WO2003002506A1 - Procédé de production d'éther vinylique fluoré - Google Patents

Procédé de production d'éther vinylique fluoré Download PDF

Info

Publication number
WO2003002506A1
WO2003002506A1 PCT/JP2002/006576 JP0206576W WO03002506A1 WO 2003002506 A1 WO2003002506 A1 WO 2003002506A1 JP 0206576 W JP0206576 W JP 0206576W WO 03002506 A1 WO03002506 A1 WO 03002506A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
represented
carboxylic acid
vinyl ether
formula
Prior art date
Application number
PCT/JP2002/006576
Other languages
English (en)
French (fr)
Inventor
Nobuto Hoshi
Nobuyuki Uematsu
Masanori Ikeda
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001198038A external-priority patent/JP4817542B2/ja
Priority claimed from JP2001198037A external-priority patent/JP4817541B2/ja
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to US10/482,048 priority Critical patent/US7196235B2/en
Priority to CNB028127935A priority patent/CN100338013C/zh
Publication of WO2003002506A1 publication Critical patent/WO2003002506A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/32Decarboxylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/324Polymers modified by chemical after-treatment with inorganic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/328Polymers modified by chemical after-treatment with inorganic compounds containing other elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing a fluorinated vinyl ether, which is a raw material monomer for a fluorinated ion exchange membrane useful as a membrane for salt electrolysis and a membrane for fuel cells.
  • the ion exchange membrane method is widely used.
  • the ion-exchange membrane which is the diaphragm, a laminated membrane of a perfluorosulfonic acid polymer and a perfluorocarboxylic acid polymer is mainly used because of its excellent current efficiency.
  • fuel cells using a polymer electrolyte membrane as an electrolyte have attracted attention because they can be reduced in size and weight and can provide high power density even at relatively low temperatures. The development of such fuel cells, especially for automotive applications, is accelerating.
  • perfluorosulfonic acid polymer is used as a solid electrolyte membrane.
  • perfluorosulfonic acid polymer and perfluorocarboxylic acid polymer used in the ion-exchange membrane for salt electrolysis and the solid electrolyte membrane for fuel cells include the following general formula (I):
  • the sulfonic acid fluoride of the general formula (m) is fed into a heated alkali powder such as sodium carbonate, and the carboxylate of the general formula (W) is immediately fed to the general formula (II).
  • the yield was in the order of 50 to 60% in any case, and was not satisfactory as an industrial production method.
  • the selectivity decreases, so that the conversion rate cannot be increased. Therefore, in this case, the unreacted raw material and the target product must be separated, and the unreacted raw material must be recycled, which causes a problem that the operation becomes complicated.
  • a method for obtaining a fluorinated vinyl ester of the general formula (II) by reacting with KF is disclosed. However, this method is not industrially superior because the process is complicated and the yield is 69%.
  • a method of treating a vinyl ether having a CH 3 OCF 2 CF 2 — group with a strong acid to introduce an ester group Japanese Patent Application Laid-Open No. 60-156632
  • a method of esterifying a vinyl ether having a carboxylic acid fluoride at its terminal has been proposed such a method (JP-55-31004 JP) introducing the vinyl Le group dehalogenation from precursors having I CF 2 CF 2 0- structure
  • JP-55-31004 JP introducing the vinyl Le group dehalogenation from precursors having I CF 2 CF 2 0- structure
  • a typical method for producing the mosomer is a method in which carboxylic acid fluoride represented by the general formula ( ⁇ ), which is X 1 ⁇ —SO 2 F, is thermally decomposed in an alkali to produce the mosomer.
  • carboxylic acid fluoride represented by the general formula ( ⁇ )
  • a method is also known in which a carboxylic acid fluoride is converted into a sodium salt of a carboxylic acid by reacting with sodium chloride, and then the sodium salt is heated and thermally decomposed to obtain a vinyl ether monomer (two-stage method). 41-7949).
  • An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an economically advantageous method for producing a specific fluorinated vinyl ether in the general formula (II) by a simple process in a high yield. I do. Disclosure of the invention
  • the present inventors have conducted intensive studies to develop an economically advantageous method for producing the fluorinated vinyl ether represented by the general formula ( ⁇ ) by a simple process in a high yield.
  • a highly purified product of the fluorinated vinyl ether having a specific structure in general formula (II) can be converted to a high conversion rate and a high purity.
  • the present inventors have found that they can be obtained in a yield, and have accomplished the present invention. That is, the present invention
  • a method for producing a fluorinated vinyl ether represented by the general formula (2) which comprises thermally decomposing a potassium salt of a carboxylic acid represented by the general formula (1) while maintaining a solid state. is there.
  • the potassium salt of a carboxylic acid represented by the general formula (1) is represented by the following general formula (3): XCF 2 CF 2 OCFCF 2 OCFCOF (3)
  • n is an integer of 0 or 2 or more, and X is the same as in the general formula (1).
  • the total amount of the impurities is less than 10% by weight. It is a manufacturing method of.
  • 11. is in general formulas (1) and (2) X gar C0 2 R, 1 ⁇ ; 10 Symbol mounting method of manufacturing.
