAUDRECHY, P. ET AL: "Innocuousness of stainless steels in contact with food or skin", XP002266988, retrieved from STN Database accession no. 126:266687 CA *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02 29 February 1996 (1996-02-29) *
STAINLESS STEELS '96, PROCEEDINGS, [EUROPEAN CONGRESS], 2ND, DUESSELDORF/NEUSS, GERMANY, JUNE 3-5, 1996 (1996), 228-235 PUBLISHER: VEREIN DEUTSCHER EISENHUETTENLEUTE, DUESSELDORF, GERMANY., 1996 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837414A1 (de) * 2006-03-17 2007-09-26 Seiko Epson Corporation Dekoratives Produkt und Uhr

Also Published As

Publication number Publication date
DE50307092D1 (de) 2007-05-31
EP1546427B1 (de) 2007-04-18
EP1546427A1 (de) 2005-06-29
US20060130938A1 (en) 2006-06-22
ATE360103T1 (de) 2007-05-15
AU2003264228A1 (en) 2004-04-23
JP2006501368A (ja) 2006-01-12
CN1325687C (zh) 2007-07-11
CN1688734A (zh) 2005-10-26

Similar Documents

Publication Publication Date Title
DE2937724C2 (de) Pulvermetallurgisch hergestelltes Stahlerzeugnis mit hohem Vanadiumcarbid- Anteil
DE69811200T2 (de) Einsatzstahl mit hervorragender verhinderung der sekundärrekristallisation während der aufkohlung, verfahren zu dessen herstellung, halbzeug für aufzukohlende teile
EP3728675B1 (de) Verfahren zum additiven fertigen eines gegenstandes aus einem maraging-stahlpulver
DE69606061T2 (de) Hochfestes, kerbzähes ausscheidungshärtbarer rostfreies stahl
EP0091897B1 (de) Kaltverfestigender austenitischer Manganhartstahl und Verfahren zur Herstellung desselben
EP3851551A1 (de) Metallpulver für ein additives fertigungsverfahren, verwendungen des metallpulvers, verfahren zur herstellung eines bauteils und bauteil
CH694401A5 (de) Nickelarmer, molybdänarmer, biokompatibler, nicht Allergie auslösender, korrosionsbeständiger austenitischer Stahl.
EP1546427B1 (de) Ferritische stahllegierung
DE69517533T2 (de) Korrosionsfestes magnetmaterial
JPH07232256A (ja) マルテンサイト熱間加工工具鋼ダイブロック物体及び製造方法
DE112019006482T5 (de) Karbonitrierte lagerkomponente
DE69802837T2 (de) Rostfreies stahl ohne nickel für biologisch-medizinische verwendungen
AT393642B (de) Verwendung einer eisenbasislegierung zur pulvermetallurgischen herstellung von teilen mit hoher korrosionsbestaendigkeit, hoher verschleissfestigkeit sowie hoher zaehigkeit und druckfestigkeit, insbesondere fuer die kunststoffverarbeitung
DE69803514T2 (de) Stahl für Formen grosser Abmessungen und Verfahren zu seiner Herstellung
DE3012139A1 (de) Verfahren zur herstellung eines im walzzustand hochfesten und hochzaehen stahles
DE3628395C1 (de) Verwendung eines Stahls fuer Kunststofformen
DE69501733T2 (de) Hochkohlenstoff-stahllegierung, deren bearbeitung und verwendung als verschleissteil
DE4231695C2 (de) Verwendung eines Stahls für Werkzeuge
EP1520058B1 (de) Stahllegierung
EP2396440A1 (de) Stahllegierung
EP3385398A1 (de) Hochfeste schraube
EP0149210B1 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen
EP0719349B1 (de) Verfahren zur herstellung von sinterteilen
DE69938617T2 (de) Stahl für Giessformen und Verfahren zur Herstellung
KR20210008732A (ko) 비자성 오스테나이트계 스테인리스강

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006130938

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529325

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038236788

Country of ref document: CN

Ref document number: 2004540449

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003798852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529325

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003798852

Country of ref document: EP