WO2002032698A1 - Dispositif permettant de prevoir l'eclatement d'un pneu - Google Patents

Dispositif permettant de prevoir l'eclatement d'un pneu Download PDF

Info

Publication number
WO2002032698A1
WO2002032698A1 PCT/JP2001/008963 JP0108963W WO0232698A1 WO 2002032698 A1 WO2002032698 A1 WO 2002032698A1 JP 0108963 W JP0108963 W JP 0108963W WO 0232698 A1 WO0232698 A1 WO 0232698A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
wheel
force gradient
wheel speed
tire
Prior art date
Application number
PCT/JP2001/008963
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Asano
Eiichi Ono
Takaji Umeno
Hideki Ohashi
Kazuhiro Kamiya
Yukio Mori
Toshiharu Naito
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE60113282T priority Critical patent/DE60113282T2/de
Priority to EP01974809A priority patent/EP1325821B1/en
Priority to US10/380,108 priority patent/US6879938B2/en
Publication of WO2002032698A1 publication Critical patent/WO2002032698A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • B60C23/062Frequency spectrum analysis of wheel speed signals, e.g. using Fourier transformation

Definitions

  • the present invention relates to a tire burst prediction device, and more particularly, to a tire burst prediction device that detects a ground contact property of a tire and predicts occurrence of a burst in the evening.
  • Conventional technology relates to a tire burst prediction device, and more particularly, to a tire burst prediction device that detects a ground contact property of a tire and predicts occurrence of a burst in the evening.
  • Japanese Patent Application Laid-Open No. Hei 7-149913 discloses that a wheel speed sensor detects a wheel speed of a tire, determines a decrease in tire air pressure from the detected wheel speed, and detects a plurality of decreases in air pressure. A device that gives an alarm when the number of times is determined is described. Problems to be solved by the invention
  • the appropriate air pressure of the tire may be different for each tire.Therefore, when the reduction of the air pressure is determined at a certain threshold, if the appropriate air pressure changes due to tire replacement or tire wear, An alarm may be issued by mistake. In addition, there is a problem that the timing of reporting may be delayed or increased depending on road conditions, tire conditions, and driving conditions.
  • the present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a tire burst prediction device that can accurately predict the occurrence of a tire burst and issue an alarm.
  • the invention according to claim 1 includes: a wheel speed detecting means for detecting a wheel speed; and a ground contact between the wheel and a road surface based on the detected wheel speed.
  • Grounding property estimating means for estimating a physical quantity to be represented
  • change rate detecting means for detecting a rate of change of a physical quantity representing the estimated grounding property between the wheel and the road surface, and whether the detected change rate is a value outside a predetermined range.
  • Predicting means for predicting the occurrence of the wheel burst by judging whether or not the wheel burst has occurred.
  • the wheel speed detecting means detects a wheel speed of a wheel of a vehicle (for example, a four-wheeled vehicle).
  • a wheel speed sensor that generates a predetermined number of pulses (
  • the wheel speed can be detected from the count value or the measured pulse width.
  • the contact property estimating means calculates a physical quantity representing the contact property between the wheel and the road surface based on the detected wheel speed, for example, a contact area between the main wheel (tire) and the road surface, a friction state between the wheel and the road surface ( Estimate the physical quantity representing the slipperiness.
  • a physical quantity representing the frictional state between the wheel and the road surface is, for example, a braking force gradient.
  • the braking force gradient is obtained by approximating the transfer characteristic from road surface disturbance to umbrella wheel speed to a first-order lag model, and estimating the band frequency based on the time series data of the wheel speed from the frequency response of this first-order lag model.
  • the driving force gradient when the driving force is applied to the wheel and the road gradient indicating the drip state of the wheel are all physical ⁇ ⁇ indicating the slipperiness between the tire and the road. , These are equivalent to the braking system J! Since it is S, instead of the braking force gradient, it is possible to use a driving force gradient)
  • the change rate detection means 1 detects a change rate of an object indicating a contact property between the estimated four-wheeled vehicle and the road. In other words, ' ⁇ - ⁇ ,' /: changes ift, which indicates ground contact per time, are detected. You. By detecting the change rate in this way, it is possible to grasp a change in the state of the wheel. That is, for example, when the force gradient is estimated as an object representing the ground contact, the ground contact of the ⁇
  • the prediction means predicts the occurrence of a wheel burst by determining whether the detected change rate is a value outside a predetermined range. Thus, when the detected change rate is a value outside the predetermined range, it can be determined that a burst may occur. It should be noted that when the state in which the detected change rate is outside the predetermined range has continued for a predetermined period or more, it can be determined that a burst may occur.
  • the alarm means may generate an alarm by, for example, sounding an alarm or displaying the alarm on a display means.
  • the driving force of one wheel may be suppressed by the driving suppression means instead of or together with the good news.
  • ⁇ speed can be suppressed, and bursting of the ⁇
  • the 'grounding insertion' means can be constituted by a smoothing stage for smoothing the physical characteristic representing the grounding 'I, and a differentiator for differentiating the smoothed grounding property ⁇ .
  • a low-pass filter can be used as the smoothing means. In this way, by superimposing and differentiating the object representing the grounding property, an extra high frequency component is removed, and for example, only the change of the object representing the grounding property caused by the temperature change of the ⁇
  • FIG. 1 is a block diagram showing a dynamic model of a wheel resonance system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a relationship between a slip speed and a road surface.
  • FIG. 3 is a gain diagram showing a frequency response from a road surface disturbance to a wheel speed.
  • FIG. 4 is a schematic block diagram of the tire burst prediction device according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an algorithm for estimating a band frequency according to the embodiment of the present invention.
  • FIG. 6 is a gain diagram showing the frequency response from the road surface disturbance to the wheel speed of the first-order lag model.
  • FIG. 7 is a diagram showing the relationship between the band frequency and the braking force gradient.
  • FIG. 8 is a flowchart of a control routine executed by the determination means.
  • FIG. 9 is a schematic block diagram showing another example of the tire burst prediction device.
  • FIG. 10 is a schematic block diagram of the wheel speed frequency characteristic quantity estimating means. BEST MODE FOR CARRYING OUT THE INVENTION
  • the dynamic model of the wheel resonance system is composed of a spring foot Kl between the rim 10 and the belt 12 and a torsion spring 14 and 16 of a 2 tire.
  • the model is represented by a model in which a suspension in which a spring element 18 having a spring constant ⁇ 3 and a damper 20 are connected in parallel between the rim 10 and the vehicle body.
  • Disturbance from the road surface is transmitted from the belt 12 to the rim 10 via the spring elements 14 and 16 to affect the rim wheel speed ⁇ and via the suspension element. It is transmitted on holiday.
  • the braking force gradient and road disturbance are obtained using a fifth-order ⁇ -wheel full model integrating the first-order ⁇
  • the relationship between the transfer characteristic from the wheel speed to the wheel speed and the wheel speed frequency characteristic amount, which represents the following frequency, will be described.
  • the braking force gradient is represented by the tangent of the curve representing the relationship between the slip speed (or the slip rate) and the braking force.
  • FIG. 3 shows the range from the road surface disturbance to the wheel speed in the range from the limit braking region where the braking force gradient is 300 Ns Zm to 100000 Ns / m to the low slip region where there is room for tire characteristics.
  • FIG. 4 is a gain diagram showing a frequency response, that is, a relationship between a frequency and an amplitude gain of a wheel speed with respect to an amplitude of a road disturbance.
  • the gain in the low frequency region in the frequency characteristics of the wheel speed is smaller than the gain in the low frequency region in the region where the braking force gradient is relatively small.
  • the gain in the high frequency region is smaller than that in the high frequency region where the braking force gradient is relatively small due to the effects of the occurrence of tire rotational resonance (around 40 Hz). It has not become smaller.
  • the wheel speed frequency characteristic it is small.
  • the ⁇ wheel speed frequency characteristic ⁇ ⁇ which represents the difference between the vibration level of the ⁇
  • the wheel speed frequency characteristic ffi which expresses the difference (or ratio) from the vibration level of the signal, decreases as the braking force gradient increases, and by using this characteristic, the wheel speed frequency characteristic ⁇ A braking force gradient can be inserted.
  • this wheel characteristic is approximated by a first-order lag model, as shown in FIG. 6, it can be understood that the band frequency increases as the braking force gradient increases. Therefore, the wheel characteristics are approximated by a first-order lag model, and the band frequency, which is the frequency at which the gain changes from a predetermined range to a value outside the predetermined range, is estimated as the wheel speed frequency characteristic: S. Then, the braking force gradient can be estimated from the value of the wheel speed frequency characteristic amount representing the follow-up frequency of the transfer characteristic from the road surface disturbance to the wheel speed.
  • the second-order and third-order delay models have almost the same characteristics as the first-order delay model.Therefore, the wheel characteristics can be approximated to those of the lower-order delay to estimate the wheel speed frequency characteristics. For example, the braking force gradient can be estimated from the value of the wheel speed frequency characteristic amount.
  • the driving force gradient when the driving force is applied to the tire is a physical quantity representing the ease of slipping between the tire and the road surface. This is a physical quantity equivalent to the road gradient indicating the tire drip condition. Therefore, the braking force gradient, which is the slope of the tangent to the curve representing the relationship between the slip ratio or the slip speed and the braking force, and the ifll line representing the relationship between the slip ratio or the slip speed and the driving force, are obtained from the wheel speed frequency characteristic quantity.
  • the physical force i which indicates the slipperiness of the road, either the driving force gradient, which is the inclination of the tangent, or the road gradient, which is the inclination of the tangent of the llll line, which indicates the relationship between the slip rate or the slip speed and the road.
  • vertebral ⁇ or less which can be, estimated ⁇ a band frequency as Hanwa speed frequency characteristic iS, was ⁇ Jo: braking 3 ⁇ 4 force gradients as representing the ground resistance from the frequency estimate ', control 3 ⁇ 4 that the estimated
  • the tire burst prediction device 30 detects the wheel speed of each of the right and left wheels after M (not shown) at a predetermined sampling cycle, and obtains the time series data of the wheel speed.
  • Contact detection means 34 for indirectly detecting the physical property ⁇ indicating the adhesiveness of the tires
  • change rate detection means for detecting the rate of change of the physical quantity indicating the contact property of each detected tire Contacting rate change rate detecting means 36 as judgment means
  • judging means 38 for judging whether there is a risk of bursting the tire based on the detected change rate of the physical quantity representing the contacting property of each tire, judging means 3 Warning means to warn that there is a risk of bursting according to the instruction from 8 40, and a driving force suppression control means 42 for controlling the suppression of the driving force of the tire in accordance
  • the wheel speed, wheel speed sensor 3 2 F2 outputs the wheel speed of the right front wheel
  • the wheel speed sensor 3 2 R 1 outputs the wheel speed of the left rear wheel
  • the wheel speed sensor 3 2 R2 outputs the wheel speed of the right rear wheel.
  • the band frequency estimating means 44, the braking force gradient estimating means 46, the low-pass filter 48, and the differentiator 50 are provided for the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel. It is provided for each tire.
  • the ground contact detection means 34 is a gain line representing a frequency response of the model when a transfer characteristic from a road surface disturbance to a wheel speed is approximated to a first-order lag model based on time-series data of the wheel speed.
  • the frequency when the gain changes from a constant value is estimated as a band frequency : a band frequency estimating means 44 and a pre-stored ⁇ band frequency
  • a braking force gradient estimating section 46 for estimating the excitation force gradient with respect to the determined band frequency based on a map representing the relationship between the braking force gradient and the braking force gradient.
  • the contact change rate detecting means 36 includes, for example, a mouth-to-pass filter 48 for reducing the estimated 'estimation of the braking force gradient' and a detection method for detecting the rate of change of the braking force gradient.
  • the differentiator 50 consists of
  • the band frequency estimating means 44 of the present embodiment identifies the band frequency of the first-order lag model using the least squares method, assuming that a white disturbance, which is a disturbance including all frequencies, is input to the tire from the road surface. did.
  • Fig. 5 shows the algorithm for identifying the band frequency.
  • Fig. 6 shows the band frequency identified by the algorithm in Fig. 5 when the white wheel is added to the wheel full model in Fig. 1 and the corresponding first-order lag model.
  • FIG. 4 shows a gain diagram. These processes are performed for each tire.
  • step 100 data obtained by adding white disturbance to the time-series data of the wheel speed detected by the wheel speed sensor 32 is fetched, and in step 102, a high-pass filter of 2 Hz is used, for example, using a second-order bus filter. For example, pre-processing with a filter consisting of a 20 Hz mouth-to-pass filter is performed. By inputting the wheel speed signal to the high-pass filter and performing high-pass filtering, a steady component of the wheel acceleration is removed, and smoothing of the wheel speed signal can be performed by performing low-pass filtering.
