WO2001092150A1 - Method of fixing carbon nanotubes - Google Patents

Method of fixing carbon nanotubes Download PDF

Info

Publication number
WO2001092150A1
WO2001092150A1 PCT/JP2001/004602 JP0104602W WO0192150A1 WO 2001092150 A1 WO2001092150 A1 WO 2001092150A1 JP 0104602 W JP0104602 W JP 0104602W WO 0192150 A1 WO0192150 A1 WO 0192150A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
carbon nanotubes
nanotube film
substrate
solvent
Prior art date
Application number
PCT/JP2001/004602
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Tomihari
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to AU2001262680A priority Critical patent/AU2001262680A1/en
Publication of WO2001092150A1 publication Critical patent/WO2001092150A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a method for fixing carbon nanotubes used for a field emission emitter or the like used for a field emission display or the like.
  • a carbon nanotube is an extremely small tubular substance, in which one or more nested cylinders are formed by rolling a graphitic carbon atom surface of several atomic layers into a tube shape.
  • Such carbon nanotubes have a large aspect ratio (length / diameter ratio) and have a unique shape, such as being hollow, and are therefore expected to be applied to industry as new carbon materials.
  • the carbon nanotube is obtained, for example, by arc discharge using a carbon rod as an electrode.
  • the method of fixing the carbon nanotube is described, for example, in Nature Vol. 354 (1991) p. 56-58.
  • carbon nanotubes are dispersed in a resist and coated on a substrate.
  • spin coating is performed, and then the resist is subjected to necessary pre-baking to fix the carbon nanotubes on the substrate.
  • Te ch. Digestof SID 99 reports a slurry method in which carbon nanotubes are dispersed in isopropyl alcohol (IPA), pulverized, mixed with an organic adhesive, and applied. .
  • IPA isopropyl alcohol
  • the carbon nanotubes are mixed with the organic adhesive, there is a problem that the density of the carbon nanotubes in the carbon nanotube film formed on the substrate becomes low.
  • the slurry liquid is injected and spread over the entire surface while rotating at a low speed while tilting the substrate, and then the substrate is rotated at a high speed to remove excess slurry by centrifugal force.
  • the carbon nanotubes may be aggregated by van der Waal squaring in an adhesive or a solvent before the application, or may be applied on the substrate before the application.
  • carbon nanotubes agglomerate in the adhesive and solvent before the solvent evaporates, and when baked into a carbon nanotube film, irregularities of 1 micron or more are generated on the surface, resulting in the formation of a carbon nanotube film. Emissions when used as non-uniform are not uniform.
  • the adhesive is cracked when the solvent is volatilized, and the surface becomes uneven, so that the distribution of carbon nanotubes becomes uneven. Even in such a case, the distribution of emission current on the carbon nanotube film becomes uneven. Disclosure of the invention
  • the present invention has been made to solve the above-mentioned problem, and a carbon nanotube capable of fixing carbon nanotubes on a substrate in a large area and dispersing carbon nanotubes at high density and uniformity. It is an object of the present invention to provide a method for fixing the same.
  • the present invention provides, in a first aspect,
  • the present invention provides, in a second aspect, (a) forming a carbon nanotube film on a temporary member having a flat surface; (e) forming an adhesive layer on a substrate;
  • carbon nanotubes can be fixed on a substrate in a large area, and carbon nanotubes can be uniformly dispersed at high density.
  • transfer used in the present invention means that a temporary member surface on which carbon nanotubes are temporarily formed is opposed to a substrate surface on which carbon nanotubes are to be finally formed, and a carbon nanotube is pressed against the substrate surface. This means that the carbon nanotubes are transferred from the temporary member to the substrate while substantially maintaining the original shape.
  • the temporary member is filter paper or filter paper.
  • a carbon nanotube is dispersed in a solvent to form a dispersion, and the dispersion is subjected to suction filtration or pressure filtration to form a carbon nanotube film on the temporary member. It is preferred that
  • the solvent is an alcohol such as ethyl alcohol or an organic solvent such as acetone.
  • the method for fixing carbon nanotubes of the present invention desirably includes a step of pulverizing the carbon nanotubes before the step (a).
  • the adhesive layer is desirably a cellulose-based adhesive such as nitrocellulose or methylcellulose.
  • FIG. 1 is a cross-sectional view showing an example of a carbon nanotube film formed on a substrate, obtained by the method for fixing carbon nanotubes of the present invention.
  • FIG. 2 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
  • FIG. 3 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a suction filtration device used in the method for fixing carbon nanotubes of the present invention.
  • FIG. 5 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
  • FIG. 6 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes according to the present invention.
  • FIG. 7 is a cross-sectional view showing an example of a pressure filtration device used in the method for fixing carbon nanotubes of the present invention.
  • FIG. 8 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
  • FIG. 9 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes according to the present invention.
  • FIG. 10 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
  • the carbon nanotube film obtained by the carbon nanotube fixing method of the present invention is 1 illustrates one embodiment.
  • the carbon nanotube film 1 is formed by fixing carbon nanotubes via a bonding layer 3 on a substrate 2 made of glass or ceramic.
  • the method for fixing carbon nanotubes of the present invention will be described by exemplifying a case where the carbon nanotube film 1 is formed on such a substrate 2.
  • a force-punch nano tube 1 is dispersed in a solvent 4 as shown in FIG.
  • the carbon nanotubes 1a can be generated by the above-described arc discharge using a commonly used carbon rod as an electrode.
  • the generated force nanotubes can be used without processing.
  • the size of the aggregate of the carbon nanotubes 1a is 5 m or more. Therefore, if the carbon nanotube film 1 is manufactured with the same size, the film thickness becomes 5 ⁇ im or more. In such a case, in order to flatten the surface of the carbon nanotube film 1, it is necessary to provide the adhesive layer 3 thickly.
  • the carbon nanotube film 1 is formed into a thin film (for example, the film thickness is l ⁇ m or less), it is preferable to use the carbon nanotubes 1 after generation after dividing and forming fine particles.
  • Examples of the method of dividing and atomizing the carbon nanotubes 1 include a method of putting the carbon nanotubes 1 in a mortar and dividing them with a pestle, and a method of dividing the carbon nanotubes 1 using a pole mill. According to this dividing method, the size of the aggregate of the carbon nanotube 1a can be easily controlled to 1 / im or less, and the carbon nanotube film 1 having a thickness of 1 or less can be formed.
  • organic solvents such as alcohols such as ethyl alcohol and acetone are preferably used. With such an organic solvent, it is easy to apply the carbon nanotubes 1 uniformly to the temporary member (temporary sheet) 7.
  • the amount of the solvent 4 is not particularly limited, it is preferable that the weight ratio of the carbon nanotubes to the solvent 4 be 1: 10000 to 1: 10000.
  • ultrasonic waves 5 were applied to the solvent 4 containing the carbon nanotubes 1a.
  • the carbon nanotubes 1a can be uniformly dispersed in the solvent 4, and at the same time, the carbon nanotubes 1a are partially cut, and the carbon nanotubes 1a are partially broken.
  • the nanotube 1a is atomized. Therefore, the force-bon nanotube film 1 can be made thin.
  • the ultrasonic wave 5 to be applied at this time preferably has a frequency of 20 to 200 kHz and an amplitude of 0.5 to 50 m, and the irradiation time of the ultrasonic wave 5 is 0.1 to 10 hours. Is preferred.
  • a suction filter 20 equipped with a funnel 21 for flowing the dispersion liquid 6 into a receiving container 22 in which the temporary member 7 is set is placed on the temporary member 7 as shown in FIG.
  • a carbon nanotube film 1 is formed.
  • this suction filtration device 20 when a dispersion 6 in which the solvent 4 and the carbon nanotubes 1 are dispersed is poured into the funnel 21, the filtrate of the dispersion 6 passes through the temporary member 7 and is received in a receiving container. At the same time, the thin film-like carbon nanotube film 1 is formed on the temporary member 7.
  • the suction nanotube method or the pressure filtration method is used in the step of dispersing the carbon nanotube 1a in the solvent 2 to form a dispersion liquid 6 and applying it to the temporary member 7 such as a filter paper or a filter, Not only can the production time of the Ponanotube membrane 1 be reduced, but also the solvent 4 quickly permeates through the carbon nanotube la, and the tip of the carbon nanotube 1a flows into the solvent 4 inward from the surface of the filter paper. Orientation. That is, on the surface of the carbon nanotube film 1 formed by the suction filtration or the pressure filtration, the tip of the carbon nanotube 1a has a shape that stands up prominently.
  • the thickness of the carbon nanotube film 1 formed on the temporary member 7 is preferably set to 0.1 to 1.0 m. If it is less than 0.1 ⁇ , cracks will occur and the film will not be a continuous film.If it exceeds 1.0 tm, the resistance will increase, causing adverse effects such as heat generation. The bird rises.
  • the temporary member 7 may have a flat surface, but it is particularly preferable to use filter paper or filter paper. If the temporary member 7 is filter paper or filter paper, the carbon nanotubes 1a are easily entangled with the filter paper or filter fiber and fixed. Moreover, in the carbon nanotube film 1 formed on the filter paper or the filter, cracks are less likely to be generated on the surface portion.
  • a filter When a filter is used as the temporary member 7, its material is appropriately selected depending on the solvent 4 in which the carbon nanotube 1a is dispersed. For example, when ethyl alcohol is used as solvent 4, a filter made of polyvinylidene difluoride or polytetrafluoroethylene or polycarbonate is used. When an organic solvent such as acetone is used as solvent 4, It is desirable to use polytetrafluoroethylene filters.
  • the average pore size of the filter 7 is preferably adjusted as appropriate for efficient filtration, and is preferably 0.1 to 10 ⁇ . If it is less than 0.1 m, it takes a long time for filtration, and if it exceeds 10 m, carbon nanotubes pass through the filter.
  • a suction filtration method using a suction filtration device 20 was used to form the carbon nanotube film 1 on the temporary member 7, but in addition to this, the filtration of the dispersion 6 was performed as shown in FIG.