  • the production method of the present invention is characterized in that, in the general formula (IV), 1 ::! Carboxylate (ie, carboxylate of general formula (1))
  • the specific reaction conditions are as follows: 1) First, a two-stage method, not a flow method.2) The thermal decomposition of the carboxylate is carried out without a solvent and while maintaining Z or its solid state. It is.
  • the carboxylate represented by the general formula (IV) has a thermal decomposition temperature or below. In the molten or wet state at such temperatures, and the thermal decomposition reaction of the carboxylate in such a state produces a significant amount of by-products, resulting in a lower yield of the desired product I understood.
  • X 1 C0 2 R 1 in the general formula (IV)
  • n 1 m 1 and R 1 are the same as in the general formula ( ⁇ ).
  • the above-mentioned diester compound (V) is a transesterification reaction between carboxylate salts represented by the general formula (IV) in a molten or wet state, or a carboxylic acid salt represented by the general formula (IV) in a molten or wet state. It was presumed to be caused by an ester exchange reaction between the acid salt and the reaction raw material of the general formula (IE).
  • the present inventors have intensively studied to develop a method for suppressing the side reactions as described above and producing the fluorinated vinyl ether of the general formula (II) in high yield.
  • the corresponding fluorinated vinyl ether of the general formula (II) ie, the fluorinated vinyl ether of the general formula (2)
  • the reaction method of the present invention is not clear, but one possibility is that, in the case of the thermal decomposition reaction of the carboxylate in the solid state, there is a problem in the prior art. It is considered that the side reaction occurring between the molecules was suppressed.
  • those converted from the carboxylic acid fluoride of the general formula (3) are preferable because of their high quality.
  • the reaction may be carried out in a solvent or without a solvent with an aluminum salt containing a sulfur atom.
  • Specific examples of the realm containing a power realm include a carbon realm, a hydrogen bicarbonate, a hydroxylic realm, a potassium phosphate, an acetate realm, and the like.
  • Carbon dioxide is preferred because it can be removed as a gas.
  • potassium carbonate use any of granular, powdery, fine powdery, granular, porous, etc., which have an increased specific surface area, or powdery or finely powdered. You can also. Further, it is preferable that the potassium carbonate is thoroughly dried before use.
  • a polar solvent is generally used. In particular Water or alcohols such as methanol, ethanol, propanol, etc .; Examples include amides such as dimethylacetamide, and dimethyl sulfoxide. It is necessary to remove these solvents after the reaction, but a solvent having a boiling point of 100 ° C. or less, which is easy to remove, is preferable.
  • the protic solvent remained during the thermal decomposition, it was protonated instead of the trifluorovinyl group.
  • an aprotic polar solvent is more preferable as the solvent.
  • Solvents satisfying these conditions include tetrahydrofuran, ethylene glycol dimethyl ether, and acetonitrile.
  • the reaction temperature is preferably in the range of 0 to 80 ° C, and more preferably in the range of 20 to 60 ° C, in order to suppress a side reaction. More preferred.
  • the reaction between the carboxylic acid fluoride and the alkali can be carried out without a solvent.
  • the reaction temperature is preferably 50 to 150 ° C, and more preferably 80 to 120 ° C.
  • the reaction with the alkali can be carried out in the presence or absence of a solvent, but in order to simplify the reaction operation, the reaction is carried out without a solvent. Is preferred.
  • the presence of a solvent with the alkali may be carried out either solvent under absence secondary reactions in one S 0 2 F group In order to prevent this, it is preferable to use a solvent.
  • the amount of alkali used when converting to a potassium salt is generally an equivalent required to completely convert acid fluoride to a potassium salt. However, when X is one CO 2 R, an excess amount may be used if necessary.
  • the acid fluoride of the general formula (3) used is preferably high in purity. If the acid fluoride (3) contains impurities, side reactions tend to occur and the yield decreases. In order to substantially eliminate the influence of such impurities, the purity of the acid fluoride (3) is preferably at least 80% by weight, more preferably 90% by weight. %, More preferably 95% by weight or more. It is not clear how impurities in the acid fluoride (3) affect the reduction in yield.
  • n is an integer of 0 or 2 or more, and X is the same as in the general formula (1).
  • the acid fluoride (3) contains a compound of the general formula (4) as an impurity, its amount is preferably less than 20% by weight, more preferably 10% by weight. / 0 , more preferably less than 5% by weight.
  • the purity of the potassium carboxylate of the general formula (1) used in the production method of the present invention is preferably 80% by weight or more, more preferably 90% by weight. %, More preferably 95% by weight or more.
  • the alkyl group of R preferably has a smaller number of carbon atoms because distillation and purification is facilitated, and usually, the alkyl group of R is preferably 1 carbon atom. 44 lower alkyl groups are employed.
  • R include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and the like. Among them, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the potassium salt of the general formula (1) undergoes a decarboxylation reaction when heated to a temperature higher than the thermal decomposition temperature to produce a butyl ether (2).