  • the time series data of the band frequency is estimated from the time series data of the wheel speed preprocessed by using the online least squares method.
  • the wheel speed sensor 32 discriminates the wheel speed time series data that has been discretized for each sample time r into the wheel speed time series data that has been preprocessed by the filter in step 102.
  • ⁇ [k] in equation (1) is the value obtained by multiplying the change amount of the wheel speed in one sample time by the sample time ⁇ (the thing related to the change in wheel speed 3 ⁇ 43 ⁇ 4).
  • Y [k] in equation (2) Is the change in wheel speed for one sample time ( ⁇ [k—1] — ⁇ [k—2], ⁇ [k] - ⁇
  • [K] in equation (3) is a physical quantity related to a change in wheel speed and a physical quantity related to a change in wheel speed, that is, a physical quantity representing a history of physical quantities related to a change in wheel acceleration.
  • the band frequency may be estimated using another online identification method such as the auxiliary variable method.
  • Figure 6 shows an example of band frequency estimation results in the first-order lag model estimated as described above. Also, as can be understood from the gain diagram of Fig. 6, the gain of the approximated first-order lag model shows that the steady-state gain and the anti-resonance in the wheel full-model gain diagram except when the braking force gradient is other than 300 Ns Zm. It has been identified as a characteristic that passes the gain at the point (around 40 Hz), and the resonance before and after the suspension around 15 Hz and the resonance characteristic of the tire rotational vibration around 40 Hz have been neglected due to the lower dimensions. Also
  • the braking force gradient is 3 In the braking region near the limit of 0 Ns / m or less, both before and after the suspension; the effect of resonance due to ⁇ shin and tire rotational vibration is small, and the wheel deceleration motion model is dominant. Therefore, in the vicinity of such a limit, it is considered that the wheel traffic can be approximated by the following wheel deceleration motion model.
  • vw —-w + no
  • w is the wheel speed (m / s)
  • w is the road disturbance
  • k is the braking force gradient (NsZm)
  • RC is the tire effective radius (m)
  • J is the vehicle moment of inertia
  • the coefficient of w represents the band frequency.
  • the relationship in Fig. 7 can be derived by applying the least squares method.
  • This figure shows the relationship between the braking force gradient in the full wheel model and the band frequency identified from the wheel speed data when white disturbance is applied.
  • the unit of the band frequency in FIG. 7 is represented by [radZs].
  • the braking force gradient monotonically increases as the band frequency increases.
  • the relationship between the band frequency and the braking force gradient in FIG. 7 is stored in the memory of the braking force gradient estimating means 46 as a map, and is estimated by the band frequency estimating means 44 based on the wheel speed signal using the map. By calculating the braking force gradient corresponding to the obtained band frequency, the braking force gradient can be estimated from the band frequency estimation (identification) result.
  • the braking force gradient of each tire estimated in this way is smoothed by removing excess high-frequency components by a mouth-to-pass filter 48, and is output to a differentiator 50.
  • differential The controller 50 differentiates the braking force gradient and outputs the rate of change of the braking force gradient, that is, the change in the braking force gradient per unit time, to the judgment means 38.
  • control force gradient is smoothed by the low-pass filter 48 and differentiated by the differentiator 50 to detect the rate of change of the control force gradient. Therefore, it is possible to detect only a change in tire characteristics caused by the above, that is, only a time change of the braking force gradient.
  • the determination means 38 inputs the rate of change of the braking force gradient of each tire in step 200 shown in FIG.
  • step 202 it is compared whether or not the input change rate of the braking force gradient of each tire is equal to or more than a predetermined threshold. That is, it is determined whether the braking force gradient has rapidly increased or decreased at a speed higher than a predetermined speed.
  • the predetermined threshold value is set to a value at which a burst may occur if the rate of change is further increased, for example.
  • step 204 If any one of the change rates of the braking force gradient of each tire is equal to or greater than a predetermined threshold value, in step 204, the warning means 40 is warned that the tire may be burst, and the driver is warned.
  • a predetermined threshold value means, for example, that the temperature of the tire rises, the contact area between the tire and the road surface increases, and the braking force gradient sharply increases or decreases. This is the case. In such a case, it can be determined that the possibility of the tire bursting is high.
  • the alarm may be issued by, for example, an alarm sound, or the display panel may display a tire position at which the rate of change of the braking force gradient is equal to or greater than a predetermined threshold, thereby giving an alert. May be reported in good news.
  • the driving force suppression control unit 42 may suppress the driving force of both groups. This can prevent the tire from bursting.
  • the predetermined threshold value may be set to the same value for each tire.Since the durability of the tire against bursting depends on the tire / wear level, the i-wear level of each tire may vary. Different thresholds may be set accordingly. In addition, since the durability of the tire against the bush is also low depending on the type of the tire, the threshold value is set according to the mounted tire.
  • the difference in the rate of change of the excitation force gradient between the left and right tires, ⁇ Physically, the difference between the output of the differentiator 50 corresponding to the ill wheel speed sensor 3 2 F 1 and the output of the differentiator 50 corresponding to the ⁇ wheel speed sensor 32 F 2 and the wheel speed sensor 32 R The difference between the output of the differentiator 50 corresponding to 1 and the output of the differentiator 50 corresponding to the wheel speed sensor 32 R2 is obtained. If this difference is equal to or greater than a predetermined threshold, that is, the braking force gradient of the left and right tires A warning may be issued when the difference in the rate of change of the value greatly increases.
  • the difference in the rate of change of the braking force gradient between the front and rear tires specifically, the output of the classifier 50 corresponding to the wheel speed sensor 32F1 and the wheel speed sensor Difference between the output of differentiator 50 corresponding to 32 R1 and the difference between the output of differentiator 50 corresponding to wheel speed sensor 32 F2 and the output of differentiator 50 corresponding to wheel speed sensor 32 R2. If the difference is equal to or greater than a predetermined threshold, that is, if the difference between the change rates of the braking force gradients of the front and rear tires is significantly different, an alarm may be issued.
  • the difference in the rate of change of the braking force gradient between the left and right tires and the difference in the rate of change of the braking force gradient between the front and rear tires are determined to determine whether a burst may occur.
  • an accurate alarm can be issued without being affected by changes in the braking force gradient caused by disturbances such as the posture of the vehicle and road surface conditions.
  • the rate of change of the braking force gradient is determined for each tire, and the difference in the rate of change of the braking force gradient between the left and right tires and the difference in the rate of change of the braking force gradient between the front and rear tires are determined.
  • the difference in the braking force gradient between the left and right tires or the front and rear tires is calculated, and the rate of change in the neatness is calculated. It may be determined whether or not the rate of change of the difference is equal to or greater than a predetermined threshold, and a report may be made when the difference is equal to or greater than the predetermined threshold I :.
  • the subtraction circuit 4 subtracts the braking force gradient of the left front wheel estimated by the gradient estimating means 46 from the braking force gradient of the right front wheel estimated by the braking force gradient estimating means 46 corresponding to the wheel speed sensor 32 F2. Then, the change rate of this difference is detected by the contact change rate detection stage 36. If the change rate output from the contact change rate detecting means 36 in the footstep means 38 is equal to or greater than a predetermined threshold, the warning means 40 is used to make a warning. It should be noted that the same configuration as described above can be used to warn that one of the front and rear tires may burst.
  • the tire burst can occur, for example, when the vehicle is running at high speed on an extremely hot road surface.
  • the threshold value for determining whether or not a burst may occur it is possible to accurately detect at an appropriate time that the risk of a burst has been increased. It can prevent false alarms and malfunctions.
  • the braking force gradient is obtained from the estimated band frequency, and the burst of the sunset is determined from the change rate of the obtained braking force gradient.
  • the tire cost may be determined.
  • the structure shown in Fig. 4 In this case, the braking force gradient estimating means 46 is omitted, and the band frequency estimating means 44 is directly connected to the low-pass filter 48.
  • the band frequency output from the band frequency means 44 is smoothed by the mouth-pass filter 48 and output to the differentiator 50, and the change rate of the band frequency is output from the differentiator 50. Is done.
  • output from the differentiator 5 0 frequency of the rate of change is determined whether more than a predetermined threshold value, in the case of more than the predetermined threshold value is an alarm to the warning means 4 0.
  • the braking force gradient estimating means 46 is omitted, and the band frequency estimating means 44 is directly connected to the subtraction circuit 47.
  • the subtraction circuit 47 calculates the difference between the band frequencies of the left and right tires and outputs the result to the mouth-pass filter 48.
  • the judging means 38 judges whether or not the rate of change of the difference between the band frequencies output from the differentiator 50 is equal to or greater than a predetermined threshold value.
  • the difference between the vibration level in the low frequency region and the vibration level in the high frequency region is used as the wheel speed frequency characteristic amount instead of the band frequency, and the road gradient is estimated. This is to determine the possibility of tire burst.
  • the description of the same parts as in the first embodiment will be omitted.
  • the group wheel speed frequency characteristic amount estimating unit 44 corresponding to the band frequency estimating unit 4 of the first embodiment includes a band-pass filter 60 0 for extracting a wheel speed signal in a low frequency region.
  • A a first vibration level calculating means 62 for calculating a vibration level from the wheel speed signal after the filter processing, and a low frequency characteristic amount calculating means comprising 2 A, and a band pass for extracting a wheel speed signal in a frequency domain.
  • Second vibration level calculating means 6 for calculating the vibration level from the filter 60 B and the wheel ⁇ signal after the filter processing.
  • the te ⁇ of the frequency characteristic ifi calculation means consisting of 2B, and the low frequency characteristic amount calculated by the low frequency characteristic light calculation means and the high frequency characteristic calculated by the M calculation means is ⁇
  • a road / i-slope estimating means corresponding to the braking force gradient estimating means 46 of the first embodiment is connected to the characteristic ai calculation means 64.
  • Bandpass filter at stage 60 0 The transmission frequency is set so as to transmit the ⁇ wheel speed signal in a relatively low frequency band in this embodiment.
  • the ⁇ wheel speed signal with a frequency of 15 to 50 ⁇ ⁇ is transmitted. It is set up as follows.
  • the transmission frequency is set so as to transmit a relatively high frequency t (range of the tun wheel speed signal) in the wheel speed motion.
  • the wheel speed signal having a frequency of 30 to 50 Hz is set to pass.
  • the vibration level detecting means 62A outputs a signal expressed in decibels by squaring the wheel speed signal after passing through the bandpass filter 6OA as a low frequency characteristic amount, and the vibration level calculating means 62B A signal expressed in decibels by squaring the wheel speed signal after passing through the filter 60B is output as a high frequency characteristic amount.
  • the characteristic amount calculating means 64 outputs a difference between the low frequency characteristic amount and the high frequency characteristic amount as a wheel speed frequency characteristic amount.
  • the wheel speed frequency characteristic shows a large gain in the low frequency region.
  • the wheel speed frequency characteristic amount representing the difference between the gain in the low frequency region and the gain in the high frequency region becomes large.
  • the frequency characteristic of the wheel speed is such that the gain in the low frequency region is smaller than the gain in the low frequency region in the region where the road gradient is relatively small.
  • the gain in the high frequency region is not so small compared to the gain in the high frequency region in the region of relatively small road surface / gradient due to the effect of the occurrence of rotational resonance of the tire.
  • the wheel speed frequency characteristic S decreases. Therefore, the wheel speed frequency characteristics that represent the difference between the vibration level in the low frequency region and the vibration level in the ⁇ frequency region; Is a value that decreases as the road gradient increases, and by using this characteristic, the road gradient can be estimated from the ⁇
  • the road stage of the present embodiment uses the property that the wheel speed frequency characteristic decreases as the road gradient increases, and the vibration level in the low frequency region and the i3 ⁇ 4 frequency
  • the map shows the relationship between the ⁇ ⁇ ⁇
  • the output of the characteristic amount calculating means 64 is connected to a road surface 1 slope estimating means (not shown) corresponding to the braking force gradient estimating means 46 of the first embodiment.
  • the output of the characteristic calculation means 64 may be directly connected to the low-pass filter 48.
  • the output of the S operation means 64 may be directly connected to the subtraction circuit 47. That is, the possibility of the occurrence of a tire burst may be determined directly from the wheel speed frequency characteristic quantity representing the difference between the vibration level in the low frequency range and the vibration level in the high frequency range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

