WO2001050864A1 - Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation - Google Patents

Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation Download PDF

Info

Publication number
WO2001050864A1
WO2001050864A1 PCT/JP2001/000113 JP0100113W WO0150864A1 WO 2001050864 A1 WO2001050864 A1 WO 2001050864A1 JP 0100113 W JP0100113 W JP 0100113W WO 0150864 A1 WO0150864 A1 WO 0150864A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
zinc
agent
zinc oxide
antifungal
Prior art date
Application number
PCT/JP2001/000113
Other languages
English (en)
French (fr)
Inventor
Kenichi Sakuma
Shuji Nishihama
Masayoshi Wada
Hideyuki Gomyo
Original Assignee
Shiseido Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co., Ltd. filed Critical Shiseido Co., Ltd.
Priority to EP01900688A priority Critical patent/EP1161869B1/en
Priority to DE60111685T priority patent/DE60111685T2/de
Publication of WO2001050864A1 publication Critical patent/WO2001050864A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof

Definitions

  • the present invention relates to an antibacterial antibacterial agent and a fungicidal and antifungal composition, and more particularly to an improvement of an inorganic antibacterial antifungal agent.
  • antibacterial and fungicide agents are used in a very wide range of fields related to human clothing, food and shelter, and these are broadly classified into organic and inorganic.
  • organic antibacterial and antifungal agents examples include paraben, triclosan, quaternary ammonium salt, chronorehexidine hydrochloride, thiabendazonole, ikinorebendazine, kibutane, phenolic chlorophenol, chlorothaloninole and the like.
  • Inorganic antibacterial and antifungal agents mainly include silicates, phosphates, zeolites, synthetic minerals, etc., which have replaced or carried antibacterial metals, mainly silver, copper, and zinc.
  • silicates phosphates, zeolites, synthetic minerals, etc.
  • antibacterial metals mainly silver, copper, and zinc.
  • silver, zinc-substituted zeolite, silver-supported apatite, and silver-supported silica gel have been put into practical use.
  • titanium oxide photocatalyst that utilizes the energy of ultraviolet light contained in sunlight or fluorescent light for antibacterial action.
  • These antibacterial and antifungal agents were able to prevent bacterial contamination and deterioration of each product by blending them into building materials, daily necessities, and cosmetics.
  • organic antibacterial and fungicides such as parabens, which are generally used as preservatives, have problems in terms of safety to the human body, and are inferior in safety to inorganic antibacterial and fungicides.
  • the substance is an organic substance, it generally has low stability over time, such as decomposition by heat and a decrease in effect due to a change in pH. For this reason, applications such as kneading in resins that require relatively high temperatures are greatly restricted, and problems such as difficulty in using there were.
  • inorganic antibacterial and fungicides are relatively safe for the human body and are less susceptible to heat and chemicals. Antibacterial effect was low. Furthermore, silver, which is frequently used as a raw material of an inorganic antibacterial and antifungal agent, easily discolors and thus has the problem of changing the appearance color of the product, and has the disadvantage of being expensive.
  • the titanium oxide photocatalyst has the disadvantage that the antibacterial and antifungal effect cannot be expected in places where light does not shine, and the antibacterial and antifungal effect is slow even when irradiated with light.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the purpose of the present invention is to provide an inorganic antibacterial agent which is superior in terms of overall antibacterial protection, safety, stability, and economic efficiency.
  • the purpose is to provide a protective agent.
  • the present inventors have conducted intensive studies and made zinc oxide as a main component, and as a mixture thereof, one selected from lithium, sodium, potassium hydroxide, hydrogen carbonate, and carbonate. Or, by including two or more types of alkali metals, the antibacterial and antifungal effects of each material alone act synergistically to achieve a drastically high effect, and completed the present invention. It led to.
  • the antibacterial and antifungal agent of the present invention contains zinc oxide as a main component and one or more alkali metal salts selected from hydroxides of lithium, sodium, and potassium, hydrogen carbonates, and carbonates. It is characterized by.
  • the content of the metal salt is 0.5% to 75% of the whole antibacterial agent.
  • the antibacterial and antifungal agent of the present invention it is preferable to use zinc acetate, zinc sulfate, and zinc chloride as a raw material for synthesizing a zinc oxide component.
  • the aqueous solution containing zinc ion and the aqueous solution of zinc ion are mixed at room temperature and atmospheric pressure so that the pH of the two aqueous solutions is kept at 7 to 9 by dropping the two aqueous solutions. While adjusting, it is continuously supplied to the reaction tank to react and synthesize, and the product is separated by filtration. It is preferably obtained by washing with water, drying and firing.
  • the pH of the 10 wt% aqueous dispersion is preferably 9 to 14.
  • the antibacterial force-proofing composition of the present invention is characterized by having an antibacterial force-proofing effect by containing the antibacterial force-proofing agent.
  • FIG. 1 is a flowchart illustrating an example of a method for synthesizing an antibacterial antibacterial agent according to the present invention
  • FIG. 2 is an explanatory diagram for explaining a method for evaluating antibacterial antistatic agent performance.
  • Fig. 3 is a graph showing the relationship between the force-proofing performance against blue-powered viscous and the pH when powder is dispersed in water to form a 10 wt% slurry.
  • FIG. 4 is an explanatory diagram showing a test sample used as a sample in Comparative Experiment 4.
  • An object of the present invention is to provide an antibacterial and antibacterial agent which is generally excellent in all aspects of antibacterial and antifungal properties, safety, stability and economy.
  • the antibacterial antibiotic agent according to the present invention does not use expensive raw materials such as silver-zinc-substituted zeolite, it is cheaper than conventional inorganic antibacterial agents.
  • antibacterial and antifungal effects can be expected in some places, and there is little change over time of the antibacterial agent alone or the composition containing the antibacterial agent, which has often been a problem with conventional antibacterial agents. have.
  • conventional inorganic antibacterial and fungicides have low efficacy and are highly effective against yeasts and other fungi.
  • Examples of the zinc salt used for the synthesis of zinc oxide which is the main component of the antibacterial protective agent of the present invention, include inorganic salts such as zinc sulfate, zinc nitrate, zinc phosphate, zinc halide, zinc formate, and zinc acetate.