  • This thermal decomposition itself proceeds in a solvent or in the absence of a solvent.However, in order to suppress side reactions and increase the yield, the solvent-free and / or potassium salt represented by the general formula (1) is converted into a solid state. It is necessary to carry out thermal decomposition while maintaining it.
  • a non-polar solvent such as a hydrocarbon solvent or a fluorinated hydrocarbon solvent, or a polar solvent such as a fluorinated ether solvent is used in the present invention.
  • the solvent having no property of dissolving the potassium carboxylate may be present in the reaction system of the present application as long as the potassium salt of the general formula (1) does not prevent the solid state from being maintained.
  • the polar solvent is present in a large amount, it is not preferable because the carboxylic acid salt used in the present invention is dissolved or a side reaction becomes remarkable and the yield of the fluorinated vinyl ether decreases.
  • a polar solvent may be present as long as the carboxylic acid salt is in such a small amount that it can maintain a substantially solid state at the thermal decomposition temperature. That is, the solvent-free in the present invention means that it does not substantially contain a solvent component in an amount that modifies the properties of the potassium salt of the general formula (1).
  • the potassium salt of the general formula (1) A solvent component such as a solvent used in the production may be contained within 5% by weight, preferably 3% by weight with respect to the potassium salt.
  • the heating temperature may be any temperature at which the decarboxylation reaction proceeds, but the heating is generally performed at 120 to 300 ° C, preferably at 150 to 250 ° C.
  • the thermal decomposition it is desirable that the liquid or gas-produced butyl ether does not stay in the system, and it is preferable that vinyl ether is quickly led out of the reaction system and collected by a condenser or the like.
  • the pressure in the system 4. 0 X 1 0 4 P a is preferably less, 2. 7 X 1 0 4 P a hereinafter more preferably, 1. 3 X 1 0 4 P a or less is particularly preferred.
  • the fluorinated vinyl ether produced by the method of the present invention can be obtained in high yield and high conversion, so that it contains almost no unreacted acid fluoride, and there are few side reactions, so that it can be obtained in high purity. Therefore, the fluorinated vinyl ether obtained by the production method of the present invention has a feature that purification after the reaction is extremely easy.
  • the production method of the present invention makes it possible to produce fluorinated vinyl ether used as a raw material for ion exchange membranes for salt electrolysis and membranes for fuel cells with a simple operation in high yield, and is extremely industrially possible. Useful.
  • the fluorinated vinylate produced by the method of the present invention has such features that its purity is high and purification as a subsequent step is easy.
  • reaction yield is calculated from the purity of the raw material. I asked. The yield was calculated by the ratio of the number of moles of the product to the number of moles of the starting material.
  • X - C0 2 CH 3 carboxylic acid fluoride (. Purity 96 wt ./) 48. The 8 g, was added dropwise at 40 ° C. After continuing stirring for 2 hours as it was, the solvent was distilled off under reduced pressure, and further dried at 100 ° C. under vacuum to obtain a solid potassium salt containing KF. It was confirmed by 19 F-NMR that the carboxylic acid fluoride was completely converted to the corresponding potassium salt. The distillation head and condenser were attached to the flask, and the flask was heated to 200 ° C under normal pressure, and the heating was continued at 200 ° C until the distillation of the liquid stopped. During that time, the potassium salt remained in a solid state.
  • the reaction was carried out in the same manner as in Example 1 except that 11.1 g of sodium carbonate was used instead of potassium carbonate.
  • the sodium salt obtained by distilling off the solvent was a viscous liquid.
  • the purity of vinyl ether was 80% by weight (yield 66%), and the diester of the formula (9) was 17% by weight. . /. Was included.
  • the vinyl ether was synthesized using the Fuchiichi method.
  • Example 3 The reaction was carried out as in Example 3, except that 14.2 g of sodium carbonate was used instead of potassium carbonate.
  • 14.2 g of sodium carbonate was used instead of potassium carbonate.
  • 40.3 g of the obtained liquid was analyzed by gas chromatography, 68% by weight of vinyl ether (yield 64%, selectivity 72%), 13% by weight of unreacted carboxylic acid fluoride, and the formula (V) 9% by weight of the diester.
  • Example 6 The reaction was carried out in the same manner as in Example 6, except that 11.1 g of sodium carbonate was used instead of potassium carbonate.
  • the sodium salt formed in the middle was a viscous liquid. Also, When 16.5 g of the liquid obtained by the pyrolysis was analyzed by gas chromatography, it was a complex mixture containing a small amount of vinyl / ether as in Example 6.
  • the reaction was carried out in the same manner as in Example 1, except that 11.1 g of sodium carbonate was used instead of 8 g of potassium carbonate.
  • the sodium salt obtained by distilling off the solvent was a viscous liquid.
  • 39.2 g of the liquid obtained by pyrolysis was analyzed by gas chromatography, it was found that the general formula ( ⁇ )! ! 1 ⁇ ;!, M ⁇ S,
  • Example 1 2 (Comparative example)
  • the reaction was carried out in the same manner as in Example 10, except that 10.'6 g of sodium carbonate was used instead of potassium carbonate.
  • the sodium salt obtained by distilling off the solvent was a viscous liquid, and the conversion determined by 9 F-NMR was 99%.