明細喾 タイヤバース卜予測 置 技術分野
本発明はタイヤバース卜予測装置に係り、 特に、 タイヤの接地性を検出して夕 ィャのバース卜の発生を予測するタイヤバース卜予測装置に関する。 従来の技術
自動車がタイヤの空気圧が低い状態のままで高速走行した場合、 タイヤにたわ みが生じて (スタンディングウェーブ現象) タイヤの温度が上昇し、 タイヤが切 断される所謂バース卜が発生する場合がある。
このタイヤのバーストを防ぐため、 空気圧センサにより走行中のタイヤの空気
£Eを検出したり、 検出したタイヤの車輪速からタイヤの空気圧を推定し、 検出又 は推定した空気圧が低下した場合に警報する技術が提案されている。
例えば、 特開平 7— 1 4 9 1 2 3号公報には、 車輪速センサによりタイヤの車 輪速を検出し、 該検出した車輪速からタイヤの空気圧の低下を判定し、 空気圧の 低下を複数回判定した場合に警報する装置が記載されている。 発明が解決しょうとする課題
しかしながら、 タイャの適正空気圧は各々のタイヤで興なる場合があるため、 一定の閾値で空気圧の低下を判定すると、 タイヤを交換したりタイャが磨耗した りすることにより適正空気圧が変化した場合には誤って警報を発してしまう場合 がある。 また、 路而及びタイヤの状態や^行条件によって 報を するタイミン グが遅くなつたり早くなつたりする場合がある、 という問題があつた。
また、 タイヤの空気圧が適正であっても、 許容範 を越える状態で迮行した LI.
ΐ 合、 例えば極端に熱くなつた路而を髙速^行した場合には、 タイヤがバース卜す る¾合があるため、 タイヤ空気 铛報だけでは正確にバース卜を予測して ¾報を することができない埸 がある、 という ίί '' j题があった。 発明の開示
本発明は、 上記^ ilを解決すべく成されたものであり、 的確にタイヤバース卜 の発生を予測して警報することができるタイヤバース卜予測 ¾置を^供すること を目的とする。
上記 1§1的を達成するために、 請求項 1記載の発明は、 車輪の速度を検出する車 輪速度検出手段と、 検出した車輪速度に基づいて前記車輪と路面との間の接地性 を表す物理量を推定する接地性推定手段と、 推定した前記車輪と路面との間の接 地性を表す物理量の変化率を検出する変化率検出手段と、 検出した変化率が所定 範囲外の値か否かを判断することによって前記車輪のバースト発生を予測する予 測手段と、 を備えたことを特徴とする。
この発明によれば、 車輪速度検出手段は、 車両 (例えば 4輪自動車) の車輪の 車輪速度を検出する。 これは、 例えば車輪が 1回転する毎に所定数のパルス ( |£ 輪速パルス) を発生する車輪速センサを各車輪毎に設け、 この車輪速センサから 出力される車輪速パルスの単位時間当たりのカウン卜値又はパルス幅の計測値か ら車輪速度を検出することができる。
接地性推定手段は、 検出した車輪速度に基づいて車輪と路面との間の接地性を 表す物理量、 例えば本輪 (タイヤ) と路面との接地面積や車輪と路面との間の摩 擦状態 (滑り易さ) を表す物理量を推定する。 車輪と路面との間の摩擦状態を表 す物理量としては、 例えば制動力勾配があり、 これを推定することにより間接的 に車輪の接地性を把握することができる。 制動力勾配は、 例えば路面外乱から傘 輪速までの伝達特性を 1次遅れモデルに近似し、 この 1次遅れモデルの周波数応 答から車輪速の時系列データに基づいて带域周波数を推定し、 推定した帯域周波 数から推定'することができる。 また、 制動力勾配の他、 車輪に駆動力を与えたと きの駆動力勾配や車輪のダリップ状態を表す路而 勾配はいずれもタイヤと路而 との間の滑り易さを表す物理 ϋであり、 これらは制動カ么 J配と等価な物;!! Sであ るため、 制動力勾配に代えて駆 S)j力勾配や路而 11勾配を )¾いても^い
変化率検 ί.Ι1手段は、 推 ¾した 4ί輪と路而との間の接地性を表す物现 の变化率 を検出する。 すなわち、 '申- {、'/:時間当たりの接地性を表す物 の変化 iftを検 ίΙ¾す る。 このように変化率を検出することで、 車輪の状態の変化を把握することがで きる。 すなわち、 例えば接地性を表す物 ί 虽として制勁力勾配を推定した場合に おいて、 輪の温度変化等により ι|.ί輪の接地而 が增え、 椎^した制 3¾力勾配が 急激に大きくなつたり、 又は小さくなつたりすることにより接地性を表す物理- が急激に変化した場合、 車輪がバース卜する可能性があると判断することができ る。
そこで、 予測手段は、 検出した変化率が所定範囲外の値か否かを判断すること により車輪のバースト発生を予測する。 これにより、 検出した変化率が所定範囲 外の値の場合にはバース卜が発生する可能性があると判断することができる。 なお、 検出した変化率が所定範囲外にある状態が所定期間以上継続している場 合にバース卜が発生する可能性があると判断することもできる。
このように、 接地性を表す物理量の変化率により車輪がバース卜する可能性が あるか否かを判断するため、 特性の なる車輪を装着している場合や、 路面や走 行条件が極端に変った場合においても、 的確にバース卜の危険性を検出すること ができる。 また、 空気圧が適正であっても車輪のバーストが発生し得る状況、 例 えば極端に熱くなつた路面を高速で走行するような状況においても的確にバース トを予測することができる。
また、 タイヤによっては、 トレッド発熱により トレッド剥離する等の問題があ るが、 この場合にも接地性を表す物理量の変化率が所定範囲外になるため、 危険 を予測して事故を未然に防ぐことが可能になる。
なお、 検出した変化率が所定範 ϋ外の値の場合には、 例えばアラームを鳴らし たり表示手段へ表示したりすることにより警報手段が警報を発するようにしても よい。 これにより、 班両のドライバーに車輪がバース卜する可能性があることを 容易に認識させることができ、 速の抑制を促すことができる。
また、 検出した変化率が所定'範 ILH外の値の場合には、 善報に代えて、 又は 報 と共に駆動抑制手段により 1 輪の駆動力を抑制するようにしてもよい。 これによ り、 ι|ϊ速を抑制することができ、 ι|ι輪のバース卜を未然に防ぐことができる。 また、 接地性插定'手段は、 接地 'I を表す物理 ί を平滑化する平滑化 段と、 平 滑化された接地性を表す物 ^を微分する微分器と、 で構成することができる。 平滑化手段には例えばローパスフィルタを用いることができる。 このように、 接 地性を表す物 を平滑化して微分することにより、 余分な髙周波成分が除去さ れ、 例えば ι|ϊ輪の温度変化により生じる接地性を表す物现¾の変化だけを検出す ることができる。 図而の簡単な説明
図 1は、 本発明の実施の形態の車輪共振系の力学モデルを示すブロック図であ る
図 2は、 スリップ速度と路面 との関係を示す線図である。
図 3は、 路面外乱から車輪速までの周波数応答を示すゲイン線図である。 図 4は、 本発明の実施の形態のタイヤバース卜予測装置の概略ブロック図であ る。
図 5は、 本発明の実施の形態の帯域周波数を推定するアルゴリズムを示す流れ 図である。
図 6は、 1次遅れモデルの路面外乱から車輪速までの周波数応答を示すゲイン 線図である。
図 7は、 帯域周波数と制動力勾配との関係を示す線図である。
図 8は、 判定手段で実行される制御ルーチンのフローチャートである。
図 9は、 タイヤバースト予測装置の他の例を示す概略ブロック図である。 図 1 0は、 車輪速周波数特性量推定手段の概略プロック図である。 発明を実施するための最良の形態
[第 1実施形態]
以下、 本発明の第 1奘施形態について説明する。 まず、 タイヤの接地性を表す 物埋逛として制動力勾配を推定'する場合の原现について説明する。
図 1に示すように、 車輪共振系の力学モデルは、 リム 1 0とベルト 1 2との間 に各々ばね足数 K l、 Κ 2のタイヤのねじればね耍索 1 4、 1 6を介 ¾させると 共に、 リム 1 0と車体との間にばね定数 Κ 3のばね要素 1 8とダンバ 2 0とを並 列接^したサスペンションを介^させたモデルで表される。 このモデルにおいて 路面からの外乱 (路而外乱) は、 ベルト 1 2からばね要素 1 4、 1 6を介して、 リム 1 0に伝達されて班輪速 ωに影響を与えると共に、 サスペンション要素を介 して |ϊ休に伝達される。
