WO2000003190A1 - Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager - Google Patents

Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager Download PDF

Info

Publication number
WO2000003190A1
WO2000003190A1 PCT/DE1999/002125 DE9902125W WO0003190A1 WO 2000003190 A1 WO2000003190 A1 WO 2000003190A1 DE 9902125 W DE9902125 W DE 9902125W WO 0003190 A1 WO0003190 A1 WO 0003190A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
flat
flat tube
block
heat exchanger
Prior art date
Application number
PCT/DE1999/002125
Other languages
English (en)
French (fr)
Inventor
Bernd Dienhart
Hans-Joachim Krauss
Hagen Mittelstrass
Karl-Heinz Staffa
Christoph Walter
Jochen Schumm
Original Assignee
Ford-Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford-Werke Aktiengesellschaft filed Critical Ford-Werke Aktiengesellschaft
Priority to EP99945947A priority Critical patent/EP1036296B1/de
Priority to AU58491/99A priority patent/AU5849199A/en
Priority to JP2000559386A priority patent/JP2002520570A/ja
Publication of WO2000003190A1 publication Critical patent/WO2000003190A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to a flat tube according to the preamble of claim 1 and to a flat tube heat exchanger according to the preamble of claim 5.
  • a flat tube and a heat exchanger with a tube block of this type constructed from this type of flat tube are described in the published patent application EP 0 659 500 AI.
  • a straight flat tube blank is first bent out of the flat tube plane in a U-shape until the flat tube legs run parallel to one another, after which the latter are twisted by 90 ° relative to the U-bend region.
  • the resulting flat tube thus has two planar tube sections lying in one plane, the ends of which end on the same side opposite the primary bend section.
  • the angle which the flat tube transverse axis encloses along the reversing bend section with the plane in which the rectilinear pipe legs lie initially increases over one torsion range from zero to the value of 90 ° at the head end of the reversing bend section, and then over the other torsion range to decrease again to 0 °.
  • the expansion of the flat tube is therefore perpendicular to the plane the / plan pipe leg in the head area of the reverse bend section of the flat pipe width.
  • the heat exchanger tube block there, several such flat tubes are stacked one above the other in the direction perpendicular to the plane of the straight flat tube legs, the stacking distance between the straight tube legs of adjacent flat tubes being greater than the flat tube width due to the expansion of the reversing arc sections in this direction corresponding to the width of the flat tubes must be kept.
  • the flat tubes of the tube block which are designed in a single chamber, open into a collector arranged on one side of the tube block, which is divided by a longitudinal partition into two collecting spaces, into which the flat tubes each end with one end or the other.
  • a heat exchanger with a tube block which is formed from a stack of round tubes which are U-shaped using a single reversing arc section or using a plurality of successive reversing arc sections as a pipe coil, the tube sections between the Reverse arc sections are straight and flattened.
  • the flattened pipe sections of the round pipe lie offset in one plane, while the reversing bend section (s) and the two pipe end areas opening on the same side maintain the circular pipe cross section.
  • the straight pipe sections are flattened using flat presses.
  • the round ends of the pipes open into a collection or distribution space, that of a collection and distribution pipe or of a longitudinally divided one. Collection and distribution box are formed.
  • the distance between the flattened pipe sections of adjacent pipes in the pipe block stack must necessarily be larger than the diameter of the round pipes used.
  • US Pat. No. 3,416,600 discloses a heat exchanger in a serpentine construction, which has a tube fin block O 00/03190
  • each serpentine flat tube is twisted by 90 °, and the two header tubes have corresponding, spaced-apart through-slots in which the twisted tube ends are received in a fluid-tight manner.
  • each serpentine flat tube is twisted by 180 ° in a lateral block area in the vicinity of a serpentine turn, so that each flow channel of the multi-chamber flat tubes used faces part of a block front side and part of the opposite block rear side.
  • a heat exchanger with a tube / fin block which contains a stack of straight multi-chamber flat tubes which are twisted at their two opposite ends by an angle of at most 45 ° and open into associated header tubes which are provided on their circumference with corresponding oblique slots which are spaced apart in the longitudinal direction of the collecting tube.
  • the invention is based on the technical problem of providing a flat tube of the type mentioned at the outset, which can be produced relatively easily and is suitable for building very pressure-stable heat exchangers with a small internal volume and high heat transfer efficiency, and a heat exchanger constructed from such flat tubes.
  • the invention solves this problem by providing a flat tube with the features of claim 1 and a heat exchanger with the features of claim 5.
  • the reversing bend section is formed such that in this area the transverse axis of the flat tube includes at most an angle of 45 ° with the planes which are parallel to a longitudinal and a transverse direction and perpendicular to a stacking direction.
  • the longitudinal direction is defined by the course of the longitudinal axes of the flat pipe sections, while the stacking direction indicates the direction in which several flat pipes are arranged in succession when a heat exchanger pipe block is formed.
  • the transverse direction represents the direction perpendicular to this longitudinal direction and to the stacking direction defined in this way. In general, the transverse direction defined in this way is parallel to the transverse axis direction of the planar pipe sections, but this is not mandatory, since alternatively the planar pipe sections can also be inclined with respect to this transverse direction if required .
  • This inventive design of the reverse bend section ensures that its extension in the stacking direction can be kept significantly smaller than the flat tube width. Accordingly, the gaps between adjacent flat tubes do not need to be kept as large or larger than the flat tube width when stacking a tube block from these flat tubes, but can be significantly narrower, which favors the production of a compact and pressure-stable heat exchanger.
  • the reversing bend section can be realized by relatively simple pipe bending processes. The flat tube can be bent one or more times in this way, its depth, ie its extent in the transverse direction as defined above, increasing with each bend.
  • flat tube is bent such that the flat tube sections connected via a respective reversing bend section lie in the same or different longitudinal planes which are parallel to one another or inclined to one another by a predeterminable tilting angle, and in each case preferably with a mutual distance in the transverse direction between 0.2mm and 20mm.
  • a tube block can be formed with a depth that corresponds to twice the flat tube width plus the said distance between the flat tube sections. With flat tubes bent several times in this way, the depth of the tube block per reversing bend section increases by the width of the flat tube plus the said transverse spacing of the flat tube sections.
  • a flat tube further developed according to claim 3 forms a serpentine flat tube, in that at least one of the two flat tube parts connected via a reversing bend section is bent in the stacking direction to form a tubular serpentine, ie it consists of serpentine turns which follow one another in the stacking direction.
  • the mouth ends lie on the same or on opposite sides, with at least one end, preferably both ends, being twisted in relation to the subsequent central region.
  • This twisting rotates the flat tube transverse axis in the direction of the mouth end towards the stacking direction, so that the extension of the flat tube ends in the transverse direction can be kept smaller than the flat tube width.
  • the twisting takes place at a maximum of 90 °, so that in the case of flat pipe sections running perpendicular to the stacking direction, the pipe ends are parallel to the stacking direction and their extent in the transverse direction is only as large as the flat pipe thickness. This enables a comparatively narrow arrangement of associated collecting and distribution channels, which extend in the stacking direction on the relevant tube block side, in the depth direction of a tube block constructed therewith.
  • the heat exchanger according to claim 5 is characterized by the use of one or more of the flat tubes according to the invention in the construction of a corresponding tube block, with the above-mentioned properties and advantages of such a tube block structure.
  • a compact, highly pressure-stable evaporator with a relatively low weight, low internal volume and good condensate separation for an air conditioning system of a motor vehicle can be realized in this way, multi-chamber flat tubes preferably being used.
  • the heat exchanger can be implemented in a single-layer construction, in which the flat tube sections between two reversing bend sections or between a reversing bend section and a flat tube end consist of a flat, straight tube section, and in a serpentine construction, in which these flat tube sections are bent into a coil.
  • the tube ends of the flat tubes used and thus also the associated collecting and distribution channels, hereinafter referred to collectively as the collecting channels for the sake of simplicity, are located on opposite tube block sides.
  • the collecting channels can then each be formed by a collecting box or collecting tube, which run along the stacking direction on the relevant tube block side, also referred to as the vertical direction of the block, and the parallel supply or discharge of the temperature control medium passed through the tube interior to and from the individual flat tubes serve.
  • the flat tube ends all open on the same tube block side.
  • the two tube ends of each flat tube are offset from one another in the block depth direction, so that two collecting channels which are adjacent to one another in the block depth direction can be assigned to them.
  • the temperature control medium passed through the interior of the pipe is supplied and removed on the same heat exchanger side.
  • these collecting ducts are formed by two separate collecting pipes or collecting boxes, hereinafter referred to simply as collecting pipes for the sake of simplicity, or by a common collecting pipe.
  • the latter can be achieved by dividing an initially uniform collecting tube interior with a longitudinal partition into the two collecting channels, or by producing the collecting tube as an extruded tube profile with two separate hollow chambers forming the collecting channels.
  • a group-wise serial flow through the flat tubes in the tube block is thereby achieved in that the temperature control medium supplied to the tube block via a first collecting channel of the cross-divided collecting tube or the cross-divided hollow chamber is initially only fed into the part of all flat tubes opening there.
  • the collecting duct, into which this part of the flat tubes opens with the other tube end, then acts as a deflection channel, in which the temperature control medium is deflected from the flat tubes opening there into a further part of all flat tubes also opening there with one end.
  • the number and position of the transverse partition walls determine the division of the flat tubes into successively flowed through groups of parallel flowed flat tubes.
  • Fig. 1 is a plan view of a flat tube with a reverse bend section and twisted. Pipe ends,
  • FIG. 2 is a side view along the arrow II of FIG. 1,
  • FIGS. 1 and 2 show a partial side view of a tube / fin block of an evaporator constructed from flat tubes according to FIGS. 1 and 2,
  • FIG. 4 is a side view along arrow IV of FIG. 3,
  • 5 shows a partial side view of a tube / fin block of an evaporator with serpentine flat tubes
  • 6 is a side view along arrow VI of FIG. 5