  • the pyrolysis proceeded at 200 ° C, and 41.2 g of the obtained liquid was analyzed by gas chromatography and found to be 70% by weight of vinyl ether. /. It was included (crude yield 65%, yield 66% determined without conversion of raw material purity).
  • X — 18 wt ° / C0 2 CH 3 compound.
  • the reaction was performed in the same manner as in Example 5, except that The potassium salt was a rice cake-like solid at 100 ° C. When this solid was gradually heated, it turned into a porridge at 180 ° C. Pyrolysis was performed at 200 ° C, and 30.2 g of the obtained liquid was analyzed by gas chromatography. As a result, the vinyl ether of the general formula (2) was found to be 74% by weight (yield 72%) and the formula (V diester) were included 12 weight 0/0. Industrial applicability
  • the production method of the present invention can produce fluorinated vinyl ether used as a raw material for an ion exchange membrane for salt electrolysis or a membrane for a fuel cell with a simple operation in a high yield, and is industrially extremely useful. Further, the vinyl ether produced by the method of the present invention has such features that its purity is high and purification as a subsequent step is easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 フッ素化ビニルエーテルの製造方法 技術分野
本発明は、 食塩電解用隔膜や燃料電池用隔膜として有用なフッ素系イオン交換 膜の原料モノマーであるフッ素化ビュルエーテルの製造方法に関する。 背景技術
苛性ソーダや塩素を製造する食塩電解ではィオン交換膜法が広く採用されてい る。 その隔膜であるイオン交換膜としては、 電流効率が優れていることからパー フルォロスルホン酸ポリマーとパーフルォロカルボン酸ポリマーの積層タイプの 膜が主として用いられている。 また近年、 電解質として固体高分子隔膜を用いた 燃料電池が、 小型軽量化が可能であり、 かつ比較的低温でも高い出力密度が得ら れることから注目される。 このような燃料電池は、 特に自動車用途に向けた開発 が加速されている。 ここでも現在、 実用化に向けた検討としては固体電解質膜と してパーフルォロスルホン酸ポリマーが採用されている。
食塩電解用ィオン交換膜や燃料電池用固体電解質膜に用いられているパーフル ォロスルホン酸ポリマー及びパーフルォロカルボン酸ポリマーとしては下記一般 式 (I) :
— (CF2CF2)k— (CFzCF)!— (I)
(OCF2CF)n iO(CF2)m !Y
CF3
(式中、 1:。〜:!、 η^- Ι δの整数、 Υ =— C02H又は— S03Hで ある。 )
の構造のものが一般的である (三宅晴久、 「フッ素系材料の開発」 p l 05、 シ ーェムシ一、 1 994年) 。 これらのポリマーは、 下記一般式 (Π) :
X1(CF2)m (II)
Figure imgf000003_0001
(式中、 n 1 m1は一般式 (I) と同じ、 X1:— COsR1 — S02F、 R1 =アルキル基である。 )
で表されるフッ素化ビュルエーテルモノマーとテトラフルォロエチレン (TF E) との共重合体を製膜した後、 加水分解反応を施すことによって得られる。 一般式 (Π) で表されるフッ素化ビニルエーテルモノマーの代表的な製造法と しては、 以下に示すように、 一般式 (m)で表されるカルボン酸フルオリドをー 般式 (IV) で表されるカルボン酸塩に変換し、 次いで熱分解してパーフルォロビ ニル基 (CF2 = CF—基) を形成させる方法が挙げられる。
Figure imgf000004_0001
!θ(ςΡ0Ρ2Ο)η iCFCOF (HI)
CF3 CF3
,(
X1(CF2)m ^(^: F 20) n iCFC02M (IV)
CF3 CF3
Figure imgf000004_0002
(一般式 (HI) 、 (8) 中の I 1、 m1及び X1は、 一般式 (Π) と同じである。 一般式 (IV) 中の Mはアルカリ金属原子等の金属原子を表す。 )
この方法には、 加熱した炭酸ナトリウム等のアルカリ粉末中に一般式 (m) の力 ルボン酸フルオリ ドをフィードし、 一般式 (W) のカルボン酸塩を経由して一気 に一般式 (Π) で表されるフッ素化ビュルエーテルモノマーを形成させる方法
(以下、 フロー法と称す) と、 一般式 (m) のカルボン酸フルオリドを一旦アル カリと反応させて一般式 (IV) のカルボン酸塩に変換した後、 加熱熱分解して一 般式 (Π) で表されるフッ素化ビニルエーテルモノマーを得る方法 (以下、 2段 法と称す) が知られている。
まず、
Figure imgf000004_0003
である、 一般式 (Π) で表されるフッ素化ビエルエー テルモノマーを製造する従来技術について説明する。
1:。。 2 R1である場合のフロー法の例としては、 特開昭 53- 1 325
1 9号公報に n丄= 1又は 2、 m1^ 2, M=Na、 X 1 =CO 2 CH3の場合の 例が開示されている。 そこでは、 n丄= 1の場合で収率 67%、 n 1 = 2の場合、 収率 61 %でビエルエーテルモノマーを得ている。
一方、
Figure imgf000005_0001
である場合の 2段法の例は特開昭 52— 78827号 公報に記載があり、 n = 0、 3, M=Na、 X 1 = C O 2 C 2 H 5の場合 で収率 61%、 n: = 0, m1 = 3 , M=K、 X 1 = C O 2 C 2 H 5の場合で収率 63〜65%、 n 1 = 1 , m1 = 3 , M=K、 X 1 = C O 2 C 2 H 5の場合で収率 51 °/0という結果が報告されている。
即ち、 これらの従来法では、 いずれの場合も収率は 50〜60%台にとどまり、 工業的製造法としては満足出来るものではなかった。 特に前者のフロー法では転 化率を上げようとすると選択率が低下してしまうので、 転化率は高く出来ない。 したがって、 この場合には、 未反応原料と目的生成物を分離し、 さらに未反応原 料をリサイクルしなければならず、 操作が繁雑になると言う問題点もある。
また、 特表平 7— 505164号公報には、 一般式 (IE) において n 1=1、 m 1 = 2、 X 1 = CO 2 CH 3のカルボン酸フルオリ ドをシリルェステルに変換 した後、 高温で KFと反応させることにより、 一般式 (Π) のフッ素化ビニルヱ 一テルを得る方法が開示されている。 しかしながらこの方法は、 プロセスが繁雑 な上、 収率も 69%であり、 工業的に優れた方法とは言えない。
尚、 これまで、 一般式 (IV) において Mがナトリウムの場合とカリウムの場合 との間での、 X1=C02R1の一般式 (Π) のフッ素化ビニルエーテルの収率 の違いを示唆するような報告例はない。 実際、 特開昭 52— 78827号公報の 例 (n 1 = 0、 ml = 3、 X 1 =CO 2 C2H5) においても Mがナトリゥムの場 合とカリウムの場合との間で有意の差は認められていなかった。
前述のように、 これまでに一般式 (m) において 1:。。 2 R1であるカル ボン酸フルオリ ドを出発原料として、
Figure imgf000005_0002
の一般式 (Π) で表され るフッ素化ビニルエーテルを高収率で製造する方法は知られていなかった。 それ らの公知文献に記載の方法による反応成績を以下にまとめて示す。 くフロ一法 > (特開昭 53— 13251 9号公報)
n 1=1, m1 = 2N M=Na 収率 67%
n丄 =2、 1111 =2、 M=Na 収率 61%
く 2段法 > (特開昭 52— 78827号公報)
η Χ = 0 m^S, M=Na 収率 61%
n 1 = 0, m1 = 3, M=K 収率 63〜65%
n X= 1 , m1 = 3, M=K 収率 51%
従って一般式 (Π) において
Figure imgf000006_0001
であるカルボン酸フルオリ ドか ら 1=〇021 1のー般式 (Π) のフッ素化ビュルエーテルを製造する、 より 経済的に有利な、 シンプルなプロセスでの高収率製造法が望まれていた。
また、 上記のフロー法、 2段法以外の X1=C02R1の一般式 (Π) のフッ 素化ビュルエーテルを製造する方法としては、 例えば、 末端に
CH3OCF2CF2—基を有するビニルエーテルを強酸で処理してエステル基 を導入する方法 (特開昭 60 - 156632号公報) 、 末端にカルボン酸フルォ リドを有するビニルエーテルをエステル化する方法 (特開昭 54-11 2822 号公報) 、 I CF 2 CF20—構造を有する前駆体から脱ハロゲン化反応でビニ ル基を導入する方法 (特開昭 55-31004号公報) 等が提案されているが、 これらの方法はいずれも操作が繁雑であり、 また収率が低いので実用的な方法で はない。
次に、 1=ー302 でぁる、 一般式 (Π) で表されるフッ素化ビニルエー テルモノマーを製造する従来技術について説明する。
当該モソマーの代表的な製造方法としては、 X1^— SO 2 Fである一般式 (Π) のカルボン酸フルオリドをアルカリ中で熱分解して製造する方法が挙げら れる。 例えば特開昭 47— 365号公報 ( n 1 = 1、 m 1 = 2 ) や特開昭 56— 90054号公報 (n丄ニ。, 1、 m 1 = 3 ) には 235〜 240 °Cに加熱した 炭酸ナトリウム粉末中に、 1=ー302?でぁるー般式 (ΙΠ) のカルボン酸フ ルオリドをフィードし、 熱分解して生成したビュルエーテルモノマーを冷却捕集 する方法 (フロー法) が開示されている。 さらには、 X1 =— S02Fである一 般式 (ΠΙ) のカルボン酸フルオリ ド (n 1: :!, 2、 m上 = 2).を炭酸ナトリウ ムと反応させてカルボン酸フルオリドをカルボン酸のナトリゥム塩に変換した後、 このナトリゥム塩を加熱して熱分解させ、 ビ^ルエーテルモノマーを得る方法 (2段法) も知られている (特公昭 41 - 794 9号公報) 。
特開昭 47-36 5号公報や特開昭 5 6- 900 54号公報に開示されている フロー法では、 転化率を上げようとすると選択率が低下してしまうので、 転化率 は高く出来ない。 したがって、 この場合には、 高い収率が得られないだけでなく、 未反応原料と目的生成物を分離し、 さらに未反応原料をリサイクルしなければな らないため、 操作が繁雑になるという問題点もある。 その上、 炭酸ナトリウムを 用いた熱分解の場合、 S O 2 F基が高温の炭酸ナトリウムと反応してしまうため、 収率が低下するという問題点もあった。 一方、 特公昭 4 1 -7 94 9号公報の方 法のように一且、 ナトリゥム塩に変換してから熱分解を行う 2段法においては副 反応が多く、 収率はやはり上がりにくいものであった。
これらの公知文献の反応成績を以下にまとめて示す。
<フロー法 > (特開昭 47-3 6 5号公報、 特開昭 56- 900 54号公報) n m1 = 3 M=Na 収率 4 9%
n m1 = 2N M=Na 収率 6 7%
n 1 = 1 m1= 3 , M=N a 収率 60%
< 2段法 > (特公昭 4 1 - 7 94 9号公報)
n = 1 1 =2 M=Na 収率 2 9 %
n 1= 2 m1 = 2, M=Na 収率 2 7%
以上のように、 従来、 一般式 (Π) において X1 — SO 2 Fで表されるカル ボン酸フルオリドから X1-— S02 Fで表される一般式 (Π) のフッ素化ビニ ルエーテルを製造する工業的に有用な方法は無く、 より経済的に有利な、 シンプ ルなプロセスでの高収率製造法が望まれていた。