ここで、 1次の ΐ|.ί輪減速度運動、 2次のサスペンション Γιίί後共振、 2次のタイ ャ回転共振を統合した 5次の Φ輪フルモデルを用いて、 制動力勾配と路面外乱か ら車輪速までの伝達特性の追従周波数を表す車輪速周波数特性量との関係を説明 する。 この制動力勾配は、 図 2に示すように、 スリップ速度 (または、 スリップ 率) と制動力との関係を表す曲線の接線の勾配 (傾き) によって表される。 図 3は、 制動力勾配が 3 0 0 N s Zm〜 1 0 0 0 0 N s /mの限界制動領域か らタイヤ特性に余裕のある低スリップ領域の範囲における、 路面外乱から車輪速 までの周波数応答を表すゲイン線図、 すなわち周波数と路而外乱の振幅に対する 車輪速の振幅ゲインとの関係を示したものである。
図 3において、 路而とタイヤとの摩擦の限界付近等の制動力勾配が比較的小さ な領域においては、 車輪速の周波数特性は、 低周波数領域のゲインは大きく、 高 周波数領域のゲインは小さくなっている。 このため、 制動力勾配が比較的小さな 領域においては低周波数領域のゲインと高周波数領域のゲインとの差を表す車輪 速周波数特性量は大きくなる。
これに対し、 定常走行等の制動力勾配が比較的大きな領域においては、 車輪速 の周波数特性において低周波数領域のゲインは制動力勾配の比較的小さな領域に おける低周波数領域のゲインと比較して小さくなつている一方、 高周波数領域の ゲインは、 タイヤの回転共振 (4 0 H z付近) の発生等の影響によって制動力勾 配が比較的小さな領域における高周波数領域のゲインと比較してそれほど小さく はなっていない。 この結果、 制動力勾配が比較的大きな領域においては車輪速周 波数特性 itは小さくなつている。 同様に、 低周波数颃域の ϊ|ΐ輪速信号の振動レべ ルと髙周波数餛域の Ι|ϊ輪逨信号の振動レベルとの差を表す Φ輪速周波数特性 ¾も 上記の低周波数倾域のゲインと高周波数領域のゲインとの楚を表す車輪速周波数 特性 Sと同 に変化する。 比) 、 または低 波数 ίϊί城の^輪速信 の振 gUjレベルと 波数敏域の ϊ|〔輪速仆 号の振動レベルとの差 (又は比) を表す 輪速周波数特性 ffiは、 制動力勾配が大 きくなるのに伴って小さくなる値であり、 この特性を利用することにより班輪周 波数特性 ϋから制動力勾配を插定することができる。
また、 図 3において、 タイヤ回転共振が発生する 4 Ο Η ζ付近の周波数锆域に 着 IIIした場合、 制動力勾配が大きくなるに従ってタイヤ回転共振の共振ピーク波 形が尖鋭になっている。 また、 タイヤ回転共振の共振ピーク波形は、 制動力勾配 が大きくなるに従って全体的な周波数特性 (全体的な波形) が高周波側に移行し ている。
すなわち、 この車輪特性を 1次遅れモデルで近似した場合、 図 6に示すように 、 制動力勾配が大きくなるに従って帯域周波数が高くなることが理解できる。 し たがって、 車輪特性を 1次遅れモデルで近似して、 ゲインが所定範囲の値から所 定範囲外の値に変化するときの周波数である帯域周波数を車輪速周波数特性: Sと して推定すれば、 路面外乱から車輪速までの伝達特性の追従周波数を表す車輪速 周波数特性量の値から制動力勾配を推定することができる。 なお、 2次、 3次等 の遅れモデルにおいても 1次遅れモデルと略同様の特性を備えているので、 車輪 特性を低次の遅れの特性に近似してその車輪速周波数特性量を推定すれば、 車輪 速周波数特性量の値から制動力勾配を推定することができる。
また、 上記で説明したタイヤに制動力を与えたときの制動力勾配の他、 タイヤ に駆動力を与えたときの駆動力勾配は、 いずれもタイヤと路面との間の滑り易さ を表す物理量であり、 タイヤのダリップ状態を表す路面 勾配と等価な物理量で ある。 したがって、 車輪速周波数特性量からスリップ率またはスリップ速度と制 動力との関係を表す曲線の接線の傾きである制動力勾配、 スリップ率またはスリ ップ速度と駆動力との関係を表す ifll線の接線の傾きである駆動力勾配、 及びスリ ップ率またはスリップ速度と路而 との関係を表す llll線の接線の傾きである路而 勾配のいずれかを路而の滑りやすさを表す物理 i として椎^することができる 以下、 帯域周波数を班輪速周波数特性 ISとして推^し、 該拖定した :域周波数 から接地性を表す物 として制¾力勾配を推定'し、 該推定した制 ¾力勾配に づいてタイヤのバ一ス卜の ¾ .を '| 断する第 1 :施形態について説 ij/jする。 図 4に示すように、 タイヤバース卜予測装置 3 0は、 所定のサンプリング周期 で図示しない Φ両の M後左右各々の 輪の車輪速度を検出し、 ϊ|ΐ輪速の時系列デ 一夕を』 |ΐ輪速信号として出力する 輪速検出手段としての Φ輪速センサ 3 2 F K 3 2 F2, 3 2 R K 3 2 R2 と、 各タイヤの接地性を表す物 S K、 すなわちタイヤ と路面との粘着性を表す物理 ¾を間接的に検出するための接地性推定手段として の接地性検出手段 3 4と、 検出した各タイヤの接地性を表す物理量の変化率を検 出する変化率検出手段としての接地性変化率検出手段 3 6と、 検出した各タイヤ の接地性を表す物理量の変化率に基づいてタイヤがバース卜する恐れがあるか否 かを判定する判定手段 3 8と、 判定手段 3 8からの指示によりバース卜する恐れ がある旨の警報を発する警報手段 4 0と、 判定手段 3 8からの指示によりタイヤ の駆動力の抑制を制御する駆動力抑制制御手段 4 2と、 を含んで構成されている なお、 車輪速センサ 3 2 F 1 は左前輪の車輪速を、 車輪速センサ 3 2 F2 は右前 輪の車輪速度を、 車輪速センサ 3 2 R 1 は左後輪の車輪速度を、 車輪速センサ 3 2 R2 は右後輪の車輪速度を各々出力する。 また、 図 4に示すように、 帯域周波 数推定手段 4 4、 制動力勾配推定手段 4 6、 ローパスフィルタ 4 8、 微分器 5 0 は左前輪、 右前輪、 左後輪、 右後輪の各タイヤ毎に設けられている。
接地性検出手段 3 4は、 一例として、 車輪速の時系列データに基づいて、 路面 外乱から車輪速までの伝達特性を 1次遅れモデルに近似したときの該モデルの周 波数応答を表すゲイン線図において、 ゲインが一定値から変化する (所定範囲の 値から所定範囲外の値に変化する) ときの周波数を帯域周波数として推定する : 域周波数推定手段 4 4と、 予め記憶された^域周波数と制動力勾配との関係を表 すマップに基づいて、 椎定された帯域周波数に対する制励力勾配を推定する制動 力勾配推定' 段 4 6と、 で嵇成されている。
接地性変化率検出手段 3 6は、 一例として、 推定'した制動力勾配の推定'ばらつ きを低減するための口一パスフィル夕 4 8と、 制動力勾配の変化率を検出するた めの微分器 5 0と、 で ½成されている。
次に、 ^域周波数推 段 4 4による^域周波数の推 及び制動力勾配推定 T 段 4 6による制動力勾配の推^について説明する。 なお、 本実施の形態の帯域周波数推定手段 44では、 全ての周波数を含む外乱 である白色外乱が路面からタイヤに入力したと仮定し、 最小自乘法を用いて 1次 遅れモデルの帯域周波数を同定した。
図 5は、 帯域周波数を同定するためのアルゴリズム、 図 6は、 図 1の車輪フル モデルに白色外乱を加えたときに図 5のアルゴリズムによって同定される帯域周 波数と対応する 1次遅れモデルのゲイン線図を示したものである。 なお、 これら の処理は各タイヤ毎に行われる。
まず、 図 5に基づいて帯域周波数を同定するためのアルゴリズムについて説明 する。 ステップ 100において車輪速センサ 32で検出された車輪速度の時系列 データに白色外乱を加えたデータを取り込み、 ステップ 1 02において 2次のバ 夕ヮスフィルタを用いて、 例えば 2 H zのハイパスフィル夕と例えば 20Hzの 口一パスフィルタからなるフィルタによる前処理を行う。 車輪速信号をハイパス フィルタに入力してハイパスフィル夕処理することにより、 車輪の加速度の定常 成分が除去され、 ローパスフィルタ処理することにより車輪速信号の平滑化処理 を行うことができる。 . 次のステップ 104において、 オンライン最小自乗法を用いて前処理された拿 輪速の時系列データから帯域周波数の時系列データを推定する。 まず、 車輪速度 センサ 32によって、 サンプル時間 r毎に離散化して検出された車輪速の時系列 データをステップ 102のフィルタによる前処理後の車輪速の時系列データを ω [k] (kはサンプル時間てを単位とするサンプル時刻であり、 k = l, 2, · - - )とし、 以下のステップ 1及びステップ 2を繰り返すことにより、 検出された車 輪速度の時系列データから帯域周波数の時系列データを推定する。