  • Fig. 7 is a schematic representation of a flat tube with two reverse bend sections and
  • Fig. 8 is a cross-sectional view through e.g. 5 usable two-chamber manifold.
  • the flat tube 1 shown in a top view in FIG. 1 is made in one piece from a straight multi-chamber profile using suitable bending processes. It includes two flat, straight pipe sections e 2a, 2b, which are connected to one another via an inverted bend section 3 and opposite flow directions for a temperature control medium passed through the several parallel chambers inside the flat tube 1, e.g. a refrigerant of a motor vehicle air conditioning system.
  • a temperature control medium passed through the several parallel chambers inside the flat tube 1, e.g. a refrigerant of a motor vehicle air conditioning system.
  • One of the two possible flow profiles is shown in FIG. 1 by corresponding flow arrows 4a, 4b.
  • the longitudinal axes 5a, 5b of the two flat, straight pipe sections 2a, 2b running parallel to the flow directions 4a, 4b define a longitudinal direction x and are offset from one another in a transverse direction y perpendicular thereto.
  • both flat pipe sections 2a, 2b lie in a common xy plane, which is perpendicular to a stacking direction z, in which a plurality of such flat pipes are stacked to form a heat exchanger pipe block, as shown below 3 and 4 explained in more detail.
  • FIGS. 1 to 6 each show the corresponding coordinate axes x, y, z.
  • the reversing bend section 3 is obtained in that the initial, straight flat tube profile of a desired width b is kept at half its length and both tube halves are each turned over at a 90 ° angle, so that they run parallel to each other perpendicular to their original longitudinal direction and in this way form the two straight pipe sections 2a, 2b of the finished flat pipe 1.
  • the bending process takes place in such a way that the two straight pipe sections 2a, 2b lying in one plane lie opposite one another with a distance a which can be selected depending on the application and which is preferably between approximately 0.2 mm and 20 mm, while the flat pipe width b is typically between one and a few Centimeters.
  • While the straight pipe sections 2a, 2b are connected to one another via the reversing bend section 3, they both open out on the opposite side in the form of twisted pipe ends 6a, 6b.
  • the twisting takes place about the respective longitudinal central axis 5a, 5b, alternatively also about a longitudinal axis parallel to it, i.e. with a transverse offset with respect to the longitudinal central axis, by any angle between 0 ° and 90 °, the torsion angle being approximately 60 ° in the case shown, as can be seen particularly clearly from FIG. 4.
  • the transverse direction y is defined by being perpendicular to both the longitudinal direction x of the straight pipe sections and the pipe block stacking direction z.
  • FIGS. 3 and 4 show an application for the flat tube type of FIGS. 1 and 2 in the form of a tube / fin block of an evaporator, as can be used in particular in motor vehicle air conditioning systems. It goes without saying that, depending on the design, the detail of the heat exchanger shown can also be used for any other heat transfer purposes.
  • this evaporator contains between two end cover plates 9, 10 a stack of several flat tubes 1 according to FIGS. 1 and 2 with interposed, thermally conductive corrugated fins 8.
  • the height of the heat-conducting fins 8 corresponds approximately to the height c of the flat tube Reversing bend sections 3 and is thus significantly smaller than the flat tube width b.
  • the use of the flat tube of FIGS. 1 and 2 forms a tube-fin block with a two-part structure in depth, ie in the y direction, the tube sections in each of the two block parts same flow direction in the stacking direction z one above the other. Between the two block parts there is a distance a between the two straight lines Pipe sections 2a, 2b of each flat tube 1 corresponding gap is formed.
  • the corrugated fins 8 extend in one piece over the entire flat tube depth and thus also over this gap, whereby they can protrude on both sides, ie on the front and on the back of the block, as required.
  • the front of the block is defined by the fact that a second temperature control medium, for example supply air to be cooled for a vehicle interior, which flows outside the evaporator surfaces, flows in the pipe transverse direction y, ie in the block depth direction.
  • the transverse extension d of the ends of the flat tube ends is less than the flat tube width b due to their twisting.
  • This facilitates the connection of two associated collecting channels, not shown in FIGS. 3 and 4.
  • these can e.g. each be formed by a header or header, the transverse extent of which does not need to be greater than the flat tube width b in the y-direction and, in its diameter, with a torsion angle of the flat tube ends of approximately 90 °, even needs to be only slightly greater than the flat tube thickness . It is therefore easily possible to arrange two header pipes on the relevant pipe block side lying side by side in the stacking direction z in order to accommodate one of the two ends of each flat pipe 1.
  • a common collector pipe can be provided for both rows of stacks of pipe ends 6a, 6b, which is divided into the two required, separate collector channels by means of a longitudinal partition.
  • the twisting of the tube ends shown in the example by approximately 60 ° makes it possible that the relatively close succession of the single-layer flat tubes 1 in the stack with the said stack height c, which is smaller than the flat tube width b, is not impeded.
  • the evaporator with the tube / fin block formed in this way can be realized in a compact design and very pressure-stable and has a high heat transfer efficiency.
  • Two pipe sections 2a, 2b offset in the block depth can be achieved with relatively narrow flat pipes, a heat transfer performance for which otherwise at least approximately twice as wide, non-bent flat pipes would be required.
  • the unique flat tube deflection means that the temperature control medium to be passed through the tube interior can be fed in and out on one and the same tube block side, which is advantageous in some applications.
  • FIG. 5 shows one of several flat serpentine tubes 11, which are stacked in any desired number to form the serpentine tube block there.
  • the serpentine flat tube 11 used for this is largely identical in construction to that of FIGS. 1 and 2, with the exception that on both sides of the reversing bend section 3 ′ which is similar to that of FIGS. 1 and 2, not only a straight, single-layer pipe section, Instead, a multiple serpentine-shaped coil section 12a, 12b connects, which in turn are offset by a corresponding gap in the block depth direction, as can be seen more clearly from FIG. 6.
  • the serpentine windings 13 of the respective coil section 12a, 12b are formed, as usual, by bending the flat tube at the relevant point around the transverse tube axis there by an angle of 180 °. Between the individual coil windings 13 and between successive serpentine flat tubes 11 there are heat-conducting corrugated fins 14 running from the front of the block to. Block back introduced with optional overhang. It is understood that here, as in the example of FIGS. 3 and 4, a corrugated fin row can instead be provided for each of the two rows of pipe blocks offset in the block depth direction, in which case the gap between the two rows of blocks can also remain free.
  • any other number of corrugated fins and / or corrugated fins with different widths are of course used in each corrugated fin layer, e.g. a first corrugated fin extending over two thirds of the tube block depth and a second corrugated fin extending over the remaining third of the tube block depth.
  • the gap favors the condensate separation of the evaporator.
  • the height of the heat-conducting fins 14 and thus the stacking distance of adjacent, straight flat tube sections both within a serpentine flat tube 11 and between two adjacent serpentine flat tubes corresponds approximately to that of the flat tube width in this example as well b significantly lower height c of the reversing arch section 3 '.
  • the twisting chosen in this case of the flat tube ends 15a, 15b of 90 °, which in turn opens on the same block side, does not collide with this low stacking height, since the serpentine flat tubes, due to their coil sections 12a, 12b, each have a greater height in the stacking direction z than the flat tube width.
  • FIG. 5 shows such a collecting tube 16 on the front side, into which the front row of the flat tube ends opens, while this and the parallel collecting tube for the rear row of the flat tube ends in FIG. 6 are not shown for the sake of clarity.
  • the evaporator in serpentine construction according to FIGS. 5 and 6 has the reversing bend section 3 'on the same tube block side as the twisted tube ends 15a, 15b.
  • the interposed serpentine coils 13 prevent the stacking not following twisted pipe ends 15a, 15b and reversing bend sections 3 '.
  • the flat tube can thus have two or more reversing bend sections and corresponding deflections.
  • An example with two successive reversing bend sections 17, 18 is shown schematically in FIG. 7 using the associated flow path.
  • a first rectilinear tube section 20 extends from a flat tube end 19 to the opposite first reversing arc section 17, where it merges into a returning, second rectilinear flat tube section 21, which at the opposite second reversing arc section 18 merges into a third rectilinear tube section 22, which extends to the other flat tube end 23 extends.
  • This flat tube is therefore suitable for the construction of a three-part heat exchanger tube block in a single-layer construction, i.e.
  • the straight pipe sections 20, 21, 22 are essentially in a block plane.
  • the two ends 19, 23 of each flat tube open out on opposite sides of the block, on which a collecting tube is thus to be arranged.
  • the serpentine flat tube 11 of FIG. 5 can be modified such that at least one further serpentine turn in one and / or in the other serpentine tube section causes the flat tube end in question to lie on the block side opposite the reversing bend section.
  • a serpentine flat tube of the type shown in FIG. 5, but with one or more additional reversing bend sections can be provided. can be seen in order to build up a tube block for a serpentine heat exchanger at least three parts in the block depth direction analogously to this, for example from FIG. 7.
  • the flat tube ends can also be left undordied.
  • a two-chamber header tube can be used, which already in the production stage has two separate, longitudinal tubes Has hollow chambers.
  • a manifold 24 is shown in cross section in FIG. 8. It is made from an extruded profile and integrally contains two longitudinal chambers 25, 26 which are separate from one another and which form the collecting channels for the heat exchanger in question.
  • suitable circumferential slots have to be made in the manifold 24, into which the flat tube ends are tightly inserted.
  • header pipes can also be used which, by means of corresponding transverse walls, contain several header channels separated from each other in the block vertical direction z.
  • the flat tubes in the tube block are combined into several groups in such a way that the tubes of a group are flowed through in parallel and the various tube groups are flowed through in series.
  • a supplied tempering medium flows from an inlet-side collecting duct into the group of flat tubes opening there and then arrives at the other end thereof in a collecting duct functioning as a deflection space, into which a second flat tube group opens in addition to this first group, into which the tempering medium is then deflected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Flachrohr (1) mit wenigstens einem Umkehrbogenabschnitt (3), in welchem es derart umgebogen ist, daß seine beiden daran anschließenden, planen Rohrabschnitte (2a, 2b) in Längsrichtung mit entgegengesetzten Durchströmungsrichtungen (4a, 4b) und mit gegeneinander mindestens in Querrichtung (4) versetzten Längsachsen (5a, 5b) verlaufen, wobei die Flachrohrquerachse (7) einen Winkel von höchstens 45° mit einer zur Längs- und Querrichtung parallelen, zu einer Stapelrichtung senkrechten Ebene einschließt.