また、 上記の従来技術に関する公知文献においては、 1=ー302?のー般 式 (Π) のカルボン酸フルオリ ドから 1=ー302 のー般式 (IV) のカルボ ン酸塩を経由して X1 =— S02 Fで表される一般式 (Π) のフッ素化ビニルェ 一テルを製造する各種の方法において、 一般式 (IV) の化合物におけるナトリウ ム塩とカリウム塩の間での収率の相違については議論されておらず、 また、 カリ ゥム塩についての具体例は報告されていない。
本発明は上記問題点を解消するものであり、 一般式 (Π) の中の特定のフッ素 化ビニルエーテルをシンプルなプロセスにより高収率で製造する経済的に有利な 方法を提供することを目的とする。 発明の開示
本発明者らは、 一般式 (Π) で表されるフッ素化ビニルエーテルをシンプルな プロセスにより高収率で製造する経済的に有利な方法を開発すべく鋭意研究を重 ねた結果、 一般式 (IV) 中の特定の構造のカルボン酸塩を、 特定の条件下で処理 することにより、 一般式 (Π) 中の特定の構造のフッ素化ビュルエーテルの高純 度品を、 高転化率かつ高収率で得ることができることを見出し、 本発明をなすに 至った。 即ち本発明は、
1. 下記一般式 (1) :
XCF2CF20(j:FCF2OCFC02K (1)
CF3 CF3
(式中、 Xは一 C02R又は _S02Fであり、 Rはアルキル基である。 ) で表されるカルボン酸のカリウム塩を、 無溶媒で熱分解することを含む、 下記一 般式 (2) :
XCF2CF2OCFCF2OCF=CF2 (2)
CF3
(式中、 Xは一般式 (1) と同じ。 )
で表されるフッ素化ビニルエーテルの製造方法である。
2. 一般式 ( 1 ) で表されるカルボン酸のカリウム塩を、 固体状態を維持しなが ら熱分解することを含む、 一般式 (2) で表されるフッ素化ビニルエーテルの製 造方法である。
3. 一般式 (1) で表されるカルボン酸のカリウム塩を、 無溶媒でかつ固体状態 を維持しながら熱分解することを含む、 一般式 (2) で表されるフッ素化ビュル エーテルの製造方法である。
4. 生成した一般式 (2) で表されるフッ素化ビニルエーテルを反応系外で捕集 する、 1~ 3記載の製造方法である。
5. 一般式 (1) で表されるカルボン酸のカリウム塩の熱分解を、 減圧下で行う、 1〜 4記載の製造方法である。
6. 一般式 (1) で表されるカルボン酸のカリウム塩が、 下記一般式 (3) : XCF2CF2OCFCF2OCFCOF (3)
CF3 CF3
(式中、 Xは一般式 (1) と同じ。 )
で表されるカルボン酸フルオリ ドから誘導される、 1〜 5記載の製造方法である。
7. 一般式 (3) で表されるカルボン酸フルオリドとして、 純度 80重量%以上 のものを用いる、 6記載の製造方法である。
8. 一般式 (3) で表されるカルボン酸フルオリ ドとして、 純度 90重量%以上 のものを用いる、 6記載の製造方法である。
9. 7において一般式 (3) で表されるカルボン酸フルオリ ドが下記一般式 (4) :
XCF2CF20(CFCF20)nCFCOF (4)
CF3 CF3
(式中、 nは 0又は 2以上の整数、 Xは一般式 (1) と同じ。 )
で表される不純物を 1種以上含み、 その不純物の合計量が 20重量%未満である、 7記載の製造方法である。
10. 8において一般式 (3) で表されるカルボン酸フルオリドが一般式 (4) で 表される不純物を 1種以上含む場合、 その不純物の合計量が 10重量%未満であ る、 8記載の製造方法である。
11. 一般式 (1) 及び一般式 (2) において Xがー C02Rである、 1〜; 10記 載の製造方法である。
12. 一般式 (1) 及び一般式 (2) において Xがー S02Fである、 1〜: L 0記 载の製造方法である。 発明を実施するための最良の形態
本発明の製造方法は、 一般式 (IV) において 1::!、 2, M=力リウ ム原子であるカルボン酸塩 (即ち、 一般式 (1) のカルボン酸塩) 力 ら、 一般式
(Π) において n 1- !^ m1 = 2のフッ素化ビニルエーテル (即ち、 一般式 (2) のフッ素化ビュルエーテル) を製造する方法であり、 且つその反応条件を 特定することで、 高転化率を達成すると同時に反応収率を特異的に高めたもので ある。 特定の反応条件とは、 1) まずフロー法ではなく 2段法であること、 また 2) 当該カルボン酸塩の熱分解が無溶媒下、 及び Z又はその固体状態を維持しな がら行われることである。
本発明者が、 先に反応成績を示した各種の従来既知の方法を詳細に検討した結 果、 多くの場合、 一般式 (IV) で表されるカルボン酸塩は熱分解温度あるいはそ れ以下の温度で溶融あるいは湿潤状態にあり、 そのような状態でのカルボン酸塩 の熱分解反応では、 顕著な量の副反応生成物が生成し、 その結果、 目的物の収率 が下がっていることがわかった。 例えば一般式 (IV) において X1=C02R1 の場合、 副反応生成物として一般式 (Π) のカルボン酸フルオリドがエステル化 されたジエステル化合物 (9) :
R1OCO(CF2) m iO( vC JFCF2 ~0) ' n 1CFCO2R1
CF3 CF3
(式中、 n 1 m1及び R1は、 一般式 (Π) と同じ。 )
が大量に生成し、 目的物の収率が低下していることがわかつた。
上記のジエステル化合物 (V) は、 溶融あるいは湿潤状態での一般式 (IV) で 表されるカルボン酸塩同士のエステル交換反応あるいは、 溶融あるいは湿潤状態 での一般式 (IV) で表されるカルボン酸塩と一般式 (IE) の反応原料間のエステ ノレ交換反応等により引き起こされるものと推定された。
そこで、 本発明者らは、 上記の様な副反応を抑制し、 高収率で一般式 (Π) の フッ素化ビュルエーテルを製造する方法を開発すベく鋭意検討した。
まず、 本発明者等は、 一般式 (IV) で表される広範な種類のカルボン酸塩の特 性を詳細に検討した結果、 当該カルボン酸塩の大部分が、 熱分解反応 (脱炭酸反 応) 温度あるいはそれ以下の温度で溶融状態を示すが、 その中で、 く!! 1^:!、
2 M=K〉であるカルボン酸塩 (即ち、 一般式 (1) のカルボン酸塩) が熱分解反応 (脱炭酸反応) 温度でも固体状態であることを見いだした。 本明細 書において固体状態とは流動性がない状態を意味する。
—方、 先に示した公知文献に収率が記載されている反応例において使用されて いる一般式 (IV) のカルボン酸塩ではいずれも < n M>の組み合わせ がく η "^== 1、 m1 = 2 Μ=Κ>以外である。 これらの公知文献中の一般式 (IV) のカルボン酸塩の多くは、 上述のようにその熱分解 S応 (脱炭酸反応) 温 度あるいはそれ以下の温度で溶融あるいは湿潤状態を示す。 そのようなカルボン 酸塩の性質が一般式 (Π) のフッ素化ビュルエーテルの収率向上を妨げているも のと推定される。
次に、 本発明者等は、 上記の一般式 (IV) において n 1^:^ m1 = 2, M =K>であるカルボン酸塩 (即ち、 一般式 (1) のカルボン酸塩) を、 無溶媒下 で、 及び Ζ又は、 その固体状態を維持しながら熱分解すると、 高収率で対応する 一般式 (Π) のフッ素化ビニルエーテル (即ち、 一般式 (2) のフッ素化ビニル エーテル) が製造出来ることを見いだし本発明を完成させた。 本発明の反応方法 においてこのような高収率が得られる理由は明らかではないが、 ひとつの可能性 としては、 当該カルボン酸塩の固体状態での熱分解反応の際には、 従来技術で問 題になっていた分子間で起こる副反応が抑制されるためと考えられる。
本発明で使用される一般式 (1) のカリウム塩 (即ち、 一般式 (IV) において <n 1= l , m1 = 2 M = K>であるカルボン酸塩) はどのような方法により 製造したものであってもよいが、 上記一般式 (3) のカルボン酸フルオリ ドから 変換されたものが高品質で好ましい。 一般式 (3) のカルボン酸フルオリドをカ リゥム塩に変換する方法としては、 溶媒中又は無溶媒で力リゥム原子を含むアル 力リと反応させればよい。 力リゥム原子を含むアル力リとしては、 具体的には炭 酸力リゥム、 炭酸水素力リゥム、 水酸化力リゥム、 リン酸カリウム、 酢酸力リゥ ム等が挙げられるが、 カリゥムの対イオン成分がガスとして除けるので炭酸カリ ゥムが好ましい。 炭酸カリウムとしては、 顆粒状のもの、 粉末状のもの、 微粉状 のもの、 多孔質にするなどして比表面積を高めた顆粒状のものあるいはその粉末 状のものゃ微粉状のもののいずれを用いることもできる。 また、 炭酸カリウムは 使用前によく乾燥させておくことが好ましい。 上記カルボン酸フルオリドとアル カリとの反応で溶媒を用いる場合、 一般には極性溶媒が用いられる。 具体的には 水又は、 メタノール、 エタノール、 プロパノール等のアルコール類、 テトラヒ ド 口フラン、 ジォキサン、 エチレングリコーノレジメチルエーテノレ、 ジエチレングリ コールジメチルエーテル等のエーテル類、 ァセトニトリル、 プロピオ二トリル等 の二トリル類、 ジメチルホルムアミド、 ジメチルァセトアミド等のアミド類、 ジ メチルスルホキシド等が挙げられる。 これらの溶媒は反応後に除去する必要があ るが、 除去が容易な沸点 1 0 0 °C以下の溶媒が好ましい。 また熱分解時にプロト ン性溶媒が残存するとトリフルォロビュル基の代わりにプロトン化された
C F 3 C H F—基が生成することがあるので、 溶媒としては非プロトン性極性溶 媒がより好ましい。 これらの条件を満たす溶媒としては、 テトラヒドロフラン、 エチレングリコールジメチルエーテル、 ァセトニトリル等が挙げられる。 さらに、 上記カルボン酸フルオリドとアルカリとの反応で溶媒を用いる場合、 副反応を抑 制するために反応温度は 0〜 8 0 °Cの範囲が好ましく、 2 0〜6 0 °Cの範囲がさ らに好ましい。 尚、 上記カルボン酸フルオリドとアルカリとの反応は無溶媒で行 うこともできる。 この場合、 カリウムの対イオン成分が反応後に残らない、 炭酸 カリウムとの反応を無溶媒で行うことが特に好ましい。 この場合には、 反応温度 は 5 0〜1 5 0 °Cが好ましく、 8 0〜1 2 0 °Cがさらに好ましい。
一般式 (3 ) において Xが一C O 2 Rの場合、 上記アルカリとの反応は溶媒存 在下、 溶媒不在下のいずれでも行う事ができるが、 反応操作を簡潔にするために は無溶媒で行うことが好ましい。 一方、 一般式 (3 ) において Xがー S O 2 Fの 場合も、 上記アルカリとの反応は溶媒存在下、 溶媒不在下のいずれでも行う事が できるが、 一S 0 2 F基での副反応を防ぐためには、 溶媒を用いる方が好ましい。 カリウム塩に変換するときに用いられるアルカリの量は、 一般には酸フルオリ ドを完全にカリウム塩に変換するために必要な当量を用いる。 但し、 Xが 一 C O 2 Rの場合は必要により過剰量用いてもよい。 例えば炭酸力リウムの場合、 一般には当量〜 4当量の範囲、 好ましくは当量〜 2当量の範囲で用いられる。 本発明の製造方法において、 用いる一般式 (3 ) の酸フルオリドは純度が高い ことが好ましい。 酸フルオリド (3 ) に不純物が含まれると副反応が起こりやす くなり収率が低下する。 このような不純物の影響を実質的に排除するためには酸 フルオリド (3 ) の純度は 8 0重量%以上が好ましく、 さらに好ましくは 9 0重 量%以上であり、 さらに好ましくは 9 5重量%以上である。 酸フルオリド (3 ) 中の不純物が収率低下にどのように影響するかについては定かではないが、 .不純 物成分あるいはその塩の混入による一般式 (1 ) のカリウム塩の融点降下、 不純 物成分あるいはその塩と一般式 (1 ) のカリウム塩との相溶化によるカリウム塩 の部分的な湿潤化や液状化、 一般式 (1 ) のカリウム塩あるいはその分解生成物 と不純物成分あるいはその分解物との 2次的な副反応などが考えられる。
付け加えるならば、 一般式 (3 ) の酸フルオリ ドを製造する際には一般式 ( 4 ) :
XCF2CF20(CFCF20)nCFCOF (4)
CF3 CF3
(式中、 nは 0又は 2以上の整数、 Xは一般式 ( 1 ) と同じ。 )
の酸フルオリ ドが副生することが一般的であって、 従ってそれらが不純物として 混入してくることがあり得る。 即ち、 酸フルオリド (3 ) に不純物として一般式 ( 4 ) の化合物を含む場合、 その量は 2 0重量%未満であることが好ましく、 さ らに好ましくは 1 0重量。 /0未満であり、 さらに好ましくは 5重量%未満である。 上記の酸フルオリド (3 ) の純度と同様の理由で、 本発明の製造方法に用いる 一般式 (1 ) のカルボン酸カリウム塩の純度は 8 0重量%以上が好ましく、 さら に好ましくは 9 0重量%以上であり、 さらに好ましくは 9 5重量%以上である。 本発明の製造方法において、 上記一般式 (3 ) において Xがー C O 2 Rの場合、 Rのアルキル基は、 蒸留精製が容易になるので炭素数は少ない方が好ましく、 通 常は炭素数 1〜4個の低級アルキル基が採用される。 Rの具体例としては、 メチ ル基、 ェチル基、 プロピル基、 イソプロピル基、 n—プチル基等が例示され、 中 でもメチル基、 ェチル基が好ましく、 メチル基が特に好ましい。