  • Organic such as zinc propionate, zinc lactate, zinc oxalate, zinc citrate Acid salts can be used but need to be dissolved in water.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like can be used as a raw material of the alkaline aqueous solution.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like can be used as a raw material of the alkaline aqueous solution.
  • sodium carbonate or carbonated lime it is particularly preferable to use sodium carbonate or carbonated lime.
  • FIG. 1 is a flowchart illustrating an example of a method for synthesizing an antibacterial and antifungal agent according to the present invention.
  • zinc acetate is used as a raw material for synthesizing zinc oxide.
  • an aqueous solution containing zinc ions and an aqueous alkali solution in which hydroxides of lithium, sodium, and potassium, hydrogen carbonate, and carbonate are dissolved are prepared.
  • zinc acetate is used to prepare an aqueous solution containing zinc ions, and sodium carbonate is dissolved in ion-exchanged water to prepare an alkaline aqueous solution.
  • aqueous solutions are supplied at normal temperature and normal pressure to a reaction tank containing ion-exchanged water while adjusting the amount so that the pH of the reaction solution is 7 to 9, and mixed and diffused.
  • the product obtained in this way can be obtained by filtering off with a centrifugal separator, washing with water, drying and further baking.
  • drying was performed at 80 ° C. for 15 hours in the drying step, and firing was performed at 300 ° C. in the firing step.
  • a pulverization treatment or the like may be performed after drying.
  • the method for producing the antibacterial antimicrobial agent according to the present invention is not limited to the above-described method.
  • zinc oxide and one or more alkali metal salts selected from lithium, sodium, and potassium may be used. If it is a method to be contained, it can be applied.
  • the method of synthesizing zinc oxide which is the main component of the antibacterial antimicrobial agent of the present invention, can be roughly classified into a wet method in which the compound is synthesized in an aqueous solution and a dry method in which no solution is directly interposed.
  • the wet method is a method of obtaining zinc oxide by washing, filtering, drying and calcining a basic zinc carbonate generally synthesized by mixing an aqueous solution containing zinc ions and an aqueous alkali solution containing carbonate ions.
  • zinc oxide is directly formed without passing through basic zinc carbonate. It can be synthesized, washed with water, filtered and dried to obtain zinc oxide.
  • dry methods include a method of heating metallic zinc in air (French method) and a method of heating zinc unite (Frank Unite) with a reducing agent such as coal or coat (US method).
  • a method for easily and efficiently obtaining the antibacterial antibacterial agent of the present invention is as follows.
  • the purpose is to intentionally leave the alkali metal salt adsorbed on the fine particles of zinc oxide or basic zinc carbonate dispersed in the water. Even with such a method, an antibacterial agent in which zinc oxide and an alkali metal salt are uniformly mixed can be obtained.
  • the powder is washed with a salt of aluminum metal.
  • An alkali metal salt may be uniformly mixed into the zinc oxide powder aggregate by immersion in an aqueous solution containing the solution and drying.
  • the composition ratio of zinc oxide, which is the main component, and the metal salt of Alkali metal is 0.5 to 75% by weight. It is preferable that this is done. If this ratio is less than 0.5%, the desired antibacterial and antifungal effect cannot be obtained, and if it exceeds 75%, the initial antibacterial performance is good, but the performance of the composition due to the high hygroscopicity and dissolution of the alkali metal salt is high. This is because there is concern about the effects on the human body due to deterioration and strong resistance of the antibacterial agent itself.
  • the antibacterial antifungal agent of the present invention may be used in the form of a powder as it is. However, if necessary, the antibacterial antifungal agent may be combined with other components to form the antibacterial antifungal agent. is there.
  • liquid components such as water, alcohol, and silicone oil, Resins such as polyethylene, polypropylene, polyester, polyvinyl chloride, polycarbonate, nylon, epoxy resin, and acrylic resin; inorganic powders such as titanium oxide, silica gel, zeolite, apatite, dinoreconium phosphate, potassium silicate, and glass
  • Resins such as polyethylene, polypropylene, polyester, polyvinyl chloride, polycarbonate, nylon, epoxy resin, and acrylic resin
  • inorganic powders such as titanium oxide, silica gel, zeolite, apatite, dinoreconium phosphate, potassium silicate, and glass
  • the body and the like can be blended as needed, but are not limited to these components.
  • the use of the present invention is diverse, and industrial materials such as synthetic resin compositions, rubber, fibers, paper, paints, wood, etc., skin external agents, cosmetics, and toiletries, which have been conventionally concerned with contamination by bacteria and power plants.
  • An excellent antibacterial and antibacterial property can be imparted by uniformly dispersing a certain amount in one composition or the like.
  • the powders obtained here are referred to as Examples 11 to 1 to 18 by the numbers attached to the heads of the names of the added metal salts and are distinguished from each other. .
  • the antibacterial and antifungal agent of the present invention contains zinc oxide and, as a mixture, one or more alkali metal salts selected from hydroxides of lithium, sodium, and potassium, hydrogen carbonates, and carbonates. It is characterized by the following. Therefore, the above-mentioned salt is added to zinc oxide.
  • the following comparative examples were manufactured to examine the extent to which the antimicrobial protection effect was exhibited when an external salt was added or when zinc oxide was used alone.
  • Example 1 Lithium in Example 1, sodium hydroxide and potassium, bicarbonate, instead of carbonate, 1. 0 g of carbonate Anmoniumu (NH 4) 2 C 0 3 dissolved in ion-exchanged water 2 O m 1 9. Og of commercially available zinc oxide powder (manufactured by Shodo Chemical Co., Ltd.) was added to the aqueous solution. This was sufficiently stirred and mixed with a homomixer, and dried at 110 ° C. for 14 hours using an oven to obtain an intended product.
  • Example 1 The same operation as in Example 1 was carried out except that the lithium, sodium, and potassium hydroxides, bicarbonates, and carbonates added in Example 1 were not added, to obtain an intended product (zinc oxide only).
  • the powders obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were tableted into a disc having a diameter of 8 mm using a tableting machine for pharmaceutical preparations, and were pre-cultivated for cultivation of Penicillium sp. , Aspergillus niger, Candida albicans ATCC10231, Pseudomonas aeruginosa ATCC 15442, Escherichia coli (Escherichia col i ATCC8739), Staphyhlococcus aureus FDA209P It was left still on the culture medium.