  • a pressure filtration method using a pressure filtration device 30 as shown can be used.
  • suction is performed at a maximum pressure of atmospheric pressure (approximately 1 atm). Therefore, as the size of the filter increases, the suction pressure per unit area decreases, and the filtration time of the dispersion 6 increases. It can be lost. Therefore, when the size of the filter becomes large, for example, when the diameter becomes 100 mm or more, it is desirable to use the pressure filtration method instead of the suction filtration method.
  • the pressure at the time of filtration can be freely set by the pressure pump used, so that when the dispersion 6 is filtered using a filter having a large area, the efficiency is extremely high.
  • the filtration of the dispersion 6, that is, the formation of the carbon nanotube film 1 can be performed well.
  • a metal temporary member 9 made of metal such as stainless steel or molybdenum steel whose surface is polished smoothly as shown in FIG. 8 can be used as the temporary member 7.
  • the surface roughness of the temporary metal member 9 used at this time greatly affects the surface state of the carbon nanotube film 1 finally formed on the substrate 2. Therefore, the temporary metal member 9 having a surface roughness of 1 zm or less It is desirable to use.
  • the surface roughness of the temporary metal member 9 can be adjusted by an electropolishing method.
  • a method for forming the thin-film carbon nanotubes 1 is as follows.
  • the dispersion liquid is dropped on the temporary member, and the solvent is applied by evaporating the solvent at room temperature or under heating. Method.
  • an adhesive layer 3 for fixing the carbon nanotube film 1 on the substrate 2 is formed on the thin carbon nanotube film 1 formed on the temporary member 7 (or the metal temporary member 9).
  • an adhesive layer 3 is formed on a substrate 2 holding a carbon nanotube film 1. Either of these methods may be used.However, in the method of forming the adhesive layer 3 on the substrate 2, since the adhesive or the solvent of the adhesive does not pass through the filter paper or the filter, the adhesive or the solvent is removed. It can be used efficiently.
  • Examples of a method for forming such an adhesive layer 3 include a method of dispersing or dissolving an adhesive in a solvent, followed by application after completion of filtration by the suction filtration device 20 or the pressure filtration device 30 described above. .
  • the adhesive is easily applied uniformly on the carbon nanotube film 1 or the substrate 2.
  • the tip of the carbon nanotube 1a flows in a direction inward from the surface of the filter paper by the solvent. Orientation. That is, by using the solvent, on the surface of the carbon nanotube film 1, the end of the carbon nanotube 1 a has a shape rising from the carbon nanotube film 1.
  • the tip of the carbon nanotube 1a rises above the carbon nanotube film 1, the degree of electric field concentration at the tip of the carbon nanotube 1a when a voltage is applied to the carbon nanotube film 1 , The emission current increases and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is improved.
  • a cellulose-based adhesive such as nitrocellulose or methylcellulose is preferably used. With such a cellulose-based adhesive, the effect of removing volatile substances in the adhesive used as a solvent is large, and the residual gas can be reduced when the suction filtration device is evacuated to a vacuum. .
  • an alcohol solvent such as ethyl alcohol and an organic solvent such as acetone can be used as a solvent of the adhesive.
  • the thickness of the adhesive layer 3 formed at this time is set to 10 to 100 nm. Preferably. If it is less than 100 nm, the effect of sticking will be lost, and if it exceeds 100 nm, there will be a problem in conduction of carbon nanotubes.
  • the carbon nanotube film 1 is transferred onto the substrate 2 as shown in FIG.
  • the adhesive layer 3 is formed on the carbon nanotube film 1
  • the filter is turned back so that the adhesive layer 3 is on the substrate 2 side, and these carbon nanotubes are formed.
  • the transfer film 1 and the adhesive layer 3 are transferred onto the substrate 2.
  • the carbon nanotube film 1 formed on the temporary member 7 or the metal temporary member 9) is moved so that the surface of the carbon nanotube film 1 faces the substrate 2. Then, the carbon nanotube film 1 is transferred onto the adhesive layer 3 formed on the substrate 2.
  • the temporary member 7 (or the metal temporary member 9) on the top surface is peeled off from the carbon nanotube film 1 and removed.
  • the temporary member 7 is a filter paper or a filter
  • the carbon nanotube 1a is entangled when the temporary member 7 is removed, and the tip portion of the carbon nanotube 1a is pulled and rises from the carbon nanotube film 1 portion. Is formed.
  • the degree of electric field concentration at the tip of the carbon nanotube film 1 is increased, the emission current is increased, and the voltage can be reduced.
  • the emission points are increased, and the uniformity of the carbon nanotube film 1 is also improved.
  • the carbon nanotubes formed on the substrate 2 are removed.
  • the solvent 4 remaining in the carbon nanotube film 1 and the solvent remaining in the bonding layer 3 are volatilized and removed by heat-treating the carbon film 1.
  • the heat treatment temperature at this time depends on the type of the solvent 4 and the solvent of the adhesive, but it is preferable to perform the heat treatment at 120 to 200 ° C. for 15 to 30 minutes.
  • the carbon nanotube film 1 be volatilized within one day by a heating or depressurization step in a step after using these.
  • the solvent 4 and the solvent volatilize when the carbon nanotube film 1 is left naturally, but natural drying is performed, for example, when nitrocellulose is used as an adhesive. Only the surface part is volatilized, and the volume of the part is reduced, so that the surface of the carbon nanotube film 1 is cracked, so that a flat carbon nanotube film 1 surface cannot be obtained.
  • a solvent 4 or a solvent for an adhesive it is desirable that the carbon nanotube film 1 be volatilized within one day by a heating or depressurization step in a step after using these.
  • the solvent 4 and the solvent volatilize when the carbon nanotube film 1 is left naturally, but natural drying is performed, for example, when nitrocellulose is used as an adhesive. Only the surface part is volatilized, and the volume of the part is reduced, so that the surface of the carbon nanotube film 1 is cracked, so that a flat carbon nanotube
  • the carbon nanotubes 1a can be uniformly dispersed at high density over a wide area on the substrate.
  • the surface state is flat with little unevenness.
  • the conventional method of fixing carbon nanotubes involves applying a solution of carbon nanotubes, an adhesive and a solvent to a substrate and fixing the solution. Therefore, at this time, the solvent in the liquid coating material is vaporized to become a solid, but since the emission surface of the carbon nanotube film faces the atmosphere, the uneven distribution and unevenness of the carbon nanotubes in the liquid are reduced. Acting on the liquid surface, the surface of the lower carbon nanotube film becomes uneven when it becomes solid.
  • the emission surface of the carbon nanotube film is formed on the flat temporary member 7 for transfer to the substrate 2, the non-uniformity of the carbon nanotubes 1a in the dispersion 6 is reduced. Since it does not act on the surface irregularities, the surface can be made flat.
  • the tip of the carbon nanotube. 1 a has a shape rising from the carbon nanotube film 1. Therefore, when a voltage is applied to the carbon nanotube film 1, The concentration of the electric field at the tip of the carbon nanotube 1a increases, the emission current increases, and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is improved.
  • the carbon nanotube fixing method of the present invention it is possible to obtain the carbon nanotube film 1 in which the carbon nanotubes la are densely and uniformly dispersed. Further, the obtained carbon nanotube film 1 can be suitably used as a field emission emitter used for a field emission display or the like, and can provide a high-brightness, high-definition, and inexpensive field emission display. it can.
  • a glass substrate having a size of 10 cm square was used as the substrate 2, and a carbon nanotube film 1 was formed on the glass substrate 2.
  • a dispersion obtained by dispersing nitrified cotton in isoamyl acetate is applied to the thin carbon nanotube film 1 formed on the filter by the suction filtration device, and is then applied to the carbon nanotube film 1.
  • An adhesive layer 3 was formed.
  • the filter on which the carbon nanotube film 1 and the adhesive layer 3 were formed was mounted on a substrate.
  • the adhesive layer 3 was turned over so that it came on 2, and the carbon nanotube film 1 and the adhesive layer 3 were transferred onto the substrate 2.
  • the filter is peeled off from the carbon nanotube film 1 and removed.
  • the carbon nanotube film 1 is dried by performing a heat treatment for 150 and 30 minutes, and is left on the solvent 4 or the adhesive layer 3. The solvent was removed.
  • the carbon nanotube film 1 thus fixed on the substrate 2 had high adhesion to the substrate 2.
  • Example 1 a stainless steel temporary member 9 having a surface roughness of about 1 micron prepared by an electropolishing method was used, and the dispersion was dropped on the metal temporary member 9 and was cooled at room temperature or under heating. Carbon nanotubes were fixed on the substrate 2 in the same manner as in Example 1 except that the solvent was volatilized to form the carbon nanotube film 1.
  • the adhesive layer 3 was not formed on the carbon nanotube film 1 but the above-mentioned adhesive was applied on the substrate 2 in advance, and then the carbon nanotube film 1 formed on the filter was removed.
  • the carbon nanotubes of Example 3 were fixed in the same manner as in Example 1 except that the carbon nanotube surface was turned over so as to come to the substrate 2 side and transferred onto the adhesive layer 3.
  • Example 4 was carried out in the same manner as in Example 1 except that the carbon nanotube 1a was put into a mortar, cut using a pestle, and then dispersed in a solvent 4. The nano-tube film was fixed.
  • Example 1 a pressure filtration device as shown in FIG. 10 was used, and the differential pressure in the pressure device was set to 5 kg Z cm 2 by a pressure pump, and the dispersion was performed.
  • the carbon nanotubes of Example 5 were fixed in the same manner as in Example 1 except that the filtration was performed twice and the adhesive was filtered.
  • the carbon nanotubes could be fixed on the substrate 2, and when the fixed carbon nanotubes were observed with a microscope, the carbon nanotubes were fixed on the substrate 2 in a uniform film shape.
  • the method of the present invention produces fixed carbon nanotubes that can be used in high-brightness, high-definition, inexpensive field emission displays and the like.