一般式 ( 1 ) の力リウム塩は熱分解温度以上に加熱することで脱炭酸反応し、 ビュルエーテル (2 ) を生成する。 この熱分解そのものは、 溶媒中でも無溶媒で も進行するが、 副反応を抑制し、 収率を高めるためには無溶媒及び/又は一般式 ( 1 ) で表されるカリウム塩を、 固体状態を維持した状態で熱分解を行う必要が ある。 この場合、 炭化水素溶媒やフッ素化炭化水素溶媒のような非極性溶媒、 あ るいはフッ素化エーテル系溶媒等のように極性基を含んでいても本願で使用され るカルボン酸カリウム塩を溶解させる性質がない溶媒は、 一般式 (1 ) の力リウ ム塩が固体状態を維持する事を妨げないかぎり、 本願の反応系に存在していても かまわない。 一方、 極性溶媒は大量に存在すると本願で使用されるカルボン酸力 リゥム塩を溶解させるためか、 副反応が顕著となりフッ素化ビニルエーテルの収 率が低下するので好ましくない。 しかしながら、 極性溶媒であっても、 カルボン 酸力リゥム塩が熱分解温度で実質的な固体状態を維持できる範囲の少量であるな ら存在してもかまわない。 即ち、 本発明における無溶媒とは実質的に一般式 ( 1 ) のカリウム塩の性状を変性させる量の溶媒成分を含まないことをさし、 例 えば、 上記一般式 (1 ) のカリウム塩を製造する際に用いられる溶媒等の溶媒成 分が、 該カリウム塩に対して 5重量%以内、 好ましくは 3重量%以内で含まれて いても差し支えない。 加熱温度は脱炭酸反応が進行する温度であれば差し支えな いが、 一般には 1 2 0〜3 0 0 °C、 好ましくは 1 5 0〜2 5 0 °Cで行われる。 熱 分解中は液体又は気体として生成したビュルエーテルが系内に滞留しないように することが望ましく、 ビニルエーテルを速やかに反応系外に導き、 コンデンサー 等で捕集することが好ましい。 また系内を減圧にする、 不活性ガスをフローする 等の方法によりビニルェ一テルを系内から除去することがより好ましく、 中でも 減圧で強制的に反応系外に抜き出す方法が特に好ましい。 減圧下で熱分解を行う 場合、 系内の圧力は 4 . 0 X 1 0 4 P a以下が好ましく、 2 . 7 X 1 0 4 P a以 下がより好ましく、 1 . 3 X 1 0 4 P a以下が特に好ましい。
本発明の方法で製造されたフッ素化ビニルエーテルは、 高収率で得られる上に 高転化率なので未反応酸フルオリドをほとんど含まず、 また副反応も少ないので 高純度で得られる。 従って、 本発明の製造方法により得られたフッ素化ビュルェ 一テルは反応後の精製が極めて容易であるという特長を有する。
以上のように本発明の製造方法は、 食塩電解用イオン交換膜や燃料電池用隔膜 の原料として用いられているフッ素化ビュルエーテルを簡単な操作で高収率で製 造でき、 工業的に極めて有用である。 また本発明の方法で製造されたフッ素化ビ ニルエーテ ま、 その純度が高く、 後工程としての精製が容易であるという特長 を有する。
以下、 本発明を実施例に基づいて説明する。 尚、 反応収率は原料純度から換算 して求めた。 収率の算出は出発物質のモル数に対する、 生成物のモル数の割合で 算出した。 例 1
10 Om 1のフラスコに、 14. 5 gの炭酸カリウムと 20 m 1のエチレング リコールジメチルエーテルを入れておき、 一般式 (3) において
X =— C02CH3のカルボン酸フルオリド (純度 96重量。/。) 48. 8 gを、 40°Cで滴下した。 そのまま 2時間攪拌を続けた後、 溶媒を減圧で留去し、 さら に 100°Cで真空乾燥し、 KFを含む固体状のカリウム塩を得た。 カルボン酸フ ルオリドが完全に対応するカリウム塩に変換されていることは19 F— NMRで 確認した。 フラスコに蒸留ヘッドとコンデンサーを付け、 そのまま常圧で 200 °Cまで加熱し、 液の留出が収まるまで 200°Cで加熱を続けた。 その間、 力リウ ム塩は固体状態を維持していた。 回収された液体 38. 3 gをガスクロマトグラ フィ一で分析したところ、 一般式 (2) において X =— C02CH3のビエルェ 一テルが純度 96重量%で含まれていた (収率 91%) 。 また、 式 (V) のジェ ステルが 2重量。/。含まれていた。
例 2 (比較例)
炭酸カリウムの代わりに 1 1. 1 gの炭酸ナトリゥムを用いた以外、 例 1と同 様に反応を行った。 溶媒を留去して得られたナトリゥム塩は粘稠な液体であった。 また、 熱分解で得られた液体 35. 3 gをガスクロマトグラフィ一で分析したと ころ、 ビニルエーテルの純度は 80重量%であり (収率 66%) 、 式 (9) のジ エステルは 1 7重量。/。含まれていた。
例 3 (比較例)
本例では、 フ口一法を用いてビニルエーテルの合成を行つた。
20 Om 1の三口フラスコに 18. 5 gの炭酸カリウムを入れておき、 220 °Cに加熱した。 この中に、 例 1で用いたものと同じカルボン酸フルオリド 48. 8 gを少量ずつ滴下した。 気体生成物はコンデンサーで捕集し、 得られた 39. 2 gの液体をガスクロマトグラフィ一で分析したところ、 ビュルエーテルが 65 重量。/。 (収率 61%、 選択率 76%) 、 未反応のカルボン酸フルオリドが 25重 量%、 式 (V) のジエステルが 1重量%含まれていた。
例 4 (比較例)
炭酸カリウムの代わりに 14. 2 gの炭酸ナトリウムを用いた以外、 例 3と同 様に反応を行つだ。 得られた液体 40. 3 gをガスクロマトグラフィ一で分析し たところ、 ビニルエーテルが 68重量% (収率 64%、 選択率 72%) 、 未反応 のカルボン酸フルオリドが 13重量%、 式 (V) のジエステルが 9重量%含まれ ていた。
例 5
20 Om 1の三口フラスコに 27. 6 gの炭酸カリウムを入れておき、 100 °Cで例 1と同じカルボン酸フルォリド (純度 95重量%) 48. 8 gを滴下した。 さらに 2時間反応を続けたところ、 全体が固化した。 この段階で、
1 F— NMRでカルボン酸フルオリ ドが完全に対応するカリゥム塩に変換され ていることを確認した。 フラスコに蒸留ヘッドとコンデンサーを付け、 そのまま フラスコを 200°Cまで加熱し、 熱分解反応を行った。 得られた 39. 5 gの液 体をガスクロマトグラフィ一で分析したところ、 ビニルエーテルが 91重量0 /0 (収率 89%) 、 式 (V) のジエステルが 4重量。/。含まれていた。
例 6 (比較例)
一般式 (3) において X==— C〇2CH3のカルボン酸フルオリ ドの代わりに CH3OCOCF2CF2OCF (CF3) COF (純度 93重量。/。) 32. 2 gを用いた以外、 例 1と同様に反応を行った。 中間で
CH3OCOCF 2CF2OCF (CF 3) C O Fが完全に対応するカリウム塩 に変換されていることは 9 F— NMRで確認した。 力リゥム塩は 200°Cまで 加熱すると激しく白煙を生じながら分解したが、 液の留出が収まるまで 200°C で加熱を続けた。 回収された液体 1 5. 7 gをガスクロマトグラフィ一で分析し たところ、 —般式 (Π) において n丄 =0、 m丄 = 2、 X1-— C02CH3のビ ニルエーテルを少量含む複雑な混合物であった。
例 7 (比較例)
炭酸カリウムの代わりに 1 1. 1 gの炭酸ナトリウムを用いた以外、 例 6と同 様に反応を行った。 中間で生成したナトリウム塩は粘稠な液体であった。 また、 熱分解で得られた液体 1 6. 5 gをガスクロマトグラフィ一で分析したところ、 例 6と同じビ二/レエ一テルを少量含む複雑な混合物であった。
例 8 (比較例)
例 1で用いたカルボン酸フルオリドの代わりに一般式 (ΠΙ) において n 1 = 1、 m1 = 3、 X1^— C02CH3のカルボン酸フルオリ ド (純度 95重量0 /0) 5 3. 8 g、 炭酸カリウムの代わりに 11. 1 gの炭酸ナトリウムを用いた以外、 例 1と同様に反応を行った。 溶媒を留去して得られたナトリゥム塩は粘稠な液体 であつた。 また、 熱分解で得られた液体 39. 2 gをガスクロマトグラフィーで 分析したところ、 一般式 (Π) において!! 1^;!、 m^S,
1:—。。 2 CH3のビニルエーテルの純度は 73重量%であり (収率 64 %) 、 ジエステノレ化合物が 18重量%含まれていた。
例 9
20 Om 1の三口フラスコに、 一般式 (3) において X =— S02Fのカルボ ン酸フルオリ ド (純度 98重量0 /0) 51. 2 gと 20m lのエチレングリコール ジメチルエーテルを入れておき、 60°Cに加熱しながら 14. 5 gの炭酸力リゥ ムを少量ずつ加えた。 さらに 60°Cで 30分間攪拌を続けた後、 溶媒を減圧で留 去し、 KFを含む固体状のカリウム塩を得た。 19 F— NMRから求められた転 化率は 96%であった。 フラスコに蒸留ヘッドとコンデンサーを付け、 そのまま 常圧で 220 °Cまで加熱し、 液の留出が収まるまで 220 °Cで加熱を続けた。 そ の間、 カリウム塩は固体状態を維持していた。 回収された液体 42. 9 gをガス クロマトグラフィ一で分析したところ、 一般式 (2) において X =—S02Fの ビエルエーテルが 84重量%含まれていた (原料純度換算せずに求めた粗収率 8 1 %、 収率 83%) 。
例 10
20 Om 1の三口フラスコに 13. 8 gの炭酸カリウムと 20 m 1のエチレン グリコ一ルジメチルエーテルを入れておき、 攪拌しながら 40 °Cで例 9と同じ力 ルボン酸フルオリ ド 51. 2 gを滴下した。 さらに 1時間反応を続けた後、 溶媒 を減圧で留去し、 KFを含む固体状のカリウム塩を得た。 1 9F_NMR力 ら求 められた転化率は 93 %であった。 例 9と同様に 220 °Cで熱分解を行い、 回収 された液体 40. 3 gをガスクロマトグラフィ一で分析したところ、 ビュルエー テルが 91重量%含まれていた (原料純度換算せずに求めた粗収率 82%、 収率
84 %) 。
例 1 1
エチレングリコールジメチルエーテルの代わりにァセトニトリルを用いた以外、 例 10と同じ方法で反応を行った。 19F— NMRから求められたカリゥム塩の 転化率は 96%であった。 例 9と同様に 220°Cで熱分解を行い、 回収された液 体 40. 3 gをガスクロマトグラフィ一で分析したところ、 ビエルエーテルが 9 2重量%含まれていた (原料純度換算せずに求めた粗収率 83 %、 収率 85%) 。 例 1 2 (比較例)
炭酸カリウムの代わりに 10.' 6 gの炭酸ナトリゥムを用いた以外、 例 10と 同様に反応を行った。 溶媒を留去して得られたナトリゥム塩は粘稠な液体であり、 9 F— NMRから求められた転化率は 99%であった。 熱分解は 200°Cで進 行し、 得られた液体 41. 2 gをガスクロマトダラフィ一で分析したところ、 ビ ニルエーテルが 70重量。/。含まれていた (原料純度換算せずに求めた粗収率 65 %、 収率 66%) 。
例 1 3 (比較例)
20 Om 1の三口フラスコに 10. 6. gの炭酸ナトリウムを入れておき、 22 0°Cに加熱した。 この中に、 例 9と同じカルボン酸フルオリド 51. 2 gを少量 ずつ滴下した。 生成物はコンデンサーで捕集し、 得られた 48. 4 gの液体をガ スクロマトグラフィ一で分析したところ、 ビニルェ一テルが 20重量% (原料純 度換算せずに求めた粗収率 22 %、 収率 22%、 選択率 70%) 、 未反応の酸フ ルオリドが 72重量% (回収率 68%) 含まれていた。
例 14
例 5と同様にカルボン酸のカリウム塩を調製した後、 フラスコに蒸留ヘッドと コンデンサーを付け、 1. 3 X 104 P aの圧力下でフラスコを 160°Cまで加 熱し、 熱分解反応を開始した。 反応器の圧力は徐々に 6時間かけて 2. 6 X 1
0 "P aまで下げながら、 液の留出が収まるまで反応を行った。 その間、 力リウ ム塩は固体状態を維持していた。 回収された液体 41. 4 gをガスクロマトグラ フィ一で分析したところ、 一般式 (2) において X = _CO 2 CH3のビニルェ 一テルが純度 97重量%で含まれていた (収率 95%) 。 また、 式 (V) のジェ ステルが 1重量。/。含まれていた。
例 15
純度 74%のカルボン酸フルオリ ド (一般式 (4) において n = 2、
X =— C02CH3の化合物を 1 8重量 °/。含む) を用いた以外、 例 5と同様に反 応を行った。 カリウム塩は 100°Cでは餅状の固体であった。 この固体を徐徐に 加熱すると、 180°Cで粥状に変化した。 200°Cで熱分解を行い、 得られた 3 0. 2 gの液体をガスクロマトグラフィ一で分析したところ、 一般式 (2) のビ ニルエーテルが 74重量% (収率 72%) 、 式 (V) のジエステルが 12重量0 /0 含まれていた。 産業上の利用可能性
本発明の製造方法は、 食塩電解用イオン交換膜や燃料電池用隔膜の原料として 用いられているフッ素化ビニルエーテルを簡単な操作で高収率で製造でき、 工業 的に極めて有用である。 また本発明の方法で製造されたビニルエーテルは、 その 純度が高く、 後工程としての精製が容易であるという特長を有する。