  • the medium thus prepared is cultured for 72 hours at 25 ° C for fungi such as fungi, black mold and Candida, and 48 hours at 30 ° C for bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. Then, the size of the produced growth inhibition zone was measured, and the antibacterial and antifungal performance was evaluated.
  • fungi such as fungi, black mold and Candida
  • 48 hours at 30 ° C for bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus.
  • the evaluation of the antibacterial protection performance was performed according to the following criteria.
  • FIG. 2 is an explanatory diagram for explaining a method for evaluating the antibacterial defense performance.
  • a culture medium 4 is prepared in a petri dish 2, and the test strains of the fungi and bacteria described above have already been applied on the culture medium 4.
  • a tablet 6 is placed at the center of the culture medium 4 and after a predetermined time, the growth inhibition zone 8 formed around the sample on the culture medium is inhibited by the size of the growth inhibition zone 8. Performance shall be evaluated. Sa It can be determined that the larger the growth inhibition zone, which is the distance from the sample to the periphery of the growth inhibition circle, the better the antibacterial performance.
  • Table 1 shows the evaluation criteria.
  • Examples 1 to 1 to 8 had higher antibacterial and antifungal properties than Comparative Examples 1 and 2.
  • zinc oxide was originally known as an inorganic antibacterial substance.However, zinc oxide alone did not provide sufficient antibacterial and antibacterial properties. As a result, it was found that the antibacterial protection effect was improved. Since zinc oxide to which ammonium carbonate is added does not exhibit sufficient antibacterial properties, one or two selected from the group consisting of lithium, sodium, potassium hydroxide, hydrogencarbonate, and carbonate are used as a mixture. It was found that the antibacterial properties can be improved by containing the above alkali metal salts.
  • the reaction was carried out while controlling the pH of the two aqueous solutions dropwise while maintaining the pH at a constant value during the reaction while stirring at normal pressure and normal temperature.
  • the dripping time was about 20 minutes.
  • the obtained precipitate was washed with water and centrifuged 5 times each, dried in an oven at 80 ° (:, 15 hours), pulverized by a personal mill, and calcined at 300 ° C for 1 hour. After pulverization, the desired product was obtained by passing through a 100-mesh sieve.
  • Example 2 The same procedure as in Example 2 was repeated, except that 15.0 g of zinc sulfate heptahydrate was used instead of 87.8 g of zinc sulfate dihydrate in Example 2. I got
  • Example 2 The desired product was obtained in the same manner as in Example 2, except that 54.5 g of zinc chloride was used instead of 87.8 g of zinc acetate dihydrate in Example 2.
  • the powders obtained in Examples 2 to 4 were tablet-formed into a disk having a diameter of 8 mm using a tableting machine for pharmaceutical preparations, and the same antibacterial and antibacterial effect as in Comparative Experiment 1 was evaluated.
  • Comparative Example 3 Zeomic TM (manufactured by Sinanen Zeomic Co., Ltd.), which is known to have a broad antibacterial spectrum with inorganic antibacterial agents, was commercialized as Comparative Example 4.
  • Zinc flower (manufactured by Shodo Kagaku Co., Ltd.), which is most commonly used in cosmetics, was tableted into a disc shape with a diameter of 8 mm and tested under the same conditions as above.
  • the powders of Examples 2 to 4 had antibacterial and antibacterial properties against each test bacterium, and the powder of Example 2 was particularly excellent in performance.
  • the powders obtained in Examples 2 to 4 were analyzed by X-ray fluorescence, X-ray diffraction and infrared absorption spectroscopy. As a result, 5 to 10% by weight of sodium carbonate containing zinc oxide as a main component was present. I understand. For this reason, it is preferable to use zinc acetate, zinc sulfate, and zinc chloride as a raw material for synthesizing zinc oxide, and it is particularly preferable to use zinc acetate.
  • the antibacterial and antifungal agent of the present invention had an excellent effect on fungi such as genius, black mold, and Candida fungus as compared with currently available inorganic antibacterial agents.
  • Example 2 “87.8 g of zinc acetate dihydrate was dissolved in 30 Om1 of ion-exchanged water.
  • Example 2 except that a solution prepared by dissolving 54.5 g of zinc chloride and 24.0 g of acetic acid in 30 Om1 ion-exchanged water was used instead of the ⁇ solution ''. The operation was performed to obtain the target.
  • Table 4 below shows the evaluation results of the antibacterial protection performance.
  • Example 6 ⁇ 14 and the powder obtained in Comparative Example 2 (only zinc oxide) used in Comparative Experiment 1 was tableted into a disk with a diameter of 8 mm using a tableting machine for pharmaceuticals. The performance of the antibacterial anti-biotic effect was evaluated.
  • the antibacterial and antifungal performance was improved when the added amount of the mixed alkali metal salt was 0.5% or more, and the antibacterial and antifungal effect was improved as the mixing amount of the alkali metal salt was increased.
  • 100% of sodium carbonate reduced the effect on fungi.
  • the initial antibacterial performance is good when the mixing amount of the alkali metal salt exceeds 75%, the performance deterioration of the composition due to the high hygroscopicity and dissolution of the alkali metal salt and the strength of the antibacterial agent itself are high. There was concern about the effects of alkaline on the human body.
  • the present inventors have made zinc oxide contain various metal salts, and studied whether there is any relationship between the physical properties and the antibacterial and antifungal effect.
  • the pH of the slurry was 9 to 14 and showed high alkalinity.
  • Fig. 3 shows the relationship between the anti-mildew performance against blue mold and the pH when powder is dispersed in water to form a 10 wt% slurry.
  • the powder having a high force-proofing property exhibits high alkalinity when used as a slurry.
  • the antibacterial and antifungal composition of the obtained antibacterial and antifungal composition containing the antibacterial and antifungal agent of the present invention was examined.
  • the antibacterial antibiotic composition of the present invention is characterized by having an antibacterial antibiotic effect by containing the antibacterial antibiotic agent of the present invention as described above.
  • the present invention will be described in more detail with reference to Examples of the antibacterial and antifungal composition of the present invention.
  • the present invention is not limited to these embodiments.