Abstract

A method of fixing carbon nanotubes, comprising the steps of forming a carbon nanotube film (1) on a temporary member having a flat surface, forming an adhesive layer (3) on the carbon nanotube in order to fix the carbon nanotube film(1) on a substrate, transferring the carbon nanotube film (1) and adhesive layer (3) formed on the temporary member onto the substrate, and removing the temporary member. A carbon nanotube uniformly and densely dispersed over a large area is obtained.

Description

明細書  Specification
カーボンナノチューブの固着方法 How to fix carbon nanotubes
技術分野 Technical field
本発明は、 フィールドェミッションディスプレイ等に使用される電界放出エミッタ等に 用いられるカーボンナノチューブの固着方法に関する。  The present invention relates to a method for fixing carbon nanotubes used for a field emission emitter or the like used for a field emission display or the like.
背景技術 Background art
カーボンナノチューブは、 厚さ数原子層のグラフアイト状炭素原子面をチューブ状に丸 めた円筒が、 1個あるいは複数個入れ子状になったものであり、 極めて微小な管状物質で ある。 このような力一ボンナノチューブはアスペクト比 (長さ/直径比) が大きく、 中空 であるといつた独特の形状を有することから、 新しい炭素材料として産業上への適用が期 待されている。  A carbon nanotube is an extremely small tubular substance, in which one or more nested cylinders are formed by rolling a graphitic carbon atom surface of several atomic layers into a tube shape. Such carbon nanotubes have a large aspect ratio (length / diameter ratio) and have a unique shape, such as being hollow, and are therefore expected to be applied to industry as new carbon materials.
力一ボンナノチューブは、 たとえば炭素棒を電極としたアーク放電により得られる。 こ の力一ボンナノチューブの固着方法は、 例えば、 N a t u r e V o l . 3 5 4 ( 1 9 9 1 ) p . 5 6— 5 8等に記載されている。  The carbon nanotube is obtained, for example, by arc discharge using a carbon rod as an electrode. The method of fixing the carbon nanotube is described, for example, in Nature Vol. 354 (1991) p. 56-58.
上記アーク放電による力一ボンナノチューブの生成方法は、 ヘリゥムまたはアルゴンガ ス、 約 7 . 0 X 1 0 4 P aの雰囲気中で、 触媒金属として鉄、 コバルトやニッケルを添加 した炭素棒電極を用いてアーク放電を行い力一ボンナノチューブを生成する。 Method of generating a force one carbon nanotubes by the arc discharge, Heriumu or argon gas scan at about 7. 0 X 1 0 4 in an atmosphere of P a, iron as the catalytic metal, a carbon rod electrode with the addition of cobalt or nickel with Arc discharge is performed to generate carbon nanotubes.
このようなアーク放電によるカーボンナノチューブの生成方法においては、 上記触媒金 属の種類により、 カーボンナノチューブの生成する場所が異なることが知られている。 例 えば、 触媒金属として、 鉄とコバルトを添加した場合には堆積チャンパ一の内壁に付着す る煤中に生成し、 ニッケルを添加した場合は陰極の電極の表面に付着する煤中に生成され る。  In such a method of producing carbon nanotubes by arc discharge, it is known that the place where carbon nanotubes are produced differs depending on the type of the catalyst metal. For example, when iron and cobalt are added as catalyst metals, they are formed in soot adhering to the inner wall of the deposition chamber, and when nickel is added, they are formed in soot adhering to the surface of the cathode electrode. You.
近年、 このように生成された力一ボンナノチューブを電子源に適用しょうという試みが 行われている。 たとえば J p n. J. A p p 1. Phy s . 37, L 346 , 1In recent years, attempts have been made to apply such carbon nanotubes to electron sources. Is being done. For example, J pn. J. A pp 1. Phy s. 37, L 346, 1
998には、 力一ボンナノチューブを電子管の電子源として組み込み、 結果発光を確認し たことが報告されている。 また T e c h . D i g e s t o f S I D 99には、 力一 ボンナノチューブをフラットパネルの電子源として適用したという報告がされている。 上述したように生成されるカーボンナノチューブを電子源 (ェミッタ) に適用する場合 には、 煤状のカーボンナノチューブを基板上に固着することが必要である。 In 998, it was reported that carbon nanotubes were incorporated as an electron source for an electron tube, and the resulting emission was confirmed. In addition, it is reported in Tech.DigestofSID99 that carbon nanotubes were applied as an electron source for flat panels. When the carbon nanotubes generated as described above are applied to an electron source (emitter), it is necessary to fix soot-like carbon nanotubes on a substrate.
例えば、 特開平 6— 252056号公報に記載された力一ボンナノチューブの固着方法 では、 カーボンナノチューブをレジス卜中に分散して基板上に塗布する。 この方法におい ては、 膜厚の均一性が必要な場合はスピンコ一ティングを用い、 その後レジストに必要な プリべ一キングを施すことにより基板上に力一ボンナノチューブを固着している。  For example, in the method for fixing carbon nanotubes described in Japanese Patent Application Laid-Open No. 6-252056, carbon nanotubes are dispersed in a resist and coated on a substrate. In this method, when uniformity of the film thickness is required, spin coating is performed, and then the resist is subjected to necessary pre-baking to fix the carbon nanotubes on the substrate.
上記方法において、 面積の大きいカーボンナノチューブ膜を形成するためには、 スピン コ一ティングが必要である。 しかし、 カーボンナノチューブとレジストとの比重が異なる ため、 また力一ボンナノチューブが 1 zm以上の大きさで固まりになりやすいため、 塗布 された力一ボンナノチューブ膜中のカーボンナノチューブの分布が不均一になったり、 含 有密度が低くなつたりする問題があった。  In the above method, spin coating is necessary to form a carbon nanotube film having a large area. However, the carbon nanotubes and the resist have different specific gravities, and the carbon nanotubes tend to be solidified at a size of 1 zm or more, so that the distribution of carbon nanotubes in the applied carbon nanotube film becomes uneven. Or the content density was low.
Te c h. D i g e s t o f S I D 99には、 力一ポンナノチューブをイソプロ ピルアルコール (I PA) 中に分散し、 これを粉砕したあとに有機接着剤と混合し塗布す るスラリー法が報告されている。 この方法では、 カーボンナノチューブを有機接着剤と混 合するため、 基板上に形成されるカーボンナノチューブ膜におけるカーボンナノチューブ の密度が低くなつてしまう問題があった。 この方法では、 基板を傾斜させて低速で回転さ せながらスラリー液を注入して全面に広げて塗布した後、 基板を高速回転して余剰のスラ リ一を遠心力で飛散除去する。 この基板の高速回転時に、 カーボンナノチューブの分布が 不均一になったり、 カーボンナノチューブの密度が低くなつたりする問題があった。 このように、 カーボンナノチューブの分布が不均一になったり密度が低くなつたりする と、 形成したェミッタの電子放出が不均一になり、 また放出電流が小さくなり電流密度が 低くなる問題が生じる。 また、 基板上にカーボンナノチューブを固着する他の方法としては、 カーボンナノチュ 一ブを接着剤およぴ溶媒に添加して基板上に塗布するスクリーン印刷法がある。 しかしな がら、 この方法においては、 生成後のナノチューブは絡み合い、 塗布した時に固まりとな つてしまう。 また、 この方法においてカーボンナノチューブを分断して基板上に塗布した 場合でも、 カーボンナノチューブが塗布前に接着剤および溶剤中でファン ·デル · ワール スカゃ静電力により凝集したり、 基板上に塗布後、 溶剤を揮発させるまでにカーボンナノ チューブが接着剤および溶剤中で凝集し、 焼成してカーボンナノチューブ膜としたときに 表面に 1ミクロン以上の凹凸が生じ、 結果として力一ボンナノチューブ膜をエミッ夕とし て用いたときのェミッションが不均一になる。 また溶剤の含有量が多い場合、 溶剤を揮発 させる時に接着剤に亀裂が入り表面に凹凸が生じ、 力一ボンナノチューブの分布が不均一 になる。 このような場合も、 カーボンナノチューブ膜上のェミッション電流の分布の不均 一性が生じてしまう。 発明の開示 Te ch. Digestof SID 99 reports a slurry method in which carbon nanotubes are dispersed in isopropyl alcohol (IPA), pulverized, mixed with an organic adhesive, and applied. . In this method, since the carbon nanotubes are mixed with the organic adhesive, there is a problem that the density of the carbon nanotubes in the carbon nanotube film formed on the substrate becomes low. In this method, the slurry liquid is injected and spread over the entire surface while rotating at a low speed while tilting the substrate, and then the substrate is rotated at a high speed to remove excess slurry by centrifugal force. When the substrate is rotated at a high speed, there is a problem that the distribution of the carbon nanotubes becomes uneven or the density of the carbon nanotubes becomes low. As described above, when the distribution of the carbon nanotubes becomes non-uniform or the density becomes low, the electron emission of the formed emitter becomes non-uniform, and the emission current becomes small and the current density becomes low. As another method for fixing carbon nanotubes on a substrate, there is a screen printing method in which carbon nanotubes are added to an adhesive and a solvent and applied on the substrate. However, in this method, the nanotubes formed become entangled and clump when applied. In addition, even when the carbon nanotubes are divided and applied on the substrate by this method, the carbon nanotubes may be aggregated by van der Waal squaring in an adhesive or a solvent before the application, or may be applied on the substrate before the application. However, carbon nanotubes agglomerate in the adhesive and solvent before the solvent evaporates, and when baked into a carbon nanotube film, irregularities of 1 micron or more are generated on the surface, resulting in the formation of a carbon nanotube film. Emissions when used as non-uniform are not uniform. When the content of the solvent is large, the adhesive is cracked when the solvent is volatilized, and the surface becomes uneven, so that the distribution of carbon nanotubes becomes uneven. Even in such a case, the distribution of emission current on the carbon nanotube film becomes uneven. Disclosure of the invention
本発明は、 前記問題を解決するためになされたもので、 カーボンナノチューブを基板上 に大きい面積で固着することができ、 かつカーボンナノチューブを高密度で均一に分散す ることができる力一ボンナノチューブの固着方法を提供することを目的とする。  The present invention has been made to solve the above-mentioned problem, and a carbon nanotube capable of fixing carbon nanotubes on a substrate in a large area and dispersing carbon nanotubes at high density and uniformity. It is an object of the present invention to provide a method for fixing the same.
本発明は、 第 1の視点において、  The present invention provides, in a first aspect,