【数 1】 ステップ 1 :
φ [k] = τ {ω [k-ll-ω [k-2] } " ' ■ (ェ) y [k] =- ω [k] +2 ω [k - 1] ~ω [ト 2] . . . (2) なお、 (1)式の Ψ [k] は、 1サンプル時間での車輪速度の変化量にサンプル 時問 τを乗算した値 (車輪速の変化に関する物 ¾¾) であり、 (2)式の y [k] は、 1サンプル時間の車輪速度の変化量 (ω [k— 1]— ω [k— 2]、 ω [k] -ω
[k - 1]) の 1サンプル時間での変化量 (ω [k— 1]一 ω [k— 2]— (ω [k]— w [k— l]) ) (車輪速度の変化の変化に関する物理量、 つまり、 車輪加速度の 変化に関する物理量) である。
【数 2】
ステップ 2 :
8[k -e[k-l] +L [k] (y [k] —φ [k]T-0[k- 1] ) (3) ただし、
P [k一 1〗 [k]
L [k] (4)
' + Φ [k]TP [k- 1: 4[k]
Figure imgf000011_0001
という漸化式から推定値 0、 すなわち、 制動力勾配を推定する。 ただし、 (4) 、 (5) 式のえは過去のデ一夕を取り除く度合いを示す忘却係数 (例えば λ = 0 . 98) であり、 Τは行列の転置を示す。
なお、 (3)式の [k]は、 車輪速度の変化に関する物理量の履歴及び車輪速度 の変化の変化に関する物理量、 つまり、 車輪加速度の変化に関する物理量の履歴 を表す物理量である。
なお、 上記ではオンライン最小自乗法を用いて帯域周波数を推定する例につい て説明したが、 補助変数法等他のオンライン同定法を用いて帯域周波数を推定す ることもできる。
上記のようにして推定された 1次遅れモデルにおける帯域周波数の推定結果の 例を図 6に示す。 また、 図 6のゲイン線図より理解されるように、 近似された 1 次遅れモデルのゲインは、 制動力勾配が 300 N s Zm以外では、 車輪フルモデ ルのゲイン線図の定常ゲインと***振点 (40Hz付近) におけるゲインを通過 する特性として同定されており、 低次元化により 1 5 Hz付近のサスペンション 前後共振と 40Hz付近のタイヤ回転振動の共振特性とが無視されている。 また
、 制動力勾配が 300 N s Zmと小さいときには、 1次遅れモデルでは***振点 を通過していないことから共振は表れず、 1次遅れモデルの振動特性と拿輪フル モデルの特性とが^く一致していることが理解できる。 これは、 制動力勾配が 3 0 0 N s /m以下の限界付近の制動領域においては、 サスペンション前後共; ί辰や タイヤ回転振動による共振の影響が小さく、 車輪減速度運動モデルが支配的にな つているためである。 したがって、 このような限界付近では、 車輪通動は以下の 車輪減速度運動モデルで近似できると考えられる。
【数 3】
k
2 C
v w =— - w + ノ ただし、 w は車輪速度 (m/ s ) 、 wは路面外乱、 kは制動力勾配 (N s Z m) 、 R C はタイヤ有効半径 (m) 、 Jは車両慣性モーメントであり、 リ w の係 数は帯域周波数を表している。
ところで、 上記 (6 ) 式は、 限界領域において、 帯域周波数 ω θ と制動力勾配 との間に、
【数 4】
( 7 )
という関係があることを示している。
また、 低スリップ領域においては、 最小自乗法の適用により図 7の関係が導き 出せる。 この図は、 車輪フルモデルにおける制動力勾配と白色外乱を加えたとき の車輪速デー夕から同定された帯域周波数との関係を示したものである。 なお、 図 7の帯域周波数は、 単位を [ r a d Z s ]で表した。 制動力勾配は、 帯域周波数 が増加するに従って単調増加している。 この図 7の帯域周波数と制動力勾配との 関係をマップとして制動力勾配推定手段 4 6のメモリに記憶しておき、 マップを 用いて車輪速信号に基づいて帯域周波数推定手段 4 4で推定された帯域周波数に 対応する制動力勾配を演算することにより、 帯域周波数の推定 (同定) 結果から 制動力勾配を推定することができる。
このようにして推定された各タイヤの制動力勾配は、 口一パスフィル夕 4 8に より余分な高周波成分が除去されて平滑化され、 微分器 5 0へ出力される。 微分 器 5 0では、 制¾力勾配を微分して制動力勾配の変化率、 すなわち単位時間当た りの制 ¾力勾配の変化 を判^手段 3 8へ出力する。
このように、 椎^した制¾力勾配をローパスフィル夕 4 8で平滑化し、 微分器 5 0で微分することで制 ®j力勾配の変化率を検出するため、 タイヤの卜レツドの 温度変化により生じるタイヤ特性の変化、 すなわち制動力勾配の時間変化だけを 検出することができる。
次に、 判定手段 3 8により実行される制御ルーチンについて説明する。 判定手 段 3 8は、 図 8に示すステップ 2 0 0において、 各タイヤの制動力勾配の変化率 を入力する。
そして、 ステップ 2 0 2において、 入力した各タイヤの制動力勾配の変化率が 所定閾値以上か否かを各々比較する。 すなわち、 制動力勾配が所定以上の速さで 急激に大きくなつたり小さくなつたりしたか否かを判定する。 この所定閾値は、 例えばこれ以上変化率が大きくなるとバース卜が発生する恐れがある値に設定さ れる。
そして、 各タイヤの制動力勾配の変化率の何れかが所定閾値以上の場合には、 ステップ 2 0 4で警報手段 4 0にタイヤがバース卜する恐れがあることを警報さ せ、 ドライバーに対して走行停止を促す。 タイヤの制動力勾配の変化率が所定閾 値以上になる場合とは、 例えばタィャの温度が上昇してタイヤと路面との接地面 積が広がり、 制動力勾配が急激に大きくなったり小さくなつたりするような場合 である。 このような場合にはタイヤがバース卜する可能性が高いと判断すること ができる。
なお、 警報は、 例えばアラーム音により警報してもよいし、 表示パネルに制動 力勾配の変化率が所定閾値以上のタイヤの位置を表示することで謦報するように してもよいし、 両方で善報するようにしてもよい。
また、 臀報に代えて、 または ¾報と共に駆動力抑制制御^段 4 2により班両の 班逨ゃ駆動力を抑制するようにしてもよい。 これにより、 タイヤがバーストする のを来然に防ぐことができる。
また、 所定閾値は、 各夕 ャで同 --の閾値を設定してもよいし、 タイヤの / 耗 度によってタイヤのバース卜に対する耐久性は なるため、 各タイヤの i 耗度に 応じて別々の閾値を設定してもよい。 また、 タイヤの種類によってもタイヤのバ —ス卜に対する耐久性は ¾なるため、 装着しているタイヤに応じて閾値を設定し また、 左右のタイヤの制励力勾配の変化率の差、 ^:体的には、 ill輪速センサ 3 2 F 1 に対応する微分器 5 0の出力と Φ輪速センサ 3 2 F2 に対応する微分器 5 0 の出力との差及び車輪速センサ 3 2 R 1 に対応する微分器 5 0の出力と車輪速セ ンサ 3 2 R2 に対応する微分器 5 0の出力との差を求め、 この差が所定閾値以上 の場合、 すなわち左右のタイヤの制動力勾配の変化率の差が大きく與なる場合に 警報するようにしてもよい。 また、 前後のタイヤについても同様に、 前後のタイ ャの制動力勾配の変化率の差、 具体的には、 車輪速センサ 3 2 F 1 に対応する微 分器 5 0の出力と車輪速センサ 3 2 R1 に対応する微分器 5 0の出力との差及び 車輪速センサ 3 2 F2 に対応する微分器 5 0の出力と車輪速センサ 3 2 R2 に対応 する微分器 5 0の出力との差を求め、 この差が所定閾値以上の場合、 すなわち前 後のタイヤの制動力勾配の変化率の差が大きく異なる場合に警報するようにして もよい。
このように、 左右のタイャの制動力勾配の変化率の差や前後の夕ィャの制動力 勾配の変化率の差を求めてバース卜が発生する可能性があるか否かを判断するこ とにより、 車両の姿勢や路面状態等の外乱により生じる制動力勾配の変化の影響 を受けることなく、 的確に警報することができる。 また、 各タイヤ毎に制動力勾 配の変化率を判定すると共に、 左右のタイヤの制動力勾配の変化率の差、 前後の タイヤの制動力勾配の変化率の差を判定して総合的にバース卜が発生する可能性 があるか否かを判断することにより、 さらに口バス卜性を向上させることができ る。
