WO1999002586A1 - Tissu preimpregnee et panneau sandwich a ame alveolaire - Google Patents

Tissu preimpregnee et panneau sandwich a ame alveolaire Download PDF

Info

Publication number
WO1999002586A1
WO1999002586A1 PCT/JP1998/003095 JP9803095W WO9902586A1 WO 1999002586 A1 WO1999002586 A1 WO 1999002586A1 JP 9803095 W JP9803095 W JP 9803095W WO 9902586 A1 WO9902586 A1 WO 9902586A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
woven
preda
honeycomb
thermosetting resin
Prior art date
Application number
PCT/JP1998/003095
Other languages
English (en)
French (fr)
Inventor
Hajime Kishi
Masahiko Hayashi
Toshiaki Higashi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US09/254,211 priority Critical patent/US6429157B1/en
Priority to EP98931039A priority patent/EP0927737B1/en
Priority to JP50845299A priority patent/JP3661194B2/ja
Priority to DE1998634800 priority patent/DE69834800T2/de
Publication of WO1999002586A1 publication Critical patent/WO1999002586A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/36Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels
    • E04C2/365Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels by honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3325Including a foamed layer or component
    • Y10T442/3366Woven fabric is coated, impregnated, or autogenously bonded
    • Y10T442/3374Coating or impregnation includes particulate material other than fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3854Woven fabric with a preformed polymeric film or sheet

Definitions

  • the present invention relates to a woven pre-predator and a honeycomb sandwich panel.
  • tack adhesiveness
  • a woven prepreg that has little change over time, has an appropriate drape property (flexibility), and has excellent self-adhesiveness to the honeycomb core when used as a skin panel of a honeycomb sandwich panel
  • the present invention relates to an eighty-two-cam sandwich panel which has a low porosity inside a skin panel made of a cured product of a pre-preda and has few holes and depressions on the surface of the skin panel and excellent surface smoothness.
  • fiber-reinforced composite materials composed of reinforcing fibers and matrix resin have been widely used in aircraft, automobiles, and industrial applications due to their excellent mechanical properties.
  • the properties required for fiber-reinforced composite materials have become more and more strict as their use has increased. It is important to reduce the defects that lead to a reduction in strength in order to fully exploit the mechanical properties and durability of fiber-reinforced composite materials.
  • the use of fiber reinforced composite materials as skin panels for honeycomb sandwich panels is increasing from the viewpoint of weight reduction.
  • Honeycomb cores include aramide honeycomb and aluminum honeycomb.
  • a so-called cocure composition in which a prepreg is laminated on both sides of a honeycomb core made of aramide paper, and curing of the prepreg itself and bonding of the prepredder and the honeycomb core simultaneously.
  • the adhesive strength between the 82 cam core and the pre-predator laminate as a skin panel is important.
  • a film-like adhesive is sandwiched between the honeycomb core and the pre-predator laminate to cure the pre-predator and simultaneously
  • a method of curing a sandwich panel has also been frequently used.
  • honeycomb sandwich panels From the standpoint of further weight reduction and molding cost reduction, it has been recently required to directly bond the honeycomb and the pre-preda without using a film-like adhesive (hereinafter referred to as self-adhesiveness).
  • the resin contained in the prepreg instead of the film-like adhesive has the 82-cam core side.
  • the honeycomb wall had to move during molding to sufficiently wet the honeycomb wall, and it was difficult to achieve high adhesive strength.
  • the part where the resin drips from the prepredder laminate in the thickness direction of the honeycomb core along the wall of the 82-cam or is cured in a raised state is called a fillet.
  • the fillet is formed by the honeycomb core and the upper and lower skin panels. It is difficult to form them sufficiently between them.
  • the viscosity of the resin is too low, the resin tends to flow down along the 82-cam wall from the upper skin panel, and as a result, the bonding strength between the upper skin panel and the honeycomb core is insufficient.
  • the resin viscosity is too high, the resin cannot sufficiently wet the honeycomb wall, and in particular, the adhesive strength between the lower skin panel and the honeycomb core tends to be insufficient.
  • Pre-predator using carbon fiber as reinforcing fiber for use in honeycomb molding The following is a conventional technique relating to the matrix resin.
  • U.S. Pat. No. 4,500,660 discloses that dicyandiamide is added to a reaction product of a specific epoxy resin, a butadiene acrylonitrile copolymer having functional groups at both ends, and an epoxy resin.
  • An epoxy resin composition is disclosed. The purpose is to improve the self-adhesion between the prepreg and the honeycomb and the interlaminar shear strength of the skin panel.
  • the U.S. patent does not aim at improving the surface smoothness of the skin panel, does not have sufficient heat resistance as compared with the present invention because of the curing agent used, and contains resin fine particles in the resin composition. Therefore, the object of the present invention is not achieved.
  • Japanese Patent Application Laid-Open No. 58-82,755 describes that a reaction product of an epoxy resin, a liquid butadiene acrylonitrile copolymer having a carboxyl group at both ends and an epoxy resin is treated with dicyandiamide as a curing agent.
  • Japanese Unexamined Patent Publication does not describe at all how to suppress the secular change as a pre-predator, and does not achieve the object of the present invention because the resin composition does not contain fine resin particles.
  • US Pat. No. 5,557,831 describes an effect of using a resin having high thixotropy for a woven pre-preda for a honeycomb cure to reduce porosity inside a skin panel.
  • resin particles are not blended in the resin composition, and the self-adhesion between the pre-preda and the honeycomb core is poor.
  • the pre-preda If the tackiness of the pre-preda is too small, the pre-preda, which has been pressed down repeatedly in the pre-preda lamination process, will immediately peel off, which will hinder the lamination work. In such a case, it is necessary to increase the working environment temperature until a proper tackiness is obtained. Conversely, if the tackiness of the pre-preda is too great, If it does, it will stick due to the weight of the pre-predator, making it difficult to remove and correct it later.
  • the drape property of the pre-preda is poor, the lamination work is significantly reduced due to the rigidity of the pre-preda, and the laminated pre-preda does not exactly follow the curved surface of the mold or the shape of the mandrel, and becomes wrinkled or the reinforcing fiber is broken. Defective parts will occur. In such cases, it is necessary to raise the working environment temperature, but it is difficult to balance with tackiness, and these are very serious problems in the molding operation.
  • the tackiness and drapability of these pre-predas are mainly governed by the viscoelasticity of the matrix resin, but in general, the viscoelasticity of the epoxy resin has a large temperature dependence, and if the temperature of the working environment fluctuates, the adhesiveness The drapability changes, and in some cases the work becomes impossible.
  • Epoxy resin compositions containing a high molecular weight epoxy resin have been developed in order to improve the molding workability by optimizing the pre-predator's setting and drape properties. It is disclosed in Japanese Unexamined Patent Publication (Kokai) and JP-A-63-38026.
  • Japanese Patent Application Laid-Open No. 2-254646 discloses an epoxy resin composition containing a nitrile rubber-modified epoxy resin for the purpose of optimizing drapability and resin flow.
  • these techniques can improve either the tackiness or the drapability of the pre-predator, the balance between them is not appropriate and the mechanical properties of the obtained molded body are sacrificed. Had inconvenience.
  • a high molecular compound such as a thermoplastic resin or an elastomer is mixed with an epoxy resin.
  • Japanese Unexamined Patent Publication No. Sho 58-87224 and Japanese Unexamined Patent Publication No. Sho 62-169824 JP-A-55-27342, JP-A-55-108443, JP-A-56-219 A method of adding a polyvinyl acetate resin disclosed in JP-A-52-18787, a method of adding a polyvinyl butyral resin disclosed in JP-A-52-18787, There is known a method of blending a polyester polyurethane disclosed in Japanese Patent Application Laid-Open No. HEI 11-135, a method of blending a polyvinyl ether disclosed in Japanese Patent Application Laid-Open No. H11-156156, and the like.
  • the techniques disclosed in the above-mentioned known examples do not have sufficient self-adhesiveness between the skin panel and the 82 cam core, or do not aim at reducing the porosity in the skin panel, and do not describe the effects thereof.
  • the surface smoothness when the prepreg is laminated and cured as the skin panel surface itself without using an adhesive film on the outside of the prepreg as the skin panel of the honeycomb sandwich panel is known.
  • the technique disclosed in the examples was not sufficient. Furthermore, there is no technology that can improve the tackiness and drapability of a woven prepreg and reduce its aging.
  • the self-adhesion between the skin panel and the honeycomb core is improved, the porosity in the skin panel is reduced, the surface smoothness is improved when the skin panel is made of a honeycomb sandwich body, and the time-dependent suppression of tackiness as a pre-predator is improved.
  • the present invention is excellent in self-adhesiveness to the honeycomb and porosity reduction properties in the skin panel, furthermore, reduces the defects on the surface of the honeycomb sandwich skin panel and keeps the proper tackiness as a prepreg without changing over time, thereby improving the drapability.
  • Excellent textile pre The purpose is to provide a Preda.
  • the molded product obtained by curing the woven pre-preda of the present invention has high heat resistance, toughness and impact resistance, and can be used as an excellent structural material.
  • the present invention has the following configuration.
  • it is a woven pre-predder comprising at least the following [A], [B] and [C] and having a cover factor of 95% or more.
  • honeycomb sandwich panel comprising at least the following skin panels [A], [B] and [C] and [D].
  • the cover factor of a woven prepreg is the ratio of the existing area of the yarn portion to the total area of the prepreg. The better the weave is spread, the higher the coverage factor.
  • a woven pre-preda with a cover factor of 95% or more as a skin panel, the porosity, which is a defect inside the skin panel, is reduced, resulting in a skin panel with excellent rigidity and strength. Evaluated by the climbing drum peel method It is possible to obtain a honeycomb sandwich panel having excellent self-adhesiveness between a skin panel and a honeycomb core to be formed and having excellent surface smoothness of the skin panel.
  • a particularly suitable cover factor range for the present invention is 96% or more, and more preferably 97.5% or more.
  • [A] is a reinforced fiber woven fabric.
  • the reinforcing fiber glass fiber, carbon fiber, aramide fiber, boron fiber, alumina fiber, silicon carbide fiber, and the like are used. These fibers may be used as a mixture of two or more kinds. In order to obtain a lighter and more durable molded product, it is particularly preferable to use carbon fiber or graphite fiber. From the viewpoint of the intrinsic tensile strength of the fiber divided by the high impact resistance of a honeycomb sandwich panel, a high-strength carbon fiber having a strand tensile strength of 4.4 GPa or more and a tensile elongation at break of 1.7% or more is more preferable.
  • Use of a reinforcing fiber having a high tensile modulus E leads to obtaining high strength in the climbing drum peel method, which is one of the self-adhesiveness evaluations.
  • high-strength, high-elongation carbon fibers include T700SC, T800H, and T1000G manufactured by Toray Industries, Inc.
  • a conventionally known two-dimensional fabric can be used as the reinforcing fiber fabric.
  • the weave structure weaves such as plain weave, twill weave, entangled weave and waxy weave are preferred. In particular, it is suitable for easily forming compacts with a thin plain weave structure.
  • the woven yarn of the woven fabric is composed of fiber bundles, and the number of filaments in one fiber bundle is preferably in the range of 2500 to 30,000. If the number is less than 2500, the fiber arrangement tends to meander, which tends to cause a decrease in strength. On the other hand, when the number is more than 3,000,000, resin impregnation hardly occurs at the time of preparing or molding the pre-preda. More preferably, it is in the range of 2800 to 25,000. In particular, those having 5000 to 25,000 filaments are preferred from the viewpoint of improving the surface smoothness of the honeycomb skin panel.
  • the fineness of the fiber bundle is preferably from 1500 to 20,000 denier. If it is less than 1,500 denier, the fiber arrangement tends to meander, and if it is more than 20,000 denier, resin impregnation is less likely to occur during the preparation or molding of the pre-preda.
  • “Substantially no twist” means that there is no more than one turn of twist per lm of yarn length.
  • a woven fabric comprising a multifilament yarn having substantially no twist in the multifilament yarn and having a bunching property in a hook-drop value of 100 to 100 mm, preferably 100 to 500 mm. It is preferable to use woven fiber from the viewpoints of reducing the movement of the woven fiber, keeping the flat state of the yarn easily, suppressing the change in tack of the pre-preder with time, and improving the surface smoothness of the honeycomb sandwich panel. The twist-twist reduces the hook drop value.
  • carbon fibers are generally entangled with the filaments of the fiber bundle of the precursor in order to prevent process troubles caused by winding wound filaments around rollers in the manufacturing process.
  • Bundling property is given to carbon fiber yarn.
  • the carbon fiber yarns are given bunching properties by the amount of sizing agent attached and the adhesion between filaments. The convergence is controlled by the degree of entanglement between filaments, the amount of sizing agent attached and the degree of adhesion.
  • the hook drop value is 100 mm or less and the convergence is too strong, it is difficult to increase the covering factor of the woven fabric or the cover factor of the pre-preda described later, and the effect of suppressing the temporal change of the tackiness of the pre-preda decreases. In addition, the resin impregnating property of the pre-preda tends to be poor. As a result, surface pits and internal voids of the skin panel are likely to occur. If the hook drop value is more than 100 mm, the convergence of the carbon fiber yarn is deteriorated, the fluff is likely to be generated, the weaving property is deteriorated, and the strength of the composite material is reduced.
  • Carbon fiber multifilament yarns are flat, Itoatsumi is 0. 0 5 to 0. 2 mm, yarn width / Itoatsumi ratio of 3 0 or more, the fabric weight per unit area is 1 0 0 ⁇ 3 2 0 g / m 2
  • a woven fabric because crimping is kept small, movement of the woven fiber is made small, and the resin in the pre-predator after resin impregnation is hardly moved, and the time-dependent change in tackiness is suppressed.
  • the fiber density is higher than that of ordinary woven fabric. It is preferable because a woven fabric can be obtained and the surface smoothness of the 82-cam sandwich panel can be improved.
  • the use of a flat yarn increases the rigidity of the skin panel, reduces the porosity, which is an internal defect, and achieves high strength in the climbing drum peel method, which is one of the self-adhesion evaluation methods.
  • a thickness of 0.15 to 0.35 mm as the woven pre-preda is preferable from the viewpoint of improving the surface smoothness of the honeycomb sandwich panel because the unevenness due to the bending of the woven yarn does not substantially occur.
  • the woven fabric using the flat carbon fiber multifilament yarn as described above can be produced, for example, by a method described in Japanese Patent Application Laid-Open No. 7-30739.
  • the resin content in the prepreg or the skin panel is preferably in the range of 33 to 50% by weight.
  • the pre-predder tends to have poor adhesiveness, and surface pits on the skin panel and resin faintness, and porosity in the skin panel are easily generated, and self-adhesiveness to the honeycomb core is reduced. descend.
  • the resin content exceeds 50% by weight, there is a concern that resin outflow is likely to occur at the time of preparing a pre-predator or at the time of molding, and the advantage of weight reduction is reduced because the weight of the molded body increases.
  • the resin content is in the range of 35 to 45% by weight.
  • thermosetting resin is not particularly limited as long as it is a resin that is cured by heat or external energy such as light or an electron beam to at least partially form a three-dimensional cured product.
  • Preferred thermosetting resins include an epoxy resin, a phenol resin, a vinyl ester resin, an unsaturated polyester resin, a cyanate resin, a maleimide resin, and a polyimide resin.
  • thermosetting resin is preferably used as the thermosetting resin.
  • an epoxy resin using an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable.
  • examples of the dalicidylamine-type epoxy resin using amines as a precursor include various isomers of tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol and triglycidylaminocresol.
  • Tetraglycidyldiaminodiphenylmethane is preferred as a resin for composite materials as an aircraft structural material because of its excellent heat resistance.
  • a glycidyl ether type epoxy resin using phenol as a precursor is also preferable.
  • a dalicidyl ether type epoxy resin having an epoxy equivalent of 400 or more, since the self-adhesiveness between the skin panel obtained by curing the pre-preda and the honeycomb core becomes high.
  • Liquid bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, and resorcinol-type epoxy resin have low viscosities and are therefore preferable for compounding other epoxy resins and additives.
  • Solid bisphenol A-type epoxy resin gives a structure with a lower crosslink density compared to liquid bisphenol A-type epoxy resin, thus lowering heat resistance.However, it is preferable to mix appropriately to obtain a structure with higher toughness. Used. In particular, it has the effect of improving the self-adhesiveness between the skin panel and the honeycomb core, and suppressing the aging of the tackiness of the pre-predator, and increasing the surface viscosity by increasing the resin viscosity and securing the surface resin of the panel. Therefore, it is preferable.
  • An epoxy resin having a naphthalene skeleton is preferable because it gives a cured resin having low water absorption and high heat resistance.
  • a biphenyl-type epoxy resin, a dicyclopentene-type epoxy resin, and a diphenylfluorene-type epoxy resin are suitably used because they give a cured resin having a low water absorption.
  • Urethane-modified epoxy resins and isocyanate-modified epoxy resins are preferred because they give cured resins with high fracture toughness and high elongation.
  • epoxy resins may be used alone, or may be appropriately blended and used. It is preferable to mix at least a bifunctional epoxy resin and a trifunctional or higher functional epoxy resin in order to provide both fluidity of the resin and heat resistance after curing. In particular, a combination of a daricidylamine epoxy and a daricidyl ether epoxy is preferable because it enables both heat resistance, water resistance, and processability. It is also preferable to mix at least one kind of epoxy resin which is liquid at room temperature and one kind of epoxy resin which is solid at room temperature in order to make the tackiness and drape property of the pre-predeer appropriate.
  • Phenol nopolak epoxy resin and cresol nopolak epoxy resin Since heat resistance is high and water absorption is small, it is preferable to provide a resin having high heat and water resistance. By blending these, the tackiness and drape of the pre-preda can be adjusted while improving the heat resistance and water resistance.
  • any compound having an active group capable of reacting with an epoxy group can be used.
  • a compound having an amino group, an acid anhydride group, or an azide group is suitable. More specifically, for example, dicyandiamide, various isomers of diaminodiphenylmethanediaminodiphenylsulfone, aminobenzoic acid esters, various acid anhydrides, phenol novolak resin, cresol nopolak resin, polyphenol compound, imidazo Carboxylic acid anhydrides such as methyl derivatives, aliphatic amides, tetramethyldanidine, thiourea-added amines, methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polymer carbane, and trifluoride.
  • Lewis acid complexes such as boron ethylamine complex are exemplified.
  • aromatic diamine is used as a curing agent, an epoxy resin cured product having good heat resistance can be obtained.
  • various isomers of diaminodiphenyl sulfone are most suitable for obtaining a cured product having good heat resistance.
  • the addition amount is preferably stoichiometrically equivalent, but depending on the case, it is preferable to use, for example, an equivalent ratio of around 0.7 to 0.8 since a high elastic modulus resin can be obtained.
  • These curing agents may be used alone or in combination.
  • a combination of dicyandiamide and a urea compound for example, 3,4-dichlorophenyl-1,1-dimethylperyl, or an imidazole as a curing agent, since high heat and water resistance can be obtained while curing at a relatively low temperature.
  • Curing with an acid anhydride is preferable because it gives a cured product having a lower water absorption than curing with an amine compound.
  • a latent material of these curing agents for example, a microencapsulated one, because the storage stability of the pre-preda, particularly tackiness and drapeability, hardly changes even at room temperature.
  • an epoxy resin and a curing agent or a product obtained by preliminarily reacting a part of the epoxy resin and the curing agent, can be blended in the composition.
  • This method may be effective for adjusting viscosity and improving storage stability.
  • thermosetting resin A phenol resin is also preferably used as the thermosetting resin.
  • Phenol resin has high flame retardancy and is preferred as interior material / building material. Especially aircraft interiors As a material, 82-cam sandwich panels are preferred because they are light-weight and have high strength and high rigidity.However, if phenolic resin is used as the matrix resin for the skin panel, it will have excellent flame retardancy and low smoke emission in case of fire. Used favorably.
  • thermosetting phenolic resins include various phenols such as alkyl phenols such as phenol and cresol propyl xylenol, and halogenated alkyl phenols in which a part of the benzene ring of the alkyl phenol is substituted with a halogen atom.
  • aldehydes such as formaldehyde, acetoaldehyde, and furfural.
  • Thermosetting phenolic resins are broadly classified into two types depending on the catalyst used during their synthesis. One is a nopolak-type phenolic resin synthesized using an acidic catalyst, and the other is a resolving resin synthesized using a basic catalyst.
  • Phenolic resin but both can be used in the present invention.
  • the novolak type phenol resin requires an amide-based curing agent such as hexamethylenetetramine as a catalyst for heat curing, but the resol type phenol resin hardens only by heating. If an acid catalyst is added, the resole-type phenol resin can be cured at a lower temperature. Further, an ammonia resol type phenol resin and a benzoxazine type phenol resin are also preferable.
  • the benzoxazine-type phenolic resin is a resin having an oxazine ring synthesized from phenols, aldehydes, and amines.
  • bisphenol is selected as the phenol, it is bifunctional, so that the crosslinking density is increased and the heat resistance is improved.
  • Various structures such as bisphenol A, bisphenol F, bisphenol S, biphenyl, dihydroxybenzophenone, and diphenylfluorene can be used as the raw material bisphenol.
  • Polycyclic phenols such as naphthol and naphthodiol can also be used as raw materials.
  • the phenolic resin is often dissolved or dispersed in a solvent or water, but is preferably used in the present invention because the higher the solid content concentration, the less a void is formed in a molded product.
  • those having a solid content of 70% by weight or more, more preferably 80% by weight or more are preferable.
  • thermosetting resin a cyanate resin is also preferably used.
  • Cyanate resin is represented by bisphenol and phenol novolac Is a cyanate ester of a polyhydric phenol. Generally, it has better heat resistance and lower water absorption rate than epoxy resin, so it is preferable when characteristics in high temperature state of water absorption are important.
  • thermosetting resin a maleimide resin having an average of two or more maleimide groups in the molecule is also preferable since it has good heat resistance.
  • polyimide resin and resin having vinyl group and aryl group for example, vinyl ester resin and unsaturated polyester resin can be used as [B].
  • thermosetting resin composition in which the glass transition temperature (Tg) of the cured resin is 160 ° C. or more, since sufficient heat resistance can be imparted to the honeycomb sandwich panel.
  • thermosetting resin in order to improve the viscoelasticity of the uncured resin and the rigidity and toughness of the cured resin.
  • one or more additives selected from solid rubber, liquid rubber, thermoplastic resin elastomer, thermoplastic resin, inorganic particles, short fibers and the like are preferably used.
  • solid rubber has a large increase in viscosity when the same amount is dissolved in epoxy resin compared to liquid rubber, and maintains the heat resistance of the molded product relatively while maintaining the resin composition at an appropriate viscosity level during the molding process It is preferable because it is possible. Reduces the temperature dependence of the viscoelastic function of the resin composition, makes it difficult to handle even if the working environment temperature changes when handling the pre-predator, and reduces the time-dependent change in tackiness due to leaving the pre-predator unattended. Improve the surface smoothness of certain skin panels.
  • an acrylonitrile-butadiene copolymer which is a random copolymer of butadiene and acrylonitrile, is preferred from the viewpoint of compatibility with the epoxy resin.
  • the compatibility with the epoxy resin can be controlled by changing the copolymerization ratio of acrylonitrile.
  • a solid rubber having a functional group is more preferable in order to increase the adhesiveness with the epoxy resin.
  • the functional group include a carboxyl group and an amino group.
  • solid acrylonitrile-butadiene rubber containing a carboxyl group is preferable.
  • nitrile hydride is preferable because of its excellent weather resistance.
  • the rubber has a functional group and reacts with the epoxy group during mixing with the epoxy resin to form some high molecular weight and a branched structure. It is preferable to increase the surface smoothness of the panel. In particular, when such a preliminary reaction is positively used, the amount of addition required to provide excellent surface smoothness and effectively suppress the change with time of the tack of the pre-predator may be smaller than when the preliminary reaction is not performed. . For example, if the pre-reaction is not intended, the solid rubber and epoxy resin can be pre-reacted under heating while the tackiness of the pre-predator and the surface smoothness of the molded plate can be achieved by adding 7% by weight of solid rubber. For example, it can be achieved by adding about 3% by weight of solid rubber.
  • the preliminary reaction is usually carried out by mixing under heating, and it is preferable to carry out mixing at a temperature of 70 or more at a temperature of 30 minutes or more, since this is effective for improving the surface smoothness and suppressing the secular change over time. More preferably, the mixing is carried out at a temperature of 70 or more for 1 hour or more. However, if the pre-reaction is carried out too much, the resin viscosity becomes too high, which may be disadvantageous for processes required for prepreg production such as film formation and fiber impregnation. Therefore, more preferred pre-reaction conditions are mixing at a temperature in the range of 70-85 ° C for 1-3 hours.
  • the epoxy resin having a small number of functional groups as an epoxy resin, and then mix with a epoxy group having a large number of functional groups, for example, a tetrafunctional epoxy, because the degree of thickening can be easily controlled.
  • the epoxy resin having four or more functional groups preferably accounts for 60% or less of the epoxy composition.
  • inorganic particles as a modifier for the thermosetting resin.
  • examples include talc, aluminum silicate, particulate silica, calcium carbonate, myriki, montmorillonite, smectite, carbon black, silicon carbide, and alumina hydrate.
  • These inorganic particles have a large rheological control, that is, a thickening effect and a thixotropic property-imparting effect.
  • particulate silica is known to have a large thixotropic effect when added to a resin composition, but it also reduces the temperature dependence of the viscoelastic function of the resin composition and reduces Deterioration of handleability can be prevented even when the working environment temperature fluctuates.
  • the time-dependent change in tackiness due to pre-preda It is preferable because it improves the surface smoothness of the skin panel, which is a cured product, and gives an effect of excellent self-adhesion to the honeycomb core.
  • fine-particle silica having silicon dioxide as a basic skeleton for example, those having an average primary particle size in the range of 5 to 40 nm are commercially available under the trademark of AEROSIL (manufactured by Nippon AEROSIL Co., Ltd.). It is preferable that the primary particle diameter is as small as 40 nm or less, since this gives a sufficient thickening effect.
  • the particle size is evaluated with an electron microscope.
  • the specific surface area is preferably in the range of 50 to 400 m 2 / g.
  • silica whose silica surface is covered with a silanol group is used.However, it is not possible to use hydrophobic particulate silica in which the hydrogen of the silanol group is substituted with a methyl group, an octyl group, dimethylsiloxane, or the like. It is more preferable from the viewpoint of the thickening effect of the resin, the stabilization of thixotropy, and the improvement of mechanical properties represented by water resistance and compressive strength of the molded product.
  • a solid rubber When a solid rubber is used as the modifier, it is preferable to add it in the range of 1 to 10% by weight based on the whole resin composition. If the content is less than 1% by weight, the tackiness of the pre-preda is poor, and pits and resin faint easily occur on the skin panel surface of the honeycomb sandwich panel. On the other hand, if it exceeds 10% by weight, the resin viscosity is too high, and it becomes difficult to impregnate the prepreg. A more preferable addition amount is in a range of 2 to 6% by weight, and further preferably a range of 2 to 4% by weight.
  • inorganic particles When inorganic particles are added as a modifier, it is preferable to add them in the range of 0.8 to 8% by weight based on the whole resin composition. If the amount is less than 0.8% by weight, pits and resin faintness are likely to occur on the skin panel surface of the honeycomb sandwich panel, while if the amount is more than 8% by weight, the resin viscosity is too high and impregnation into the prepreg tends to be difficult.
  • a more preferable addition amount is in a range of 0.8 to 5% by weight, and further preferably a range of 1 to 3% by weight.
  • the solid rubber and the inorganic particles may be used alone, but the combined use is more preferable for reducing the pits on the skin panel surface, improving the tackiness of the pre-preda, suppressing the change over time and maintaining the heat resistance of the molded product.
  • the most preferable addition amount is in the range of 2 to 4% by weight of the solid rubber and 1 to 3% by weight of the inorganic particles.
  • thermoplastic elastomer As a modifier.
  • polyester-based or polyamide-based thermoplastic elastomers are preferably blended.
  • Epoxy resin blended with polyester or polyamide thermoplastic elastomer The composition has excellent tackiness, low viscosity, and excellent drapability and impregnation into reinforcing fibers.
  • the temperature dependence of the viscoelastic function of the resin, especially around room temperature is smaller than when no such thermoplastic elastomer is blended, so the temperature dependence of the pre-preda handleability is smaller. Therefore, it is preferable. Therefore, a pre-predder using this can exhibit excellent properties in tackiness, drapeability and quality.
  • the polyester or polyamide elastomer In order to obtain such an effect, it is preferable to blend 1 to 20 parts by weight of the polyester or polyamide elastomer with respect to 100 parts by weight of the thermosetting resin.
  • the melting point of the polyester-based or polyamide-based thermoplastic elastomer is preferably 100 ° C. or more, and more preferably 140 ° C. or more, because it affects the heat resistance of the thermosetting resin composition after curing. It is preferably C or more.
  • thermosetting resin composition containing a polyester-based or polyamide-based thermoplastic elastomer to obtain excellent physical properties of a composite material such as mechanical properties while maintaining excellent tackiness
  • a thermosetting resin composition is required. It is effective to incorporate a thermoplastic resin which can be thermodynamically dissolved in the curable resin, particularly a thermoplastic resin having a hydrogen bonding functional group. This is presumed to be due to the improved adhesion between the matrix resin and the reinforcing fibers.
  • thermoplastic resin as a modifier from the viewpoint that the decrease in the elastic modulus and the heat resistance is small as compared with the addition of a rubber or an elastomer. It is preferable to add a thermoplastic resin that dissolves in the thermosetting resin in an uncured state because the effect of improving toughness is greater than using thermoplastic resin fine particles that do not dissolve during resin preparation or molding. In particular, it is more preferable to select a combination of a thermosetting resin and a thermoplastic resin that forms a Miku mouth phase separation structure in a curing process once the thermoplastic resin is dissolved, since the toughness improving effect is large. .
  • thermoplastic resin additives include polyvinyl formal, polyvinyl butyral, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polymethylmethacrylate, polyacrylamide, copolymerized nylon, and dimer acid-based polyamide. Is received. From the viewpoint that the heat resistance and the elastic modulus are less reduced and the effect of improving the toughness is large, it is more preferable to add a thermoplastic resin belonging to engineering plastics such as polysulfone, polyether sulfone, polyether imide, and polyamide. Also, It is preferable that these thermoplastic resins have reactivity with the thermosetting resin from the viewpoint of improving the toughness and maintaining the environmental resistance of the cured resin. As particularly preferred functional groups, a hydroxyl group, an amino group, a hydroxyl group and the like can be used.
  • thermosetting resin composition of the present invention may contain, in addition to the above additives, other additives such as a polymer compound, a reactive diluent, a chain extender, and an antioxidant.
  • a polymer compound a compound soluble in an epoxy resin for various purposes can be blended.
  • reactive silicones and the like described in European Patent No. 475611 corresponding Japanese Patent Application Laid-Open No. 6-93103 improve the toughness and ductility of the cured resin, It is effective and preferable for adjusting the fluidity of the product.
  • a monofunctional epoxy compound is preferably used as the reactive diluent. Specifically, butyldaricidyl ether, 2-ethylhexylglycidyl ether, phenyldaricidyl ether, cresylglycidylether, P-sec-butyldaricidyl ether, P-tert-butyldaricidylether, etc. No.
  • Bisphenols are preferably used as the chain extender. Specific examples include bisphenol eight, bisphenol S, and fluorene bisphenol. By using a chain extender, it is possible to obtain a pre-preparer for a honeycomb sandwich panel having more excellent self-adhesiveness.
  • Antioxidants include phenolic antioxidants such as 2,6-di-tert-butyl-p-cresol (BHT), butylated hydroxyanisole, and tocophenol, dilauryl 3,3'-thiodipropionate, Sulfur-based antioxidants such as distearyl 3,3'-thiodibution pionate are preferably used.
  • BHT 2,6-di-tert-butyl-p-cresol
  • Sulfur-based antioxidants such as distearyl 3,3'-thiodibution pionate
  • thermosetting resin composition according to the present invention is a thermosetting resin composition having a fracture toughness value K 1C after curing of 1.OMP am 1/2 or more measured according to ASTM D 5045-91. Is particularly preferred.
  • thermosetting resin composition with a fracture toughness value K 1C of 1. OMP a ⁇ m 1/2 or more after curing makes it possible to evaluate the self-adhesion of honeycomb sandwich panels as cured molded articles. destruction progress under peeling stress is suppressed, climbing Dora Mupiru test (Nomex honeycomb SAH1 / 8-8.0 use, fiber basis weight 190 g / m 2, the resin content of 44% carbon fiber reinforced Puripureda as the upper and lower honeycomb core ( ⁇ 4 5 °) / ( ⁇ 45 °) when two layers are symmetrically laminated). It is preferable that the fracture toughness value K 1C is 1.2 MPa ⁇ m 1/2 or more to obtain a higher climbing drum peel strength, and further, the fracture toughness value K 1C is 1.5 MPa a * m 1/2 or more. It is preferred that
  • thermosetting resin composition having a fracture toughness value K 1C after curing of 1.
  • OMP a ⁇ ⁇ 1/2 or more in the present invention include, for example, the following methods. That is, a resin having a large molecular weight between functional groups serving as cross-linking points is used, a cross-linking density is reduced by adding a molecular chain extender, or a solid rubber, a liquid rubber, a thermoplastic elastomer, a thermoplastic It is preferable to add an additive selected from resins. In particular, it is preferable to add a thermoplastic resin from the viewpoint of achieving both the heat resistance and the effect of increasing the toughness.
  • the domain size of the phase separation structure (the phase separation structure period in the case of a biphase continuous structure) is preferably 10 m or less in order to obtain a composite material containing a high concentration of reinforcing fibers. To 0.1 m or more.
  • thermoplastic resin additives include polyvinyl formal, polyvinyl butyral, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polymethyl methacrylate, polyacrylamide, copolymerized nylon, and dimer monoacid-based polyamide.
  • a thermoplastic resin belonging to engineering plastics such as polysulfone, polyethersulfone, polyesterimide, and polyamide from the viewpoint that the heat resistance and the elastic modulus are less reduced and the effect of improving toughness is great.
  • thermoplastic resins have reactivity with the thermosetting resin from the viewpoint of improving toughness and maintaining environmental resistance of the cured resin.
  • Particularly preferred functional groups include a carboxyl group, an amino group, a hydroxyl group and the like.
  • the number average molecular weight of the thermoplastic resin modifier is preferably 10,000 or more from the viewpoint of providing a high toughness effect when added in a small amount.
  • the oligomer region having a number average molecular weight of 4,000 to 10,000 the increase in viscosity upon addition is small compared to the polymer, so that a large amount can be added, and the effect of increasing toughness may be large. Is more preferable.
  • the molecular weight of the oligomer region may be sufficient since addition of a large amount does not impair the heat resistance of the entire resin. A toughening effect is easily obtained.
  • [C] is resin fine particles.
  • the pre-preda becomes a honeycomb core.
  • the self-adhesive strength between the skin panel and the honeycomb core obtained by cocure molding after pasting is greatly improved.
  • the temporal change of tackiness of the prepreg is suppressed, the surface smoothness of the molded skin panel is improved, and the internal porosity is reduced. It also has the effect of causing
  • the presence of fine resin particles [C] and a high cover factor suppress the resin from sinking into the fibers, and contribute to maintaining the tackiness of the pre-preda and improving the surface smoothness of the skin panel.
  • the resin that is the material of the fine particles as the resin fine particles [C] has a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond, and a carbonyl in the main chain. It is preferable that the thermoplastic resin has a bond selected from the bonds, but it may have a partially crosslinked structure. Further, it may be crystalline or amorphous.
  • polyamides, polycarbonates, polyacetals, polyphenylene oxides, polyphenylene sulfides, polyarylates, polyethers, polyesters, polyamides, polyamides, polyamide imides, polyether imides, polysulfones, polyurethanes, polyether sulfones, polyethers Ketones have excellent heat resistance and toughness, and are suitable as resin fine particles [C].
  • polyamide is most preferable, and greatly improves the peel strength of the honeycomb core Z skin panel.
  • nylon 12 nylon 11 and nylon 6Z12 copolymer have particularly good adhesive strength. It is preferable because it gives a degree.
  • the elastic modulus of the material of the resin fine particles [C] is lower than the elastic modulus of the cured product of the thermosetting resin [B] because higher adhesive strength is obtained.
  • the flexural modulus of the material [C] is preferably 2 Z 3 or less, more preferably 1/2 or less of the flexural modulus of the cured product of [B].
  • the resin fine particles [C] are evenly distributed in the resin of the pre-preda, the effect of improving the adhesive strength between the skin panel and the honeycomb core, suppressing the change in tackiness of the pre-preda over time, and improving the smoothness of the skin panel surface Having.
  • a high concentration is distributed near the surface of the skin panel because it has the effect of improving the surface smoothness without reducing the rigidity and heat resistance of the skin panel.
  • the form of the resin fine particles [C] may be any of spherical, irregular particles, porous particles, and fibrous particles having a large aspect ratio.
  • the shape of the pre-preg is close to a true sphere because the pre-preg has an effect of suppressing a change in tack with time, a self-adhesive property, and a surface smoothness of a molded article.
  • the size thereof is preferably in the range of 1 to 50 m. If the average primary particle size is less than 1 im, the effect of improving the adhesive strength between the skin panel and the 82 cam core is reduced.If the average primary particle size exceeds 50, the arrangement of the reinforcing fibers is disturbed, and the strength may be reduced or impregnation may be impaired. is there. More preferably, the particle size is in the range of 1 to 30 m.
  • Rubber fine particles are also used as resin fine particles [C].
  • core Z-shell type rubber particles can be mentioned.
  • the method disclosed in U.S. Pat. No. 4,419,496, European Patent No. 45,357, and JP-A-55-94917 is disclosed. It is manufactured by Commercially available Koano shell type rubber particles include, for example, Paraloid E XL 2655 (manufactured by Kureha Chemical Industry Co., Ltd.) TR 2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), EXL—2611, EXL-3387 (Rohm & Haas).
  • Crosslinked rubber particles are also preferable as the resin fine particles [C].
  • crosslinked rubber particles include XER-71P and XER-91P (Nippon Synthetic Rubber Co., Ltd.) Manufactured). Rubber particles having a diameter of preferably 5 m or less, more preferably 1 or less are used. When the particle diameter is larger than 10 m, when the reinforcing fiber is impregnated with the matrix resin, the fine particles are not uniformly dispersed, and it is difficult to obtain a toughening effect. A particle diameter of 1 m or less is particularly preferable because a composite having a high reinforcing fiber content of 50% by volume or more does not disturb the fiber orientation and has a remarkable effect of improving peel strength.
  • the content of the resin fine particles [C] is preferably in the range of 2 to 15% in the cured resin made of [B] and [C]. If it is less than 2%, the effect of improving the adhesive strength between the skin panel Z honeycomb core is inferior, and if it exceeds 15%, the strength of the honeycomb sandwich panel may be reduced or resin impregnation may be defective.
  • the resin fine particles [C] have a functional group capable of reacting with the thermosetting resin [B] in order to improve self-adhesiveness.
  • Preferred functional groups include an epoxy group, a carboxy group, a hydroxyl group and the like.
  • Evaluation of the morphology, size, and distribution state of the resin fine particles [C] is performed by microscopic observation. Although an optical microscope may be used, it is preferable to use a scanning electron microscope because high magnification observation is possible.
  • the particle morphology and size it is preferable to dissolve the matrix resin in the pre-preda with an appropriate solvent, filter out the particles without dissolving only the particles, and observe with a microscope. Therefore, although the type of solvent depends on the type of fine resin particles and the type of matrix resin used, chlorinated solvents such as methylene chloride and solvents such as acetone and methyl ethyl ketone can be considered.
  • the content of the fine particles can be calculated from the weight of the fine particles thus filtered, the weight of the original pre-preda and the weight of the unresolved reinforcing fibers.
  • the distribution of the fine particles in the pre-predator it is preferable to observe the polished surface after the resin is hardened little by little from a low temperature for about 3 weeks to 1 month so that the resin in the pre-predator does not flow.
  • a method for producing a prepredder there can be used a method of dissolving a matrix resin in a solvent to reduce the viscosity and impregnation, and a hot melt method (dry method) of reducing the viscosity of the resin by heating and impregnating the resin.
  • the hot melt method uses reinforced fiber A method in which a precoated material is prepared by impregnating the resin by heating and pressing a film coated with a fiber and an epoxy resin composition on release paper or the like from both sides or one side, and controlling the resin content and the thickness of the prepredder.
  • [D] is the honeycomb core.
  • honeycomb core a nomex honeycomb core made of aramid paper impregnated with a phenol resin is particularly preferable because it can form a high-strength structure while being lightweight.
  • a cell size in the range of 3 to 19 mm is generally used.
  • an aluminum honeycomb, a glass fiber reinforced plastic (GFRP) honeycomb, a graphite honeycomb, a paper honeycomb, or the like may be used.
  • pre-predas made of a reinforcing fiber and a matrix resin are laminated on both sides of the honeycomb core, and are molded by a method of adhering to the honeycomb core while curing the resin in the pre-preda.
  • Examples of the method of forming a honeycomb sandwich panel include vacuum bag forming, autoclave forming using a vacuum bag, and press forming.
  • autoclave forming is performed in order to obtain a high-performance 82-cam sandwich panel.
  • press molding is more preferable in order to shorten the molding cycle and obtain high quality surface smoothness.
  • phenol resin is selected as the matrix resin, press molding is often used.
  • the self-adhesion between the skin panel of the honeycomb sandwich panel and the honeycomb core was evaluated using the climbing drum peel strength (CDP).
  • CDP climbing drum peel strength
  • the laminated structure of the woven pre-predator was a two-ply symmetrical lamination of ( ⁇ 45 °) / ( ⁇ 45 °) both above and below the honeycomb core.
  • epoxy resin was used as the matrix resin
  • the curing conditions were as follows: the temperature was raised to 180 ° C in 1.5 minutes, kept at the same temperature for 2 hours, and cured in an autoclave. At that time, first, a nylon bag over the laminate on an aluminum tool plate, placed in the autoclave while keeping the bag in a vacuum state, inside the bag at given pressure to 1.
  • a photograph is taken of the surface of the prepreg while applying light from the back side of the prepreg.
  • the yarn portion is black and the weave portion is white, and the transmitted light pattern of the fabric is photographed.
  • the light amount is set in a range that does not cause halation.
  • the obtained photograph is photographed by a CCD (charge coupled device) camera, the photographed image is converted into black and white digital data representing light and dark, stored in a memory, and analyzed by an image processing device. From the area S1 and the area S2 of the white part (texture part), calculate the following formula Cover-factor-1 (Cf). Do the same for 10 places on the same fabric, and use the simple average as the coverage factor.
  • Cf Cover-factor-1
  • a personal image analysis system LA-525 manufactured by Pierce Co., Ltd. was used as the CCD camera and the image processing device.
  • the digital data includes a middle part between black and white at the boundary between the yarn part (black part) and the texture part (white part). It is necessary to set a threshold value for discriminating this intermediate portion into a yarn portion and a weave portion. For this reason, a model with a true cover factor of 75% (a 6 mm wide black tape stuck on a transparent paper in a grid pattern vertically and horizontally so that the cover factor is 75%) was created as a model. However, standardization was performed so that it could be correctly recognized as a cover factor of 75%.
  • a carbon fiber bundle is suspended vertically, and the upper and lower 20 to 30 mm of a stainless steel wire with a diameter of 1 mm and a length of about 100 mm are bent. The weight is applied to the lower part, and the upper part is attached to the fiber bundle.
  • the peeling force was measured after the pre-preda was pressure-bonded to each other.
  • This method has parameters for applied stress, speed, time, temperature, and humidity.
  • measurement was carried out under the following conditions using "Instron” Model 4201 universal tester (manufactured by Instron Japan Co., Ltd.) as a measuring device.
  • the porosity in the skin panel of the honeycomb formed body was quantified by the area method. From above, the fabric pre-preda is placed on the upper surface of the honeycomb core ( ⁇ 45 °) / (0 ° / 90 °) Z (0 ° Z90 °) Z (0 ° Z90 °), and (0 ° 90 °) Z on the lower surface of the honeycomb core (0 ° Z90 °) / ( ⁇ 45 °) Laminated under the above conditions, the pre-preda was directly adhered to the honeycomb core under the above conditions, and a micrograph was taken of the cross section of the cured product.
  • the surface smoothness of the honeycomb molded body skin panel was evaluated by a surface roughness meter after forming the panel by the following method.
  • a pre-preda was laminated on both sides of the honeycomb core in a configuration of ( ⁇ 45 °) / ( ⁇ 45 °) so as to be symmetrical with two plies on one side.
  • the laminate of the honeycomb core and the prepreg was placed on an aluminum plate on which a fluororesin film was laid and molded. The surface smoothness of this honeycomb sandwich panel on the tool plate side is
  • the surface roughness was quantified by a surface roughness tester Surf Test 301. A length of 8 mm was evaluated with a stylus, and the difference between the average height of five points selected from the highest points and the average height of five points selected from the lowest points was determined. This was performed five times and the average value was determined.
  • the mixture was stirred for 30 minutes to prepare an epoxy resin composition.
  • the resin was cured and the fracture toughness was measured, it was 1.5 MPa * m1 / 2 .
  • the Tg of the cured resin was 214 ° C. By the way, the resin excluding nylon 12 fine particles was cured and the elastic modulus was measured.
  • the modulus of elasticity of nylon 12 was 108 OMPa.
  • the resin composition was coated on release paper to prepare a resin film having a resin weight of 66 gZm 2 .
  • This resin film is set on a pre-predator machine, and the strand has a tensile strength of 4.9 GPa, a tensile strength of 230 &? & , A tensile elongation at break of 2.1%, and a hook drop value of 170 mm.
  • Carbon fiber plain woven fabric made of carbon fiber T 700 S C-12K (12000 fibers, fineness 7200 denier) (basis weight 190 g / m 2 , yarn thickness 0. l lmm, yarn width yarn thickness ratio 70. 2 ) was impregnated with resin from both sides to obtain a prepredder.
  • the impregnation temperature at this time was 100 ° C.
  • the cover factor of the prepared pre-preda was 99.2%.
  • the tackiness of the prepreg before lamination and molding was measured and found to be 0.15 MPa.
  • the tackiness after leaving this same prepreg in an environment of 25 ° C and a relative humidity of 50% for 10 days was 0.12 MPa, and the change with time was small.
  • the drape property of the pre-preda was good.
  • honeycomb sandwich panel was subjected to a climbing drum peel test in accordance with ASTM D1781, and showed a peel strength of 15.4 lb ⁇ inch / 3 inch width.
  • a resin composition was prepared in the same manner as in Example 1 except that nylon 12 fine particles were not added. Measurement of the fracture toughness to cure the resin 0. 7MP a - was l 2. Next, a pre-preda was obtained in the same manner as in Example 1. The coverage factor of the pre-preda was 99.4%. When the tackiness of the pre-preda was measured, it was 0.14 MPa. The tackiness after leaving this same pre-preda for 10 days in an environment at 25 ° C and a relative humidity of 50% was 0.07 MPa, and the change with time was large.
  • Example 2 A honeycomb drum sandwich panel obtained by the same method as in Example 1 was subjected to a climbing drum peel test and found to have a peeling strength of 9.8 lb ⁇ inch 3 inch width. The porosity in the lower skin panel was 0.21%. The measured surface roughness was 15.4 m. Comparative Example 2
  • a pre-preda was obtained in the same manner as in Example 1, except that the impregnation temperature at the time of preparing the pre-preda was 6 Ot.
  • the pre-preda cover factor was 94.4%.
  • the tackiness of the pre-preda was measured, it was 0.15 MPa.
  • the tackiness after leaving this same pre-preda for 10 days in an environment at 25 ° C and a relative humidity of 50% was 0.08 MPa, and the change with time was large.
  • the peel strength was 12.4 lb ⁇ inch / 3 inch width.
  • the porosity in the lower skin panel was 0.18%.
  • the measured surface roughness was 14.9 im.
  • Bisphenol F type liquid epoxy (Epc830, Dainippon Ink and Chemicals, Inc.) 35 parts by weight, brominated bisphenol A type solid epoxy (Epcl52, Dainippon Ink and Chemicals, Inc.) 3 5 parts by weight, carboxyl group-containing solid acrylonitrile butadiene rubber (NIP OL 1472 HV manufactured by Zeon Chemical Co., Ltd.) 5 parts by weight, nylon 11 fine particles D-30 (Nippon Rilsan Co., Ltd., average particle diameter 30 m) 16 weight Parts were kneaded 2-1.
  • the resin composition was coated on release paper at 70 to prepare a resin film having a resin basis weight of 66 gZm 2 .
  • This resin film was set in a pre-preda machine, and impregnated with resin from both sides of a carbon fiber plain woven fabric (basis weight: 190 gZm 2 ) consisting of Toray's carbon fiber T 700 S-12K as in Example 1.
  • a prepredder was obtained.
  • the impregnation temperature at this time was 100 ° C.
  • Pre-Preda's cover factor was 97.9%. When the tackiness of the pre-preda was measured, it was 0.16 MPa. After leaving the same pre-preda in an environment at 25 ° C and a relative humidity of 50% for 10 days, the evening-life was 0.13 MPa and the change with time was small. The drapability of the pre-preda was good.
  • a climbing drum peel test according to D 1 781 showed a peel strength of 13.4 pound-inch / 3-inch width.
  • the porosity in the lower skin panel was as low as 0.08%. Also, honeycomb When the surface roughness of the sandwich panel on the tool side was measured, it was 7.9 m. After osmium tetroxide staining of the panel, reflection electron image observation with a scanning electron microscope was performed, and it was confirmed that amorphous nylon fine particles were uniformly distributed in the resin rich portion of the skin panel.
  • Bisphenol A-type liquid epoxy (Ep 828, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 189) 40 parts by weight, bisphenol A-type solid epoxy (Ep1001, manufactured by Yuka Shell Epoxy Co., Ltd.) Epoxy equivalent 467) 30 parts by weight, solid acrylonitrile butadiene rubber containing carboxyl group (NIP OL 1072, manufactured by Zeon Corporation) 5 parts by weight, nylon 12 fine particles (SP-500, manufactured by Toray Industries, Inc., average particle size 5) ⁇ m) 16 parts by weight were kneaded with a kneader.
  • NIP OL 1072 solid acrylonitrile butadiene rubber containing carboxyl group
  • SP-500 manufactured by Toray Industries, Inc., average particle size 5 ⁇ m
  • the resin composition was coated at 65 ° C on release paper, resin basis weight to prepare a resin film of 66 ⁇ 111 2.
  • This resin film was set on a pre-preda machine and impregnated with resin from both sides of a carbon fiber plain woven fabric (basis weight: 190 gZm 2 ) made of Toray's carbon fiber T700SC-12K, as in Example 1. I got a pre-preda.
  • the impregnation temperature at this time was 100 ° C.
  • the cover factor of the prepared pre-preda was 99.6%. When the tackiness of the pre-preda was measured, it was 0.14 MPa.
  • the tackiness after leaving the same pre-preda in an environment at 25 ° C and a relative humidity of 50% for 10 days was 0.12 MPa, and the change with time was small.
  • the prepreg had good drapability.
  • the honeycomb sandwich panel obtained by the same method as in Example 1 was subjected to a climbing drum peel test in accordance with ASTM D1781, and showed a peel strength of 19.1 bond-inch 3 inches wide.
  • the porosity in the lower skin panel was as low as 0.02%.
  • the surface roughness of the tool side of the honeycomb sandwich panel was measured and found to be 3.8 zm, which was excellent.
  • reflection electron image observation was performed with a scanning electron microscope.As a result, it was confirmed that a large number of spherical spherical particles were uniformly distributed in the resin rich portion of the skin panel.
  • a resin composition was prepared in the same manner as in Example 3, except that the nylon 12 fine particles SP-500 was replaced with nylon 6 12 copolymer fine particles Olgasol 3202D (Atochem Co., Ltd.). Orgasol was a porous particle with an average particle diameter of 20 m.
  • a prepredder and a honeycomb sandwich panel were obtained in the same manner as in Example 3.
  • Pre-Preda's cover factor was 99.1%.
  • the tackiness of the pre-preda was measured, it was 0.13 MPa.
  • the tackiness was 0.1 IMPa and the change with time was small.
  • the drape property of the prepredder was good.
  • the Tg of the cured resin was 190.
  • the resin excluding the nylon 6/12 fine particles was hardened and the elastic modulus was measured, it was 332 OMPa.
  • the refractive index of nylon 612 was 1610 MPa.
  • the peel strength was 18.2 lb ⁇ inch / 3 inch width.
  • the porosity in the lower skin panel was 0.07%.
  • the measured surface smoothness was 6.1 m.
  • the panel was stained with osmium tetroxide and observed by backscattering electron microscopy using a scanning electron microscope. As a result, the presence of a large number of highly uneven nylon fine particles was observed in the resin rich portion of the skin panel.
  • a resin composition was prepared in the same manner as in Example 3 except that nylon 12 fine particles SP-500 was replaced with nylon 6 fine particles Orgasol 1002D (Atochem Co., Ltd.). Orgasol was a porous particle having an average particle diameter of 20 m.
  • a prepredder and a honeycomb sandwich panel were obtained in the same manner as in Example 3.
  • the coverage factor of Prepreda was 99.3%.
  • the tackiness of the pre-preda was measured, it was 0.16 MPa. After the same pre-preda was left in an environment at 25 ° C and a relative humidity of 50% for 10 days, the tackiness was 0.12 MPa and the change with time was small.
  • the drape property of the prepredder was good.
  • 3 K number 30 00 present fiber, fineness 1 80 0 denier
  • a carbon fiber ⁇ woven fabrics made of basis weight 1 9 3 gZm 2, Itoatsumi 0. 1 3 mm, the yarn width Itoatsumi ratio 1 2.1
  • the honeycomb sandwich panel obtained by the same method as in Example 1 was subjected to a climbing drum peel test according to ASTM D1781, and showed a peel strength of 14.1 bond-inch to 3-inch width.
  • the porosity in the lower skin panel was 0.11%. Also, the surface roughness of the tool side of the honeycomb sandwich panel was measured to be 8.6 m. After the panel was stained with osmium tetroxide, a reflection electron image was observed with a scanning electron microscope. As a result, it was confirmed that a large number of spherical spherical nylon particles were uniformly distributed in the resin rich portion of the skin panel.
  • Bisphenol A type solid epoxy (Epl OO 1, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 46 7) 45 parts by weight, bisphenol A type liquid epoxy (Euka Shell Epoxy Co., Ltd. Ep 828, Epoxy equivalent 1 89 9) 30 parts by weight, tetraglycidyldiaminodiphenylmethane (Sumitomo Chemical Co., Ltd. ELM434)
  • hydroxyl-terminated polyether sulfone 5003P, Mitsui Toatsu Co., Ltd.
  • the resin composition was coated on release paper to prepare a resin film having a resin weight of 66 g / m 2 .
  • This resin film was set on a pre-prepared machine, and the strand tensile strength was 4.9 GPa, the tensile modulus was 230 &? &, The tensile elongation at break was 2.1%, and the hook drop value was 170 mm.
  • Carbon fiber plain woven fabric made of carbon fiber T 7 0 0 S C- 12 K (number of fibers 1 2 000, fineness 7 2 0 denier) (basis weight 1900 g / m Yarn thickness 0.
  • the resin was impregnated from both sides with a mm and a yarn width / yarn thickness ratio of 70.2) to obtain a prepreg.
  • the impregnation temperature at this time was 100 ° C.
  • Made The pre-predator's cover factor was 98.3%.
  • the tack and drape properties of the prepreg were good.
  • the laminate of the honeycomb core and the pre-preda was placed on an aluminum plate covered with a fluororesin film, and the laminate was vacuum-packed with a nylon film and autoclaved. No adhesive film was sandwiched between the pre-preda and the honeycomb core, and the pre-preda was directly bonded to the honeycomb core while curing.
  • the thus-obtained honeycomb sandwich panel was subjected to a climbing drum peel test in accordance with ASTM D1781, and showed a peel strength of 19.3 lb ⁇ inch / 3 inch width. Comparative Example 3
  • a resin composition was prepared in the same manner as in Example 7 except that no nylon 12 fine particles were added. When the fracture toughness was measured, it was 0.9 MPa ⁇ m 1/2 . Then, a pre-preda was obtained in the same manner as in Example 1. Pre-Preda's coverfact Yuichi was 98.4%. A climbing drum peel test was performed on a honeycomb sun panel obtained in the same manner as in Example 1, and it was found that the peel strength was 8.8 pounds • inch inch 3 inches wide. Industrial applicability
  • the skin panel when a honeycomb sandwich panel is molded, the skin panel has excellent surface porosity, reduced pits, excellent smoothness, low internal porosity, excellent self-adhesiveness, and changes in tackiness over time. A less woven pre-preda is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Description

織物プリプレグおよび八二カムサンドィツチパネル 技術分野
本発明は、 織物プリプレダおよびハニカムサンドィツチパネルに関するもので ある。 さらに詳しくは、 プリプレダとしてのタック (粘着性) 経時変化が少なく、 適切なドレープ性 (しなやかさ) を有し、 ハニカムサンドイッチパネルのスキン パネルとして用いるに際してハニカムコアとの自己接着性に優れる織物プリプレ グ、 および、 プリプレダ硬化物よりなるスキンパネル内部のポロシティが少なく、 さらに、 スキンパネル表面の穴や凹みが少なく表面平滑性に優れた八二カムサン ドィツチパネルに関するものである。 背景技術
従来から、 強化繊維とマトリックス樹脂とからなる繊維強化複合'材料は、 その 優れた力学物性などから、 航空機、 自動車、 産業用途に幅広く使われている。 近年、 その使用実績を積むに従い、 繊維強化複合材料に対する要求特性は、 ます ます厳しくなつてきている。 繊維強化複合材料の力学物性や耐久性を十分に引き 出すために強度低減に繋がる欠陥を少なくすることが重要である。 特に、 航空機 用構造材料や内装材においては、 軽量化の観点から、 繊維強化複合材料をスキン パネルとしてハニカムサンドィツチパネルに用いるケースが増加している。 ハニ カムコアとしてはァラミドハ二カムやアルミニウムハニカムがあるが、 特にァラ ミド紙からなるハニカムコアの両面にプリプレダを積層し、 プリプレダそのもの の硬化とプリプレダとハニカムコアとの接着を同時に行う、 いわゆるコキュア成 形によってハニカムサンドィツチパネルを製造することが一般的に行われている。 ここで、 八二カムコアとスキンパネルとしてのプリプレダ積層体との接着強度 は重要であり、 従来、 フィルム状の接着剤をハニカムコアとプリプレダ積層体と の間に挟みプリプレダを硬化させると同時に接着剤も硬化させサンドィツチパネ ルを成形する手法が多用されてきた。 しかしながら、 ハニカムサンドイッチパネ ルのより一層の軽量化および成形コスト低減の見地から、 フィルム状の接着剤を 用いないでハニカムとプリプレダを直接接着すること (以下、 自己接着性と称す る) が近年求められている。
しかし、 フィルム状の接着剤を用いずに接着すると、 フィルム状の接着剤中の 樹脂に相当する樹脂が存在しないため、 フィルム状の接着剤の代わりにプリプレ グに内在する樹脂が八二カムコア側へ成形中に移動しハニカム壁を充分に濡らさ ねばならず、 高接着強度を達成することは難しい課題であった。 プリプレダ積層 体からハニカムコアの厚み方向に、 八二カムの壁に沿って樹脂が垂れ、 あるいは せり上がった状態で硬化した部分をフィレツ卜と呼ぶが、 このフィレツトをハ二 カムコアと上下のスキンパネル間に充分に形成することが困難なのである。 樹脂 の粘度が低すぎる場合には、 上側のスキンパネルから八二カム壁に沿つて樹脂が 流れ落ちすぎる傾向にあり、 結果として上側スキンパネルとハニカムコアとの接 着強度が不足する。 一方、 樹脂粘度が高すぎると樹脂がハニカム壁を充分濡らす ことができず、 特に下側スキンパネルとハニカムコアとの接着強度が不足しやす い。
一方、 プリプレダ内在樹脂がハニカムコア壁側へ配分されなければならない分、 積層体中の樹脂絶対量が不足し、 スキンパネル中にポロシティができやすくなる といった問題もある。 ハニカムサンドイッチパネルの場合、 ハニカムコアの六角 形状空洞の上下部分のプリプレダには成形中に圧力がかからないため、 通常のプ リプレグ積層体を成形するよりポロシティが発生しやすい。
また、 従来から、 スキンパネル表面のピット、 樹脂かすれ等の欠陥を少なくす るため、 フィルム状の接着剤をプリプレダ積層体の表面に貼り、 プリプレダと共 に硬化する手法が多用されてきたが、 ハニカムサンドィツチパネルの一層の軽量 化および材料コスト、 成形コスト低減の見地から、 フィルム状の接着剤を用いな いで平滑で表面欠陥のないスキンパネルを成形できればより望ましい。
しかし、 フィルム状の接着剤を用いないと接着フィルム中の樹脂に相当する樹 脂が存在しないため、 スキンパネル表面に残る樹脂が相対的に少なくなり、 高品 位の表面状態を達成することは難しい課題であった。
ハニカム成形に用いることを目的とした炭素繊維を強化繊維とするプリプレダ およびマトリックス樹脂に関する従来技術として以下のものがある。 米国特許第 4, 5 0 0 , 6 6 0号公報には、 特定のエポキシ樹脂と両末端に官 能基を有するブタジエンァクリロニトリル共重合体とエポキシ樹脂との反応生成 物にジシアンジアミドを配合したエポキシ樹脂組成物が開示されている。 プリプ レグとハニカムの自己接着性およびスキンパネルの層間剪断強度の改良を目的と している。 しかしながら、 該米国特許は、 スキンパネルの表面平滑性向上を目的 とするものではなく、 使用されている硬化剤から本発明に比較し耐熱性も十分で ないし、 樹脂組成には樹脂微粒子が配合されていないため、 本発明の目的を達成 されるものではない。
特開昭 5 8— 8 2 7 5 5号公報においては、 エポキシ樹脂、 両末端にカルボキ シル基を有する液状のブタジエンァクリロニトリル共重合体とエポキシ樹脂との 反応生成物に、 硬化剤としてジシアンジアミドとジァミノジフエニルスルホンを 併用した組成物を用いれば、 プリプレダとハニカムコアとの自己接着性、 特に高 温下における接着強度が高くなることおよびハニカムサンドイツチパネル表面板 に欠陥を発生させないとの目的が記載されている。 しかしながら、 該特開では、 プリプレダとしての夕ック性の経時変化抑制について何ら述べられていないし、 樹脂組成には樹脂微粒子が配合されていないため本発明の目的を達成していない。 また、 米国特許 5 , 5 5 7 , 8 3 1号公報においては、 チキソトロピー性の高 い樹脂をハニカムコキュァ用織物プリプレダに用いスキンパネル内部のポロシテ ィを減少させる効果の記載がある。 しかしながら、 該米国特許は、 樹脂組成には 樹脂微粒子が配合されておらず、 プリプレダとハニカムコアとの自己接着性に乏 しいものであった。
一方で、 プリプレダを使用する場合にしばしば問題になるのが、 プリプレダの タック性 (粘着性) 、 およびドレープ性 (しなやかさ) である。 これらの性質は プリプレダを取り扱う際の作業性に大きく影響する。
プリプレダのタック性が小さすぎると、 プリプレダの積層工程において、 重ね て押さえつけたプリプレダがすぐに剥離してしまい、 積層作業に支障をきたす。 かかる場合には、 適度のタック性が得られるまで作業環境温度を高くする必要が 生じる。 逆にプリプレダのタック性があまり大きすぎると、 例えば誤って重ねて しまった場合などプリプレダの自重で張り付いてしまい、 あとで剥離して修正す ることが困難になってしまう。
また、 プリプレダのドレープ性が乏しいと、 プリプレダが堅いため積層作業が 著しく低下すると共に、 積層したプリプレダが金型の曲面やマンドレルの形状に 正確に沿わず、 しわ状になったり、 強化繊維が折れ、 成形品に欠陥が生じてしま う。 このような場合にも、 作業環境温度を高くする必要が生じるが、 タック性と のバランスを採るのが難しく、 これらは、 成形作業上の非常に大きな問題となつ ている。
これらの、 プリプレダのタック性やドレ一プ性は主としてマトリックス樹脂の 粘弾性に支配されるが、 一般にエポキシ樹脂の粘弾性は温度依存性が大きく、 作 業環境の温度が変動すると、 粘着性やドレープ性が変化し、 場合により作業が不 可能になってしまうことがある。
さらには、 プリプレグ作製直後は表面に樹脂が比較的多く存在するため適度の タック性を有する場合でも、 時間が経つにつれ樹脂の内部への沈み込みが起こり 次第にタック性が低くなるという経時変化を示す傾向があり、 同一条件での積層 作業ができなくなり工業材料として問題が大きい。 樹脂粘度が比較的高い場合は 夕ック性の経時変化が小さくなる傾向があるが、 一方でドレープ性が不足しがち になる。
プリプレダの夕ック性やドレープ性を適正化して成形作業性を向上することを 目的として、 高分子エポキシ樹脂を配合したエポキシ樹脂組成物が、 特開昭 6 2 - 1 2 7 3 1 7号公報や特開昭 6 3 - 3 0 8 0 2 6号公報に開示されている。 ま た、 特開平 2— 2 0 5 4 6号公報には、 ドレープ性と榭脂フローの適正化を目的 として、 二トリルゴム変性エポキシ樹脂を配合したェポキシ樹脂組成物が開示さ れている。 しかし、 これらの手法では、 プリプレダのタック性やドレープ性のい ずれかを改良し得たとしても、 両者のバランスが不適当であったり、 得られる成 形体の力学特性が犠牲になるなど、 それぞれに不都合を有していた。
また、 プリプレダのタック性等を改良する手法としては、 エポキシ樹脂に熱可 塑性榭脂やエラストマ一などの高分子化合物を配合することが知られている。 例 えば、 特開昭 5 8— 8 7 2 4号公報、 特開昭 6 2 - 1 6 9 8 2 9号公報に示され るポリビニルホルマール樹脂を配合する方法、 特開昭 5 5 - 2 7 3 4 2号公報、 特開昭 5 5 - 1 0 8 4 4 3号公報、 特開昭 5 6— 2 1 1 9号公報に示されるポリ ビニルァセ夕一ル樹脂を添加する方法、 特開昭 5 2— 3 0 1 8 7号公報に示され るポリビニルプチラール樹脂を添加する方法、 特開平 5— 1 1 7 4 2 3号公報に 示されるポリエステルポリウレタンを配合する方法、 特開平 4一 1 3 0 1 5 6号 公報に示されるポリビニルエーテルを配合する方法などが知られている。
しかし、 かかる方法では樹脂粘度が上昇しドレープ性が悪くなつてしまうという 制約があり、 満足できるタック性、 ドレープ性を両立する樹脂を見出すことが困 難であった。
つまり、 従来技術では、 良好な物性、 とりわけハニカムコキュァ用途に求めら れる自己接着性を有しつつ、 適切なタック性を経時変化なく保ち、 ドレープ性も 十分有する織物プリプレダを得ることは困難であった。
以上の公知例に開示された技術は、 スキンパネル/八二カムコア間の自己接着 性が充分でなかったり、 あるいはスキンパネル中のポロシティ低減を目的とせず、 その効果について述べていないものであった。 また、 ハニカムサンドイッチパネ ルのスキンパネルとしてのプリプレダの外側に接着フィルムを貼らずに、 プリプ レグを積層、 硬化した板表面をスキンパネルの表面そのものとして用いた際の表 面平滑性が以上の公知例に開示された技術では充分でなかった。 さらに、 織物プ リブレグとしてのタック性、 ドレープ性を向上し、 その経時変化の低減を可能と する技術は認められない。 つまり、 スキンパネルとハニカムコアとの自己接着性 向上とスキンパネル中のポロシティ低減さらにはハニカムサンドィツチ体のスキ ンパネルとした際の表面平滑性向上、 及びプリプレダとしてのタック性の経時変 化抑制や、 良好なドレープ性のすべてを満足す プリプレダを設計することは極 めて難しい課題であった。 発明の開示
本発明は、 ハニカムとの自己接着性およびスキンパネル内のポロシティ低減の 特性に優れ、 さらにハニカムサンドィツチスキンパネル表面の欠陥低減とプリプ レグとしての適切なタック性を経時変化なく保ち、 ドレープ性に優れた織物プリ プレダを提供することを目的とする。
本発明の織物プリプレダを硬化してなる成形体は耐熱性、 靭性、 耐衝撃性が高い ため優れた構造材料として利用できるものである。
本発明の目的を達成するため、 本発明は次の構成を有する。
すなわち、 少なくとも次の [A] 、 [B] 、 [C] からなり、 カバーファクタ一 が 9 5 %以上であることを特徴とする織物プリプレダである。
[A] 強化繊維織物
[B] 熱硬化性樹脂または熱硬化性樹脂組成物
[C] 樹脂微粒子
さらには、 少なくとも次の [A] 、 [B] 、 [C] からなるスキンパネルと [D] からなることを特徴とするハニカムサンドィツチパネルである。
[A3 強化繊維織物
[B] 熱硬化性樹脂または熱硬化性樹脂組成物
[C] 樹脂微粒子
[D] ハニカムコア
織物プリプレダのカバーファクターとは、 織糸部分の存在面積がプリプレグ全 体面積中に占める割合のことである。 織糸がよく拡がるほど、 カバ一ファクター が高くなる。 カバーファクタ一が 9 5 %以上の織物プリプレダをスキンパネルと して用いることにより、 スキンパネル内部の欠陥であるポロシティが少なくなる ため剛性、 強度に優れたスキンパネルとなり、 クライミングドラムピール法にて 評価するスキンパネルとハニカムコアとの自己接着性が優れ、 また、 スキンパネ ルの表面平滑性が良いハニカムサンドィツチパネルを得ることができる。 また、 樹脂をプリプレグ表面に保ちやすくプリプレダのタック経時変化が少なくなるの である。 カバーファクターが不十分な場合は、 成形体のスキンパネル表面にピッ 卜、 スキンパネル内部にポロシティが発生しやすく、 クライミングドラムピール 強度が小さくなり、 プリプレダとしてはタック性の経時変化が大きくなる。 また、 カバーファクターが大きいとバーンスルー特性に優れ耐火性の良い成形板が得ら れる。 本発明に特に適したカバ一ファクターの範囲は 96 %以上であり、 さらに 好ましくは 97. 5 %以上である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明において [A] は、 強化繊維織物である。
強化繊維として、 ガラス繊維、 炭素繊維、 ァラミド繊維、 ボロン繊維、 アルミナ 繊維、 炭化ケィ素繊維などが用いられる。 これらの繊維は 2種以上混合して用い てもかまわない。 より軽量で、 より耐久性の高い成形品を得るためには、 特に、 炭素繊維や黒鉛繊維の使用が好ましい。 繊維本来の引張強度ゃハニカムサンドィ ッチパネルとしたときの耐衝撃性が高いという面から、 ストランド引張強度 4. 4GP a以上、 引張り破断伸度 1. 7 %以上の高強度炭素繊維がより好ましい。 さらに耐衝撃性向上の面から引張伸度が 1. 7 %以上である炭素繊維の使用が 特に好ましく、 引張弾性率 Eが 200 GP a以上、 破壊ひずみエネルギーが 4. 0 mm - k g f /mm3 以上であることが好ましい。 引張弾性率 Eが高い強化繊 維を用いることは、 自己接着性評価の 1つであるクライミングドラムピール法に おいて高強度を得ることに繋がる。 こうした高強度高伸度炭素繊維として、 例え ば、 東レ (株) 製 T 700 S Cや T 800 H、 T 1 000 G等が挙げられる。 強化繊維織物として従来公知の二次元織物を用いることができる。 織物組織と しては平織、 綾織、 絡み織、 糯子織といった織物が好ましい。 特に平織構造が薄 い成形体を造りやすく適している。 織物の織糸は繊維束からなるが、 一つの繊維 束中のフィラメント数が 2500〜 30000本の範囲が好ましい。 2500本 を下回ると繊維配列が蛇行しやすく強度低下の原因となりやすい。 また、 300 00本を上回るとプリプレダ作製時あるいは成形時に樹脂含浸が起こりにくい。 より好ましくは、 2800〜2 5000本の範囲である。 特にフィラメント数が 5000〜 25000本のものがハニカムスキンパネルの表面平滑性向上の観点 から好ましい。
同様に繊維束の繊度が 1 500〜 2 0000デニールであることが好ましい。 1 500デニールを下回ると繊維配列が蛇行しやすく、 20000デニールを上回 るとプリプレダ作製時あるいは成形時に樹脂含浸が起こりにくい。
多数本の炭素繊維からなる実質的に撚りのない扁平な炭素繊維マルチフィラメ ント糸を織糸とした織物を用いることは、 織物プリプレダを長時間放置しておい ても織物繊維の動きが小さく表面樹脂の沈み込みが起こりにくいため、 プリプレ グのタック性の経時変化を抑制するため好ましい。 また、 成形中のプリプレダに おいても織物繊維の動きが小さく表面樹脂の沈み込みが起こりにくいため、 硬化 後のハニカムサンドイッチパネルの表面平滑性向上をもたらし好ましい。 ここで
「実質的に撚りがない」 とは、 糸長 l m当たりに 1ターン以上の撚りがない状態 をいう。 特に、 実質的にマルチフィラメント糸に撚りがなく、 集束性がフックド ロップ値で 1 0 0〜 1 0 0 0 mm、 好ましくは 1 0 0〜 5 0 0 mmの範囲にある マルチフィラメント糸からなる織物を用いることが、 織物繊維の動きを小さくし 織糸の扁平状態を維持しやすく、 プリプレダのタック経時変化抑制およびハニカ ムサンドィツチパネルの表面平滑性向上の観点から好ましい。 撚りゃ捩れがある と、 このフックドロップ値が小さくなる。
炭素繊維糸を用いた補強織物とする場合、 一般に炭素繊維はその製造工程にお いて切れたフィラメントのローラーへの巻き付きによる工程トラブルを防ぐため、 プリカーサ一の繊維束のフィラメント同士を交絡させて、 炭素繊維糸に集束性を 付与している。 また、 サイジング剤の付着量やフィラメント同士の接着により炭 素繊維糸に集束性を付与している。 フィラメント同士の交絡度合い、 サイジング 剤の付着量や接着の度合いによって集束性を制御する。 フックドロップ値が 1 0 0 mm以下となり集束性が強すぎると、 後述する織物のカバ一ファクターあるい はプリプレダのカバーファクターを大きくしにくく、 プリプレダのタック性の経 時変化抑制効果が小さくなる。 また、 プリプレダの樹脂含浸性が劣りやすい。 そ の結果、 スキンパネルの表面ピットや内部のポイドが発生しやすくなる。 フック ドロップ値が 1 0 0 0 mm以上であると炭素繊維糸の集束性が悪くなり毛羽が発 生しやすく製織性が悪くなり、 また複合材料としての強度低下につながる。
炭素繊維マルチフィラメント糸が扁平であり、 糸厚みが 0 . 0 5〜0 . 2 mm、 糸幅/糸厚み比が 3 0以上、 織物目付が 1 0 0〜3 2 0 g /m 2 である織物を用 いることは、 クリンプを小さく抑え、 織物繊維の動きを小さくし、 樹脂含浸後の プリプレダ中の樹脂の動きが少なくタック性の経時変化を抑制するため好ましい。 また、 こうした扁平な織糸を用いることによって通常の織物より繊維密度の高い 織物を得ることができ、 八二カムサンドィツチパネルの表面平滑性も向上するた め好ましい。 また扁平な織糸を用いることはスキンパネルの剛性を高め、 内部欠 陥であるポロシティ減少効果をもたらし、 自己接着性評価法の 1つであるクライ ミングドラムピール法において高強度を得ることに繫がる。 織物プリプレダとし ての厚さが、 0 . 1 5〜0 . 3 5 mmであることは織糸の屈曲に基づく凹凸があ まり発生せず、 ハニカムサンドィツチパネル表面平滑性向上の観点から好ましい。 以上のような扁平な炭素繊維マルチフィラメント糸を用いた織物は、 たとえば、 特開平 7— 3 0 0 7 3 9号公報に記載の手法にて作製できる。
本発明においては、 プリプレダまたはスキンパネル中の樹脂含量が 3 3〜 5 0 重量%の範囲が好ましい。 樹脂含量が 3 3重量%以下の場合は、 プリプレダの夕 ック性が劣りやすく、 スキンパネル上の表面ピットや樹脂かすれ、 およびスキン パネル内のポロシティが発生しやすくハニカムコアとの自己接着性が低下する。 また、 樹脂含量が 5 0重量%を越えるとプリプレダ作製時や成形時に樹脂流出が 起こりやすいという懸念点が有り、 また成形体の重量が増えるため軽量化の利点 が小さくなる。 特に好ましくは樹脂含量が 3 5〜4 5重量%の範囲である。
本発明において [ B ] は、 熱硬化性樹脂または熱硬化性樹脂組成物である。 ここで熱硬化性樹脂とは、 熱または光や電子線などの外部からのエネルギーによ り硬化して、 少なくとも部分的に三次元硬化物を形成する樹脂であれば特に限定 されない。 好ましい熱硬化性樹脂として、 エポキシ樹脂、 フエノール樹脂、 ビニ ルエステル樹脂、 不飽和ポリエステル樹脂、 シァネート樹脂、 マレイミ ド樹脂、 ポリイミ ド樹脂等が挙げられる。
熱硬化性樹脂として、 エポキシ樹脂が好ましく用いられる。
特に、 アミン類、 フエノール類、 炭素炭素二重結合を有する化合物を前駆体とす るエポキシ樹脂が好ましい。
具体的には、 アミン類を前駆体とするダリシジルァミン型エポキシ樹脂として テトラグリシジルジアミノジフエ二ルメタン、 トリグリシジル一 p —ァミノフエ ノール、 トリグリシジルァミノクレゾ一ルの各種異性体が挙げられる。 テトラグ リシジルジアミノジフエニルメタンは耐熱性に優れるため航空機構造材としての 複合材料用樹脂として好ましい。 フエノールを前駆体とするグリシジルエーテル型エポキシ樹脂も好ましい。 ビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 ビスフエ ノール S型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂、 クレゾールノ ポラック型エポキシ樹脂、 レゾルシノール型エポキシ樹脂が挙げられる。
これらのなかでもエポキシ当量 4 0 0以上のダリシジルエーテル型エポキシ樹脂 を用いることにより、 プリプレダが硬化してなるスキンパネルとハニカムコアと の自己接着性が高くなるため好ましい。
液状のビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 レゾルシノール型エポキシ樹脂は低粘度であるために、 他のエポキシ樹脂や添加 剤の配合に好ましい。
固形のビスフエノ一ル A型エポキシ樹脂は、 液状ビスフエノール A型エポキシ 樹脂に比較し架橋密度の低い構造を与えるため耐熱性は低下させるが、 より靭性 の高い構造を得させるため適宜配合して好ましく用いられる。 特に、 スキンパネ ルとハ二カムコアとの自己接着性を向上せしめたりプリプレダのタック性経時変 化を抑制する効果があり、 また樹脂粘度を高めパネルの表面樹脂を確保すること により表面平滑性を高めるため好ましい。
ナフタレン骨格を有するエポキシ樹脂は、 低吸水率かつ高耐熱性の硬化樹脂を 与えるため好ましい。 また、 ビフエニル型エポキシ樹脂、 ジシクロペン夕ジェン 型エポキシ樹脂、 ジフエニルフルオレン型エポキシ樹脂も低吸水率の硬化樹脂を 与えるため好適に用いられる。 ウレタン変性エポキシ樹脂、 イソシァネート変性 エポキシ樹脂は破壊靱性、 伸度の高い硬化樹脂を与えるため好ましい。
これらエポキシ樹脂は単独で用いてもよいし、 適宜配合して用いてもよい。 少 なくとも 2官能のエポキシ樹脂および 3官能以上のエポキシ樹脂を配合すること は、 樹脂の流動性と硬化後の耐熱性を兼ね備えるものとするため好ましい。 特に ダリシジルァミン型エポキシとダリシジルエーテル型エポキシの組合わせは、 耐 熱性、 耐水性とプロセス性の両立を可能にするため好ましい。 また、 少なくとも 室温で液状のエポキシ樹脂 1種と室温で固形状のエポキシ樹脂 1種とを配合する ことは、 プリプレダのタック性とドレープ性を適切なものとするため好ましい。 フエノールノポラック型エポキシ樹脂やクレゾ一ルノポラック型エポキシ樹脂は 耐熱性が高く吸水率が小さいため、 耐熱耐水性の高い樹脂を与えるため好ましい。 これらを配合することによって、 耐熱耐水性を高めつつプリプレダのタック性、 ドレープ性を調節できる。
エポキシ樹脂の硬化剤としては、 エポキシ基と反応し得る活性基を有する化合 物であればこれを用いることができる。 好ましくは、 アミノ基、 酸無水物基、 ァ ジド基を有する化合物が適している。 より具体的には、 例えば、 ジシアンジアミ ド、 ジアミノジフエ二ルメタンゃジアミノジフエニルスルホンの各種異性体、 ァ ミノ安息香酸エステル類、 各種酸無水物、 フエノールノボラック樹脂、 クレゾ一 ルノポラック樹脂、 ポリフエノール化合物、 イミダゾ一ル誘導体、 脂肪族ァミン、 テトラメチルダァニジン、 チォ尿素付加ァミン、 メチルへキサヒドロフタル酸無 水物のようなカルボン酸無水物、 カルボン酸ヒドラジド、 カルボン酸アミ ド、 ポ リメルカブタン、 三フッ化ホウ素ェチルアミン錯体のようなルイス酸錯体などが あげられる。 芳香族ジァミンを硬化剤として用いると、 耐熱性の良好なエポキシ 樹脂硬化物が得られる。 特にジァミノジフヱニルスルホンの各種異性体は耐熱性 の良好な硬化物を得るため最も適している。 その添加量は化学量論的に当量とな るよう添加することが好ましいが、 場合によって、 例えば当量比 0 . 7〜0 . 8 附近を用いると高弾性率樹脂が得られるため好ましい。 これらの硬化剤は単独で 使用しても併用してもよい。 また、 ジシアンジアミドと尿素化合物、 例えば 3, 4 - ジクロロフエニル- 1 , 1 - ジメチルゥレアとの組合せ、 あるいはイミダゾール類を 硬化剤として用いると比較的低温で硬化しながら高い耐熱耐水性が得られるため 好ましい。 酸無水物にて硬化することはァミン化合物硬化に比べ吸水率の低い硬 化物を与えるため好ましい。 その他、 これらの硬化剤を潜在化したもの、 例えば マイクロカプセル化したものを用いれば、 プリプレダの保存安定性、 特にタック 性やドレープ性が室温放置しても変化しにくいため好ましい。
また、 これらエポキシ樹脂と硬化剤、 あるいはそれらの一部を予備反応させた 物を組成物中に配合することもできる。 この方法は、 粘度調節や保存安定性向上 に有効である場合がある。
熱硬化性樹脂として、 フエノ一ル樹脂も好ましく用いられる。
フエノール樹脂は難燃性が高く、 内装材ゃ建材として好ましい。 特に航空機内装 材として八二カムサンドィツチパネルは軽量ながら高強度、 高剛性であるため好 ましいが、 フエノール樹脂をスキンパネルのマトリックス榭脂とすれば、 火災時 の難燃性、 低発煙性に優れるため好んで用いられる。
一般に、 熱硬化性フエノール樹脂は、 フエノール、 クレゾ一ルゃキシレノール 等のアルキルフエノール、 あるいは、 さらにアルキルフエノールのベンゼン環の 一部がハロゲン原子で置換されたハロゲン化アルキルフエノール等の各種フエノ ール類と、 ホルムアルデヒド、 ァセトアルデヒド、 フルフラール等のアルデヒド 類との縮合反応によって合成される。 熱硬化性フエノール樹脂は、 その合成時の 触媒によって二種類に大別され、 その一方は酸性触媒によって合成されるノポラ ック型フエノール樹脂であり、 他方は、 塩基性触媒によって合成されるレゾ一ル 型フエノール樹脂であるが、 本発明には両方を用いることができる。 ノボラック 型フエノール樹脂は、 加熱硬化に際し、 触媒としてへキサメチレンテトラミン等 のァミン系硬化剤を必要とするが、 レゾール型フエノール樹脂は加熱のみでも硬 化する。 酸触媒を添加すれば、 より低温でレゾール型フエノール樹脂を硬化させ ることができる。 また、 アンモニアレゾール型フエノール樹脂やべンゾォキサジ ン型フエノール樹脂も好ましい。 ベンゾォキサジン型フエノール樹脂とは、 フエ ノール類とアルデヒド類とアミン類から合成されるォキサジン環を有する樹脂で ある。 開環重合により硬化するため縮合水の発生がなく成形体にボイ ドが生じに くい。 したがって、 高強度の成形体が得やすく好ましい。 フエノール類としてビ スフエノールを選択すれば 2官能となるため、 架橋密度が高くなり耐熱性が向上 するので好ましい。 原料のビスフエノールとしてはビスフエノール A、 ビスフエ ノール F、 ビスフエノール S、 ビフエ二ル、 ジヒドロキシベンゾフエノン、 ジフ ェニルフルオレン等の種々の構造を用いることができる。 また、 ナフトール、 ナ フトジオールのような多環フエノール類も原料として用い得る。
フエノール樹脂は、 溶媒や水に溶解あるいは分散されたものが多いが、 固形分 濃度が高いほど成形物にボイドが発生しにくいため本発明には好ましい。 特に固 形分が 7 0重量%以上、 さらには 8 0重量%以上のものが好ましい。
熱硬化性樹脂として、 シァネート樹脂も好ましく用いられる。
シァネート樹脂とは、 ビスフエノールやフエノールノボラッックに代表されるよ うな多価フエノールのシアン酸エステルである。 一般にエポキシ樹脂より、 耐熱 性が良好であり吸水率が低いため、 吸水高温状態での特性が重視される場合に好 ましい。
熱硬化性樹脂として、 マレイミド基を分子中に平均して 2個以上有するマレイ ミ ド樹脂も、 耐熱性が良好であり好ましい。
その他、 ポリイミ ド榭脂、 ビニル基ゃァリル基を有する樹脂、 例えばビニルェ ステル樹脂や不飽和ポリエステル樹脂を [B] として用いることもできる。
硬化樹脂のガラス転移温度 (Tg) が 1 60°C以上となる熱硬化性樹脂組成物 を用いることは、 ハニカムサンドィツチパネルに十分な耐熱性を付与できるため 好ましい。
さらに、 熱硬化性樹脂には、 未硬化樹脂の粘弾性や硬化樹脂の剛性ゃ靱性を改 良するため種々の改質剤を添加できる。 具体的には固形ゴム、 液状ゴム、 熱可塑 性榭脂エラストマ一、 熱可塑性樹脂、 無機粒子や短繊維等から選ばれる 1種以上 の添加剤が好ましく用いられる。
一般に固形ゴムは、 液状ゴムに比べて同一量をエポキシ樹脂に溶解した場合の 粘度上昇が大きく、 成形過程の樹脂組成物を適度な粘度レベルに保ちながら、 比 較的成形物の耐熱性を維持できるため好ましい。 樹脂組成物の粘弾性関数の温度 依存性を減少し、 プリプレダを扱う作業環境温度の変動があっても取扱い性が悪 化しにくく、 またプリプレダ放置によるタック性の経時変化を小さくし、 硬化物 であるスキンパネルの表面平滑性を向上せしめる。 固形ゴムとしてはブタジエン とァクリロニトリルのランダムコポリマ一であるァクリロニトリル—ブタジエン 共重合体がエポキシ樹脂との相溶性の面から好ましい。 ァクリロニトリルの共重 合比を変化させることでエポキシ樹脂との相溶性を制御できる。 さらにエポキシ 樹脂との接着性をあげるために官能基を有する固形ゴムがより好ましい。 官能基 としては、 カルボキシル基、 アミノ基などがある。 特にカルボキシル基を含有す る固形アクリロニトリル—ブタジエンゴムが好ましい。 また、 水素化二トリルゴ ムも耐候性に優れるため好ましい。 これら固形ゴムの市販品として N I POL 1 072、 N I POL 1072 J, N I POL 1472, N I POL 1472 HV, N I P O L 1 042 , N I P〇L 1 043、 N I P OL DN 63 1、 N I P O L 1 0 0 1 Z E T P O L 2 0 2 0 , Z E T P O L 2 2 2 0 , Z E T P O L 3 1 1 0 (以上、 日本ゼオン (株) 製) 等が挙げられる。
ゴムが官能基を有しエポキシ樹脂との混合中にエポキシ基と反応し、 幾らかの 高分子量化や分岐構造を形成することは、 プリプレダ放置によるタック性の経時 変化を抑え、 硬化後のスキンパネルの表面平滑性を高めるため好ましい。 特に、 こうした予備反応を積極的に用いる場合は、 優れた表面平滑性を与えプリプレダ のタック経時変化を効果的に抑制するために必要な添加量が、 予備反応させない 場合に比較して少量でよい。 例えば、 予備反応を意図しない場合に固形ゴムを 7 重量%添加して達成できるプリプレダのタック性、 成形板の表面平滑性を、 積極 的に固形ゴムとエポキシ樹脂を加熱下にて予備反応させれば固形ゴム 3重量%程 度の添加にて達成できる。 予備反応は通常加熱下の混合によって行い、 7 0で以 上の温度で 3 0分以上混合することが表面平滑性向上や夕ック経時変化抑制に効 果的であり好ましい。 より好ましくは 7 0で以上の温度で 1時間以上混合するこ とである。 但し、 予備反応を進めすぎると樹脂粘度が高くなりすぎ、 フィルム化 や繊維への含浸などのプリプレグ作製に必要なプロセスにとって不利となること もある。 したがって、 さらに好ましい予備反応条件は 7 0〜8 5 °Cの温度範囲に て 1〜 3時間混合することである。 固形ゴムをエポキシ樹脂と予備反応させる際 はエポキシ樹脂として官能基数の少ないものとまず反応させ、 次いで官能基数の 多い、 例えば 4官能のエポキシを混合することが増粘程度を制御しやすいため好 ましい。 同様の理由にて 4官能以上の官能基数を有するエポキシ樹脂はエポキシ 組成中の 6 0 %以下であることが好ましい。
熱硬化性樹脂の改質剤として無機粒子の添加も好ましい。 タルク、 ケィ酸アル ミニゥム、 微粒子状シリカ、 炭酸カルシウム、 マイ力、 モンモリロナイト、 スメ クタイ ト、 カーボンブラック、 炭化ケィ素、 アルミナ水和物等が挙げられる。 こ れらの無機粒子は、 レオロジー制御すなわち増粘やチキソトロピ一性付与効果が 大きい。 なかでも微粒子状シリカは樹脂組成物に加えた際にチキソトロピー性発 現効果が大きいことが知られているが、 それのみでなく樹脂組成物の粘弾性関数 の温度依存性を減少し、 プリプレダを扱う作業環境温度の変動があっても取扱い 性の悪化を防止できる。 また、 プリプレダ放置によるタック性の経時変化を小さ くし、 硬化物であるスキンパネルの表面平滑性を向上せしめ、 ハニカムコアへの 自己接着性に優れる効果を与えるため好ましい。
二酸化ケイ素を基本骨格とする微粒子状シリカとして、 例えば、 一次粒径の平均 値は 5〜4 0 n mの範囲にあるものがァエロジル (日本ァエロジル (株) 製) の 商標にて市販されている。 一次粒子径が 4 0 n m以下と細かいことが充分な増粘 効果を与えるため好ましい。 粒子径は電子顕微鏡にて評価する。 比表面積として は 5 0〜4 0 0 m 2 / gの範囲のものが好ましい。 シリカの表面がシラノール基 で覆われているものが一般的に用いられるが、 シラノ一ル基の水素をメチル基、 ォクチル基、 ジメチルシ口キサン等で置換した疎水性微粒子状シリカを用いるこ とは樹脂の増粘効果、 チキソトロピー性安定化の面および成形品の耐水性、 圧縮 強度に代表される力学物性を向上する面からより好ましい。
改質剤として固形ゴムを用いる場合、 添加量は榭脂組成物全体に対して 1〜 1 0重量%の範囲で添加することが好ましい。 1重量%未満ではプリプレダのタツ ク性が乏しく、 ハニカムサンドィツチパネルのスキンパネル表面にピットゃ樹脂 かすれが発生しやすい。 一方、 1 0重量%を超えると樹脂粘度が高すぎ、 プリプ レグへの含浸が困難になりやすい。 より好ましい添加量は 2〜 6重量%の範囲で あり、 さらに好ましくは 2〜4重量%の範囲である。
改質剤として無機粒子を添加する場合、 樹脂組成物全体に対して 0 . 8〜8重 量%の範囲で添加することが好ましい。 0 . 8重量%未満ではハニカムサンドィ ツチパネルのスキンパネル表面にピットや樹脂かすれが発生しやすく、 一方、 8 重量%を超えると樹脂粘度が高すぎ、 プリプレダへの含浸が困難になりやすい。 より好ましい添加量は 0 . 8〜 5重量%の範囲であり、 さらに好ましくは 1〜3 重量%の範囲である。 固形ゴムと無機粒子は単独で使用してもよいが、 併用した ほうがスキンパネル表面のピット低減とプリプレダのタック性向上、 経時変化抑 制や成形物の耐熱性維持のためより好ましい。 その場合のもっとも好ましい添加 量は固形ゴム 2〜 4重量%および無機粒子 1〜 3重量%の範囲である。
改質剤として熱可塑性エラストマ一を添加することも好ましい。 特にポリエス テル系またはポリアミド系の熱可塑性エラストマ一が好ましく配合される。 ポリ エステル系またはポリアミド系の熱可塑性エラストマ一を配合したエポキシ樹脂 組成物は、 優れたタック性を示しながら、 低粘度であり、 ドレープ性、 強化繊維 への含浸性にも優れる。 また、 このような熱可塑性エラストマ一を配合しない場 合に比較して、 樹脂の粘弾性関数の温度依存性、 特に室温付近での変化が小さい ため、 プリプレダの取扱性の温度依存性が小さくなるため好ましい。 従って、 こ れを用いたプリプレダは、 タック性、 ドレープ性、 品位ともに優れた特性を発現 し得る。 このような効果を得るためには、 ポリエステル系またはポリアミ ド系ェ ラストマ一を熱硬化性樹脂 1 0 0重量部に対して 1〜2 0重量部配合することが 好ましい。 ポリエステル系またはポリアミ ド系の熱可塑性エラストマ一の融点は 熱硬化性樹脂組成物の硬化後の耐熱性に影響を与えるため、 1 0 0 °C以上である ことが好ましく、 さらには 1 4 0 °C以上であることが好ましい。
さらに、 ポリエステル系またはポリアミ ド系の熱可塑性エラストマ一を含有す る熱硬化性樹脂組成物が優れたタック性を維持しつつ、 機械物性などの優れた複 合材料物性を得るためには、 熱硬化性樹脂に熱力学的に溶解可能な熱可塑性樹脂、 特に水素結合性の官能基を有する熱可塑性樹脂を配合することが有効である。 これは、 マトリックス樹脂と強化繊維の間の接着性が改良されるためと推定され る。
熱可塑性樹脂を改質剤として添加することは、 ゴム、 エラストマ一類の添加に 比較して弾性率や耐熱性の低下が小さいという観点から好ましい。 未硬化状態の 熱硬化性樹脂に溶解する熱可塑性樹脂を添加することは、 樹脂調整時や成形時に 溶解しない熱可塑性樹脂微粒子を用いるより靱性向上効果が大きいため好ましい。 特に、 熱硬化性樹脂と熱可塑性樹脂との組み合わせとして、 一旦、 熱可塑性樹脂 が溶解した後、 硬化過程においてミク口相分離構造を形成するものを選択するこ とが靱性向上効果が大きくさらに好ましい。 こうした熱可塑性樹脂添加剤として 具体的にはポリビニルホルマール、 ポリビニルプチラール、 ポリビニルアルコー ル、 ポリビニルピロリ ドン、 ポリエチレンオキサイド、 ポリメチルメ夕クリレー ト、 ポリアクリルアミ ド、 共重合ナイロン、 ダイマー酸系ポリアミド等が挙げら れる。 耐熱性や弾性率の低下が少なく靱性向上効果が大きいという観点からは、 ポリスルホン、 ポリエーテルスルホン、 ポリエーテルイミ ド、 ポリアミ ド等のェ ンジニァリングプラスチックに属する熱可塑性樹脂の添加がより好ましい。 また、 これらの熱可塑性樹脂が熱硬化性樹脂との反応性を有することは靱性向上および 硬化樹脂の耐環境性維持の観点から好ましい。 特に好ましい官能基としては、 力 ルポキシル基、 アミノ基、 水酸基などを使用することができる。
本発明の熱硬化性樹脂組成物には、 上記の添加剤の他に、 これら以外の高分子 化合物、 反応性希釈剤、 鎖延長剤、 酸化防止剤などの添加物を含むことができる。 高分子化合物としては、 種々の目的でエポキシ樹脂に可溶なものが配合できる。 具体的には、 欧州特許第 47 56 1 1号公報 (対応特開平 6— 93 1 03号公報) に記載されたような反応性シリコーンなどは硬化樹脂の靭性、 延性を向上させ、 未硬化樹脂の流動性の調節に効果的であり好ましい。
反応性希釈剤としては、 1官能のエポキシ化合物が好ましく用いられる。 具体 的には、 ブチルダリシジルェ一テル、 2—ェチルへキシルグリシジルエーテル、 フエニルダリシジルエーテル、 クレジルグリシジルエーテル、 P- sec- ブチルダ リシジルエーテル、 P- tert-ブチルダリシジルエーテルなどが挙げられる。
鎖延長剤としては、 ビスフエノール類が好ましく用いられる。 具体的には、 ビ スフエノール八、 ビスフエノール S、 フルオレンビスフエノールなどが挙げられ る。 鎖延長剤を用いることで自己接着性がより優れたハニカムサンドィツチパネ ル用プリプレダを得ることができる。
酸化防止剤としては、 2, 6—ジ- ter卜プチルー p—クレゾール (BHT) 、 プチル化ヒドロキシァニソール、 トコフエノールなどのフエノール系酸化防止剤、 ジラウリル 3, 3 ' —チォジプロピオネート、 ジステアリル 3, 3 ' —チォジブ 口ピオネートなどの硫黄系酸化防止剤が好ましく用いられる。
本発明における熱硬化性樹脂組成物は、 ASTM D 5045- 91に基づいて測定さ れる硬化後の破壊靱性値 K1Cが 1. OMP a · m1/2以上となる熱硬化性樹脂組 成物が特に好ましい。
硬化後の破壊靱性値 K1Cが 1. OMP a · m1/2以上である熱硬化性樹脂組成 物を用いることにより、 硬化成形体としてのハニカムサンドィツチパネルの自己 接着性評価の際、 引き剥がし応力下での破壊進展が抑制され、 クライミングドラ ムピール試験 (ノーメックスハニカム SAH1/8-8.0使用、 繊維目付 190g/m2、 樹脂 含有率 44%の炭素繊維強化プリプレダをハニカムコアの上下ともに (± 4 5 ° ) / (±45° ) の 2枚対称積層とする場合) において高い剥離強度を示す。 破壊 靱性値 K1Cが 1. 2MP a · m1/2以上であることがより高いクライミングドラ ムピール強度を得るために好ましく、 さらには破壊靱性値 K1Cが 1. 5MP a * m 1/2以上であることが好ましい。
本発明における硬化後の破壊靱性値 K1Cが 1. OMP a · πι1/2以上となる熱 硬化性樹脂組成物を得るための具体的な方法は、 例えば次の方法が挙げられる。 すなわち、 架橋点となる官能基間の分子量が大きい樹脂を用いたり、 分子鎖延 長剤の添加により架橋密度を低下させたり、 組成物中に固形ゴム、 液状ゴム、 熱 可塑性エラストマ一、 熱可塑性樹脂から選ばれる添加剤を配合することが好まし い。 特に耐熱性と高靱性化効果の両立の観点から熱可塑性樹脂の添加が好ましい。 その際、 硬化過程においてミクロ相分離構造を形成するものを選択することが靱 性向上効果が大きくさらに好ましい。 この相分離構造のドメインの大きさ (両相 連続構造の場合は相分離構造周期) は、 強化繊維を高濃度に含む複合材料とする ため 10 m以下が好ましく、 高靱性化効果が大きいという観点から 0. 1 m 以上が好ましい。
こうした熱可塑性樹脂添加剤として具体的にはポリビニルホルマール、 ポリビ 二ルブチラール、 ポリビニルアルコール、 ポリビニルピロリ ドン、 ポリエチレン オキサイド、 ポリメチルメタクリレート、 ポリアクリルアミド、 共重合ナイロン、 ダイマ一酸系ポリアミド等が挙げられるが、 特に、 耐熱性や弾性率の低下が少な く靱性向上効果が大きいという観点から、 ポリスルホン、 ポリエーテルスルホン、 ポリエ一テルイミ ド、 ポリアミ ド等のエンジニアリングプラスチックに属する熱 可塑性樹脂の添加がより好ましい。 また、 これらの熱可塑性樹脂が熱硬化性樹脂 との反応性を有することは靱性向上および硬化樹脂の耐環境性維持の観点から好 ましい。 特に好ましい官能基としては、 カルボキシル基、 アミノ基、 水酸基など が挙げられる。
熱可塑性樹脂改質剤の数平均分子量は、 1万以上であることが少量の添加にお いて高靱性化効果をもたらすという観点から好ましい。 しかし、 数平均分子量が 4千から 1万のオリゴマ領域であっても添加に伴う粘度上昇がポリマに比較して 小さいため大量に添加することができ、 かえって高靱性化効果が大きい場合もあ り好ましい。 特に耐熱性の高いエンジニアリングプラスチック構造を有するオリ ゴマの場合、 多量に添加しても樹脂全体の耐熱性を損なわないためオリゴマ領域 の分子量であって良く、 とりわけ反応性末端を有する場合に優れた高靱性化効果 が得られやすい。
[ C ] は、 樹脂微粒子である。
[ B ] としての熱硬化性樹脂を主体とするマトリックス樹脂と強化繊維織物 [A] とを組合せてなるプリプレダ中に樹脂微粒子 [ C ] が、 混合分散されていること により、 プリプレダをハニカムコアに貼りつけた後コキュア成形することで得ら れるスキンパネルとハニカムコアの自己接着強度が大きく向上するのである。 さらに、 樹脂微粒子 [ C ] が混合分散されていることにより、 意外にもプリプレ グのタック性の経時変化を抑制し、 成形後のスキンパネルの表面平滑性を向上さ せ、 また内部ポロシティを減少させる効果も有するのである。
また、 この効果はカバーファクターが 9 5 %以上である織物プリプレダとしたと きに、 特に顕著になることを見出した。
樹脂微粒子 [ C ] の存在や高いカバーファクタ一は、 樹脂の繊維内部への沈み込 みを抑制し、 プリプレダのタック性維持やスキンパネルの表面平滑性向上に寄与 するのである。
樹脂微粒子 [ C ] としての微粒子の素材である樹脂は、 主鎖に、 炭素炭素結合、 アミ ド結合、 イミド結合、 エステル結合、 エーテル結合、 カーボネート結合、 ゥ レタン結合、 チォエーテル結合、 スルホン結合、 カルボニル結合から選ばれる結 合を有する熱可塑性樹脂であることが好ましいが、 部分的に架橋構造を有しても さしつかえない。 また、 結晶性を有しても、 非晶性であってもよい。 特に、 ポリ アミ ド、 ポリカーボナート、 ポリアセタール、 ポリフエ二レンォキシド、 ポリフ ェニレンスルフイ ド、 ポリアリレート、 ポリエーテル、 ポリエステル、 ポリイミ ド、 ポリアミ ドイミ ド、 ポリエーテルイミ ド、 ポリスルホン、 ポリウレタン、 ポ リエーテルスルホン、 ポリエーテルケトン等は耐熱性、 靭性ともに優れ、 樹脂微 粒子 [ C ] として適している。 なかでもポリアミドは最も好ましく、 ハニカムコ ァ Zスキンパネルの引き剥がし強度を大きく向上させる。 ポリアミドのなかでも ナイロン 1 2、 ナイロン 1 1やナイロン 6 Z 1 2共重合体は、 特に良好な接着強 度を与えるため好ましい。
樹脂微粒子 [C] の素材を選択する場合、 樹脂微粒子 [C] の素材の弾性率が 熱硬化性樹脂 [B] の硬化物の弾性率より低い方がより高い接着強度を得るため 好ましい。 とりわけ、 [C] の素材の曲げ弾性率が [B] の硬化物の曲げ弾性率 の 2 Z 3以下、 さらには 1 / 2以下であることが好ましい。
樹脂微粒子 [C] はプリプレダの樹脂中にまんべんなく均一分布する場合でも、 スキンパネルとハニカムコアとの接着強度を向上し、 プリプレダのタック性経時 変化を抑制し、 スキンパネル表面の平滑性を高める効果を有する。 ただし、 プリ プレダ表面付近、 すなわち成形後のハニカムコアとの接着面近傍に高濃度に分布 させることも、 スキンパネルの剛性や耐熱性を落とさずに接着強度を向上できる 効果があり好ましい。 また、 スキンパネル表面付近に高濃度に分布することはス キンパネルの剛性や耐熱性を落とさずに表面平滑性を向上できる効果があり好ま しい。 樹脂微粒子 [C] の形態は球状、 不定型粒子、 多孔性粒子、 アスペクト 比の大きい繊維状粒子のいずれであっても良い。 但し、 真球状に近い方がプリプ レグのタック経時変化抑制効果や自己接着性、 成形体の表面平滑性も優れるため 特に好ましい。
樹脂微粒子 [C] が熱可塑性の樹脂微粒子である場合、 その大きさは粒子径が 1〜50 mの範囲であることが好ましい。 平均一次粒子径が 1 im未満ではス キンパネル/八二カムコア間の接着強度向上効果が小さくなり、 50 を超え ると強化繊維の配列を乱し、 強度低下を起こしたり含浸不良となる可能性がある。 より好ましくは粒子径が 1〜 30 mの範囲である。
ゴム微粒子も樹脂微粒子 [C] として用いられる。
例えば、 コア Zシェル型ゴム粒子が挙げられるが、 米国特許第 4, 419, 49 6号公報、 ヨーロッパ特許第 45, 357号公報、 特開昭 55— 949 1 7号公 報に開示された方法により製造される。 市販のコアノシェル型ゴム粒子としては、 例えば、 パラロイド E XL 26 55 (呉羽化学工業 (株) 製) TR 2 122 (武 田薬品工業 (株) 製) 、 EXL— 26 1 1、 EXL - 3387 (Rohm & Haas 社 製) などが挙げられる。 架橋ゴム粒子も樹脂微粒子 [C] として好ましい。 市販 の架橋ゴム粒子としては、 XER— 7 1 P、 XER- 9 1 P (日本合成ゴム (株) 製) などが挙げられる。 ゴム粒子径は、 好ましくは 5 m以下、 さらに好ましく は 1 以下のものが用いられる。 粒子径が 1 0 mより大きいと、 強化繊維に マトリックス樹脂を含浸させる際に、 微粒子が均一に分散されずに高靱性化効果 を得にくい。 粒子径が 1 m以下の場合、 強化繊維含有率が 5 0体積%以上と高 いコンポジットの場合でも繊維配向を乱さず、 また、 剥離強度向上効果が著しい ため特に好ましい。
樹脂微粒子 [ C ] の含有量は、 [ B ] および [ C ] からなる樹脂硬化物中の 2 〜 1 5 %の範囲にあることが好ましい。 2 %未満ではスキンパネル Zハニカムコ ァ間の接着強度向上効果が劣り、 1 5 %を超えるとハニカムサンドイッチパネル の強度低下を起こしたり、 樹脂含浸不良となる可能性がある。
樹脂微粒子 [ C ] が熱硬化性樹脂 [ B ] と反応し得る官能基を有することは、 自己接着性向上のため好ましい。 好ましい官能基としてエポキシ基、 カルボキシ ル基、 水酸基等が挙げられる。
樹脂微粒子 [ C ] の形態、 大きさや存在分布状態の評価は、 顕微鏡観察によつ て行う。 光学顕微鏡でもよいが、 走査型電子顕微鏡を用いる方が高倍率観察がで きるため好ましい。 粒子形態、 大きさについてはプリプレダ中のマトリックス樹 脂を適当な溶剤にて溶かし、 粒子のみ溶解させずに濾別して顕微鏡観察する手法 が好ましい。 したがって、 溶剤の種類は用いる樹脂微粒子およびマトリックス樹 脂の種類に依存するが、 塩化メチレン等の塩素系溶剤やアセトン、 メチルェチル ケトンといった溶剤が考えられる。 微粒子の含有量はこうして濾別した微粒子重 量と元のプリプレダ重量および溶け残った強化繊維の重量から計算できる。
微粒子のプリプレダ中の存在分布については、 プリプレダ中の樹脂が流動しない ように低温から約 3週間〜 1力月かけて少しずつ硬化せしめた後に研磨面を観察 することが好ましい。 素材分布状態を明確にするため、 観察前に四酸化ォスミゥ ムゃ燐タングステン酸等により染色を行い、 コントラストをつけることがより好 ましい。
プリプレダの製造方法として、 マトリックス樹脂を溶媒に溶解して低粘度化し、 含浸させるゥエツト法と、 加熱により樹脂を低粘度化し含浸させるホットメルト 法 (ドライ法) などの方法を使用することができる。 ホットメルト法は、 強化繊 維とエポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムを両側あ るいは片側から重ね、 加熱加圧することにより樹脂を含浸させプリプレダを作製 する方法であり、 樹脂含有量やプリプレダ厚みを制御しやすく、 また、 樹脂含浸 時の圧力および温度の選択によりカバーファクタ一の高いプリプレダを得やすく、 タック性の経時変化の少ないプリプレダを与え成形板の表面平滑性を向上させる ためより好ましい。
[D] は、 ハニカムコアである。
ハニカムコアとしては軽量でありながら高強度の構造体を形成できる点で、 フエ ノール樹脂を含浸させたァラミ ド紙からなるノーメックスハニカムコアが特に好 ましい。 セルサイズは 3〜 1 9mmの範囲が一般に用いられる。 他にアルミハニ カム、 ガラス繊維強化プラスチック (GFRP) ハニカム、 グラフアイトハニカ ム、 ペーパーハニカム等を用いてもよい。
ハニカムサンドィツチパネルを作製するためには、 強化繊維とマトリックスと なる樹脂からなるプリプレダをハニカムコアの両面に数枚積層し、 プリプレダ中 の樹脂を硬化させながらハニカムコアに接着させる方法にて成形する。
ハニカムサンドイッチパネルの成形方法として、 真空バッグ成形、 真空バッグ を用いたオートクレープ成形、 プレス成形等を挙げることができるが、 高性能の 八二カムサンドイッチパネルを得るためにはォ一トクレ一ブ成形が特に好ましい。 一方、 成形サイクルを短くし、 高品位の表面平滑性を得るためにはプレス成形が より好ましい。 特に、 マトリックス樹脂としてフエノール樹脂を選択する場合、 プレス成形を用いることが多い。
ハニカムサンドィツチパネルのスキンパネルとハニカムコア間の自己接着性は クライミングドラムピール強度 (CDP) を用い評価した。 織物プリプレダの積 層構成は、 ハニカムコアの上下ともに (±45° ) / (±45 ° ) の 2プライの 対称積層とした。 マトリックス樹脂としてエポキシ樹脂を用いる場合、 硬化条件 としては、 1. 5 分で 1 80°Cまで昇温し、 同温で 2時間保持しオートクレ —ブ内で硬化した。 その際、 まず、 ナイロンバッグをアルミニウムツール板上の 積層体にかぶせ、 バッグ内を真空状態に保った状態でオートクレープに入れ、 次 に 1. 5 k gZcm2 まで圧力を与えたところでバッグ内の真空を常圧に戻し、 その後 3 k g/cm2 まで昇圧してから昇温を行った。 マトリックス樹脂として フエノール樹脂を用いる場合には 140°Cで 1 0分間、 1 7 k gZcm2 の圧力 にてプレス成形を行った。 本発明における物性の測定方法ならびに効果の評価方法は次の方法によって行 つた。
[カバーファクター]
まず、 実態顕微鏡、 たとえば株式会社ニコン社製実態顕微鏡 SMZ— 1 0— 1 を使用して、 織物プリプレダの裏面側から光を当てながらプリプレダの表面を写 真撮影する。 これにより、 織糸部分は黒く、 織目部分は白く織物の透過光パター ンが撮影される。 光量はハレーションを起こさない範囲に設定する。 次に、 得ら れた写真を CCD (charge coupled device)カメラで撮影し、 撮影画像を白黒の 明暗を表わすデジタルデータに変換してメモリに記憶し、 それを画像処理装置で 解析し、 全体の面積 S1 と、 白い部分 (織目部分) の面積 S2 とから次式のカバ —ファクタ一 (Cf ) を計算する。 同様のことを、 同じ織物について 10箇所行 い、 その単純平均値をもってカバ一ファクターとする。
Cf = [ (Sl -S2 ) /Sl ] x i 00
本発明においては、 CCDカメラおよび画像処理装置として、 株式会社ピアス 社製パーソナル画像解析システム LA— 525を使用した。 なお、 デジタルデ一 夕には織糸部分 (黒い部分) と織目部分 (白い部分) との境界に黒と白との中間 部分が含まれる。 この中間部分を織糸部分と織目部分に区別判定するしきい値を 設定する必要がある。 そのためモデルとして真のカバーファクタ一が 75 %の格 子 (透明な紙に幅 6 mmの黒色テープを縦横に格子状に貼りつけカバーファク夕 —が 75 %となるようにしたもの) を作製し、 それがカバーファクタ一 7 5 %と して正しく認識されるように規格化を行った。
[ストランド引張強度]
J I S -R 760 1に基づいて測定した。
[引張弾性率 E]
J I S - R 760 1に基づいて測定した。 [破壊ひずみエネルギー]
J I S -R 760 1に準拠して測定したときの引張強度 (σ : k g f /mm2 ) と、 弾性率 Eとを用いて、 次式: \¥=σ2ノ 2 Eに基づいて算出する。
[フックドロップ値]
温度 23° (、 湿度 60 %の雰囲気で炭素繊維束を垂直に吊り下げ、 これに直径 1 mm、 長さ 1 00mm程度のステンレスワイヤ一の上部および下部の 20〜 30 mmを曲げ、 1 2 gの重りを下部に掛け、 上部を繊維束に引っ掛け、 30分経過 後の重りの落下距離で表す値である。
[熱硬化性樹脂組成物の硬化後の破壊靱性値 K1C]
ASTMD 5045- 91に基づいて測定されるものであって、 硬化樹脂の 6 mm厚の 試験体を作製し、 ノツチ付き 3点曲げ法によって測定して求められた値である。
[プリプレダのタック性評価]
プリプレダのタック性評価として、 プリプレダどうしを圧着後、 引き剥す力を 測定した。 この測定法には、 負荷応力、 速度、 時間、 温度、 湿度のパラメ一夕一 が存在する。 本発明の実施例におけるタック性の評価に関しては、 測定装置とし て "ィンストロン" 420 1型万能材料試験機 (インストロン ·ジャパン株式会 社製) を使用して、 以下の条件で測定した。
サンプル: 50 X 50 mm
負荷速度: 1 mm/m i n .
接着負荷: 0. 12 MP a
負荷時間: 5 ± 2 s e c
剥離速度: 10 mm/m i n .
環境 : 25°C、 相対湿度 50 %
[スキンパネル内ポロシティ]
ハニカム成形体のスキンパネル内ポロシティは面積法によって定量化した。 ハニカムコアの上面に織物プリプレダを上から (±45° ) / (0 ° /90 ° ) Z (0 ° Z90° ) Z (0° Z90° ) 、 ハニカムコア下面に (0 ° ノ90 ° ) Z (0° Z90° ) / (±45° ) の構成にて積層し、 上記条件にてプリプレダ をハニカムコアに直接接着させ硬化した成形体の断面について顕微鏡写真を 2 5 倍の倍率にて撮影し、 長さ約 26 c mx幅約 1 9 c mのハニカム成形体を幅方向 に切断し、 下面のスキンパネル断面内のポロシティ面積をスキンパネルの断面積 で除した数値を指標とした。 この時、 断面観察した全視野の中で最もポロシティ の多い 25. 4mm長さの範囲を選び、 ポロシティ面積を算出した。
[スキンパネルの表面平滑性]
ハニカム成形体のスキンパネルの表面平滑性は、 次の方法によりパネルを成形 し、 表面粗さ計により評価した。
まず、 ハニカムコアの両面に片面 2プライの面対象になるように、 (±45 ° ) / (±45° ) の構成にてプリプレダを積層した。 このハニカムコアとプリプレ グの積層体を、 フッ素樹脂フィルムを敷いたアルミニウム板上に乗せ、 成形を行 つた。 このハニカムサンドィツチパネルのツール板側の表面平滑性をミツトョ
(株) 社製表面粗さ計サーフテスト 30 1によって定量化した。 触針により長さ 8mmを評価し、 その間にある最高点から 5点を選んだ平均高さと最低点から 5 点を選んだ平均高さとの差を求めた。 これを 5回実施し平均値を求めた。
[クライミングドラムピール試験]
ASTM D 1 78 1に従って行った。 なお、 これらの試験に用いるハニカムコアとしては、 エポキシ樹脂マトリック スの場合、 ノーメックスハニカム SAH 1/8— 8. 0 (昭和飛行機 (株) 社製 : SAH 1/8—8. 0、 厚み 12. 7 mm) を用いた。 フエノール樹脂マトリ ックスの場合は、 ノ一メックスハニカム SAH1Z8— 3. 0 (昭和飛行機 (株) 社製: S AH 1 8— 3. 0、 厚み 1 2. 7mm) を用いた。 以下実施例によつて本発明を詳細に説明する。
実施例 1
ビスフエノール A型液状エポキシ (油化シェルエポキシ (株) 社製 Ep 828)
45重量部、 クレゾ一ルノポラック型固形エポキシ (住友化学工業 (株) 社製 E
5 CN 220) 25重量部、 カルボキシル基含有固形アクリロニトリルブ夕ジェ ンゴム (日本ゼオン (株) 製 N I P OL 1 072) 4重量部、 ナイロン 1 2微粒 子 (東レ (株) 製 S P— 500、 平均粒子径 5 ^m) 1 6重量部をニーダ一で混 練した。 さらに、 テトラグリシジルジアミノジフエニルメタン (住友化学工業 (株) 社製 ELM434) 30重量部、 トリメチルシリル基で表面処理した微粒 子シリカ (デダサ社製ァエロジル R 8 12) 3重量部を加え混練した。 ここに硬 化剤として 4、 4 'ジアミノジフエニルスルホン 38重量部を加え、 60 にて
30分撹拌しエポキシ樹脂組成物を調製した。 樹脂を硬化させ破壊靱性を測定し たところ 1. 5MP a * m 1/2であった。 硬化樹脂の Tgは 2 14°Cであった。 ちなみにナイロン 12微粒子を除いた樹脂を硬化させ弾性率を測定したところ 3
45 OMP aであった。 ナイロン 1 2の弾性率は 1 08 OMP aであった。
樹脂組成物を離型紙上にコーティングし、 樹脂目付が 66 gZm2 の樹脂フィ ルムを作製した。 この樹脂フィルムをプリプレダマシンにセットし、 ストランド 引張強度 4. 9 GP a、 引張弹性率2 30 &? &、 引張破断伸度 2. 1 %、 フッ クドロップ値 1 70 mmである東レ (株) 製炭素繊維 T 700 S C- 12K (繊 維数 12000本、 繊度 7200デニール) からなる炭素繊維平織織物 (目付 1 90 g/m2 、 糸厚み 0. l lmm、 糸幅 糸厚み比 70. 2) の両面から樹脂 含浸をおこないプリプレダを得た。 この時の含浸温度は 1 00°Cとした。 作製さ れたプリプレダのカバーファクタ一は 99. 2 %であった。 積層、 成形前のプリ プレダのタック性を測定したところ 0. 1 5MP aであった。 この同じプリプレ グを 25°C、 相対湿度 50 %の環境に 1 0日間放置した後のタック性は 0. 12 MP aであり経時変化は小さかった。 またプリプレダのドレープ性は良好であつ た。
ハニカムコアとプリプレグの積層体をフッ素樹脂フイルムを敷いたアルミニゥ ム板上に乗せ、 積層体はナイロンフィルムで真空パックしオートクレーブ成形を 行った。 プリプレダとハニカムコア間には接着フィルムは挟まず、 プリプレダを 硬化させつつ直接ハニカムコアに接着させた。 このようにして得られたハニカム サンドィツチパネルについて AS TM D 1 78 1に従いクライミングドラムピ ール試験を行ったところ、 1 5. 4ポンド ·インチ /3インチ幅の剥離強度を示 した。
下側スキンパネル内のポロシティ含有率を求めるため、 サンドィツチパネルの 横断面をサンドぺ一パーおよびアルミナ粉末で研磨し光学顕微鏡写真を撮影した。 この写真からポロシティは 0. 04%と少なかった。 また、 ハニカムサンドイツ チパネルのツール面側の表面粗さを測定したところ、 3. 8 xmであり優れてい た。 同パネルについて四酸化オスミウム染色の後、 走査型電子顕微鏡による反射 電子像観察を行ったところスキンパネル中の樹脂リツチ部に多数の真球状ナイ口 ン微粒子が均一に分布することが確認できた。 比較例 1
ナイロン 12微粒子を添加しないこと以外は実施例 1と同様の手法にて樹脂組 成物を調製した。 樹脂を硬化させ破壊靱性を測定したところ 0. 7MP a - l 2であった。 ついで、 実施例 1と同様の手法にてプリプレダを得た。 プリプレダ のカバ一ファクタ一は 99. 4%であった。 プリプレダのタック性を測定したと ころ 0. 14MP aであった。 この同じプリプレダを 25°C、 相対湿度 50 %の 環境に 1 0日間放置した後のタック性は 0. 07MP aであり経時変化は大きか つた。 実施例 1と同様の手法にて得たハニカムサンドィツチパネルについてクラ イミングドラムピール試験を行ったところ、 9. 8ポンド ·インチノ 3インチ幅 の剥離強度であった。 下側スキンパネル内のポロシティは 0. 2 1 %であった。 表面粗さを測定したところ、 1 5. 4 mであった。 比較例 2
プリプレダ作製時の含浸温度を 6 Ot とした以外は、 実施例 1と同様の樹脂組 成物を用い、 同様の手法にてプリプレダを得た。 プリプレダのカバ一ファクター は 94. 4%であった。 プリプレダのタック性を測定したところ 0. 1 5MP a であった。 この同じプリプレダを 2 5°C、 相対湿度 50 %の環境に 1 0日間放置 した後のタック性は 0. 08 MP aであり経時変化は大きかった。 実施例 1と同 様の手法にて得たハニカムサンドィツチパネルについてクライミングドラムピー ル試験を行ったところ、 1 2. 4ポンド ·インチ /3インチ幅の剥離強度であつ た。 下側スキンパネル内のポロシティは 0. 1 8%であった。 表面粗さを測定し たところ、 14. 9 imであった。 実施例 2
ビスフエノール F型液状エポキシ (大日本インキ化学工業 (株) 社製 E p c 8 30) 35重量部、 ブロム化ビスフエノール A型固形エポキシ (大日本インキ化 学工業 (株) 社製 E p c l 52 ) 3 5重量部、 カルボキシル基含有固形ァクリロ 二トリルブタジエンゴム (ゼオンケミカル社製 N I P OL 1472 HV) 5重量 部、 ナイロン 1 1微粒子 D— 30 (日本リルサン (株) 平均粒子径 30 m) 1 6重量部を二一ダ一で混練した。 さらに、 テトラグリシジルジアミノジフエニル メタン (住友化学工業 (株) 社製 ELM434) 30重量部、 ジメチルシリコー ン基で表面処理した微粒子シリカ (日本ァエロジル社製ァエロジル RY 200) 4重量部を加え混練した。 ここに硬化剤として 4、 4 'ジアミノジフエニルスル ホン 40重量部を加え 60°Cにて 30分撹拌しエポキシ樹脂組成物を調製した。 樹脂を硬化させ破壊靱性を測定したところ 1. 3MP a · m1/2であった。 硬化 樹脂の Tgは 203°Cであった。 ちなみにナイロン 1 1微粒子を除いた樹脂を硬 化させ弾性率を測定したところ 347 OMP aであった。 ナイロン 1 1の弾性率 は 990 MP aであった。
樹脂組成物を離型紙上に 70 でコーティングし、 樹脂目付が 66 gZm2 の 樹脂フィルムを作製した。 この樹脂フィルムをプリプレダマシンにセットし、 実 施例 1と同様の東レ (株) 製炭素繊維 T 700 S— 1 2Kからなる炭素繊維平織 織物 (目付 1 90 gZm2 ) の両面から樹脂含浸をおこないプリプレダを得た。 この時の含浸温度は 1 00°Cとした。 プリプレダのカバーファクタ一は 97. 9 %であった。 プリプレダのタック性を測定したところ 0. 1 6MP aであった。 この同じプリプレダを 25°C、 相対湿度 50 %の環境に 1 0日間放置した後の夕 ック性は 0. 1 3MP aであり経時変化は小さかった。 またプリプレダのドレー プ性は良好であった。
実施例 1と同様の手法にて得たハニカムサンドィツチパネルについて A S TM
D 1 78 1に従いクライミングドラムピール試験を行ったところ、 1 3. 4ポ ンド ·インチ / 3インチ幅の剥離強度を示した。
下側スキンパネル内のポロシティは 0. 08 %と少なかった。 また、 ハニカム サンドイッチパネルのツール面側の表面粗さを測定したところ、 7. 9 mであ つた。 同パネルについて四酸化オスミウム染色の後、 走査型電子顕微鏡による反 射電子像観察を行ったところスキンパネル中の樹脂リツチ部に不定形ナイロン微 粒子が均一に分布することが確認できた。 実施例 3
ビスフエノール A型液状エポキシ (油化シェルエポキシ (株) 社製 E p 828、 エポキシ当量 1 89) 40重量部、 ビスフエノール A型固形エポキシ (油化シェ ルエポキシ (株) 社製 E p 100 1、 エポキシ当量 467) 30重量部、 カルボ キシル基含有固形アクリロニトリルブタジエンゴム (日本ゼオン (株) 製 N I P OL 1072) 5重量部、 ナイロン 1 2微粒子 (東レ (株) 製 S P— 500、 平 均粒子径 5 ^m) 1 6重量部をニーダ一で混練した。 ここにテトラグリシジルジ アミノジフエニルメタン (住友化学工業 (株) 社製 ELM434) 30重量部、 トリメチルシリル基で表面処理した微粒子シリカ (デダサ社製ァエロジル R 8 1 2) 6重量部を加え混練した。 さらに、 硬化剤として 4、 4 'ジアミノジフエ二 ルスルホン 40重量部を加え 60°Cにて 30分撹拌しエポキシ樹脂組成物を調製 した。 樹脂を硬化させ破壊靱性を測定したところ 1. 7MP a · m1/2であった。 硬化樹脂の Tgは 1 9 1°Cであった。 ちなみにナイロン 1 2微粒子を除いた樹脂 を硬化させ弾性率を測定したところ 332 OMP aであった。 ナイロン 1 2の弾 性率は 1 080 MP aであった。
樹脂組成物を離型紙上に 65 °Cでコーティングし、 樹脂目付が 66 § 1112 の 樹脂フィルムを作製した。 この樹脂フィルムをプリプレダマシンにセットし、 実 施例 1と同様の東レ (株) 製炭素繊維 T 700 SC— 12Kからなる炭素繊維平 織織物 (目付 1 90 gZm2 ) の両面から樹脂含浸を行ないプリプレダを得た。 この時の含浸温度は 1 00°Cとした。 作製されたプリプレダのカバ一ファクタ一 は 99. 6%であった。 プリプレダのタック性を測定したところ 0. 14MP a であった。 この同じプリプレダを 2 5 °C、 相対湿度 50 %の環境に 1 0日間放置 した後のタック性は 0. 1 2MP aであり経時変化は小さかった。 またプリプレ グのドレープ性は良好であった。 実施例 1と同様の手法にて得たハニカムサンドィツチパネルについて AS TM D 1 78 1に従いクライミングドラムピール試験を行ったところ、 1 9. 1ボン ド ·インチ 3インチ幅の剥離強度を示した。
下側スキンパネル内のポロシティは 0. 02%と少なかった。 また、 ハニカムサ ンドイッチパネルのツール面側の表面粗さを測定したところ、 3. 8 zmであり 優れていた。 同パネルについて四酸化オスミウム染色の後、 走査型電子顕微鏡に よる反射電子像観察を行ったところスキンパネル中の樹脂リツチ部に多数の真球 状ナイ口ン微粒子が均一に分布することが確認できた。 実施例 4
ナイロン 1 2微粒子 S P— 500をナイロン 6 1 2共重合微粒子オルガソー ル 3202 D (アトケム (株) ) に置き換えた以外は実施例 3と同様の手法にて 樹脂組成物を調製した。 オルガソールは平均粒子径 20 mの多孔性粒子であつ た。 ついで、 実施例 3と同様の手法にてプリプレダ、 ハニカムサンドイッチパネ ルを得た。 プリプレダのカバーファクタ一は 99. 1 %であった。 プリプレダの タック性を測定したところ 0. 13MP aであった。 この同じプリプレダを 25 、 相対湿度 50%の環境に 1 0日間放置した後のタック性は 0. 1 IMP aで あり経時変化は小さかった。 またプリプレダのドレープ性は良好であった。 樹脂 を硬化させ破壊靱性を測定したところ 1. 5MP a · m1/2であった。 硬化樹脂 の Tgは 1 90 であった。 ちなみにナイロン 6/1 2微粒子を除いた樹脂を硬 化させ弾性率を測定したところ 332 OMP aであった。 ナイロン 6 1 2の弹 性率は 1 6 1 0 MP aであった。 ハニカムサンドィツチパネルについてクライミ ングドラムピール試験を行ったところ、 1 8. 2ポンド ·インチ 3インチ幅の 剥離強度であった。 下側スキンパネル内のポロシティは 0. 07 %であった。 表 面平滑性を測定したところ、 6. 1 mであった。 同パネルについて四酸化ォス ミゥム染色の後、 走査型電子顕微鏡による反射電子像観察を行つたところスキン パネル中の樹脂リツチ部に多数の凹凸の多いナイロン微粒子の存在が確認できた。 実施例 5
ナイロン 1 2微粒子 S P— 5 00をナイロン 6微粒子オルガソール 1 0 0 2 D (アトケム (株) ) に置き換えた以外は実施例 3と同様の手法にて樹脂組成物を 調製した。 オルガソールは平均粒子径 2 0 mの多孔性粒子であった。 ついで、 実施例 3と同様の手法にてプリプレダ、 ハニカムサンドイッチパネルを得た。 プ リプレダのカバ一ファクタ一は 9 9. 3 %であった。 プリプレダのタック性を測 定したところ 0. 1 6MP aであった。 この同じプリプレダを 2 5°C、 相対湿度 50 %の環境に 1 0日間放置した後のタック性は 0. 1 2 MP aであり経時変化 は小さかった。 またプリプレダのドレープ性は良好であった。 樹脂を硬化させ破 壊靱性を測定したところ 1. 3MP a · m 1/2であった。 硬化樹脂の T gは 1 9 2でであった。 ちなみにナイロン 6微粒子を除いた樹脂を硬化させ弾性率を測定 したところ 3 3 20 MP aであった。 ナイロン 6の弾性率は 2 8 0 OMP aであ つた。 ハニカムサンドィツチパネルについてクライミングドラムピール試験を行 つたところ、 14. 2ポンド ·インチ 3インチ幅の剥離強度であった。 下側ス キンパネル内のポロシティは 0. 1 1 %であった。 表面平滑性を測定したところ、 8. 7 mであった。 同パネルについて四酸化オスミウム染色の後、 走査型電子 顕微鏡による反射電子像観察を行ったところスキンパネル中の樹脂リツチ部に多 数の凹凸の多いナイ口ン微粒子の存在が確認できた。 実施例 6
炭素繊維織物をストランド引張強度 3. 53 GP a、 引張弾性率 230 GP a、 引張破断伸度 1. 5 %、 フックドロップ値 1 6 0mmである東レ (株) 製炭素繊 維 T 3 0 0— 3 K (繊維数 30 00本、 繊度 1 80 0デニール) からなる炭素繊 維平織織物 (目付 1 9 3 gZm2 、 糸厚み 0. 1 3mm、 糸幅 糸厚み比 1 2. 1) とした他は実施例 1と同様の手法にてプリプレダを得た。 プリプレダのカバ —ファクタ一は 9 6. 4%であった。 プリプレダのタック性を測定したところ 0. 1 5 MP aであった。 この同じプリプレダを 2 5 :、 相対湿度 5 0 %の環境に 1 0日間放置した後のタック性は 0. l OMP aであった。 またプリプレダのドレ 一プ性は良好であった。 実施例 1と同様の手法にて得たハニカムサンドィツチパネルについて A S TM D 1 78 1に従いクライミングドラムピール試験を行ったところ、 1 4. 1ボン ド ·ィンチ 3ィンチ幅の剥離強度を示した。
下側スキンパネル内のポロシティは 0. 1 1 %であった。 また、 ハニカムサンド イッチパネルのツール面側の表面粗さを測定したところ 8. 6 mであった。 同 パネルについて四酸化オスミウム染色の後、 走査型電子顕微鏡による反射電子像 観察を行ったところスキンパネル中の樹脂リツチ部に多数の真球状ナイロン微粒 子が均一に分布することが確認できた。 実施例 7
ビスフエノール A型固形エポキシ (油化シェルエポキシ (株) 社製 E p l O O 1、 エポキシ当量 46 7) 45重量部、 ビスフエノール A型液状エポキシ (油化 シェルエポキシ (株) 社製 Ep 82 8、 エポキシ当量 1 8 9) 3 0重量部、 テト ラグリシジルジアミノジフエニルメタン (住友化学工業 (株) 社製 ELM434)
2 5重量部、 水酸基末端ポリエーテルスルホン (三井東圧 (株) 社製 5 00 3 P)
3 0重量部を加え二一ダ一中で 1 3 0°Cにて 2時間混練した。 ここにナイロン 1 2微粒子 (東レ (株) 製 S P— 50 0、 平均粒子径 5 zm) 1 2重量部および硬 化剤として 4、 4 'ジアミノジフエニルスルホン 2 5重量部を加え、 6 0°Cにて 3 0分撹拌しエポキシ樹脂組成物を調製した。 樹脂を硬化させ破壊靱性を測定し たところ 1. 8MP a · m1/2であった。 硬化樹脂の T gは 1 7 8°Cであった。 硬化樹脂破断面の走査型電子顕微鏡によって、 約 3 mの平均粒径のドメインを 有するミクロ相分離構造の存在が確認できた。
樹脂組成物を離型紙上にコーティングし、 樹脂目付が 6 6 g/m2の樹脂フィル ムを作製した。 この樹脂フィルムをプリプレダマシンにセットし、 ストランド引 張強度 4. 9 GP a、 引張弹性率2 3 0 &? &、 引張破断伸度 2. 1 %、 フック ドロップ値 1 7 0mmである東レ (株) 製炭素繊維 T 7 0 0 S C- 1 2 K (繊維 数 1 2 0 00本、 繊度 7 2 0 0デニール) からなる炭素繊維平織織物 (目付 1 9 0 g/m 糸厚み 0. l l mm、 糸幅/糸厚み比 7 0. 2) の両面から樹脂含 浸をおこないプリプレダを得た。 この時の含浸温度は 1 0 0°Cとした。 作製され たプリプレダのカバーファクタ一は 98. 3 %であった。 プリプレグのタック性、 ドレープ性は良好であった。
ハニカムコアとプリプレダの積層体をフッ素樹脂フィルムを敷いたアルミニゥ ム板上に乗せ、 積層体はナイロンフィルムで真空パックしォ一トクレーブ成形を 行づた。 プリプレダとハニカムコア間には接着フィルムは挟まず、 プリプレダを 硬化させつつ直接ハニカムコアに接着させた。 このようにして得られたハニカム サンドイッチパネルについて AS TM D 1 78 1に従いクライミンドラムピ一 ル試験を行ったところ、 1 9. 3ポンド ·インチ /3インチ幅の剥離強度を示し た。 比較例 3
ナイロン 1 2微粒子を添加しないこと以外は実施例 7と同様の手法にて樹脂組 成物を調製した。 破壊靱性を測定したところ 0. 9MP a · m1/2であった。 つ いで、 実施例 1と同様の手法にてプリプレダを得た。 プリプレダのカバーファク 夕一は 98. 4%であった。 実施例 1と同様の手法にて得たハニカムサンドイツ チパネルについてクライミングドラムピール試験を行ったところ、 8. 8ポンド •インチノ 3インチ幅の剥離強度であった。 産業上の利用可能性
本発明によれば、 ハニカムサンドィツチパネルを成形した際にスキンパネルの 表面ポロシティ、 ピット低減、 平滑性に優れ、 内部ポロシティが少なく且つ、 優 れた自己接着性を有しタック性の経時変化の少ない織物プリプレダが得られる。