( a ) 表面が平坦な仮部材上にカーボンナノチューブ膜を形成する工程と、  (a) forming a carbon nanotube film on a temporary member having a flat surface;
( b ) 前記力一ボンナノチューブを基板上に固着するための接着層を前記カー  (b) an adhesive layer for fixing the carbon nanotubes on a substrate;
ボンナノチューブ膜上に形成する工程と、 Forming on the bon nanotube film;
( c ) 前記仮部材上に形成された力一ボンナノチューブ膜および接着層を基板上 に転写する工程と、  (c) transferring the carbon nanotube film and the adhesive layer formed on the temporary member to a substrate;
( d ) 前記扳部材を取り除く工程とを有することを特徴とする力一ボンナノチュー ブの固着方法を提供する。  (d) A method for fixing a carbon nanotube, comprising the step of removing the member (4).
また、 本発明は、 第 2の視点において、 ( a ) 表面が平坦な仮部材上にカーボンナノチューブ膜を形成する工程と、 ( e ) 接着層を基板上に形成する工程と、 Further, the present invention provides, in a second aspect, (a) forming a carbon nanotube film on a temporary member having a flat surface; (e) forming an adhesive layer on a substrate;
( f ) 前記仮部材上に形成されたカーボンナノチューブ膜を、 前記基板上の接着層上に転 写する工程と、  (f) transferring the carbon nanotube film formed on the temporary member onto an adhesive layer on the substrate;
( d ) 前記仮部材を取り除く工程とを有することを特徴とする力一ボンナノチューブの固 着方法を提供する。  and (d) removing the temporary member.
本発明のカーボンナノチューブの固着方法では、 カーボンナノチューブを基板上に大き い面積で固着することができ、 かつ力一ボンナノチューブを高密度で均一に分散すること ができる。  According to the method for fixing carbon nanotubes of the present invention, carbon nanotubes can be fixed on a substrate in a large area, and carbon nanotubes can be uniformly dispersed at high density.
本発明で使用する用語 「転写」 とは、 カーボンナノチューブが仮に形成された仮部材表 面と、 カーボンナノチューブを最終的に形成すべき基板表面とを対向させて力一ボンナノ チューブを基板表面に押しつけて、 その原形状を実質的に保ったままカーボンナノチュー プを仮部材から基板に移行させることを意味する。  The term “transfer” used in the present invention means that a temporary member surface on which carbon nanotubes are temporarily formed is opposed to a substrate surface on which carbon nanotubes are to be finally formed, and a carbon nanotube is pressed against the substrate surface. This means that the carbon nanotubes are transferred from the temporary member to the substrate while substantially maintaining the original shape.
上記本発明の力一ボンナノチューブの固着方法においては、 上記仮部材が濾紙またはフ ィル夕であることが望ましい。  In the method for fixing carbon nanotubes of the present invention, it is preferable that the temporary member is filter paper or filter paper.
また、 上記 (a ) 工程が、 カーボンナノチューブを溶媒に分散して分散液とし、 この分 散液を吸引濾過あるいは加圧濾過することにより、 前記仮部材上に力一ボンナノチューブ 膜を形成するものであることが好ましい。  Further, in the step (a), a carbon nanotube is dispersed in a solvent to form a dispersion, and the dispersion is subjected to suction filtration or pressure filtration to form a carbon nanotube film on the temporary member. It is preferred that
本発明のカーボンナノチューブの固着方法においては、 上記溶媒がエチルアルコール等 のアルコール類またはアセトン等の有機溶媒であることをが望ましい。  In the method for fixing carbon nanotubes of the present invention, it is preferable that the solvent is an alcohol such as ethyl alcohol or an organic solvent such as acetone.
上記溶媒を用いる場合には、 カーボンナノチューブと溶媒との分散液に超音波を印加し て、 カーボンナノチューブを溶媒中に分散させることが望ましい。  When the above-mentioned solvent is used, it is desirable to apply ultrasonic waves to a dispersion of the carbon nanotubes and the solvent to disperse the carbon nanotubes in the solvent.
また、 本発明のカーボンナノチューブの固着方法においては、 上記 (a ) 工程の前に、 カーボンナノチューブを微粒子化する工程を含むことが望ましい。  In addition, the method for fixing carbon nanotubes of the present invention desirably includes a step of pulverizing the carbon nanotubes before the step (a).
また、 上記接着層はニトロセルロースやメチルセルロース等のセルロース系接着剤であ ることが望ましい。 図面の簡単な説明 Further, the adhesive layer is desirably a cellulose-based adhesive such as nitrocellulose or methylcellulose. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のカーボンナノチューブの固着方法により得られ、 基板上に形成さ れたカーボンナノチューブ膜の一例を示す断面図である。  FIG. 1 is a cross-sectional view showing an example of a carbon nanotube film formed on a substrate, obtained by the method for fixing carbon nanotubes of the present invention.
図 2は、 本発明のカーボンナノチューブの固着方法の一工程を説明するための断面図で のる  FIG. 2 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
図 3は、 本発明のカーボンナノチューブの固着方法の一工程を説明するための断面図で ある。  FIG. 3 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
図 4は、 本発明のカーボンナノチューブの固着方法に用いられる吸引濾過装置の一例を 示した断面図である。 ' 図 5は、 本発明のカーボンナノチューブの固着方法の一工程を説明するための断面図で あ 。  FIG. 4 is a cross-sectional view showing an example of a suction filtration device used in the method for fixing carbon nanotubes of the present invention. FIG. 5 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
図 6は、 本発明の力一ボンナノチューブの固着方法の一工程を説明するための断面図で ある。  FIG. 6 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes according to the present invention.
図 7は、 本発明の力一ボンナノチューブの固着方法に用いられる加圧濾過装置の一例を 示した断面図である。  FIG. 7 is a cross-sectional view showing an example of a pressure filtration device used in the method for fixing carbon nanotubes of the present invention.
図 8は、 本発明の力一ボンナノチューブの固着方法の一工程を説明するための断面図で ある。  FIG. 8 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention.
図 9は、 本発明の力一ボンナノチューブの固着方法の一工程を説明するための断面図で ある。  FIG. 9 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes according to the present invention.
図 1 0は、 本発明のカーボンナノチューブの固着方法の一工程を説明するための断面図 である。 発明を荬施するための最良の形態  FIG. 10 is a cross-sectional view for explaining one step of the method for fixing carbon nanotubes of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照し実施態様に基づいて本発明を更に詳細に説明する。 図 1を参照する と、 本発明のカーボンナノチューブの固着方法により得られるカーボンナノチューブ膜の 一実施形態を示している。 この力一ボンナノチューブ膜 1は、 ガラス又はセラミック等か らなる基板 2上に、 カーボンナノチューブが接着層 3を介して固着されてなる。 Hereinafter, the present invention will be described in more detail based on embodiments with reference to the drawings. Referring to FIG. 1, the carbon nanotube film obtained by the carbon nanotube fixing method of the present invention is 1 illustrates one embodiment. The carbon nanotube film 1 is formed by fixing carbon nanotubes via a bonding layer 3 on a substrate 2 made of glass or ceramic.
このような基板 2上にカーボンナノチューブ膜 1が形成されたものを例示して本発明の カーボンナノチューブの固着方法について説明する。  The method for fixing carbon nanotubes of the present invention will be described by exemplifying a case where the carbon nanotube film 1 is formed on such a substrate 2.
このカーボンナノチューブの固着方法においては、 まず、 図 2に示すように力一ポンナ ノチューブ 1を溶媒 4に分散する。 カーボンナノチューブ 1 aは、 上述の通常用いられる 炭素棒を電極としたアーク放電により生成することができる。 生成した力一ボンナノチュ —プ l aは、 そのまま加工せずに用いることもできる。 しかし、 この状態では、 カーボン ナノチューブ 1 aの固まりの大きさが 5 m以上となるため、 このままの大きさでカーボ ンナノチューブ膜 1を製造すると、 その膜厚が 5 ^i m以上になってしまう。 このような場 合は、 力一ボンナノチューブ膜 1表面を平坦にするためには、 接着層 3を厚く設けること が必要となる。  In this method of fixing carbon nanotubes, first, a force-punch nano tube 1 is dispersed in a solvent 4 as shown in FIG. The carbon nanotubes 1a can be generated by the above-described arc discharge using a commonly used carbon rod as an electrode. The generated force nanotubes can be used without processing. However, in this state, the size of the aggregate of the carbon nanotubes 1a is 5 m or more. Therefore, if the carbon nanotube film 1 is manufactured with the same size, the film thickness becomes 5 ^ im or more. In such a case, in order to flatten the surface of the carbon nanotube film 1, it is necessary to provide the adhesive layer 3 thickly.
よって、 力一ボンナノチューブ膜 1を薄膜状 (例えば、 膜厚が l ^ m以下) とする場合 には、 生成後のカーボンナノチューブ 1を分断して微粒子化してから用いることが好まし い。  Therefore, in the case where the carbon nanotube film 1 is formed into a thin film (for example, the film thickness is l ^ m or less), it is preferable to use the carbon nanotubes 1 after generation after dividing and forming fine particles.
カーボンナノチューブ 1の分断、 微粒子化の方法としては、 乳鉢にカーボンナノチュー ブ 1を入れて乳棒により分断する方法、 またはポールミルを用いてカーボンナノチューブ 1を分断する方法などがある。 この分断方法によれば、 容易に力一ボンナノチューブ 1 a の固まりの大きさを 1 /i m以下に制御でき、 1 厚以下の力一ボンナノチューブ膜 1を 形成することができる。  Examples of the method of dividing and atomizing the carbon nanotubes 1 include a method of putting the carbon nanotubes 1 in a mortar and dividing them with a pestle, and a method of dividing the carbon nanotubes 1 using a pole mill. According to this dividing method, the size of the aggregate of the carbon nanotube 1a can be easily controlled to 1 / im or less, and the carbon nanotube film 1 having a thickness of 1 or less can be formed.
上記溶媒 4としては、 たとえばエチルアルコール等のアルコール類ゃァセトン等の有機 溶媒が好ましく用いられる。 このような有機溶剤であれば、 力一ボンナノチューブ 1を仮 部材 (仮シート) 7上に均一 fo塗布しやすくなる。 溶媒 4の量としては特に限定される ものではないが、 カーボンナノチューブ:溶媒 4の重量比が 1 : 1 0 0 0〜1 : 1 0 0 0 0 0となるようにされるのが好ましい。  As the above-mentioned solvent 4, for example, organic solvents such as alcohols such as ethyl alcohol and acetone are preferably used. With such an organic solvent, it is easy to apply the carbon nanotubes 1 uniformly to the temporary member (temporary sheet) 7. Although the amount of the solvent 4 is not particularly limited, it is preferable that the weight ratio of the carbon nanotubes to the solvent 4 be 1: 10000 to 1: 10000.