なお、 例えば左右のタイヤ又は前後のタイヤの制動力勾配の変化率の差を求め るのではなく、 左右のタイヤ又は前後のタイヤの制動力勾配の差を求め、 この楚 の変化率を求めてこの差の変化率が所定閾値以上か否かを判断し、 所定閾値以 I: の場合に磐報するようにしてもよい。
¾休的には、 I 9に示すように、 例えば左右のタイヤの何れか一方がバース卜 する" J能性があることを臀報する¾合、 '1て輪速センサ 3 2 F 1 に対応する制 力力 勾配推定手段 4 6により推定された左前輪の制動力勾配と車輪速センサ 3 2 F2 に対応する制動力勾配推^手段 4 6により推定された右前輪の制動力勾配との楚 を減算回路 4 7により浈算し、 この差の変化率を接地性変化率検出 段 3 6で検 出する。 そして、 判足手段 3 8において接地性変化率検出手段 3 6から出力され た変化率が所定閾値以上の場合には警報手段 4 0により謦報させる。 なお、 前後 のタイヤの何れか一方がバース卜する可能性があることを警報する場合にも上記 と同様の構成により行うことができる。
このように、 タイヤの制動力勾配の変化率によりタイヤがバース卜する恐れが あるか否かを判断するため、 特性の異なるタイヤを装着している場合や、 路面や 走行条件が極端に変った場合においても、 オフセットゃ感度変化の影響を受ける ことなく的確にバーストの危険性を検出することができる。 換言すれば、 タイヤ の違いや路面、 走行条件に応じてオフセットゃ感度変化の補正をする必要がなく 、 精度よくバース卜の危険性を検出することができる。
また、 空気圧が適正であってもタイヤのバーストが発生し得る状況、 例えば極 端に熱くなつた路面を高速で走行するような状況においても的確に謦報すること ができる。
さらに、 タイヤがパンクしてタイヤ空気圧謦報装置が作動し、 修理工場まで自 走するような場合に、 タイヤがバース卜する危険性が高い場合には 2次警報的に 謦報することができる。
なお、 制動力勾配の正常時の変化率を記憶しておき、 過去の制動力勾配の変化 率から閾値を学習するようにしてもよい。 この学習は、 各タイヤの制動力勾配の 変化率の平均値から学習してもよい。 この場合は、 各タイヤの制動力勾配の変化 率に大きな差がないことが望ましい。 このようにバース卜が発生する可能性があ るか否かを判断するための閾値を学習することで、 バース卜が発生する危険性が 髙まっていることを的確に 期に検出することができ、 誤警報及び誤作動を防ぐ ことができる。
また、 本爽施形態では、 推定した帯域周波数から制動力勾配を求め、 求めた制 勁力勾配の変化率から夕ィャのバース卜を判断するようにしたが、 —帯域周波数か ら i: 接タイヤのバ一ストを判断するようにしてもよい。 この場合、 図 4に示す構 成の場合には、 制動力勾配推定手段 4 6を省略し、 帯域周波数推定手段 4 4を直 接ローパスフィルタ 4 8に接続する。 これにより、 帯域周波数椎 手段 4 4から 出力された ¾域 波数は口一パスフィル夕 4 8により平滑化されて微分器 5 0へ 出力され、 微分器 5 0からは带域周波数の変化率が出力される。 判足手段 3 8で は、 微分器 5 0から出力された :域周波数の変化率が所定閾値以上か否かを判断 し、 所定閾値以上の場合には警報手段 4 0に警報させる。
なお、 図 9に示す構成の場合には、 制動力勾配推定竽段 4 6を省略し、 帯域周 波数推定手段 4 4を直接減算回路 4 7に接続する。 これにより、 減算回路 4 7で は、 左右のタイヤの帯域周波数の差を演算して口一パスフィルタ 4 8へ出力する 。 判定手段 3 8では、 微分器 5 0から出力された帯域周波数の差の変化率が所定 閾値以上か否かを判断し、 所定閾値以上の場合には謦報手段 4 0に警報させる。
[第 2実施形態]
次に、 第 2実施形態について説明する。 本実施形態は、 帯域周波数に代えて、 低周波数領域の振動レベルと高周波数領域の振動レベルとの差を車輪速周波数特 性量として用い、 路而 勾配を推定し、 推定した路面 ^勾配からタイヤのバース 卜の発生の可能性を判定するようにしたものである。 なお、 本実施形態において 第 1実施形態と同一部分の説明は省略する。
図 1 0に示すように、 第 1実施形態の帯域周波数推定手段 4 に相当する班輪 速周波数特性量推定手段 4 4は、 低周波数領域の車輪速信号を抽出するためのバ ンドパスフィルタ 6 0 A、 及びフィルタ処理後の車輪速信号から振動レベルを演 算する第 1の振動レベル演算手段 6 2 Aからなる低周波数特性量演算手段と、 周波数領域の車輪速信号を抽出するためのバンドパスフィル夕 6 0 B、 及びフィ ルタ処理後の車輪逨信号から振動レベルを演算する第 2の振動レベル演算手段 6
2 Bからなる 周波数特 ifi演算手段と、 低周波数特性燈演算手段で演算された 低周波数特性量と高周波数特性 M演算手段で演算された萵周波数特性 との te^ を Ι|ϊ輪速周波数特性 ffiとして出力する特性量演算手段 6 4とから嵇成されている
。 この特性蛩演算手段 6 4 力には、 第 1実施形態の制動力勾配推定手-段 4 6に 相当する路而/ i勾配推' 丁:段 (I せず) が接 されている。
数特性 ίί算丁:段におけるバンドバスフィルタ 6 0 Αは、 輪速述勁に おける比較的低周波数の颔域の Φ輪速信号を透過するように透過周波数が設定さ れており、 本实施の形態では、 1 5〜 5 0 Η ζの周波数の Φ輪速信号が透過する ように設&されている。 また、 i¾周波数特性量演算^段におけるバンドパスフィ ル夕 6 0 Bは、 車輪速運動における比較的高周波数の t(域の屯輪速信号を透過す るように透過周波数が設定されており、 本爽施の形態では 3 0〜 5 0 H zの周波 数の車輪速信号が通過するように設定されている。
振動レベル検出手段 6 2 Aは、 バンドパスフィルタ 6 O A透過後の車輪速信号 を 2乗してデシベル表現した信号を低周波数特性量として出力し、 振動レベル演 算手段 6 2 Bは、 バンドパスフィルタ 6 0 B透過後の車輪速信号を 2乗してデシ ベル表現した信号を高周波数特性量として出力する。
特性量演算手段 6 4は、 低周波数特性量と高周波数特性量との差を車輪速周波 数特性量として出力する。
図 3で説明したように、 限界付近等の路面 勾配 (図 3の制動力勾配と等価な 値) が比較的小さな領域においては、 窜輪速の周波数特性は、 低周波数領域のゲ インは大きく、 高周波数領域のゲインは小さいので、 低周波数領域のゲインと高 周波数領域のゲインとの差を表す車輪速周波数特性量は大きくなる。 これに対し 、 定常走行等路面^勾配が比較的大きな領域においては、 車輪速の周波数特性は 低周波数領域のゲインが路面 勾配の比較的小さな領域における低周波数領域の ゲインに比較して小さくなつている一方、 高周波数領域のゲインは、 タイヤの回 転共振の発生などの影響によって路面 /勾配の比較的小さな領域における高周波 数領域のゲインに比較してそれほど小さくならない。 この結果、 車輪速周波数特 性 Sは小さくなる。 従って、 低周波数領域の振動レベルと髙周波数領域の振動レ ベルとの差を表す車輪速周波数特性;!は、 路而 ^勾配が大きくなるのに伴って小 さくなる値であり、 この特性を利用することにより Ι|ϊ輪周波数特性 ¾から路而 勾配を推定することができる。
本卖施の形態の路而 椎 ¾≡Ρ段は、 IIて輪速周波数特性 が路而 勾配が大きく なるのに伴って小さくなる性質を利用して、 低周波数領域の振動レベルと i¾周波 数 i域の振動レベルとの を表す Ι|ϊ輪速^波数特 ½1¾と路面 /勾配との関係を すマップを め記 しており、 椎^された小:輪速 I 波数特性 iiとマップとから路 而 /2勾配を推定する。
なお、 木爽施形態では、 特性量演算手段 6 4の出力には、 第 1卖施形態の制動 力勾配推定手段 4 6に相当する路面 1勾配推'定手段 (図示せず) が接続されると して説明したが、 図 4に示す祸成の J¾合には、 特性 演算手段 6 4の出力を直接 ローパスフィルタ 4 8に接続してもよく、 図 9に示す構成の場合には特性 S演算 手段 6 4の出力を直接減算回路 4 7に接続してもよい。 すなわち、 低周波数領域 の振動レベルと高周波数領域の振動レベルとの差を表す車輪速周波数特性量から 直接タイヤのバーストの発生の可能性を判断するようにしてもよい。 発明の効果
以上説明したように、 本発明によれば、 的確にタイヤのバーストの発生を予測 することができる、 という効果を有する。