Description

Flachrohr mit Ouerversatz-Umkehrbogenabschn.itt und damit aufgebauter Wärmeübertrager
Die Erfindung bezieht sich auf ein Flachrohr nach dem Oberbegriff des Anspruchs 1 sowie auf einen Flachrohr-Wärmeübertrager nach dem Oberbegriff des Anspruchs 5.
Ein Flachrohr und ein Wärmeübertrager mit einem aus diesem Flachrohrtyp aufgebauten Rohrblock dieser Art sind in der Of- fenlegungsschrift EP 0 659 500 AI beschrieben. Zur Herstellung des dortigen Flachrohres wird ein geradliniger Flachrohr-Rohling zunächst U-förmig aus der Flachrohrebene heraus - gebogen, bis die Flachrohrschenkel zueinander parallel verlaufen, wonach letztere um jeweils 90° gegenüber dem U- Bogenbereich tordiert werden. Das dadurch entstehende Flachrohr besitzt somit zwei in einer Ebene liegende, plane Rohrabschnitte, deren Mündungsenden auf der gleichen, dem Urnkehr- bogenabschnitt entgegengesetzten Seite liegen. Der Winkel, den die Flachrohrquerachse entlang des Umkehrbogenabschnitts mit der Ebene einschließt, in welcher die geradlinigen Rohrschenkel liegen, nimmt zunächst über den einen Torsionsbereich hinweg von null auf den am Kopfende des Umkehrbogenabschnitts vorliegenden Wert von 90° zu, um dann über den anderen Torsionsbereich hinweg wieder auf 0° abzunehmen. Mithin entspricht die Ausdehnung des Flachrohrs senkrecht zur Ebene der/ planen Rohrschenkel im Kopfbereich des Umkehrbogenabschnitts der Flachrohrbreite . Im dortigen Wärmeübertrager- Rohrblock sind mehrere solcher Flachrohre in der Richtung senkrecht zur Ebene der geradlinigen Flachrohrschenkel über- einandergestapelt, wobei wegen der in dieser Richtung der Breite der Flachrohre entsprechenden Ausdehnung der Umkehrbo- genabschnitte der Stapelabstand zwischen den geradlinigen Rohrschenkeln benachbarter Flachrohre größer als die Flachrohrbreite gehalten werden muß. Die in Ξinkammerbauweise ausgeführten Flachrohre des Rσhrblocks münden in einen an einer Seite des Rohrblocks angeordneten Sammler, der durch eine Längstrennwand in zwei Sammelräume unterteilt ist, in welche die Flachrohre jeweils mit ihrem einen bzw. mit ihrem anderen Ende münde .
In der Offenlegungsschrift DE 39 36 109 AI ist ein Wärmeübertrager mit einem Rohrblock offenbare, der aus einem Stapel von Rundrσhren gebildet ist, die unter Verwendung eines einzelnen Umkehrbogenabschnitts U-förmig oder unter Verwendung mehrerer aufeinanderfolgender Umkehrbogenabschnitte als Rohrschlange ausgebildet sind, wobei die Rohrabschnitte zwischen den Umkehrbogenabschnitten geradlinig verlaufen und abgeplattet sind. Die abgeplatteten Rohrabschnitte des Rundrohres liegen querversetzt in einer Ebene, während der bzw. die Umkehrbogenabschnitte sowie die beiden, auf derselben Seite mündenden Rohrendbereiche den kreisrunden Rohrquerschnitt beibehalten. Das Abplatten der geradlinigen Rohrabschnitte erfolgt mittels Flachpressen. Die Rohre münden mit ihren runden Endbereichen in einen Sammel- bzw. Verteilerraum, die von je einem Sammel- und Verteilerrohr oder von einem längsgeteilten. Sammel- und Verteilerkasten gebildet sind. Der Abstand der abgeplatteten Rohrabschnitte benachbarter Rohre im Rohrblockstapel muß zwangsläufig größer als der Durchmesser der verwendeten Rundrohre sein.
In der Patentschrift US 3.416.600 ist ein Wärmeübertrager in Serpentinenbauweise offenbart, der einen Rohrrippenblock mit O 00/03190
3 mehreren, serpentinenförmigen gewundenen Flachrohren beinhaltet, die im Block in der Serpentinenwindungsrichtung überein- andergestapelt sind. Der- Rohr-/Rippenblock besitzt in der Ebene senkrecht zur Rohrstapelrichtung eine U-Form, wobei jedes Serpentinenflachrohr mit je einem Ende an den beiden freien U-Enden in ein jeweiliges, parallel zur Stapelrichtung verlaufendes Sammelrohr einmündet. Dabei sind die beiden En- den jedes Flachrohres um 90° tordiert, und die beiden Sammelrohre weisen korrespondierende, voneinander beabstandete Durchsteckschlitze auf, in denen die tordierten Rohrenden fluiddicht aufgenommen sind. Zusätzlich ist jedes Serpentinenflachrohr in einem seitlichen Blockbereich in der Nähe einer Serpentinenwindung um 180° tordiert, so daß jeder Strö- mungskanal der verwendeten Mehrkammer-Flachrohre zu einem Teil einer Blockvorderseite und zum anderen Teil der gegenüberliegenden Blockrückseite zugewandt ist.
In der Offenlegungsschrift FR 2 712 966 AI ist ein Wärmeübertrager mit einem Rohr-/Rippenblock offenbart, der einen Stapel geradliniger Mehrkammer-Flachrohre beinhaltet, die an ihren beiden gegenüberliegenden Enden um einen Winkel von höchstens 45° tordiert sind und in zugeordnete Sammelrohre münden, die an ihrem Umfang mit korrespondierenden, in Sammel- rohrlängsrichtung beabstandet aufeinanderfolgenden Schrägschlitzen versehen sind.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohres der eingangs genannten Art, das sich relativ einfach herstellen läßt und sich zum Aufbau sehr druckstabiler Wärmeübertrager mit geringem innerem Volumen und hohem Wärmeübertragungswirkungsgrad eignet, sowie eines aus solchen Flachrohren aufgebauten Wärmeübertragers zugrunde.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohres mit den Merkmalen des Anspruchs 1 sowie eines Wärmeübertragers mit den Merkmalen des Anspruchs 5. Beim Flachrohr nach Anspruch 1 ist der Umkehrbogenabschnitt so gebildet, daß in diesem Bereich die Querachse des Flachrohres .höchstens einen Winkel von 45° mit den Ebenen einschließt, die zu einer Längs- und einer Querrichtung parallel sowie zu einer Stapelrichtung senkrecht sind. Die Längsrichtung ist dabei durch den Verlauf dSr Längsachsen der planen Rohrabschnitte definiert, während die Stapelrichtung diejenige Richtung angibt, in welcher mehrere Flachrohre bei der Bildung eines Wärmeübertrager-Rohrblocks aufeinanderfolgend angeordnet werden. Die Querrichtung stellt die zu dieser Längsrichtung und zur so definierten Stapelrichtung senkrechte Richtung dar. Im allgemeinen ist die so definierte Querrichtung parallel zur Querachsenrichtung der planen Rohrabschnitte, dies ist jedoch nicht zwingend, da alternativ die planen Rohrabschnitte gegenüber dieser Querrichtung bei Bedarf auch geneigt sein können.
Durch diese erfindungsgemäße Gestaltung des Umkehrbogenabschnitts wird erreicht, daß dessen Ausdehnung in der Stapel- richtung deutlich kleiner als die Flachrohrbreite gehalten werden kann. Dementsprechend brauchen die Zwischenräume zwischen benachbarten Flachrohren beim stapeiförmigen Aufbau eines Rohrblocks aus diesen Flachrohren nicht so groß oder größer als die Flachrohrbreite gehalten werden, sondern können deutlich enger sein, was die Herstellung eines kompakten und druckstabilen Wärmeübertragers begünstigt. Zudem läßt sich der Umkehrbogenabschnitt durch relativ einfache Rohrbiegevorgänge realisieren. Das Flachrohr kann dabei einmal oder mehrmals in dieser Weise umgebogen sein, wobei sich seine Tiefenausdehnung, d.h. seine Ausdehnung in der wie oben definierten Querrichtung, mit jeder Umbiegung vergrößert. Dadurch läßt sich mit verhältnismäßig schmalen, druckstabilen Flachrohren ein beliebig tiefer, d.h. sich in der Querrichtung ausdehnender Rohrblock bilden, wobei diese Quer- oder Tiefenrichtung üblicherweise diejenige Richtung derstellt, in welcher ein zu kühlendes oder erwärmendes Medium außen an den Flachrohrflä- chen vorbei durch den Wärmeübertrager hindurchgeleitet wird. Dabei sind meist zusätzliche Wärmeleitrippen zwischen den in Stapelrichtung aufeinanderfolgenden Rohrblockabschnitten zur Verbesserung der -Wärmeübertragung vorgesehen. Da wie gesagt die Rohrzwischenräume sehr eng gehalten werden können, lassen sich auch entsprechend niedrige wärmeleitende Wellrippen einsetzen, was gleichfalls die Kompaktheit und Stabilität eines so gebildeten Rohr-Rippenblocks verbessert.