  • Example 2 Using the powder obtained in Example 2, an antibacterial paint was prepared based on the formulation shown in Table 7.
  • Comparative Example 5 a paint in which the antibacterial protective agent of Example 2 was replaced with Zeomic TM (manufactured by Sinanen Zeomic Co.) was used. In Comparative Example 6, no antibacterial powder was added. A paint was prepared.
  • the purpose of this is to measure the performance of an antibacterial agent immobilized on the tile surface, considering its application to a fungicide used in a bathroom.
  • Figure 4 shows the test sample used as a sample.
  • the mold used for the test was a wild strain of the genus Cladosporium, collected from the bathroom, and cultured, and the culture water containing the mold spores was sprayed on the sample surface.
  • the tile joint sample was placed in a square petri dish and kept at 25 ° C, and the growth of the surface mold was visually observed approximately every week, and the growth of the mold was observed. Then, no mold growth was observed, slight mold growth was observed, slight mold growth was observed, and strong mold growth was marked XX.
  • Table 8 shows the observation results of the sample surface.
  • Example 7 has significant antifungal properties compared to other samples. all right.
  • Zeomic TM manufactured by Sinanen Zeomic Co., Ltd.
  • the paint turned brown and the design of the tile was significantly impaired. I got it.
  • the antibacterial antibiotic agent of the present invention is also excellent in discoloration resistance.
  • Silicone joint agent (Cemedine Co., Ltd. death!) Co - Nshi - run Bok Semeta "in 8060 White TM) 99. 0 g in the antibacterial Boryoku bi agent of Example 2 1. well was 0 g added to the batter (Example 8), 99. Og, the powder of Comparative Example 2 (Zeonic TM Co., Ltd., Sinenen Zeomic Co., Ltd.), 1. 1. g, and kneaded well (Comparative Example 7) and 99.5 g of a similar joint filler mixed with 0.5 g of TBZ (Thiabendazole TM, manufactured by Wako Pure Chemical Industries, Ltd.), an organic defense agent, and kneaded well. A test was conducted using Comparative Example 8.
  • Each jointing agent was applied to a PET film in a 1.5 mm-thick plate and dried and fixed to prepare a sample.
  • Each sample was cut into a 30mm X (horizontal) 3 Omm square and cut off.
  • the fungus prevention test was performed according to the JISZ 291-11-1992 mold resistance test method and the method of general industrial products, and mixed with 5 kinds of pre-cultured mold spores and sprayed onto the sample The growth of the cells was visually observed under a microscope.
  • Table 9 shows the observation results of the sample surface.
  • the antibacterial antimicrobial agent of the present invention has at least the same performance as an existing antimicrobial agent when kneaded in the resin composition. Next, light stability was confirmed for the powder alone and the product system.
  • the antibacterial antibiotic agent of the present invention has very good stability under any environment and does not cause discoloration.
  • the powder of Comparative Example 3 was discolored by the aqueous sodium chloride solution.
  • the discoloration of the fungicide reduces the usable chemicals.
  • This sample was irradiated xenon lamp (illuminance approximately 285W / m 2) 3 0 hours (cumulative dose: about 30M J / m 2), and observing the color change of the sample surface by visual observation.
  • the color difference of the sample surface before and after the measurement was measured using a spectrophotometer CM-1000 TM manufactured by Minolta Camera Co., Ltd. to determine the stability. Generally, it is said that if the color difference is 3 or more, the difference in color tone can be visually recognized.
  • Table 11 Table 11 below. In the evaluation method by visual observation, “ ⁇ ” indicates that little yellowing is observed, “ ⁇ ” indicates that slight yellowing is observed, and “X” indicates that yellowing is clearly observed.
  • Comparative Examples 7 and 8 were discolored enough to be clearly discriminated by visual observation. Since the color of Comparative Example 9 containing no antibacterial protective agent was not changed, it was found that the discoloration was caused by the mixed antibacterial protective agent.
  • Example 8 in which the antibacterial antifungal agent of the present invention was mixed, almost no discoloration occurred in Comparative Example 9 in which nothing was mixed. It can be seen that no discoloration has occurred.
  • the antibacterial antibacterial agent of the present invention has superior light stability as compared with Comparative Examples 7 and 8 of the conventional antibacterial antiviral agent.
  • the antibacterial and antifungal agent of the present invention has an effect, stability, and antibacterial and antifungal activity against fungi such as lactobacillus, black mold, and Candida which were relatively poor at inorganic antibacterial agents currently on the market. Excellent effect persistence and little discoloration over time.
  • the antibacterial antibiotic agent of the present invention by mixing the antibacterial antibiotic agent of the present invention, various synthetic resin compositions, industrial materials such as rubber, fiber, paper, paint, wood, and the like, compositions for external skin agents, cosmetics, toiletries, etc. Since the antibacterial and antifungal properties of the present invention can be imparted to the antibacterial and antifungal compositions of the present invention, the inorganic antibacterial agent is relatively weak at fungi, black mold, and Candida fungi. Excellent antibacterial and antifungal effect, with time Less discoloration.
  • the antibacterial antibacterial agent of the present invention can provide an antibacterial agent having a high antibacterial antibacterial effect and a high sustainability efficiently and at low cost by a relatively simple method.
  • the antibacterial / mildew-proof composition of the present invention can provide various compositions which are excellent in persistence of the antibacterial / mildew-proof mold and have little discoloration over time by mixing the antibacterial / mildew-proof composition of the present invention. it can.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 書
抗菌防力ビ剤及び抗菌防力ビ組成物 本出願は、 2 0 0 0年 0 1月 1 4日付け出願の日本国特許出願 2 0 0 0年第 0 0 6 8 8 9号の優先権を主張しており、 ここに折り込まれるものである。
[技術分野]
本発明は抗菌防力ビ剤及び防菌防カビ組成物、 特に無機系の抗菌防力ビ剤の改良 に関する。
[背景技術]
現在、 人間の衣食住に関わる極めて広範囲の分野において多様な抗菌防カビ剤が 使用されており、 これらは有機系と無機系に大別される。
有機系の抗菌防カビ剤としては、 パラベン、 トリクロサン、 第 4級アンモニゥム 塩、 塩酸クロノレへキシジン、 チアベンダゾーノレ、 力ノレベンダジン、 キヤブタン、 フ ノレオロフオスレペット、 クロロタロニノレ等がある。
また、 無機系の抗菌防カビ剤としては銀、 銅、 亜鉛を中心とした抗菌性金属を置 換または担持したケィ酸塩、 リン酸塩、 ゼォライ ト、 合成鉱物等が主要なものであ り、 例えば銀、 亜鉛置換ゼォライ トゃ銀担持ァパタイ ト、 銀担持シリカゲルなどが 実用化されている。
さらに最近では太陽光や蛍光灯に含まれる紫外線のエネルギーを抗菌作用に応用 した酸化チタン光触媒などがある。 これらの抗菌 ·防カビ剤は建材、 日用雑貨品、 化粧料等に配合することにより各製品の菌による汚染、 変質を防止することができ るものであった。
しかしながら、 一般に防腐剤として使用されるパラベンなどの有機系抗菌防カビ 剤は、 人体への安全性の面で問題を有し、 安全性に関しては無機系抗菌防カビ剤に 劣るものであった。 また有機物であるため一般に熱による分解、 p H変化による効 果の低下等の経時安定性が低いことが指摘されている。 そのため比較的高温を要す る樹脂への練り込みなどの用途には制約が大きくなり、 使用しづらいなどの問題も あった。
一方、 無機系抗菌防カビ剤は、 人体に対しても比較的安全であり、 熱や薬品によ る影響は受けにくいものではあったが、 有機系抗菌防カビ剤と比較すると力ビに対 する抗菌効果が低いものであった。 さらに無機系抗菌防カビ剤の原料として多用さ れている銀は変色しやすいため製品の外観色を変化させてしまうなどの問題を有す ると共に、 高価であるという欠点を有している。
また、酸化チタン光触媒は光が当たらない喑所では抗菌防カビ効果が期待できず、 また光が照射されても抗菌防力ビ効果が緩慢であるという欠点があつた。
[発明の開示]
本発明は前記従来技術の課題に鑑み為されたものであり、 その目的は抗菌防力ビ 性、 安全性、 安定性、 経済性の多面的要素に渡って総合的に優れた無機系の抗菌防 力ビ剤を提供することを目的とする。
前記目的を達成するために本発明者らは鋭意研究を重ね、酸化亜鉛を主成分とし、 これに混合物としてリチウム、 ナトリウム、 カリウムの水酸化物、 炭酸水素塩、 炭 酸塩から選ばれる 1種または 2種以上のアルカリ金属を含有させることにより、 そ れぞれの原料が単独でもっている抗菌防カビ効果が相乗的に作用し、 飛躍的に高い 効果が得られることを見出し本発明を完成させるに至った。
すなわち本発明における抗菌防カビ剤は、 酸化亜鉛を主成分として、 リチウム、 ナトリウム、 カリウムの水酸化物、 炭酸水素塩、 炭酸塩から選ばれる 1種または 2 種以上のアルカリ金属塩を含有することを特徴とする。
また本発明の抗菌防力ビ剤において、 アル力リ金属塩の含有量が抗菌剤全体の 0 . 5 %〜7 5 %であることが好適である。
また本発明の抗菌防カビ剤において、 酸化亜鉛成分の合成原料として酢酸亜鉛、 硫酸亜鉛、 塩化亜鉛を用いることが好適である。
また本発明の抗菌防力ビ剤において、 亜鉛イオンを含む水溶液とアル力リ水溶液 を、 常温常圧下において反応液の: p Hを 7〜 9に保つように前記 2つの水溶液の滴 下量を調整しながら連続的に反応槽に供給して反応させて合成し、 生成物をろ別、 水洗、 乾燥、 焼成することにより得られたことが好適である。
また本発明の抗菌防力ビ剤において、 1 0 w t %水分散体の p Hが 9〜 1 4とな ることが好適である。
また本発明の抗菌防力ビ組成物は、 前記抗菌防力ビ剤を含有することにより抗菌 防力ビ効果を有することを特徴とする。
[図面の簡単な説明]
図 1は、 本発明における抗菌防力ビ剤の合成方法の一例を記したフローチヤ一ト、 図 2は抗菌防力ビ性能の評価方法を説明するための説明図、
図 3は青力ビへの防力ビ性能と粉体を水に分散させて 1 0 w t %のスラリーとし たときの p Hの関係図、
図 4は比較実験 4の試料として用いた試験サンプノレを示す説明図である。
[発明を実施するための最良の形態]
本発明の目的は抗菌防カビ性、 安全性、 安定性、 経済性の多面的要素に渡って総 合的に優れた抗菌防力ビ剤を提供することである。
そして本発明にかかる抗菌防力ビ剤は銀亜鉛置換ゼォライ トのように高価な原材 料を使用していないので、 従来の無機系抗菌剤と比較して安価である。 また、 光触 媒と異なり喑所でも抗菌防カビ効果が期待でき、 さらに従来の抗菌剤でしばしば問 題となっていた抗菌剤単体や抗菌剤を含有する組成物の経時的変化が少ないという 長所を有している。 さらに特筆すべきはこれまでの無機系抗菌防カビ剤では効果の 低かつた力ビ、 酵母といつた真菌類にも高レ、効果を示すことである。
まず、 本発明の抗菌防カビ剤の製造方法を説明する。
抗菌防カビ剤の製造方法
本発明における抗菌防カビ剤の一般的な製造方法について説明する。
本発明の抗菌防力ビ剤の主成分である酸化亜鉛の合成に用いられる亜鉛の塩とし ては、 硫酸亜鉛、 硝酸亜鉛、 リン酸亜鉛、 ハロゲン化亜鉛等の無機塩類、 ギ酸亜鉛、 酢酸亜鉛、 プロピオン酸亜鉛、 乳酸亜鉛、 シユウ酸亜鉛、 クェン酸亜鉛などの有機 酸塩を用いることができるが水に溶解することが必要である。 この中で合成原料と して酢酸亜鉛、 硫酸亜鉛、 塩化亜鉛を用いることが好適であり、 より好ましくは酢 酸亜鉛を用いることが好適である。
また、 アルカリ水溶液の原料としては、 水酸化リチウム、 水酸化ナトリウム、 水 酸化カリウム、 炭酸リチウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウ ム、 炭酸水素カリウムなどを用いることができる。 この中で特に炭酸ナトリウムま たは炭酸力リゥムを用いることが好適である。
図 1は、 本発明における抗菌防カビ剤の合成方法の一例を記したフローチヤ一ト である。
同図においては酸化亜鉛の合成原料として酢酸亜鉛を用いている。
本発明の抗菌防カビ剤の合成は、 まず亜鉛イオンを含む水溶液とリチウム、 ナト リウム、 カリウムの水酸化物、 炭酸水素塩、 炭酸塩を溶解したアルカリ水溶液を作 成しておく。
同図において亜鉛イオンを含む水溶液を作成するために酢酸亜鉛を、 アルカリ水 溶液を作成するために炭酸ナトリゥムをイオン交換水に溶解させて用いている。 これらの水溶液を、 常温常圧下において、 イオン交換水の入った反応槽に反応液 の p Hが 7〜 9となるように量を調整しながら供給し、 混合拡散させる。
このようにして得られた生成物は、 遠心分離器にかけてろ別して、 水洗し、 乾燥 させ、 さらに焼成を行って得ることが可能である。 この図 1に示した製造例では乾 燥工程において 8 0 °Cで 1 5時間乾燥させ、 焼成工程において 3 0 0 °Cで焼成を行 つた。 また図 1に示すように粉体の粒径を調整するために、 乾燥させた後に粉砕処 理などを行っても良い。
なお本発明における抗菌防力ビ剤の製造方法は上記方法のみに限られるものでは なく、 このほかにも酸化亜鉛とリチウム、 ナトリウム、 カリウムから選択される 1 種あるいは 2種以上のアルカリ金属塩を含有させる方法であれば、 適用することが 可能である。
例えば、 本発明の抗菌防力ビ剤の主成分である酸化亜鉛の合成法は大きく分けて 水溶液中で合成する湿式法と溶液を直接介在しない乾式法がある。 湿式法は一般に亜鉛イオンを含む水溶液と炭酸イオンを含むアルカリ水溶液を混 合することにより合成される塩基性炭酸亜鉛を水洗、 濾過、 乾燥、 焼成し、 酸化亜 鉛を得る方法である。
また、 前記湿式法においては、 炭酸イオンを含むアルカリ水溶液の代わりに水酸 化ナトリゥムゃ水酸化力リウムのような強アル力リ水溶液を用いると塩基性炭酸亜 鉛を経ないで直接酸化亜鉛が合成され、 これを水洗、 濾過、 乾燥して酸化亜鉛を得 ることもできる。
一方、 乾式法は金属亜鉛を空気中で加熱する方法 (フランス法) や亜鉛鉱 (Frank Unite) を石炭、 コータスなどの還元剤と共に加熱して作る方法 (アメリカ法) な どがある。
このような酸化亜鉛の合成過程において、 本発明の抗菌防力ビ剤を簡単かつ効率 的に得る方法としては、 湿式法における水洗工程で水洗回数を従来の方法より減少 させることにより、 反応溶液中に分散している酸化亜鉛または塩基性炭酸亜鉛の微 粒子に吸着されているアルカリ金属塩を意図的に残存させることである。 このよう な方法であっても、 酸化亜鉛とアルカリ金属塩が均一に混合した抗菌剤を得ること ができる。
もちろん前述の方法と同様に、 乾式法で酸化亜鉛粉末を合成または湿式法で水洗 を十分に行い酸化亜鉛以外の不純物をほとんど含有しない粉末を合成した後、 その 粉末をアル力リ金属の塩を含む水溶液に浸析後乾燥させて酸化亜鉛粉末凝集体の中 に均一にアルカリ金属塩を混合しても良い。
このようにして合成された本発明の抗菌防カビ剤において、 主成分である酸化亜 鉛とアル力リ金属の塩の構成比はアル力リ金属の割合が 0 . 5〜 7 5重量%含有さ れていることが好適である。 この割合が 0 . 5 %未満では所望の抗菌防カビ効果が 得られず、 また 7 5 %以上では初期の抗菌性能は良いものの、 アルカリ金属塩の高 い吸湿性や溶出性による組成物の性能劣化や抗菌剤自体の強アル力リ性による人体 への影響が懸念されるからである。
本発明における抗菌防カビ剤は、 粉末をそのまま用いても良いが、 適宜必要に応 じて、 他の成分とともに組み合わせた形態で抗菌防力ビ剤を構成することも可能で ある。
本発明の抗菌防力ビ剤に配合され得る他の成分は本発明の本来の効果である抗菌 防カビ効果を妨げない限り特に限定されず、 たとえば、 水、 アルコール、 シリコー ンオイル等の液体成分、 ポリエチレン、 ポリプロピレン、 ポリエステル、 ポリ塩化 ビエル、 ポリカーボネート、 ナイロン、 エポキシ樹脂、 アク リル樹脂等の樹脂類、 酸化チタン、 シリカゲル、 ゼォライ ト、 アパタイ ト、 リン酸ジノレコニゥム、 ケィ酸 力ルシゥム、 ガラス等の無機粉体等を必要に応じて配合できるがこれらの成分に限 定されるものではない。
本発明の用途は多様であり、 従来より細菌や力ビによる汚染が懸念されている合 成樹脂組成物、 ゴム、 繊維、 紙、 塗料、 木材等の工業原料や皮膚外用薬剤、 化粧料、 トイレタリ一組成物等に一定量均一に分散させて用いることにより優れた抗菌防力 ビ性を付与することができる。
以下、 本発明の実施例を挙げ、 本発明の実施形態をさらに詳細に説明する。 なお、 本発明はこれらの実施形態に限定されるものではない。
実施例 1
8種類のアルカリ金属塩 (1.水酸化リチウム L i OH、 2. 水酸化ナトリウム N a OH, 3. 水酸化カリウム KOH、 4. 炭酸リチウム L i 2 C O 3、 5. 炭酸ナト リウム Na 2C〇3、 6. 炭酸カリウム K2C〇3、 7. 炭酸水素ナトリウム N a H C 03、 8. 炭酸水素カリウム KHC03) をそれぞれ 1. 0 gずつ 2 Om】のイオン 交換水に溶解させ、 それぞれの水溶液に 9. O gの巿販酸化亜鉛粉末 (正同化学社 製) を加えた。 ホモミキサーで十分撹拌混合し、 オーブンを用いて 1 10°Cで 14 時間乾燥させて目的物を得た。
ここで得られた粉体は前記列記されている添加されたアル力リ金属塩名の頭に付 いた番号によって、 それぞれ実施例 1一 1〜実施例 1一 8と呼んで区別することと する。
本発明における抗菌防カビ剤は、 酸化亜鉛と、 これに混合物としてリチウム、 ナ トリウム、 カリウムの水酸化物、 炭酸水素塩、 炭酸塩から選ばれる 1種または 2種 以上のアルカリ金属塩を含有することを特徴とする。 そこで、 酸化亜鉛に前記塩以 外の塩を加えた場合や、 酸化亜鉛を単独で使用した場合にどの程度の抗菌防力ビ作 用を示すのかを次に示す各比較例を製造して検討することとした。
比較例 1
実施例 1でリチウム、 ナトリウム、 カリウムの水酸化物、 炭酸水素塩、 炭酸塩の 代わりに、 1 . 0 gの炭酸アンモニゥム (N H 4 ) 2 C 0 3を 2 O m 1のイオン交換水 に溶解させた水溶液に 9 . O gの市販酸化亜鉛粉末 (正同化学 (株) 社製) を加え た。 これをホモミキサーで十分撹拌混合し、 オーブンを用いて 1 1 0 °Cで 1 4時間 乾燥させ目的物を得た。
比較例 2
実施例 1で加えたリチウム、 ナトリウム、 カリウムの水酸化物、 炭酸水素塩、 炭 酸塩を加えない以外は、 実施例 1と同様の操作を行い目的物 (酸化亜鉛のみ) を得 た。
比較実験 1
実施例 1 _ 1〜 8、 比較例 1および 2で得られた粉末を製剤用打錠機で直径 8 m mの円盤状に打錠成型し、 あらかじめ前培養していたァォカビ (Penici l lium sp) 、 クロカビ (Aspergi l lus niger) 、 カンジダ菌 (Candida albicans ATCC10231) 、 緑 膿菌(Pseudomonas aeruginosa ATCC 15442) , 大腸菌 (Escherichia col i ATCC8739) 、 黄色ブドウ球菌 (Stapyhlococcus aureus FDA209P) の各供試菌株を塗布した培地上 に静置した。 このようにして調製した培地を真菌であるァォカビ、 クロカビ、 カン ジダ菌は 2 5 °Cで 7 2時間、 細菌である緑膿菌、 大腸菌、 黄色ブドウ球菌は 3 0 °C で 4 8時間培養し、 生成した生育阻止帯の大きさを測定して、 抗菌防カビ性能の評 価を行った。
抗菌防力ビ性能の評価は次のような基準で行った。
図 2に抗菌防力ビ性能の評価方法を説明するための説明図を記載する。 同図に示 すように、 シャーレ 2内には培地 4が作られており、 培地 4上にはすでに前述した 真菌や細菌の供試菌株が塗布されている。 その培地 4の中心に打錠成型したサンプ ル 6を配置しておき、 所定時間後に培地上でサンプルの周囲に形成された各菌の育 成が阻止された生育阻止帯 8の大きさによってその性能を評価することとする。 サ ンプルから生育阻止円外周までの距離である生育阻止帯が大きいほど抗菌性能が優 れていると判断できる。
そして、 本比較実験においては、 次の表 1に示すような判定基準によって性能の 評価を行った。
表 1に評価基準を記す。
【表 1】 判定基準
Figure imgf000011_0001
二のような評価基準に基づいて行った前記比較実験 1の結果を次の表 2に示す c 【表 2】
Figure imgf000011_0002
以上の結果から、 実施例 1 _ 1〜8は比較例 1、 2より抗菌防カビ性能が高いこ とがわかった。 このことにより、 酸化亜鉛はもともと無機抗菌物質として知られて いたが、 酸化亜鉛だけでは十分な抗菌防力ビ性が得られていないことから、 酸化亜 鉛にアル力リ金属の塩を混合することにより抗菌防力ビ効果が向上することがわか つた。 そして炭酸アンモニゥム塩を加えた酸化亜鉛は十分な抗菌性を発揮していないこ とから、 混合物としてリチウム、 ナトリウム、 カリ ウムの水酸化物、 炭酸水素塩、 炭酸塩から選ばれる 1種または 2種以上のアルカリ金属塩を含有することで抗菌性 が向上できることがわかった。
続いて原料となる亜鉛化合物が異なると、 抗菌性に違いが生じるかを検討するこ ととした。
実施例 2
反応容器に 200m lのイオン交換水を入れ、 撹拌装置および 2台のマイクロチ ユーブポンプを接続した pHコントローラーおよび撹拌装置をセットした。 2台の マイク口チューブポンプを 300m lのイオン交換水に 87. 8 gの酢酸亜鉛 2水 和物を溶解した溶液と 220m lのイオン交換水に 63. 6 gの無水炭酸ナトリウ ムを溶解した溶液にそれぞれ接続し、 反応容器に滴下できるように固定した。
常圧常温で撹拌を行いながら、 反応中は pH8で一定になるよう保ちながら 2つ の水溶液の滴下量を調節しながら反応させた。 滴下時間は約 20分であった。 得ら れた沈殿物は水洗■遠心分離を 5回ずつ繰り返し、 オーブンで 80 ° (:、 1 5時間乾 燥した後、 パーソナルミルで粉砕し、 300°Cで 1時間焼成した。 この粉末を粉碎 後 100メッシュのふるいを通し目的物を得た。
実施例 3
実施例 2で 87. 8 gの齚酸亜鉛 2水和物の代わりに、 1 1 5. 0 gの硫酸亜鉛 7水和物を用いた以外は、 実施例 2と同様の操作を行い目的物を得た。
実施例 4
実施例 2で 87. 8 gの酢酸亜鉛 2水和物の代わりに、 54. 5 gの塩化亜鉛を 用いた以外は、 実施例 2と同様の操作を行い目的物を得た。
比較実験 2
実施例 2〜 4で得られた粉末を製剤用打錠機で直径 8 mmの円盤状に打錠成型し、 比較実験 1と同様の抗菌防力ビ効果の性能評価を行った。
また比較例 3として無機系抗菌剤では幅広い抗菌スぺク トルを持つことが知られ ている Z e om i c™ ( (株) シナネンゼォミック社製) 、 比較例 4として現在化 粧料にもっとも一般的に使用されている亜鉛華 (正同化学 (株) 社製) を直径 8 m mの円盤状に打錠成型し、 上記と同様の条件で試験を行つた。
判定の方法、 判定の基準等はすべて比較実験 1と同様である。
結果を次の表 3に示す。
【表 3】
Figure imgf000013_0001
以上の結果から、 実施例 2〜 4の粉末は各供試菌に対し抗菌防力ビ性を有してお り、 特に実施例 2の粉末の性能が優れていることがわかった。 実施例 2〜4で得ら れた粉末を蛍光 X線、 X線回折、 赤外吸収分光法により分析した結果、 酸化亜鉛を 主成分としてその他に 5〜1 0重量%の炭酸ナトリゥムが存在することがわかった。 このことから酸化亜鉛の合成原料として酢酸亜鉛、 硫酸亜鉛、 塩化亜鉛を用いるこ とが好適であり、 中でも酢酸亜鉛を用いることが好適である。
また本発明の抗菌防カビ剤は、 現在市販されている無機系抗菌剤と比較して、 ァ 才力ビ、 クロカビ、 カンジダ菌といった真菌に対する効果が優れたものであること がわかった。
実施例 2〜 4の比較で酸化亜鉛の合成材料として酢酸亜鉛を用いることが最も好 適であることがわかったが、 酢酸亜鉛は酸化亜鉛の工業材料としては比較的高価で あるため、 より安価な原料を用いて同等の性能を有する粉末を合成する検討を行つ た。
実施例 5
実施例 2で 「3 0 O m 1のイオン交換水に 8 7 . 8 gの酢酸亜鉛 2水和物を溶解 した溶液」 の代わりに、 「 3 0 O m 1のイオン交換水に 5 4 . 5 gの塩化亜鉛と 2 4 . 0 gの酢酸を溶解した溶液」 を用いた以外は、 実施例 2と同様の操作を行い目 的物を得た。
比較実験 3
実施例 5で得られた粉体と、 実施例 2で得られた粉体の抗菌防力ビ性能を比較実 験 2と同様の実験方法で比較実験を行った。
判定の方法、 判定の基準等はすべて比較実験 1と同様である。
抗菌防力ビ性能の評価結果を次の表 4に示す。
【表 4】
Figure imgf000014_0001
このように酸化亜鉛の合成原料として、 酢酸亜鉛とは異なる材料を用いたとして も、 材料に含まれる亜鉛が酢酸亜鉛を合成した際に含まれる酢酸に相当する酢酸と ほぼ同量の酢酸を添加することによって、 酢酸亜鉛を合成材料として合成した粉末 と同様の抗菌防力ビ性能を有する粉体を合成できることがわかった。
続いて酸化亜鉛と混合されるアル力リ金属の量によつて抗菌防力ビ性能にどのよ うな違いが出てくるのかを検討することとした。
実施例 6
0 . 0 2 5 gの炭酸ナトリゥムを 2 O m 1のイオン交換水に溶解させた水溶液に 9 . 9 7 5 gの市販酸化亜鉛粉末 (正同化学 (株) 社製) を加えた。 これをホモミ キサ一で十分撹拌混合し、 オーブンを用いて 1 1 0 °Cで 1 4時間乾燥させ目的物を 得た。
また、 炭酸ナトリウムと市販酸化亜鉛粉末 (正同化学 (株) 社製) の混合量を表 5のように変化させた以外は上記と同様の方法で操作を行い、 混合されたアル力リ 金属の量の異なる目的物を得た。 これらは表 5に記載されているように、 それぞれ の混合量によって実施例 6— 1〜6— 1 4と呼ぶこととする。
【表 5】
Figure imgf000016_0001
比較実験 4
実施例 6—;!〜 1 4、 及び比較実験 1で用いた比較例 2 (酸化亜鉛のみ) で得ら れた粉末を製剤用打錠機で直径 8 mmの円盤状に打錠成型し、 比較実験 1と同様の 抗菌防力ビ効果の性能評価を行った。
判定の方法、 判定の基準等はすべて比較実験 1と同様である。
結果を次の表 6に示す。 【表 6】
Figure imgf000017_0001
得られた結果から、 混合したアルカリ金属塩の添加量が 0 . 5 %以上で、 抗菌防 カビ性能の向上がみられ、 アルカリ金属塩の混合量が増すほど抗菌防カビ効果も向 上した。 しカゝし、 炭酸ナトリウム 1 0 0 %では真菌に対する効果が減少することが わかった。
この結果から比較例 2及び実施例 6— 1 4のように酸化亜鉛及びアル力リ金属塩 単独で得られる抗菌防力ビ効果より両者を混合したものの方が格段に高い抗菌防力 ビ効果を有することがわかる。
しかし、 アルカリ金属塩の混合量が 7 5 %を越えたものでは初期の抗菌性能は良 いものの、 アル力リ金属塩の高い吸湿性や溶出性による組成物の性能劣化や抗菌剤 自体の強アルカリ性による人体への影響が懸念されるものであった。
この結果をふまえた上で酸化亜鉛とアルカリ金属塩を単純に粉末として混合して みたところ、 抗菌防カビ効果は向上することがわかった。 しかし、 初期の段階では 良好な抗菌性を示しているものの、 アルカリ金属塩は容易に溶出してしまい効果が 持続しないことが確かめられた。 このため抗菌防力ビ効果を長期に渡って持続させ るには酸化亜鉛とアルカリ金属塩が十分に混合され、 酸化亜鉛の微細な凝集体の内 部にアルカリ金属塩が含有されていることが好適である。
また本発明者らは、 酸化亜鉛に様々な金属塩を含有させ、 その物性と抗菌防カビ 効果の間に何らかの関係が見られないかを研究したところ、 高い抗菌効果を有する 粉体は水に分散させてスラリーとしたときに、 そのスラリーの p Hが 9〜1 4と高 いアルカリ性を示すことがわかった。
図 3に青カビへの防カビ性能と粉体を水に分散させて 1 0 w t %のスラリーとし たときの p Hの関係を示す。
同図に示すように高い防力ビ性を有する粉体は、 スラリーとしたときに高いアル カリ性を示していることがわかる。
このように 1 0 w t %のスラリーの p Hが高いほど、 カビ、 酵母等に対して抗菌 性能が高いことが確かめられた。 このような粉末スラリーの p Hを高める合成要因 は原料である酸化亜鉛とアルカリ金属塩とを合成する際の p Hが深く関与している ことが判明した。 つまり、 抗菌防力ビ剤を合成する際の p Hを 7〜9に制御すると、 合成された粉体をスラリーとしたときに高いアルカリ性を示す傾向にあつたのであ る。
そして、 本発明の前記比較実験 1〜4において、 良好な抗菌防カビ性能を示した 粉体は、 どれも 1 0 w t %のスラリーとしたときに p Hが 9〜1 4を示すことがわ かった。 よって本発明の抗菌防カビ剤において、 1 O w t。/。水分散体の p Hが 9〜 1 4となることが好適である。 このような粉体とすることで良好な抗菌防力ビ性を 示すようになるためである。
続いて、 本発明の抗菌防力ビ剤を含有させて、 得られる抗菌防カビ組成物の抗菌 防力ビ性能について検討することとした。
本発明における抗菌防力ビ組成物は、 前記説明したような本発明の抗菌防力ビ剤 を含有することにより抗菌防力ビ効果を有することを特徴とする。 以下、 本発明の抗菌防カビ組成物の実施例をあげて、 本発明をさらに詳しく説明 する。 なお本発明はこれらの実施形態に限られるものではない。
実施例 7
実施例 2で得られた粉末を用いて、 表 7に示される配合表に基づいて抗菌性塗料 を作製した。 また、比較例 5として実施例 2の抗菌防力ビ剤を Z e om i cTM ( (株) シナネンゼォミック社製) に置き換えた塗料を、 また比較例 6として抗菌性粉末を 入れていない塗料を作製した。
【表 7】
Figure imgf000019_0001
比較実験 5
実施例 7、 比較例 5、 6で得た塗料を用いて比較実験を行つた。
この目的は、 風呂場で使用する防カビ剤への応用を考え、 タイル表面に抗菌剤を 固定化した状態での性能を測定することである。
図 4に試料として用いた試験サンプノレを示す。
同図に示すように (たて) l OmmX (よこ) l OmmX (厚さ) 3mmの巿販 白色タイル 12枚を、 抗菌剤等を含まない市販のタイル用セメント目地材を用いて 2. 5mmの間隔をおいて固定し固化させ試験サンプルとした。 この試験サンプル は水に 1週間程度浸析してアルカリ分を除去した。 乾燥後このサンプルの表面に実 施例 7、 比較例 5、 6で得た塗料を塗料用刷毛で塗布し 8 0 °Cで 1 5時間乾燥した。 これら 3枚と、 表面に何も塗布していないタイル目地サンプルの計 4枚の防力ビ試 験を行った。
試験に用いたカビはクラドスポリゥム (Cladosporium) 属の野生株を風呂場より 採取後培養し、 このカビの胞子を含んだ培養水をサンプル表面に噴霧した。 タイル 目地サンプルを角シャーレに入れその後 2 5 °Cに保持し、 およそ 1週間ごとに表面 カビの生育状態を肉眼で観察し、 カビの生育状況を観察した。 そして、 カビの生育 が観察されないを〇、 カビの生育がわずかに観察されるを△、 カビの生育が少し観 察されるを X、 力ビの生育が激しいを X Xで評価した。
サンプル表面の観察結果を表 8に示す。
【表 8】
Figure imgf000020_0001
何も塗布を行っていなレ、試料と、 塗料のみを塗布した比較例 6が力ビの生育状況 が同じことから、 塗料自体にカビの生育を抑える何らかの成分が含まれていないこ とがわかる。 それにも関わらず、 本発明の抗菌防力ビ剤を含有する抗菌防カビ組成 物である実施例 7を塗布した試料サンプルには、 4ヶ月経過後もカビの育成が観察 されなかった。 これに対して比較例 5は 2ヶ月目までは力ビの生育を抑えられてい たものの、 それ以後、 わずかにカビの育成が認められるようになった。 これによつ て本発明の抗菌防力ビ剤を含有した抗菌防力ビ組成物が優れた抗菌防力ビ性を示す ことがわ力 る。
このように、 実施例 7は他のサンプルと比較して有為な抗カビ性を有することが わかった。 また、 抗菌防カビ性粉末として Z e om i c™ ( (株) シナネンゼォミ ック社製) を用いた比較例 5は塗料が茶色に変色してしまったのでタイルの意匠性 が著しく損なわれてしまつた。
以上のことにより、 本発明の抗菌防力ビ剤は耐変色性においても優れていること がわかる。
比較実験 6
続いて、 実際の使用状態に近い条件におけるカビに対する効果を測定することと した。
シリコーン製目地剤 (セメダイン (株) 社製シ!)コ-ンシ-ラン卜セメタ"イン 8060ホワイト TM) 99. 0 gに実施例 2の抗菌防力ビ剤を 1. 0 g添加しよく練り込んだもの (実施例 8 ) 、 同様の目地剤 99. O gに比較例 2の粉末 (Z e om i c™ (株) シナネンゼォミ ック社製) 1. ◦ gを添加しよく練り込んだもの (比較例 7) および同様の目地剤 99. 5 gに有機系の防力ビ剤である T B Z (Thiabendazole™ 和光純薬工業 (株) 社製) 0. 5 gを添加しよく練り込んだもの (比較例 8) を用いて試験を行った。 そして、 各目地剤を PETフィルムに厚さ 1. 5mmの平板状に塗布して、 乾燥 固定させたサンプルを調製した。 また、 ブランクとして抗菌剤をなにも添加しない サンプル (比較例 9) を調製した。 それぞれのサンプルは (たて) 30mmX (よ こ) 3 Ommの正方形に切断し防カビ試験に用いた。 防カビ試験は J I S Z 2 9 1 1— 1 992かび抵抗性試験法、 一般工業製品の方法に準じておこない、 前培 養した 5種類のカビ胞子を混合してサンプルに吹き付け菌糸の成長を肉眼、 顕微鏡 で観察した。
ただし、 成長を促進させるため胞子懸濁液に栄養源としてぶどう糖を 3%添加し た。 その後 1週間ごとに表面カビの生育状態を観察し、 カビの生育が観察されない を〇、 カビの生育がわずかに観察されるを△、 カビの生育が少し観察されるを X、 カビの生育が激しいを X Xで評価した。
サンプル表面の観察結果を表 9に示す。
【表 9】 塗 料 1週間後 2週間後 3週間後 4週間後 実施例 8 o 〇 〇 〇
比較例 7 〇 O o 〇
比較例 8 〇 〇 〇 O
比較例 9 〇 〇 X X
実験の結果、 抗菌剤を練り込んでいない比較例 9はわずか 3週間後に力ビが認め られたが、 抗菌剤を練り込んだ実施例 8、 及び比較例 7、 8は 1ヶ月間に渡って全 く力ビが見られなかった。 以上の結果より、 本発明抗菌防力ビ剤は樹脂組成物に練 り込んだ状態で、 少なくとも既存のものと同等の性能を有していることがわかる。 つぎに、 粉末単体および製品系で光安定性を確認することとした。
まず粉体単体での光安定性を試験する。
比較実験 Ί (粉末単体での光安定性試験)
ホウケィ酸ガラス製サンプルビンに 2 O m 1の各分散液 (4種類) に◦. 5 gの 粉末サンプル (実施例 2で製造した粉末、 比較例 3 : Z e o m i c TM ( (株) シナネンセ" 才ミック社製の粉末) を入れた。 この状態ではどのサンプルも粉末は白色であった。 分散液は、 イオン交換水、 1 %酢酸水溶液、 1 %塩化ナトリウム水溶液、 そして、 抗菌防力ビ剤が使用されるような使用環境において、 使用される可能性のある薬剤 として市販の塩素系カビとり剤 (カビキラー TM (ジョンソン社製) ) の 1 / 1 0希 釈溶液を用いた。
この状態でキセノンランプ (照度約 285W/m2) を 3 0時間照射 (積算照射量:約 30 M J /m2) 後、 粉末の変色を目視で観察し粉末単体での光安定性を評価した。
結果を次の表 1 0に示す。 なお評価方法は変色のなかったものを〇、 変色したも のを Xとして記載している。
【表 1 0】 1 %塩化 塩化系
%酢酸
分散液 イオン交換水 1 ナトリウム カビとり剤
水溶液 水溶液 (1/10希釈液) 実施例 2の粉末 〇 o 〇 〇
X
比較例 3の粉末 o 〇 (灰色に変色) (茶色に変色)
表 1 0の結果に示すように本発明の抗菌防力ビ剤はどのような環境下にあっても 非常に安定性がよく、 変色を起こさないことがわかる。 これに対して比較例 3の粉 体は塩化ナトリゥム水溶液で変色を起こしてしまった。 またカビとり剤に対して変 色してしまっているため、 使用できる薬剤が制限されてしまうことがわかる。
続いて、 抗菌防カビ製品に含有させた際に、 十分な光安定性を有しているかを試 験した。
比較実験 8
比較実験 6と同様に、 シリコーン製目地剤 (セメダイン (株) 社製シリコ-ンシ-ラントセメタ" イン 8060ホワイト TM) 9 9 . 0 gに実施例 2の抗菌防力ビ剤を 1 . O g添加しよく練り込 んだもの (実施例 8 ) 、 同様の目地剤 9 9 . 0 gに比較例 2の粉末 ( Z e o m i c τ M (株) シナネンゼォミック社製) 1 . 0 gを添加しょく練り込んだもの (比較例 7 ) および同様の目地剤 9 9 . 5 gに有機系の防カビ剤である T B Z (ThiabendazoleTM 和光純薬工業 (株) 社製) 0 . 5 gを添加しよく練り込んだもの (比較例 8 ) を用 いて試験を行った。
そして、 各目地剤を P E Tフィルムに厚さ 1 . 5 mmの平板状に塗布して、 乾燥 固定させたサンプルを調製した。 また、 ブランクとして抗菌剤をなにも添加しない サンプル (比較例 9 ) を調製した。
このサンプルにキセノンランプ(照度約 285W/m2) を 3 0時間照射し (積算照射量: 約 30M J /m2) 、 サンプル表面の色変化を目視で観察した。 また、 あわせてミノルタ カメラ (株) 社製分光測色計 CM-1000TMを用いて測定前後のサンプル表面の色差を測 定し安定性を判断した。 一般的に色差が 3以上であれば目視で色調の違いがわかる とされている。 結果を次の表 1 1に示す。 なお目視観察での評価方法はほとんど黄変が観察され ないを〇、 黄変が少し観察されるものを△、 黄変がはっきりと観察されるを Xとし て記載している。
【表 1 1】
Figure imgf000024_0001
表 1 1に示すように比較例 7、 8は目視観察してもはっきりと判別できるほどの 変色を起こしてしまっている。 抗菌防力ビ剤を入れていない比較例 9が変色を起こ していないことから、 この変色は混合された抗菌防力ビ剤によって引き起こされた ものであることがわかる。
これに対して本発明の抗菌防力ビ剤を混合させた実施例 8は何も混合していない 比較例 9とほとんど同じだけの変色しか起こしておらず、 本発明の抗菌防カビ剤に よって変色が起きていないことがわかる。
この結果、 本発明抗菌防力ビ剤は、 従来の抗菌防力ビ剤比較例 7、 8と比較して 光安定性が優れていることがわかる。
以上説明したように、 本発明の抗菌防カビ剤は、 現在市販されている無機系抗菌 剤が比較的不得意であったァォカビ、 クロカビ、 カンジダ菌といった真菌に対する 効果、 安定性、 および抗菌防カビ効果の持続性に優れ、 経時的変色が少ない。
また、 本発明の抗菌防力ビ剤を混合することによって、 種々の合成樹脂組成物、 ゴム、 繊維、 紙、 塗料、 木材等の工業原料や皮膚外用薬剤、 化粧料、 トイレタリー 製品等の組成物に抗菌防カビ性能を付与することができるため、 本発明の抗菌防力 ビ組成物も無機系抗菌剤が比較的不得意であったァォカビ、 クロカビ、 カンジダ菌 といった真菌に対する効果、 安定性、 および抗菌防カビ効果の持続性に優れ、 経時 的変色が少ない。
このため、 本発明の抗菌防力ビ剤は比較的簡便な方法により効率的にかつ低コス トで抗菌防力ビ効果とその持続性が高い抗菌剤を提供することができる。
また、 本発明の抗菌防カビ組成物は、 本発明の抗菌防カビ組成物を混合させるこ とにより、 抗菌防力ビの持続性に優れ経時的変色の少ない種々の組成物を提供する ことができる。

Claims

請求の範囲
酸化亜鉛を主成分として、 リチウム、 ナトリウム、 カリウムの水酸化物、 炭酸 水素塩、 炭酸塩から選ばれる 1種または 2種以上のアルカリ金属塩を含有する ことを特徴とする抗菌防力ビ剤。
請求項 1記載の抗菌防力ビ剤において、 アル力リ金属塩の含有量が抗菌剤全体 の 0 . 5 %〜 7 5 %であることを特徴とする抗菌防力ビ剤。
請求項 1記載の抗菌防カビ剤において、 酸化亜鉛成分の合成原料として醉酸亜 鉛、 硫酸亜鉛、 塩化亜鉛を用いることを特徴とする抗菌防カビ剤。
請求項 3記載の抗菌防力ビ剤において、 亜鉛ィオンを含む水溶液とアル力リ水 溶液を、 常温常圧下において反応液の p Hを 7〜 9に保つように前記 2つの水 溶液の滴下量を調整しながら連続的に反応槽に供給して反応させて合成し、 生 成物をろ別、 水洗、 乾燥、 焼成することにより得られたことを特徴とする抗菌 防力ビ剤。
請求項 1記載の抗菌防カビ剤において、 1 O w t %水分散体の p Hが 9〜1 4 となることを特徴とする抗菌防力ビ剤。
請求項 1記載の抗菌防力ビ剤を含有することにより抗菌防力ビ効果を有するこ とを特徴とする抗菌防力ビ組成物。
PCT/JP2001/000113 2000-01-14 2001-01-12 Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation WO2001050864A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01900688A EP1161869B1 (en) 2000-01-14 2001-01-12 Antibacterial and mildew-proofing agents and antibacterial and mildew-proofing compositions
DE60111685T DE60111685T2 (de) 2000-01-14 2001-01-12 Antibakterielle und schimmelverhindernde substanzen und antibakterielle und schimmelverhindernde zusammensetzungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000006889A JP4558122B2 (ja) 2000-01-14 2000-01-14 抗菌防カビ剤及び抗菌防カビ組成物
JP2000/6889 2000-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/936,288 A-371-Of-International US20030044471A1 (en) 2000-01-14 2001-01-12 Antibacterial and mildew-proofing agents and antibactieral and mildew-proofing compositions
US10/254,511 Continuation US20030138497A1 (en) 2000-01-14 2002-09-26 Inorganic antibacterial/antifungal agents

Publications (1)

Publication Number Publication Date
WO2001050864A1 true WO2001050864A1 (fr) 2001-07-19

Family

ID=18535348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000113 WO2001050864A1 (fr) 2000-01-14 2001-01-12 Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation

Country Status (5)

Country Link
US (2) US20030044471A1 (ja)
EP (1) EP1161869B1 (ja)
JP (1) JP4558122B2 (ja)
DE (1) DE60111685T2 (ja)
WO (1) WO2001050864A1 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026308B1 (en) 1999-06-25 2006-04-11 The Procter & Gamble Company Topical anti-microbial compositions
AU6054800A (en) 1999-06-25 2001-01-31 Arch Chemicals, Inc. Pyrithione biocides enhanced by silver, copper, or zinc ions
US7674785B2 (en) * 2000-06-22 2010-03-09 The Procter & Gamble Company Topical anti-microbial compositions
IL140695A0 (en) * 2001-01-02 2002-02-10 Biotan Biocides For Paints And Biocide compositions and a method for their production
MXPA04009515A (es) * 2002-04-22 2005-07-26 Procter & Gamble Uso de materiales con comportamiento de ionoforos de zinc.
ES2601463T3 (es) 2002-04-22 2017-02-15 The Procter & Gamble Company Composiciones para la higiene personal que comprenden un material que contiene cinc en una composición tensioactiva acuosa
US20050202984A1 (en) * 2003-03-18 2005-09-15 Schwartz James R. Composition comprising zinc-containing layered material with a high relative zinc lability
US8349301B2 (en) 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network
US8361450B2 (en) 2002-06-04 2013-01-29 The Procter & Gamble Company Shampoo containing a gel network and a non-guar galactomannan polymer derivative
US8367048B2 (en) 2002-06-04 2013-02-05 The Procter & Gamble Company Shampoo containing a gel network
US9381382B2 (en) 2002-06-04 2016-07-05 The Procter & Gamble Company Composition comprising a particulate zinc material, a pyrithione or a polyvalent metal salt of a pyrithione and a gel network
US8361448B2 (en) 2002-06-04 2013-01-29 The Procter & Gamble Company Shampoo containing a gel network
US8470305B2 (en) 2002-06-04 2013-06-25 The Procter & Gamble Company Shampoo containing a gel network
US8491877B2 (en) 2003-03-18 2013-07-23 The Procter & Gamble Company Composition comprising zinc-containing layered material with a high relative zinc lability
US9381148B2 (en) * 2003-03-18 2016-07-05 The Procter & Gamble Company Composition comprising particulate zinc material with a high relative zinc lability
US8349302B2 (en) 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network and a non-guar galactomannan polymer derivative
US20040213751A1 (en) * 2003-03-18 2004-10-28 Schwartz James Robert Augmentation of pyrithione activity or a polyvalent metal salt of pyrithione activity by zinc-containing layered material
US20040191331A1 (en) * 2003-03-18 2004-09-30 The Procter & Gamble Company Composition comprising particulate zinc materials having a defined crystallite size
US20060054061A1 (en) * 2004-09-13 2006-03-16 Ruddick Douglas H Bacteria and mold resistant wallboard
JP5010182B2 (ja) * 2005-06-02 2012-08-29 株式会社 資生堂 崩壊性酸化亜鉛粉体、その製造方法及びこれを配合した化粧料
JP5010183B2 (ja) * 2005-06-02 2012-08-29 株式会社 資生堂 崩壊性酸化亜鉛粉体の製造方法
US7687650B2 (en) 2006-02-03 2010-03-30 Jr Chem, Llc Chemical compositions and methods of making them
PL1993569T3 (pl) 2006-02-03 2014-11-28 Obagi Cosmeceuticals Llc Terapia przeciw starzeniu z użyciem kompozycji miedzi i cynku
US7897800B2 (en) 2006-02-03 2011-03-01 Jr Chem, Llc Chemical compositions and methods of making them
JP2007217201A (ja) * 2006-02-14 2007-08-30 Merck Ltd 多孔質マグネシアとその製造方法
PL1837009T3 (pl) * 2006-03-22 2009-10-30 Procter & Gamble Doustne kompozycje zawierające cynk
US7867522B2 (en) 2006-09-28 2011-01-11 Jr Chem, Llc Method of wound/burn healing using copper-zinc compositions
US8273791B2 (en) 2008-01-04 2012-09-25 Jr Chem, Llc Compositions, kits and regimens for the treatment of skin, especially décolletage
CA2750636C (en) 2009-01-23 2017-07-25 Jr Chem, Llc Rosacea treatments and kits for performing them
PT2374353E (pt) * 2010-04-09 2013-01-28 Omya Development Ag Processo para a conservação de preparações aquosas de materiais minerais, preparações aquosas de materiais minerais e utilização de compostos conservantes em preparações aquosas de materiais minerais
US8952057B2 (en) 2011-01-11 2015-02-10 Jr Chem, Llc Compositions for anorectal use and methods for treating anorectal disorders
EP2763748B1 (en) 2011-10-07 2017-07-26 The Procter and Gamble Company Shampoo composition containing a gel network
JP2014111591A (ja) * 2012-11-08 2014-06-19 Aiseppu Kk 有機成分を全く含まない、無機化合物の木材保存剤
EP2982247A1 (en) * 2014-08-07 2016-02-10 Omya International AG Antiseptic product, process for preparing same and its use
US10945935B2 (en) 2016-06-27 2021-03-16 The Procter And Gamble Company Shampoo composition containing a gel network
EP3403505A1 (en) * 2017-05-16 2018-11-21 Omya International AG Biocide free preservation
EP3801443A1 (en) 2018-06-05 2021-04-14 The Procter & Gamble Company Clear cleansing composition
JP7190132B2 (ja) * 2018-11-02 2022-12-15 国立大学法人北海道大学 亜鉛含有抗菌剤
EP3894015A1 (en) 2018-12-14 2021-10-20 The Procter & Gamble Company Shampoo composition comprising sheet-like microcapsules
US11896689B2 (en) 2019-06-28 2024-02-13 The Procter & Gamble Company Method of making a clear personal care comprising microcapsules
EP4103335A1 (en) 2020-02-14 2022-12-21 The Procter & Gamble Company Bottle adapted for storing a liquid composition with an aesthetic design suspended therein
CN111838148A (zh) * 2020-07-14 2020-10-30 陕西科技大学 一种钴掺杂氧化锌/二硫化钼纳米复合抗菌剂的制备方法
CN112690289B (zh) * 2020-12-25 2021-10-26 南昌大学 一种抗菌防霉剂及其制备方法
US11633072B2 (en) 2021-02-12 2023-04-25 The Procter & Gamble Company Multi-phase shampoo composition with an aesthetic design
EP4349171A1 (en) * 2022-10-08 2024-04-10 Insignes Labs Sp. z o.o. A solid form for preparation of an aqueous dispersion, aqueous dispersion, stable suspension concentrate, combined aqueous dispersion, and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493360A (ja) * 1990-08-08 1992-03-26 Bio Giken:Kk 抗菌効果を有する樹脂組成物
JPH0717803A (ja) * 1991-03-27 1995-01-20 Shiraishi Chuo Kenkyusho:Kk 抗菌性炭酸カルシウム粉体
JPH07304620A (ja) * 1994-05-13 1995-11-21 Toagosei Co Ltd 抗菌剤組成物
EP0791681A2 (en) * 1996-02-22 1997-08-27 MITSUI MINING & SMELTING CO., LTD. Composite material carrying zinc oxide fine particles adhered thereto and methodfor preparing same
JP2000281518A (ja) * 1999-03-26 2000-10-10 Shiseido Co Ltd 抗菌防黴剤

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802441A (en) * 1972-01-26 1974-04-09 Brown & Williamson Tobacco Tobacco smoke filter additive
GB1517025A (en) * 1975-08-20 1978-07-05 Malaysia Rubber Res Inst Preservation of natural rubber latex
JPH0723294B2 (ja) * 1984-04-28 1995-03-15 株式会社コーセー 日焼け止め化粧料
JPS6127906A (ja) * 1984-07-16 1986-02-07 Toyo Contact Lens Co Ltd 抗菌作用を有する焼結体
JPS61233606A (ja) * 1986-01-24 1986-10-17 Rikagaku Kenkyusho 農園芸用殺菌剤組成物
JPH07116008B2 (ja) * 1987-04-07 1995-12-13 株式会社資生堂 抗菌剤
US5747561A (en) * 1992-10-14 1998-05-05 Smirnov; Aleksandr Vitalievich Solid surface modifier
WO1994026244A1 (en) * 1993-05-19 1994-11-24 Church & Dwight Co., Inc. Oral care compositions containing zinc oxide particles and sodium bicarbonate
US5424077A (en) * 1993-07-13 1995-06-13 Church & Dwight Co., Inc. Co-micronized bicarbonate salt compositions
US5403506A (en) * 1993-09-30 1995-04-04 Church & Dwight Co., Inc. Deodorant detergent composition
JPH09286615A (ja) * 1996-02-22 1997-11-04 Mitsui Mining & Smelting Co Ltd 酸化亜鉛微粒子付着複合体及びその製造方法
JPH09299457A (ja) * 1996-05-09 1997-11-25 Mitsui Mining & Smelting Co Ltd 抗菌・脱臭性衛生用品
JPH09299724A (ja) * 1996-05-09 1997-11-25 Mitsui Mining & Smelting Co Ltd 抗菌性フィルター
JPH09296363A (ja) * 1996-05-09 1997-11-18 Mitsui Mining & Smelting Co Ltd 抗菌・防黴性繊維シート
JPH10130619A (ja) * 1996-11-01 1998-05-19 Mitsui Mining & Smelting Co Ltd 酸化亜鉛微粒子付着複合体及びその製造方法
JP3496858B2 (ja) * 1996-10-15 2004-02-16 三井金属鉱業株式会社 超微細酸化亜鉛の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493360A (ja) * 1990-08-08 1992-03-26 Bio Giken:Kk 抗菌効果を有する樹脂組成物
JPH0717803A (ja) * 1991-03-27 1995-01-20 Shiraishi Chuo Kenkyusho:Kk 抗菌性炭酸カルシウム粉体
JPH07304620A (ja) * 1994-05-13 1995-11-21 Toagosei Co Ltd 抗菌剤組成物
EP0791681A2 (en) * 1996-02-22 1997-08-27 MITSUI MINING & SMELTING CO., LTD. Composite material carrying zinc oxide fine particles adhered thereto and methodfor preparing same
JP2000281518A (ja) * 1999-03-26 2000-10-10 Shiseido Co Ltd 抗菌防黴剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1161869A4 *

Also Published As

Publication number Publication date
DE60111685D1 (de) 2005-08-04
US20030138497A1 (en) 2003-07-24
EP1161869B1 (en) 2005-06-29
JP2001199822A (ja) 2001-07-24
EP1161869A1 (en) 2001-12-12
EP1161869A4 (en) 2002-05-29
US20030044471A1 (en) 2003-03-06
JP4558122B2 (ja) 2010-10-06
DE60111685T2 (de) 2006-05-04

Similar Documents

Publication Publication Date Title
WO2001050864A1 (fr) Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation
CN105494429B (zh) 一种抗菌防霉剂及其制备方法以及抗菌防霉方法
EP1832169B1 (en) Antimicrobial zeolite and antimicrobial composItion
CN101454300B (zh) 固定的1,2-苯并异噻唑啉-3-酮
US20020110575A1 (en) Composite biocidal particles
CA2282462A1 (en) Discoloration prevention in pyrithione-containing coating compositions
EA030761B1 (ru) Способ получения противомикробной дисперсной композиции
KR20120039537A (ko) 나노구조형 바이오사이드 조성물
CN107641416A (zh) 一种抗菌粉末涂料
JP2007223917A (ja) 抗菌剤
JP2003171619A (ja) 水性塗料組成物
JP4796392B2 (ja) 抗菌剤
JPH07150075A (ja) 抗菌性塗料組成物および塗膜
JPH07116008B2 (ja) 抗菌剤
JP2007106737A (ja) 抗菌剤
JP3938447B2 (ja) 抗菌防黴剤
JP2003212707A (ja) 抗菌・抗カビ性粉末及びその製造方法
RU2338765C1 (ru) Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами
JP3085750B2 (ja) 抗菌性樹脂または抗菌性塗料
JP2003012426A (ja) 抗菌防かび防藻組成物および塗料組成物
JPH0625561A (ja) 抗菌性粉体塗料組成物
KR0154349B1 (ko) 항균성 화장료용 안료
JP7438503B2 (ja) 即時殺菌性能を有する抗菌複合素材及びその製造方法
EP3860347A1 (en) Antimicrobial compositions comprising wollastonite
KR102415253B1 (ko) 즉시 살균 성능을 갖는 항균 복합 소재 및 이의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09936288

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001900688

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001900688

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001900688

Country of ref document: EP