Claims

請 求 の 範 囲
1. 下記一般式 (1) :
XCF2CF2OCFCF2OCFC02K (1)
CF3 CF3
(式中、 Xは一 CO 2 R又は一SO 2 Fであり、 Rはアルキル基である。 ) で表されるカルボン酸のカリウム塩を、 無溶媒で熱分解することを含む、 下記一 般式 (2) :
Figure imgf000020_0001
CF3
(式中、 Xは一般式 (1) と同じ。 )
で表されるフッ素化ビュルエーテルの製造方法。
2. 一般式 (1) で表されるカルボン酸のカリウム塩を、 固体状態を維持しな がら熱分解することを含む、 一般式 (2) で表されるフッ素化ビニルエーテルの 製造方法。
3. 一般式 (1) で表されるカルボン酸のカリウム塩を、 無溶媒でかつ固体状 態を維持しながら熱分解することを含む、 一般式 (2) で表されるフッ素化ビニ ルエーテルの製造方法。
4. 生成した一般式 (2) で表されるフッ素化ビニルエーテルを反応系外で捕 集する、 請求項 1〜 3記載の製造方法。
5. 一般式 (1) で表されるカルボン酸のカリウム塩の熱分解を、 減圧下で行 う、 請求項 1〜 4記載の製造方法。
6. 一般式 (1) で表されるカルボン酸のカリウム塩が、 下記一般式 (3) :
XCF2CF2OCFCF2OCFCOF (3)
CF3 CF3
(式中、 Xは一般式 (1) と同じ。 )
で表されるカルボン酸フルオリドから誘導される、 請求項 1〜 5記載の製造方法。
7. —般式 (3) で表されるカルボン酸フルオリドとして、 純度 80重量%以 上のものを用いる、 請求項 6記載の製造方法。
8. 一般式 (3) で表されるカルボン酸フルオリドとして、 純度 90重量%以 上のものを用いる、 請求項 6記載の製造方法。
9. 請求項 7において一般式 (3) で表されるカルボン酸フルオリドが下記一 般式 (4) :
XCF2CF20(CFCF20)nCFCOF (4)
CF3 CF3
(式中、 nは 0又は 2以上の整数、 Xは一般式 (1) と同じ。 )
で表される不純物を 1種以上含み、 その不純物の合計量が 20重量。 /0未満である、 請求項 7記載の製造方法。
10. 請求項 8において一般式 (3) で表されるカルボン酸フルオリドが一般式 (4) で表される不純物を 1種以上含む場合、 ·その不純物の合計量が 10重量% 未満である、 請求項 8記載の製造方法。
11. —般式 (1) 及び一般式 (2) において Xが _C02Rである、 請求項 1 〜 10記載の製造方法。
12. 一般式 (1) 及び一般式 (2) において Xが— S02Fである、 請求項 1 〜10記載の製造方法。
PCT/JP2002/006576 2001-06-29 2002-06-28 Procédé de production d'éther vinylique fluoré WO2003002506A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/482,048 US7196235B2 (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether
CNB028127935A CN100338013C (zh) 2001-06-29 2002-06-28 氟化乙烯基醚的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001198038A JP4817542B2 (ja) 2001-06-29 2001-06-29 フッ素化ビニルエーテルの製造法
JP2001-198038 2001-06-29
JP2001-198037 2001-06-29
JP2001198037A JP4817541B2 (ja) 2001-06-29 2001-06-29 フッ素化ビニルエーテルの製造方法

Publications (1)

Publication Number Publication Date
WO2003002506A1 true WO2003002506A1 (fr) 2003-01-09

Family

ID=26617830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006576 WO2003002506A1 (fr) 2001-06-29 2002-06-28 Procédé de production d'éther vinylique fluoré