Ein nach Anspruch 2 weitergebildetes Flachrohr ist derart umgebogen, daß die über einen jeweiligen Umkehrbogenabschnitt verbundenen, planen Rohrabschnitte in derselben oder verschiedenen, zueinander parallelen oder gegeneinander um einen vorgebbaren Kippwinkel geneigten Längsebenen liegen, und zwar in jedem Fall vorzugsweise mit einem gegenseitigen Abstand in Querrichtung zwischen 0,2mm und 20mm. Bei Verwenden von einmalig dergestalt umgebogenen Flachrohren läßt sich somit ein Rohrblock mit einer Tiefe bilden, die der doppelten Flachrohrbreite zuzüglich des besagten Abstandes zwischen den planen Rohrabschnitten entspricht . Mit mehrmals so umgebogenen Flachrohren erhöht sich die Rohrblocktiefe pro Umkehrbogenabschnitt um die Flachrohrbreite zuzüglich des besagten Querab- stands der planen Rohrabschnitte. Durch die Belassung des Querabstands bilden sich entsprechende Spalte in einem mit solchen Flachrohren aufgebauten Rohrblock, was z.B. im Anwen- dungsfall eines Verdampfers einer Kraftfahrzeug-Klimaanlage die Kondenswasserabscheidung erleichtert. Gegebenenfalls vorgesehene Wärmeleitrippen können sich bei Bedarf durchgängig über die ganze Rohrblocktiefe hinweg und auch etwas darüber hinaus erstrecken.
Ein nach Anspruch 3 weitergebildetes Flachrohr bildet ein Serpentinenflachrohr, indem mindestens der eine der beiden über einen Umkehrbogenabschnitt verbundenen Flachrohrteile in der Stapelrichtung zu einer Rohrserpentine gebogen ist, d.h. er besteht aus in Stapelrichtung aufeinanderfolgenden Serpentinenwindungen. Mit so gestalteten Flachrohren läßt sich ein sogenannter Serpentinen-Wärmeübertrager mit einer beliebigen Anzahl an in Tiefenrichtung aufeinanderfolgenden Serpentinen- blockteilen aufbauen.
Bei einem nach Anspruch 4 weitergebildeten Flachrohr liegen die Mündungsenden auf der gleichen oder auf gegenüberliegenden Seiten, wobei wenigstens ein Ende, vorzugsweise beide Enden gegenüber dem anschließenden Mittenbereich tordiert sind. Durch diese Tordierung wird die Flachrohrquerachse in Richtung Mündungsende zur Stapelrichtung hin gedreht, so daß die Ausdehnung der Flachrohrenden in der Querrichtung kleiner als die Flachrohrbreite gehalten werden kann. Maximal erfolgt die Tordierung um 90° , so daß dann bei senkrecht zur Stapelrichtung verlaufenden planen Rohrabschnitten die Rohrenden parallel zur Stapelrichtung liegen und ihre Ausdehnung in der Querrichtung nur noch so groß wie die Flachrohrdicke ist. Dies ermöglicht eine in Tiefenrichtung ,eines damit aufgebauten Rohrblocks vergleichsweise enge Anordnung zugehöriger, sich an der betreffenden Rohrblockseite in Stapelrichtung erstreckender Sammel- und Verteilerkanäle.
Der Wärmeübertrager gemäß Anspruch 5 ist durch die Verwendung eines oder mehrerer der erfindungsgemäßen Flachrohre im Aufbau eines entsprechenden Rohrblocks charakterisiert, mit den oben erwähnten Eigenschaften und Vorteilen eines solchen Rohrblockaufbaus. Insbesondere läßt sich in dieser Weise ein kompakter, hoch druckstabiler Verdampfer mit relativ niedrigem Gewicht, geringem innerem Volumen und guter Kondenswas- serabscheidung für eine Klimaanlage eines Kraftfahrzeuges realisieren, wobei vorzugsweise Mehrkammer-Flachrohre eingesetzt werden. Der Wärmeübertrager ist sowohl in einlagiger Bauweise, bei denen die Flachrohrabschnitte zwischen zwei Umkehrbogenabschnitten bzw. zwischen einem Umkehrbogenabschnitt und einem Flachrohrende aus einem planen, geradlinigen Rohrabschnitt bestehen, als auch in Serpentinenbauweise ausführbar, bei welcher diese Flachrohrabschnitte zu einer Rohrschlange gebogen sind. Bei einem nach Anspruch. 6 weitergebildeten Wärmeübertrager befinden sich die Rohrenden der verwendeten Flachrohre und damit auch die zugehörigen Sammel- und Verteilerkanäle, nachfolgend der Einfachkeit halber einheitlich als Sammelkanäle bezeichnet, auf gegenüberliegenden Rohrblockseiten. Die Sammelkanäle können dann von je einem Sammelkasten oder Sammel- röhr gebildet sein, die an der betreffenden Rohrblockseite entlang der Stapelrichtung, auch als Blockhochrichtung bezeichnet verlaufen und der parallelen Zuführung bzw. Abführung des durch das Rohrinnere geleiteten Temperiermediums zu den bzw. aus den einzelnen Flachrohren dienen.
In einer dazu alternativen Weiterbildung der Erfindung münden gemäß Anspruch 7 die Flachrohrenden sämtlich auf derselben Rohrblockseite. Bedingt durch die Gestaltung • der Flachrohre sind dabei die beiden Rohrenden eines jeden Flachrohres zueinander in der Blocktiefenrichtung versetzt, so daß ihnen zwei entsprechend in Blocktiefenrichtung nebeneinanderliegende Sammelkanäle zugeordnet werden können. Dementsprechend erfolgen Zu- und Abführung des durch das Rohrinnere geleitete Temperiermediums an derselben Wärmeübertragerseite .
In weiterer Ausgestaltung dieses Wärmeübertragertyps mit zwei nebeneinanderliegenden Sammelkanälen auf derselben Rohrblock- seite ist gemäß Anspruch 8 vorgesehen, diese Sammelkanäle durch zwei getrennte Sammelrohre bzw. Sammelkästen, nachfolgend der Einfachkeit halber einheitlich als Sammelrohre bezeichnet, oder durch ein gemeinsames Sammelrohr zu bilden. Letzteres läßt sich dadurch realisieren, daß ein zunächst einheitlicher Sammelrohrinnenraum mit einer Längstrennwand in die beiden Sammelkanäle abgeteilt wird, oder dadurch, daß das Sammelrohr als extrudiertes Rohrprofil mit zwei getrennten, die Sammelkanäle bildenden Hohlkammem gefertigt wird.
Bei einem nach Anspruch 9 weitergebildeten Wärmeübertrager ist wenigstens eines der beiden Sammelrohre bzw. wenigstens eine der beiden Hohlkammern eines längsgeteilten Sammelrohres O 00/03190 8
durch Quertrennwände in mehrere, in Blockhochrichtung voneinander getrennte Sammelkanäle unterteilt. Dadurch wird eine gruppenweise serielle Durchströmung der Flachrohre im Rohrblock erzielt, indem das dem Rohrblock über einen ersten Sammelkanal des quergeteilten Sammelrohres bzw. der quergeteilten Hohlkammer zugeführte Temperiermedium zunächst nur in den dort mündenden Teil aller Flachrohre eingespeist wird. Der Sammelkanal, in den dieser Teil der Flachrohre mit dem anderen Rohrende mündet, fungiert dann als Umlenkkanal, in welchem das Temperiermedium von den dort mündenden Flachrohren in einen weiteren, ebenfalls dort mit einem Ende mündenden Teil aller Flachrohre umgelenkt wird. Anzahl und Lage der Quertrennwände bestimmen die Einteilung der Flachrohre in nacheinander durchströmte Gruppen von parallel durchströmten Flachrohren.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1 eine Draufsicht auf ein Flachrohr mit einem Umkehrbogenabschnitt und tordierter. Rohrenden,
Fig. 2 eine Seitenansicht längs des Pfeils II von Fig. 1,
Fig. 3 eine ausschnittsweise Seitenansicht eines aus Flachrohren gemäß den Fig. 1 und 2 aufgebauten Rohr- /Rippenblocks eines Verdampfers,
Fig. 4 eine Seitenansicht längs des Pfeils IV von Fig. 3,
Fig. 5 eine ausschnittsweise Seitenansicht eines Rohr- /Rippenblocks eines Verdampfers mit serpentinenförmi- gen Flachrohren, Fig. 6 eine Seitenansicht längs des Pfeils VI von Fig. 5,
Fig. 7 eine schematische Darstellung eines Flachrohres mit zwei ümkehrbogenabschnitten und
Fig. 8 eine Querschnittsansicht durch ein z.B. für den Verdampfer von Fig. 5 verwendbares Zweikammer- Sammelrohr.