ついで、 図 3に示すように、 カーボンナノチューブ 1 aを含んだ溶媒 4に超音波 5を印 加する。 このように、 溶媒 4にカーボンナノチューブ 1を分散する場合に超音波 5を印加 すると、 カーボンナノチューブ 1 aを溶媒 4中に均一に分散できると同時に、 カーボンナ ノチューブ 1 aがー部分断され、 カーボンナノチューブ 1 aが微粒化される。 よって、 力 —ボンナノチューブ膜 1を薄くすることができる。 このとき印加する超音波 5は周波数 2 0〜2 0 0 k H z、 振幅 0 . 5〜 5 0 mのものが好ましく、 超音波 5の照射時間として は、 0 . 1 ~ 1 0時間とすることが好ましい。 Next, as shown in Fig. 3, ultrasonic waves 5 were applied to the solvent 4 containing the carbon nanotubes 1a. Add. As described above, when ultrasonic waves 5 are applied when dispersing the carbon nanotubes 1 in the solvent 4, the carbon nanotubes 1a can be uniformly dispersed in the solvent 4, and at the same time, the carbon nanotubes 1a are partially cut, and the carbon nanotubes 1a are partially broken. The nanotube 1a is atomized. Therefore, the force-bon nanotube film 1 can be made thin. The ultrasonic wave 5 to be applied at this time preferably has a frequency of 20 to 200 kHz and an amplitude of 0.5 to 50 m, and the irradiation time of the ultrasonic wave 5 is 0.1 to 10 hours. Is preferred.
ついで、 図 4に示すように仮部材 7を設置した受け容器 2 2に、 上記分散液 6を流入す るためのファンネル 2 1が装備されている吸引濾過装置 2 0により、 仮部材 7上に力一ポ ンナノチューブ膜 1を形成する。 この吸引濾過装置 2 0においては、 上記溶媒 4と力一ポ ンナノチューブ 1を分散した分散液 6をファンネル 2 1内に流し込むと、 分散液 6の濾液 が、 仮部材 7を通過して受け容器 2 2に溜まると同時に、 薄膜状のカーボンナノチューブ 膜 1が仮部材 7上に形成される。  Then, as shown in FIG. 4, a suction filter 20 equipped with a funnel 21 for flowing the dispersion liquid 6 into a receiving container 22 in which the temporary member 7 is set is placed on the temporary member 7 as shown in FIG. A carbon nanotube film 1 is formed. In this suction filtration device 20, when a dispersion 6 in which the solvent 4 and the carbon nanotubes 1 are dispersed is poured into the funnel 21, the filtrate of the dispersion 6 passes through the temporary member 7 and is received in a receiving container. At the same time, the thin film-like carbon nanotube film 1 is formed on the temporary member 7.
このように、 力一ボンナノチューブ 1 aを溶媒 2に分散して分散液 6とし、 濾紙ゃフィ ルタ等の仮部材 7に塗布する工程に吸引濾過法または加圧濾過法を用いれば、 力一ポンナ ノチューブ膜 1の製造時間を短縮できるばかりでなく、 溶媒 4が速くカーボンナノチュー ブ l a中を透過し、 カーボンナノチューブ 1 aの先端が、 濾紙の表面より内側の方向に溶 媒 4に流されながら強く配向する。 つまり吸引濾過または加圧濾過されることにより形成 された力一ボンナノチューブ膜 1の表面では、 カーボンナノチューブ 1 a先端が際立って 立ち上がる形状となる。 よって、 このような形状では力一ボンナノチューブ膜に電圧をか けた時に力一ボンナノチューブ膜 1先端での電界集中の度合いが強くなりエミッション電 流が多くなり低電圧化が図れる。 また、 ェミッションポイントが多くなりカーボンナノチ ュ一ブ膜 1の均一性も向上する。  As described above, if the suction nanotube method or the pressure filtration method is used in the step of dispersing the carbon nanotube 1a in the solvent 2 to form a dispersion liquid 6 and applying it to the temporary member 7 such as a filter paper or a filter, Not only can the production time of the Ponanotube membrane 1 be reduced, but also the solvent 4 quickly permeates through the carbon nanotube la, and the tip of the carbon nanotube 1a flows into the solvent 4 inward from the surface of the filter paper. Orientation. That is, on the surface of the carbon nanotube film 1 formed by the suction filtration or the pressure filtration, the tip of the carbon nanotube 1a has a shape that stands up prominently. Therefore, in such a shape, when a voltage is applied to the carbon nanotube film, the degree of concentration of the electric field at the tip of the carbon nanotube film 1 increases, the emission current increases, and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is also improved.
このときの仮部材 7上に形成されるカーボンナノチューブ膜 1の膜厚としては、 0 . 1 〜 1 . 0 mとされるのが好ましい。 0 . 1 μ πι未満であると亀裂が生じ連続膜ではなく なり、 1 . 0 t mを超えると抵抗が大きくなり発熱等の弊害が生じ、 また消費するカーボ ンナノチューブ 1 aの量が多くなりコス卜が上昇してしまう。 上記仮部材 7としては、 その表面が平坦であるものでよいが、 特に濾紙やフィル夕を用 いることが好ましい。 仮部材 7が濾紙やフィル夕であれば、 カーボンナノチューブ 1 aが、 濾紙やフィル夕の繊維に絡み付き固定されやすい。 また、 濾紙あるいはフィルター上に形 成されたカーボンナノチューブ膜 1においては、 その表面部分に亀裂が生じにくい。 上記 仮部材 7としてフィルタを用いる場合、 その材質は力一ボンナノチューブ 1 aを分散する 溶媒 4により適宜選択される。 たとえば溶媒 4にエチルアルコールを使用した場合にはポ リビニリデンジフロラィド、 ポリテトラフルォロエチレン製やポリカーボネート製のフィ ルタを用い、 溶媒 4にアセトン等の有機溶剤を使用した場合にはポリテトラフルォロェチ レン製フィル夕を使用することが望ましい。 またフィル夕 7の平均孔径は、 効率よく濾過 を行うために、 適宜調整して用いることが好ましいが、 好ましくは 0 . 1〜 1 0 μ πιが好 ましい。 0 . 1 m未満であると濾過に長時間を費やすことになり、 1 0 mを越えると カーボンナノチューブがフィルタ一を通過してしまう。 At this time, the thickness of the carbon nanotube film 1 formed on the temporary member 7 is preferably set to 0.1 to 1.0 m. If it is less than 0.1 μπι, cracks will occur and the film will not be a continuous film.If it exceeds 1.0 tm, the resistance will increase, causing adverse effects such as heat generation. The bird rises. The temporary member 7 may have a flat surface, but it is particularly preferable to use filter paper or filter paper. If the temporary member 7 is filter paper or filter paper, the carbon nanotubes 1a are easily entangled with the filter paper or filter fiber and fixed. Moreover, in the carbon nanotube film 1 formed on the filter paper or the filter, cracks are less likely to be generated on the surface portion. When a filter is used as the temporary member 7, its material is appropriately selected depending on the solvent 4 in which the carbon nanotube 1a is dispersed. For example, when ethyl alcohol is used as solvent 4, a filter made of polyvinylidene difluoride or polytetrafluoroethylene or polycarbonate is used.When an organic solvent such as acetone is used as solvent 4, It is desirable to use polytetrafluoroethylene filters. The average pore size of the filter 7 is preferably adjusted as appropriate for efficient filtration, and is preferably 0.1 to 10 μπι. If it is less than 0.1 m, it takes a long time for filtration, and if it exceeds 10 m, carbon nanotubes pass through the filter.
また、 この場合は、 仮部材 7上にカーボンナノチューブ膜 1を形成するのに、 吸引濾過 装置 2 0を用いる吸引濾過法を用いたが、 このほかにも分散液 6の濾過に、 図 7に示すよ うな加圧濾過装置 3 0を用いて加圧濾過する方法を用いることができる。 前記吸引濾過法 では、 最大で大気圧 (約 1気圧) の圧力で吸引を行うものであるので、 フィルタのサイズ が大きくなると単位面積あたりの吸引圧力が低くなり、 分散液 6の濾過時間が長くなつて しまうことがある。 よって、 フィル夕のサイズが大きくなる場合には、 例えば、 直径 1 0 0 mm以上となる場合には、 吸引濾過法の代わりに加圧濾過法を使用することが望ましい。 この加圧濾過法においては、 使用する加圧ポンプにより濾過時の圧力を自由に設定するこ とができるので、 面積の大きなフィル夕を使用して分散液 6を濾過する際には非常に効率 よく分散液 6の濾過、 つまりカーボンナノチューブ膜 1の形成を行うことができる。  In this case, a suction filtration method using a suction filtration device 20 was used to form the carbon nanotube film 1 on the temporary member 7, but in addition to this, the filtration of the dispersion 6 was performed as shown in FIG. A pressure filtration method using a pressure filtration device 30 as shown can be used. In the suction filtration method, suction is performed at a maximum pressure of atmospheric pressure (approximately 1 atm). Therefore, as the size of the filter increases, the suction pressure per unit area decreases, and the filtration time of the dispersion 6 increases. It can be lost. Therefore, when the size of the filter becomes large, for example, when the diameter becomes 100 mm or more, it is desirable to use the pressure filtration method instead of the suction filtration method. In this pressure filtration method, the pressure at the time of filtration can be freely set by the pressure pump used, so that when the dispersion 6 is filtered using a filter having a large area, the efficiency is extremely high. The filtration of the dispersion 6, that is, the formation of the carbon nanotube film 1 can be performed well.
また、 上記仮部材 7としては、 図 8に示すような表面をなめらかに研磨したステンレス 鋼や、 モリブデン鋼などの金属製の金属仮部材 9を使用することもできる。 このとき使用 される金属製仮部材 9の表面粗さは、 最終的に基板 2上に形成されるカーボンナノチュー ブ膜 1の表面状態に大きく影響する。 よって、 1 z m以下の表面粗さの金属製仮部材 9を 用いることが望ましい。 このような表面粗さの金属仮部材 9を用いれば、 表面が凹凸のな い平坦なカーボンナノチューブ膜 1を得ることができる。 金属仮部材 9における表面粗さ は、 電界研磨法により調整することができる。 Further, as the temporary member 7, a metal temporary member 9 made of metal such as stainless steel or molybdenum steel whose surface is polished smoothly as shown in FIG. 8 can be used. The surface roughness of the temporary metal member 9 used at this time greatly affects the surface state of the carbon nanotube film 1 finally formed on the substrate 2. Therefore, the temporary metal member 9 having a surface roughness of 1 zm or less It is desirable to use. By using the temporary metal member 9 having such a surface roughness, a flat carbon nanotube film 1 having no uneven surface can be obtained. The surface roughness of the temporary metal member 9 can be adjusted by an electropolishing method.
仮部材 7として金属仮部材 9を用いた場合の薄膜状カーボンナノチューブ 1の形成方法 としては、 上記分散液を仮部材上に滴下し、 常温または加熱下にて溶剤を揮発させること などにより塗布する方法が挙げられる。  When the metal temporary member 9 is used as the temporary member 7, a method for forming the thin-film carbon nanotubes 1 is as follows. The dispersion liquid is dropped on the temporary member, and the solvent is applied by evaporating the solvent at room temperature or under heating. Method.