Country Status (3)

Country Link
US (1) US7196235B2 (ja)
CN (1) CN100338013C (ja)
WO (1) WO2003002506A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003082A1 (ja) * 2003-07-04 2005-01-13 Asahi Glass Company, Limited 含フッ素スルホニルフルオリドの製造方法
RU2456270C2 (ru) * 2010-10-04 2012-07-20 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Способ получения 5-трифторметил-3,6-диокса-8-сульфонилфторидперфтороктена
CN101712619B (zh) * 2009-11-13 2013-06-12 山东华夏神舟新材料有限公司 立管式催化反应制备氟烯醚的方法
JP5668887B1 (ja) * 2013-08-23 2015-02-12 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有二官能化合物、パーフルオロ(ポリ)エーテル基含有二官能化合物を含む組成物およびこれらの製造方法
US10060048B2 (en) 2012-10-25 2018-08-28 Wetling Ip Ccg Ltd Method for preparing high quality crystals by directing ionized gas molecules through and/or over a saturated solution comprising a protein
WO2019163712A1 (ja) * 2018-02-21 2019-08-29 ダイキン工業株式会社 (ポリ)エーテル基含有モノカルボン酸化合物の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631714B1 (ko) * 2004-06-30 2006-10-09 엘지전자 주식회사 휴대단말기의 개선된 영상신호 레이트 콘트롤 장치 및 방법
US7176331B2 (en) 2005-06-30 2007-02-13 3M Innovative Properties Company Method of making fluorinated vinyl ethers
CN101698644B (zh) * 2009-10-26 2010-12-29 山东东岳神舟新材料有限公司 无溶剂法高效制备氟烯醚的方法
CN102516039A (zh) 2011-11-16 2012-06-27 中昊晨光化工研究院 一种含氟乙烯基醚的制备方法
CN102702035B (zh) * 2012-06-08 2013-11-13 巨化集团公司 一种氟化乙烯基醚的连续制备方法
CN107298647B (zh) * 2017-06-22 2019-02-22 山东华夏神舟新材料有限公司 端基为磺酰氟基团的直链全氟乙烯基醚的制备方法
CN108689811B (zh) * 2018-03-23 2021-05-18 金华永和氟化工有限公司 一种制备全氟烷基乙烯基醚的方法和反应***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS417949B1 (ja) * 1963-09-13 1966-04-26
JPS5278827A (en) * 1975-12-26 1977-07-02 Asahi Glass Co Ltd Preparation of ester-group-containing fluorovinyl ethers
DE2708677A1 (de) * 1977-02-28 1978-08-31 Asahi Glass Co Ltd Verfahren zur herstellung eines fluorierten vinylaethers mit einer estergruppe
US4329435A (en) * 1979-05-31 1982-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Novel fluorinated copolymer with tridihydro fluorosulfonyl fluoride pendant groups and preparation thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
JPS4837735Y2 (ja) 1971-01-23 1973-11-09
US4153804A (en) * 1977-02-04 1979-05-08 Asahi Glass Co. Ltd. Process for producing fluorinated vinyl ether having ester group
US4131740A (en) * 1977-04-20 1978-12-26 E. I. Du Pont De Nemours And Company Alkyl perfluoro-ω-fluoroformyl esters and their preparation
JPS54112822A (en) 1978-02-21 1979-09-04 Asahi Glass Co Ltd Preparation of ester group-containing perfluorovinyl ether
JPS5531004A (en) 1978-08-25 1980-03-05 Asahi Glass Co Ltd Preparation of fluorovinyl ether
JPS5911581B2 (ja) 1979-12-21 1984-03-16 旭化成株式会社 フツ素化ビニルエ−テル化合物及びその製法
US4675453A (en) 1983-12-27 1987-06-23 E. I. Du Pont De Nemours And Company Process and intermediates for fluorinated vinyl ether monomer
US5268511A (en) 1992-03-27 1993-12-07 E. I. Du Pont De Nemours And Company Production of trifluorovinyl ethers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS417949B1 (ja) * 1963-09-13 1966-04-26
JPS5278827A (en) * 1975-12-26 1977-07-02 Asahi Glass Co Ltd Preparation of ester-group-containing fluorovinyl ethers
DE2708677A1 (de) * 1977-02-28 1978-08-31 Asahi Glass Co Ltd Verfahren zur herstellung eines fluorierten vinylaethers mit einer estergruppe
US4329435A (en) * 1979-05-31 1982-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Novel fluorinated copolymer with tridihydro fluorosulfonyl fluoride pendant groups and preparation thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003082A1 (ja) * 2003-07-04 2005-01-13 Asahi Glass Company, Limited 含フッ素スルホニルフルオリドの製造方法
US7781612B2 (en) 2003-07-04 2010-08-24 Asahi Glass Company, Limited Process for producing fluorinated sulfonyl fluoride
CN101712619B (zh) * 2009-11-13 2013-06-12 山东华夏神舟新材料有限公司 立管式催化反应制备氟烯醚的方法
RU2456270C2 (ru) * 2010-10-04 2012-07-20 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Способ получения 5-трифторметил-3,6-диокса-8-сульфонилфторидперфтороктена
US10060048B2 (en) 2012-10-25 2018-08-28 Wetling Ip Ccg Ltd Method for preparing high quality crystals by directing ionized gas molecules through and/or over a saturated solution comprising a protein
JP5668887B1 (ja) * 2013-08-23 2015-02-12 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有二官能化合物、パーフルオロ(ポリ)エーテル基含有二官能化合物を含む組成物およびこれらの製造方法
WO2015025929A1 (ja) * 2013-08-23 2015-02-26 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有二官能化合物、パーフルオロ(ポリ)エーテル基含有二官能化合物を含む組成物およびこれらの製造方法
WO2019163712A1 (ja) * 2018-02-21 2019-08-29 ダイキン工業株式会社 (ポリ)エーテル基含有モノカルボン酸化合物の製造方法
JP2019143135A (ja) * 2018-02-21 2019-08-29 ダイキン工業株式会社 (ポリ)エーテル基含有モノカルボン酸化合物の製造方法

Also Published As

Publication number Publication date
US7196235B2 (en) 2007-03-27
US20040176636A1 (en) 2004-09-09
CN100338013C (zh) 2007-09-19
CN1520393A (zh) 2004-08-11

Similar Documents

Publication Publication Date Title
US7176331B2 (en) Method of making fluorinated vinyl ethers
WO2003002506A1 (fr) Procédé de production d&#39;éther vinylique fluoré
EP1572616A1 (en) Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
JP4108369B2 (ja) 一方に末端基−ch2ohおよび他方に塩素を含む末端基を有するフルオロポリオキシアルキレンの製造方法
WO2011027867A1 (ja) ビススルホニルイミドアンモニウム塩、ビススルホニルイミドおよびビススルホニルイミドリチウム塩の製造方法
JP3360689B2 (ja) フッ素化ビニルエーテルの製造方法
WO2019176425A1 (ja) スルホン酸基含有モノマーの製造方法
WO2009083451A1 (en) Addition reaction to fluoroallylfluorosulfate
JP2012532163A (ja) 過フッ素化有機化合物を製造する方法
JP2001302571A (ja) フルオロアルコールの製造方法
JP4565837B2 (ja) パーフルオロビニルカルボン酸エステルの製造方法
JP4817542B2 (ja) フッ素化ビニルエーテルの製造法
US6596906B2 (en) Process for preparing fluorine-containing benzaldehydes
JP4013951B2 (ja) 水溶性含フッ素ビニルエーテル製造方法
JP4817541B2 (ja) フッ素化ビニルエーテルの製造方法
JP2006232704A (ja) 新規なフルオロスルホニル基含有化合物
JP4189631B2 (ja) 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
JP2008127318A (ja) 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
EP1514868B1 (en) Process for producing fluorinated fluorosulfonylalkyl vinyl ether
US20030125583A1 (en) Process for preparing fluorine-containing benzaldehydes
CN118479959A (en) Preparation method of 1, 2-dimethoxy-1, 2-tetrafluoroethane
WO2023179071A1 (zh) 一种高纯度碳酸乙烯酯氟代衍生物的制备方法
JPH09309849A (ja) アルコキシド化合物の製造方法
CN117736243A (zh) 一种乙氧基(五氟)环三磷腈的制备方法
US20040158099A1 (en) Alkyl esters of the 2- (2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028127935

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10482048

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase