WO1999017079A1 - Appareil magnetique pour detecter la position d'un vehicule - Google Patents

Appareil magnetique pour detecter la position d'un vehicule Download PDF

Info

Publication number
WO1999017079A1
WO1999017079A1 PCT/JP1998/004348 JP9804348W WO9917079A1 WO 1999017079 A1 WO1999017079 A1 WO 1999017079A1 JP 9804348 W JP9804348 W JP 9804348W WO 9917079 A1 WO9917079 A1 WO 9917079A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
lateral displacement
magnetic field
vehicle position
detecting device
Prior art date
Application number
PCT/JP1998/004348
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Hideki Fujii
Aki Watarai
Eiji Kako
Original Assignee
Aichi Steel Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Works, Ltd. filed Critical Aichi Steel Works, Ltd.
Priority to DE69810797T priority Critical patent/DE69810797T2/de
Priority to US09/508,675 priority patent/US6336064B1/en
Priority to EP98944276A priority patent/EP1020707B1/en
Publication of WO1999017079A1 publication Critical patent/WO1999017079A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09623Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present invention relates to a magnetic vehicle position detecting device that detects a magnetic field generated by a magnetic marker installed at the center of a road with a magnetic sensor installed in the vehicle, thereby extracting a lateral shift amount of the vehicle from a roadside.
  • a magnetic vehicle position detecting device that detects a magnetic field generated by a magnetic marker installed at the center of a road with a magnetic sensor installed in the vehicle, thereby extracting a lateral shift amount of the vehicle from a roadside.
  • Guidance method using a coil to detect current flowing cable lines Guidance method using image analysis using a camera, Guidance method using radio waves, Guidance method using ultrasonic waves, Guidance for detecting magnetic tape with a magnetic sensor
  • a method of detecting magnetic lines using an array sensor in which a plurality of magnetic sensors are arranged in a straight line is used for unmanned operation in factories, but the speed is high and height vibrations are generated. It is difficult to use for general car guidance.
  • a magnetic induction system for guiding a vehicle is disclosed in US Pat. No. 5,347,456. According to that, a sensor installed in a car detects two magnetic field components, vertical (height direction) and horizontal (horizontal direction), of magnetic force installed at the center of the road, and from those relations, It discloses that a lateral displacement amount corrected for height vibration is calculated.
  • the vehicle (more precisely, the vehicle's magnetic sensor) is within 20 to 25 cm Even after being guided to a local area, if there is a large disturbance magnetic field equivalent to magnetic force locally such as an iron bridge or tunnel, the car may be more than 25 cm away from the center, making it impossible to guide to the center. Will happen. For example, if a local disturbance magnetic field is applied laterally from left to right that exceeds the signal of the magnetic marker at a distance of about 20 cm to the right from Sen-Yu, it is erroneously determined that an automobile is on the left side. It is possible that a guidance instruction to the right is issued.
  • the magnetic markers are installed at intervals of about 2 m along the center of the sky, but if the maximum steering angle is 5 degrees, it will easily deviate from the center by 25 cm when traveling 1 m. There was a point.
  • the distance between the magnetic sensor and the magnetic marker is 0.9 m at maximum, so the position of the car is detected.
  • the conventional range of about 25 cm is not sufficient, and it is preferable to widen the range to about lm.
  • the magnetic sensor should be able to detect the magnetic marker while the vehicle is on the road and guide the vehicle to the center (center of the driving lane) without fail.
  • the amount of lateral displacement is considered to change each time the magnetic marker passes, so it is necessary to detect the amount of lateral displacement at least while traveling 2 m.
  • the response is poor due to the complicated position detection of the vehicle, and as a result, the installation interval of the magnetic markers must be shortened.
  • a magnetic induction system that can easily and accurately detect the position without shortening the installation interval of the magnetic marker is expected.
  • the present invention has been made in view of the above problems, and has as its object to provide a magnetic vehicle position detection device capable of detecting a lateral displacement amount from a sensor at high speed over a wide range with high accuracy. . Disclosure of the invention
  • the present inventors detect the magnetic field component in the vehicle traveling direction, and more preferably, the vehicle traveling direction, and two directions perpendicular to the vehicle traveling direction (vertical direction, horizontal direction).
  • the ability to maintain the vehicle's light and sunset and the lateral displacement detection range can be increased.
  • it could be expanded about 4 times to about lm.
  • the amount of lateral deviation (the distance from the magnetic sensor to the sensor) becomes 25 cm or more due to the influence of the disturbance magnetic field.
  • the vehicle could be returned to the upper part of Sen-Sen by reliably guiding to the Sen-Yu side.
  • the magnetic sensor on the vehicle side is based on a change in the magnetic field component in the traveling direction of the vehicle.
  • the amount of lateral displacement between the sensor and the magnetic marker is extracted.
  • the lateral displacement amount can be detected over a wider range with higher accuracy than a magnetic sensor that detects a magnetic field component in another direction, as described later. It is possible to realize a magnetic vehicle position detecting device that is much more practical.
  • the maximum change amount of the traveling magnetic field which is the difference between the minimum value and the maximum value of the output signal of the traveling magnetic sensor, is calculated.
  • the lateral shift amount is extracted based on the horizontal shift amount. In this way, the amount of lateral displacement can be detected with high accuracy.
  • a lateral displacement amount is further extracted based on a distance between a minimum value and a maximum value of an output signal of the traveling direction magnetic sensor. . In this way, the amount of lateral displacement can be detected with high accuracy.
  • the magnetic vehicle position detecting device further comprising: a vertical magnetic sensor that detects a vertical magnetic field component; and a horizontal magnetic sensor that detects a horizontal magnetic field component. The lateral displacement of the vehicle is detected based on the output signals of the three magnetic sensors.
  • the lateral displacement amount can be detected with higher accuracy.
  • the vertical magnetic sensor is a sensor that detects a magnetic field component in a direction perpendicular to the vehicle traveling direction and the vehicle left-right direction.
  • the horizontal magnetic sensor is a sensor that detects a horizontal magnetic field component, or more precisely, a magnetic field component in the left-right direction of the vehicle.
  • the lateral displacement amount is further detected based on the vertical magnetic field and the horizontal magnetic field at the time of reversal of the traveling magnetic field. In this way, the lateral shift amount can be accurately detected.
  • the lateral displacement amount information is obtained by using a peak value of the vertical magnetic field and the horizontal magnetic field or an average value of the peak value and the instantaneous value. Is extracted. In this way, the lateral shift amount can be accurately detected.
  • the magnetic vehicle position detecting device in the magnetic vehicle position detecting device according to claim 4, furthermore, when the lateral displacement amount is large, the lateral displacement amount is detected from the traveling magnetic field, and left / right discrimination is performed from the horizontal magnetic field component. Do. If the lateral displacement is small, the horizontal displacement is corrected by using the combination of the traveling magnetic field and the horizontal magnetic field to detect the effect of height fluctuation.If the lateral displacement is smaller, the combination of the vertical magnetic field and the horizontal magnetic field is detected. Detects the amount of lateral shift and left / right discrimination corrected for the effects of height fluctuations.
  • the magnetic vehicle position detecting device of claim 4 in the magnetic vehicle position detecting device of claim 4, further, a process of removing signal components in other bands except a band of a predetermined width including a magnetic field change component of the magnetic marker is performed. The detection accuracy can be improved.
  • the traveling position of the magnetic marker is determined based on a modulation signal component of an output signal of the traveling direction magnetic sensor. This makes it possible to accurately detect the position of the magnetic force in the traveling direction.
  • the position of the magnetic marker in the traveling direction is further determined based on the detected peak values of the magnetic field components in the three directions.
  • the next magnetic force intermediate point is calculated from a plurality of magnetic force positions in the past (immediately before), and based on the magnitude of the magnetic field at the magnetic marker intermediate point,
  • the background magnetic field other than the magnetic field (signal magnetic field) generated by the magnetic marker, in particular, the level of the magnetic field due to the long-period disturbance magnetic field is extracted, and this background magnetic field is subtracted from the magnetic field (detected magnetic field) detected by the magnetic sensor. Extract the signal magnetic field.
  • the lateral displacement amount extracted from the magnetic marker that has passed this time and the magnetic displacement amount extracted from a plurality of magnetic markers immediately before the consecutive one are further extracted.
  • a noise component due to a short-period disturbance magnetic field is removed based on the average value of a plurality of immediately preceding lateral shift amounts. Thereby, the detection accuracy can be improved.
  • the magnetic vehicle position detecting device of claim 1 further comprises road shape information detecting means for detecting road shape information based on a change in the arrangement of the magnetic marker.
  • the magnetic type vehicle position detecting device can be multifunctionalized and multifunctionalized. For example, in a dense fog winding road or the like, a sharp curve or an up-and-down motion that exists ahead of a predetermined distance in front of the road can be achieved. The presence, and furthermore, the bending direction and the inclination ratio can be notified to the driver.
  • the magnetic vehicle position detection device further includes a vehicle speed calculation unit that calculates a vehicle speed based on a transit time between a plurality of adjacent magnetic markers. In this way, vehicle speed detection can be realized without adding a vehicle speed sensor.
  • steering control is further performed based on the extracted shift amount. In this way, a safe and comfortable auto cruise can be realized.
  • a vertical magnetic field Bz having the largest output at the center of the magnetic marker and rapidly decreasing as the lateral displacement amount increases is used.
  • the lateral displacement can be measured with an accuracy of about 2 cm.
  • the left and right direction is determined by the horizontal (left / right) magnetic field B where the sign of the output voltage is opposite when the magnetic sensor is located to the left of the magnetic marker and when it is located to the right of the magnetic marker. It can be determined from T y.
  • the lateral shift amount obtained by correcting the sensor height can be obtained by using the map of the lateral shift amount.
  • the maximum value Bzmax of the vertical magnetic field Bz is the value when the magnetic sensor is located immediately above or just beside the magnetic marker, and the horizontal (left-right) magnetic field B
  • the maximum value y of y is the value when the magnetic sensor is located right beside the magnetic force.
  • the lateral shift amount can be calculated directly from the map shown in FIG. 6, or by using the linear relationship between the ratio of B z max and By max and the approximate lateral shift amount shown in FIG. It can also be obtained by a simple linear equation.
  • Detection method 2 A method for detecting the amount of lateral displacement in the middle lateral displacement amount area
  • the lateral deviation amount is, for example, about 25 cm to 50 cm
  • the largest magnetic field change occurs in the lateral deviation direction
  • the lateral deviation amount and the output value are one-to-one.
  • the horizontal (left / right) direction magnetic field By corresponding to As a result, the lateral displacement can be obtained with an accuracy of about 4 cm.
  • the horizontal (left-right) magnetic field B y extends far, the sign of the signal voltage does not reverse when the lateral shift amount is 0, so that it interferes with the disturbance magnetic field and is difficult to distinguish.
  • the traveling magnetic field B x spreads as far as the horizontal (left-right) magnetic field B y, but the sign of the traveling magnetic field component B x reverses after passing over the magnetic marker. It is easy to distinguish between the magnetic field of the magnetic marker and the disturbance magnetic field. Therefore, a combination of the traveling magnetic field Bx and the horizontal (left-right) magnetic field By is suitable for measuring the lateral displacement in a range of up to 50 cm.
  • the height of the magnetic sensor When the height of the magnetic sensor needs to be corrected, the height is calculated from the map of the maximum value Bxmax of the traveling magnetic field Bx and the maximum value Bymax of the horizontal (left / right) magnetic field By shown in FIG. It is possible to calculate and correct the lateral shift amount based on this height.
  • the lateral displacement can be calculated directly from the map shown in Fig. 8, or it can be calculated easily using the approximate linear relationship between the ratio of Bxmax and Bymax shown in Fig. 9 and the lateral displacement. With a simple linear equation You can also.
  • Detection method 3 A method for detecting the amount of lateral displacement in the large lateral displacement area
  • the traveling direction distance between the points indicating the maximum value and the minimum value of the traveling direction magnetic field Bx is obtained, and FIG. 10 or FIG.
  • the lateral displacement amount can be calculated with high accuracy.
  • left / right discrimination is performed from the sign of the horizontal (left / right) magnetic field By.
  • the effect of height can be ignored.
  • FIG. 10 is a diagram obtained by simulation
  • FIG. 24 is a diagram obtained by experiment. In these simulations and experiments, the diameter of the magnetic marker was 100 mm, its thickness was 5 mm, and the height of the magnetic sensor from the top surface of the magnetic marker was 250 mm.
  • the lateral shift amount can be detected from a map (see FIG. 25) showing the relationship between Bxmax and the lateral shift amount.
  • a map showing the relationship between Bxmax and the lateral shift amount.
  • the lateral displacement is determined based on the traveling distance between the points indicating the maximum value and the minimum value of the traveling magnetic field Bx.
  • the above detection methods 1 to 3 may be appropriately selected, and when the lateral displacement amount is large, the above detection method 4 may be adopted.
  • the lateral displacement can be calculated from the horizontal (left / right) direction magnetic field By, and in this case, the influence of the sensor height fluctuation can be neglected.
  • Either the traveling direction magnetic field Bx or the horizontal (left / right) direction magnetic field By can be appropriately selected according to conditions.
  • the average value of the lateral displacement detected by the traveling magnetic field Bx and the lateral displacement detected by the horizontal (left / right) magnetic field By can be used as the lateral displacement.
  • the horizontal (left-right) magnetic field B y is susceptible to disturbance, and the difference between the maximum value and the minimum value of the traveling magnetic field B x is hardly affected by disturbance. It is desirable to calculate from the difference between the value and the minimum value.
  • the lateral displacement amount detection method of the present invention for obtaining the lateral displacement amount, it is possible to start guiding to the center at almost any position in the traveling lane of the automobile. Further, a traveling magnetic field Bx, a horizontal (left-right) magnetic field By, and a vertical magnetic field Bz are detected, and using these signals, a lateral displacement amount is calculated only by the traveling magnetic field BX, and the traveling magnetic field BX and the horizontal magnetic field BX are calculated.
  • the lateral displacement amount can be obtained with high accuracy in any range of the small, medium, and large lateral displacement amounts.
  • the vehicle when a vehicle enters this magnetically guided road, the vehicle is located 50 to 100 cm away from the center, so it is more transverse than the traveling magnetic field B x and the horizontal (left / right) direction magnetic field By. Calculate the deviation amount.
  • the lateral displacement decreases by guiding the vehicle to the central side using this lateral displacement, the lateral displacement can be calculated from the combination of the traveling magnetic field B x and the horizontal (left / right) magnetic field By.
  • the vehicle is further guided to the center according to the calculated value.
  • the amount of lateral displacement becomes smaller, the higher the combination of Bx, By, and Bz Lateral deviation can be obtained with high accuracy.
  • FIG. 1 is a schematic perspective view showing the principle of a magnetic vehicle position detection device (magnetic vehicle position detection system) of the present invention.
  • FIG. 2 is a front view showing an arrangement state of the magnetic sensor 1 and the magnetic marker 3.
  • FIG. 3 is a characteristic diagram showing a relationship between a lateral displacement amount, that is, a distance from the magnetic marker 3 in the left-right direction (horizontal direction) and a vertical magnetic field.
  • FIG. 4 is a characteristic diagram showing the relationship between the amount of lateral displacement, that is, the distance from the magnetic marker 3 in the left-right (horizontal) direction, and the horizontal (left-right) magnetic field.
  • FIG. 5 is a characteristic diagram showing a relationship between a lateral displacement amount, that is, a distance from the magnetic force 3 in the left-right direction (horizontal direction) and a traveling magnetic field.
  • FIG. 6 is a characteristic diagram showing contour lines of the amount of lateral displacement in a two-dimensional virtual space having Bz and By as dimensions used in a range of less than 25 cm of lateral displacement.
  • FIG. 7 is a characteristic diagram showing a relationship between a lateral shift amount and Bz / By.
  • FIG. 8 is a characteristic diagram showing contour lines of the amount of lateral displacement in a two-dimensional virtual space having Bz and Bxmaz as dimensions used in the range of the lateral displacement amount of 25 to 50 cm.
  • FIG. 9 is a characteristic diagram showing a relationship between the lateral displacement amount and Bxmax / Bymax.
  • FIG. 10 is a characteristic diagram showing the relationship between the distance between B xmax and B xmin for use in the range of the lateral displacement amount of 50 to 100 cm, and the lateral displacement amount.
  • FIG. 11 is a characteristic diagram showing a measurement example of the relationship between the vertical magnetic field and the amount of lateral displacement.
  • FIG. 12 is a characteristic diagram showing a measurement example of the relationship between the traveling magnetic field and the lateral displacement amount when the lateral displacement amount is in the range of 0 to 1000 mm.
  • FIG. 13 is an enlarged characteristic diagram showing an example of measurement of the relationship between the traveling magnetic field and the amount of lateral displacement when the lateral displacement is in the range of 400 to 100 mm.
  • Fig. 14 shows the horizontal magnetic field and the lateral shift in the range of 0 to 100 It is a characteristic diagram which shows the example of a measurement of the relationship with quantity.
  • FIG. 15 is an enlarged characteristic diagram showing a measurement example of the relationship between the horizontal magnetic field and the lateral displacement amount in the range of the lateral displacement amount of 400 to 1000 thighs.
  • FIG. 16 is a characteristic diagram showing a relationship between a displacement amount at the same position in the traveling direction as the magnetic marker and an output voltage of each magnetic sensor.
  • FIG. 17 is a flowchart showing a control example of the Convenience 2 of the first embodiment.
  • FIG. 18 is a flowchart showing a control example of the computer 2 of the first embodiment.
  • FIG. 19 is a flowchart showing a modification of the control of the convenience store 2 of the first embodiment.
  • FIG. 20 is a flowchart showing a modified example of the control of the convenience store 2 according to the first embodiment.
  • FIG. 21 is a characteristic diagram showing the output of each magnetic sensor when traveling on a line that is shifted 20 cm to the right from the center line connecting the magnetic force 3.
  • FIG. 22 is a characteristic diagram showing the output of each magnetic sensor when traveling on a line connecting the magnetic markers 3.
  • FIG. 23 is a characteristic diagram showing the output of each magnetic sensor when the vehicle travels on a line that is 20 cm to the left from the sensing line connecting the magnetic markers 3.
  • FIG. 24 is a characteristic diagram showing the relationship between the distance Lx between peaks obtained by an experiment and the amount of lateral displacement.
  • FIG. 26 is a flowchart illustrating a lateral displacement amount detection method according to the second embodiment.
  • the following is an example of a magnetic vehicle position detection device that extracts the amount of lateral deviation using a three-dimensional magnetic sensor consisting of a traveling direction magnetic sensor, a vertical direction magnetic sensor, and a horizontal direction magnetic field sensor. An example will be described.
  • This magnetic vehicle position detecting device includes a three-dimensional magnetic sensor 1 provided on the lower surface of the front part of the vehicle, and an in-vehicle computer 2 that processes an output signal of the three-dimensional magnetic sensor 1 to calculate a lateral shift amount.
  • Consists of The three-dimensional magnetic sensor 1 includes a vertical magnetic sensor 11, a horizontal magnetic field sensor 12, and a traveling magnetic sensor 13.
  • the horizontal magnetic sensor 12 detects the magnetic field component in the lateral direction of the vehicle
  • the traveling magnetic sensor 13 detects the magnetic field component in the longitudinal direction of the vehicle
  • the vertical magnetic sensor 11 detects the magnetic field component in the lateral direction of the vehicle and the longitudinal direction of the vehicle.
  • a magnetic field component in a direction perpendicular to the direction, that is, in a vehicle height direction is detected.
  • the magnetic sensor 1 is installed at a height of about 25 cm from the road surface as shown in FIG.
  • Numeral 3 is a magnetic force installed at regular intervals (for example, every 2 m) on the road surface along the center of the road lane (Senyu).
  • Magnetic force 3 has a diameter of 100 m in it made from a height permanent magnet of approximately 5 mm of the disc-shaped, the maximum energy product was used for about 1 6 0 0 0 0 J / m 3.
  • the upper main surface of the magnetic marker 3 is magnetized to one magnetic pole, for example, the N pole.
  • the traveling magnetic field Bx, the horizontal (left / right) magnetic field By, and the vertical magnetic field Bz are shown in units of G (Gauss), that is, 0.001T.
  • Fig. 3 to Fig. 5 show the relationship between the traveling magnetic field, the horizontal (left / right) magnetic field, and the vertical components Bx, By, and Bz of the detected magnetic field and the amount of lateral displacement (also referred to as lateral displacement). Show.
  • the measuring point is 25 cm high.
  • the vertical magnetic field Bz has a sharp peak near the magnetic marker 3 as shown in FIG. 3, but the spread of the magnetic field is as narrow as about 25 cm, and has a distribution shape that is left-right symmetric. Therefore, the vertical magnetic field Bz is large when the lateral displacement is within 25 cm and has a particularly large value near the center, but decreases when the lateral displacement is 25 cm or more.
  • a vertical magnetic sensor 11 with a full scale of 0.0005 (T (Tesla)) and a sensitivity of 0.000001 T is used, a lateral displacement from 0 to 250 mm can be used with a positional accuracy of 20 mm. It can be measured with precision (see Fig. 3). However, in this case, the left / right discrimination needs to be determined from the sign of the output value of the horizontal magnetic field sensor 12.
  • the magnetic field By in the horizontal (left / right) direction is 0 immediately above the magnetic marker 3, has a peak at a point about 15 cm away from directly above the magnetic marker 3, and has a wide spread to near lm, and the sign is left and right. It has the opposite distribution shape. Therefore, the output voltages of the vertical and horizontal sensors 11 and 12 at the time when the car has passed the magnetic force 3 correspond to the detected values of Bz and By according to the lateral shift amount. .
  • the horizontal (left / right) direction magnetic field By is output up to 1 m, and the left / right discrimination of the lateral deviation can be determined from its sign. However, since the output is 0 immediately above the magnetic marker 3, the lateral displacement position cannot be specified.
  • the lateral displacement amount from 250 to 500 mm can be measured (No. See Figure 4).
  • the detection accuracy at this time is slightly worse than the case of the above-described vertical magnetic sensor 11, but it can be measured without problems up to 500 °.
  • the present inventors have found that the amount of lateral displacement can be measured based on a change in the traveling direction magnetic field Bx.
  • the traveling direction magnetic sensor 13 having the performance of full scale 0.00003 (T (Tesla)) and sensitivity of 0.00000001 ⁇ T is used, the minimum value (minimum beak) and the maximum value (maximum peak) of the magnetic field B in the traveling direction are obtained. It has been newly found that the lateral displacement can be calculated by a simple linear equation by storing in advance the relationship between the distance between the distance and the lateral displacement.
  • the lateral displacement can be measured in the range of 500 to 1000 thighs with a detection accuracy of 100 mm.
  • the lateral displacement accuracy is slightly deteriorated to 100 mm, but can be measured up to 1000 mm. Note that the details of the measurement of the lateral displacement amount using the output signal of the traveling direction magnetic sensor 13 described above will be described later. .
  • the traveling magnetic field between the minimum value (minimum peak) and the maximum value (maximum peak) of the traveling magnetic field Bx is determined. It has also been found that by storing in advance the relationship between the maximum change amount B xmax of B x and the lateral displacement amount, the lateral displacement amount can be obtained with higher accuracy and easier. This method will be described later in detail.
  • the lateral displacement is obtained by using the relationship between the vertical magnetic field Bz and the lateral displacement, and the sign of the horizontal (left / right) magnetic field By is obtained. Judge right and left by the number. If the lateral displacement exceeds 250 mm, determine the lateral displacement using the relationship between the horizontal (left / right) magnetic field By and the lateral displacement. It is understood that when the lateral displacement exceeds 500 mm, it is desirable to perform the lateral displacement detection using the traveling direction magnetic sensor 13 having the widest detection range.
  • the lateral shift amount may be extracted only by the signal of the traveling direction magnetic sensor 13 which is a feature of the present embodiment.
  • the magnetic sensor 13 of the car is 3 to 80 cn! As it approaches ⁇ lm, Bx becomes a negative value, and the sign of By becomes a positive value when the vehicle passes the left side of the magnetic force 3, and a negative value when it passes the right side.
  • Bx decreases to a negative beak value, and By increases.
  • Bz When the magnetic sensor 1 is more than 25 cm away from the magnetic marker 3, Bz becomes very small. Bx has a positive peak value (maximum value) and then gradually decreases.
  • the output of the vertical magnetic field Bz shown in FIG. 3 is maximized when the amount of lateral displacement is 0, that is, when the magnetic sensor 1 is directly above or just beside the magnetic marker 3.
  • FIG. 4 is a diagram showing an output when the magnetic sensor 1 approaches the magnetic marker 3 from one of the left and right sides.
  • the output of the horizontal magnetic field B y is positive at the left of the magnetic force 3, negative at the right of the magnetic marker 3, and zero at the center (directly above the magnetic marker 3). Further, when the distance from the center of the magnetic marker 3 is increased, the magnetic marker 3 starts to change and takes the maximum value (positive peak value) or the minimum value (negative peak value). As for y, left is plus and right is minus, so left and right can be distinguished. In addition, the output is obtained up to the lateral displacement of l m, but the output becomes 0 at the center.
  • the relationship between the distance from the magnetic marker 3 and the change in the traveling magnetic field BX is as follows.
  • the relation between the distance from the magnetic marker 3 and the change in the magnetic field By in the horizontal (left and right) direction when moving from one side to the other side over the magnetic marker 3 becomes equal.
  • the horizontal (left-right) magnetic field By becomes a maximum value By max when the magnetic sensor 1 comes right beside the magnetic force 3.
  • the horizontal (left-right) magnetic field By is zero.
  • the vertical magnetic field Bz when the vehicle is moving forward by a predetermined lateral shift amount has a maximum value Bzmax when the magnetic sensor 1 is right beside the magnetic marker 3.
  • the traveling direction magnetic field B x becomes a minimum value (negative peak value) at a predetermined position in front of the magnetic marker 3 in the traveling direction of the magnetic marker 3, and the magnetic sensor 1 is positioned next to or directly above the magnetic marker 3. 0, and the magnetic sensor 1 reaches the maximum value (positive beak value) at a predetermined position behind the magnetic force 3 in the traveling direction.
  • the difference between the maximum value (positive peak value) and the minimum value (negative peak value) of the traveling direction magnetic field Bx is defined as Bxmax. Also, the point where B x is the maximum value and the point where B x is the minimum value Let Lx be the distance in the traveling direction between.
  • the signal value Bzmax has the largest output in the vicinity of the magnetic marker 3, so that the center position can be confirmed with high accuracy. However, because the range of measurable lateral misalignment is narrow and the magnetic force is symmetrical in three directions, it is not possible to determine which side is misaligned.
  • the signal value Bymax has a wide measurable lateral displacement range, and the left and right direction of the magnetic marker 3 can be determined. However, because the output is zero at Sen-Yu, it is not known whether they are at Sen-Yu or outside of 1 m.
  • the signal value Bxmax is wide in the measurable lateral displacement range, and becomes larger as it is closer to the magnetic marker 3, but similarly to Bzmax, the left / right direction of the magnetic marker 3 cannot be determined.
  • the detection up to 25 cm was the limit, but the signal value B x max and the signal value B ymax must be combined.
  • the measurable lateral displacement range can be widened to lm.
  • the height of the magnetic sensor 1 can be corrected by using the map shown in FIG. 6 to extract the lateral displacement.
  • the ratio between the S-direction magnetic field Bz and the horizontal (left / right) magnetic field By is constant regardless of the sensor height, and the amount of lateral displacement is constant.
  • the lateral shift amount can be determined while correcting the deviation.
  • the height of the magnetic sensor 1 is corrected from the traveling magnetic field B x and the horizontal (left / right) magnetic field By using the map shown in FIG.
  • the lateral displacement amount can be extracted.
  • the ratio between the traveling magnetic field Bx and the horizontal (left / right) magnetic field By is constant regardless of the sensor height, and the amount of lateral displacement is constant. Determining the amount of lateral displacement while correcting Can be.
  • the lateral shift amount when the lateral shift amount is in the range of 50 to 100 cm, the lateral shift amount can be determined from the difference between the maximum value and the minimum value of BX or Bxmax. As shown in Fig. 10, at this time, the magnetic force 3 is sufficiently far away, so the influence of height is hardly affected.
  • the following equation the following equation
  • the lateral displacement can be detected from the horizontal (left / right) magnetic field By. Further, the average value of the lateral displacement obtained by the traveling magnetic field Bx and the lateral displacement obtained by the horizontal (left and right) magnetic field By can be used as the final lateral displacement.
  • the horizontal (left / right) direction magnetic field By is easily affected by disturbance, and the difference between the maximum value and the minimum value of the traveling direction magnetic field Bx is not easily affected by disturbance magnetic field.
  • the main disturbing magnetic fields include geomagnetism and local magnetic field change sources such as iron bridges, tunnels, and buildings. These disturbing magnetic fields can be classified into three types: a long-period magnetic field that has a uniform or long period of 2 m or more, a short-period magnetic field of 2 m or less, and a superposition magnetic field of both, for the magnetic marker 3 at 2 m intervals. being classified.
  • the sign of the traveling direction magnetic field B x is inverted every 2 m, which is the installation interval of the magnetic marker 3, and spreads far away, so that it can be detected anywhere on the road.
  • the traveling direction magnetic field B x is have easy most separated a disturbance magnetic field than other field 0
  • the long-period disturbance magnetic field Since the magnitude is almost constant between two adjacent magnetic markers 3, an intermediate value between the two magnetic forces 3 is obtained, and the value is calculated as the disturbance value. Then, it is sufficient to subtract from the measured value of the magnetic sensor 1. And the direction of travel B x max is obtained from the difference between the maximum value and the minimum value of the magnetic field B x, and the lateral displacement amount can be obtained from the obtained B x max. An average value of a plurality of measured values may be used to improve the detection accuracy of the lateral displacement amount.
  • the short-period disturbance magnetic field is between the two magnetic markers 3
  • the period determined by the 2 m arrangement interval of the magnetic markers 3 and the vehicle speed is determined, and the magnetic field having a period other than that period is determined as the disturbance magnetic field. And separate. However, in this case, a plurality of measured values are used because the period is determined.
  • the short-period disturbance magnetic field is removed by using a software low-pass filter, etc., and then the long-period disturbance magnetic field is reduced by using a plurality of measurement values obtained sequentially. Remove.
  • the vertical magnetic field Bz is large in the center, that is, within 25 cm of lateral displacement, it is convenient to hold the vehicle at the center of the road by extracting the lateral displacement near the center.
  • the error of the lateral shift amount including the error of Bzmax increases, and its correction is important.
  • the vertical magnetic field Bz is a signal with a fixed period, so for short-period disturbance magnetic fields, use the difference in frequency as in the traveling magnetic field Bx. Can be removed. In this case, however, a plurality of discrimination values are used because of the cycle discrimination.
  • the value Bzo of the vertical magnetic field Bz at the time when the traveling magnetic field Bx, which fluctuates greatly from plus to minus, becomes 0, is calculated, and the value Bzo between the two adjacent magnetic markers 3 is calculated.
  • the value of z, B zm can be used as the disturbing magnetic field, and can be eliminated by subtracting B zm from B zo. In order to increase the detection accuracy, it is effective to use multiple measured values.
  • the horizontal (left-right) magnetic field By also has a magnetic field spread of about lm like the traveling magnetic field Bx, but when the lateral displacement is 15 cm or more, the horizontal (left-right) magnetic field By is considered to be a unidirectional magnetic field. Therefore, it can be treated in the same way as the vertical magnetic field Bz. In consideration of safety, it is important that the magnetic force 3 is reliably caught.
  • the traveling magnetic field B x changes at the location of the magnetic marker 3 where the signal changes positively and negatively. Furthermore, since it has a frequency that depends on the arrangement interval of the magnetic marker 2, it can be said that the signal has the best quality for confirming the magnetic marker 3.
  • the steering angle is steered at a maximum of 5 degrees. If so, it will be off by about 50cm from the center. Even in this case, detection up to 1 m is possible, so catch magnetic force 3 again, calculate and correct the disturbance magnetic field based on that, calculate the amount of lateral displacement, and then start sensing again. can do. In this way, the vehicle can be guided and held even under a strong disturbance magnetic field.
  • both the traveling magnetic field B x and the vertical magnetic field B z vibrate greatly, so that the position of the magnetic marker 3 can be reliably detected.
  • the magnetic sensor 1 passes over the magnetic marker 3, the vehicle can be promptly guided to the center of the road according to the amount of lateral displacement. This is particularly effective for guiding on curves. With the conventional method, it takes a considerable amount of time to calculate the amount of lateral displacement after passing through the magnetic marker 3, and the response is poor.In the curve, the arrangement interval of the magnetic marker 3 is reduced from 2 m to 1 m Needed.
  • the position of the magnetic marker 3 is confirmed by finding the sign inversion point at which the sign of the fluctuation component Bx 'of the traveling direction magnetic field component measurement value Bx changes from negative to positive (S104).
  • a cycle defined as the time between two adjacent sign inversion points is calculated, and an intermediate point corresponding to an intermediate point between two adjacent magnetic markers 3 is calculated based on the cycle.
  • the measured value of the magnetic field component Bx in the traveling direction, the measured value of the horizontal magnetic field component By, and the measured value of the vertical magnetic field component Bz at the time are stored as the current value of the disturbance offset level (S106).
  • the average value of the above-described disturbance offset level is subtracted from the detected vertical magnetic field component measurement value Bz, horizontal magnetic field component measurement value By, and traveling magnetic field component measurement value BX, and the variation in each magnetic field component measurement value is calculated.
  • signal component Bx ', By', and B z 5 (S 1 1 4 ).
  • the value of the intermediate magnetic field component between two adjacent magnetic markers 3 is regarded as the geomagnetic field and the long-period disturbance magnetic field, and the measured value of the vertical magnetic field component Bz, the measured value of the horizontal magnetic field component By, and the measurement of the traveling magnetic field component By subtracting from the value Bx, the geomagnetism and the disturbance magnetic field can be canceled.
  • the difference between the maximum value and the minimum value of the fluctuation signal component Bx 'is calculated, and the traveling direction magnetic field component is calculated.
  • the distance Lx between the maximum value and the minimum value of the fluctuation signal component Bx 'is calculated from the product of the period counted in the countdown and the vehicle speed detected separately S 1 2 5.
  • the maximum change amount Bxmax of the traveling direction magnetic field component is described as Bx ′ ′.
  • T means Tesla (magnetic field intensity unit).
  • the difference between the average value of the lateral displacement amounts calculated for the immediately preceding five magnetic markers 3 and the current value of the lateral displacement amount calculated this time is calculated (S134), and the difference is calculated. If the difference is less than 100 mm, the average value of the five lateral displacement amounts immediately before including the current value is newly calculated (S136). The new calculation is not performed, and the average value for storing the current value of the lateral shift amount is stored as the average value (S138), and the process proceeds to S140.
  • the ECU controls the ECU to perform steering control in such a direction as to eliminate the lateral shift amount (S144), and issues a warning by voice or driver's seat display only when the lateral shift amount is large (S142). If not, the steering control is not performed and only the above warning is issued.
  • this control has an interrupt routine 212 that is periodically executed at short time intervals, and will be described first.
  • the measured value Bx of the traveling direction magnetic field is input (S200), and it is checked whether or not Bx is the minimum value (S202). This detection is performed during the period when the continuously changing derivative of Bx changes from negative to positive. In order to avoid erroneous determination due to the high-frequency noise signal, it is preferable to remove the high-frequency signal component in advance using a low-pass filter having software or a hardware configuration.
  • This vehicle speed detection is performed as follows.
  • the count value of the first day indicates the transit time T between two adjacent magnetic markers 3 in the traveling direction, and since the distance Lx between the two adjacent magnetic markers 3 is known and constant, the vehicle speed is Lx / It can be calculated as T. If another known independent vehicle speed sensor is used, the first night is unnecessary.
  • the average value (DC level, that is, offset level) Bxm, Bym, Bzm of the magnetic field component in each direction is determined (S156).
  • DC level that is, offset level
  • Bxm, Bym, Bzm of the magnetic field component in each direction is determined (S156).
  • various methods can be considered in addition to the method shown in FIG.
  • the maximum value and the minimum value of the traveling magnetic field B X obtained by the immediately preceding five magnetic markers 3 in S 202 and S 206 in FIG. 20 may be added and divided by 10.
  • the road shape information is detected from the magnetic force 3 by using the magnetic sensors 11 to 13 by sequentially detecting the magnetic markers 3 or by the arrangement intervals of the magnetic markers 3 and the reversal of the upper surface magnetic pole. It is also possible.
  • FIG. 24 shows the actual relationship between the distance Lx between peaks and the amount of lateral displacement.
  • the experimental conditions are as follows. Amount of lateral displacement 0 to 500 1 ⁇ 0 for each thigh 10 The average value of each measurement is indicated by a black circle, and the maximum and minimum values are indicated by white circles. Variations in measured values are considered circuit noise.
  • Example 2
  • Example 2 differs from Example 1 in that the amount is detected.
  • FIG. 25 shows the results of the experiment, when the lateral displacement amount is more than 500 mm, the influence of the height of the magnetic sensor 1 becomes very small, and B x max and the lateral displacement amount Is almost linear, the relationship between B x max and the amount of lateral displacement stored beforehand when the lateral displacement amount is 500 mm or more (Fig. 25) can be used without the height correction of the magnetic sensor 1.
  • the lateral shift amount can be easily estimated.
  • the experimental conditions in FIG. 25 are the same as the experimental conditions in FIG. 24 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

明細書
磁気式車両位置検出装置 技術分野
本発明は、 自動車に設置された磁気センサで、 道路中央に設置された磁気マー 力が作る磁界を検出することにより、 道路セン夕からの自動車の横ズレ量を抽出 する磁気式車両位置検出装置に関する。 背景技術
電流が流れるケーブル線をコイルで検出しながら誘導する方式、 カメラを用い て画像解析を用いる誘導方式、 電波を用いた誘導方式、 超音波を用いた誘導方式、 磁気テープを磁気センサで検出する誘導方式等、 各種方式が、 工場内の無人運転 走行システムに使用されていた。 しかし、 これらを自動車が走る道路上に適用し ようとすると、 磁気以外の誘導方式は、 雨や雪、 霧などの悪天候時に使用するこ とができないために、 採用が困難であった。 また、 磁気方式では、 直線状に複数 個の磁気センサが並べられたアレイセンサで磁性ラインを検出する方法が工場内 無人運転に使用されているが、 スピードが早く、 更に高さ振動が発生する一般の 自動車の誘導には利用が困難である。
自動車の誘導を目的とする磁気誘導方式として、 米国特許 5347456号に記載さ れたものがある。 それによると、 自動車に設置されたセンサが、 道路の中央に設 置された磁気マ一力の垂直 (高さ方向) 及び水平 (左右方向) の二つの磁界成分 を検出して、 それら関係から高さ振動を補正した横ズレ量を算出することを開示 している。
しかしながら、 垂直方向磁界成分は磁気センサの高さにおいて 2 0〜2 5 cmを 超えると相当に減衰するので、 検出可能な横ズレ量は 2 0〜2 5 cmと非常に狭く なってしまう問題があった。 そのため、 自動車が道路に進入する際に、 磁気マ一 力が存在するセンタ (走行レーンの中央) から 2 0 ~ 2 5 cm以内の範囲に進入す ることができなければ、 セン夕への磁気誘導が開始されないことがある。
さらに、 車両が (正確には車両の磁気センサ) がセン夕から 2 0〜 2 5 cm以内 に誘導された後でも、 鉄橋、 トンネルなど局所的に磁気マ一力に匹敵する大きな 外乱磁界がある場合、 自動車がセン夕から 2 5 cm以上離れて、 センタ誘導不能と なってしまう可能性が生じてしまう。 例えば、 セン夕から右に 2 0 cm程度離れて いる時に、 磁気マーカの信号を上回る左から右に横方向に局所的な外乱磁界がか かった場合、 左側に自動車があると誤判断し、 右側への誘導指示が発せられるこ とが考えられる。 磁気マーカはセン夕に沿って 2 m程度の間隔で設置されている が、 最大ステアリ ング角度が 5度の場合、 1 mも進行すると 2 5 cmもセン夕から 簡単に逸脱してしまうという問題点があった。
たとえば自動車の車幅を約 1 . 7 mとし、 道路の車両走行レーンの幅を 3 . 5 m とする場合、 磁気センサと磁気マーカの距離は最大 0 . 9 mになるので、 自動車 の位置検出範囲は従来の 2 5 cm程度では不十分であり、 l m程度まで広げること が好ましい。 このようにすると、 自動車が道路に存在している間中、 磁気センサ が磁気マーカを検出でき、 自動車を確実にセン夕 (走行レーン中央) へ誘導でき るはずである。
更に、 カーブ等では、 磁気マーカ通過ごとに横ズレ量が変化すると考えられる ので、 少なくとも 2 m進行する間に必ず横ズレ量を検出する必要が生じる。 しか し、 従来方式では、 車両の位置検出が複雑であるために応答性が悪く、 その結果、 磁気マーカの設置間隔を短く しなければならない。 これを解消するために、 磁気 マーカの設置間隔を短く しなくても高精度かつ簡単に位置検出ができる磁気誘導 方式が期待されている。
本発明は上記問題点に鑑みなされたものであり、 広い範囲にわたって高精度か つ高速にセン夕からの横ズレ量を検出可能な磁気式車両位置検出装置を提供する ことを、 その課題としている。 発明の開示
上記課題を解決するために、 本発明者らは、 車両進行方向の磁界成分を検出す ることにより、 更に好ましくは車両進行方向、 及び、 車両進行方向と直交する 2 方向 (垂直方向、 水平方向) の磁気センサを更有する 3次元磁気センサを用いる ことにより、 自動車のセン夕維持能力を高めると同時に、 横ズレ検出範囲を 2 5 〜 l m程度へと 4倍程度広げることができることを見出した。 その結果、 この車 両進行方向の磁界成分に基づいて横ズレ量を検出することにより、 外乱磁界の影 響により、 横ズレ量 (磁気センサからセン夕までの距離) が 2 5 cm以上となって も、 セン夕側への誘導を確実に行ってセン夕上へ車両を復帰させることができる ことを見出した。
以下、 本発明の各構成を詳細に説明する。
請求項 1記載の磁気式車両位置検出装置によれば、 車両側の磁気センサは、 車 両進行方向の磁界成分の変化に基づいて、 車両 (正確には磁気センサ) と走行レ ーン中央のセン夕 (正確には磁気マーカ) との間の横ズレ量を抽出する。
このようにすれば後述するように、 既存の他の方向の磁界成分を検出する磁気 センサに比較して、 横ズレ量を広い範囲にわたって高精度に検出でき、 従来の検 出方式に比較して格段に実用性に富む磁気式車両位置検出装置を実現することが できる。
請求項 2記載の構成によれば請求項 1記載の磁気式車両位置検出装置において 更に、 進行方向磁気センサの出力信号の最小値と最大値との差である進行方向磁 界の最大変化量に基づいて横ズレ量を抽出する。 このようにすれば、 高精度に横 ズレ量を検出することができる。
請求項 3記載の構成によれば請求項 1記載の磁気式車両位置検出装置において 更に、 進行方向磁気センサの出力信号の最小値と最大値との間の距離に基づいて 横ズレ量を抽出する。 このようにすれば、 高精度に横ズレ量を検出することがで &る。
請求項 4記載の構成によれば請求項 1記載の磁気式車両位置検出装置において 更に、 垂直磁界成分を検出する垂直方向磁気センサと、 水平磁界成分を検出する 水平方向磁気センサとを含み、 これら三つの磁気センサの出力信号に基づいて、 車両の横ズレ量を検出する。
このようにすれば、 横ズレ量が小さい場合において、 一層高精度に横ズレ量を 検出することができる。
なお、 ここで、 垂直方向磁気センサとは、 垂直磁界成分更に正確に言えば車両 進行方向及び車両左右方向に対してそれそれ直角な方向の磁界成分を検出するセ ンサであり、 水平方向磁気センサとは、 水平磁界成分更に正確に言えば車両左右 方向の磁界成分を検出するセンサである。
請求項 5記載の構成によれば請求項 4記載の磁気式車両位置検出装置において 更に、 進行方向磁界の反転時点における垂直方向磁界及び水平方向磁界に基づい て横ズレ量を検出する。 このようにすれば正確に横ズレ量を検出することができ る。
請求項 6記載の構成によれば請求項 4記載の磁気式車両位置検出装置において 更に、 垂直方向磁界及び水平方向磁界のピーク値又はピーク値と瞬時値との平均 値を用いて横ズレ量情報を抽出する。 このようにすれば正確に横ズレ量を検出す ることができる。
請求項 7記載の構成によれば請求項 4記載の磁気式車両位置検出装置において 更に、 横ズレ量が大きい場合に進行方向磁界から横ズレ量を検出し、 水平方向磁 界成分から左右判別を行う。 横ズレ量が小さい場合に進行方向磁界及び水平方向 磁界の組み合わせで高さ変動の影響を補正した横ズレ量を検出し、 横ズレ量が更 に小さい場合に垂直方向磁界及び水平方向磁界の組み合わせで高さ変動の影響を 補正した横ズレ量及び左右判別を検出する。
このようにすれば広い横ズレ量レンジにわたって正確な横ズレ量検出を行うこ とができ、 特に横ズレ量が大きい場合における検出精度を向上することができる。 請求項 8記載の構成によれば請求項 4記載の磁気式車両位置検出装置において 更に、 磁気マーカの磁界変化成分を含む所定幅の帯域を除く他の帯域の信号成分 を除去する処理を行うので、 検出精度の向上を図ることができる。
請求項 9記載の構成によれば請求項 1記載の磁気式車両位置検出装置において 更に、 進行方向磁気センサの出力信号の変調信号成分に基づいて磁気マーカの進 行方向位置を判定する。 このようにすれば磁気マ一力の進行方向位置を正確に検 出することができる。
請求項 1 0記載の構成によれば請求項 5記載の磁気式車両位置検出装置におい て更に、 検出した三つの方向の磁界成分のピーク値に基づいて磁気マーカの進行 方向位置を判定し、 求めた過去 (直前の) の複数の磁気マ一力位置から次の磁気 マ一力中間点を算出し、 この磁気マーカ中間点における磁界の大きさに基づいて、 磁気マーカによる磁界 (信号磁界) 以外のバックグラウンド磁界、 特にそのうち の長周期の外乱磁界による磁界のレベルを抽出し、 これにより磁気センサで検出 した磁界 (検出磁界) からこのバックグラウンド磁界を差し引いて、 信号磁界を 抽出する。 これにより検出精度の向上を図ることができる。
請求項 1 1記載の構成によれば請求項 1記載の磁気式車両位置検出装置におい て更に、 今回通過した磁気マーカから抽出した横ズレ量と、 連続する直前の複数 の磁気マーカから抽出された直前の複数の横ズレ量の平均値とに基づいて短周期 の外乱磁界によるノイズ成分を除去する。 これにより検出精度の向上を図ること ができる。
請求項 1 2記載の構成によれば請求項 1記載の磁気式車両位置検出装置におい て更に、 磁気マーカの配置変化に基づいて道路形状情報を検出する道路形状情報 検出手段を備える。 このようにすれば、 この磁気式車両位置検出装置の多機能化、 複合機能化を実現し、 たとえば、 濃霧のワインディングロ—ドなどにおいて、 前 方所定距離前方に存在する急カーブやアップダウンの存在、 更には湾曲方向や傾 斜率などを、 運転者に報知することができる。
請求項 1 3記載の構成によれば請求項 1記載の磁気式車両位置検出装置におい て更に、 隣接する複数の磁気マーカ間の通過時間に基づいて車両速度を算出する 車両速度算出手段を備える。 このようにすれば、 車速センサの追加なしに車速検 出を実現することができる。
請求項 1 4記載の構成によれば請求項 1記載の磁気式車両位置検出装置におい て更に、 抽出した橫ズレ量に基づいて操舵制御を行う。 このようにすれば、 安全、 快適なォ一トクルーズを実現することができる。
(三次元磁気センサを用いた横ズレ量算出原理の説明)
•検出法 1一小横ズレ量領域における横ズレ量の検出法
横ズレ量がたとえば 2 5 cm以内の小横ずれ領域では、 磁気マーカの中央部で最 も大きな出力を有し、 且つ、 横ズレ量が大きくなると急激に小さくなる垂直方向 磁界 B zを用いる。 これにより、 2 cm程度の精度で横ズレ量を測定することがで きる。 ただし、 左右方向の判別は、 磁気センサが磁気マーカの左に位置する場合 と、 右に位置する場合とで出力電圧の符号が反対となる水平 (左右) 方向磁界 B T yから判別することができる。
磁気センサの高さの補正が必要な場合には、 第 6図に示す、 垂直方向磁界 B z の最大値 B z maxと、 水平 (左右) 方向磁界 B yの最大値 B ymaxとセンサ高さと 横ズレ量とのマップを用いてセンサ高さの補正を行った横ずれ量を求めることが できる。
なお、 任意の横ズレ量において、 垂直方向磁界 B zの最大値 B z maxは、 磁気 センサが磁気マーカの直上または真横に位置する場合の値であり、 同様に、 水平 (左右) 方向磁界 B yの最大値 B y maxは、 磁気センサが磁気マ一力の真横に位 置する場合の値である。
横ズレ量の計算は、 第 6図に示すマップから直接求めることもできるし、 第 7 図に示す B z maxと B ymaxとの比と横ズレ量との略間の直線関係を利用して簡単 な一次方程式で求めることもできる。
•検出法 2—中横ズレ量領域における横ズレ量の検出法
横ズレ量がたとえば 2 5 cm〜 5 0 cm程度の中横ずれ領域では、 横ズレ方向に最 も大きな磁界変化を生じ、 横ズレ量が 1 0 cmを越えると横ズレ量と出力値が一対 一に対応する水平 (左右) 方向磁界 B yを用いる。 これにより、 4 c m程度の精 度で横ズレ量を求めることができる。 しかしながら、 水平 (左右) 方向磁界 B y は遠くまで広がっているが、 横ズレ量が 0の場合に信号電圧の符号が反転するこ とがないので外乱磁界と干渉し判別がしにくい。
これに比較して、 進行方向磁界 B xは、 水平 (左右) 方向磁界 B yと同様に遠 くまで広がっているが、 進行方向磁界成分 B xの符号は磁気マーカを越えると反 転するので、 磁気マーカの磁界と外乱磁界との判別が容易である。 したがって、 進行方向磁界 B xと水平 (左右) 方向磁界 B yとを組み合わせることが、 横ズレ 量 5 0 cmまでの範囲における横ズレ量の測定に好適である。
磁気センサの高さの補正が必要な場合には、 第 8図に示す進行方向磁界 B xの 最大値 B xmaxと水平 (左右) 方向磁界 B yの最大値 B ymaxとのマップから高さ を算出し、 この高さに基づいて横ずれ量を補正することができる。 横ズレ量の計 算は、 第 8図に示すマップから直接求めることもできるし、 第 9図に示す B xma Xと B ymaxとの比と横ズレ量との略直線関係を利用して簡単な一次方程式で求め ることもできる。
•検出法 3—大横ズレ量領域における横ズレ量の検出法
横ズレ量がたとえば 5 0〜 1 0 0 cmの大横ずれ領域では、 進行方向磁界 B xの 最大値と最小値を示す地点間の進行方向距離を求め、 第 1 0図または第 2 4図か らわかるように、 高精度に横ずれ量を算出することができる。 この時、 水平 (左 右) 方向磁界 B yの符号から左右判別がなされる。 この検出方法では、 高さの影 響を無視することができる。 なお、 第 1 0図はシミュレーションで求めた図であ り、 第 2 4図は実験で求めた図である。 これらのシミュレーション及び実験は、 磁気マーカの直径を 1 0 0 mm、 その厚さを 5 mm、 磁気マーカ上端面よりの磁気セ ンサの高さを 2 5 0 mmとして行った。
•検出法 4一大横ズレ量領域における横ズレ量の他の検出法
横ズレ量がたとえば 3 0ないし 4 0 cmから 1 m程度の大横ずれ領域では、 進行 方向磁界 B Xの最大値と最小値との間の差である進行方向磁界 B Xの最大変化量 B x maxを求め、 この B x maxと横ズレ量との関係を示すマヅプ (第 2 5図参照) から横ズレ量を検出することができる。 第 2 5図からわかるように、 横ズレ量が たとえば 3 0ないし 4 0 cmから l m程度となると、 磁気センサの高さが変化して も、 B x maxはほとんど影響を受けず、 このため高さ補正なしにすばやくかつ高 精度に横ズレ量を検出することができる。 なお、 この場合も、 水平 (左右) 方向 磁界 B yの符号から左右判別がなされる。
更に、 この進行方向磁界 B Xの最大変化量 B x maxから横ズレ量を求める検出 法は、 上述した進行方向磁界 B xの最大値と最小値を示す地点間の進行方向距離 距離に基づいて横ズレ量を求める検出法よりも横ズレ量が大きい領域で検出感度 が高いことが実験からわかった。
ただし、 進行方向磁界 B xの最大変化量 B x maxから横ズレ量を求める検出法 では、 実験結果を示す第 2 5図からわかるように、 横ズレ量が 3 0 cm未満で高さ 変化による出力変化が大きいのでその補正が必要となる。 したがって、 横ズレ量 が小さい場合には上記検出法 1 ~ 3を適宜選択し、 横ズレ量が大きい場合には上 記検出法 4を採用するようにしてもよい。
•その他の検出法 5 その他、 水平 (左右) 方向磁界 B yからも横ずれ量を算出することができ、 こ の場合はセンサの高さ変動の影響も無視できる。 進行方向磁界 B xと水平 (左右) 方向磁界 B yとのどちらかを条件に応じて適宜選択することができる。 また、 進 行方向磁界 B xで検出した横ズレ量と、 水平 (左右) 方向磁界 B yで検出した横 ズレ量との平均値を横ズレ量とすることもできる。
しかしながら、 水平 (左右) 方向磁界 B yは外乱の影響を受けやすく、 進行方 向磁界 B xの最大値と最小値との差は外乱の影響を受けにくいので、 進行方向磁 界 B xの最大値と最小値との差から算出する方が望ましい。
(センタ誘導方式の説明)
次に、 道路の走行レーンの中央すなわち本明細書でいうセン夕への車両誘導の 方式について以下に説明する。
上述したように、 自動車が道路に進入した場合に、 従来セン夕から 2 5 cm以内 に近付づかないとセン夕誘導を開始することができなかったが、 進行方向磁界 B Xの変化に基づいて横ズレ量を求める本発明の横ズレ量検出方式では、 ほとんど 自動車の走行レーンのどの位置でもセン夕への誘導を開始することができる。 更に、 進行方向磁界 B x、 水平 (左右) 方向磁界 B yおよび垂直方向磁界 B z を検出し、 これらの信号を用いて、 進行方向磁界 B Xのみによる横ズレ量算出、 進行方向磁界 B Xおよび水平 (左右) 方向磁界 B yの組み合わせによる横ズレ量 算出、 垂直方向磁界 B zおよび水平 (左右) 方向磁界 B yの組合せによる横ズレ 量算出を行い、 これら 3種類の横ズレ量から適宜選択することにより、 横ズレ量 が小さい範囲、 中程度の範囲および大きい範囲のどの範囲でも高精度で横ズレ量 を求めることができる。
たとえば、 この磁気誘導道路への車両の進入時には、 自動車はセン夕から 5 0 〜 1 0 0 cm離れた地点に位置するので、 進行方向磁界 B xおよび水平 (左右) 方 向磁界 B yより横ズレ量を算出する。
次に、 この横ズレ量を用いて車両をセン夕側に誘導することにより横ズレ量が 減少すれば、 進行方向磁界 B xおよび水平 (左右) 方向磁界 B yの組み合わせか ら横ズレ量を算出し、 この算出値に従ってさらに車両をセンタ側へ誘導する。 更に、 横ズレ量が小さくなれば、 求めた B x、 B y、 B zの組み合わせから高 い精度で横ズレを求めることができる。
また、 横ズレ量が 2 5 cmより大きくなつたとしても、 脱輪するまでの間に、 上 記方法で横ズレ量を再度検出することができるので、 再び中央部に自動車を誘導 復帰させることができる。 図面の簡単な説明
第 1図は、 本発明の磁気式車両位置検出装置 (磁気式車両位置検出方式) の原 理を示す模式斜視図である。
第 2図は、 磁気センサ 1 と磁気マーカ 3との配置状態を示す正面図である。 第 3図は、 横ズレ量すなわち磁気マーカ 3から左右方向 (水平) 方向への距離 と、 垂直方向磁界との関係を示す特性図である。
第 4図は、 横ズレ量すなわち磁気マーカ 3から左右方向 (水平) 方向への距離 と、 水平 (左右) 方向磁界との関係を示す特性図である。
第 5図は、 横ズレ量すなわち磁気マ一力 3から左右方向 (水平) 方向への距離 と、 進行方向磁界との関係を示す特性図である。
第 6図は、 横ズレ量 2 5 c m未満の範囲で用いる B zと B yとを次元とする二 次元仮想空間上における横ズレ量の等高線を示す特性図である。
第 7図は、 横ズレ量と、 B z / B yとの関係を示す特性図である。
第 8図は、 横ズレ量 2 5〜 5 0 c mの範囲で用いる B zと B x m a zとを次元 とする二次元仮想空間上における横ズレ量の等高線を示す特性図である。
第 9図は、 横ズレ量と、 B xmax/B ymaxとの関係を示す特性図である。
第 1 0図は、 横ズレ量 5 0〜 1 0 0 c mの範囲で用いるための B xmaxと B xmi nとの間の距離と、 横ズレ量との関係を示す特性図である。
第 1 1図は、 垂直方向磁界と横ズレ量との関係の測定例を示す特性図である。 第 1 2図は、 横ズレ量が 0〜 1 0 0 0 mmの範囲における進行方向磁界と横ズレ 量との関係の測定例を示す特性図である。
第 1 3図は、 横ズレ量が 4 0 0〜 1 0 0 0 mmの範囲における進行方向磁界と横 ズレ量との関係の測定例を示す拡大特性図である。
第 1 4図は、 横ズレ量が 0〜 1 0 0 0匪の範囲における水平方向磁界と横ズレ 量との関係の測定例を示す特性図である。
第 1 5図は、 横ズレ量が 4 0 0〜 1 0 0 0腿の範囲における水平方向磁界と横 ズレ量との関係の測定例を示す拡大特性図である。
第 1 6図は、 磁気マーカと進行方向同一位置における橫ズレ量と各磁気センサ の出力電圧との関係を示す特性図である。
第 1 7図は、 実施例 1のコンビュ—夕 2の制御例を示すフロ—チヤ一トである。 第 1 8図は、 実施例 1のコンピュータ 2の制御例を示すフローチヤ一トである。 第 1 9図は、 実施例 1のコンビュ—夕 2の制御の変形例を示すフローチヤ—ト である。
第 2 0図は、 実施例 1のコンビュ—夕 2の制御の変形例を示すフローチヤ一ト である。
第 2 1図は、 磁気マ一力 3を結ぶセンタ—ラインから右に 20cm横ずれしたライ ンを走行する場合における各磁気センサの出力を示すための特性図である。
第 2 2図は、 磁気マーカ 3を結ぶセン夕一ライン上を走行する場合における各 磁気センサの出力を示すための特性図である。
第 2 3図は、 磁気マーカ 3を結ぶセン夕—ラインから左に 20cm横ずれしたライ ンを走行する場合における各磁気センサの出力を示すための特性図である。
第 2 4図は、 実験により求めたピーク間距離 L xと横ズレ量との関係を示す特 性図である。
第 2 5図は、 実験により求めた進行方向磁界 B xの最大値と最小値との差 B x ' , = B xmaxと横ズレ量との関係を示す特性図である。
第 2 6図は、 実施例 2の横ズレ量検出方式を示すフローチャートである。 発明を実施するための最良の形態
上記説明した本発明の各構成の更に詳細な説明及び他の特徴を以下の実施例を 参照して説明する。
実施例 1
以下、 進行方向磁気センサ、 垂直方向磁気センサ及び水平方向磁界センサから なる三次元磁気センサを用いて横ズレ量を抽出する磁気式車両位置検出装置の実 施例について説明する。
(装置構成)
この磁気式車両位置検出装置の装置構成を第 1図を参照して説明する。
この磁気式車両位置検出装置は、 車両の前部下面に設けられた三次元磁気セン サ 1と、 この三次元磁気センサ 1の出力信号を処理して横ズレ量を算出する車載 のコンピュータ 2とからなる。 三次元磁気センサ 1は、 垂直方向磁気センサ 1 1、 水平方向磁界センサ 1 2、 及び、 進行方向磁気センサ 1 3からなる。 水平方向磁 気センサ 1 2は車両左右方向の磁界成分を検出し、 進行方向磁気センサ 1 3は車 両前後方向の磁界成分を検出し、 垂直方向磁気センサ 1 1は車両左右方向及び車 両前後方向に対してそれそれ直角な方向すなわち車両高さ方向の磁界成分を検出 する。 磁気センサ 1は第 2図に示すように路面から約 25cmの高さに設置されてい る。
3は、 道路の車線中央部 (セン夕) に沿って路面に一定間隔で (たとえば 2 m ごとに) 設置された磁気マ一力であって、 磁気マ一力 3は、 直径 1 0 0醒で高さ 約 5 mmの円盤形状の永久磁石からなり、 最大エネルギー積が約 1 6 0 0 0 0 J / m3のものを用いた。 磁気マーカ 3の上側の主面は一方の磁極たとえば N極に磁化 されている。
(磁気マ一力 3周囲の磁界分布)
磁気マーカ 3がその周囲に作る磁界分布について説明する。 なお、 各図におい て進行方向磁界 B x、 水平 (左右) 方向磁界 B yおよび垂直方向磁界 B zは G (ガウス) すなわち 0 . 0 0 0 1 · Tを単位として図示されている。
まず、 検出磁界の進行方向磁界、 水平 (左右) 方向磁界および垂直方向成分 B x、 B yおよび B zと横ズレ量 (横ズレ量ともいう) との関係を第 3図〜第 5図 に示す。 測定点は高さ 2 5 cmである。
垂直方向磁界 B zは、 第 3図に示すように、 磁気マーカ 3近傍で鋭いピークを もつが、 磁界の広がりは 2 5 cm程度と狭く、 かつ、 左右対照の分布形状を有する。 したがって、 垂直方向磁界 B zは、 横ズレ量が 2 5 cm以内で大きく、 中心付近で 特に大きな値を有するが、 その代わり、 横ズレ量が 2 5 cm以上になると小さくな る たとえばフルスケールが 0. 0005 ( T (テスラ) ) 、 感度が 0. 0000 1 Tの性能を有する垂直方向磁気センサ 1 1を用いれば、 0〜250 mmまでの 横ズレ量を位置精度 20mmという高精度で測定することができる (第 3図参照) 。 ただし、 この場合、 左右判別は水平方向磁界センサ 12の出力値の符号から判定 する必要が有る。
水平 (左右) 方向磁界 Byは、 磁気マーカ 3の直上で 0であり、 磁気マーカ 3 の直上から 15 cm程度離れた点にピークを有し、 lm近くまでの広い広がりを持 つ左右で符号が反対の分布形状をもつ。 したがって、 車が磁気マ一力 3を通過し た時点における垂直、 水平方向のセンサ 1 1、 12の出力電圧は、 横ズレ量に応 じた B z、 Byの検出値に対応することになる。 水平 (左右) 方向磁界 Byは、 1 mまで出力され、 横ズレの左右判別もその符号から判別することができるが、 磁気マーカ 3の直上では出力が 0となるために横ずれ位置を特定できない。
たとえば、 フルスケール 0. 0017 (T (テスラ) ) 、 感度 0. 00000 24 Tの性能を有する水平方向磁界センサ 12を用いれば、 250〜500 mm までの横ズレ量を測定することができる (第 4図参照) 。 この時の検出精度は上 述の垂直方向磁気センサ 1 1の場合よりやや悪化するが、 500丽までは問題な く測定することができる。 更に本発明者らは、 進行方向磁界 Bxの変化に基づ いて横ズレ量を測定できることを見出した。
たとえばフルスケール 0. 00003 (T (テスラ) ) 、 感度 0. 00000 1 · Tの性能を有する進行方向磁気センサ 13を用いれば、 進行方向磁界 B の 最小値 (最小ビーク) と最大値 (最大ピーク) との間の距離と横ズレ量との関係 をあらかじめ記憶しておくことにより、 横ズレ量を簡単な一次式で算出できるこ とを新たに見い出した。
これにより、 横ズレ量を 500〜 1000腿の範囲で検出精度 100 mmで測定 することができる。 この場合の横ズレ量精度は 100mmとやや悪化するが、 10 00mmまで測定可能である。 なお、 ここで述べた進行方向磁気センサ 13の出力 信号を用いた横ズレ量測定の詳細は後で詳述する。 .
なお、 進行方向磁界 Bxを用いたその他の横ズレ量検出方式として、 進行方向 磁界 Bxの最小値 (最小ピーク) と最大値 (最大ピーク) との間の進行方向磁界 B xの最大変化量 B xmaxと横ズレ量との関係をあらかじめ記憶しておくことに より、 横ズレ量を更に高精度かつ簡単に求めることができることも見い出した。 この方式についても後で詳述する。
結局、 第 3図〜第 5図から、 横ズレ量が小さい場合には、 垂直方向磁界 Bzと 横ズレ量との関係を用いて横ズレ量を求め、 更に水平 (左右) 方向磁界 Byの符 号で左右を判定して行うこと。 横ズレ量が 250mmを超えた場合には水平 (左右) 方向磁界 B yと横ズレ量との関係を用いて横ズレ量を求めること。 横ズレ量が 5 00mmを超えた場合には、 最も検出範囲が広い進行方向磁気センサ 13を用いた 横ズレ量検出を行うことが望ましいことが理解される。
もちろん、 本実施例の特徴をなす進行方向磁気センサ 13の信号だけで横ズレ 量を抽出してもよい。
(横ズレ量抽出の一例)
三つの磁気センサを用いた横ズレ量抽出の一例を以下に説明する。
まず、 自動車の磁気センサ 13が磁気マ一力 3に 80 cn!〜 lm程度まで近付 くと、 Bxはマイナス値となり、 B yの符号は自動車が磁気マ一力 3の左を通る 場合はプラス値、 右を通る場合はマイナス値となる。 磁気センサ 1が磁気マーカ 3の配列ラインの直上を通過する場合には、 Byは変化しない。 その後、 磁気セ ンサ 1が磁気マーカ 3に近付くにつれて Bxは小さくなって負のビーク値となり、 Byは大きくなる。
磁気センサ 1が磁気マ一力 3に 25 cm以内に近付く と、 B zが出力し始める。 さらに近付く と By、 B zは更に大きくなるが、 Bxは負のピーク値 (最小値) となった後、 逆に小さくなり始める。 そして、 磁気センサ 1が磁気マ一力 3の真 横 (進行方向において等しい位置) に達すると、 Bxは 0になり、 By、 B zは ともに最大値をとる。 その後は、 By、 B zは小さくなつていき、 Bxは、 ブラ ス値を出力し始める。
磁気センサ 1が磁気マーカ 3から 25 cm以上離れると、 B zは非常に小さくな る。 Bxは正のピーク値 (最大値) となり、 その後、 徐々に減少していく。
結局、 Bx、 Byは、 磁気マーカ 3から 1 m以内で検出可能なれベルで変化し、 B zは 25 cm以内で検出可能なレベルで変化することがわかる。 但し、 磁気マー 力 3近傍では、 B zの出力が最も大きく、 B Xは中央で出力が 0になる。 また、 B yは、 磁気センサ 1が磁気マーカ 3が存在する走行レーンの中央を通過した時 は、 その出力は 0となる。
第 3図に示す垂直方向磁界 B zは、 横ズレ量が 0、 すなわち、 磁気センサ 1が 磁気マーカ 3の直上または真横にある場合に出力が最大になる。
第 4図は、 磁気センサ 1が左右一方側から磁気マーカ 3に接近した場合の出力 を示した図である。
水平磁界 B yは、 磁気マ一力 3の左では、 出力がプラス、 磁気マーカ 3の右で は、 出力がマイナスになり、 中央部 (磁気マーカ 3の直上) では 0になる。 また、 磁気マーカ 3の中央部から離れると、 変化し始め、 最大値 (正のピーク値) ある いは、 最小値 (負のピーク値) をとり、 1 m程度離れると 0になる。 B yは、 左 がプラス、 右はマイナスになるので、 左右判別ができる。 さらに横ズレ量が l m まで出力が得られるが、 中央では出力が 0になる。
磁気センサ 1が走行レーンの中央を磁気マーカ 3の前方からその後方へ通過す る場合における磁気マーカ 3からの距離と進行方向磁界 B Xの変化との関係は、 磁気センサ 1が磁気マーカ 3の左右一方側から磁気マーカ 3を越えて他方側へ移 動する場合における磁気マーカ 3からの距離と水平 (左右) 方向磁界 B yの変化 との関係と等しくなる。
車両が所定の横ズレ量で前進している場合の水平 (左右) 方向磁界 B yは、 磁 気センサ 1が磁気マ一力 3の真横にきた場合に最大値 B y maxとなる。 ただし、 横ズレ量が 0の場合は水平 (左右) 方向磁界 B yは 0である。
同様に、 車両が所定の横ズレ量で前進している場合の垂直方向磁界 B zは、 磁 気センサ 1が磁気マーカ 3の真横にきた場合に最大値 B z maxとなる。
また、 進行方向磁界 B xは、 磁気センサ 1が磁気マーカ 3の進行方向前方にお ける所定の位置で最小値 (負のピーク値) となり、 磁気センサ 1が磁気マーカ 3 の横または直上に位置する場合に 0となり、 磁気センサ 1が磁気マ一力 3の進行 方向後方における所定の位置で最大値 (正のビーク値) となる。
そこで、 進行方向磁界 B xの最大値 (正のピーク値) と最小値 (負のピーク値) との差を B xmaxとする。 また、 B xが最大値である地点と最小値である地点と の間の進行方向距離を Lxとする。
次に、 上述した各信号値 B x max、 B ymax、 B z maxの特長を述べる。
信号値 B z maxは、 磁気マーカ 3付近では、 出力が最も大きいので精度よくセ ン夕一位置を確認できる。 しかし、 測定できる横ズレ量範囲が狭く、 また磁気マ 一力 3左右で対称であるために、 左右どちらがわにズレているかが判定できない。 信号値 B y maxは、 測定できる横ズレ量範囲広く、 また磁気マーカ 3の左右方 向判別ができる。 しかし、 セン夕において出力がゼロのため、 セン夕にいるのか、 1 m外に外れているかがわからない。
信号値 B x maxは、 測定できる横ズレ量範囲広く、 磁気マーカ 3に近いほど大 きくなるが、 B z maxと同様、 磁気マーカ 3の左右方向判別ができない。
信号値 B ymaxと信号値 B z maxとを組み合せる従来の横ズレ量検出では、 2 5 cmまでの検出が限界であつたが、 信号値 B x maxと信号値 B ymaxとを組み合せる ことにより、 測定できる横ズレ量範囲を lmと広く とることができる。
また、 進行方向磁界 B xは、 磁気マーカ 3通過時において極性が変化すること を用いることにより外部ノイズ判別が容易にできる。 それについて後で説明する。 (横ズレ量の高さ補正)
実際は、 自動車が高速で走行すると高さによる検出磁界の変動を生じるが、 こ の変動はマップ処理で補正することが可能である。 以下、 この高さ補正について 説明する。
まず、 横ズレ量が 2 5 cm以内では、 第 6図に示すマップによって磁気センサ 1 の高さを補正して横ずれ量を抽出することができる。 すなわち、 第 6図に示すよ うに S直方向磁界 B zと水平 (左右) 方向磁界 B yとの比は、 センサ高さによら ず、 横ズレ量一定になるので、 その比からセンサ高さの補正をしながら、 横ずれ 量を判定することができる。
次に、 横ズレ量が 2 5〜 5 0 cmの範囲では、 第 8図に示すマップによって進行 方向磁界 B xと水平 (左右) 方向磁界 B yとから磁気センサ 1の高さを補正して 横ずれ量を抽出することができる。 すなわち、 第 8図に示すように進行方向磁界 B xと水平 (左右) 方向磁界 B yとの比は、 センサ高さによらず、 横ズレ量一定 になるので、 その比からセンサ高さの補正をしながら、 横ずれ量を判定すること ができる。
最後に、 横ズレ量が 5 0〜 1 0 0 cmの範囲では、 B Xまたは B xmaxの最大値 と最小値との差から横ずれ量がわかる。 第 1 0図に示すように、 この時、 磁気マ —力 3が十分離れているので、 高さの影響は、 ほとんど受けない。 本実施例では、 次の式
(横ズレ量) = 1 . 8 5 X B max - 3 9 0 を用いて横ズレ量を算出する。 ただし、 B Xの単位は G ( 0 . 0 0 0 1 · T ) である。
また、 第 4図からわかるように、 水平 (左右) 方向磁界 B yからも横ずれ量を 検出することができる。 更に、 進行方向磁界 B xで求めた横ズレ量と、 水平 (左 右) 方向磁界 B yで求めた横ズレ量の平均値を最終の横ズレ量とすることもでき る。 ただし、 水平 (左右) 方向磁界 B yは外乱の影響を受けやすく、 進行方向磁 界 B xの最大値と最小値との差は外乱磁界の影響を受けにくい。
(外乱磁界対策)
以下、 外乱磁界に対する対策について説明する。
主な外乱磁界としては、 地磁気及び、 鉄橋、 トンネル、 ビル等による局所的な 磁界変化源がある。 これらの外乱磁界は、 2 m間隔の磁気マーカ 3に対して一様 あるいは 2 m以上の長い周期をもつ長周期磁界と 2 m以下の短周期磁界及びその両 者の重ね合せ磁界の三つに分類される。
まず、 進行方向の外乱磁界について説明する。
進行方向磁界 B xは磁気マーカ 3の設置間隔である 2 mごとに符号が反転する とともに、 遠くまで拡がっていて、 道路上のどこを走っていても検出が可能であ る。 したがって、 進行方向磁界 B xは他の磁界よりも外乱磁界と最も分別しやす い 0
次に、 長周期外乱磁界について説明すると、 その大きさは、 隣接する 2つの磁 気マーカ 3間でほぼ一定であるので、 2つのマ一力 3の中間の値を求め、 その値 を外乱値と判定して磁気センサ 1の測定値から減算すればよい。 そして進行方向 磁界 B xの最大値と最小値との差から B x maxを求め、 求めた B x maxから横ズレ 量を求めることができる。 横ズレ量の検出精度を上げるために複数個の測定値の 平均値を利用してもよい。
次に短周期外乱磁界の影響を除去する方法を説明する。
短周期外乱磁界が 2つの磁気マーカ 3の間にある場合は、 磁気マーカ 3の 2 m という配置間隔と車速とにより決定される周期を求め、 その周期以外の周期の磁 界は外乱磁界と判定し分離する。 但し、 この場合、 周期判別なので複数個の測定 値を利用する。
次に長周期と短周期の重なった外乱磁界の影響を辞去する方法を説明する。 長周期と短周期の重なった外乱磁界の場合、 ソフ トウェアによるローパスフィ ル夕などを用いて短周期外乱磁界を除去し、 その後、 順次得られる複数個の測定 値を利用して長周期外乱磁界を除去する。
次に、 垂直方向磁界 B zについて説明する。
垂直方向磁界 B zは中央部すなわち横ズレ量 2 5 cm以内で大きいので、 中央部 付近での横ズレ量抽出により自動車を道路中央に保持するのに好都合である。 外 乱磁界が重なると、 B z maxが誤差を含んで横ズレ量の誤差が大きくなるので、 その補正が重要となる。
もし横ズレ量が 2 5 cm以内にあれば、 垂直方向磁界 B zは一定周期の信号とな るので、 短周期外乱磁界については進行方向磁界 B xと同様に周波数の違いを利 用して除去することができる。 但し、 この場合、 周期判別なので複数個の判別値 を利用する。
長周期外乱磁界については、 プラスからマイナスに大きく変動する進行方向磁 界 B xが 0になった時点の垂直方向磁界 B zの値 B z oを求め、 隣接する 2つの 磁気マーカ 3の中間の B zの値 B z mを求めて、 それを外乱磁界とし、 B z oから B z mを差し引くことによって辞去することができる。 検出精度を上げるために は、 複数個の測定値を利用することが有効である。
水平 (左右) 方向磁界 B yも進行方向磁界 B xと同じく l m程度の磁界の広が りをもつが、 横ズレ量 15cm以上では、 水平 (左右) 方向磁界 B yは一方向磁界と 考えられるので、 垂直方向磁界 B zと同様に扱うことができる。 安全性を考慮すると、 磁気マ一力 3を確実にキヤツチしていることが重要であ り、 特に、 進行方向磁界 B xは磁気マーカ 3の設置地点で、 信号がプラスマイナ スに変化し、 さらに、 磁気マーカ 2の配置間隔に依存する周波数をもっているの で、 磁気マーカ 3を確認する最良質な信号であるといえる。
結局、 B xに加えて B y、 B zも利用すれば、 セン夕中央から 1 m程度の位置 までの横ズレ量を求めることができる。 セン夕を大きく外れていた場合でも、 B Xと B yとの組合せで確実にセン夕に誘導されてくる。 そして、 磁気センサ 1が セン夕へ誘導されると、 その後、 非常に大きな B xと B z及びかなり大きな B y という 3つの信号によって、 自動車は、 大きく且つ複雑な外乱磁界に杭して、 確 実にセン夕に把持される。 つまり、 トンネルや鉄橋等の複雑で強力な外乱磁界の 影響を受けても、 セン夕に誘導され、 安全走行が可能である。
更に具体的に説明すると、 横ズレ量が 20cm程度の位置で走行中に、 トンネル等 の外乱磁界が大きい環境下で 3個程度の磁気マーカ 3を見失うとステアリング角 度を最大 5度で操舵したとすると中央から 50cm程度外れてしまうこととなる。 こ の場合でも、 1 mまで検出できるので、 再び磁気マ一力 3をキャッチし、 その上 で外乱磁界を計算、 補正し後に横ズレ量を算出し、 それに応じてセン夕誘導を再 び開始することができる。 このようにして、 強力な外乱磁界下でも、 自動車のセ ン夕誘導保持が可能となる。
また、 車両がセン夕中央に保持される場合には、 進行方向磁界 B xも垂直方向 磁界 B zも大きく振動するので、 磁気マーカ 3の位置を確実に検出することがで きる。 また、 磁気センサ 1が磁気マーカ 3上を通過する際、 横ズレ量に応じて、 自動車を道路中央へに速やかに誘導が開始できる。 これは、 カーブでの誘導に特 に効果的である。 従来方法だと、 磁気マーカ 3を通過して横ズレ量を計算するま でにかなりの時間を要し、 応答性が悪く、 カーブでは、 磁気マーカ 3の配置間隔 を 2 mから 1 mに縮める必要があった。
(制御動作例の説明)
次に、 第 1 7図、 第 1 8図に示すフローチャートを参照して上述した各検出動 作の具体的な実施順序を説明する。
まず、 電源投入によりス夕— ト後、 初期化を行い (S 1 0 0 ) 、 磁気センサ 1 1〜 1 3の出力信号から垂直磁界成分測定値 B z、 水平磁界成分測定値 B y、 進 行磁界成分測定値 Bxを読み込む ( S 1 02) 。
次に、 進行方向磁界成分測定値 Bxの変動成分 Bx' の符号が負から正へ反転 する符号反転時点を求めて、 磁気マーカ 3の位置を確認する (S 104) 。
次に、 隣接する 2つの上記符号反転時点間の時間として定義される周期を算出 し、 この周期に基づいて隣接する 2つの磁気マーカ 3間の中間地点に相当する中 間時点を求め、 この中間時点における進行方向磁界成分測定値 Bx、 水平方向磁 界成分測定値 B y、 垂直磁界成分測定値 B zを外乱オフセッ トレベルの今回値と して記憶する (S 1 06 )
次に、 予め算出した直前 5回の外乱オフセッ トレベルの平均値と上記今回値と の差が 0. 1 G未満かどうかを調べ (S 1 08) 、 未満であれば上記今回値含む 直前の 5回の外乱オフセッ トレベルの平均値を新たに算出し (S 1 1 0) 、 以上 であれば上記予め記憶する直前の 5回の外乱オフセッ トレベルの平均値を変更す ることなく、 S 1 14へ進む。
S 1 14では、 検出した垂直磁界成分測定値 B z、 水平磁界成分測定値 B y、 進行磁界成分測定値 B Xから上記外乱オフセッ トレベルの平均値を差し引いて、 各磁界成分測定値のうちの変動信号成分 Bx' 、 By' 、 B z 5 とする (S 1 1 4) 。 これにより、 隣接する 2個の磁気マーカ 3間の中間の磁界成分の値を地磁 気および長周期外乱磁界とみなして垂直磁界成分測定値 B z、 水平磁界成分測定 値 B y、 進行磁界成分測定値 Bxから差し引き、 地磁気と外乱磁界を相殺するこ とができる。
次に、 入力される進行方向磁界成分測定値 Bxの最大値または変動信号成分 B X 5 の最大値を求めて記憶し (S 1 1 6) 、 進行方向磁界成分の変動信号成分 B X ' が 0のところで磁気マーカ 3を通過したと判定し (S 1 1 8) 、 まだ通過し ていなければ S 1 14ヘリ夕一ンし、 通過していれば S 1 20へ進んでその時の S直磁界成分 B zの変動信号成分 B z ' および水平磁界成分 B yの変動信号成分 B 5 を求めて記憶し、 更に、 進行方向磁界成分測定値 Bxの最小値またはその 変動信号成分 Bx, の最少値を求めてそれを記憶する (S 1 24) 。
次に、 変動信号成分 Bx' の最大値と最小値との差を算出して進行方向磁界成 分の最大変化量 Bxmaxとして記憶し、 同時に変動信号成分 Bx' の最大値と最 小値との間の距離 Lxを、 カウン夕でカウントした上記周期および別に検出した 車速との積から算出する ( S 1 2 5 ) 。 なお、 フローチヤ一トでは、 進行方向磁 界成分の最大変化量 Bxmaxは Bx' ' と記載されている。 また、 この明細書で Tはテスラ (磁界強度単位) を意味する。
次に、 距離 Lxが予め記憶する所定範囲から逸脱している場合には、 検出した 進行方向磁界への外乱の影響が大きいもの判定として S 1 02ヘリ夕—ンする ( S 12 6 ) 。
次に、 求めた進行方向磁界成分の最大変化量 Bxmax ( = Βχ' 5 ) 及び距離 Lxに基づいて横ズレ量検出方法を次のように選択する (S 1 27) 。
進行方向磁界成分 Bxの最大変化量 Bxmax ( = Bx, ' ) が 0. 6 x 0. 0 00 1 · T以上と大きい場合には磁気マーカ近傍にあるものとして変動信号成分 B z ' 、 B y ' と横ズレ量との関係を示す内蔵のマップから 0〜25cm内での横 ズレ量を求め ( S 1 2 8 ) 、 最大変化量 Bxmax ( = Bx, , ) が 0. 06 5 x 0. 000 1 · T~ 0. 6 x 0. 000 1 · Τの範囲であれば磁気マーカ 3から 25〜50cm程度離れているものとして変動信号成分 Bx, 、 B y' と横ズレ量 との関係を示す内蔵のマップから 25〜50cm内での横ズレ量を求め (S 130)、 最大変化量 Bxmax ( = Βχ, ' ) が 0. 0 6 5 x 0. 00 0 1 · Τ未満であれ ば横ズレ量が更に大きいと判定して距離 L Xと横ズレ量との関係を示す内蔵のマ ヅプから 50〜 1 00cmの横ズレ量を求めるか所定の計算式で算出する ( S 13 2)
次に、 上述のようにして直前の 5個の磁気マーカ 3において算出した横ズレ量 の平均値と、 今回算出した横ズレ量の今回値との差を算出し (S 134) 、 その 差が 100mm未満であれば、 上記今回値を含む直前の 5個の横ズレ量搬出値の平 均値を新たに算出し (S 1 36) 、 この差が大きくずれている場合には上記平均 値の新規算出を行わず、 かつ、 横ズレ量の今回値を記憶する上記平均値として (S 1 38) 、 S 140へ進む。
次に、 自動車の E CUからの信号に基づいてそれが現在自動運転中かどうかを 判断し (S 140) 、 そうであれば E CUに上記横ズレ量の今回値を出力して、 E CUにこの横ズレ量を解消する向きにステアリング制御を行わせ (S 144) 、 かつ、 横ズレ量が大きい場合にだけ音声又は運転席のデスプレイにて警告を発し (S 142) 、 そうでなければステアリング制御を行わず上記警告だけを発する。
(変形態様) 、
上述した S 100から S 1 27までの制御動作の他例を第 1 9図、 第 20図に 示すフローチャートを参照して説明する。
まず、 この制御では、 第 20図に示すように短い時間間隔で定期的に実施され る割りこみルーチンを 2 1 2を有しているので、 これから先に説明する。
まず、 進行方向磁界測定値 Bxを入力し (S 2 00 ) 、 Bxが最小値かどうか を調べる (S 2 02 ) 。 なお、 この検出は連続的に変化する Bxの微分係数が負 から正に変化する期間に行う。 高周波ノイズ信号による誤判定を回避するために 高周波信号成分はあらかじめソフ トウエア又はハードウエア構成のローパスフィ ルタを用いて除去しておくことが好ましい。
S 202にて、 上記最小値を検出したら第 2タイマをリセッ トしてから再ス夕 —トし (S 204) 、 そうでなければ S 204をジャンプして、 S 206へ進む。
S 206では、 進行方向磁界測定値 Bxが最大値かどうかを調べる。 なお、 こ の検出は連続的に変化する Bxの微分係数が正から負に変化する期間に行う。 高 周波ノイズ信号による誤判定を回避するために高周波信号成分はあらかじめソフ トウエア又はハードウエア構成のローパスフィルタを用いて除去しておくことが 好ましい。
S 206にて、 上記最大値を検出したら S 208へ進み、 検出しなければ第 1 9図に示すメインルーチンヘリ夕一ンする。 S 2 08では、 第 2夕イマのカウン ト値を調べて記憶し、 次に、 このカウント値に車速を掛けて距離 Lxを算出し (S 2 1 0) 、 次に、 これら最大値と最小値との差 Bxmax ( = Bx, ' ) を求 めて (S 2 12) 、 メインルーチンにリターンする。
なお、 Bxが上記最小値である地点は磁気マーカ 3の手前でかつ磁気マーカ 3 の近傍に存在し、 Bxが上記最大値である地点は磁気マーカ 3を越え、 かつ磁気 マ一力 3の近傍に存在している。
次に、 第 17図、 第 1 8図に示す S 100~S 1 27を簡略化した制御例を第 19図のフロ一チャートを参照して説明する。
S 102にて、 各方向の磁界成分測定値 Bx、 By、 B zを読み込み後、 予め 保持する進行方向磁界の平均値 (直流レベルすなわちオフセッ トレベル) Bxm と進行方向磁界測定値 Bxとの差 Bx, を算出し (S 103) 、 差 Bx, が 0か どうか、 すなわち、 進行方向において現在、 磁気マーカ 3と同一地点かどうかを 調べ (S 104) 、 そうでなければ S 102ヘリ夕一ンする。
差 Bx' が 0であれば、 第 1夕イマのカウント値を記憶し (S 150) 、 第 1 夕イマをリセッ トしてから再ス夕一 トし (S 152) 、 車速を検出する (S 15 4) 。
この車速検出は次のように行われる。
上;記第 1夕イマのカウント値は進行方向において隣接する 2つの磁気マーカ 3 間の通過時間 Tを示し、 この隣接 2磁気マーカ 3間の距離 Lxは既知一定である から、 車速は Lx/Tとして算出できる。 なお、 公知の他の独立の車速センサを 採用する場合には、 第 1夕イマは不要である。
次に、 各方向の磁界成分の平均値 (直流レベルすなわちオフセッ トレベル) B xm、 B ym、 B zmを求める ( S 156 ) 。 算出は、 第 17図に示す方式の他、 各種方式が考えられる。
たとえば、 第 20図の S 202、 S 206で直前の 5つの磁気マーカ 3にて求 めた進行方向磁界 B Xの最大値と最小値とを全て加算し 10で割って求めてもよ い
次に、 S 156にて算出した各方向の磁界成分の平均値 Bxm、 Bym、 B z mと、 S 102で読み込んだ各方向の磁界成分の測定値 Bx、 By、 B zとの差 を求めて、 それらの変動成分 Bx, 、 By' 、 B z ' を算出する (S 158) 。 (その他の変形態様)
なお、 磁気マーカ 3を順次検出することにより、 または、 磁気マーカ 3の配置 間隔や、 その上面磁極反転などにより、 磁気センサ 1 1 1〜 13を用いて磁気マ —力 3から道路形状情報を検出することも可能である。
第 24図に、 ピーク間距離 Lxと横ズレ量との実際の関係を示す。 なお、 実験 条件は以下のとおりである。 横ズレ量 0〜 500匪の範囲で 1◦ 0腿ごとに 10 回測定を行い、 各測定値の平均値を黒丸で、 最大値、 最小値を白丸で示す。 測定 値のばらつきは、 回路ノイズと考えられる。 実施例 2
他の実施例を第 2 6図のフローチャートを参照して以下に説明する。
この実施例は、 上記実施例 1における S 1 3 2において、 距離 L xではなく、 進行方向磁界 B Xの最大値と最小値との差 B x max ( = B X, ' ) に基づいて、 横ズレ量を検出する点が実施例 1 と異なっている。
実験デ一夕を示す第 2 5図からわかるように、 横ズレ量が 5 0 0 mm以上では、 磁気センサ 1の高さの影響が非常に小さくなり、 かつ、 B x maxと横ズレ量との 関係がほぼ直線関係となるので、 横ズレ量が 5 0 0 mm以上ではあらかじめ記憶す る B x maxと横ズレ量との関係 (第 2 5図) から磁気センサ 1の高さ補正なしに 横ズレ量を簡単に推定することができる。 なお、 第 2 5図の実験条件は、 上述し た第 2 4図の実験条件と同じである。

Claims

請求の範囲
1 . 上端に一方の磁極を有して車線中央部に沿って所定間隔で配置された磁気マ 一力近傍の磁界変化を検出する車両搭載式の磁気センサと、
前記磁気センサの出力信号に基づいて前記磁気マーカを基準点とする前記車両 の左右方向への変位量である横ズレ量を抽出する横ずれ情報抽出手段と、
を備える磁気式車両位置検出装置において、
前記磁気センサは、 車両の進行方向磁界成分を検出する進行方向磁気センサを 有することを特徴とする磁気式車両位置検出装置。
2 . 請求項 1記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、 前記進行方向磁気センサの出力信号の最小値と最 大値との差である進行方向磁界の最大変化量に基づいて前記横ズレ量を抽出する ことを特徴とする磁気式車両位置検出装置。
3 . 請求項 1記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、 前記進行方向磁気センサの出力信号の最小値と最 大値との間の距離に基づいて前記横ズレ量を抽出することを特徴とする磁気式車 両位置検出装置。
4 . 請求項 1記載の磁気式車両位置検出装置において、
前記磁気センサは、 垂直方向磁界成分を検出する垂直方向磁気センサと、 前記 進行方向磁界成分および垂直方向磁界成分と直角な水平方向磁界成分を検出する 水平方向磁気センサとを更に有し、
前記横ずれ情報抽出手段は、 前記三つの磁気センサの出力信号に基づいて前記 車両の横ズレ量を抽出することを特徴とする磁気式車両位置検出装置。
5 . 請求項 4記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、 前記進行方向磁気センサの出力信号が反転する時 点における前記垂直方向磁気センサ及び水平方向磁気センサの出力信号値を用い て前記横ズレ量を抽出することを特徴とする磁気式車両位置検出装置。
6 . 請求項 4記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、 前記垂直方向磁気センサ及び水平方向磁気センサ の出力信号のピーク値を用いて前記横ズレ量を抽出することを特徴とする磁気式 車両位置検出装置。
7 . 請求項 4記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、
前記横ズレ量が大きい場合、 前記進行方向磁気センサの出力信号に基づいて前 記横ズレ量を抽出するとともに前記水平方向磁気センサの出力信号に基づいて左 右判別情報を抽出し、
前記横ズレ量が小さい場合、 前記進行方向磁気センサ及び水平方向磁気センサ の出力信号に基づいて前記横ズレ量を抽出し、
前記横ズレ量が更に小さい場合、 前記垂直方向磁気センサ及び水平方向磁気セ ンサの出力信号に基づいて前記横ズレ量を抽出することを特徴とする磁気式車両 位置検出装置。
8 . 請求項 4記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、 前記各磁気センサの出力信号のうち前記磁気マー 力により生じる磁界の変化成分を含む所定幅の有効帯域を除いた他の帯域の信号 成分を除去するフィル夕手段を備えることを特徴とする磁気式車両位置検出装置。
9 . 請求項 1記載の磁気式車両位置検出装置において、
前記進行方向磁気センサの出力信号の変調信号成分に基づいて前記磁気マーカ の進行方向位置を判定することを特徴とする磁気式車両位置検出装置。
1 0 . 請求項 1記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、
前記磁気センサの出力信号のピーク値に基づいて前記磁気マ一力の進行方向位 置を判定し、
互いに隣接する二つの前記磁気マーカの位置から磁気マ一力中間点を算出し、 前記磁気マ一力中間点における磁気センサの出力信号レベルに基づいて長周期 の外乱磁界によるノィズ成分を除去することを特徴とする磁気式車両位置検出装 置。
1 1 . 請求項 1記載の磁気式車両位置検出装置において、
前記横ずれ情報抽出手段は、
今回通過した前記磁気マーカから抽出した前記横ズレ量と、 連続する直前の複 数の磁気マ一力から抽出された前記横ズレ量の平均値とに基づいて短周期の外乱 磁界によるノイズ成分を除去することを特徴とする磁気式車両位置検出装置。
1 2 . 請求項 1記載の磁気式車両位置検出装置において、
前記磁気マーカの配置変化に基づいて道路形状情報を検出する道路形状情報検 出手段を備える磁気式車両位置検出装置。
1 3 . 請求項 1記載の磁気式車両位置検出装置において、
隣接する前記磁気マ一力間の通過時間に基づいて車両速度を算出する車両速度 算出手段を備えることを特徴とする磁気式車両位置検出装置。
1 4 . 請求項 1記載の磁気式車両位置検出装置において、
抽出された前記横ズレ量に基づいて操舵制御装置に操舵制御指令信号を発信す る操舵指令手段を備えることを特徴とする磁気式車両位置検出装置。
PCT/JP1998/004348 1997-09-29 1998-09-28 Appareil magnetique pour detecter la position d'un vehicule WO1999017079A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69810797T DE69810797T2 (de) 1997-09-29 1998-09-28 Magnetische vorrichtung zum erfassen einer fahrzeugposition
US09/508,675 US6336064B1 (en) 1997-09-29 1998-09-28 Magnetic apparatus for detecting position of vehicle
EP98944276A EP1020707B1 (en) 1997-09-29 1998-09-28 Magnetic apparatus for detecting position of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26393997 1997-09-29
JP9/263939 1997-09-29

Publications (1)

Publication Number Publication Date
WO1999017079A1 true WO1999017079A1 (fr) 1999-04-08

Family

ID=17396368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004348 WO1999017079A1 (fr) 1997-09-29 1998-09-28 Appareil magnetique pour detecter la position d'un vehicule

Country Status (6)

Country Link
US (1) US6336064B1 (ja)
EP (1) EP1020707B1 (ja)
KR (1) KR100374923B1 (ja)
CN (1) CN1117965C (ja)
DE (1) DE69810797T2 (ja)
WO (1) WO1999017079A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911982A (zh) * 2015-06-25 2015-09-16 苏交科集团股份有限公司 一种基于磁性分析技术的路面病害检测方法
CN105865317A (zh) * 2016-04-06 2016-08-17 清华大学 基于铁丝磁化的车模越界检测***
JP2017078910A (ja) * 2015-10-19 2017-04-27 愛知製鋼株式会社 磁気マーカ及び磁気マーカ検出システム
JP2018071340A (ja) * 2017-11-02 2018-05-10 愛知製鋼株式会社 磁気マーカ及び磁気マーカ検出システム
CN110741285A (zh) * 2017-06-14 2020-01-31 爱知制钢株式会社 标识器检测方法及车辆用***
US10968581B2 (en) 2015-10-19 2021-04-06 Aichi Steel Corporation Magnetic marker and magnetic marker detection system

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063682A (ja) * 2000-08-21 2002-02-28 Nec Corp 走行位置検出装置
JP3839678B2 (ja) * 2001-03-27 2006-11-01 三菱電機株式会社 車両位置認識装置
US6772062B2 (en) * 2001-05-31 2004-08-03 The Regents Of The University Of California Intelligent ultra high speed distributed sensing system and method for sensing roadway markers for intelligent vehicle guidance and control
CA2469652C (en) 2001-12-12 2008-07-29 Jervis B. Webb Company Driverless vehicle guidance system and method
EP1647465A3 (en) 2001-12-12 2006-05-03 Jervis B. Webb International Company Driverless vehicle guidance system
GB2383983B (en) * 2002-01-11 2005-08-17 Roger Aylward Route navigation, guidance & control - automated vehicle steering & safety braking
DE10216422C5 (de) * 2002-04-12 2011-02-10 Conductix-Wampfler Ag Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
KR100506097B1 (ko) * 2004-02-04 2005-08-03 삼성전자주식회사 자기장 지도 생성 방법 및 장치와 이를 활용한 이동체의포즈 확인 방법 및 장치
US8306683B2 (en) * 2007-08-17 2012-11-06 Simmons Robert J Guide-by-wire vehicle steering
KR101262277B1 (ko) * 2008-04-30 2013-05-08 현대중공업 주식회사 로봇의 충돌검지 방법
JP5182236B2 (ja) * 2009-06-26 2013-04-17 トヨタ車体株式会社 無人搬送車の走行制御装置
PT2360544T (pt) * 2010-02-19 2018-04-02 2 Getthere B V Sistema para determinação da posição de um veículo, veículo com o mesmo, e método para o mesmo
CN102592471B (zh) * 2011-01-14 2014-09-17 感知技术无锡有限公司 一种采用地磁信号进行车位检测的方法和装置
FI20116342A (fi) * 2011-12-30 2013-07-01 Rdnet Oy Menetelmä ja järjestely liikkuvaksi sovitetun kohteen paikan ja/tai nopeuden määrittämiseksi ja järjestelyn käyttö
US8676426B1 (en) 2012-08-29 2014-03-18 Jervis B. Webb Company Automatic guided vehicle system and method
CN104900069B (zh) * 2015-06-24 2018-01-19 西安华舜测量设备有限责任公司 一种微功耗磁信号检测装置的应用方法
WO2017187879A1 (ja) * 2016-04-28 2017-11-02 愛知製鋼株式会社 磁気マーカ及び運転支援システム
SG11201810744UA (en) * 2016-06-03 2019-01-30 Aichi Steel Corp Position capture method and system
CN106056925B (zh) * 2016-08-01 2018-07-03 哈尔滨睿之芯信息技术股份有限公司 基于tmr传感器的车辆检测***
CN106293006B (zh) * 2016-08-12 2019-07-02 Oppo广东移动通信有限公司 运行磁传感器校准算法库的方法、装置及移动终端
CA2945564A1 (en) * 2016-10-18 2018-03-01 Peter Yeung Roadway information detection sensor device/system for autonomous vehicles
US11043124B2 (en) 2018-01-31 2021-06-22 Peter Yeung Roadway information detection system consists of sensors on the autonomous vehicles and devices for the road
JP6766527B2 (ja) * 2016-08-30 2020-10-14 愛知製鋼株式会社 車両用システム及び進路推定方法
JP6747182B2 (ja) * 2016-08-30 2020-08-26 愛知製鋼株式会社 車両用の姿勢検出システム
JP6828314B2 (ja) * 2016-08-30 2021-02-10 愛知製鋼株式会社 車両用の学習システム及び学習方法
US10416304B2 (en) * 2017-03-06 2019-09-17 The Aerospace Corporation Automobile accident mitigation technique
JP6928306B2 (ja) * 2017-03-28 2021-09-01 愛知製鋼株式会社 磁気マーカの施工方法及び作業システム
JP6928307B2 (ja) * 2017-03-28 2021-09-01 愛知製鋼株式会社 マーカ検出システム及びマーカ検出方法
US10571280B2 (en) 2017-05-09 2020-02-25 Toyota Research Institute, Inc. Systems and methods for localizing a vehicle using a roadway signature
US10612199B2 (en) 2017-05-09 2020-04-07 Toyota Research Institute, Inc. Systems and methods for roadway fingerprinting
US10127462B1 (en) * 2017-05-09 2018-11-13 Toyota Research Institute, Inc. Systems and methods for detecting markers on a roadway
JP7005943B2 (ja) * 2017-06-06 2022-01-24 愛知製鋼株式会社 マーカシステム及び運用方法
JP6885207B2 (ja) 2017-06-14 2021-06-09 愛知製鋼株式会社 マーカ検出方法及び車両用システム
JP6828643B2 (ja) * 2017-09-12 2021-02-10 愛知製鋼株式会社 位置捕捉システム及び位置捕捉方法
KR102122747B1 (ko) 2018-08-02 2020-06-16 주식회사 정석케미칼 자기장 발생 방법과 자기장을 이용한 차선 감지 방법, 이를 이용한 자동차
JP7255127B2 (ja) * 2018-10-04 2023-04-11 愛知製鋼株式会社 磁気マーカシステム
US11875675B2 (en) * 2018-12-28 2024-01-16 Aichi Steel Corporation Vehicle and vehicular diagnostic system
CN110081874B (zh) * 2019-03-29 2021-07-06 西人马联合测控(泉州)科技有限公司 车辆定位方法和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JPH08161707A (ja) * 1994-11-30 1996-06-21 Sony Corp 磁気ヘッド
JPH09184727A (ja) * 1995-10-31 1997-07-15 Honda Motor Co Ltd 車両の走行経路に対する位置関係算出方法
JPH09211144A (ja) * 1996-02-02 1997-08-15 Canon Electron Inc 車両検知方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191528A (en) * 1990-06-28 1993-03-02 Eaton-Kenway, Inc. Update marker system for naviagtion of an automatic guided vehicle
US5202742A (en) * 1990-10-03 1993-04-13 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
US5369591A (en) * 1993-03-11 1994-11-29 Broxmeyer; Charles Vehicle longitudinal control and collision avoidance system for an automated highway system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JPH08161707A (ja) * 1994-11-30 1996-06-21 Sony Corp 磁気ヘッド
JPH09184727A (ja) * 1995-10-31 1997-07-15 Honda Motor Co Ltd 車両の走行経路に対する位置関係算出方法
JPH09211144A (ja) * 1996-02-02 1997-08-15 Canon Electron Inc 車両検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1020707A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911982A (zh) * 2015-06-25 2015-09-16 苏交科集团股份有限公司 一种基于磁性分析技术的路面病害检测方法
JP2017078910A (ja) * 2015-10-19 2017-04-27 愛知製鋼株式会社 磁気マーカ及び磁気マーカ検出システム
WO2017069091A1 (ja) * 2015-10-19 2017-04-27 愛知製鋼株式会社 磁気マーカ及び磁気マーカ検出システム
EP3367360A4 (en) * 2015-10-19 2019-07-10 Aichi Steel Corporation MAGNETIC MARK AND MAGNETIC MARK DETECTION SYSTEM
US10961670B2 (en) 2015-10-19 2021-03-30 Aichi Steel Corporation Magnetic marker and magnetic marker detection system
US10968581B2 (en) 2015-10-19 2021-04-06 Aichi Steel Corporation Magnetic marker and magnetic marker detection system
CN105865317A (zh) * 2016-04-06 2016-08-17 清华大学 基于铁丝磁化的车模越界检测***
CN110741285A (zh) * 2017-06-14 2020-01-31 爱知制钢株式会社 标识器检测方法及车辆用***
JP2018071340A (ja) * 2017-11-02 2018-05-10 愛知製鋼株式会社 磁気マーカ及び磁気マーカ検出システム

Also Published As

Publication number Publication date
KR20010024330A (ko) 2001-03-26
EP1020707A1 (en) 2000-07-19
DE69810797T2 (de) 2003-06-12
CN1117965C (zh) 2003-08-13
EP1020707B1 (en) 2003-01-15
DE69810797D1 (de) 2003-02-20
EP1020707A4 (en) 2001-01-24
CN1272174A (zh) 2000-11-01
KR100374923B1 (ko) 2003-03-06
US6336064B1 (en) 2002-01-01

Similar Documents

Publication Publication Date Title
WO1999017079A1 (fr) Appareil magnetique pour detecter la position d'un vehicule
EP3467437B1 (en) Position capture method and system
JP2526876B2 (ja) 車両走行位置表示装置
EP3509048A1 (en) Vehicle system and path estimation method
US6215392B1 (en) Sensing device for detecting movement of vehicle by lane-marker
CN111108344B (zh) 位置捕捉***以及位置捕捉方法
US20090265070A1 (en) Support control device
JP3839678B2 (ja) 車両位置認識装置
JP3743071B2 (ja) 車線逸脱警告装置
JPH0833302B2 (ja) 位置検出装置
JP2002286456A (ja) 車両位置認識装置
JP2018159752A (ja) 地図情報学習方法及び地図情報学習装置
JPH10162300A (ja) 車線検出方法
JPH10160486A (ja) 車両の位置検出装置
JPH09272438A (ja) 列車制御装置
JP3220376B2 (ja) 車両の走行情報収集装置
WO2023243617A1 (ja) 磁気マーカ、車両用システム及びマーカ検出方法
JP3769250B2 (ja) 車両検知装置
JPS60183518A (ja) 操舵角検出装置
JP4537606B2 (ja) 走行キャリアの走行方法
JPH08313261A (ja) 車両用方位検出装置
JP2003308592A (ja) 車両検知装置
JP3161257B2 (ja) 車両誘導システム
JP2001109991A (ja) レーンマーカシステム及びレーンマーカ検出・車両走行制御装置
JPH02310421A (ja) 車両用走行方位検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809576.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998944276

Country of ref document: EP

Ref document number: 09508675

Country of ref document: US

Ref document number: 1020007003327

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998944276

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003327

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007003327

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998944276

Country of ref document: EP