Das in Fig. 1 in einer Draufsicht gezeigte Flachrohr 1 ist einstückig aus einem geradlinigen Mehrkammerprofil unter .Verwendung geeigneter Biegevorgänge gefertigt . Es beinhaltet zwei plane, geradlinige Rohrabschnit e 2a, 2b, die über einen Umkehrbogenabschnitt 3 miteinander verbunden sind und entgegengesetzte Durchströmungsrichtungen für ein durch die mehreren parallen Kammern im Inneren des Flachrohres 1 hindurchgeleitetes Temperiermedium, z.B. ein Kältemittel einer Kraftfahrzeug-Klimaanlage, aufweisen. Einer der beiden möglichen Strömungsverläufe ist in Fig. 1 durch entsprechende Strömungspfeile 4a, 4b dargestellt. Die parallel zu den Durch- strömungsrichtungen 4a, 4b verlaufenden Längsachsen 5a, 5b der beiden planen, geradlinigen Rohrabschnitte 2a, 2b definieren eine Längsrichtung x und sind in einer dazu senkrechten Querrichtung y gegeneinander versetzt . Wie insbesondere aus der Seitenansicht von Fig. 2 ersichtlich, liegen beide planen Rohrabschnitte 2a, 2b in einer gemeinsamen xy-Ebene, die senkrecht zu einer Stapelrichtung z ist, in welcher mehrere solche Flachrohre zur Bildung eines Wärmeübertrager- Rohrblocks aufeinandergestapelt werden, wie unten anhand der Fig. 3 und 4 näher erläutert. Zur besseren Orientierung sind in den . Fig. 1 bis 6 jeweils die entsprechenden Koordinatenachsen x, y, z eingezeichnet.
Der Umkehrbogenabschnitt 3 wird dadurch erhalten, daß das anfängliche, geradlinige Flachrohrprofil einer gewünschten Breite b auf seiner halben Länge gehalten und beide Rohrhälften jeweils in einem 90° Winkel umgeschlagen werden, so daß sie parallel zueinander senkrecht zu ihrer ursprünglichen Längsrichtung verlaufen und auf diese Weise die beiden geradlinigen Rohrabschnitte 2a, 2b des fertigen Flachrohres 1 bilden. Der Biegevorgang erfolgt dergestalt, daß sich die beiden geradlinigen, in einer Ebene liegenden Rohrabschnitte 2a, 2b mit einem je nach Anwendungsfall wählbaren Abstand a gegenüberliegen, der vorzugsweise zwischen etwa 0,2mm und 20mm beträgt, während die Flachrohrbreite b typischerweise zwischen einem und einigen wenigen Zentimetern beträgt.
Während die geradlinigen Rohrabschnitte 2a, 2b auf der einen Seite über den Umkehrbogenabschnitt 3 miteinander verbunden sind, münden sie beide auf der gegenüberliegenden Seite in Form von tordierten Rohrenden 6a, 6b aus. Die Tordierung erfolgt um die jeweilige Längsmittelachse 5a, 5b, alternativ auch um eine dazu parallele Längsachse, d.h. mit einem Querversatz bezüglich der Längsmittelachse, um einen beliebigen Winkel zwischen 0° und 90°, wobei im gezeigten Fall der Tor- sionswinkel ca. 60° beträgt, wie besonders deutlich aus Fig. 4 ersichtlich.
Aus Fig. 2 wird deutlich, daß aufgrund der geschilderten Bildung des Umkehrbogenabschnitts 3 die Flachrohrquerachse in diesem Bereich im wesentlichen parallel zur Ebene der geradlinigen Rohrabschnitte 2a, 2b bleibt, wie explizit anhand der gestrichelten Querachse 7 deutlich wird, welche die Quermittelachse des anfänglichen Flachrohr-Rohlings und damit auch des gefertigten, umgebogenen Flachrohrs 1 bildet und sich genau in der Mitte des Umkehrbogenabschnitts 3 befindet . Dies resultiert in einer nur geringen Höhe c, d.h. der Ausdehnung in der Stapelrichtung z, des Umkehrbogenabschnitts 3. Insbesondere bleibt diese Höhe c des Umkehrbogenabschnitts 3 deutlich kleiner als die Flachrohrbreite b. Dadurch können mehrere solche Flachrohre in einem Wärmeübertrager-Rohrblock mit einer Stapelhöhe übereinandergeschichtet werden, die deutlich kleiner gehalten werden kann als die Flachrohrbreite, wie die nachfolgend beschriebenen Wärmeübertragerbeispiele zeigen. Dieser Vorteil wird in geringer werdendem Maße auch noch erreicht, wenn die Flachrohrquerachse über den Bereich des Umkehrbogenabschnitts 3 hinweg einen gewissen, spitzen Winkel mit der von den planen Rohrabschnitten 2a, 2b definierten Ebene einschließt, solange dieser Schrägwinkel einen Wert von ca. 45° nicht überschreitet. Eine weitere Modifikation des Flachrohres der Fig. 1 und 2 kann -darin bestehen, daß die beiden planen Rohrabschnitte 2a, 2b nicht wie gezeigt in einer Ebene, sondern in zwei zueinander versetzten xy-Ebenen liegen oder aber der eine gegenüber dem anderen Rohrabschnitt um seine Längsachse um einen vorgebbaren Kippwinkel verdreht ist. In jedem Fall ist die Querrichtung y dadurch definiert, daß sie sowohl zur Längsrichtung x der geradlinigen Rohrabschnitte als auch zur Rohrblock-Stapelrichtung z senkrecht ist .
Die Fig. 3 und 4 zeigen einen Anwendungsfall für den Flachrohrtyp der Fig. 1 und 2 in Form eines Rohr-/Rippenblocks eines Verdampfers, wie er insbesondere in Kraftfahrzeug- Klimaanlagen verwendbar ist. Es versteht sich, daß sich der ausschnittweise gezeigte Wärmeübertrager je nach Auslegung auch für beliebige andere Wärmeübertragungszwecke einsetzen läßt. Wie aus Fig. 3 ersichtlich, beinhaltet dieser Verdampfer zwischen zwei endseitigen Deckblechen 9, 10 einen Stapel mehrerer Flachrohre 1 gemäß Fig. 1 und 2 mit zwischenliegen- den, wärmeleitfähigen Wellrippen 8. Die Höhe der Wärmeleitrippen 8 entspricht ungefähr der Höhe c der Flachrohr- Umkehrbogenabschnitte 3 und ist damit deutlich kleiner als die Flachrohrbreite b.
Wie deutlicher aus Fig. 4 zu erkennen, wird durch die Verwendung des Flachrohres der Fig. 1 und 2 ein Rohr-Rippenblock mit in der Tiefe, d.h. in y-Richtung, zweiteiliger Struktur gebildet, wobei in jedem der beiden Blockteile jeweils die Rohrabschnitte mit gleicher Durchströmungsrichtung in der Stapelrichtung z übereinanderliegen. Zwischen den beiden Blockteilen ist ein dem Abstand a der beiden geradlinigen Rohrabschnitte 2a, 2b eines jeden Flachrohres 1 entsprechender Spalt gebildet. Die Wellrippen 8 erstrecken sich einteilig über die gesamte Flachrohrtiefe und damit auch über diesen Spalt hinweg, wobei sie zu beiden Seiten, d.h. an der Vorder- und an der Rückseite des Blocks, nach Bedarf überstehen können. Die Blockvorderseite ist hierbei dadurch definiert, daß sie von einem außenseitig-.über die Verdampferober- flächen hinweggeleiteten, zweiten Temperiermedium, z.B. zu kühlende Zuluft für einen Fahrzeuginnenraum, in der Rohrquerrichtung y, d.h. in Blocktiefenrichtung, angeströmt wird.
Wie aus Fig. 4 weiter ersichtlich, ist die Quererstreckung d der Flachrohrmündungsenden aufgrund ihrer Tordierung geringer als die Flachrohrbreite b. Dies erleichtert den Anschluß zweier zugehöriger, in den Fig. 3 und 4 nicht gezeigter Sammelkanäle. Denn diese können z.B. jeweils von einem Sammelkasten bzw. Sammelrohr gebildet sein, dessen Quererstreckung in y-Richtung nicht größer als die Flachrohrbreite b zu sein braucht und in seinem Durchmessser bei einem Torsionswinkel der Flachrohrenden von ca. 90° sogar nur noch wenig größer als die Flachrohrdicke zu sein braucht . Es ist daher problemlos möglich, zwei Sammelrohre auf der betreffenden Rohrblockseite nebeneinanderliegend in Stapelrichtung z verlaufend anzuordnen, um jeweils eines der beiden Enden jedes Flachrohres 1 aufzunehmen. Alternativ kann ein gemeinsames Sammelrohr für beide Stapelreihen der Rohrenden 6a, 6b vorgesehen sein, das mittels einer Längstrennwand in die zwei benötigten, getrennten Sammelkanäle unterteilt ist. Die im Beispiel gezeigte Tordierung der Rohrenden um ca. 60° ermöglicht es, daß das relativ enge Aufeinanderfolgen der einlagigen Flachrohre 1 im Stapel mit der besagten, gegenüber der Flachrohrbreite b geringeren Stapelhöhe c nicht behindert wird.
Es zeigt sich, daß der Verdampfer mit dem so gebildeten Rohr- /Rippenblock in kompakter Bauform und sehr druckstabil realisierbar ist und dabei einen hohen Wärmeübertragungs- Wirkungsgrad aufweist . Durch das Umbiegen der Flachrohre zu zwei in der Blocktiefe versetzten Rohrabschnitten 2a, 2b kann mit relativ schmalen Flachrohren eine Wärmeübertragungslei- stung erzielt werden, für die ansonsten mindestens etwa doppelt so breite, nicht gebogene Flachrohre erforderlich wären. Gleichzeitig wird durch die einmalige Flachrohrumlenkung erreicht, daß das durch das Rohrinnere hindurchzuführende Temperiermedium auf ein und derselben Rohrblockseite zu- und abgeführt werden kann, was in manchen Anwendungsfällen vorteilhaft ist.
In den Fig. 5 und 6 ist ein Ausführungsbeispiel in Serpentinenbauweise gezeigt. Die Ausschnittsansicht von Fig. 5 zeigt dabei eines von mehreren Serpentinen-Flachrohren 11, die zur Bildung des dortigen Serpentinenrohrblocks in beliebiger, gewünschter Anzahl übereinandergestapeit sind. Das hierfür verwendete Serpentinen-Flachrohr 11 ist weitgehend baugleich mit demjenigen der Fig. 1 und 2, mit der Ausnahme, daß sich beid- seits des zu demjenigen der Fig. 1 und 2 gleichartigen Umkehrbogenabschnitts 3' jeweils nicht nur ein geradliniger, einlagiger Rohrabschnitt, sondern ein mehrfach serpentinen- förmig gewundener Rohrschlangenabschnitt 12a, 12b anschließt, die sich somit wiederum in Blocktiefenrichtung um einen entsprechenden Spalt versetzt gegenüberstehen, wie aus Fig. 6 deutlicher zu ersehen. Die Serpentinenwindungen 13 des jeweiligen Rohrschlangenabschnitts 12a, 12b sind wie üblich durch Umbiegen des Flachrohrs an der betreffenden Stelle um die dortige Rohrquerachse um einen Winkel von 180° gebildet. Zwischen den einzelnen Rσhrschlangenwindungen 13 sowie zwischen aufeinanderfolgenden Serpentinen-Flachrohren 11 sind wärme- leitfähige Wellrippen 14 durchgehend von der Blockvorderseite bis zur. Blockrückseite mit optionalem Überstand eingebracht. Es versteht sich, daß hier wie auch im Beispiel der Fig. 3 und 4 stattdessen je eine Wellrippenreihe für jeden der beiden in Blocktiefenrichtung versetzten Rohrblockreihen vorgesehen sein kann, wobei in diesem Fall auch der Spalt zwischen den beiden Blockreihen frei bleiben kann. Statt dieser hälftigen Teilung mit zwei gleich breiten Wellrippen können über die Rohrblocktiefe hinweg in j eder Wellrippenschicht selbstverständlich eine beliebige andere Anzahl von Wellrippen und/oder Wellrippen mit unterschiedlicher Breite eingesetzt werden, z .B . eine erste , sich über zwei Drittel der Rohrblocktiefe erstreckende und eine zweite, sich über das restliche Drittel der Rohrblocktiefe erstreckende Wellrippe . In j edem Fall begünstigt der Spalt die- Kondenswasserabscheidung des Verdampfers .
Wie aus den Fig. 5 und 6 zu erkennen, entspricht auch in diesem Beispiel die Höhe der Wärmeleitrippen 14 und damit der Stapelabstand benachbarter, geradliniger Flachrohrabschnitte sowohl innerhalb eines Serpentinen-Flachrohres 11 als auch zwischen zwei benachbarten Serpentinen-Flachrohren in etwa der gegenüber der Flachrohrbreite b deutlich geringeren Höhe c des Umkehrbogenabschnitts 3 ' . Die in diesem Fall gewählte Tordierung der wiederum auf derselben Blockseite mündenden Flachrohrenden 15a, 15b von 90° kollidiert mit dieser geringen Stapelhöhe nicht, da die Serpentinen-Flachrohre aufgrund ihrer Rohrschlangenabschnitte 12a, 12b insgesamt jeweils eine gegenüber der Flachrohrbreite größere Höhe in Stapelrichtung z aufweisen. Die rechtwinklige Tordierung der Enden 15a, 15b um 90° ermöglicht, wie erwähnt, die Verwendung besonders schmaler Sammelkanäle bzw. diese bildende Sammelrohre. In Fig. 5 ist ein solches vorderseitiges Sammelrohr 16 dargestellt, in das die vordere Reihe der Flachrohrenden einmündet, während dieses sowie das parallel danebenliegende Sammelrohr für die hintere Reihe der Flachrohrenden in Fig . 6 der Übersichtlichkeit halber nicht dargestellt sind.
Im Unterschied zum Verdampfer in einlagiger Flachrohrbauweise gemäß den Fig. 3 und 4 befindet sich beim Verdampfer in Serpentinenbauweise der Fig. 5 und 6 der Umkehrbogenabschnitt 3 ' auf derselben Rohrblockseite wie die tordierten Rohrenden 15a, 15b. Durch die zwischenliegenden Serpentinenrohrschlan- genwindungen 13 behindern sich die in Stapelrichtung aufein- anderfolgenden tordierten Rohrenden 15a, 15b und Umkehrbogen- abschnitte 3' nicht.
Zu den beiden gezeigten Flachrohrgestaltungen sind zahlreiche weitere Alternativen möglich. So kann das Flachrohr zwei oder mehr Umkehrbogenabschnitte und dementsprechende Umlenkungen aufweisen. Ein Beispiel mit zwei aufeinanderfolgenden Umkehr- bogenabschnitten 17, 18 ist schematisch anhand des zugehörigen Durchströmungspfades in Fig. 7 dargestellt. Vom einen Flachrohrende 19 erstreckt sich ein erster geradliniger Rohrabschnitt 20 zum gegenüberliegenden ersten Umkehrbogenabschnitt 17, wo er in einen zurückkehrenden, zweiten geradlinigen Flachrohrabschnitt 21 übergeht, der am wiederum gegenüberliegenden zweiten Umkehrbogenabschnitt 18 in einen dritten geradlinigen Rohrabschnitt 22 übergeht, der sich zum anderen Flachrohrende 23 erstreckt. Dieses Flachrohr eignet sich somit zum Aufbau eines in der Blocktiefe dreiteiligen Wärmeübertrager-Rohrblocks in einlagiger Bauweise, d.h. die geradlinigen Rohrabschnitte 20, 21, 22 befinden sich im wesentlichen in einer Blockebene. Die beiden Enden 19, 23 jedes Flachrohrs münden dabei an gegenüberliegenden Blockseiten, an denen somit je ein Sammelrohr anzuordnen ist. Pro weiterem, möglichem Umkehrbogenabschnitt kommt ein zusätzlicher geradliniger Flachrohrabschnitt in der Blocktiefenrichtung hinzu, und außerdem wechselt jeweils die Lage des einen zum anderen Flachrohrende und damit die Positionierung der beiden zugehörigen Sammelkanäle zwischen einer gleichseitigen und einer sich gegenüberliegenden Position.
In entsprechender Weise kann auch das Serpentinen-Flachrohr 11 von Fig. 5 dahingehend modifiziert werden, daß durch mindestens eine weitere Serpentinenwindung im einen und/oder im anderen Serpentinenrσhrabschnitt das betreffende Flachrohrende auf der dem Umkehrbogenabschnitt gegenüberliegenden Blockseite zu liegen kommt. In einer weiteren Realisierung kann ein Serpentinen-Flachrohr der Art von Fig. 5, jedoch mit einem oder mehreren zusätzlichen Umkehrbogenabschnitten vorge- sehen sein, um damit analog- z.B. von Fig. 7 einen in Blocktiefenrichtung- mindestens dreiteiligen Rohrblock für einen Serpentinen-Wärmeübertrager aufzubauen. Je nach Anwendungs- fall können die Flachrohrenden auch untordie t belassen werden.
In denjenigen Ausführungsbeispielen r in denen die Flachrohr- enden auf derselben Blockseite ausmünden, kann statt zweier Sammelrohre oder eines gemeinsamen Sammelrohrs, in das bei der Herstellung eine Längstrennwand separat eingebracht wird, ein Zweikammer-Sammelrohr verwendet werden, welches bereits im Fertigungsstadium zwei getrennte, längsverlaufende Hohl- kammern aufweist. Ein solches Sammelrohr 24 ist im Querschnitt in Fig. 8 dargestellt. Es ist aus einem extrudierten Profil gefertigt und beinhaltet integral zwei voneinander getrennte Längskammern 25, 26, welche die Sammelkanäle für den betreffenden Wärmeübertrager bilden. Dazu sind, wie auch in den anderen Sammelrohrausführungen, geeignete umfangsseitige Schlitze in das Sammelrohr 24 einzubringen, in welche die Flachrohrenden dicht eingefügt werden.
Je nach Wärmeübertragertyp können zudem Sammelrohre verwendet werden, die mittels entsprechender Querwände mehrere, in der Blockhochrichtung z voneinander getrennte Sammelkanäle beinhalten. Dadurch werden die Flachrohre im Rohrblock zu mehreren Gruppen derart zusammengefaßt, daß die Rohre einer Gruppe parallel und die verschiedenen Rohrgruppen seriell durchströmt werden. Ein zugeführtes Temperiermedium strömt von einem eintrittsseitigen Sammelkanal in die Gruppe der dort mündenden Flachrohre und gelangt dann an deren anderem Ende in einen als Umlenkraum fungierenden Sammelkanal, in den neben dieser ersten Gruppe eine zweite Flachrohrgruppe einmündet, in die das Temperiermedium dann umgelenkt wird. Dies kann durch entsprechende Positionierung der Querwände in einem oder beiden Sammelrohren in beliebiger Weise bis zu einem austrittsseitigen Sammelkanal fortgesetzt werden, über den das Temperiermedium dann den Rohrblock verläßt. Die obige Beschreibung verschiedener Ausführungsbeispiele zeigt , daß sich mit den erfindungsgemäßen Flachrohren sehr kompakte , druckstabile Flachrohrblöcke in einlagiger Bauweise oder Serpentinenbauweise mit hohem Wärmeübertragungsvermögen herstellen lassen . Damit hergestellte Wärmeübertrager eignen sich z . B . auch für mit vergleichsweise hohem Druck arbeitende C02 -Klimaanlagen, wie sie zunehmend für Kraftfahrzeuge in Betracht gezogen werden .

Claims

Patentansprüche
1. Flachrohr für einen Wärmeübertrager-Rohrblock, insbesondere für einen Rohrblock eines Verdampfers einer Kraftfahrzeug-Klimaanlage, mit wenigstens einem Umkehrbogenabschnitt (3) , in welchem es derart umgebogen ist, daß seine beiden daran anschließenden, planen Rohrabschnitte (2a, 2b) in Längsrichtung mit entgegengesetzten Durchströmungsrichtungen (4a, 4b) und mit gegeneinander mindestens in Querrichtung (y) versetzten Längsachsen (5a, 5b) verlaufen, dadurch gekennzeichnet, daß der Umkehrbogenabschnitt (3) dergestalt gebildet ist, daß in diesem Bereich die Flachrohrquerachse (7) einen Winkel von höchstens 45° mit einer zur Längsrichtung (x) und Querrichtung (y) parallelen, zu einer Stapelrichtung (z) senkrechten Ebene einschließt.
2. Flachrohr nach Anspruch 1, weiter dadurch gekennzeichnet, daß die beiden, an den Umkehrbogenabschnitt (3) anschließenden, planen Rohrabschnitte (2a, 2b) in einer gemeinsamen oder in zueinander parallelen Ebenen senkrecht zur Stapelrichtung (z) liegend oder gegeneinander um einen vorgebbaren Kippwinkel um eine Längsachse verdreht angeordnet sind, bevorzugt mit einem Abstand in Querrichtung (y) zwischen 0,2mm und 20mm.
3. Flachrohr nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß mindestens einer seiner beiden, über den Umkehrbogenabschnitt (3 ' ) miteinander verbundenen Teile eine in Stapelrichtung (z) gewundene Rohrserpentine (12a, 12b) bildet.
4. Flachrohr nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß seine beiden Enden auf derselben oder auf gegenüberliegenden Seiten liegen und wenigstens ei- nes der beiden Rohrenden um einen Winkel zwischen 0° und 90° tordiert ist.
5. Flachrohr-Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage, mit einem Rohrblock mit einem oder mehreren in einer Stapel- richtung (z) ubereinandergestapelten Flach.roh.ren und seitlich am Rohrblock entlang der Stapelrichtung (z) verlaufend angeordneten Sammelkanälen, in welche die Flachrohre mit je einem Ende münden, dadurch gekennzeichnet, daß der Rohrblock ein oder mehrere Flachrohre (1, 11) nach einem der Ansprüche 1 bis 4 beinhaltet .
6. Flachrohr-Wärmeübertrager nach Anspruch 5, weiter dadurch gekennzeichnet, daß die Enden (19, 23) eines jeden Flachrohrs und die zugehörigen Sammelkanäle auf gegenüberliegenden Rohrblockseiten liegen.
7. Flachrohr-Wärmeübertrager nach Anspruch 5, weiter dadurch gekennzeichnet, daß die Enden (6a, 6b,- 15a, 15b) eines jeden Flachrohrs und die zugehörigen Sammelkanäle in Rohrblocktie- fenrichtung (y) versetzt auf derselben Rohrblockseite liegen.
8. Flachrohr-Wärmeübertrager nach Anspruch 7, weiter dadurch gekennzeichnet, daß die Sammelkanäle von zwei separaten Sammelrohren oder einem gemeinsamen, mit einer Längstrennwand versehenen Sammelrohr oder von einem gemeinsamen, aus einem extrudierten Rohrprofil mit zwei getrennten Hohlkammern (25, 26) gefertigten Sammelrohr (24) gebildet sind.
9. Flachrohr-Wärmeübertrager nach einem der Ansprüche 5 bis 8, weiter dadurch gekennzeichnet, daß wenigstens ein Sammel- röhr durch Quertrennwände in mehrere, in Blockhochrichtung (z) getrennte Sammelkanäle unterteilt ist.
10. Flachrohr-Wärmeübertrager nach einem" der Ansprüche 5 bis 9, weiter gekennzeichnet durch zwischen geradlinigen, in Stapelrichtung (z) benachbarten Abschnitten der Flachrohre (1, 11) eingefügte Wellrippen (8, 14), wobei in der jeweiligen Wellrippenschicht eine sich über die gesamte Rohrblocktiefe erstreckende Wellrippe oder mehrere, in Rohrblocktiefenrich- tung (y) nebeneinanderliegende Wellrippen gleicher oder un- terschiedlicher Breite vorgesehen sind.
PCT/DE1999/002125 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager WO2000003190A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99945947A EP1036296B1 (de) 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
AU58491/99A AU5849199A (en) 1998-07-10 1999-07-09 Flat tube with transversally offset U-bend section and heat exchanger configured using same
JP2000559386A JP2002520570A (ja) 1998-07-10 1999-07-09 横断方向にオフセットした反転曲げ部を持つフラット・チューブ及びそれから組立てられた熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19830863.9 1998-07-10
DE19830863A DE19830863A1 (de) 1998-07-10 1998-07-10 Flachrohr mit Querversatz-Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager

Publications (1)

Publication Number Publication Date
WO2000003190A1 true WO2000003190A1 (de) 2000-01-20

Family

ID=7873567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002125 WO2000003190A1 (de) 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager

Country Status (6)