Claims

請求の範 ffl
1 . ιί∑輪の速度を検 Mlする 輪速度検出手段と、
検出した車輪速度に ¾づいて 輪と路而との間の接地性を表す物 を推 定する接地性推定手段と、
推定した前記車輪と路面との間の接地性を表す物理量の変化率を検出する変化 率検出手段と、
検出した変化率が所定範囲外の値か否かを判断することによって前記班輪のバ ース卜発生を予測する予測手段と、
を備えたタイヤバース卜予測装置。
2 . 車輪のバース卜に関する警報を発する警報手段を更に備え、 前記予測手段は 、 検出した変化率が所定範囲外の値か否かを判断し、 検出した変化率が所定範囲 外の値の場合に前記警報手段は謦報を発することを特徴とする請求項 1記載の夕 ィャバースト予測装置。
3 . 車輪の駆動力を抑制する駆動力抑制手段を更に備え、 前記予測手段は、 検出 した変化率が所定範固外の値か否かを判断し、 検出した変化率が所定範四外の値 の場合に前記駆動力抑制手段は前記車輪の駆動力を抑制することを特徴とする請 求項 1又は請求項 2記載のタイヤバースト予測装置。
4. 前記接地性推定手段は、 前記接地性を表す物理量を平滑化する平滑化手段 と、 平滑化された前記接地性を表す物理量を微分する微分器と、 で構成されたこ とを特徴とする請求項 1乃至請求項 3の何れか 1項に記載のタイヤバース卜予測
PCT/JP2001/008963 2000-10-13 2001-10-12 Dispositif permettant de prevoir l'eclatement d'un pneu WO2002032698A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60113282T DE60113282T2 (de) 2000-10-13 2001-10-12 Einrichtung zur vorhersage eines reifenplatzers
EP01974809A EP1325821B1 (en) 2000-10-13 2001-10-12 Tire burst prediction device
US10/380,108 US6879938B2 (en) 2000-10-13 2001-10-12 Tire burst prediction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000314400A JP3769459B2 (ja) 2000-10-13 2000-10-13 タイヤバースト予測装置
JP2000-314400 2000-10-13

Publications (1)

Publication Number Publication Date
WO2002032698A1 true WO2002032698A1 (fr) 2002-04-25

Family

ID=18793666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008963 WO2002032698A1 (fr) 2000-10-13 2001-10-12 Dispositif permettant de prevoir l'eclatement d'un pneu

Country Status (5)