ついで、 図 5に示すように、 仮部材 7 (あるいは金属仮部材 9 ) 上に形成された薄膜状 のカーボンナノチューブ膜 1上に、 カーボンナノチューブ膜 1を基板 2上に固着するため の接着層 3を形成する。 あるいは、 図 9に示すように、 カーボンナノチューブ膜 1を保持 する基板 2上に接着層 3を形成する。 このどちらの方法を用いてもかまわないが、 基板 2 上に接着層 3を形成する方法においては、 接着剤や接着剤の溶剤等が濾紙やフィルタを透 ることがないため接着剤や溶剤を効率的に利用することができる。  Next, as shown in FIG. 5, an adhesive layer 3 for fixing the carbon nanotube film 1 on the substrate 2 is formed on the thin carbon nanotube film 1 formed on the temporary member 7 (or the metal temporary member 9). To form Alternatively, as shown in FIG. 9, an adhesive layer 3 is formed on a substrate 2 holding a carbon nanotube film 1. Either of these methods may be used.However, in the method of forming the adhesive layer 3 on the substrate 2, since the adhesive or the solvent of the adhesive does not pass through the filter paper or the filter, the adhesive or the solvent is removed. It can be used efficiently.
このような接着層 3の形成方法としては、 接着剤を溶剤に分散あるいは溶解させて、 上 記吸引濾過装置 2 0あるいは加圧濾過装置 3 0にて濾過完了後塗布する方法などが挙げら れる。 このように、 接着剤を溶剤に分散あるいは溶解させてカーボンナノチューブ膜 1上 あるいは基板 2上に塗布した場合、 カーボンナノチューブ膜 1上または基板 2上に、 接着 剤を均一に塗布しやすくなる。 特に接着剤をカーボンナノチューブ膜 1上に塗布した場合、 接着剤の溶剤が濾紙やフィルタ中を透過していくうちにカーボンナノチューブ 1 aの先端 が濾紙の表面より内側の方向に、 該溶剤により流されながら配向する。 つまり前記溶剤を 用いることにより、 カーボンナノチューブ膜 1表面では、 カーボンナノチューブ 1 aの先 端がカーボンナノチューブ膜 1より立ち上がる形状となる。  Examples of a method for forming such an adhesive layer 3 include a method of dispersing or dissolving an adhesive in a solvent, followed by application after completion of filtration by the suction filtration device 20 or the pressure filtration device 30 described above. . As described above, when the adhesive is dispersed or dissolved in the solvent and applied on the carbon nanotube film 1 or the substrate 2, the adhesive is easily applied uniformly on the carbon nanotube film 1 or the substrate 2. In particular, when the adhesive is applied on the carbon nanotube film 1, while the solvent of the adhesive permeates the filter paper or the filter, the tip of the carbon nanotube 1a flows in a direction inward from the surface of the filter paper by the solvent. Orientation. That is, by using the solvent, on the surface of the carbon nanotube film 1, the end of the carbon nanotube 1 a has a shape rising from the carbon nanotube film 1.
このようなカーボンナノチューブ 1 aの先端が力一ボンナノチューブ膜 1より立ち上が つた状態であれば、 カーボンナノチューブ膜 1に電圧をかけた時に、 カーボンナノチュー ブ 1 a先端での電界集中の度合いが強くなり、 ェミッション電流が多くなり低電圧化が図 れる。 また、 ェミッションポイントが多くなりカーボンナノチューブ膜 1の均一性も向上 する。 上記接着層 3に用いられる接着剤としては、 ニトロセルロースやメチルセルロース等の セルロース系の接着剤が好ましく用いられる。 このようなセルロース系の接着剤であると、 溶剤として使用されている接着剤中の揮発性物質の除去の効果が大きく、 吸引濾過装置を 真空に排気した場合、 残留ガスを少なくすることができる。 このような残留ガスが除去さ れた状態で、 カーボンナノチューブ膜 1に電界を印加してェミッションさせた場合、 残留 ガスのィォン化が抑制され、 イオンによるカーボンナノチューブ膜 1の衝突確率が下がり、 カーボンナノチューブ 1 aの劣化が抑制され、 ディスプレイの寿命を延長できる。 If the tip of the carbon nanotube 1a rises above the carbon nanotube film 1, the degree of electric field concentration at the tip of the carbon nanotube 1a when a voltage is applied to the carbon nanotube film 1 , The emission current increases and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is improved. As the adhesive used for the adhesive layer 3, a cellulose-based adhesive such as nitrocellulose or methylcellulose is preferably used. With such a cellulose-based adhesive, the effect of removing volatile substances in the adhesive used as a solvent is large, and the residual gas can be reduced when the suction filtration device is evacuated to a vacuum. . When an electric field is applied to the carbon nanotube film 1 for emission in a state where such residual gas is removed, ionization of the residual gas is suppressed, and the probability of collision of the carbon nanotube film 1 with ions decreases, The deterioration of the carbon nanotube 1a is suppressed, and the life of the display can be extended.
また、 接着剤の溶剤としてはエチルアルコール等のアルコール類、 アセトン等の有機溶 媒を用いることができる このときに形成される接着層 3の厚さとしては、 1 0 ~ 1 0 0 n mとされるのが好ましい。 1 0 n m未満であると固着の効果がなくなり、 1 0 0 n mを 超えると力一ボンナノチューブの導通に問題が生じる。  In addition, an alcohol solvent such as ethyl alcohol and an organic solvent such as acetone can be used as a solvent of the adhesive. The thickness of the adhesive layer 3 formed at this time is set to 10 to 100 nm. Preferably. If it is less than 100 nm, the effect of sticking will be lost, and if it exceeds 100 nm, there will be a problem in conduction of carbon nanotubes.
ついで、 図 6に示すようにカーボンナノチューブ膜 1を基板 2上に転写する。 転写方 法としては、 接着層 3がカーボンナノチューブ膜 1上に形成されたものであれば、 接着層 3面が基板 2側にくるように、 フィルタをひつく り返して、 これらのカーボンナノチュー ブ膜 1および接着層 3を基板 2上に転写する。 また、 基板 2上に接着層 3が形成されたも のであれば、 仮部材 7 (あるいは金属仮部材 9 ) 上に形成したカーボンナノチューブ膜 1 を、 カーボンナノチューブ膜 1面が基板 2側にくるようにしてフィルタごとひつく り返し て、 カーボンナノチューブ膜 1を基板 2上に形成された接着層 3上に転写する。  Next, the carbon nanotube film 1 is transferred onto the substrate 2 as shown in FIG. As a transfer method, if the adhesive layer 3 is formed on the carbon nanotube film 1, the filter is turned back so that the adhesive layer 3 is on the substrate 2 side, and these carbon nanotubes are formed. The transfer film 1 and the adhesive layer 3 are transferred onto the substrate 2. If the adhesive layer 3 is formed on the substrate 2, the carbon nanotube film 1 formed on the temporary member 7 (or the metal temporary member 9) is moved so that the surface of the carbon nanotube film 1 faces the substrate 2. Then, the carbon nanotube film 1 is transferred onto the adhesive layer 3 formed on the substrate 2.
ついで、 最上面の仮部材 7 (あるいは金属仮部材 9 ) をカーボンナノチューブ膜 1から 引きはがして取り除く。 このとき、 仮部材 7が濾紙やフィルタであれば、 この仮部材 7の 除去時にカーボンナノチューブ 1 aが絡合い、 カーボンナノチューブ 1 aの先端部分が引 つ張られてカーボンナノチューブ膜 1部分より立ち上がる形状が形成される。 このような 形状では、 カーボンナノチューブ膜 1先端での電界集中の度合いが強くなりエミッシヨン 電流が多くなり低電圧化を図ることができる。 また、 ェミッションポイントが多くなり力 一ボンナノチューブ膜 1の均一性も向上する。  Next, the temporary member 7 (or the metal temporary member 9) on the top surface is peeled off from the carbon nanotube film 1 and removed. At this time, if the temporary member 7 is a filter paper or a filter, the carbon nanotube 1a is entangled when the temporary member 7 is removed, and the tip portion of the carbon nanotube 1a is pulled and rises from the carbon nanotube film 1 portion. Is formed. In such a shape, the degree of electric field concentration at the tip of the carbon nanotube film 1 is increased, the emission current is increased, and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is also improved.
仮部材 7 (あるいは金属仮部材 9 ) の除去後、 基板 2上に形成されたカーボンナノチュ —ブ膜 1を熱処理することにより、 カーボンナノチューブ膜 1中に残留する溶媒 4や、 接 着層 3に残留する溶剤を揮発させて除去する。 このときの熱処理温度としては、 溶剤 4お よび接着剤の溶剤の種類にもよるが、 1 2 0 ~ 2 0 0 °Cで 1 5 ~ 3 0分行うことが好まし い。 After removing the temporary member 7 (or the metal temporary member 9), the carbon nanotubes formed on the substrate 2 are removed. The solvent 4 remaining in the carbon nanotube film 1 and the solvent remaining in the bonding layer 3 are volatilized and removed by heat-treating the carbon film 1. The heat treatment temperature at this time depends on the type of the solvent 4 and the solvent of the adhesive, but it is preferable to perform the heat treatment at 120 to 200 ° C. for 15 to 30 minutes.
溶媒 4や接着剤の溶剤を用いた場合、 これらを使用した後工程の加熱や減圧工程により 1日以内にカーボンナノチューブ膜 1より揮発させることが望ましい。 カーボンナノチュ ーブ膜 1を自然に放置した場合にもこれらの溶媒 4や溶剤は揮発するが、 自然乾燥は、 例 えば接着剤にニトロセルロース等を用いた場合などは、 カーボンナノチューブ膜 1の表面 部分のみこれらが揮発し、 その部分の体積が減るためにカーボンナノチューブ膜 1表面の ひび割れが生じるために平坦なカーボンナノチューブ膜 1表面が得ることができないので、 カーボンナノチューブ膜 1は熱処理等により乾燥させることが好ましい。  When a solvent 4 or a solvent for an adhesive is used, it is desirable that the carbon nanotube film 1 be volatilized within one day by a heating or depressurization step in a step after using these. The solvent 4 and the solvent volatilize when the carbon nanotube film 1 is left naturally, but natural drying is performed, for example, when nitrocellulose is used as an adhesive. Only the surface part is volatilized, and the volume of the part is reduced, so that the surface of the carbon nanotube film 1 is cracked, so that a flat carbon nanotube film 1 surface cannot be obtained. Preferably.