Claims

請求の範囲
1. 少なくとも次の [A] 、 [B] 、 [C] からなり、 カバ一ファクターが 95 %以上であることを特徴とする織物プリプレダ。
[A] 強化繊維織物
[B] 熱硬化性樹脂または熱硬化性樹脂組成物
[C] 樹脂微粒子
2. [A] が、 少なくとも炭素繊維および Zまたは黒鉛繊維を含有する強化繊維 織物であることを特徴とする請求項 1に記載の織物プリプレダ。
3. 強化繊維マルチフィラメント糸の糸厚みが、 0. 05〜0. 2mm、 糸幅 糸厚み比が 30以上である織物を [A] とすることを特徴とする請求項 1〜 2のいずれかに記載の織物プリプレダ。
4. [A] が、 引張弾性率 200 GP a以上である炭素繊維糸からなる強化繊維 織物であることを特徴とする請求項 1〜 3のいずれかに記載の織物プリプレ グ。
5. 強化繊維マルチフィラメント糸のフィラメント数が、 5000〜 30000 本である織物を [A] とすることを特徴とする請求項 1〜4のいずれかに記 載の織物プリプレダ。
6. 炭素繊維マルチフィラメント糸を織糸とし、 織物目付が 1 00〜320 gZ m2 である織物を [A] とすることを特徴とする請求項 1〜 5のいずれかに 記載の織物プリプレダ。
7. [A] が、 平織、 綾織、 絡み織、 襦子織から選ばれる織構造を有することを 特徴とする請求項 1〜 6のいずれかに記載の織物プリプレダ。
8. [B] が、 ASTM D 5045-91に基づいて測定される硬化後の破壊靱性値 K1Cが 1. OMP a · m1/2以上となる熱硬化性樹脂組成物であること を特徴とする請求項 1〜 7のいずれかに記載の織物プリプレダ。
9. [B] が、 硬化後のガラス転移温度が 1 6 O :以上である熱硬化性樹脂組 成物であることを特徴とする請求項 1〜 8のいずれかに記載の織物プリプレ グ。
10. [B] として少なくともエポキシ樹脂および/またはフエノール樹脂を含 有することを特徴とする請求項 1〜9のいずれかに記載の織物プリプレダ。
1 1. [B] として少なくともエポキシ当量 400以上のグリシジルエーテル型 エポキシ樹脂を含有することを特徴とする請求項 1〜 1 0のいずれかに記 載の織物プリプレダ。
12. [B] が、 熱可塑性樹脂を含有する熱硬化性樹脂組成物であることを特徴 とする請求項 1〜 1 1のいずれかに記載の織物プリプレダ。
1 3. [B] が、 ポリアミド、 ポリエーテル、 ポリエステル、 ポリイミド、 ポリ スルホンから選ばれる少なくとも 1つを含有する熱硬化性樹脂組成物であ ることを特徴とする請求項 1〜 12のいずれかに記載の織物プリプレダ。
14. [B] が、 ゴム成分を含有する熱硬化性樹脂組成物であることを特徴とす る請求項 1〜 1 3のいずれかに記載の織物プリプレダ。
1 5. ゴム成分が、 アクリロニトリル—ブタジエン共重合体ゴムであることを特 徴とする請求項 14のいずれかに記載の織物プリプレダ。
16. [C] が、 熱可塑性樹脂微粒子であることを特徴とする請求項 1〜 1 5の いずれかに記載の織物プリプレダ。
1 7. [C] が、 ポリアミド、 ポリエーテル、 ポリエステル、 ポリイミド、 ポリ スルホン、 ポリウレタンから選ばれる少なくとも 1つの樹脂微粒子である ことを特徴とする請求項 1〜 16のいずれかに記載の織物プリプレダ。
18. [C] の素材の弾性率が、 [B] の弾性率よりも低いことを特徴とする請 求項 1〜 1 7のいずれかに記載の織物プリプレダ。
1 9. [C] が熱可塑性榭脂微粒子であり、 その粒子径が、 1〜50 mである ことを特徴とする請求項 1〜 18のいずれかに記載の織物プリプレダ。
20. [C] の含有量が、 [B] および [C] からなる樹脂中の 2〜 1 5 %の範 囲にあることを特徴とする請求項 1〜 1 9のいずれかに記載の織物プリプ レグ。
2 1. [B] + [C] の含有量が、 [A] + [B] + [C] の全重量中 33〜5 0重量%の範囲にあることを特徴とする請求項 1〜 20のいずれかに記載 の織物プリプレダ。
22. 少なくとも次の [A] 、 [B] 、 [C] からなるスキンパネルと [D] からなることを特徴とする八二カムサンドィツチパネル。
[A] 強化繊維織物
[B] 熱硬化性樹脂または熱硬化性樹脂組成物
[C] 樹脂微粒子
[D] ハニカムコア
23. 請求項 2〜 2 1のいずれかからなる請求項 22に記載のハニカムサンド ィツチパネル。
24. [A] 、 [B] 、 [C] からなるスキンパネルが、 ハニカムコア [D] の 上下面に存在することを特徴とする請求項 22に記載のハニカムサンドィ ツチパネル。
25. [D] が、 ァラミドハ二カム、 アルミハニカム、 ペーパーハニカム、 GF RPハニカム、 グラフアイトハニカムから選ばれるハニカムコアであるこ とを特徴とする請求項 22に記載のハニカムサンドィツチパネル。
PCT/JP1998/003095 1997-07-11 1998-07-10 Tissu preimpregnee et panneau sandwich a ame alveolaire WO1999002586A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/254,211 US6429157B1 (en) 1997-07-11 1998-07-10 Prepreg fabric and honeycomb sandwich panel
EP98931039A EP0927737B1 (en) 1997-07-11 1998-07-10 Prepreg fabric and honeycomb sandwich panel
JP50845299A JP3661194B2 (ja) 1997-07-11 1998-07-10 織物プリプレグおよびハニカムサンドイッチパネル
DE1998634800 DE69834800T2 (de) 1997-07-11 1998-07-10 Prepreggewebe und wabenförmige sandwichplatte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20256397 1997-07-11
JP9/202563 1997-07-11
JP9/203781 1997-07-14
JP20378197 1997-07-14

Publications (1)

Publication Number Publication Date
WO1999002586A1 true WO1999002586A1 (fr) 1999-01-21

Family

ID=26513456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003095 WO1999002586A1 (fr) 1997-07-11 1998-07-10 Tissu preimpregnee et panneau sandwich a ame alveolaire

Country Status (5)

Country Link
US (1) US6429157B1 (ja)
EP (1) EP0927737B1 (ja)
JP (1) JP3661194B2 (ja)
DE (1) DE69834800T2 (ja)
WO (1) WO1999002586A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323046A (ja) * 2000-05-16 2001-11-20 Toray Ind Inc 熱硬化性樹脂組成物及びプリプレグ
JP2002066825A (ja) * 2000-09-04 2002-03-05 Japan Aircraft Mfg Co Ltd ハニカム材切削加工用工具
WO2005051654A1 (ja) * 2003-11-25 2005-06-09 Nitto Denko Corporation 樹脂シート、液晶セル基板、液晶表示装置、エレクトロルミネッセンス表示装置用基板、エレクトロルミネッセンス表示装置および太陽電池用基板
JP2005246771A (ja) * 2004-03-04 2005-09-15 Toray Ind Inc Frp構造体の製造方法
JP2006219513A (ja) * 2005-02-08 2006-08-24 Toray Ind Inc エポキシ樹脂組成物・プリプレグ・繊維強化複合材料
JP2006291218A (ja) * 2001-02-27 2006-10-26 Hexcel Corp サンドイッチパネル用接着性プレプレグ面シート
WO2007043689A1 (ja) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha ガスタンク及びその製造方法
JP2009179065A (ja) * 2009-05-18 2009-08-13 Toray Ind Inc Frp構造体の製造方法
JP2009242459A (ja) * 2008-03-28 2009-10-22 Toho Tenax Co Ltd 樹脂組成物、プリプレグ、及びそれらの製造方法
JP2010031197A (ja) * 2008-07-31 2010-02-12 Toray Ind Inc 共重合ポリアミド、それよりなる微粒子および炭素繊維強化複合材料
WO2010055811A1 (ja) * 2008-11-13 2010-05-20 東邦テナックス株式会社 熱硬化性樹脂組成物とそれを用いたプリプレグ
JPWO2008133054A1 (ja) * 2007-04-13 2010-07-22 東邦テナックス株式会社 樹脂組成物、及びプリプレグ
JP2010531244A (ja) * 2007-04-17 2010-09-24 ゼネラル・エレクトリック・カンパニイ 強化領域及び非強化領域を有する物品を製作する方法
WO2011037144A1 (ja) 2009-09-25 2011-03-31 横浜ゴム株式会社 熱硬化性樹脂組成物、並びに繊維強化複合材料用熱硬化性樹脂組成物、これを用いるプリプレグおよびハニカムサンドイッチパネル
JP2012036347A (ja) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp ベンゾオキサジン樹脂組成物及び繊維強化複合材料
JP2012063015A (ja) * 2011-11-30 2012-03-29 Toyota Motor Corp ガスタンク及びその製造方法
KR101519951B1 (ko) 2007-04-17 2015-05-13 헥셀 코포레이션 개선된 성능을 갖는 사전-함침된 복합 재료
CN114834136A (zh) * 2022-05-18 2022-08-02 中国航空制造技术研究院 一种蜂窝夹层结构的制备方法

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061233A2 (en) * 1998-05-22 1999-12-02 Cytec Technology Corp. Products and method of core crush prevention
EP1162228B1 (en) 1999-10-13 2007-07-11 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
US6508910B2 (en) 2000-05-18 2003-01-21 Hexcel Corporation Self-adhesive prepreg face sheet for sandwich panels
US6440257B1 (en) 2000-05-18 2002-08-27 Hexcel Corporation Self-adhesive prepreg face sheets for sandwich panels
ITMI20011665A1 (it) * 2001-07-31 2003-01-31 Mamiliano Dini Tessuto tetrassiale e macchina per la sua produzione
JP4454192B2 (ja) * 2001-08-07 2010-04-21 Thk株式会社 案内装置の転動体干渉防止具
WO2003020505A1 (fr) * 2001-08-28 2003-03-13 Toray Industries, Inc. Materiau en plaque de cfrp et procede de preparation correspondant
US7014143B2 (en) * 2002-10-11 2006-03-21 The Boeing Company Aircraft lightning strike protection and grounding technique
ITTO20030283A1 (it) * 2003-04-11 2004-10-12 Metalleido Components Srl Metodo per la realizzazione di una struttura composita stratificata.
US7208228B2 (en) * 2003-04-23 2007-04-24 Toray Composites (America), Inc. Epoxy resin for fiber reinforced composite materials
FR2854407B1 (fr) * 2003-05-02 2006-08-25 Eads Launch Vehicles Materiau a haute tenacite a base d'une resine vinylester et/ou d'une resine epoxyde, son procede de fabrication, materiau composite le comprenant et ses utilisations
WO2004108790A1 (ja) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. 硬化性樹脂組成物、液晶表示素子用シール剤及び液晶表示素子
US20060240198A1 (en) * 2003-06-04 2006-10-26 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
US7157509B2 (en) * 2003-06-27 2007-01-02 Henkel Corporation Curable compositions
US20050123717A1 (en) * 2003-12-08 2005-06-09 Shen Shyan B. Sealing of honeycomb core and the honeycomb core assembly made with the same
EP1724306A4 (en) * 2004-03-02 2009-04-01 Toray Industries EPOXY RESIN COMPOSITION FOR FIBER REINFORCED COMPOSITE MATERIAL, PREIMPREGNE AND FIBER REINFORCED COMPOSITE MATERIAL
WO2005113652A2 (en) * 2004-05-14 2005-12-01 Cytec Technology Corp. Self-adhesive prepreg
US7550190B2 (en) 2004-09-01 2009-06-23 Hexcel Corporation Rubber-modified edge coating for honeycomb used in panels with composite face sheets
US7581366B2 (en) 2004-09-01 2009-09-01 Hexcel Corporation Aircraft floor panels using edge coated honeycomb
US7988809B2 (en) 2004-09-01 2011-08-02 Hexcel Corporation Aircraft floor and interior panels using edge coated honeycomb
US7938922B2 (en) 2004-09-01 2011-05-10 Hexcel Corporation Edge coating for honeycomb used in panels with composite face sheets
US7507461B2 (en) 2004-09-01 2009-03-24 Hexcel Corporation Edge coating for honeycomb used in panels with composite face sheets
US8029889B1 (en) 2004-12-03 2011-10-04 Henkel Corporation Prepregs, towpregs and preforms
US7666938B2 (en) * 2004-12-03 2010-02-23 Henkel Corporation Nanoparticle silica filled benzoxazine compositions
JP4917593B2 (ja) * 2005-03-07 2012-04-18 スパンファブ・リミテッド 均一な厚さを有する熱可塑性ナイロン接着マトリックス及びそれから形成した複合材料積層体
DE102005018704B4 (de) 2005-04-21 2019-05-29 Hexion GmbH Härtbare Mischung, Verfahren zu deren Herstellung und gehärtetes Produkt
WO2006133237A2 (en) * 2005-06-04 2006-12-14 Conner Edison S Jr Surfboard having a honeycomb core
GB0512610D0 (en) * 2005-06-18 2005-07-27 Hexcel Composites Ltd Composite material
US20070004844A1 (en) * 2005-06-30 2007-01-04 Clough Robert S Dielectric material
US20070087179A1 (en) * 2005-10-17 2007-04-19 Horn Donald R Solid surface composite
JP4141487B2 (ja) * 2006-04-25 2008-08-27 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
JP4141478B2 (ja) 2006-04-25 2008-08-27 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
DE102006022372A1 (de) 2006-05-12 2007-11-15 Airbus Deutschland Gmbh Flammfeste, niedrigtemperaturhärtende, cyanatbasierte Prepregharze für Honeycomb-Sandwichbauteile mit exzellenten Oberflächen
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
CN101589127B (zh) * 2006-11-21 2012-10-10 汉高公司 用于预先加工的增韧粘合剂组合物
DE102006058198C5 (de) * 2006-12-07 2018-01-18 Fibretemp Gmbh & Co. Kg Elektrisch beheizbares Formwerkzeug in Kunststoffbauweise
US7537827B1 (en) * 2006-12-13 2009-05-26 Henkel Corporation Prepreg laminates
ES2523142T3 (es) * 2007-04-17 2014-11-21 Hexcel Corporation Material compuesto con mezcla de partículas termoplásticas
JP2008300686A (ja) * 2007-05-31 2008-12-11 Toshiba Corp 集積回路
US8470923B2 (en) * 2010-04-21 2013-06-25 Hexcel Corporation Composite material for structural applications
DE102010044456A1 (de) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft Infusionsharzformulierung für Faserverbundwerkstoffe
BR112013012882A2 (pt) * 2010-12-22 2020-05-12 Cytec Technology Corp Composição, prepreg, e, artigo compósito
WO2013046434A1 (ja) * 2011-09-30 2013-04-04 Jx日鉱日石エネルギー株式会社 ベンゾオキサジン樹脂組成物及び繊維強化複合材料
US9670809B2 (en) 2011-11-29 2017-06-06 Corning Incorporated Apparatus and method for skinning articles
GB201121304D0 (en) * 2011-12-12 2012-01-25 Hexcel Composites Ltd Improved composite materials
US9434142B2 (en) * 2012-01-26 2016-09-06 E I Du Pont De Nemours And Company Method of making a sandwich panel
US9802476B1 (en) 2012-05-25 2017-10-31 Robertson Fuel Systems, Llc Method and system for forming a self-sealing volume using a breather system
US9597848B1 (en) 2012-05-25 2017-03-21 Robertson Fuel Systems Llc Method and system for forming a self-sealing volume
US9187636B2 (en) 2012-08-26 2015-11-17 Hexcel Corporation Composite material with polyamide particle mixtures
FR2998212B1 (fr) * 2012-11-19 2015-07-10 Ea Technique Procede d'obtention d'un panneau sandwich
KR102059879B1 (ko) * 2013-02-22 2019-12-31 한국에너지기술연구원 섬유강화 세라믹 복합소재 허니컴 및 이의 제조방법
US10471676B1 (en) 2013-03-12 2019-11-12 Robertson Fuel Systems, L.L.C. Method and system for forming a self-sealing volume with an aqueous polyurethane dispersion layer
EP2781539A1 (en) * 2013-03-19 2014-09-24 Siemens Aktiengesellschaft Fibre reinforced plastic composite, method of manufacturing thereof, plastic composite starting material for manufacturing the fibre reinforced plastic composite, and component of a wind turbine comprising the fibre reinforced plastic composite
US9239296B2 (en) * 2014-03-18 2016-01-19 Corning Incorporated Skinning of ceramic honeycomb bodies
US10611051B2 (en) 2013-10-15 2020-04-07 Corning Incorporated Systems and methods for skinning articles
US9617398B2 (en) 2013-12-16 2017-04-11 Ut-Battelle, Llc Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix
EP3094482B1 (en) * 2014-01-16 2021-03-10 Research Foundation Of The City University Of New York Center-side method of producing superhydrophobic surface
US10391734B2 (en) 2014-02-27 2019-08-27 B/E Aerospace, Inc. Composite sandwich panel with differential resin layers
US9573338B2 (en) * 2014-02-27 2017-02-21 B/E Aerospace, Inc. Composite sandwich panel with differential resin layers
EP3213916A4 (en) * 2014-10-29 2018-07-11 Hitoshi Kazama Fiber-reinforced composite material and method for manufacturing same
US10266292B2 (en) 2015-01-22 2019-04-23 Neptune Research, Llc Carriers for composite reinforcement systems and methods of use
DE102015217860A1 (de) 2015-05-05 2016-11-10 Tesa Se Klebeband mit Klebemasse mit kontinuierlicher Polymerphase
EP3091059B1 (de) 2015-05-05 2020-09-09 tesa SE Klebeband mit klebemasse mit kontinuierlicher polymerphase
CN108137839B (zh) * 2015-12-16 2021-07-06 东丽株式会社 预浸料坯、层压体、纤维增强复合材料、及纤维增强复合材料的制造方法
US11090899B2 (en) * 2016-05-26 2021-08-17 Hanwha Azdel, Inc. Prepregs, cores and composite articles including powder coated layers
US10800129B2 (en) 2017-01-24 2020-10-13 Bell Textron Inc. Honeycomb core sandwich panels
US20210107250A1 (en) * 2017-03-23 2021-04-15 Teijin Limited Self-adhesive prepreg and method for producing same
EP3409459B1 (de) 2017-05-31 2019-08-21 Bucher Leichtbau AG Leichtbauteil
EP3480008B1 (de) 2017-11-03 2022-01-05 Bucher Leichtbau AG Leichtbauteil
CN107718729A (zh) * 2017-11-10 2018-02-23 江苏瑞和磨料磨具有限公司 一种柔软耐水强力磨砂布
DE102017221072A1 (de) 2017-11-24 2019-05-29 Tesa Se Verfahren zur Herstellung haftklebriger Reaktivklebebänder
US10920994B2 (en) 2018-07-03 2021-02-16 Goodrich Corporation Heated floor panels
US11376811B2 (en) 2018-07-03 2022-07-05 Goodrich Corporation Impact and knife cut resistant pre-impregnated woven fabric for aircraft heated floor panels
US11273897B2 (en) 2018-07-03 2022-03-15 Goodrich Corporation Asymmetric surface layer for floor panels
US10899427B2 (en) 2018-07-03 2021-01-26 Goodrich Corporation Heated floor panel with impact layer
US10875623B2 (en) 2018-07-03 2020-12-29 Goodrich Corporation High temperature thermoplastic pre-impregnated structure for aircraft heated floor panel
EP3921363B1 (en) * 2019-02-08 2023-03-01 Toray Industries, Inc. Resin composition for carbon fiber composite material, towpreg
JP7153253B2 (ja) * 2019-03-29 2022-10-14 東レ株式会社 繊維強化プラスチック成形体
CN114851638B (zh) * 2022-06-21 2023-08-08 材料科学姑苏实验室 透明蜂窝芯材及其制备方法和透明蜂窝夹层板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124439A (ja) * 1984-07-13 1986-02-03 旭コンポジツト株式会社 サンドイツチパネル
JPH04294136A (ja) * 1991-03-25 1992-10-19 Toray Ind Inc ハニカムサンドイッチパネルの製造方法
JPH051159A (ja) * 1990-10-31 1993-01-08 Amoco Corp 多孔性樹脂粒子で強化した繊維補強複合体
JPH07227939A (ja) * 1994-02-16 1995-08-29 Toray Ind Inc ハニカムコキュア成形方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323623A (en) * 1977-09-14 1982-04-06 Mcdonnell Douglas Corporation Composite plastic structure and method for producing same
US4680216A (en) * 1984-09-04 1987-07-14 United Technologies Corporation Method for stabilizing thick honeycomb core composite articles
DE3789054T2 (de) * 1986-12-25 1994-07-07 Toray Industries Zähe Verbundmaterialien.
US5034256A (en) * 1989-08-28 1991-07-23 United Technologies Corporation Closeout configuration for honeycomb core composite sandwich panels
US5370921A (en) * 1991-07-11 1994-12-06 The Dexter Corporation Lightning strike composite and process
US5447785A (en) * 1993-03-02 1995-09-05 Toray Industries, Inc. Cloth prepreg, process for producing the same and reinforcing fabric
US5413847A (en) * 1992-03-30 1995-05-09 Toray Industries, Inc. Prepreg and composite
JP2955145B2 (ja) * 1992-09-08 1999-10-04 東レ株式会社 扁平糸織物とその製造方法および製造装置
US6027794A (en) * 1993-01-14 2000-02-22 Toray Industries, Inc. Prepregs, processes for their production, and composite laminates
US5455096A (en) * 1993-09-20 1995-10-03 United Technologies Corporation Complex composite sandwich structure having a laminate and a foaming ashesive therein and a method for making the same
JP3505754B2 (ja) * 1993-12-02 2004-03-15 東レ株式会社 プリプレグおよびその製造方法
KR960033741A (ko) * 1995-03-14 1996-10-22 사또모 고오지 입체 안정성 및 내열성이 개선된 적층체
DE69729352T2 (de) * 1996-02-02 2005-06-02 Toray Industries, Inc. Harzzusammensetzung für faserverstärkte verbundwerkstoffe und verfahren zu ihrer herstellung, prepegs, faserverstärkte verbundwerkstoffe und wabenstrukturen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124439A (ja) * 1984-07-13 1986-02-03 旭コンポジツト株式会社 サンドイツチパネル
JPH051159A (ja) * 1990-10-31 1993-01-08 Amoco Corp 多孔性樹脂粒子で強化した繊維補強複合体
JPH04294136A (ja) * 1991-03-25 1992-10-19 Toray Ind Inc ハニカムサンドイッチパネルの製造方法
JPH07227939A (ja) * 1994-02-16 1995-08-29 Toray Ind Inc ハニカムコキュア成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0927737A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323046A (ja) * 2000-05-16 2001-11-20 Toray Ind Inc 熱硬化性樹脂組成物及びプリプレグ
JP4655329B2 (ja) * 2000-05-16 2011-03-23 東レ株式会社 一方向プリプレグおよび繊維強化複合材料
JP2002066825A (ja) * 2000-09-04 2002-03-05 Japan Aircraft Mfg Co Ltd ハニカム材切削加工用工具
JP2006291218A (ja) * 2001-02-27 2006-10-26 Hexcel Corp サンドイッチパネル用接着性プレプレグ面シート
WO2005051654A1 (ja) * 2003-11-25 2005-06-09 Nitto Denko Corporation 樹脂シート、液晶セル基板、液晶表示装置、エレクトロルミネッセンス表示装置用基板、エレクトロルミネッセンス表示装置および太陽電池用基板
JP2005246771A (ja) * 2004-03-04 2005-09-15 Toray Ind Inc Frp構造体の製造方法
JP2006219513A (ja) * 2005-02-08 2006-08-24 Toray Ind Inc エポキシ樹脂組成物・プリプレグ・繊維強化複合材料
WO2007043689A1 (ja) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha ガスタンク及びその製造方法
JP2007107557A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp ガスタンク及びその製造方法
US8039072B2 (en) 2005-10-11 2011-10-18 Toyota Jidosha Kabushiki Kaisha Gas tank and method for producing the same
DE112006002717B4 (de) * 2005-10-11 2011-02-24 Somar Corp. Gastank und Verfahren zu dessen Herstellung
JPWO2008133054A1 (ja) * 2007-04-13 2010-07-22 東邦テナックス株式会社 樹脂組成物、及びプリプレグ
JP2010531244A (ja) * 2007-04-17 2010-09-24 ゼネラル・エレクトリック・カンパニイ 強化領域及び非強化領域を有する物品を製作する方法
KR101519951B1 (ko) 2007-04-17 2015-05-13 헥셀 코포레이션 개선된 성능을 갖는 사전-함침된 복합 재료
JP2009242459A (ja) * 2008-03-28 2009-10-22 Toho Tenax Co Ltd 樹脂組成物、プリプレグ、及びそれらの製造方法
JP2010031197A (ja) * 2008-07-31 2010-02-12 Toray Ind Inc 共重合ポリアミド、それよりなる微粒子および炭素繊維強化複合材料
WO2010055811A1 (ja) * 2008-11-13 2010-05-20 東邦テナックス株式会社 熱硬化性樹脂組成物とそれを用いたプリプレグ
JP5469086B2 (ja) * 2008-11-13 2014-04-09 東邦テナックス株式会社 熱硬化性樹脂組成物とそれを用いたプリプレグ
JP2009179065A (ja) * 2009-05-18 2009-08-13 Toray Ind Inc Frp構造体の製造方法
WO2011037144A1 (ja) 2009-09-25 2011-03-31 横浜ゴム株式会社 熱硬化性樹脂組成物、並びに繊維強化複合材料用熱硬化性樹脂組成物、これを用いるプリプレグおよびハニカムサンドイッチパネル
US9074091B2 (en) 2009-09-25 2015-07-07 The Yokohama Rubber Co., Ltd. Thermosetting resin composition, thermosetting resin composition for fiber-reinforced composite material, prepared using the same, and honeycomb sandwich panel
JP2012036347A (ja) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp ベンゾオキサジン樹脂組成物及び繊維強化複合材料
JP2012063015A (ja) * 2011-11-30 2012-03-29 Toyota Motor Corp ガスタンク及びその製造方法
CN114834136A (zh) * 2022-05-18 2022-08-02 中国航空制造技术研究院 一种蜂窝夹层结构的制备方法

Also Published As

Publication number Publication date
DE69834800T2 (de) 2007-05-16
EP0927737A4 (en) 2002-05-15
US6429157B1 (en) 2002-08-06
DE69834800D1 (de) 2006-07-20
JP3661194B2 (ja) 2005-06-15
EP0927737A1 (en) 1999-07-07
EP0927737B1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
WO1999002586A1 (fr) Tissu preimpregnee et panneau sandwich a ame alveolaire
JP3648743B2 (ja) 「繊維強化複合材料用樹脂組成物とその製造方法、プリプレグ、繊維強化複合材料、ハニカム構造体」
KR101393763B1 (ko) 섬유 강화 복합 재료용 에폭시 수지 조성물
WO2005083002A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
JP4141478B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5159990B2 (ja) プリプレグ及びその製造方法
JPH1143546A (ja) クロスプリプレグおよびハニカム構造体
JP2007016121A (ja) 複合材料用プリプレグおよび複合材料
CN100506908C (zh) 纤维增强复合材料用环氧树脂组合物、预浸料坯和纤维增强复合材料
JP7273795B2 (ja) 熱可塑性樹脂組成物、繊維強化プラスチック成形用材料および成形物
JPH10330513A (ja) プリプレグ及び繊維強化複合材料
JP3182967B2 (ja) クロスプリプレグ
JP2006198920A (ja) ハニカムコキュア用プリプレグ、ハニカム積層複合材およびそれらの製造方法
JPS63170428A (ja) プリプレグの製造方法
JP2007217665A (ja) プリプレグおよび炭素繊維強化複合材料
EP0559437B1 (en) Cloth prepreg and process for producing it
JP2000238154A (ja) ハニカムサンドイッチパネル
JP4655329B2 (ja) 一方向プリプレグおよび繊維強化複合材料
JP2008050587A (ja) プリプレグおよび複合材料
JP2008174610A (ja) 耐衝撃性プリプレグ及びその製造方法
JP2006169541A (ja) プリプレグ
JPH0820706A (ja) エポキシ樹脂組成物およびそれを用いたプリプレグ
JP2006328292A (ja) ハニカムコキュア用プリプレグおよび製造方法
JP2003147103A (ja) 織物プリプレグおよびハニカムサンドイッチパネル
JP7467906B2 (ja) 繊維強化樹脂成形体および複合成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09254211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998931039

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998931039

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998931039

Country of ref document: EP