Country Link
US (1) US6879938B2 (ja)
EP (1) EP1325821B1 (ja)
JP (1) JP3769459B2 (ja)
DE (1) DE60113282T2 (ja)
WO (1) WO2002032698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205886B2 (en) * 2003-06-19 2007-04-17 Honda Motor Co., Ltd. Tire pressure monitoring system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357074B2 (ja) * 2000-03-17 2009-11-04 株式会社ブリヂストン タイヤの摩耗予測方法及びタイヤの摩耗予測装置
ES2358732T3 (es) * 2000-06-23 2011-05-13 Kabushiki Kaisha Bridgestone Procedimiento para la estimación del estado de rodadura de un vehículo, dispositivo de estimación del estado de rodadura de un vehículo, dispositivo de control del vehículo y neumático.
DE60205340T2 (de) * 2001-02-26 2006-03-23 Toyota Jidosha Kabushiki Kaisha, Toyota Gerät zur reifenzustandabschätzung und gerät zur erfassung eines abnormalen reifenzustandes
DE10153072B4 (de) * 2001-10-30 2004-11-04 Continental Aktiengesellschaft Verfahren zur Ermittlung sich anbahnender Laufstreifenablösungen eines Luftreifens an einem Fahrzeug
DE10218781A1 (de) * 2002-04-26 2003-11-13 Tuev Automotive Gmbh Auf einer Felge montierbarer Luftreifen, Sensornetz, Umdrehungsmesseinheit und Fahrzeugüberwachungssystem
US20070176763A1 (en) * 2003-12-12 2007-08-02 Bridgestone Corporation Device and method for detecting abnormality of rotating body
JP4435114B2 (ja) 2006-05-31 2010-03-17 トヨタ自動車株式会社 車両用車輪のタイヤリスク判定装置
US8718868B2 (en) * 2011-06-30 2014-05-06 GM Global Technology Operations LLC Vehicle using tire temperature to adjust active chassis systems
US9079461B2 (en) 2013-03-14 2015-07-14 The Goodyear Tire & Rubber Company Predictive peer-based tire health monitoring
US9076272B2 (en) * 2013-05-28 2015-07-07 Infineon Technologies Ag Wheel speed sensor and interface systems and methods
US9376118B2 (en) 2014-07-08 2016-06-28 The Goodyear Tire & Rubber Company Assessment of tire condition based on a tire health parameter
CN104191914A (zh) * 2014-09-16 2014-12-10 成都衔石科技有限公司 一种跟驰汽车爆胎状况检测方法
US9636956B2 (en) 2014-11-04 2017-05-02 The Goodyear Tire & Rubber Company Wheel diagnostic monitoring
WO2016105687A1 (en) 2014-12-23 2016-06-30 Bridgestone Americas Tire Operations, Llc Tire having radio frequency identification device for monitoring structural health
CN104908681A (zh) * 2015-06-19 2015-09-16 陕西法士特齿轮有限责任公司 一种车速信号调理转换***及其控制方法
US10173588B2 (en) * 2015-12-04 2019-01-08 Karl Lenker Systems and methods for motorbike collision avoidance
JP6624152B2 (ja) * 2017-04-26 2019-12-25 株式会社Soken タイヤ側装置およびそれを含むタイヤ装置
CN107379899B (zh) * 2017-07-07 2018-06-29 淮阴工学院 一种基于无线传感器网络的轮胎状态智能监测***
JP7006210B2 (ja) * 2017-12-06 2022-01-24 株式会社豊田中央研究所 μ勾配検出装置、装着タイヤ判定装置、路面状態判定装置、装着タイヤ及び路面状態判定装置
AU2020220060A1 (en) * 2019-08-30 2021-03-18 The Goodyear Tire & Rubber Company Method for extracting changes in tyre characteristics
DE102020127647B4 (de) 2020-10-21 2023-10-26 Audi Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugs sowie entsprechendes Kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211012A (ja) * 1993-01-14 1994-08-02 Toyota Motor Corp タイヤの状態監視装置
JPH082221A (ja) * 1994-06-21 1996-01-09 Toyota Motor Corp タイヤ空気圧異常判定装置
JPH08132831A (ja) * 1994-11-11 1996-05-28 Nippondenso Co Ltd タイヤユニフォーミティ成分による車輪状態検知装置
JP2000055790A (ja) * 1998-06-03 2000-02-25 Toyota Central Res & Dev Lab Inc 路面μ推定装置
JP2000089824A (ja) * 1998-07-17 2000-03-31 Toyota Central Res & Dev Lab Inc 出力選別装置及び動的システムの診断装置
JP2001108579A (ja) * 1999-09-13 2001-04-20 Avl List Gmbh 自動車の走行特性評価方法及びその評価装置
JP2001133390A (ja) * 1999-11-05 2001-05-18 Toyota Central Res & Dev Lab Inc 路面摩擦状態推定装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836652B2 (ja) 1991-11-11 1998-12-14 株式会社デンソー タイヤ空気圧検知装置
JP3149624B2 (ja) 1993-04-15 2001-03-26 株式会社デンソー タイヤ空気圧検知装置
JP3286441B2 (ja) 1993-11-26 2002-05-27 マツダ株式会社 タイヤ空気圧判定装置
US6142026A (en) 1994-06-06 2000-11-07 Toyota Jidosha Kabushiki Kaisha Wheel information estimating apparatus
JP3451774B2 (ja) 1995-02-09 2003-09-29 株式会社日本自動車部品総合研究所 タイヤ空気圧検知装置
JP3175552B2 (ja) * 1995-08-04 2001-06-11 株式会社デンソー タイヤ空気圧推定装置
JP3543879B2 (ja) * 1995-10-11 2004-07-21 住友ゴム工業株式会社 タイヤ空気圧異常警報装置
JP3119809B2 (ja) * 1996-01-26 2000-12-25 住友電気工業株式会社 タイヤ空気圧低下検出方法および装置
JP3300601B2 (ja) 1996-05-23 2002-07-08 トヨタ自動車株式会社 タイヤ空気圧検出装置
US6014599A (en) 1996-08-29 2000-01-11 Denso Corporation Tire abnormality sensor
EP0887241A3 (en) * 1997-06-27 1999-12-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Road surface condition estimating apparatus and variation reduction processing apparatus
EP0891904B1 (en) * 1997-07-18 2002-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Wheel condition estimating apparatus
EP0895880B1 (en) * 1997-08-08 2004-06-09 Denso Corporation Apparatus for estimating tire air pressure
EP0925960A3 (en) * 1997-12-15 2004-06-09 Denso Corporation Tyre air pressure estimating apparatus
DE10116356B4 (de) * 2000-04-03 2007-04-12 Aisin Seiki K.K., Kariya Bremskraftregelvorrichtung
ES2358732T3 (es) 2000-06-23 2011-05-13 Kabushiki Kaisha Bridgestone Procedimiento para la estimación del estado de rodadura de un vehículo, dispositivo de estimación del estado de rodadura de un vehículo, dispositivo de control del vehículo y neumático.
US6285280B1 (en) 2000-06-26 2001-09-04 Robert Bosch Corporation Method for detecting a deflated tire on a vehicle
JP3475165B2 (ja) * 2000-09-20 2003-12-08 住友ゴム工業株式会社 タイヤ空気圧低下警報装置および方法
JP2002172920A (ja) * 2000-09-29 2002-06-18 Toyota Central Res & Dev Lab Inc タイヤ空気圧推定装置
JP4331881B2 (ja) * 2000-10-16 2009-09-16 トヨタ自動車株式会社 路面状態推定装置
JP2002160511A (ja) * 2000-11-27 2002-06-04 Aisin Seiki Co Ltd タイヤ空気圧推定装置
JP3802755B2 (ja) * 2000-12-14 2006-07-26 住友ゴム工業株式会社 タイヤ空気圧低下警報方法および装置
JP4394849B2 (ja) * 2001-06-26 2010-01-06 横浜ゴム株式会社 タイヤ故障発生危険度報知システム
EP1285786B1 (en) 2001-08-22 2016-02-03 Sumitomo Rubber Industries Limited Method and apparatus for detecting abnormalities of tire, and program for detecting abnormalities of tire
DE60231098D1 (de) * 2001-10-25 2009-03-26 Sumitomo Electric Industries Verfahren und Vorrichtung zur Erfassung von Reifendruckverlust
JP3899987B2 (ja) * 2002-04-11 2007-03-28 株式会社豊田中央研究所 物理量推定装置及びタイヤ状態判定装置
JP3923873B2 (ja) * 2002-09-06 2007-06-06 住友ゴム工業株式会社 タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211012A (ja) * 1993-01-14 1994-08-02 Toyota Motor Corp タイヤの状態監視装置
JPH082221A (ja) * 1994-06-21 1996-01-09 Toyota Motor Corp タイヤ空気圧異常判定装置
JPH08132831A (ja) * 1994-11-11 1996-05-28 Nippondenso Co Ltd タイヤユニフォーミティ成分による車輪状態検知装置
JP2000055790A (ja) * 1998-06-03 2000-02-25 Toyota Central Res & Dev Lab Inc 路面μ推定装置
JP2000089824A (ja) * 1998-07-17 2000-03-31 Toyota Central Res & Dev Lab Inc 出力選別装置及び動的システムの診断装置
JP2001108579A (ja) * 1999-09-13 2001-04-20 Avl List Gmbh 自動車の走行特性評価方法及びその評価装置
JP2001133390A (ja) * 1999-11-05 2001-05-18 Toyota Central Res & Dev Lab Inc 路面摩擦状態推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1325821A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205886B2 (en) * 2003-06-19 2007-04-17 Honda Motor Co., Ltd. Tire pressure monitoring system

Also Published As

Publication number Publication date
EP1325821A1 (en) 2003-07-09
US20040015312A1 (en) 2004-01-22
US6879938B2 (en) 2005-04-12
JP2002120529A (ja) 2002-04-23
DE60113282D1 (de) 2005-10-13
JP3769459B2 (ja) 2006-04-26
EP1325821A4 (en) 2004-12-15
DE60113282T2 (de) 2006-06-29
EP1325821B1 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
WO2002032698A1 (fr) Dispositif permettant de prevoir l'eclatement d'un pneu
EP0808731B1 (en) Apparatus for estimating vehicle tire air pressure from not only tired wheel motion but also tire temperature
KR960014661B1 (ko) 차량의 감압 타이어 검출방법
JP3150893B2 (ja) タイヤ識別方法および装置
US9037376B2 (en) Road-surface condition estimating device
JP2002172920A (ja) タイヤ空気圧推定装置
US7963157B2 (en) Apparatus and method for detecting decrease in tire air pressure and program for detecting decrease in tire air pressure
GB2320788A (en) Low tyre warning system
US20110107828A1 (en) Apparatus and method for detecting tire having decreased pressure, and program for detecting tire having decreased pressure
JPH09504761A (ja) タイヤ空気圧監視方法および回路装置
JP5074533B2 (ja) タイヤ空気圧偏差を検出する方法、システム、およびコンピュータ・プログラム
US9528899B2 (en) Tire pressure decrease detection apparatus and method, and computer readable medium therefor
JP3535076B2 (ja) 路面摩擦係数判定装置および方法
JPH08132831A (ja) タイヤユニフォーミティ成分による車輪状態検知装置
US7171297B2 (en) Road surface condition determination apparatus
JP2003276627A (ja) 車両制御装置
JP7005979B2 (ja) タイヤの回転速度補正装置
JP2004017716A (ja) タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
EP1361081A2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
JP3438599B2 (ja) タイヤ空気圧推定装置
KR20170064926A (ko) 차량 질량 추정 방법 및 장치
JP3801437B2 (ja) タイヤ特性判定装置
JP4261309B2 (ja) 車両のタイヤ種別判定方法
WO2023152986A1 (ja) 路面種検知装置
JP3305878B2 (ja) 車輪情報取得装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001974809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10380108

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001974809

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001974809

Country of ref document: EP