このような力一ボンナノチューブの固着方法によれば、 基板上の広い範囲にカーボンナ ノチューブ 1 aを高密度に均一に分散させることができる。 また、 このようなカーボンナ ノチューブの固着方法によれば、 平坦な仮部材 7状に形成されたカーボンナノチューブ膜 1を基板上に転写するものであるので、 その表面状態は凹凸が少ない平坦なものとなる。 従来のカーボンナノチューブの固着方法は、 力一ボンナノチューブと接着剤および溶剤 の溶液を基板に塗布し固定させるものである。 よって、 このとき液状の塗布材料は溶剤が 気化して固体になるが、 カーボンナノチューブ膜のエミッシヨンする面が大気に面してい るため、 液体内の力一ボンナノチューブの不均一な分布や凹凸が液状の表面に作用して、 固体になるときに下力一ボンナノチューブ膜表面が凹凸になってしまう。  According to such a method of fixing carbon nanotubes, the carbon nanotubes 1a can be uniformly dispersed at high density over a wide area on the substrate. According to such a method of fixing carbon nanotubes, since the carbon nanotube film 1 formed in the shape of the flat temporary member 7 is transferred onto the substrate, the surface state is flat with little unevenness. Becomes The conventional method of fixing carbon nanotubes involves applying a solution of carbon nanotubes, an adhesive and a solvent to a substrate and fixing the solution. Therefore, at this time, the solvent in the liquid coating material is vaporized to become a solid, but since the emission surface of the carbon nanotube film faces the atmosphere, the uneven distribution and unevenness of the carbon nanotubes in the liquid are reduced. Acting on the liquid surface, the surface of the lower carbon nanotube film becomes uneven when it becomes solid.
これに対して、 本発明では基板 2に転写するためにカーボンナノチューブ膜のエミッシ ョンする面が平坦な仮部材 7上に形成されるため分散液 6中のカーボンナノチューブ 1 a の不均一性が表面の凹凸に作用しないため、 その表面を平坦とすることができる。  On the other hand, in the present invention, since the emission surface of the carbon nanotube film is formed on the flat temporary member 7 for transfer to the substrate 2, the non-uniformity of the carbon nanotubes 1a in the dispersion 6 is reduced. Since it does not act on the surface irregularities, the surface can be made flat.
また、 本発明のカーボンナノチューブの固着方法においては、 カーボンナノチューブ膜 1表面において、 力一ボンナノチューブ. 1 aの先端部が、 力一ボンナノチューブ膜 1より 立ち上がる形状となる。 よって、 カーボンナノチューブ膜 1に電圧をかけた時に、 カーボ ンナノチューブ 1 a先端での電界集中の度合いが強くなり、 エミッション電流が多くなり 低電圧化が図れる。 また、 ェミッションポイントが多くなりカーボンナノチューブ膜 1の 均一性も向上する。 Further, in the method for fixing carbon nanotubes of the present invention, on the surface of the carbon nanotube film 1, the tip of the carbon nanotube. 1 a has a shape rising from the carbon nanotube film 1. Therefore, when a voltage is applied to the carbon nanotube film 1, The concentration of the electric field at the tip of the carbon nanotube 1a increases, the emission current increases, and the voltage can be reduced. In addition, the emission points are increased, and the uniformity of the carbon nanotube film 1 is improved.
このように本発明の力一ボンナノチューブの固着方法においては、 カーボンナノチュー ブ l aが高密度で、 均一に分散されてなるカーボンナノチューブ膜 1を得ることができる。 また得られたカーボンナノチューブ膜 1は、 フィールドェミッションディスプレイ等に使 用される電界放出エミッ夕などとして好適に用いることができ、 高輝度、 高精細で安価な' 電界放出ディスプレイを提供することができる。  As described above, according to the carbon nanotube fixing method of the present invention, it is possible to obtain the carbon nanotube film 1 in which the carbon nanotubes la are densely and uniformly dispersed. Further, the obtained carbon nanotube film 1 can be suitably used as a field emission emitter used for a field emission display or the like, and can provide a high-brightness, high-definition, and inexpensive field emission display. it can.
以下本発明を、 実施例を示して詳しく説明する。 なお、 本発明は上記実施例に限定され ず、 本発明の技術思想の範囲内において適宜変更され得ることは明らかである。  Hereinafter, the present invention will be described in detail with reference to examples. It should be noted that the present invention is not limited to the above-described embodiment, but can be appropriately modified within the scope of the technical idea of the present invention.
(実施例 1 )  (Example 1)
基板 2として、 1 0 c m四方の大きさのガラス基板を用い、 このガラス基板 2上に力一 ボンナノチューブ膜 1を形成した。  A glass substrate having a size of 10 cm square was used as the substrate 2, and a carbon nanotube film 1 was formed on the glass substrate 2.
まず、 図 2に示すように、 カーボンナノチューブ 1 a、 2 0 m gを、 エチルアルコール を 1 0 0 c cに分散した。 ついで、 図 3に示すように、 カーボンナノチューブ 1を分散し たエチルアルコールに、 超音波 5を周波数 4 0 k H z、 振幅 5ミクロンで約 1時間印加し た。 これにより均一なカーボンナノチューブ 1 aの分散液 6が得られた。 ついで、 この分 散液 6をポリ力一ポネート製のフィルタ (仮部材 7 ) が設置された吸引濾過装置 2 0のフ アンネル 2 1に流入し、 この分散液 6を吸引しながら濾過した。 すると、 分散液 6の濾液 がフィル夕を通過して受け容器 2 2に溜まり、 またこれと同時に、 薄膜状のカーボンナノ チューブ膜 1がフィルタ上に形成された。 このとき使用したフィルタとしては平均孔径が 1 0 i mのものを使用した。  First, as shown in FIG. 2, carbon nanotubes 1a and 20 mg were dispersed in ethyl alcohol in 100 cc. Next, as shown in FIG. 3, ultrasonic waves 5 were applied to ethyl alcohol in which the carbon nanotubes 1 were dispersed at a frequency of 40 kHz and an amplitude of 5 microns for about 1 hour. As a result, a uniform dispersion 6 of carbon nanotubes 1a was obtained. Then, the dispersion 6 was introduced into a funnel 21 of a suction filtration device 20 provided with a filter (temporary member 7) made of poly-carbonate and filtered while suctioning the dispersion 6. Then, the filtrate of the dispersion 6 passed through the filter and accumulated in the receiving container 22, and at the same time, the thin carbon nanotube film 1 was formed on the filter. At this time, a filter having an average pore diameter of 10 im was used.
次いで、 硝化綿を酢酸イソァミルに分散した分散液を、 上記フィルタ上に形成された薄 膜状のカーボンナノチューブ膜 1上に、 上記吸引濾過装置により塗布し、 カーボンナノチ ュ一ブ膜 1上に、 接着層 3を形成した。  Next, a dispersion obtained by dispersing nitrified cotton in isoamyl acetate is applied to the thin carbon nanotube film 1 formed on the filter by the suction filtration device, and is then applied to the carbon nanotube film 1. An adhesive layer 3 was formed.
ついで、 上記力一ボンナノチューブ膜 1および接着層 3が形成されたフィルタを、 基板 2上に接着層 3がくるようにしてひつく り返し、 力一ボンナノチューブ膜 1および接着層 3を基板 2上に転写した。 Next, the filter on which the carbon nanotube film 1 and the adhesive layer 3 were formed was mounted on a substrate. The adhesive layer 3 was turned over so that it came on 2, and the carbon nanotube film 1 and the adhesive layer 3 were transferred onto the substrate 2.
ついで、 上記フィルタをカーボンナノチューブ膜 1から引き剥がして除去し、 その後、 カーボンナノチューブ膜 1を 1 5 0 、 3 0分間で熱処理を行うことにより乾燥させ、 溶 媒 4または接着層 3に残存していた溶剤を除去した。  Next, the filter is peeled off from the carbon nanotube film 1 and removed.Then, the carbon nanotube film 1 is dried by performing a heat treatment for 150 and 30 minutes, and is left on the solvent 4 or the adhesive layer 3. The solvent was removed.
このように基板 2上に固着されたカーボンナノチューブ膜 1は、 基板 2との密着性が高 かった。  The carbon nanotube film 1 thus fixed on the substrate 2 had high adhesion to the substrate 2.
(実施例 2 )  (Example 2)
実施例 1におけるフィルタを使用する代わりに、 電界研磨法により作製した 1ミクロン 程度の表面粗さのステンレス仮部材 9を使用し、 この金属仮部材 9上に分散液を滴下し、 常温または加熱下で溶剤を揮発させることによりカーボンナノチューブ膜 1を形成した以 外は、 実施例 1と同様にして基板 2上にカーボンナノチューブを固着した。  Instead of using the filter in Example 1, a stainless steel temporary member 9 having a surface roughness of about 1 micron prepared by an electropolishing method was used, and the dispersion was dropped on the metal temporary member 9 and was cooled at room temperature or under heating. Carbon nanotubes were fixed on the substrate 2 in the same manner as in Example 1 except that the solvent was volatilized to form the carbon nanotube film 1.
(実施例 3 )  (Example 3)
図 9に示すように、 接着層 3をカーボンナノチューブ膜 1上に形成せず、 基板 2上にあ らかじめ上記接着剤を塗布しておき、 次にフィルタ上に形成したカーボンナノチューブ膜 1を力一ボンナノチューブ面を基板 2側にくるようにひつく り返して、 接着層 3上に転写 した以外は、 実施例 1と同様にして実施例 3のカーボンナノチューブを固着した。  As shown in FIG. 9, the adhesive layer 3 was not formed on the carbon nanotube film 1 but the above-mentioned adhesive was applied on the substrate 2 in advance, and then the carbon nanotube film 1 formed on the filter was removed. The carbon nanotubes of Example 3 were fixed in the same manner as in Example 1 except that the carbon nanotube surface was turned over so as to come to the substrate 2 side and transferred onto the adhesive layer 3.
(実施例 4 )  (Example 4)
図 1 0に示すように、 力一ボンナノチューブ 1 aを、 乳鉢に投入して乳棒を使用して分 断してから、 溶剤 4に分散した以外は、 実施例 1 と同様にして実施例 4の力一ボンナノチ ユーブ膜を固着した。  As shown in FIG. 10, Example 4 was carried out in the same manner as in Example 1 except that the carbon nanotube 1a was put into a mortar, cut using a pestle, and then dispersed in a solvent 4. The nano-tube film was fixed.
(実施例 5 )  (Example 5)
実施例 1のおける吸引濾過装置の代わりに、 図 1 0に示すような加圧濾過装置を使用し、 加圧ポンプにより、 加圧装置内差力を 5 k g Z c m 2に設定して、 分散倍の濾過および接 着剤の濾過を行った以外は、 実施例 1と同様にして実施例 5の力一ボンナノチューブを固 着した。 以上実施例 1 ~ 5においては、 基板 2上にカーボンナノチューブを固着することができ、 固着されたカーボンナノチューブを顕微鏡にて観察したところ、 均一な膜状に基板 2上に 固着されていた。 産業上の利用可能性 Instead of the suction filtration device in Example 1, a pressure filtration device as shown in FIG. 10 was used, and the differential pressure in the pressure device was set to 5 kg Z cm 2 by a pressure pump, and the dispersion was performed. The carbon nanotubes of Example 5 were fixed in the same manner as in Example 1 except that the filtration was performed twice and the adhesive was filtered. In Examples 1 to 5 described above, the carbon nanotubes could be fixed on the substrate 2, and when the fixed carbon nanotubes were observed with a microscope, the carbon nanotubes were fixed on the substrate 2 in a uniform film shape. Industrial applicability
本発明方法は、 高輝度、 高精細で安価な電界放出ディスプレイなどに使用することがで きる固着された力一ボンナノチューブを製造する。  The method of the present invention produces fixed carbon nanotubes that can be used in high-brightness, high-definition, inexpensive field emission displays and the like.