Country Link
US (1) US6546999B1 (de)
EP (1) EP1036296B1 (de)
JP (1) JP2002520570A (de)
AU (1) AU5849199A (de)
DE (1) DE19830863A1 (de)
WO (1) WO2000003190A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362303C (zh) * 2003-02-18 2008-01-16 贝洱两合公司 带有回转弯头的扁平管及由其所构成的热交换器
EP2022410A1 (de) 2007-08-02 2009-02-11 Tyco Healthcare Group LP Kanülensystem
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146824A1 (de) * 2001-09-18 2003-04-24 Behr Gmbh & Co Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
WO2003040640A1 (fr) * 2001-11-08 2003-05-15 Zexel Valeo Climate Control Corporation Echangeur thermique et tube pour echangeur thermique
US20030102113A1 (en) * 2001-11-30 2003-06-05 Stephen Memory Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
ES2316640T3 (es) * 2001-12-21 2009-04-16 BEHR GMBH & CO. KG Intercambiador de calor, en particular para un vehiculo automovil.
CN100533043C (zh) * 2002-07-26 2009-08-26 贝洱两合公司 热交换装置
US7347063B2 (en) 2002-07-26 2008-03-25 Behr Gmbh & Co. Kg Device for heat exchange
US20060124288A1 (en) * 2002-11-07 2006-06-15 Behr Gmbh & Co. Kg Heat exchanger
DE10351138B4 (de) * 2003-11-03 2005-10-06 Daimlerchrysler Ag Verfahren zur Herstellung eines länglichen hohlen Bauteils mit einem Anlagebauteil
JP2005188849A (ja) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp 熱交換器
DE102004002252B4 (de) * 2004-01-08 2006-10-26 Visteon Global Technologies, Inc., Dearborn Wärmeübertrager für Fahrzeuge
US7322404B2 (en) * 2004-02-18 2008-01-29 Renewability Energy Inc. Helical coil-on-tube heat exchanger
US7281387B2 (en) * 2004-04-29 2007-10-16 Carrier Commercial Refrigeration Inc. Foul-resistant condenser using microchannel tubing
US7104314B2 (en) * 2004-06-29 2006-09-12 Modine Manufacturing Company Multi-pass heat exchanger
US7874349B2 (en) * 2006-03-16 2011-01-25 Visteon Global Technologies, Inc. Heat exchanger tank
DE102006018688B4 (de) * 2006-04-13 2009-08-27 Visteon Global Technologies Inc., Van Buren Verfahren zum Biegen von Multiportrohren für Wärmeübertrager
FR2899959B1 (fr) * 2006-04-14 2008-08-08 Valeo Systemes Thermiques Echangeur de chaleur ameliore et module d'echange de chaleur comportant un tel echangeur
US7921904B2 (en) * 2007-01-23 2011-04-12 Modine Manufacturing Company Heat exchanger and method
JP2009216315A (ja) * 2008-03-11 2009-09-24 Showa Denko Kk 熱交換器
CN101850391B (zh) * 2009-03-31 2012-07-04 三花丹佛斯(杭州)微通道换热器有限公司 扁管加工方法及扁管、热交换器加工方法及热交换器
ATE554361T1 (de) * 2009-04-28 2012-05-15 Abb Research Ltd Wärmerohr mit gewundenem rohr
EP2246654B1 (de) * 2009-04-29 2013-12-11 ABB Research Ltd. Mehrreihiger Thermosyphon-Wärmetauscher
DE112010002307T5 (de) * 2009-06-22 2012-06-21 Meidensha Corp. Kühlkörper
JP2011099630A (ja) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を用いた冷蔵庫、空気調和機
DE102010032899A1 (de) * 2010-07-30 2012-02-02 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatteriebaugruppe mit einer solchen Kühlvorrichtung
CN201945091U (zh) * 2010-11-18 2011-08-24 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器
DE102012222664A1 (de) * 2012-08-09 2014-03-06 Behr Gmbh & Co. Kg Kondensator
US20140182827A1 (en) * 2012-11-30 2014-07-03 Carlos Quesada Saborio Tubing Element for a Heat Exchanger
US9341418B2 (en) 2013-03-01 2016-05-17 International Business Machines Corporation Thermal transfer structure with in-plane tube lengths and out-of-plane tube bend(s)
WO2014146505A1 (zh) * 2013-03-21 2014-09-25 杭州三花微通道换热器有限公司 折弯式换热器及其制造方法
US10247482B2 (en) * 2013-12-13 2019-04-02 Hangzhou Sanhua Research Institute Co., Ltd. Bent heat exchanger and method for bending the heat exchanger
DE102014206612A1 (de) * 2014-04-04 2015-10-29 Mahle International Gmbh Wärmetauscher
WO2016083457A1 (en) * 2014-11-25 2016-06-02 Sapa As Multi port extrusion tubing design
US10619932B2 (en) 2015-10-23 2020-04-14 Hyfra Industriekuhlanlagen Gmbh System for cooling a fluid with a microchannel evaporator
US11193715B2 (en) * 2015-10-23 2021-12-07 Hyfra Industriekuhlanlagen Gmbh Method and system for cooling a fluid with a microchannel evaporator
CN106642826B (zh) * 2015-10-28 2019-04-19 丹佛斯微通道换热器(嘉兴)有限公司 换热器
EP3504948B1 (de) 2016-08-26 2022-11-09 Inertech IP LLC Kühlsysteme und verfahren unter verwendung einer einphasigen flüssigkeit und flacher rohrwärmetauscher mit gegenstromkreis
WO2019011058A1 (zh) * 2017-07-13 2019-01-17 杭州三花研究院有限公司 换热器
KR20190032106A (ko) * 2017-09-19 2019-03-27 엘지전자 주식회사 냉장고용 응축기
US11226139B2 (en) 2019-04-09 2022-01-18 Hyfra Industriekuhlanlagen Gmbh Reversible flow evaporator system
US20220221226A1 (en) * 2021-01-13 2022-07-14 Mahle International Gmbh Flat tube and heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416600A (en) 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
DE3936109A1 (de) 1989-06-14 1990-12-20 Piemontese Radiatori Flachrohr-waermetauscher
EP0654645A2 (de) * 1993-11-24 1995-05-24 Showa Aluminum Corporation Wärmetauscher
FR2712966A1 (fr) 1993-11-24 1995-06-02 Valeo Thermique Moteur Sa Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
EP0659500A1 (de) 1993-12-20 1995-06-28 MAGNETI MARELLI CLIMATIZZAZIONE S.r.l. Verfahren zum Biegen eines Rohrs mit länglichem Querschnitt und Wärmetauscher mit Rohren mit länglichem Querschnitt und Gebogen in U-Form
EP0845648A2 (de) * 1996-11-27 1998-06-03 Behr GmbH & Co. Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
DE19729497A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273227A (en) * 1963-06-12 1966-09-20 Olin Mathieson Fabrication of heat exchange devices
US4217953A (en) * 1976-03-09 1980-08-19 Nihon Radiator Co. Ltd. (Nihon Rajiecta Kabushiki Kaisha) Parallel flow type evaporator
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
JPH04177094A (ja) * 1990-11-13 1992-06-24 Sanden Corp 積層型熱交換器
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
JPH09137245A (ja) * 1995-11-09 1997-05-27 Denso Corp 熱交換器用アルミニウム管体および該アルミニウム管体を使用したアルミニウム製熱交換器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416600A (en) 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
DE3936109A1 (de) 1989-06-14 1990-12-20 Piemontese Radiatori Flachrohr-waermetauscher
EP0654645A2 (de) * 1993-11-24 1995-05-24 Showa Aluminum Corporation Wärmetauscher
FR2712966A1 (fr) 1993-11-24 1995-06-02 Valeo Thermique Moteur Sa Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
EP0659500A1 (de) 1993-12-20 1995-06-28 MAGNETI MARELLI CLIMATIZZAZIONE S.r.l. Verfahren zum Biegen eines Rohrs mit länglichem Querschnitt und Wärmetauscher mit Rohren mit länglichem Querschnitt und Gebogen in U-Form
EP0845648A2 (de) * 1996-11-27 1998-06-03 Behr GmbH & Co. Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
DE19729497A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362303C (zh) * 2003-02-18 2008-01-16 贝洱两合公司 带有回转弯头的扁平管及由其所构成的热交换器
EP2022410A1 (de) 2007-08-02 2009-02-11 Tyco Healthcare Group LP Kanülensystem
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel

Also Published As

Publication number Publication date
EP1036296A1 (de) 2000-09-20
JP2002520570A (ja) 2002-07-09
US6546999B1 (en) 2003-04-15
AU5849199A (en) 2000-02-01
EP1036296B1 (de) 2004-01-02
DE19830863A1 (de) 2000-01-13

Similar Documents

Publication Publication Date Title
WO2000003190A1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP2026028B1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
DE3780648T2 (de) Kondensator.
DE60011616T2 (de) Wärmetauscher mit mehrkanalrohren
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP0521298A2 (de) Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen und dafür bestimmter Rohr/Platten-Wärmetauscher
DE102006029378B4 (de) Flachrohr für Wärmetauscher und Herstellungsverfahren
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
DE69729836T2 (de) Verdampfer
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
DE10257767A1 (de) Wärmeübertrager
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE10150213A1 (de) Stranggepreßtes Profil, insbesondere für Wärmetauscher
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
EP1588115A1 (de) Wärmeübertrager, insbesondere gaskühler
EP2937658B1 (de) Innerer wärmeübertrager
EP1923654B1 (de) Wärmeübertrager
EP1321734A1 (de) Flachrohr-Wärmeübertrager sowie Herstellungsverfahren hierfür
EP1166025B1 (de) Mehrblock-wärmeübertrager
EP1293743B1 (de) Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
DE202019103964U1 (de) Wärmeaustauscher
EP3171116A1 (de) Gewickelter wärmeübertrager mit turbulatoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999945947

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 58491/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999945947

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999945947

Country of ref document: EP