Claims

請求の範囲 The scope of the claims
1. (a) 表面が平坦な仮部材上にカーボンナノチューブ膜を形成する工程と、1. (a) forming a carbon nanotube film on a temporary member having a flat surface;
(b) 前記カーボンナノチューブ膜を基板上に固着するための接着層を前記カーボンナノ チューブ膜上に形成する工程と、 (b) forming an adhesive layer on the carbon nanotube film for fixing the carbon nanotube film on a substrate;
(c) 前記仮部材上に形成された力一ボンナノチューブ膜および接着層を基板上に転写す る工程と、 '  (c) transferring the carbon nanotube film and the adhesive layer formed on the temporary member to a substrate;
(d) 前記仮部材を取り除く工程と  (d) removing the temporary member;
を有することを特徴とする力一ボンナノチューブの固着方法。 A method for fixing carbon nanotubes, comprising:
2. (a) 表面が平坦な仮部材上にカーボンナノチューブ膜を形成する工程と、2. (a) forming a carbon nanotube film on a temporary member having a flat surface;
(e) 接着層を基板上に形成する工程と、 (e) forming an adhesive layer on the substrate;
( f ) 前記仮部材上に形成されたカーボンナノチューブ膜を、 前記基板上の接着層上に転 写する工程と、  (f) transferring the carbon nanotube film formed on the temporary member onto an adhesive layer on the substrate;
(d) 前記仮部材を取り除く工程と  (d) removing the temporary member;
を有することを特徴とする力一ボンナノチューブの固着方法。 A method for fixing carbon nanotubes, comprising:
3. 上記仮部材が、 濾紙またはフィル夕であることを特徴とする請求項 1または 2に記載 の力一ボンナノチューブの固着方法。 3. The method for fixing carbon nanotubes according to claim 1, wherein the temporary member is filter paper or filter paper.
4. 上記 (a) 工程は、 カーボンナノチューブを溶媒に分散して分散媒とし、 この分散 媒を吸引濾過あるいは加圧濾過により、 前記仮部材上にカーボンナノチューブ膜を形成す ることを特徴とする請求項 1〜3のいずれか一項に記載のカーボンナノチューブの固着方 法。 4. In the step (a), the carbon nanotubes are dispersed in a solvent to form a dispersion medium, and the dispersion medium is subjected to suction filtration or pressure filtration to form a carbon nanotube film on the temporary member. A method for fixing the carbon nanotube according to claim 1.
5. 上記溶媒がエチルアルコール等のアルコール類またはァセ卜ン等の有機溶媒である ことを特徴とする請求項 4に記載のカーボンナノチューブの固着方法。 5. The solvent is an alcohol such as ethyl alcohol or an organic solvent such as acetone. 5. The method for fixing carbon nanotubes according to claim 4, wherein:
6 . カーボンナノチューブを溶媒に分散する場合に、 前記混合液に超音波を印加するこ とを特徴とする請求項 4または 5に記載のカーボンナノチューブの固着方法。 6. The method for fixing carbon nanotubes according to claim 4 or 5, wherein when dispersing the carbon nanotubes in a solvent, ultrasonic waves are applied to the mixed solution.
7 . カーボンナノチューブを微粒子化する工程を含むことを特徴とする請求項 1〜 6の いずれか一項に記載の力一ボンナノチューブの固着方法。 7. The method for fixing carbon nanotubes according to any one of claims 1 to 6, further comprising a step of forming carbon nanotubes into fine particles.
8 . 上記接着層が、 ニトロセルロースやメチルセルロース等のセルロース系接着剤であ ることを特徴とする請求項 1〜 7のいずれか一項に記載のカーボンナノチューブの固着方 法。 8. The method according to any one of claims 1 to 7, wherein the adhesive layer is a cellulose-based adhesive such as nitrocellulose or methylcellulose.
PCT/JP2001/004602 2000-05-31 2001-05-31 Method of fixing carbon nanotubes WO2001092150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001262680A AU2001262680A1 (en) 2000-05-31 2001-05-31 Method of fixing carbon nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-163423 2000-05-31
JP2000163423A JP2005097003A (en) 2000-05-31 2000-05-31 Method for fixing carbon nanotube

Publications (1)

Publication Number Publication Date
WO2001092150A1 true WO2001092150A1 (en) 2001-12-06

Family

ID=18667176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004602 WO2001092150A1 (en) 2000-05-31 2001-05-31 Method of fixing carbon nanotubes

Country Status (3)

Country Link
JP (1) JP2005097003A (en)
AU (1) AU2001262680A1 (en)
WO (1) WO2001092150A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260221A (en) * 2004-02-26 2005-09-22 Samsung Sdi Co Ltd Donor sheet, method of manufacturing the donor sheet, method of manufacturing thin film transistors using the donor sheet and method of manufacturing flat panel display device using the donor sheet
WO2006048015A1 (en) 2004-11-01 2006-05-11 Nanofiber A/S Soft lift-off of organic nanofibres
CN100360399C (en) * 2002-03-07 2008-01-09 独立行政法人科学技术振兴机构 Nano horn carrier and method of manufacturing the carrier
EP1877255A2 (en) * 2005-03-10 2008-01-16 Tailored Materials Corporation Thin film production method and apparatus
US7462498B2 (en) 2001-10-19 2008-12-09 Applied Nanotech Holdings, Inc. Activation of carbon nanotubes for field emission applications
US7854992B2 (en) * 2007-04-06 2010-12-21 Tsinghua University Conductive tape and method for making the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959896B (en) * 2005-11-04 2011-03-30 鸿富锦精密工业(深圳)有限公司 Field emission of Nano carbon tube, and preparation method
CN101239712B (en) * 2007-02-09 2010-05-26 清华大学 Carbon nano-tube thin film structure and preparation method thereof
CN101315974B (en) 2007-06-01 2010-05-26 清华大学 Lithium ionic cell cathode and method for producing the same
FI20075482L (en) 2007-06-25 2008-12-26 Canatu Oy Fiber networks and method and device for continuous or batch production of fiber networks
CN102087377B (en) 2009-12-02 2013-12-11 鸿富锦精密工业(深圳)有限公司 Polarizing component and fabrication method thereof
TWI459055B (en) * 2009-12-18 2014-11-01 Hon Hai Prec Ind Co Ltd Polarization element and method for manufacturing thereof
JP5361011B2 (en) * 2010-05-19 2013-12-04 国立大学法人信州大学 Method for forming conductor pattern using nano metal ink
CN106463369B (en) * 2014-06-30 2019-03-19 光村印刷株式会社 The manufacturing method of conductive base material and conductive base material
JP7369359B2 (en) * 2019-07-24 2023-10-26 日本電気株式会社 Method for producing thin films of oriented carbon nanotubes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149760A (en) * 1996-09-18 1998-06-02 Toshiba Corp Field emission type cold cathode apparatus, manufacture thereof, and vacuum microapparatus
JPH11250795A (en) * 1998-03-04 1999-09-17 Toshiba Corp Functional element array and its manufacture
US5981305A (en) * 1997-02-07 1999-11-09 Yamaha Corporation Manufacturing method for electric field emission element using ultra fine particles
EP0989579A2 (en) * 1998-09-21 2000-03-29 Lucent Technologies Inc. Device comprising a carbon nanotube field emitter structure and process for forming device
US6057636A (en) * 1996-09-17 2000-05-02 Kabushiki Kaisha Toshiba Micro power switch using a cold cathode and a driving method thereof
JP2000251616A (en) * 1999-02-26 2000-09-14 Toshiba Corp Field emission type cold cathode device and manufacture thereof
JP2000294119A (en) * 1999-04-06 2000-10-20 Futaba Corp Manufacture of electron emission source, electron emission source and fluorescent light display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057636A (en) * 1996-09-17 2000-05-02 Kabushiki Kaisha Toshiba Micro power switch using a cold cathode and a driving method thereof
JPH10149760A (en) * 1996-09-18 1998-06-02 Toshiba Corp Field emission type cold cathode apparatus, manufacture thereof, and vacuum microapparatus
US5981305A (en) * 1997-02-07 1999-11-09 Yamaha Corporation Manufacturing method for electric field emission element using ultra fine particles
JPH11250795A (en) * 1998-03-04 1999-09-17 Toshiba Corp Functional element array and its manufacture
EP0989579A2 (en) * 1998-09-21 2000-03-29 Lucent Technologies Inc. Device comprising a carbon nanotube field emitter structure and process for forming device
JP2000251616A (en) * 1999-02-26 2000-09-14 Toshiba Corp Field emission type cold cathode device and manufacture thereof
JP2000294119A (en) * 1999-04-06 2000-10-20 Futaba Corp Manufacture of electron emission source, electron emission source and fluorescent light display

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WALT A. DE HEER ET AL.: "A carbon nanotube field-emission electron source", SCIENCE, vol. 270, 1995, pages 1179 - 1180, XP002945421 *
WALT A. DE HEER ET AL.: "Aligned carbon nanotube films: production and optical and electronic properties", SCIENCE, vol. 268, 1995, pages 845 - 846, XP002945420 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462498B2 (en) 2001-10-19 2008-12-09 Applied Nanotech Holdings, Inc. Activation of carbon nanotubes for field emission applications
CN100360399C (en) * 2002-03-07 2008-01-09 独立行政法人科学技术振兴机构 Nano horn carrier and method of manufacturing the carrier
JP2005260221A (en) * 2004-02-26 2005-09-22 Samsung Sdi Co Ltd Donor sheet, method of manufacturing the donor sheet, method of manufacturing thin film transistors using the donor sheet and method of manufacturing flat panel display device using the donor sheet
WO2006048015A1 (en) 2004-11-01 2006-05-11 Nanofiber A/S Soft lift-off of organic nanofibres
US8034400B2 (en) 2004-11-01 2011-10-11 Nanofiber A/S Soft-lift off of organic nanofibers
EP1877255A2 (en) * 2005-03-10 2008-01-16 Tailored Materials Corporation Thin film production method and apparatus
EP1877255A4 (en) * 2005-03-10 2011-03-30 Mat & Electrochem Res Corp Thin film production method and apparatus
US7854992B2 (en) * 2007-04-06 2010-12-21 Tsinghua University Conductive tape and method for making the same

Also Published As

Publication number Publication date
AU2001262680A1 (en) 2001-12-11
JP2005097003A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3049019B2 (en) Method of forming single-walled carbon nanotube coating and single-walled carbon nanotube coated by the method
WO2001092150A1 (en) Method of fixing carbon nanotubes
JP3442039B2 (en) Fabrication method of patterned carbon nanotube thin film
KR100768675B1 (en) Device comprising carbon nanotube field emitter structure and process for forming device
Oh et al. Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly
US6882094B2 (en) Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission
JP3943272B2 (en) Film forming method of carbon nanotube
TWI337204B (en)
JP2008255003A (en) Carbon nanotube composite utilizing carbide-derived carbon, its production method, electron emission source containing it, and electron emission device provided with the electron emission source
JP2002530805A (en) Self-oriented bundle of carbon nanotubes and method for producing the same
JP2008509540A5 (en)
JP2008159596A (en) Enhanced field emission from carbon nanotube mixed with particle
AU2001237064A1 (en) Diamond/carbon nanotube structures for efficient electron field emission
Zou et al. Field emission from diamond-coated multiwalled carbon nanotube “teepee” structures
Tsai et al. Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation
JP3837392B2 (en) Carbon nanotube manufacturing method, carbon nanotube device, and electric double layer capacitor
Zhang et al. Enhancement of field emission from hydrogen plasma processed carbon nanotubes
JP5055655B2 (en) Emitter manufacturing method, field emission cold cathode using the emitter, and flat image display device
JP3981568B2 (en) Carbon fiber for field electron emitter and method for producing field electron emitter
JP3372751B2 (en) Field electron emission device and method of manufacturing the same
JP2003115255A (en) Field electron emitting electrode and its manufacturing method
Sato et al. Vertically aligned carbon nanotubes grown by plasma enhanced chemical vapor deposition
JP2004292227A (en) Method for producing carbon nanotube, cold cathode type picture display device using the same, and production method therefor
Liu et al. Enhancement of field emission properties of cyanoacrylate–carbon nanotube arrays by laser treatment
Yu et al. Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP