WO1990000207A1 - Sintered alloy steel with excellent corrosion resistance and process for its production - Google Patents

Sintered alloy steel with excellent corrosion resistance and process for its production Download PDF

Info

Publication number
WO1990000207A1
WO1990000207A1 PCT/JP1989/000633 JP8900633W WO9000207A1 WO 1990000207 A1 WO1990000207 A1 WO 1990000207A1 JP 8900633 W JP8900633 W JP 8900633W WO 9000207 A1 WO9000207 A1 WO 9000207A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
less
weight
corrosion resistance
sintered body
Prior art date
Application number
PCT/JP1989/000633
Other languages
English (en)
French (fr)
Inventor
Yoshisato Kiyota
Hiroshi Ohtsubo
Junichi Ohta
Masakazu Matsushita
Ichio Sakurada
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to DE68927094T priority Critical patent/DE68927094T2/de
Priority to KR1019900700422A priority patent/KR930001336B1/ko
Priority to EP89907304A priority patent/EP0378702B1/en
Publication of WO1990000207A1 publication Critical patent/WO1990000207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum

Definitions

  • the present invention relates to a high-density sintered alloy steel having excellent corrosion resistance using stainless steel powder and a method for producing the same.
  • sintered alloys produced by powder metallurgy have pores, which have the disadvantage of impairing corrosion resistance and mechanical properties. For this reason, the density of the sintered alloy must be as high as possible, and a density ratio of 92% or more is desired.
  • the raw material powder is as large as 10 ⁇ m 50 ⁇ , and the density ratio is only 80 to 90% just by molding and sintering, and a sufficient high density cannot be obtained. Is a coarse-grained powder, so the gaps between the particles are large and there are pores with a diameter of 50 m or more. It remained and the deterioration of corrosion resistance due to this was remarkable.
  • Co metal when Co metal is added, Co metal is an expensive powder, which leads to an increase in product cost and impairs the economical advantage of powder metallurgy.
  • the purpose of the invention is to use special equipment without adding alloy steel powder other than stainless steel powder components, and without performing recompression and resintering processes.
  • a sintered alloy steel which is not required, has a density ratio of 92% or more, has a uniform alloy component concentration, and has excellent corrosion resistance, and a method for producing the same.
  • Another object of the present invention is to provide a stainless steel sintered body having the above-mentioned characteristics, which suppresses and repairs a decrease in Cr concentration on the surface of the sintered body and has excellent corrosion resistance.
  • the present invention has a stainless steel composition, a density ratio of not less than 92%, a maximum diameter of pores existing in the structure of not more than 20 ⁇ m, and a Cr on the surface of a sintered body before sintering.
  • a sintered alloy ⁇ having excellent corrosion resistance, the content of which is 80% or more of the Cr content in the sintered body.
  • a binder is added to and mixed with the steel powder to form a compact. Then, the binder in the compact is removed by heating, and subsequently, under a reduced pressure of 30 Torr or less.
  • a method for producing a sintered alloy steel having excellent corrosion resistance which is sintered and further sintered in a non-oxidizing atmosphere.
  • Fig. 1 is a graph showing the results of EPMA line analysis of the Cr concentration near the surface of the sintered body.
  • the sintered alloy steel having excellent corrosion resistance according to the present invention has a stainless steel composition, a density ratio of not less than 92%, a maximum diameter of pores existing in the structure of not more than 20 ⁇ m, and a sintering property. Without any post-treatment such as heat treatment, the Cr content on the surface of the sintered body is at least 80% of the Cr content inside the sintered body.
  • the present invention is a sintered alloy steel having a so-called stainless steel composition and is defined by the following characteristics.
  • the sintering density ratio is a factor that directly affects the corrosion resistance.
  • the residual pores are not yet completely closed, so it is expected that the surface and internal pores are partially connected, and the inside is always severe outside the sintered body. Exposure to a corrosive environment results in insufficient corrosion resistance. Further, when the content is less than 92%, the residual pore size becomes large, which adversely affects the corrosion resistance. Therefore, the lower limit of the density ratio was set to 92%.
  • the corrosion resistance of stainless steel is based on the passivation of an oxide protective coating, the fact that this coating is destroyed and only a portion of it is corroded is called pitting. Pores are likely to be a source of pitting, and their size is an important factor in determining whether a bit will re-passivate or begin to grow.
  • Maximum pore diameter of 20 Above ⁇ HI the passivation film is not easily restored, and the ethibit begins to grow rapidly, and pitting occurs. Therefore, the maximum diameter of the pores was set to 20 m.
  • the maximum diameter of the pore means D max calculated by the following equation.
  • the sintered alloy steel of the present invention is characterized in that the Cr content on the surface and the Cr content on the inside are uniform even when sintered.
  • Fig. 1 Curve A shows an EPMA analysis of the Cr concentration of a cross section near the surface of the sintered alloy steel produced in Example 1. Since Cr has a high vapor pressure, in a conventional vacuum-sintered sintered alloy steel, Cr evaporates in a vacuum, and the Cr concentration near the surface is the internal Cr concentration as shown by curve B. To about 10%. For this reason, the corrosion resistance of the surface deteriorates. On the other hand, the alloy steel of this effort has almost no change in the Cr concentration on the surface and inside, as indicated by curve A, and is uniform.
  • the Cr concentration on the surface of the sintered body is 80% or more of the internal Cr concentration without performing, there is no problem in terms of corrosion resistance. Therefore, it was specified as an index of uniformity of 80% or more.
  • One of the preferable production methods for obtaining the sintered alloy steel of the present invention is to use a stainless steel powder, compact it without using a binder (binder), etc., and then bake it under reduced pressure. Sinter in a non-oxidizing atmosphere.
  • Another manufacturing method is to use a stainless steel powder, add a binder to the steel powder, mix and mold, then remove the binder in the compact by heating, and then sinter under reduced pressure. Further, sintering is performed in a non-oxidizing atmosphere.
  • a binder is not necessarily required, but is preferably used.
  • an injection molding method capable of processing into a complicated shape is employed. By performing sintering in two steps under different conditions that are appropriately selected, sintered materials having high density, excellent corrosion resistance and excellent mechanical properties can be produced economically.
  • the stainless steel powder has an average particle size of 15 ⁇ m or less.
  • a stainless steel powder having an average particle size of 15 ⁇ m or less is used, and after molding this, vacuum sintering and non-oxidizing atmosphere sintering are used in combination.
  • Concentration distribution of alloying elements, especially Cr component As a result, the residual pore diameter and porosity of the sintered body were made as small as possible, and the amount of impurities was kept low. As a result, a sintered alloy with excellent corrosion resistance was obtained.
  • the step of heating and removing the binder in the molded body is performed in a non-oxidizing atmosphere.
  • the present invention may include ones to which other manufacturing conditions are further added as necessary.
  • the Cr content on the sintered body surface is 80% or more of the Cr content inside the sintered body.
  • the sintered alloy steel whose composition further contains ⁇ ⁇ ⁇ 10% by weight in addition to the above description, has more corrosion resistance, oxidation resistance, and mechanical properties. Are better.
  • the reasons for limiting the sintered alloy steel of the present invention will be described in detail.
  • the Cr, Ni, Mo, C, and 0 in the composition of the sintered alloy are specified, and all of these elements are considered to be important elements that influence the corrosion resistance. Because it can be done.
  • Ni is an element that is advantageous for stabilizing the austenite phase, and therefore can improve mechanical properties such as corrosion resistance and toughness.
  • the content is less than 8% by weight, the ability to form a stable austenide phase is poor, and the corrosion resistance is deteriorated.
  • the upper limit is set to 24% by weight in consideration of economic efficiency.
  • Mo is the most effective element for improving corrosion resistance and oxidation resistance, and is also advantageous for improving mechanical properties by strengthening solid solution in dough.
  • the content exceeds 10% by weight, sigma brittleness occurs. Due to problems such as 475 ° C brittleness, the upper limit was determined to be 10% by weight.
  • the upper limit was set to 0.06% by weight because, if the content exceeds this limit, the pores become coarse due to the appearance of the liquid phase,
  • the reaction rate is proportional to the product of c% by weight and 0% by weight. Therefore, it causes extreme deterioration of corrosion resistance.
  • the reaction time required to reduce the C content to 0.06% by weight or less can be shortened by increasing the allowable value of the 0 content in the final sintered body. You. Therefore, if the required level of corrosion resistance is not extremely high, the content of 0 is preferably more than 0.3% from an economic viewpoint. However, if the content 0 exceeds 0.7% by weight, the corrosion resistance deteriorates remarkably, so the upper limit of the content 0 was set to 0.7% by weight.
  • the sintered density ratio should be at least 92%, the maximum diameter of pores should be at most 20 ⁇ m, and the as-sintered Cr content on the sintered body surface should be at least 80% of the Cr content inside the sintered body. Is as described above, and the reason for this has already been described.
  • a binder is added to and mixed with steel powder having an average particle size of 15 m or less, and after molding, the binder in the molded body is removed by heating in a non-oxidizing atmosphere. 0 0 to 1 350 3 ⁇ 4 or less, pressure 30
  • a powder having a raw material composition containing Mo ⁇ 10% by weight is used in addition to the above, a sintered alloy steel having more favorable characteristics can be produced.
  • the reason for defining the raw material composition Cr and Ni in the method of the present invention is that it is necessary to obtain the sintered alloy steel.
  • the average particle size of the powder is one of the factors that affect the density ratio of the sintered body. The smaller the average particle size, the higher the density ratio. If steel powder with an average particle size of more than 15 m is used, a density ratio of 92% or more cannot be achieved, and the gaps between the particles generated during molding will be large, resulting in a maximum residual pore. The diameter exceeds 20 ⁇ m, and the desired corrosion resistance cannot be obtained. For this reason, steel powder with an average particle size of 15 ⁇ or less is used.
  • steel powder that is substantially spherical and does not have extreme irregularities on the surface.
  • shape is not substantially spherical, for example, flake-like and rod-like particles give the molded body anisotropy, so that when manufacturing a complex part, the dimensional shrinkage cannot be expected, and the desired part shape is not obtained. I can't get it. Also, it is not preferable to have a square shape, since an extra binder is required.
  • the steel powder used in the present invention has an average particle diameter of 15 ⁇ or less, and is preferably substantially spherical, and has no surface with extremely unevenness.
  • Such a steel powder can be obtained by an atomizing method or the like, but is preferably produced by a high-pressure water atomizing method.
  • the above-mentioned powder is first molded, but since it is a fine particle having an average particle size of 15 ⁇ m or less, the steel powder alone may cause lamination, cracking, etc. Causes defects. Therefore, molding is performed after adding and mixing the binder so that these defects do not occur.
  • the binder is composed of a thermoplastic resin, a wax, a plasticizer, a lubricant, a degreasing accelerator, and the like.
  • Thermoplastic resins include acryl, polyethylene, polypropylene, and polystyrene.
  • the waxes are honey, Natural wax such as wood, Montan wax, etc., and low molecular weight polyethylene, microcrystalline wax, paraffin wax, etc. There are various types of synthesis, but one or two or more selected from these may be used.
  • the plasticizer is selected according to its combination with the main resin or wax, and specifically, dioctyl phthalate is used.
  • D0P dioctyl phthalate
  • DEP getyl phthalate
  • DBP di-n-butyl phthalate
  • DHP di-butyl phthalate
  • Lubricants include higher fatty acids, fatty acid amides, fatty acid esters, etc. In some cases, waxes are also used as lubricants.
  • a sublimable substance such as camphor may be added as a defatting accelerator.
  • the type and amount of the binder varies depending on the molding method in the subsequent process.
  • 0.5 to 3.0% by weight of the above-mentioned lubricant as a main component is used based on the steel powder.
  • a material mainly composed of the thermoplastic resin and / or the wax is used in an amount of about 10% by weight based on the steel powder.
  • the compound for injection molding is obtained by mixing and kneading powder and a binder.
  • a patch type or continuous type kneader can be used.
  • batch type kneaders a pressure kneader is used.
  • a Banbury mixer can be advantageously used, and among continuous kneaders, a twin-screw extruder can be advantageously used. After kneading, if necessary, granulation is performed using a beretizer or a grinder.
  • raw materials for mold compression molding mixing of steel powder and binder And a V-type or double cone type mixer can be used.
  • the molding is performed by methods such as extrusion molding, powder rolling molding, and injection molding, starting with conventional die compression molding, but injection molding is preferred.
  • the injection molding may be performed using an injection molding machine used for ordinary injection molding, such as an injection molding machine for blasting and an injection molding machine for metal powder.
  • the injection pressure is usually about 500 to 200 kg / cm 2 .
  • the heating rate is 5 to 300: h, and the temperature is maintained at 450 to 700 for 0 to 4 h, and then cooled. In addition, if the heating rate at this time is too high, it is not preferable because cracks and swelling occur in the obtained molded body.
  • the degreased body thus obtained is then sintered to obtain the sintered body of the present invention.
  • the amount of C, 0 in the final sintered body may be adjusted so that the molar ratio of C // 0 is set to 0.3 to 3.
  • the method of increasing or decreasing the 0/0 amount is performed by increasing / decreasing the C / 0 amount ratio of the defatted body.
  • the C amount can be reduced, and the C / O amount ratio can be reduced.
  • the C / 0 ratio can be increased or decreased by adjusting the amount of C, 0 in the raw material powder, adjusting the degree of removal of the binder, or oxidizing after the removal.
  • reduction of the overall level of C and 0 (corresponding to the product of C and 0) can be achieved by reducing the pressure and increasing the sintering time during low-pressure sintering. it can.
  • the sintering conditions are as follows: (1) Simultaneous reduction and decarburization reactions by direct reaction between the contained C and the contained 0 of the object to be sintered (injection molded article or compacted molded article from which organic substances have been removed); It is necessary to take into account all the phenomena of Cr concentration reduction on the sintered surface due to transpiration and sintering densification due to 3 interdiffusion of the constituent atoms of the powder.
  • the sintering in the present invention is composed of the second stage.
  • the first stage is intended to promote simultaneous reaction of reduction and decarburization and to suppress Cr transpiration.
  • the second stage focuses on restoring the inevitable Cr concentration reduction at the surface and promoting the sintering densification that occurred in the first stage.
  • the first-stage sintering is performed at a temperature of 100 to 130 and a pressure of 30 T rr or less.
  • the temperature range for the first stage sintering was approximately 100 to 135.
  • the first-stage sintering is preferably 100 or more.
  • the upper limit temperature of the first stage sintering was set at 135.
  • the temperature at which sintering densification becomes faster differs depending on the diameter of the raw material powder, and the lower the average particle size, the lower the temperature, and the higher the average particle size, the higher the temperature. You can select from within the range.
  • the first-stage sintering is performed in a vacuum heating furnace at 0.1 Torr or less when only evacuation is performed by a vacuum pump without introducing gas from outside into the furnace, and
  • a vacuum heating furnace when the introduction of non-oxidizing gas from the outside and the evacuation by a vacuum pump are used together, the operation is performed at 30 Torr or less.
  • the former if it exceeds 0.1Torr, in the case of the latter, it exceeds 30Torr, so that simultaneous reaction of Cr oxide reduction and decarburization does not proceed efficiently, which is not preferable.
  • the total partial pressure of the reaction product CO or CO 2 gas (hereinafter simply referred to as product gas pressure) Therefore, it is an essential condition to discharge the product gas pressure outside the reaction system (outside the sintering furnace) so that the product gas pressure can always be maintained below the oxidation / reduction equilibrium pressure.
  • Methods that satisfy this condition include a method using a vacuum atmosphere, a method using a high-purity non-oxidizing gas such as Ar, N 2, and H 2 , and a method using both of them.
  • the product gas pressure A high-density heating furnace that is substantially equal to the total pressure inside the furnace is equipped with a vacuum pump that has a sufficient exhaust rate to keep the total furnace pressure below 0.1 lTorr. It can be performed in a vacuum sintering furnace.
  • the furnace pressure is set in the atmospheric pressure range.In order to reduce the product gas pressure to 0.1 lTorr or less, a fresh high-purity gas containing no In calculation, more than 75.9.9 ⁇ ⁇ ⁇ ⁇ is required. As described above, supplying a non-oxidizing gas about 10,000 times as large as the generated gas during the reaction is extremely disadvantageous industrially, and is not preferable in the second case.
  • a method of introducing a fresh high-purity non-oxidizing gas containing no product gas into the vacuum sintering furnace shown in the first case through a pressure regulating valve during heating is used. It is said that there is some effect on the suppression of Cr evaporation in the furnace, and it is preferable that the total pressure in the furnace is about 30 Torr or less. In this method, the total pressure in the furnace is expressed as the sum of the product gas pressure and the introduced non-oxidizing gas pressure.However, when the pumping speed of the vacuum pump is constant, regardless of whether gas is introduced or not. The pumping speed of the product gas out of the heating furnace is constant.
  • the pumping speed of the vacuum pump (especially when a mechanical booster and an oil rotary bomb are combined) decreases rapidly, and Sintering of product gas As the rate of withdrawal from the body surface decreases, the pumping speed of the gas decreases, resulting in reduction.
  • the upper limit of the total pressure in the furnace can be promoted by 30 as described above, while the reduction reaction of r-based oxides can be promoted.
  • the reaction is achieved by the following reaction: If is inappropriate, C or 0 is excessively changed to D,
  • the second-stage sintering is performed in a non-oxidizing atmosphere at 1200 to 135 ° C. in order to achieve high density and uniform alloying elements by diffusion.
  • the gas used for the non-oxidizing atmosphere is an inert gas such as Ar, He, or nitrogen, a reducing gas such as chromium, carbon monoxide, methane, or propane, or a combustion exhaust gas. is there.
  • the pressure of these gases is set sufficiently higher than the vapor pressure of Cr, and furthermore, by suppressing or eliminating the flow rate in the heating furnace as much as possible, the C rEvaporation can be suppressed.
  • the gradient of the Cr concentration drop from the inside of the sintered body inevitably generated in the first stage of sintering to the surface of the sintered body is the driving force, and the sintering from the inside of the sintered body until sintering is performed.
  • Cr atoms are diffused into the low Cr concentration portion on the surface of the sintered body, whereby the Cr concentration on the surface of the sintered body is about 80% of the Cr concentration inside the sintered body while being sintered. It can be repaired up to the above.
  • the sintering temperature in the second stage is higher than the sintering temperature in the first stage.
  • the temperature be higher than in the first stage in order to densify the sintering and promote the miniaturization and spheroidization of residual sintering pores.
  • the sintering temperature in the second stage is preferably 1200 or more.
  • the sintering temperature in the second stage is preferably 135 ° C. or lower.
  • the sintered alloy steel of the present invention having excellent corrosion resistance to high nitrogen components has a Cr: 16 to 25% by weight,
  • the balance consists of Fe and unavoidable impurity elements.
  • Cr, Ni, C, N, and Mo in the sintered alloy steel composition having excellent corrosion resistance of the high nitrogen component of the present invention are important elements that determine the corrosion resistance, and the content of each is as follows: Limited by reason.
  • the corrosion resistance improves as Cr content increases. If the content is less than 16% by weight, the desired corrosion resistance cannot be obtained. On the other hand, if the content exceeds 25% by weight, no further remarkable improvement in the effect is observed, and the cost is reduced. In addition, high Cr content causes problems such as sigma brittleness and 475 brittleness.
  • Ni is an element necessary for stabilizing the austenite phase.
  • mechanical properties such as corrosion resistance and toughness are improved.
  • the content is less than 6% by weight, the ability to form a stable austenite phase is poor and the corrosion resistance is deteriorated. I do.
  • it is added in excess of 20% by weight no remarkable improvement in the effect is observed, which is disadvantageous in terms of cost.
  • Corrosion resistance improves as the content of C decreases. If the content exceeds 0.05% by weight, a liquid phase appears and the pores become coarse, and carbides such as Fe and Cr are generated, resulting in a low Cr band and deterioration of corrosion resistance. I do.
  • N is an element that significantly improves the pitting corrosion resistance of the sintered body in which pores are present.
  • the content is less than 0.05% by weight, the effect is small.
  • the content exceeds 0.4% by weight, Cr nitride is generated, resulting in low Cr ⁇ and deterioration of corrosion resistance.
  • Mo is an element effective in improving corrosion resistance and oxidation resistance. If the content is less than 0.5% by weight, there is no effect, and if the content exceeds 4% by weight, no further remarkable improvement in the effect is observed, and this is disadvantageous in terms of cost.
  • Mo is a metal effective for improving corrosion resistance and oxidation resistance
  • a high nitrogen stainless steel sintered body containing Mo is more excellent in corrosion resistance and oxidation resistance.
  • the oxygen content is not specified, it is preferable that the content does not exceed 0.7% in consideration of the post-treatment step.
  • the high nitrogen content sintered alloy steel of the present invention has a density ratio of 92% or less. Above, the maximum diameter of the pore present in the tissue is less than 20 ⁇ m.
  • a preferred example of the above-described method for producing a sintered alloy steel having a high nitrogen content is a method of the present invention described below.
  • stainless steel powder containing 16 to 25% by weight of Cr and 6 to 20% by weight of Ni and having an average particle size of 15 m or less is used.
  • 16 to 25% by weight of Cr is used.
  • Ni is 6 to 20% by weight
  • Mo is 0.5 to 0.4% by weight.
  • a stainless steel powder having an average particle size of 15 ⁇ m or less is used, and a binder is added to the steel powder.
  • the binder in the molded body is removed by heating in a non-oxidizing atmosphere, and then, at a temperature of 100 to 135, a pressure of 301 * 0
  • This is a method of sintering under a reduced pressure of not more than 1 and further sintering at a temperature of 1200 to 1400 in a mixed gas atmosphere containing N 2 (inert).
  • the average particle size of the steel powder used is not more than 15 ⁇ m, and the details are the same as those already described in [1].
  • the sintering consists of two stages.
  • the first stage promotes simultaneous reduction and decarburization of oxides contained in the sintered body and solid solution carbon, and suppresses Cr evaporation. Focusing on this, the second stage is to restore the Cr concentration drop on the surface of the sintered body inevitably occurred in the first stage, promote the sintering densification, and The main focus is on the nitrogenation of wastewater.
  • the first stage sintering is the same as that described in [1], and is carried out under the conditions of a temperature of 100 to 130: pressure and a pressure of 30 Torr or less.
  • the range of 100 to 135 is preferable. Also, when sintering in a vacuum heating furnace that performs only vacuum evacuation, when the pressure exceeds 0.1 l Torr, when sintering in a vacuum heating furnace that simultaneously performs evacuation and introduction of a non-oxidizing gas, If SOT o ⁇ r is exceeded, the simultaneous reaction of deoxidization and the origin of Cr oxide will not proceed efficiently, so the former will be less than 0.1 Torr, and the latter will be 3 0 or less is preferable.
  • the second stage sintering is performed at 1200 to 140 0 in a non-oxidizing mixed gas atmosphere containing nitrogen.
  • nitrogen high density and uniform Cr concentration distribution are achieved.
  • This step is performed in an atmosphere of an N 2 -containing (inert) mixed gas.
  • the N 2 in the mixed gas is preferably 10 to 90% by volume%.
  • the pitting corrosion resistance is not sufficiently achieved because it is difficult to achieve high nitrogen content of the sintered body, and if it exceeds 90%, a large amount of nitrogen is contained. As a result, Cr nitride is generated, resulting in low Cr ⁇ and deterioration of corrosion resistance.
  • It has a composition consisting of the balance Fe and inevitable impurities, a density ratio of 92% or more, a maximum diameter of pores existing in the composition of 20 izm or less, and a C
  • the r concentration is 80% or more of the Cr concentration inside the sintered body.
  • another sintered alloy steel having excellent corrosion resistance according to the present invention further has the above composition of Cr, Ni, C and 0.
  • composition consisting of the balance F e and unavoidable impurities, a density ratio of 92% or more, a maximum pore diameter of 20 ⁇ m or less, and Cr on the surface of the sintered body until sintered.
  • concentration is 80% or more of the Cr concentration in the sintered body.
  • the Cr concentration is defined as 18 to 28% by weight.
  • the higher the Cr concentration the more excellent corrosion resistance is achieved, but if its content is less than 18% by weight, the desired corrosion resistance cannot be obtained.
  • the content exceeds 28% by weight, not only is the economic efficiency impaired, but also embrittlement problems due to the sigma phase and the like are undesirable.
  • Ni is an element effective for generating an austenite phase, and as an appropriate range for forming the composition of the two-phase stainless steel of the present invention, the content of Ni is 4 to 12 in the present invention. % By weight.
  • the upper limit of the 0 content is preferably set to 0.3% by weight.
  • the reaction proceeds in the following reaction, and the reaction rate is proportional to the product of c wt% and 0 wt%.
  • the reaction time required to reduce the C content which causes the corrosion resistance to extremely deteriorate, to 0.06% by weight or less, should increase the allowable value of the 0 content of the final sintered body. And can be shortened. Therefore, when the required S level of corrosion resistance is not extremely high, the content of 0 is preferably more than 0.3% from an economic viewpoint. However, if the content of 0 exceeds 0.7% by weight, Due to significant degradation of the food, the upper limit of the 0 content was set to 0.7% by weight.
  • Mo is the most effective element for improving corrosion resistance and oxidation resistance, and is also advantageous for improving mechanical properties by solid solution strengthening in fabric.
  • Mo is preferably contained in an amount of 0.5 to 4.0% by weight. If it is less than 0.5% by weight, desired corrosion resistance cannot be obtained, and if it exceeds 4.0% by weight, problems such as sigma brittleness and 475 brittleness occur, which is not preferable.
  • N is an element of austenite foamer together with Ni, and may be contained within an appropriate range if necessary when stabilizing the duplex stainless steel in the present invention. If the content is less than 0.05% by weight, austenite formation is insufficient, while if the content exceeds 0.3% by weight, nitrides are formed and corrosion resistance is impaired, which is preferred. Absent.
  • the sintering density ratio should be at least 92%, the maximum pore diameter should be at most 20 m, and the Cr content of the as-sintered sintered body surface should be at least 80% of the Cr content inside the sintered body. This is as described above, and the reason C is also as described above.
  • Use stainless steel powder having an average particle size of 15 ⁇ or less containing 18 to 28% by weight of Cr and 4 to 12% by weight of Ni, or 18 to 28% by weight of Cr Using stainless steel powder having an average particle size of 15 ⁇ m or less, containing i of 4 to 12% by weight and Mo of 0.5 to 4.0% by weight, adding a binder to the steel powder and mixing. After that, the binder in the molded body is removed by heating in a non-oxidizing atmosphere, and then sintered at a temperature of 1000 to 135 0 under a pressure of 30 Torr or less. In addition, it is a method of sintering at a temperature of 1200 to 135 in a non-oxidizing atmosphere.
  • the amounts of Cr and Ni in the raw steel powder are specified because it is necessary to obtain the sintered body of the present invention.
  • the average particle size of the steel powder used is 15 ⁇ m or less, and the details are the same as those already described in [1].
  • Binder addition, molding and binder removal have already been described in detail in [1].
  • Sintering is similar to that already described in detail in [1], and is composed of two stages. The first stage involves reduction of oxides and solid solution carbon contained in the sintered body, Focusing on promoting simultaneous decarburization and suppressing Cr transpiration, the second step is to reduce the Cr concentration drop on the sintered body surface that inevitably occurred in the first step. The main focus is on restoration and promotion of sinter densification.
  • the first stage of sintering is carried out at a temperature of 1000 to 135 0 and a pressure of 30 T 0 rr or less.
  • the second stage sintering is performed in a non-oxidizing atmosphere, Sintering at 350 ° C achieves high density and uniform Cr concentration distribution.
  • Composition consisting of the balance Fe and unavoidable impurity elements, having a single phase structure of the fly phase, a density ratio of 92% or more, and a maximum diameter of pores remaining in the structure of 20 m or less.
  • the surface concentration of the as-sintered sintered body is at least 80% of the Cr concentration at the center of the sintered body.
  • ⁇ another invention of a sintered alloy steel excellent in corrosion resistance is:
  • It has a composition consisting of the balance Fe and unavoidable impurity elements, has a single phase structure of a light phase, has a density ratio of at least 92%, and has a maximum diameter of pores remaining in the structure of 20 ⁇ m. m or less, and the Cr concentration on the surface of the sintered body is 80% or more of the Cr concentration at the center of the sintered body.
  • the reason for defining Cr, Mo, C, and 0 in the composition of the sintered alloy steel in the present invention is that any of these elements is considered to be an important element affecting the corrosion resistance.
  • the upper limit was set to 25% by weight.
  • Corrosion resistance improves as the content of C decreases. If the amount exceeds 0.04% by weight, a liquid phase appears and the pores become coarse, and carbides such as Fe and Cr are formed, resulting in low Cr ⁇ and corrosion resistance. to degrade.
  • the reaction rate is proportional to the product of C wt% and 0 wt%. As a result, it causes extreme deterioration of corrosion resistance
  • reaction time required to reduce the C content to 0.04% by weight or less can be shortened by increasing the allowable value of the 0 content of the final sintered body. Therefore, when the required level of corrosion resistance is not extremely high, the content 0 may exceed 0.3% from an economic viewpoint.
  • the upper limit of the content 0 was set to 0.7% by weight.
  • Mo is the most effective element for improving corrosion resistance and oxidation resistance, and is also an element that is advantageous for improving mechanical properties by solid solution strengthening in fabric. However, it exceeded 10% by weight. Sigma brittleness in cases,
  • the upper limit was determined to be 10% by weight.
  • the sintering density ratio of not less than 92%, the maximum pore diameter of not more than 20 ⁇ m and the Cr content of the sintered body surface being not less than 80% of the Cr content inside the sintered body are as described above. And for this reason, It is as stated.
  • alloy steel powder containing Cr of 13 to 25% by weight and having an average particle size of 15 m or less is used, or Cr of 13 to 25% by weight and Mo of 10% by weight or less.
  • the binder in the compact is removed by heating in a non-oxidizing atmosphere.
  • sintering is performed in a vacuum at a temperature of 1000 to 135 ton: 30 T 0 rr or less, and a temperature of 1200 to 135 ton; It is a method of sintering under pressure and non-oxidizing atmosphere.
  • the average particle size of the steel powder used is 15 m or less, and the details are the same as those already described in [1].
  • Sintering is similar to that already described in detail in [1], and is composed of two stages.
  • the first stage is contained in the sintered body.
  • the main focus is to promote simultaneous reduction and decarburization of oxides and solute carbon and to suppress Cr transpiration, and the second stage inevitably occurs in the first stage
  • the main focus is on the restoration of the reduced Cr concentration on the sintered body surface and the promotion of densification of the sintered body.
  • the first stage of sintering is carried out under the conditions of a temperature of 100 to 135 tons; and a pressure of 30 torr or less.
  • the reduction and decarburization reaction speed is slow, and it takes a long time to obtain a low C, low 0 sintered body. Rapid reduction, diffusion of C 0 gas is hindered, reducing and decarburizing reactions do not proceed efficiently, and Cr evaporation is remarkable, resulting in a range of 100 to 1350: Is preferred.
  • sintering is performed in a non-oxidizing atmosphere at 120: 1150.
  • high density and uniform Cr concentration distribution are achieved. If the temperature is lower than 1200 ° C., the density ratio of the sintered body is not remarkably improved, and the low Cr portion of the surface of the sintered body generated during the vacuum sintering in the previous stage is removed from the inside of the sintered body. Repair by diffusion of Cr atoms cannot be performed efficiently.
  • the ratio exceeds 135 °: a part is often melted and the shape is often collapsed, so that a predetermined product cannot be obtained.
  • 1 2 0 0 ⁇ 1 3 5 0 e C is preferred arbitrariness. Sintering in a non-oxidizing atmosphere after sintering under reduced pressure can provide sufficient corrosion resistance, but if necessary after sintering in a non-oxidizing atmosphere, ,
  • a water atomized steel powder having the following composition was prepared.
  • the average particle size was adjusted to 8 ⁇ m by classification, and the thermoplastic resin and wax were added and mixed, and the mixture was kneaded using a pressure kneader with a mixing ratio of 9: 1 by weight.
  • Body sample dimensions and shape
  • the binder is heated in a nitrogen atmosphere at a heating rate of 10 at a heating rate of 11 to 600, and the binder is added so that the C / O molar ratio in the compact becomes 1.0 to 2.0. Removed. It was sintered over one hour in vacuum (Ku 1 0 _ 3 T orr), in followed by atmospheric pressure A r gas atmosphere, and held for 3 hours at 1 3 0 0 ° C.
  • the density ratio was determined from the density by the alkynudes method and the true density, and the C, 0 content of the sintered body was analyzed.
  • the maximum pore diameter (D max) was calculated by the following formula after embedding and polishing the sintered body in resin, observing it with an optical microscope, performing image processing.
  • S max the cross-sectional area of the pore having the maximum pore cross-sectional area.
  • Example 6 the composition was
  • Comparative Examples 2 and 5 had a high Cr or Mo content and precipitated a ⁇ phase, so that the corrosion resistance was deteriorated.
  • Example 1 The raw material powder used in Example 1 was adjusted to steel powder having an average particle size of 8 ⁇ m, 12 m, and 18 m by classification. After molding and sintering in the same manner as in 'Example I', the corrosion resistance was measured by measuring the density ratio and artificial sweat test. Table 2 shows the results.
  • the Cr concentration on the surface of the sintered body is 80% of the Cr concentration inside.
  • Example 9 to 10 Comparative Examples 9 to 10.
  • a vacuum (1 0 _3 T orr) with temperature was raised to 1 3 0 0 from room temperature, 2 hours' was held instead in 1 hour after holding A r gas atmosphere
  • Example 9 shows the results when the holding temperature in vacuum was set at 110 ° C. Comparative Examples 9 and 10 show the case of only vacuum sintering. Table 3 shows the results. Example 9 and Example 10 were sintered in Ar gas atmosphere after vacuum sintering. Therefore, a sintered body having excellent corrosion resistance was obtained when the Cr content on the surface of the sintered body was 95% or more of the Cr content in the center of the sintered body. This is achieved by vacuum sintering.
  • Comparative Example 9 the vacuum sintering temperature was set to 1300, so the C and 0 contents were low.However, only vacuum sintering caused the Cr content on the surface to be lower than the Cr content in the center of the sintered body. 10%, resulting in poor corrosion resistance. Comparative Example 10 also had a low Cr content on the surface only by vacuum sintering, and also had a high C content and a high density by liquid phase sintering, but the corrosion resistance was degraded due to the high C. I have.
  • Example 2 Using the same steel powder, kneading and molding were performed in the same manner as in Example 1, and then the binder was removed. Next, heating was performed at 400 to 700 t in a wet hydrogen atmosphere, and the C 0 molar ratio of the molded body was adjusted by changing the temperature. This vacuum ( ⁇ 1 0 - 3 T 0 rr) 1 2 0 0 to heated from room temperature, and held for 3 hours was charged after 1 hour holding A r gas. Table 4 shows the results.
  • the C, 0 content of the sintered body depends on the CZ0 molar ratio, that is, it has an effect on the corrosion resistance.
  • Example 11 Since the molar ratio of I3 is in the range of 0.3 to 3.0, a sintered body of low C and 0 was obtained. However, a small molar ratio as shown in Comparative Example 11 means that 0 in the molded body is excessive, and 0 remains in the sintered body, which hinders sintering. However, the pores were large and high density could not be obtained, resulting in poor corrosion resistance.
  • Comparative Example 12 A large molar ratio as shown in Comparative Example 12 means that C in the compact was excessive, and C remained in the sintered body and a liquid phase appeared. However, although the density increased, the corrosion resistance deteriorated due to the coarse pores and the high carbon content.
  • Example 2 Using the molding raw material of Example 1, a rectangular parallelepiped sample having a length of 40 mm, a width of 20 mm, and a thickness of 8 mm was injection-molded.
  • degreasing was performed by heating to 500 at a heating rate of 5 °; Further, the mixture was heated at 500 to 700 ° C. in a humid hydrogen atmosphere to adjust the C, 0 amount. Subsequently, in a vacuum ( ⁇ 0.OOlTorr), the temperature was raised to 1170 at the temperature of ⁇ , maintained, and then Ar gas was introduced, the temperature was raised to 1350, and the temperature was maintained for 1 hour.
  • Table 5 shows the retention time at 117, the C, 0 content of the sintered body, the density ratio, the maximum pore size, the concentration distribution, and the results of the artificial sweat test.
  • the sintered body exceeding 0.3% by weight of 0% showed little development in the artificial sweat test for 24 hours, but the sintered body of 0.7% As long as it is a body, no development is detected in the 12-hour artificial sweat test. Also, the higher the 0 amount, the shorter the time required to reduce the C amount to 0.06 wt% or less (Examples 14 to 17 and Comparative Example 13 show that the C amount is approximately 0.0%). The time required to decrease to about 2% was compared). Therefore, it can be said that a sintered body in which the amount of 0 exceeds 0.3% by weight and 0.3% by weight is excellent in economic efficiency without extreme deterioration of corrosion resistance. In particular, in the production of thick parts as in this example, it takes time to reduce both C and 0. Therefore, the amount of harmful C due to corrosion resistance was reduced to 0.06% by weight or less, and more than 0.3% by weight and 0.7% by weight of sintered bodies having 0% It is a target.
  • Example 1 The same molded body as in Example 1 was prepared, and the same degreasing treatment as in Example 1 was performed.
  • the atmosphere S1 was variously changed under the m-1 stage vacuum sintering conditions, and held at 1120 for 1 hour.
  • the sintered steel was obtained by holding it at 132 0 in Ar at atmospheric pressure for 2 hours.
  • the degree of vacuum was adjusted and controlled by narrowing the valve of the vacuum exhaust system or by introducing a small amount of Ar gas from the needle pulp while leaving the vacuum exhaust system unchanged.
  • the same test as in Example 1 was performed on the sintered steel.
  • Table 6 summarizes the sintering conditions, density ratio, C, 0 content, maximum pore size, Cr concentration distribution, and corrosion resistance test results of the sintered steel.
  • the degree of vacuum was adjusted by squeezing the evacuation valve in vacuum sintering B #, the pressure was noted and the degree of vacuum was adjusted by introducing a small amount of Ar gas. In those cases, Ar was specified immediately after the pressure.
  • Water and a stainless steel powder having a composition consisting of the balance of Fe and unavoidable impurity elements were prepared, classified and adjusted to an average particle diameter of 12 ⁇ . 4% by weight and paraffin wax 8% by weight were added, and the mixture was kneaded using a pressurized mixer. The mixture was subjected to injection molding at an injection temperature of 150; and an injection pressure of 100 kg / cm 2. Then, a molded body of 40 mm X 20 mm x 2 mm was obtained. Next, in an Ar atmosphere, the temperature was raised to 600 at a heating rate of 10/11 to remove the binder.
  • Et al is to ⁇ until 1 1-5 0 ° C, pressure 1 0 - After holding for 1 hour at 3 T orr, the temperature was raised to 1 3 0 0 temperature, N 2 of 1 5% (another was kept in an atmosphere of Ar at a total pressure of 1 a ′ tm) for 2 hours to obtain a sintered body.
  • Raw material powder contains Cr: 18.1%, Ni: 8.5%, C: 0.05%, N: 0.02%, with the balance Fe and inevitable impurity elements Sintered in the same manner as in Example 26 except that water atomized stainless steel powder having a composition consisting of The body was prepared, and various tests shown in Example 26 were similarly performed.
  • Raw material powder contains Cr: 18.1%, Ni: 8.5%, C: 0.05%, N: 0.02%, with the balance Fe 'and unavoidable impurities
  • Temperature and pressure of the first stage sintering after removing the binder using water atomized stainless steel powder having a composition consisting of elements A sintered body was produced in the same manner as in Example 26 except that the values shown in Table 9 were used, and various tests shown in Example 26 were also performed.
  • Raw material powder contains Cr: 18.1%, Ni: 8.5%, C: 0.05%, N: 0.02%, with the balance Fe and inevitable impurity elements
  • water-attained stainless steel powder having a composition consisting of the following was used, and the temperature and the partial pressure of nitrogen gas in the second stage were as shown in Table 10
  • a sintered body was prepared by the method, and various tests shown in Example 26 were performed.
  • Example 26 examined the effect of the chemical composition of the raw steel powder and the obtained sintered body on the corrosion resistance.
  • the chemical composition, density ratio and maximum pore diameter of the obtained sintered body were appropriate, and all showed good corrosion resistance.
  • the density ratio and the maximum pore diameter of the obtained sintered body were appropriate, but in Comparative Examples 16 and 18, Cr and Ni effective for corrosion resistance were small, and There has occurred.
  • Comparative Example 17 the ⁇ phase appeared because Cr and N were excessive, and the corrosion resistance was deteriorated due to the formation of Cr nitride, and ⁇ was generated.
  • Example 27 examines the influence of the average particle size of the raw steel powder on corrosion resistance and the like.
  • Example 28 examines the effects of the first-stage sintering conditions (temperature and pressure) on the chemical composition and corrosion resistance of the sintered body.
  • the density ratio and the maximum pore size of the obtained sintered body are appropriate. C was 0.05% by weight or less, and N was in the range of 0.05% to 0.4% by weight, indicating good corrosion resistance. On the other hand, in the comparative example, the density ratio and the maximum pore diameter of the obtained sintered body were appropriate, and N was in the range of 0.05 to 0.40% by weight, but C was 0.05. It is considered that the Cr carbides were formed and the low Cr band was generated because the content was more than the weight%, and there was occurrence of ⁇ which was considered to be due to a partial decrease in corrosion resistance.
  • Example 29 examined the effect of the second-stage sintering conditions (temperature, N 2 partial pressure) on the chemical composition, corrosion resistance, etc. of the sintered body.
  • the density ratio and the maximum pore diameter of the obtained sintered body are appropriate, C is 0.05% by weight or less, and N is in the range of 0.05 to 0.40% by weight. Demonstrated good corrosion resistance.
  • Comparative Example 2 density ratio and maximum pore size ho suitable der of the obtained sintered body Ri, C is 0.0 5 but been filed on the weight% or less, N 2 minutes during sintering N is outside the range of 0.05-0.4% by weight due to inadequate pressure. Therefore, in Comparative Example 21, it is considered that a Cr nitride was generated and a low Cr band was generated, which is thought to be due to a partial decrease in corrosion resistance.
  • Raw material powder contains Cr: 18.1%, Ni: 8.5%, Ji: 0.05%, ⁇ : 0.02%, with the balance Fe and unavoidable impurities using Mizua Tomaizusute Les Nsu steel powder having a composition consisting of elements, and a value indicating the first stage of the sintering temperature after the binder removal, the second stage of the sintering temperature, the N 2 partial pressure in the first table 1
  • a sintered body was prepared in the same manner as in Example 26, except that the test was conducted, and the various tests shown in Example 26 were also performed. Table 11 shows the results.
  • thermoplastic resin organic binder mainly composed of acrylic resin, and wax were added and mixed at a weight ratio of 9: 1, and kneaded using a pressure kneader.
  • the sample shape of the molded body was a rectangular parallelepiped having a length of 40 mm, a width of 20 mm and a thickness of 3 mm, and was molded using an injection molding machine.
  • the mixture was heated to 600 t at a heating rate of 10 in a nitrogen atmosphere at a heating rate of h, and the binder was removed so that the CZO molar ratio in the compact was 1.0 to 2.0. .
  • a water-cooled heat treatment was performed to produce a two-phase stainless steel.
  • the density ratio was determined from the density and true density by the Archi-Medes method, and the C: 0 amount of the sintered body was analyzed.
  • the density ratio was 92% or more, the maximum pore diameter was 20 ⁇ m or less, and the Cr concentration on the sintered body surface was 8% of the internal Cr concentration. Since it was 0% or more, no corrosion was observed in the corrosion test of the artificial sweat test, and a sound sintered body was obtained.
  • the density ratio is less than 92%, and the steel sheet is unsuitable as a sintered alloy steel because it generates heat.
  • Example 31 After the raw material powder used in Example 31 was kneaded and molded in the same manner as in Example 31, the binder was removed.
  • Example 38 shows the result when the holding temperature in vacuum was set at 110. Comparative Examples 30 and 31 Show cases where only vacuum sintering is used.
  • Example 37 after sintering in an Ar gas atmosphere after vacuum sintering, the Cr content on the surface of the sintered body was 95% of the Cr content in the center of the sintered body. %, A sintered body excellent in corrosion resistance was obtained.
  • Comparative Example 31 also had a low Cr content on the surface due to vacuum sintering alone, and a high C content, which was densified by liquid phase sintering, but the corrosion resistance was degraded due to the high C. I have.
  • a water-atomized steel powder having the composition consisting of Fe and the unavoidable impurities was prepared. This was classified and adjusted to an average particle size of 12 ⁇ m, and then the thermoplastic resin and the wax were added and kneaded using a pressure kneader. This was subjected to injection molding at 120 to 160; and 800 to 1200 kgf / cm 2 to obtain a molded body of 40 mm ⁇ 20 mm ⁇ 2 mni. Next, in a N2 atmosphere, the temperature is raised to 600: at a temperature rising rate of 10th, and the temperature is maintained for 2 to 6 hours, so that the CZ0 molar ratio in the compact is 0.5 to 2.0.
  • the binder was removed so that Et al is, 1 1 5 0 or in heated, pressure 1 0 - After holding for 1 hour or more at 3 T orr, a 1 3 0 0 or in raised temperature, and held for 3 hours in A r atmosphere A sintered body was obtained.
  • the density ratio was determined from the density and true density by the Archimedes method, and the (:, 0) content in the sintered body was analyzed.
  • the concentration distribution of the alloy components in the sintered alloy steel was obtained by EPMA linear analysis of the cross section of the sintered body from the surface of the sintered body to the center using the same sample as above. Also, the concentration distribution of Cr and other elements was examined.
  • compositions of Examples 39 to 42 are as follows: (: 1: 13 to 25% by weight, C: 0.04% by weight or less, 0: 0). 3% by weight or less and further containing Mo, Mo: 10% by weight or less, a density ratio of 92% or more, a maximum pore diameter of 20 or less, and an alloy element ⁇ Has a uniform concentration distribution (Cr concentration on the surface of the sintered body ⁇ 0.8 X Cr concentration inside the sintered body), so no corrosion was observed in the artificial sweat test and no discoloration was observed. A sound sintered body was obtained.
  • Comparative Example 32 since the Cr content was 10% by weight, the effect of ⁇ phase sintering was not obtained, the density was not sufficient, and the maximum pore diameter was as large as 24 m. Therefore, it is considered probable.
  • Comparative Example 34 also had a high Cr and a high ⁇ 0 at the same time, it was considered that the ⁇ phase was precipitated and sintering was hindered.
  • Comparative Example 35 Although the C content was as high as 0.09% by weight and a liquid phase was generated, a high-density sintered body was obtained. However, the high C content and the maximum pore diameter were 20%. As a result, it was considered to have occurred.
  • Example 39 Using the raw material powder having an average particle diameter of 8 m used in Example 39, kneading and molding were performed in the same manner as in Example 39, and then the binder was removed.
  • Example 44 shows the result of setting the holding temperature in vacuum to 110. Comparative Examples 40 and 41 show the cases where only vacuum sintering is used.
  • Comparative Example 36 since the vacuum sintering temperature was set to 1300 ° C., the C, 0 content was low, but the Cr content on the surface was reduced only by vacuum sintering and the Cr content in the center of the sintered body was low. The content is 10%, and as a result, the corrosion resistance is deteriorated. Comparative Example 37 also has a low Cr content on the surface only by vacuum sintering, and has a high C content, and the density is increased by liquid phase sintering. ing.
  • the sintered alloy steel of the present invention is configured as described above, it has excellent corrosion resistance, excellent mechanical properties, and can be widely used as a material under severe conditions. .
  • Such a sintered alloy steel requires no special equipment by using the method of the present invention without adding alloy steel powder other than stainless steel powder, performing recompression and resintering steps. Instead, it can be easily manufactured by two-stage sintering of low-pressure sintering at a relatively low temperature followed by sintering in a non-oxidizing atmosphere at a relatively high temperature.

Description

明 発明の名称
耐食性に優れた焼結合金鋼およびその製造方法 技術分野
本発明は、 ステン レス鋼粉を用いた耐食性に優れた高密度の 焼結合金鋼およびその製造方法田に関する 背景技術
近年、 粉末冶金法に よ る焼結部品の製造は著しい伸びを示 し、 焼結部品の適用範囲が広がり つつある。 なかでも、 ステ ン レス鋼を用いた自動車部品 · 電子 · 電気部品、 事務用部品 は、 形状の複雑化に伴い製造方法も切削加工法から粉末冶金法 に置き換えられつつある。
しか し、 粉末冶金法で製造された焼結合金には気孔が存在 し、 この気孔が耐食性や機械的特性を損ねる欠点があつ た。 こ のため、 焼結合金の密度はできるだけ高いこ とが必要で、 密 度比 9 2 %以上が望まれている。
粉末冶金法による焼結部品の製造に際し、 従来の金型プレス 成形では、 原料粉が数 1 0 μ m 5 0 μ πιと大きレヽので、 成 形、 焼結だけでほ密度比 8 0〜 9 0 %となり、 十分な高密度が 得られなかつた 特に、 原料が粗粒粉であるため、 粒子間の 隙間が大き く、 5 0 m以上の径を有する気孔が存在し、 これ は、 焼結によっ ても収縮して消滅されずに焼結体組織に残留 し、 これに起因した耐食性の劣化が顕著であっ た。
そこで、 耐食性を改善するためにステン レス鋼粉に他の合金 元素を添加し、 液相を出現させて高密度化した焼結合金が開発 されている。
例えば、 特開昭 5 8 — 2 1 3 8 5 9号で示されているよ う に、 C oや Bが添加されており、 焼結中に C oや Bを含む液相 が生じて気孔を埋める よ う に生地中に分散した焼結材料があ る。 また、 特開昭 6 1 — 2 5 3 3 4 9号に示されているよう に、 Pを添加し、 同様に液相を出現させて高密度化した焼結ス テン レス鐧も提案されている。
しかし、 前述のよう に、 C o金属を添加すると、 C o金属は 高価な粉末なために製品コス ト高を招き、 粉末治金の長所であ る経済性が損なわれる。
また、 Pを添加する と、 Pの固溶した液相部が 令却後の脆弱 な相と して残るために、 機械的特性が劣化する 従って、 このよ う な合金元素を添加し、 液相焼結する 'こ と に よつて高密度化する手法は回避されなければならない。 さ ら に、 耐食性に直接影響を及ぼす残留気孔をできるだけ減らすた めに、 焼結材料を再圧縮または再焼結した り、 あるいほ熱間鍛 造や熱間静水圧処理するなどの方法がある。 この場合、 工程 が複雑になっ た り、 特別な装置を必要と した り 、 作業が繁雑に なるなどの問題を有していた。
さ らに、 ステン レス鋼ほ、 難還元性元素である C r を含むた めに、 還元性雰囲気中の焼結では露点を一 5 0 :以下にする必 要があるが、 これは工業的に難しく、 従って真空中で焼結する のは周知の通り である。 真空焼結し た場合、 蒸気圧の高い C r元素は真空中に露呈された表面から蒸発する。 よって、 焼結体表面の C r濃度の低下は避けられず、 表面の耐食性が著 しく劣化するこ とを本発明者は実験によって確めている。 す なわち、 従来の真空焼結で高密度の焼結体を得たと しても、 そ れは耐食性の劣化した焼結合金である と考えられる。 発明の開示
术発明の目的ほ、 ステン レス鋼粉成分以外に合金鋼粉を添加 せず、 再圧縮、 再焼結の工程を行う こ と もなく 、 特別な装置を 必要とせず、 9 2 %以上の密度比を有し、 かつ合金成分濃度が 均一である耐食性に優れた焼結合金鋼およびその製造方法を提 供する。
本発明の他の目的は、 上記特性を有し、 かつ焼結体表面部の C r濃度の低下を抑制、 修復した、 耐食性に優れたステン レス 鋼焼結体を提供する。
本発明は、 ステン レス鋼組成を有し、 かつ、 密度比が 9 2 % 以上、 組織内に存在する気孔の最大径が 2 0 μ m以下、 焼結の ま まで焼結体表面の C r含有量が焼結体内部の C r含有量の 8 0 %以上である耐食性にすぐれた焼結合金鐧を提供する。
さらに、 ステン レス鋼粉末を用い、 該鋼粉に結合剤を添加混 合して成形した後、 該成形体中の結合剤を加熱して除去し、 続 いて 3 0 T o r r以下の減圧下で焼結し、. さらに非酸化性雰囲 気下で焼結する耐食性に優れた焼結合金鋼の製造方法を提供す る。 図面の簡単な説明
第 1 図は、 焼結体の表面近傍の C r濃度の E P M A線分析結 果を示したグラフである。 発明を実施するための最良の形態
本発明の耐食性に優れた焼結合金鋼は、 ステン レス鋼組成を 有し、 かつ、 密度比が 9 2 %以上、 組織内に存在する気孔の最 大径が 2 0 μ m以下、 焼結のま まで、 特に熱処理等の後処理を 行わないで、 焼結体表面の C r含有量が焼結内内部の C r含有 量の 8 0 %以上である。
本発明は、 いわゆるステン レス鋼組成を有する焼結合金鋼で あり、 以下の特性によって規定される。
焼結密度比は耐食性に直接影響を及ぼす因子である。 密度 比が 9 2 %未満の焼結体では残留気孔がまだ完全に閉塞化して いないため、 表面と内部の気孔が一部連結している と予想さ れ、 内部も常に焼結体外部の厳しい腐食環境にさらされるこ と になり耐食性が不十分となる。 さ らに 9 2 %未満でほ残留気 孔径も大き く なり、 耐食性に悪影響を及ぼす。 従って、 密度 比の下限を 9 2 %と した。
ステン レス鋼の耐食性は酸化物保護被膜を形成する不働態に 基づいているが、 この被膜が破壊され一部だけに腐食が生じる こ とを孔食と称している。 気孔は孔食発生の源になり易いと 考えられ、 その大きさはビッ 卜が再不働態化するか、 成長を開 始するかを決定する重要な要因である。 気孔の最大径が 2 0 μ HIを超える と不働態膜の復元が容易に行われずエツチビ ト ほ急激に成長を開始し、 孔食が発生する。 従って、 気孔の最 大径を 2 0 mと定めた。 ただし本発明において気孔の最大 径とは次式によって算出された D m a Xを言う。
D m a X = 2 X S m a x
π
S m a x : 最大の気孔断面積を有する
気孔の断面積
次に本発明の焼結合金鋼は、 表面の C r含有量と内部の C r 含有量が焼結のままでも均一であるこ とを特徴と している。 第 1 図曲線 Aは実施例 1 で製造した焼結合金鋼の表面近傍の断 面の C r濃度の E P M A線分析を示すものである。 C r は蒸 気圧が高いので、 従来の真空焼結した焼結合金鋼では、 C r は 真空中で蒸発し、 その表面近傍の C r濃度は曲線 B のよ う に内 部の C r濃度に対して 1 0 %程度まで著しく低下している。 このために表面の耐食性が劣化する。 これに対して本努明の 合金鋼は曲線 Aのよ う にほとんど表面と内部の C r濃度に変化 がなく均一である。
本発明者らの知見によれば、 焼結したままで特に熱処理等を 行あずに焼結体表面の C r濃度が内部の C r濃度に対して 8 0 %以上であれば耐食性上全く 問題がないので、 均一性の指標と して 8 0 %以上と規定した。
本発明焼結合金鋼を得る好ま しい製造方法の 1 つは、 ステ ン レス鋼粉末を用い、 特に結合剤 (バイ ンダ) 等を用いるこ と な く成形した後、 減圧下で焼成し、 さらに非酸化性雰囲気下で焼 結する。 また他の製造方法ほステン レス鋼粉末を用い、 該鋼 粉に結合剤を添加混合して成形した後、 該成形体中の結合剤を 加熱して除去し、 続いて減圧下で焼結し、 さ らに非酸化性雰囲 気下で焼結する。
本発明の製造方法では、 結合剤は必ずしも必要ないが、 用い た方が好ま しい。 本発明においては、 好ま しく は複雑な形状 にも加工できる射出成形法を採用する。 さ らに適切に選択し たそれぞれ異なる条件で 2段階で焼結処理する こ と によ り、 密 度の高い、 耐食性および機械的特性に優れた焼結材料を経済的 に製造できる。
好ま しく は、 ステ ン レス鋼粉末を、 平均粒径 1 5 μ m以下と する。 原料粉末と して平均粒径 1 5 ^ m以下のス テ ン レズ鋼 粉を用い、 こ れを成形した後、 真空焼結と非酸化性雰囲気焼結 を併用するこ と に よ っ て、 合金元素、 特に C r成分の濃度分布 の均一化を図り、 焼結体の残留気孔径と気孔率をできるだけ小 さく し、 かつ不純物量を低く抑えるこ とができた。 そ の 結 果、 耐食性に優れる焼結合金を得るに至った。
好ま しく は、 成形体中の結合剤を加熱して除去する工程を、 非酸化性雰囲気中で行う。
本発明の特徴は、 上述のものであるが、 これらの要件を充し ているかぎり、 必要により他の製造条件をさらに付加したもの も本発明に含ま ふ。一-
[ 1 ] 本発明の耐食性に優れた焼結合金鋼ほ、
C r : 1 6〜 2 5重量%
N i : 8〜 2 4重量%
C : ≤ 0 . 0 6重量%
0 : ≤ 0 . 7重量%
を含み、 残部 F e と不可避不純物とからなる組成を有し、 かつ 密度比が 9 2 %以上、 組織内に存在する気孔の最大径が 2 0 μ ια以下であり、 焼結のままで、 特別な熱処理等を行わなく て も焼結体表面の C r含有量が焼結体内部の C r含有量の 8 0 % 以上である。
なお、 組成が前記記載の他にさ らに Μ ο ≤ 1 0重量%を含ん だ焼結合金鋼はさ らに耐食性、 耐酸化性に富み、 機械的特性も 優れている。
以下、 本発明の焼結合金鋼の限定理由について詳述する。 ま ず、 本発明 に おいて焼結合金鐧組成中の C r 、 N i 、 M o、 C、 0を規定したのは、 これらのいずれの元素も耐食性 を左右す.る重要な元素と考えられるからである。
C r が高いほど耐食性は向上するが、 その含有量が 1 6重 量%未満では所望の優れた耐食性が得られず、 一方、 2 5重 量%を超えて添加してもそれ以上の顕著な効果が認められず、 経済的に不利になる。 さ ら に シグマ脆性、 4 7 5 で脆性と いっ た問題が生ずるため上限を 2 5重量%と した。
N i はオーステナイ ト相を安定化させるために有利な元素で あり、 従って、 耐食性、 靱性等の機械的特性を向上させるこ と : ができる。 しかし、 8重量%未満では安定なオーステナイ ド 相の生成能が乏しく 、 耐食性が劣化するので 8重量%以上を要 する。 一方、 2 4重量%を超えて含有してもそれ以上の顕 著な効果は見られず経済性を考慮し、 上限を 2 4重量%と し た。
M o ほ耐食性、 耐酸化性改善に最も有効で、 さ ら に生地中 への固溶強化によ っ て機械的特性の向上にも有利な元素であ る。 しか し、 1 0 重量%を超え た場合に はシグマ脆性、 4 7 5 °C脆性といった問題が生ずるため上限を 1 0重量%と定 めた。
Cほ低いほど耐食性は向上するのほ周知の通り である。
上限を 0 . 0 6重量% と規定したのは、 これを超えて含有し た場合、 液相が出現する によつ.て気孔が粗大化したり 、
( F e、 C r ) Cの炭化物が生成する こ と によって、 低 C r带 が生じて耐食性が劣化するからである。
0 は低いほど、 緻密化が容易に進み焼結密度が高く なり、 そ の結果、 耐食性は向上する。 しかし、 0 . 3重量%を超えて 0 を含有する場合ほ、 C r系酸化物が生成し、 焼結が阻害さ れ、 高密度が得られず、 その結果耐食性を劣化させる。
但し、 C r酸化物の存在に起因する密度低下が著しく ない場 合、 0含有量の増加に伴う直接的な耐食性の劣化は、 極端なも のでは無いため、 用途によ っ ては、 必要な耐食性を確保でき る また、 焼結体の C、 0の低減ほ、
C + 0— C O または C + 2 0— C O
の反応で進行し、 その反応速度は c重量%と 0重量%との積に 比例する そのため、 耐食性を極端に劣化させる原因となる
C含有量を 0 . 0 6重量%以下にするのに必要な反応時間は、 最終焼結体の 0 含有量の許容値を高く する こ と で短縮でき る。 したがって、 耐食性の要求レベルが極端に高く ない場合 は、 経済的な観点よ り、 含有 0量は 0 . 3 %を超えるこ とが好 ま しい。 しか し、 含有 0量が 0 . 7 重量%を超える と 、 耐 食性劣化が著しいため、 含有 0量の上限を 0 . 7 重量%と し た。
焼結密度比 9 2 %以上、 気孔の最大径 2 0 μ m以下および焼 結のままで焼結体表面の C r含有量が焼結体内部の C r含有量 の 8 0 %以上であるこ とは前述のとおり であり、 この理由につ いてもすでにのベた と おり である。
次にこのよ う な焼結合金鋼の製造方法と しては、
C r : 1 6〜 2 5重量%
N i : 8〜 2 4重量%
を含み、 平均粒径 1 5 m以下の鋼粉に結合剤を添加、 混合 し、 成形後、 該成形体中の結合剤を非酸化性雰囲気中で加熱し て除去し、 続いて温度 1 0 0 0 〜 1 3 5 0 ¾以下、 圧力 3 0
T o r r以下の減圧下で焼結後、 非酸化性雰囲気下で 1 2 0 0
〜 1 3 5 0 °Cで焼結するこ と によ っ て得るこ とができ る。
また、 この場合に、 原料組成が上記記載の他に M o ≤ 1 0重 量%を含む鐧粉を用いる と、 一層好ま しい特性の焼結合金鋼を 製造する こ とができ る。 末発明方法において、 原料組成の C r、 N i を規定するの は、 上記焼結合金鋼を得るために必要だからである。
鐧粉の平均粒径は、 焼結体の密度比を左右する因子の一つで あり、 平均粒径が小さいほど密度比ほ上昇する。 平均粒径が 1 5 mを.超える鋼粉を用いる と、 密度比 9 2 %以上を達成す るこ とができず、 成形時に生じる粒子間の隙間も大き く なるた め、 残留気孔の最大径が 2 0 μ mを超え、 所望の耐食性が得ら れなく なる。 こ のため、 平均粒径 1 5 μ πι以下の鋼粉を用い る。
なお、 鋼粉は、 実質的に球状で、 表面に極端な凹凸がないも のを用いるのが好ま しい。 形状が実質的に球状でない場合、 例えば、 フ レーク状および棒状粒子は、 成形体に異方性を与 その結果、 複雑な部品を製造する場合に寸法収縮を予想で きず、 希望の部品形状が得られない。 また、 角張っている場 合は、 余分なバイ ンダを必要とするので好ま しく ない。
粒子の極端な凹部は、 焼結体に余分な隙間を与え、 粒子の極 端な凸部ほ、 粒子同士の滑り を劣化させる。 何れの場合も、 上記の欠点に加えて、 球状粒子を使用する場合と比較して、 余 分なバイ ンダの添加を必要とするので、 このよ う な粒子も好ま しく ない。 こ のよ う に、 本発明で用いる鋼粉は、 その平均粒径が 1 5 μ πι以下であ り 、 好ま しく は、 実質的に球状で、 表面に極端な 凹凸がないものである。 このよ う な鋼粉は、 ア ト マイズ法等 によ っ て得られるが、 高圧水ァ 卜 マイズ法によ っ て作られたも のが好ま しい。
本発明の方法では、 上記の鐧粉を用い、 まず成形を行う が、 平均粒径 1 5 μ m以下の微粒であるため、 鋼粉だけでほ成形時 に ラ ミ ネーシ ヨ ンや割れ等の欠陥を生じる。 それで、 こ ら の欠陥が生じないよ う に、 結合剤を添加混合した後に成形を行 う。 結合剤は、 熱可塑性樹脂、 ワ ッ クス、 可塑剤、 潤滑剤お よび脱脂促進剤などよ り構成されている。
熱可塑性樹脂と しては、 アク リ ル系、 ポ リ エチレ ン系、 ポ リ プロ ピレ ン系およびポリ スチ レ ン.系等があ り 、 ワ ッ クス類と し ては、 蜜ろ う、 木ろ う、 モンタ ンワ ッ クス等に代表されるよ う な天然ろ う、 および低分子ボ リ エチ レ ン、 マイ ク ロク リ スタ リ ンワ ッ クス、 パラ フ ィ ンワ ッ クス等に 表されるよ う な合成ろ う があるが、 これらから選ばれる 1 種あるいは 2種以上を用い る。
可塑剤は、 主体と成る樹脂あ る いは ワ ッ クス と の組合せに よ っ て 選択 す る が 、 具体的 に は 、 フ タ ル酸 ジ ォ ク チ ル ( D 0 P ) 、 フタル酸ジェチル ( D E P ) 、 フタル酸ジ一 n — ブチル ( D B P ) 、 フタル酸ジへブチル ( D H P ) 等があげら れる。
潤滑剤と してほ、 高級脂肪酸、 脂肪酸アミ ド、 脂肪酸エステ ル等があげられ、 場合によっては、 ワッ クス類を潤滑剤と して 兼用する。
また、 脱脂促進剤と して、 樟脳等の昇華性物質を添加するこ ともできる。
なお、 結合剤の種類や量は、 後工程の成形法によって異な り、 通常の金型圧縮成形では上記潤滑剤を主体とするものを鋼 粉に対し 0 . 5 〜 3 . 0重量%使用し、 射出成形では上記熱可 塑性樹脂および/またはワ ッ クスを主体とするものを鋼粉に対 し 1 0重量%程度使用する。
射出成形用 コ ンパ ウ ン ドは、 鐧粉と結合剤との混合 · 混練に よっ て得られ、 パッ チ式あるいは、 連続式のニーダが使用で き、 バッチ式ニーダの中では加圧ニーダゃバンバ リーミキサー 等が、 また、 連続式ニーダの中では 2軸押出し機等がそれぞれ 有利に使用できる。 混練後、 必要に応じてべレタイザ一ある いほ粉砕機等を使用して造粒を行う。
また、 金型圧縮成形用原料ほ、 鋼粉と結合剤との混合によ て得 ら れ、 V型あるいはダブルコー ン型混合機が使用でき る。
成形は、 従来の金型圧縮成形をは じめと して、 押し出し成 形、 粉末圧延成形、 射出成形等の方法で行うが、 射出成形が好 ま しい。
射出成形は、 ブラスチッ ク用射出成形機、 金属粉末用射出成 形機等、 通常の射出成形に用いられる射出成形機を用いて行な えばよい。 こ の際において、 射出圧力ほ、 通常 5 0 0 〜 2 0 0 0 kg/cm2程度である。
成形後、 結合剤を除去するため、 非酸化性雰囲気中で加熱す る。 昇温速度は、 5〜 3 0 0 :ノ h と し、 4 5 0 〜 7 0 0で で 0 〜 4 h保持した後、 冷却する。 なお、 この時の昇温速度 を速く しすぎる と、 得られた成形体に割れや膨れが生じるので 好ま しく ない。
こ う して得られた脱脂体を、 その後、 焼結して本発明の焼結 体が得られる。
ま た、 必要に応 じ て、 最終焼結体の C 、 0量を調整し、 C // 0モル比を 0 . 3 〜 3 とするのが良い。 ( 、 0量の増減 の方法と しては、 脱脂体の C / 0量比の増減によって為され、 C / 0量比を小さ く するこ とで C量を低減でき、 C / O量比を 大き くするこ とで 0量を低減できる。 C / 0 量比の増減に は、 原料粉末の C、 0量の調整、 結合剤の除去程度の加減、 あ るいは除去後の酸化処理などによって行う こ とができる。 さ らに、 C、 0量の全体レベル ( C量と 0量の積に相当) の低減 は、 減圧焼結時に、 圧力を低減するこ と、 焼結時間を増加する こ と によっ て達成できる。
結合剤を除去した後、 焼結を行なう。
焼結条件は、 ①被焼結体 (射出成形体あるいは金型圧縮成形 体から有機物を除去したもの) の含有 C と含有 0 との直接反応 による、 還元、 脱炭の同時反応、 ② C r蒸散に起因する焼結表 面部の C r濃度低下現象および③粉末構成原子の相互拡散に 起因する焼結緻密化現象をすベて考慮して決定する必要があ る。
本発明における焼結は、 第 2段階で構成されており、 第 · 1 段 階目 、 還元、 脱炭の同時反応を促進し、 かつ C r蒸散を抑制 するこ と に主眼を置き、 第 2段階目は、 第 1 段階目で不可避的 に起っ た表面部の C r濃度低下の修復および焼結緻密化の促進 に主眼を置く ものである。
第 1 段の焼結は、 温度 1 0 0 0 〜 1 3 5 0 で圧力 3 0 T o r r以下の条件で行う。
還元、 脱炭は、 水素雰囲気によっても行う こ とができるが、 本発明の焼結鋼のよ う に難還元性元素である C r を多く含有す る組成では、 高純度の水素ガスを著しく 多量に必要とするため 経済的に好ま しく ない。 一方、 本発明のよ う に 3 0 T o r r 以下の減圧雰囲気を利用する場合、 被焼結体の含有 C と含有 0 との直接反応による、 還元、 脱炭の同時反応を経済的、 かつ効 率的に行う こ と ができ る。 化学平衡論的にほ、 高温ほど、 低圧ほど、 還元、 '脱炭同時反 応は進行し、 同時に、 C r蒸発に起因する焼結体表面部の C r 濃度低下も促進される。 一方、 反応速度論的には、 還元、 脱 炭同時反応は反応生成物である C 0 ガスの拡散に支配され、 焼 結体表面部の C r濃度低下は C rの原子拡散に支配される。 さらに、 焼結が進行する と、 焼結体内部のガス流路が遮断され るため C 0ガスの拡散速度が著しく低下するが、 C r の拡散速 度への影響は小さいこ とを実験的 確認した。
第 1段の焼結の温度範囲ほ 1 0 0 0 〜 1 3 5 0で と した。
1 0 0 0 :未満では、 平衡論的には還元、 脱炭を起こすこ とが でき るが、 反応速度が遅いため、 低 C、 低 0の焼結体を得るの に、 長時間を必要とするので好ま しく い。 従って、 第 1段 の焼結は、 1 0 0 0 以上であるこ とが好ましい。
—方、 1 3 5 0 を超える と焼結緻密化が速く進行し、 C O ガスの拡散速度が著しく低下するため、 還元、 脱炭同時反応が 劲率よく進行せず、 低 C、 低 0 の焼結体が得られない。 さら に、 C r蒸気圧および C r拡散速度は共に十分に高いため、 焼 結体表面か ら深い範囲にわた り C r濃度が著しく低下して し ま う。 従っ て、 第 1 段の焼結の上限温度を 1 3 5 0 で と し た。 但し、 原料粉末径によ っ て、 焼結緻密化の速く なる温度は異 なり、 平均粒径が小さい場合はよ り低温側に、 平均粒径が大き い場合はよ り高温側に、 上記の範囲内から選択するこ とができ る。
さらに、 第 1 段の焼結は、 真空加熱炉において、 炉内に、 外 部よ り ガスを導入するこ となく 、 真空ポンプで排気のみを行う 場合、 0 . 1 T o r r以下で行い、 また、 真空加熱炉におい て、 炉内に、 外部よ り非酸化性ガスの導入と真 空ポンプでの 排気を併用する場合は、 3 0 T o r r以下で行う。 前者の 場合、 0 . l T o r r を超えると、 後者の場合 3 0 T o r rを 超える と、 C r酸化物の還元、 脱炭の同時反応が効率的に進行 しないので好ま しく ない。
さらに、 詳しく説明する と、 C r酸化物の還元反応を支配す るのほ、 反応生成物である C O もしく は C 0 2 ガスの分圧の合 計 (以下、 生成物ガス圧と略記する) であるため、 生成物ガス 圧を、 常に酸化 ♦ 還元平衡圧未満に維持できるよ う に、 反応系 外 (焼結炉外) へ排出するこ とが必須条件と なる。 この条件 を満たす方法と しては、 真空雰囲気を使用する方法、 A r 、 N 2 、 H 2 等の高純度の非酸化性ガスを使用する方法および両 者を併用する方法がある。 第 1 の場合は、 生成物ガス圧が焼 結炉内の全圧に、 実質上'、 等しく なるよう な緻密性の高い加熱 炉に、 炉内全圧を 0 . l T o r r以下に保持できるに十分な排 気速度を持つ真空ポンプを装着した、 真空焼結炉で行う こ とが できる。 第 2の場合は、 炉内圧を大気圧領域でおこなう もの で、 生成物ガス圧を 0 . l T o r r以下にするためには、 生成 物ガスを含まない新鮮な高純度のガスを、 単純な計算上でほ、 7 5 9 . 9 Τ Ο Γ Γ以上必要である。 こ の よ う に 、 反応時 に、 生成ガスの約 1 万倍もの非酸化性ガスを供給するこ とは、 工業的には、 きわめて不利であるため第 2の場合は好ましく な い。 第 3の場合は、 第 1 の場合と して示した真空焼結炉に圧 力調整弁を介して生成物ガスを含まない新鮮な高純度の非酸化 性ガスを導入する方法で、 加熱時の C r蒸発の抑制に幾分かの 効果がある とされるもので、 炉内の全圧ほ 3 0 T o r r以下で あるこ とが好ましい。 この方法においては、 炉内の全圧は、 生成物ガス圧と導入した非酸化性ガス圧の和で表されるが、 真 空ポンプの排気速度が一定の場合、 導入ガスの有無にかかわら ず、 生成物ガスの加熱炉外への排気速度は一定である。 しか し、 炉内の全圧が 3 0 T o r r を超える と、 真空ポンプ (特 に、 メ カニカルブースタ一と油回転ボンブを組み合せた場合) の排気速度ほ急激に低下するこ と、 および、 生成物ガスの焼結 体表面か らの離脱速度が低下する こ と に ^二 スの排気速度が低下し、 その結果、 還元 る。 そのため、 炉内の全圧の上限を 3 0 前述のよ う に じ r系酸化物の還元反応 -一 に促進させ る こ と がで き るが、 その際、
C 0 モル比を適当に調整する こ とが必要": ば、 焼結体中の C、 0の低減ほ、
C + 0→ C 0
C + 2 0→ C 0 2
の反応が進行する こ と によ っ て達成される: が不適当である と、 C あるいは 0 を過剰に D 、
C≤ 0 . 0 6重量%
0≤ 0 . 7重量% .
が得られない。 C / 0 モル比 (の下限) - 合、 焼結体中の 0 は 0 . 3重量%を超え、 られない。 一方、 C 0 モル比が 3 . 0 体の C量が 0 . 0 6重量%を超えるため液 孔が粗大化して耐食性が劣化した り、 形状 . - で、 焼結前の成形体中の Cノ 0 モル比を 0 に規定した。
続いて、 第 2段の焼結を高密度化および拡散による合金元 素の均一化を達成するために非酸化性雰囲気中、 1 2 0 0 〜 1 3 5 0 'Cで行う。 雰囲気を非酸化性としたのほ、 C r の蒸 発を抑制するためである。 なお、 こ こで非酸化性雰囲気に用 いるガスは A r、 H e、 窒素等の不活性ガス、 氷素、 一酸化炭 素、 メタン、 プロパン等の還元性ガス、 または、 燃焼排ガス等 である。 これらのガスの圧力は、 C rの蒸気圧よ り も十分に 高く し、 さ らに、 加熱炉内の流通量を極力押えるか無く すこ と で、 より効果的に、 焼結体表面の C r蒸発を抑制できる。 そ の結果、 焼結の第 1 段階に不可避的に生成した焼結体内部から 焼結体表面への C r濃度低下の傾きを原動力と して、 焼結のま まで焼結体内部から焼結体表面の低 C r濃度部へ C r原子が拡 散し、 これによつて、 焼結体表面の C r濃度ほ、 焼結のままで 焼結体内部の C r濃度の 8 0 %以上まで修復する こ とができ る。
また、 焼結の第 1 段階おょぴ第 2段階において、 焼結温度が 一定である ( C r拡散速度が一定に相当) と、 前記表面の低 C r部の修復には、 これを生成するのに要した時間よ り も長い こ とが必要であるこ とを実験的に確認した。 従って、 短時間 で、 効果的に前記表面の低 C r部の修復を行う ために、 第 2段 階の焼結温度は第 1 段階の焼結温度よ り も高く するのが好ま し い。 さ らに、 焼結緻密化し、 焼結残留気孔の微細化、 球状化 を促進するためにも、 第 1 段階よ り も高温であるこ とが好ま し レヽ。
1 2 0 0 °C未満では、 前記焼結体表面の低 C r部の修復を効 果的に行う こ と がで き ないだけでなく 、 焼結緻密.化の不十分 (低密度) な焼結体しか得られないので、 第 2段階の焼結温度 は 1 2 0 0 以上が好ま しい。
一方、 1 3 5 0 t:を超える と、 液相の発生が過剰と なるた め焼結体形状が崩れた り 、 脆化相が残り焼結体の強度低下を 引き起す等の弊害がでる。 従っ て、 第 2 段階の焼結温度は 1 3 5 0 °C以下が好ま しい。
[ 2 ] 本発明の高窒素成分の耐食性に優れた焼結合金鋼は、 C r : 1 6〜 2 5重量%、
N i : 6〜 2 0重量%、
C : 0 . 0 5重量%以下、
N : 0 . 0 5 〜 0 . 4 0重量%
を舍み、 残部 F e および不可避的不純物元素とからなる。
また、 本発明の他の高窒素成分の耐食性に優れた焼結合金鋼 は、
C r 6〜 2 5重量%、
Ν 6〜 2 0重量%、
C 0 . 0 5重量%以下、
Ν 0 0 5〜 0 . 4 0重量%、
Μ ο : 0 . 5〜 4 . 0重量%
を含み'、 残部 F e および不可避的不純物元素とからなる。
本発明の高窒素成分の耐食性に優れた焼結合金鋼組成中の C r、 N i 、 C、 N、 M o ほ、 耐食性を左右する重要な元素で あり、 各々の含有量は、 以下の理由によって限定される。
C r : C r ほ、 その含有量が高いほど耐食性ほ向上する。 含有量が 1 6重量%未満では、 所望の耐食性が得られず、 一 方、 2 5重量%を超えて添加しても、 それ以上の顕著な効果の 向上は認められず、 コス トの点で不利となる さらに、 C r 含有量が高いと、 シグマ脆性、 4 7 5で脆性といった問題が生 ずる
N i : N i は、 オーステナイ 卜相を安定化させるために必要 な元素である。 オーステナイ ト相が安定化する と、 耐食性およ び靱性等の機械的特性が向上する 含有量が 6重量%未満で ほ、 安定なオーステナイ ト相の生成能が乏しく、 耐食性が劣化 する。 一方、 2 0重量%を超えて添加しても、 それ以上の顕 著な効果の向上は認められず、 コス 卜の点で不利と なる。
C : C は、 その含有量が低いほど耐食性は向上す 。 含有 量が 0 . 0 5重量%を越える と、 液相が出現して気孔が粗大化 した り、 F e や C rの炭化物が生成されるために低 C r帯が生 じ、 耐食性が劣化する。
N : N は、 ポア一の存在する焼結体の耐孔食性を著しく 改善 する元素である。 含有量が 0 . 0 5重量%未満ではその効果 は小さ く 、 一方、 0 . 4重量%を越える と、 C r窒化物が生成 されるために低 C r带が生じ、 耐食性が劣化する。
M o : M o ほ、 耐食性、 耐酸化性改善に有効な元素であ る。 含有量が 0 . 5重量%未満では効果がなく 、 4重量%を 超えて添加しても、 それ以上の顕著な効果の向上は認められ ず、 コ ス ト の点で不利と なる。
なお、 上記の通り、 M o は耐食性、 耐酸化性改善に有効な金 属であるから、 M o を含有する高窒素ステ ン レス鋼焼結体は、 よ り耐食性、 耐酸化性に優れる。
特に酸素については規定していないが、 後処理工程のこ とを 考慮する と きは、 0 . 7 %を超えないこ とが好ま しい。
また、 本発明の高窒素成分焼結合金鋼は、 密度比が 9 2 %以 上であり、 組織内に存在する気孔の最大径は 2 0 μ m以下であ る。
こ の理由についてはすでに述べた本発明の他の焼結合金鋼の 場合と同様である。
次に、 上述した高窒素成分の耐食性に優れた焼結合金鋼の製 造方法について説明する。
上述した高窒素成分の焼結合金鋼の製造方法の好ま.しい例と して、 以下に述べる本発明の方法がある。
即ち、 C rを 1 6〜 2 5重量%、 N i を 6〜 2 0重量%含む 平均粒径 1 5 m以下のステ ン レス鋼粉を用い、 または、 C r を 1 6〜 2 5重量%、 N i を 6〜 2 0重量%、 M oを 0 . 5〜 4 . ひ重量%含む平均粒径 1 5 β m以下のステ ン レス鋼粉を用 い、 該鋼粉に結合剤を添加混合して成形した後、 該成形体中の 結合剤を非酸化性雰囲気中で加熱して除去し、 続いて、 温度 1 0 0 0 〜 1 3 5 0で、 圧カ 3 0 1* 0 1» 以下の減圧下で焼結 し、 さらに、 温度 1 2 0 0 〜 1 4 0 0 でで、 N 2 を含む (不活 性) 混合ガス雰囲気中で焼結する方法である。
なお、 原料と して M o を 0 . 5〜 4 . 0重量%を含む鋼粉を 用いる後者の^法では、 一層好ま しい特性の焼結体が得られ る。 本発明の方法において、 原料鋼粉中の C r、 N i 量を規定す るのは、 本発明の焼結体を得るために必要だからである。
用いる鋼粉の平均粒径 、 1 5 ^ m以下と し、 詳細について は、 すでに [ 1 ] で述べたものと同様である。
次に、 原料に結合剤を添加した後、 成形を行い、 成形後、 結 合剤を除去した後焼結を行う。 結合剤添加、 成形、 結合剤の 除去については、 すでに [ 1 ] で詳述した。
焼結は、 2段階によって構成されており、 第 1 段階目 は、 被 焼結体に含有される酸化物と固溶炭素との還元、 脱炭同時反応 を促進し、 かつ C r蒸散を抑制するこ と に主眼を置き、 第 2段 階目は、 第 1 段階目で不可避的に起つ た焼結体表面部の C r濃 度低下の修復、 焼結緻密化の促進および焼結体の窒素化に主眼 を置く ものである。
第 1 段目の焼結は、 [ 1 ] で述べたものと同様であ り 、 温 度 1 0 0 0 〜 1 3 5 0 :、 圧力 3 0 T o r r以下の条件で行
Ό。 .
1 o o o :未満では、 還元、 脱炭反応速度が遅く 、 低(:、 低
0 の焼結体を得るの に長時間を要し、 1 3 5 を超える と
C r の蒸発が著しいので、 1 0 0 0 〜 1 3 5 0 での範囲が好ま しレヽ。 また、 真空棑気のみを行う真空加熱炉で焼結する場合は、 0 . l T o r rを超えると、 真空排気と非酸化性ガスの導入と を同時に行う真空加熱炉で焼結する場合は、 S O T o ^ rを超 える と、 C r酸化物の逢元、 脱炭の同時反応が効率的に進行し ないので、 前者の場合ほ、 0 . 1 T o r r以下が、 後者の場合 は、 3 0 T o r r以下が好ましい。
第 2段目の焼結は、 窒素を含む非酸化性混合ガス雰囲気中、 1 2 0 0 〜 1 4 0 0 でで焼結する。 こ こで、 高窒素化、 高 密度化および C r濃度分布の均一化を達成する。
1 2 0 0で未満では、 焼結体密度比の向上が顕著ではなく、 また、 前段階の真空焼結時に生成した焼結体表面の低 C r部 を、 焼結体内部からの C r原子の拡散によ り修復するこ とが、 効率よく行えない。 一方、 1 4 0 0 でを超える と、 一部が融 解して形状が崩れるこ とも多く、 所定の製品を得るこ とができ ない。 従って、 1 2 0 0〜: L 4 0 0でが好ま しい。
また、 この工程は、 N 2 を含む (不活性) 混合ガス雰囲気中 で行うが、 混合ガス中の N 2 は、 体積%で 1 0〜 9 0 %が好ま しい。
1 0 %未満では、 焼結体の高窒素化が達成されに く いために 耐孔食性が十分達成されず、 9 0 %を超える と、 窒素が多量に 含有され、 C r窒化物が生成するため、 低 C r带が生じ、 耐食 性が劣化する。
[ 3 ] 本発明の耐食性に優れた焼結合金鋼は、
C r : 1 8〜 2 8重量%、
N i : 4〜: I 2重量%
C ≤ 0 . 0 6重量%
.0 : ≤ 0 . 7重量%
を含有し、
残部 F e と不可避不純物とか ら なる組成を有し、 密度比が 9 2 %以上、 組成内に存在する気孔の最大径が 2 0 iz m以下、 かつ焼結のままで焼結体表面の C r濃度が焼結体内部の C r濃 度の 8 0 %以上である。
ま た、 本発明の他の耐食性に優れた焼結合金鋼は、 C r、 N i 、 Cおよび 0の上記組成にさ らに
M o : 0 . 5〜 4 . 0重量%およびノまたは N : 0 . 0 5 〜 0 . 3重釁%
を含有し、 残部 F e と不可避的不純物とからなる組成を有し、 密度比が 9 2 %以上、 気孔の最大径 2 0 μ m以下、 かつ焼結の ま まで焼結体表面の C r濃度が焼結体内の C r濃度の 8 0 %以 上である。 以下に、 本発明 に おいて、 焼結合金鋼の主成分と して、 C r、 N i 、 M o、 C、 0、 Nを規定する理由を説明する。 こ れらいずれの元素も、 耐食性を左右する重要な元素であ る。
本発明において C r濃度は 1 8〜 2 8重量%と規定する。 これは、 C r濃度が高い程、 優れた耐食性が達成されるが、 その含有量が 1 8重量%未満では所望の耐食性が得られな い。 一方 2 8重量%を越えて含有した場合には、 経済性が損 なわれるばかり でなく、 シグマ相による脆化問題等が生じ好ま しく ない。
N i は、 オーステナイ ト相を生成させるために有効な元素で あり、 末発明の 2相ステン レス鋼の組成を形成させる適正な範 囲と して、 本発明において、 含有量を 4〜 1 2重量%と定め た。
4重量%未満でほ、 フヱライ ト相单相となり、 2相ステンレ ス鋼とならず、 一方、 1 2重量%を越え,て含有してもそれ以上 の顕著な効果はみられず経済性からも好ま しく ない。
Cの含有量は低いほど耐食性は向上するのほ周知の通り であ る。 0 . 0 6重量%超えて含有した場合、 液相が出現するこ と によって気孔が粗大化した り ( F e、 C r ) Cの炭化物が生 成する こ と によ っ て、 低 C r蒂が生じて耐食性が劣化するので 不適である。
また、 0の含有量は低いほど、 緻密化が容易に進み焼結密度 が高く な り 、 その結果、 耐食性は向上する。 しか し、 0 . 3 重量%を超えて 0 を含有する場合は、 C r 系酸化物が生成し、 焼結が阻害され、 高密度が得られず、 その結果耐食性を劣化さ せる。 従っ て、 0含有量の上限は 0 . 3重量% とするのが好 ま しい。
但し、 C r酸化物の存在に起因する密度低下が著し く ない場 合、 0含有量の増加に伴う直接的な耐食性の劣化は、 極端なも のでは無いため、 用途に よ っ て は、 必要な耐食性を確保でき る。 また、 焼結体の (:、 0の低減は、
C + 0→ C O ま たは C + 2 0→ C 0 2
の反応で進行し、 その反応速度は c重量%と 0重量%と の積に 比例する。 そのため、 耐食性を極端に劣化さ せ る原因 と な る C含有量を 0 . 0 6 重量%以下にするのに必要な反応時間 は、 最終焼結体の 0含有量の許容値を高く する こ と で短縮でき る。 したがっ て、 耐食性の S求レベルが極端に高く ない場合 は、 経済的な観点よ り 、 含有 0量は 0 . 3 %を超える こ とが好 ま しい。 しかし、 含有 0量が、 0 . 7 重量%を超える と、 耐 食性劣化が著しいため、 含有 0量の上限を 0 . 7重量%と し た。
"また、 M o ほ、 耐食性、 耐酸化性改善に最も有効で、 さらに 生地中への固溶強化によって機械的特性の向上にも有利な元素 である。
本発明に於いて、 M o は、 0 . 5 〜 4 . 0重量%含有するの がよい。 0 . 5重量%未満では、 所望の耐食性が得られず、 また 4 . 0重量%超ではシグマ脆性、 4 7 5で脆性等の問題が 生じるため好ま しく ない。
また、 N は N i と と も にオーステナイ ト フ ォ ーマーの元素で あり、 本発明における 2相ステン レス鋼の安定化に際し、 必要 の場合は適正な範囲内で含有してもよい。 0 . 0 5重量%未 満ではオーステナイ ト生成が不充分であり、 一方 0 . 3重量% を越えて含有した場合には、 窒化物を生成し、 耐食性を損ねる こ と になるので好ま しぐない。
焼結密度比 9 2 %以上、 気孔の最大径 2 0 m以下および焼 結のままの焼結体表面の C r含有量が焼結体内部の C r含有量 の 8 0 %以上であるこ とほ前述のとおり であり、 この理由 Cつ いてもすでに述べたとおり である。
次に、 本発明の耐食性に優れた焼結合金鋼の好ま しい製诰方 法を説明する。
C r を 1 8〜 2 8重量%、 N i を 4〜 1 2重量%含む平均粒 径 1 5 μ πι以下のステンレス鋼粉を用い、 または、 C r を 1 8 〜 2 8重量%、 N i を 4〜 1 2重量%、 M o を 0 . 5〜 4 . 0 重量%含む平均粒径 1 5 μ m以下のステン レス鋼粉を用い、 該 鋼粉に結合剤を添加混合して成形した後、 該成形体中の結合剤 を非酸化性雰囲気中で加熱して除去し、 続いて、 温度 1 0 0 0 〜 1 3 5 0 で、 圧力 3 0 T o r r以下の減圧下で焼結し、 さ ら に、 温度 1 2 0 0 〜 1 3 5 0 で非酸化性雰囲気中で焼結する 方法である。
なお、 原料と して M o を 0 . 5 〜 4 . 0重量%を含む鋼粉を 用いる後者の方法では、 一層好ま しい特性の焼結体が得られ る。 .
本発明の方法において、 原料鋼粉中の C r 、 N i 量を規定す るのは、 本発明の焼結体を得るために必要だからである。
用いる鋼粉の平均粒径は、 1 5 μ m以下と し、 詳細について は、 すでに [ 1 ] で述べたものと同様である。
次に、 原料に結合剤を添加した後、 成形を行い、 成形後、 結 合剤を除去した後焼結を行う。 結合剤の添加、 成形、 結合剤 の除去については、 すでに [ 1 ] で詳述した。 焼結は、 すでに [ 1 ] で詳述したものと同様であり、 2段階 によって構成されており、 第 1 段階目は、 被焼結体に含有され る酸化物と固溶炭素と の還元、 脱炭同時反応を促進し、 かつ C r蒸散を抑制するこ と に主眼を置き、 第 2段階目は、 第 1 段 階目で不可避的に起つた焼結体表面部の C r濃度低下の修復お よび焼結緻密化の促進に主眼を置く ものである。
第 1 段目 の焼結は、 温度 1 0 0 0 〜 1 3 5 0 で、 圧力 3 0 T 0 r r以下の条件で行う。
1 0 0 0 1C未満では、 還元、 脱炭反応速度が遅く 、 低 C、 低 0 の焼結体を得るの に長時間を要し、 1 3 5 0 を超える と、 焼結緻密化が速く、 C 0ガスの拡散が妨げられるため、 還 元、 脱炭反応が効率よく進行しないばかりか、 C r の蒸発が著 しいため、 1 0 0 0〜 : 1 3 5 0 の範囲が好ま しい。
また、 真空排気のみを行う真空加熱炉で焼結する場合ほ、 0 . I T o r rを超える と、 真空排気と非酸化性ガスの導入と を同時に行う真空加熱炉で焼結する場合は、 3 0 T o r r を超 える と、 C r酸化物の還元、 脱炭の同時反応が効率的に進行し ないので、 前者の場合ほ、 0 . 1 T o r r以下が、 後者の場合 は、 3 0 T o r r以下が好ましい。
第 2 段 目 の焼結は 、 非酸化性雰囲気中、 1 2 0 0 〜 3 5 0 °Cで焼結する で、 高密度化および C r濃度分 布の均一化を達成する。
1 2 0 0 t未満では、 焼結体密度比の向上が顕著ではなく、 ま た、 前段階の真空焼結時に生成した焼結体表面の低 C r部 を、 焼結体内部からの C r原子の拡散によ り修復するこ とが、 効率よく行えない 方、 1 3 5 0 を超える と、 一部が融 解して形状が崩れるこ とも多く 、 所定の製品を得るこ と ができ ない 従って、 1 2 0 0 〜 1 3 5 0 tが好ま しい
減圧下で焼結後、 非酸化性雰囲気で焼結するこ と によ り 、 十 分な耐食性を得るこ とができるが、 非酸化性雰囲気下で焼結し た後、 必要な場合は、
( 1 ) 9 0 0 〜 3 0 0で間を 2時間以下で冷却する。
( 2 ) ひきつづき 9 0 0 2 0 0 'Cで 1 分以上保持した後
9 0 0 〜 3 0 0 で間を 2時間以下で冷却する。
( 3 ) 拎却 し た後、 9 0 0 〜 1 2 0 0 で に再加熱 し た後
9 0 0 〜 3 0 0 を 2時間以下で冷却する に'よ り 、 よ り優 れた耐食性を得るこ とができる
以上のよ う に焼結する によって本発明の耐食性および機 械的特性に優れる焼結体が得られる。
[ 4 ] 本発明の耐食性に優れた焼結合金鋼は C r : 1 3〜 2 5重量%、
C : 0 . 0 4重量%以下、
0 : 0 . 7重量%以下を含み、
残部 F e と不可避的不純物元素とからなる組成で、 フ ライ ト相の単相組織を有し、 かつ密度比が 9 2 %以上、 組織内に残 留する気孔の最大径が 2 0 m以下、 焼結のままの焼結体表面 のじ r濃度が焼結体中心部の C r濃度の 8 0 %以上である。
また、 术発明の他の耐食性に優れた焼結合金鋼は、
C r : 1 3〜 2 5重量%、
M o : 1 0重量%以下、
C : 0 . 0 重量%以下、
0 : 0 . 7重量%以下を含み、
残部 F e と不可避的不純物元素とからなる組成で、 フ . ライ ト相の単相組織を有し、 かつ密度比が 9 2 %以上、 組織内に残 留する気孔の最大径が 2 0 μ m以下、 焼結体表面の C r濃度が 焼結体中心部の C r濃度の 8 0 %以上である。
本発明において焼結合金鋼組成中の C r、 M o、 C、 0を規 定したのは、 これらのいずれの元素も耐食性を左右する重要な 元素と考えられるからである。
C r : C r は高いほ ど耐食性は向上する が、 その含有量 が 1 3 重量%未満で は、 F e 一 C r 状態図 よ り 焼結温度
( 1 0 0 0〜: 1 3 5 0 °C ) におレヽて、 丫ループ内にあ り 、 α相 焼結を阻害し高密度化がなされない。 その上、 耐食性が損な われるために下限を 1 3重量%と した。
—方、 2 5重量%を超えて添加しても、 それ以上の顕著な効 果の向上は認められず、 コス ト の点で不利となる。 さ らに、
C r含有量が高いと、 シグマ脆性、 4 7 5で脆性といっ た問題 が生ずるために上限を 2 5重量%と した。
C : C は、 その含有量が低いほど耐食性は向上する。 舍有 量が 0 . 0 4重量%を超える と、 液相が出現して気孔が粗大化 した り、 F e や C rの炭化物が生成されるために低 C r带が生 じ、 耐食性が劣化する。
0 : 0 は、 低いほ ど緻密化が容易に進み焼結密度が高く な り、 その結果、 耐食性は向上する。 しかし、 0 . 3重量%を 超えて 0 を含有する場合は、 C r系酸化物が生成し、 焼結が阻 害され、 高密度が得られず、 その結果耐食性を劣化させる。
但し、 C r酸化物の存在に起因する密度低下が著しく ない場 合、 0含有量の増加に伴う直接的な耐食性の劣化は、 極端なも のでは無いため、 用途に よ っ ては、 必要な耐食性を確保でき る。 また、 焼結体の( 、 0の低減は、 C + O— C O または C + 2 0→ C 0 2
の反応で進行し、 その反応速度は C重量%と 0重量%との積に 比例する。 そのため、 耐食性を極端に劣化させる原因となる
C含有量を 0 . 0 4重量%以下にするのに必要な反応時間ほ、 最終焼結体の 0含有量の許容値を高くするこ とで短縮できる。 したがっ て、 耐食性の要求レベルが極端に高く ない場合は、 経 済的な観点より、 含有 0量は 0 . 3 %を超えてもよい。
しかし、 含有 0量が、 0 . 7重量%を超えると、 耐食性劣化 が著しいため、 含有 0量の上限を 0 . 7重量%と した。
M o : M o は、 耐食性、 耐酸化性改善に最も有効で、 さらに 生地中への固溶強化によつて機械的特性の向上にも有利な元素 である しかし、 1 0重量%を超えた場合にはシグマ脆性、
4 7 5で脆性といつた問題が生ずるため上限を 1 0重量%と定 めた。
なお、 上記の通り、 M o は耐食性、 耐酸化性改善に有効な金 属であるから、 M o を含有する焼結合金鋼は、 よ り ¾食性、 耐 酸化性に優れる。
焼結密度比 9 2 %以上、 気孔の最大径 2 0 μ m以下および焼 結体表面の C r含有量が焼結体内部の C r含有量の 8 0 %以上 である こ と は前述のと おり であ り 、 この理由についてもすでに 述べたとおり である。
次に、 上記焼結合金鋼の製造方法の 1 例について説明す る。
即ち、 C rを 1 3 〜 2 5重量%含む平均粒径 1 5 m以下の 合金鋼粉を用い、 ま たは、 C r を 1 3 〜 2 5重量%、 M o を 1 0重量%以下含む平均粒径 1 5 μ m以下の合金鋼粉を用い、 該鋼粉に結合剤を添加混合して成形した後、 該成形体中の結 合剤を非酸化性雰囲気中で加熱して除去し、 続いて、 温度 1 0 0 0 〜 1 3 5 0 t: 、 3 0 T 0 r r以下の真空中で焼結し、 さ らに、 温度 1 2 0 0 〜 1 3 5 0 t;、 常圧、 非酸化性雰囲気中 で焼結する方法である。
なお、 原料と して M o を 1 0重量%以下含む鋼粉を用いる後 者の方法では、 一層、 好ま しい特性の焼結体が得られる。
用いる鋼粉の平均粒径は、 1 5 m以下と し、 詳細について は、 すでに [ 1 ] で述べたものと同様である。
次に、 原-料に結合剤を添加した後、 成形を行い、 成形後、 結 合剤を除去した後焼結を行う。 結合剤の添加、 成形、 結合剤 の除去については、 すでに [ 1 ] で詳述した。
焼結ほ、 すでに [ 1 ] で詳述したものと同様であ り 、 2段階 によって構成されてお り 、 第 1 段階目 は、 被焼結体に含有され る酸化物と固溶炭素との還元、 脱炭同時反応を促進し、 かつ C r蒸散を抑制するこ と に主眼を置き、 第 2段階目は、 第 1 段 階目で不可避的に起つ た焼結体表面部の C r濃度低下の修復お よび焼結緻密化の促進に主眼を置く ものである。
第 1 段目 の焼結ほ、 温度 1 0 0 0 〜 1 3 5 0 t;、 圧力 3 0 T o r r以下の条件で行う。
1 0 0 0 で未満でほ、 還元、 脱炭反応速度が遅く 、 低 C、 低 0 の焼結体を得るの に長時間を要し、 1 3 5 0 °Cを超える と、 焼結緻密化が速く、— C 0ガスの拡散が妨げられるため、 還 元、 脱炭反応が効率よく進行しないばかり か、 C r の蒸発が著 しいため、 1 0 0 0 〜 1 3 5 0 :の範囲が好ま しい。 また、 真空排気のみを行う真空加熱炉で焼結する場合ほ、 0 . 1 T o r rを超える と、 真空排気と 酸化性ガスの導入とを同時 に行う真空加熱炉で焼結する場合は、 3 0 T o r r を超える と、 C r酸化物の還元、 脱炭の同時反応が効率的に進行しない ので、 前者の場合は、 0 . 1 T o r r以下が、 後者の場合'は、 3 0 T o r r以下が好ま しい。
第 2 段 目 の焼結ほ 、 非酸化性雰囲気中、 1 2 0 0 :〜 1 3 5 0 で焼結する。 こ こで、 高密度化および C r濃度分 布の均一化を達成する。 1 2 0 0 °C未満では、 焼結体密度比の向上が顕著ではなく 、 ま た、 前段階の真空焼結時に生成した焼結体表面の低 C r部 を、 焼結体内部からの C r原子の拡散によ り修復するこ と が、 効率よ く行えない。 一方、 1 3 5 0 ΐ:を超える と、 一部が融 解して形状が崩れるこ と も多く 、 所定の製品を得るこ と がで き ない。 従って、 1 2 0 0 〜 1 3 5 0 eCが好ま しい。 減圧下 で焼結後、 非酸化性雰囲気で焼結するこ と に よ り 、 十分な耐食 性を得る こ と がで きるが、 非酸化性雰囲気下で焼結した後、 必 要な場合は、
( 1 ) 9 0 0 〜 3 0 0 °C間を 2時間以下で?令却する。
( 2 ) ひ き つづき 9 0 0 〜 1 2 0 0 で で 1 分以上保持した後、 9 0 0 〜 3 0 0 °C間を 2時間以下で拎却する。
( 3 ) 冷却 し た後、 9 0 0 〜 1 2 0 0 °C に再力 B熱し た後、 9 0 0 〜 3 0 O :を 2時間以下で冷却するこ と に よ り 、 よ り優 れた耐食性を得るこ とができる。
実施例
以下、 本発明を実施例に基づいて説明するが、 本発明はこれ らに限定さ幅れない。
(実施例 6、 比較例 7 )
原料粉末と して
C r : 1 2〜 2 8重量%
N 5〜 2 6重量%
M o 0 2重量%
C 0 . 0 5重量%
0 0 2 0重量%
の組成を有する水ァ トマイズ鋼粉を用意した。 分級によって 平均粒径を 8 μ mに調整し、 これに熱可塑性樹脂とワ ッ クスを 添加混合し、 加圧ニーダを用いて混練した の時の混合比 は重量比で 9 : 1 と した 成形体の試料寸法お よ び形状 ほ、
長さ : 4 0 m m
2 0 m m
厚さ 3 m m
の直方体で、 射出成形機を用いて成形した 次に窒素雰囲気中で昇温速度 1 0 でノ 11で 6 0 0 で まで加熱 して、 その成形体中の C / Oモル比が 1 . 0〜 2 . 0 になるよ う に結合剤を除去した。 それを真空中 (く 1 0 _3T o r r ) で 1 時間以上焼結 し 、 続いて常圧の A r ガス雰囲気中、 1 3 0 0 °Cで 3時間保持した。
冷却後、 アルキヌデス法による密度および真密度から密度比 を求め、 また、 焼結体の C、 0量を分析した。 他に耐食性を 評価するために、 人工汗中に 2 4時間放置し、 その後発銪がぁ るかどうか、 実体顕微鏡で確認した。 銪が全く 見られない場 合を良好、 少しでも餹が見られた り変色した場合を発銪と し た。
最大気孔径 ( D m a X ) は、 焼結体を樹脂に埋め込み、 研磨 した後、 光学顕微鏡で観察し、 画像処理を行い、 次式によって 算出した。
Figure imgf000045_0001
こ こ で、 S m a x : 最大気孔断面積を有する気孔の断面積であ る。 焼結合金鋼内の合金成分の濃度分布ほ、 上記と同一試料を用 いて、 焼結体の断面を焼結体表面から中心まで E P M Aの線分 析により求めた また C rその他の元素について濃度分布を 調べた
その結果を第 1 表に示す
第 1表から分るよう に、 実施例 6 では組成が
C r 6〜 2 5重量%
N 8〜 2 4重量%
C : ≤ 0 . 0 6重量%
0 0 . 3重量%
であり、 さらに M o を含むものでは、
M o : ≤ 1 0重量%
であり、 密度比 9 2 %以上で、 最大気孔径が 2 0 μ m以下で合 金元素が均一な濃度分布をしているため、 人工汗試験の腐食試 験で全く銪が見られず変色もなく健全な焼結体が得られた。 一方、' 比較例 7 は合金元素量が規定外にあるか、 あるいは 液相焼結によ り密度は上がっているが、 Cが 0 . 0 6重量%を 上廻り気孔も粗大化しているので人工汗試験で多数の銪が見ら れた また、 0が 0 . 3重量%よ り大きいものでほ酸化物に よ る焼結阻害で、 密度比が 9 2 %未満と な り 、 最大気孔径も 2 0 mを超えたため耐食性が劣化した と考え られる。
比較例 2 および 5 は C r ま たは M o含有量が多く σ相が析出 したため、 耐食性が劣化した。
第 1 表 組 成 (重量%) 密 度 比 取大 ォし径 濃度分布
ΙΙϊ ^ ,
No. Ϊ τ
N i Mo C 0 (%) 氺 実施例 1 18 1 2 2. 5 0 . 01 0. 04 95. 3 1 8 均 一 良 好 実施例 2 24 1 2 2. 5 0 . 03 0. 2 93. 1 19 均 一 良 好 難例 3 1 8 20 2. 5 0 . 04 0. 2 92. 8 1 Q 均づ 一 Ji 好 実施例 4 1 8 1 2 0. 5 0 . 01 0. 05 94 - 2 18 均 一 良 好 実施例 5 18 1 2 8 0 . 05 0. 1 93. 8 1 9 均 一 良 好 実施例 6 1 8 8 0 . 03 0. 1 95. 8 1 7 均 一 良 好
比較例 1 1 2 1 2 0 . 05 0. 2 93. 1 18 均 一 発 銷 比較例 2 28 1 2 0 . 06 0. 2 94. 8 20 均 一 発 銪 比較例 3 1 6 5 0 . 05 0. 3 94. 3 18 均 一 発 銪
1 R 0 . 05 0. 2 92. 0 22 均 一 発 銪 比較例 5 1 8 1 2 1 2 0 . 06 0. 2 92. 0 20 均 一 発 銪 比較例 6 1 6 1 2 2. 5 0 , 08 0. 1 93. 8 20 均 一 発 銷 比較例 7 1 6 1 2 2. 5 0 . 05 0. 4 91. 5 26 均 一 発 餹 註) *:焼結体表面の C r濃度が内部の C r濃度の 80%以上のものを 「均一」 と表示し 80%未満のものを
Γ不均一」 と表示した。
(実施例 7 〜 8、 比較例 8 )
実施例 1 で用いた原料粉を分級によ っ て平均粒径 8 β m , 1 2 m、 1 8 mの鋼粉に調整した。' 実施例 Γ'と同様な方 法で成形、 焼結後、 密度比測定と人工汗試験による耐食性を調 ベた。 その結果を第 2表に示す。
この結杲、 平均粒径 8 ^ m、 1 2 μ mでは焼結密度比 9 2 % 以上、 最大気孔径 2 0 m以下の試験片が得られた。 この試 験片を用いて耐食試験した結果、 試験前後で何ら変化が見られ なかっ た。 一方、 平均粒径 1 8 mの原料粉を用いた結果、 密度比が 9 1 %と低く 、 最大気孔径は 2 0 μ πιを超える大きさ で あ り 、 腐食 し易 く な り 、 孔食が発生し多数の錡が見られ た。 -
2
Figure imgf000050_0001
註) * : 焼結体表面の C r濃度が内部の C rの濃度の 8 0 %
以 i:のものを 「均一 J と表示し、 8 0 %未満のもの を 「不均一」 と表示した。
(実施例 9 〜 1 0、 比較例 9 〜 1 0 ) 実施例 1 で用いた平均粒径 8 mの原料粉を用いて実施例 1 と同様な方法で、 混練、 成形後、 結合剤を除去した。 次に真空中 ( 1 0 _3T o r r ) で室温から 1 3 0 0 でまで昇 温し、 1時間保持後 A rガス雰囲気中に変えて 2時間'保持した
(実施例 9 ) 。 実施例 1 0 は真空中での保持温度を 1 1 0 0 °C と した結果を 示す。 比較例 9 、 1 0 は真空焼結のみの場合を示す。 これらの結果を第 3表に示す。 実施例 9 、 実施例 1 0 は真空焼結後、 A r ガス雰囲気で焼結 しているため、 焼結体表面の C r含有量が焼結体中心部の C r 含有量の 9 5 %以上で耐食性に優れた焼結体が得られた。 こ れは真空焼結によ り、 "
C≤ 0 . 0 6重量%
0≤ 0 . 3重量%
と し、 続いて 1 3 0 0 eC以上の高温で焼結するこ と によって緻 密化が進み密度比 9 2 %以上を得る と同時に最大気孔率は 1 8 mと抑制され、 合金元素が均一化したこ と に起因している と 考えられる。
比較例 9 は真空焼結温度を 1 3 0 0 と しているため、 C、 0量が低いが、 真空焼結のみで表面の C r含有量が焼結体中心 部の C r含有量の 1 0 % ίίなり、 その結果、 耐食性が劣化して いる。 比較例 1 0 も真空焼結のみで表面の C r含有量が低く なり、 また C量が高く 、 液相焼結によ り高密度化しているが、 高 Cのために耐食性が劣化している。
(実施例 1 1 〜: I 3、 比較例 1 1 , 1 2 )
原料粉末と して
C r : 1 8重量%
N i : 1 2重量%
M o : 2 . 5重量% C : ≤ 0 . 0 5重量%
0 : 0 . 5〜 1 . 0重量%
の鋼粉を用いて、 実施例 1 と同様な方法で混練、 成形後、 結合 剤を除去した。 次に、 湿水素雰囲気中、 4 0 0〜 7 0 0 t で 加熱し、 温度の変更によ っ て成形体の C 0 モル比を調整し た。 これを真空中 ( < 1 0 - 3 T 0 r r ) で室温から 1 2 0 0 まで昇温し、 1時間保持後 A rガスを装入して 3時間保持し た。 その結果を第 4表に示す。
第 4表から明らかなよう に焼結体の C、 0量は C Z 0 モル比 に依存してお り 、 すなわち耐食性に影響を及ぼすこ と が分 る。
実施例 1 1 〜: I 3 はモル比が 0 . 3〜 3 . 0 の範囲に'あるの で低 C、 0の焼結体が得られた。 しかし、 比較例 1 1 で示さ れるよう にモル比が小さいという こ とは成形体の 0が過剰であ るこ とを意味しており焼結体においても 0が残留して、 焼結を 阻害し、 気孔も大き く、 高密度が得られず耐食性が劣化した。
また、 比較例 1 2で示されるよう にモル比が大きいという こ とは成形体の Cが過剰であるこ とを意味しており、 焼結体にお いても Cが残留して液相が出現し、 密度—は増加したが気孔の粗 大化と高 C量によ り耐食性が劣化した。 3
Figure imgf000053_0001
註) 氺 :焼結体表面 C r濃度の焼結体内部 C r濃度に対する割合
4
Figure imgf000053_0002
註) *:焼結体表面の C rの濃度が内部の C rの濃度の 8 0 %以上のものを 「均一」 と表示し、
8 0 %未満のものを Γ不均一」 と表示した。
(実施例 1 4〜 1 7、 比較例 1 3 )
実施例 1 の成形原料を使用して、 長さ : 4 0 m m、 幅 : 2 0 m m、 厚さ : 8 m mの直方'体試料を、 射出成形した。
次に窒素雰囲気中、 昇温速度 5 ΐ; Ζ ίιで 5 0 0 まで加熱し て脱脂処理を行っ た。 さ ら に、 湿水素雰囲気中、 5 0 0 〜 7 0 0 °Cで加熱し、 C , 0量を調節した。 つづいて、 真空中 ( < 0. OOlTorr ) 、 1 1 7 0 で ま で昇温 ♦ 保持し、 さ らに、 A rガスを導入、 1 3 5 0 まで昇温、 1 時間保持した。
1 1 7 0 ででの保持時間、 焼結体の C , 0量、 密度比、 最大気 孔径、 濃度分布および人工汗試験の結果を第 5表に示す。
第 5表よ り、 0量の 0 . 3 wt%を超える焼結体は、 2 4時間 の人工汗試験でほ発錡が見られるものの、 0量の 0 . 7 ?^%以 下の焼結体である限り、 1 2時間の人工汗試験では発錡が検出 されない。 また、 0量が高いほど、 C量を 0 . 0 6 wt%以下 にするのに必要とする時間は短い (実施例 1 4〜 1 7、 比較例 1 3 では、 C量が約 0 . 0 2 %程度に減少するまでの時間を比 較した) 。 したがって、 0量が 0 . 3重量%を超え、 0 . つ 重量%の焼結体ほ、 耐食性の極端な劣化のない、 経済性に優れ るものである とレヽえる。 特に、 本例のよう に、 肉厚の部品の 製造においては、 C , 0の両方を低減するには、 時間を要する ため、 耐食性によ り有害な C量を 0 . 0 6重量%以下に低減し た、 0 . 3重量%超、 0 . 7重量%の 0を舍有する焼結体にお いて、 '特に経済的である。
5 保 持 密度比 C 0 大 濃度 耐食性
N o . 時 間 気孔径
(min) {%) (重量 ¾) (重量 ) (JLUl 分布 24h 12h 実施例 14 120 96.1 0.02 0.22 17 均一 良好 実施例 15 75 95.6 0.03 0.34 16 均一 良好 実施例 16 60 93.8 0.02 0.52 17 均一 良好 実施例 17 30 93.5 0.02 0.65 18 均一 良好 比較例 13 30 92.3 0.02 0.75 17 均一
^ ^ }^
(実施例 1 8〜 2 5、 比較例 1 4 . 1 5 )
実施例 1 と同様の成形体を用意し、 実施例 1 と同様の脱脂処 理を行っ た。 焼結においては、 m 1 段目の真'空焼結条件で雰 S1気を種々 に変更し、 1 1 2 0 でで 1 時間保持するこ とによつ て行っ た。 引続き、 いずれの場合も、 大気圧の A r 中、 1 3 2 0 でで 2時間保持して焼結鋼を得た。 ただし、 真空焼 結時には、 真空排気系のバルブを絞るこ と、 あるいは、 真空棑 気系ほそのまま にして A r ガスをニー ドルパルプよ り微量導入 するこ と によって、 真空度を調整 * 制御した。 焼結鋼は、 実 施例 1 と同様の試験を行った。 焼結鋼の焼結条件、 密度比、 C , 0量、 最大気孔径、 C r濃度分布、 耐食性試験結果を、 第 6表にま とめた。 第 6表において、 真空焼結 B#に、 真空排気 系のバルブを絞るこ と によつて真空度を調整した場合は、 その 圧力を記し、 A rガ'スの微量導入によって真空度を調整した場 合は、 圧力のすぐ後に A r と明記した。
第 6表よ り明らかなよう に、 真空焼結時においては、 真 棑 気が不十分で真空度が低下する場合 (実施例 1 8 . 2 4 , 2 5 および比較例 1 5の比較) は、 焼結鋼の C , 0量ほ高く なり、 1 T o r r の真空度 (比較例 1 5 ) では焼結鋼に銪を生じ、 0 . 1 T o r r以下の圧力 (実施例 1 8 , 2 4 , 2 5 ) では、 低い C , 0量を確保できるため発銪を生じるこ と はなかっ た。 一方、 十分な真空排気を行い、 非酸化性ガスを導入する場合 (実施例 1 9 〜 2 3 および比較例 1 4 ) 、 炉内圧力の 3 0 T o r r未満までの上昇においては (実施例 1 9 〜 2 3 ) 、 幾 分かの C , 0量の上昇はみられるものの、 発銪を生じる こ と は なく 、 3 0 T o r r を超える と (比較例 1 4 ) 、 C , 0 の上昇 が著しく なるため銪を生じた。
以上のよ う に、 真空焼結においては、 十分に排気を行い、 0 . 1 Τ 0 r r以下の圧力とするか、 も しく は、 非酸化性ガス を導入する場合は、 3 0 T o r r未満にするこ と に よる术発明 の製造方法によって、 耐食性に優れる焼結鋼が得られるのであ る。
第 6 表
Figure imgf000058_0001
実施例 18, 24, 25、 比較例 1 5の真空焼結時には、 排気のみを行い、 A rの微量導入を行わなかった。
(実施例 2 6、 比較例 1 6 8 )
原料粉末と して、
C r : 1 4〜 2 9重量%
N 4〜 2 1 重量%
C : 0 . 0 2〜 0 . 0 6重量%
N 0 . 0 1 〜 0 . 0 2重量%
M o : 0 または 2 . 2重量%
を含み、 残部 F e および不可避的不純物元素とからなる組成を 有する水ァ ト マイズステ ン レス鋼粉を用意した れを分級 し、 平均粒径 1 2 μ πιに調整した後、 ポ リ エチ レ ン 4重量%と パラフ ィ ンワ ッ クス 8重量%とを加え、 加圧二一ダを用いて混 練した れを射出温度 1 5 0 ;、 射出圧力 1 0 0 0 kg/cm2 で射出成形を行い、 4 0 mm X 2 0 mm x 2 mmの成形体と した。 つぎに、 A r雰囲気中で、 1 0 で / 11の昇温速度で 6 0 0 で まで昇温し、 結合剤を除去した。
さ らに、 1 1 5 0 °C まで舁温し、 圧力 1 0 -3 T o r r で 1 時 間保持した後、 温度を 1 3 0 0 で まで昇温し、 N 2 量 1 5 % (他は A r で全圧 1 a ' t m ) の雰囲気中で 2時間保持し、 焼結 体を得た。
冷却後、 アルキメ デス法による密度および真密度よ り 密度比 を求め、 また、 焼結体中の C、 N量をそれぞれ燃焼赤外線吸収 法、 不活性ガス融解熱伝導度法によって分析した。
C r 、 N i 、 M o については、 原料粉末中の組成とほぼ同様 であるので、 特に分析ほ行わなかつ た。
さらに、 耐食性の評価、 最大気孔径 ( D m a X ) は、 実施例 1 と同様に測定した。
結果は、 第 7表に示した。
(実施例 2 7、 比較例 1 9 )
原料粉末と して、 C r : 1 8 . 1 %、 N i : 8 . 5 %、 C : 0 . 0 5 %、 N : 0 . 0 2 %を含み、 残部 F e および不可 避的不純物元素とからなる組成を有する水ア トマイズステンレ ス鐧粉で、 平均粒径が 8 m、 1 2 111ぉょび 1 8 111のもの を用いた以外ほ、 実施例 2 6 と同様の方法で焼結体を作り、 同 じく実施例 2 6 に示した各種の試験を行った。
結果は、 第 8表に示した。
(実施,例 2 8、 比較例 2 0 )
原料粉末 と して、 C r : 1 8 . 1 %、 N i : 8 . 5 %、 C : 0 . 0 5 %、 N : 0 . 0 2 %を含み、 残部 F e'および不可 避的不純物元素とからなる組成を有する水ア トマイズステンレ ス鐧粉を用い、 結合剤除去後の第一段の焼結の温度および圧力 を第 9表に示す値と した以外は、 実施例 2 6 と同様の方法で焼 結体を作り、 同じく実施例 2 6 に示した各種の試験を行っ た。
結果は、 第 9表に示した。
(実施例 2 9、 比較例 2 1 , 2 2 )
原料粉末 と し て、 C r : 1 8 . 1 %、 N i : 8 . 5 %、 C : 0 . 0 5 %、 N : 0 . 0 2 %を含み、 残部 F e および不可 避的不純物元素とからなる組成を有する水ア ト マイズステン レ ス鋼粉を用い、 第二段の焼結の温度および窒素ガス分圧を第 1 0表に示す値と した以外は、 実施例 2 6 と同様の方法で焼結 体を作り、 同じく実施例 2 6 に示した各種の試験を行っ た。
結果ほ、 第 1 0表に示した。
-0 7
Figure imgf000062_0001
*注)焼結体表面の C r濃度が内部の C r濃度の 8 0 %以上のものを均一と評価した 第 8 表
Figure imgf000062_0002
*注)焼結休¾而の C r濃度が内部の c r濃度の 8 0 %以上のものを均一と評価した c
9
Figure imgf000063_0001
*注)焼結体表面の C r濃度が内部の C r濃度の 80%以上のものを均一と評価した c
1 0
第二段の焼結条件 焼結体の化学組成 (重量%)
密度比 最大気孔径 耐食性 温度 N :分圧 C r N i C N
(°C) (atm) (%) ( πι )
発明例 2 1 300 0. 1 5 1 8. 1 8. 5 0. 02 0.18 94. 1 1 7 良好 *均一 発明例 8 1 300 0. 50 1 8. 1 8. 5 0. 03 0.31 94. 3 1 7 良好 均 一 施
発明例 9 1 300 0. 80 18. 1 8. 5 0. 02 0.39 94. 2 1 7 良好 均 一 例
発明例 1 0 1 250 0. 1 5 1 8. 1 8. 5 0. 03 0.17 93. 8 18 良好 均 一
29
発明例 1 1 1 350 0. 1 5 1 8. 1 8. 5 0. 02 0.18 95. 2 1 6 良好 均 一 比較例 2 1 1 300 0. 95 1 8. 1 8. 5 0. 02 0.43 94. 2 1 7 発銪 均 一 比較例 22 1 200 0. 1 5 1 8. 1 8. 5 0. 02 0.19 91. 5 21 発銷 均 一
*注)焼結体表面の C r濃度が内部の C r濃度の 80%以上のものを均一と評価した。
実施例 2 6 は、 原料鋼粉および得られた焼結体の化学組成の 耐食性に対する影響を検討したものである。
本発明例は、 得られた焼結体の化学組成、 密度比および最大 気孔径は適当であり、 いずれも良好な耐食性を示した。 一 方、 比較例は、 得られた焼結体の密度比および最大気孔径は適 当であっ たが、 比較例 1 6 , 1 8 は、 耐食性に有効な C r、 N i が少なく、 錡が発生した。 また、 比較例 1 7 ほ、 C r お よび Nが過剰であるため、 σ相が出現し、 また、 C r窒化物が 生成したため耐食性が劣化し、 錡の発生があった。
実施例 2 7 は、 原料鋼粉の平均粒径の耐食性等への影響を検 言寸したものである。
本発明例は、 平均粒径 8 m、 1 2 mの鐧粉を用いたの で、 焼結密度比 9 2 %以上、 最大気孔径 2 0 m以下の焼結体 が得られた。 そして、 いずれも良好な耐食性を示した。 一 方、 比較例ほ、 平均粒径 1 8 mの鋼粉を用いたので、 密度比 が 8 9 %と低く、 最大気孔径は 2 0 μ πιを超える大きさとなつ た。 そのために、 孔食が発生し、 多数の銪が見られた。 実 施例 2 8 は、 第一段の焼結条件 (温度、 圧力) が、 焼結体の化 学組成および耐食性等に与える影響を検討したものである。
発明例は、 得られた焼結体の密度比および最大気孔径は適当 であり、 Cが 0 . 0 5重量%以下、 Nが 0 . 0 5〜 0 . 4 0重 量%の範囲にあり、 良好な耐食性を示した。 一方、 比較例は、 得られた焼結体の密度比および最大気孔径は適当であり 、 N は 0 . 0 5〜 0 . 4 0重量%の範囲にあつ たが、 Cが 0 . 0 5重 量%超であるため、 C r炭化物が生成して低 C r帯が生じてい る と考えられ、 部分的な耐食性低下による と思われる銪の発生 があっ た。
実施例 2 9 は、 第二段の焼結条件 (温度、 N 2 分圧) が、 焼 結体の化学組成および耐食性等に与える影響を検討したもので ある。
発明例は、 得られた焼結体の密度比および最大気孔径は適当 であり、 Cが 0 . 0 5重量%以下、 Nが 0 . 0 5 〜 0 . 4 0重 量%の範囲にあり、 良好な耐食性を示した。 一方 、 比較例 2 1 は、 得られた焼結体の密度比および最大気孔径ほ適当であ り、 C は 0 . 0 5重量%以下の範囲にあつ たが、 焼結時の N 2 分圧が不適当なために、 Nが 0 . 0 5〜 0 . 4 0重量%の範囲 外である。 従って、 比較例 2 1 では、 C r窒化物が生成して 低 C r帯が生じている と考えられ、 部分的な耐食性低下による と思われる。 比較例 2 2 は、 焼結温度が低いために、 得られ た焼結体の密度比は 9 1 . 5 %と低く 、 最大気孔径は 2 0 m を超える大きさとなっ た。 そのために、 孔食が癸生し、 多数 の錡が見られた。
(実施例 3 0 )
原料粉末 と して、 C r : 1 8 . 1 % , N i : 8 . 5 %、 じ : 0 . 0 5 %、 ^^ : 0 . 0 2 %を含み、 残部 F e および不可 避的不純物元素からなる組成を有する水ァ トマイズステ レ ンス 鋼粉を用い、 結合剤除去後の第 1 段の焼結温度、 第 2段の焼結 温度、 N 2 分圧を第 1 1表に示す値と した以外は、 実施例 2 6 と同様の方法で焼結体を作り、 同じく実施例 2 6 に示した各種 の試験を行った。 結果を第 1 1 表に示す。
1 1
Figure imgf000067_0001
注) *焼結体表面 C r濃度の焼結体内部 C r濃度に対する割合
焼結体内部の C r濃度
(実施例 3 1 〜 3 6、 比較例 2 4〜 2 9 )
各原料粉末と して、 第 1 2表に示す成分 · 組成を水ァ トマイ ズ鋼粉と して用意をした。
前記鋼粉末とァク リ ルを主体とする熱可塑性樹脂有機パイン ダとワ ッ クス とを 9 : 1 の重量比で添加混合し、 加圧ニーダを 用いて混練した。
成形体の試料寸法おょぴ形状は長さ : 4 0 m m、 巾 2 0 m m、 厚さ 3 m mの直方体で射出成形機を用いて成形した。 次に窒素雰囲気中で昇温速度 1 0でノ hで 6 0 0 tまで加熱 して、 その成形体中の C Z O モル比が 1 . 0〜 2 . 0 になるよ う に結合剤を除去した。 それを真空中 ( < 1 0 _3T o r r ) で、 1 時間以上焼結し、 続いて常圧の A r ガス雰囲気中、 1 3 0 0 :で 3時間保持した。 さ ら に、 1 0 8 0 でで 3 0分 保持後、 水冷の熱処理を施し、 2相ステ ン レ ス鋼を作製し た。
冷却後、 アルキ 'メデス法による密度おょぴ真密度から密度比 を求め、 また、 焼結体の C:、 0量を分析した。
また、 耐食性の評価、 最大気孔径 D m a Xほ実施例 1 と同様 に求めた。
焼結合金鐧内の合金成分の濃度分布は、 上記と同一試料を用 いて、 焼結体の断面を焼結体表面から中心まで E P M Aの線分 析によ り求めた。 また C r その他の元素について濃度分布を 調べた。
その結果を第 1 2表中に示す。
2
Figure imgf000070_0001
* ) 焼結休衷面の C r濃度が内部の C r濃度の 8 0 %以上のものを 「均 と表示した。
第 1 2表から明らかなよう に、 発明例では、 いずれも密度比 9 2 %以上で、 最大気孔径が 2 0 ^ m以下で焼結体表面の C r 濃度が内部の C r濃度の 8 0 %以上であるため、 人工汗試験の 腐食試験で全く銪がみられず、 健全な焼結体が得られた。
一方、 含有量が本発明の範囲外にある比較例でほ、 密度比が 9 2 %未満であっ たり、 発銪が生じてしまい、 焼結合金鋼と し て不適である。
(実施例 3 7 , 3 8、 比較例 3 0 , 3 1 )
実施例 3 1 で用いた原料粉を いて実施例 3 1 と同様な方法 で、 混練、 成形後、 結合剤を除去した。
次に真空中 ( 1 0 -3T o r r ) で室温から 1 2 5 0 でまで昇 温し、 1 時間保持後 A r ガス雰囲気中に変えて 1 3 0 0 でで 2 時間保持した (実施例 3 7 ) 。
実施例 3 8 は真空中での保持温度を 1 1 0 0 で と した結果を 示す。 比較例 3 0 、 3 1 ほ真空焼結のみの場合を示す。
これらの結果を第 1 3表に示す。
第 1 3 表
Figure imgf000072_0001
* 焼結体表面 C r濃度の焼結体内部 C r濃度に対する割合
実施例 3 7、 実施例 3 8 は真空焼結後、 A rガス雰囲気で焼 結している ため、 焼結体表面の C r含有量が焼結体中心部の C r含有量の 9 5 %以上で耐食性に優れた焼結体が得られた。
これほ真空焼結によ り 、
C≤ 0 . 0 6重量%に、 0 ≤ 0 . 3重量%
と し、 続いて 1 3 0 0 °C以上の高温で焼結するこ と によって緻 密化が進み密度比 9 2 %以上を得る と同時に最大気孔率は Γ 8 μ mと抑制され、 合金元素が均一化したこ と に起因している と 考え られる。
比較例 3 0 は真空焼結温度を 1 3 0 0 °C と しているため、 C , 0量が低いが、 真空焼結のみで表面の C r含有量が焼結体 中心部の C r含有量の 1 0 % と な り 、 その結果、 耐食性が劣化 している。
比較例 3 1 も真空焼結のみで表面の C r含有量が低く なり、 また C量が高く 、 液相焼結によ り高密度化しているが、 高 Cの ために耐食性が劣化している。
(実施例 3 9〜 4 2、 比較例 3 2〜 3 5 )
原料粉末と して、
C r : 1 0〜 2 8重量%、
M 0 : 0〜 1 2重量%、 C : 0 . 0 5重量%以下、
0 : 0 . 3重量%以下
を含み、 残部 F e および不可避的不純物とからなる組成を有す る水ア トマイズ鋼粉を用意した。 こ れを分級し、 平均粒径 1 2 μ m に調整した後、 熱可塑性樹脂と ワ ッ クス と を加え、 加圧ニーダを用いて混練した。 これを、 1 2 0 〜 1 6 0 ;、 8 0 0 〜 1 2 0 0 kgf /cm2 で射出成形を行い、 4 0 mm X 2 0 mmx 2 mniの成形体と した。 つ ぎに、 N 2 雰囲気中で、 1 0 t hの昇温速度で 6 0 0 :まで昇温し、 2〜 6時間保持し て成形体中の C Z 0 モル比が 0 · 5 〜 2 . 0 と なる よ う に 結合剤を除去した。 さ ら に、 1 1 5 0 ま で昇温し、 圧力 1 0 -3T o r r で 1 時間以上保持した後、 温度を 1 3 0 0 ま で昇温し、 A r雰囲気中で 3時間保持し、 焼結体を得た。
冷却後、 アルキメデス法による密度および真密度よ り密度比 を求め、 また、 焼結体中の(:、 0量を分析した。
耐食性および最大気孔径 ( D m a X ) は、 実施例 1 と同様に 測定した。
焼結合金鋼内の合金成分の濃度分布は、 上記と同一試料を用 いて、 焼結体の断面を焼結体袠面から中心まで E P M Aの線分 析により 求めた。 また、 C rその他の元素について濃度分布 を調べた。
その結果を第 1 4表に示す。
第 1 4表か ら明らかなよ う に、 実施例 3 9 〜 4 2 は、 組成 が、 (: 1« : 1 3 〜 2 5 重量%、 C : 0 . 0 4重量%以下、 0 : 0 . 3 重量%以下であ り 、 さ ら に M o を含むものでは、 M o : 1 0重量%以下であり、 密度比が 9 2 %以上で、 最大気 孔径が 2 0 以下で、 合金元素 · が均一な濃度分布 (焼結体 表面 C r濃度≥ 0 . 8 X焼結体内部 C r濃度) を しているた め、 人工汗試験の腐食試験で全く銪が見られず変色もなく健全 な焼結体が得られた。
—方、 比較例 3 2 は、 C r含有量が、 1 0重量%であるた め、 α相焼結の効果が得られず、 密度が十分でなく 、 最大気孔 径も 2 4 mと大であるため、 発錡したと考えられる。
比較例 3 3 は、 C r含有量が 2 9重量% と過剰であるため、 σ相が析出し、 これによつて焼結が阻害され、 その結果、 高 C となり発銪したと考えられる。
比較例 3 4 も同時に高 C r、 高 Μ 0 である ため、 σ相が析出 し、 焼結が阻害され、 その結果、 発錡した と考え られる。
比較例 3 5 は、 C量が 0 . 0 9重量%と高く 、 液相が生じた ために高密度焼結体が得られたが、 高 C量、 最大気孔径が 2 0 m以上と大となった結果、 発錡したと考えられる。
(実施例 4 3 . 4 4、 比較例 3 6 , 3 7 )
実施例 3 9 で用いた平均粒径 8 mの原料粉を用いて実施例 3 9 と同様の方法で、 混練、 成形後、 結合剤を除去した。
次に真空中 ( 1 0 —3T o r r ) で室温から 1 2 0 0 まで舁 温し、 1時間保持後 A rガス雰囲気中に変えて 1 3 0 で 2 時間保持した (実施例 4 3 ) 。
実施例 4 4は真空中での保持温度を 1 1 0 0 と した結果を 示す。 比較例 4 0 、 4 1 は真空焼結のみの場合を示す。
これらの結果を第 1 5表に示す。
実施例 4 3、 実施例 4 4は真空焼結後、 A Γガス雰囲気で焼 結しているため、 焼結体表面の C r含有量が焼結体中心部の C r含有量の 9 5 %以上で耐食性に優れた焼結体が得られた。
これほ、 真空焼結によ り 、
C≤ 0 . 0 4重量%、
0≤ 0 . 3重量% - と し、 続いて 1 3 0 以上の高温で焼結するこ と によっ て緻 密化が進み、 密度比 9 2 %以上を得る と同時に最大気孔率ほ 1 8 m と抑制され、 合金元素が均一化したこ と に起因してい る と考え られる。 比較例 3 6 は真空焼結温度を 1 3 0 0 °C と しているため、 C , 0量が低いが、 真空焼結のみで表面の C r含有量が焼結体 中心部の C r含有量の 1 0 %となり、 その結果、 耐食性が劣化 している。 比較例 3 7 も真空焼結のみで表面の C r含有量が 低く なり、 また、 C量が高く 、 液相焼結によ り高密度化してい るが、 高 Cのために耐食性が劣化している。
1 4 焼結体の化学組成 (重量%) 密度比 最大気孔径 氺
N o . C r M o し U { % ) ( μ m ) 濃度分布 耐食性 実施例 39 13 Π u , Π u 1 n
丄 π U . u c
0 95.7 17 均一 良好 実施例 40 25 Π U . Π U Q J U *丄 U 95.6 18 均一 良好 実施例 41 18 L, Π Π 1
0 U . U i U .1 D 93.8 18 均一 良好 実施例 n
42 13 8.0 0.01 0.20 94.6 18 均一 良好 比較例 32 10 n J
U . U U . ϋθ 89.2 24 均一 発餹 比較例 33 29 0.06 0.18 91.2 22 均一 発錦 比較例 34 25 12 ' 0.07 0.25 90.2 25 均一 発餹 比較例 35 13 0.09 0.10 94.2 28 均一 発銪
* 焼結体表面の C r濃度が内部濃度の 80%以上のものを 「均一」 と表示し,
80 %未満のものを 「不均一 J とした。
1 5 表
Figure imgf000079_0001
氺 焼結体表面 C r濃度の焼結体内部 C r濃度に対する割合
本発明の焼結合金鋼ほ、 以上のよう に構成ざれているので、 耐食性に優れ、 機械的性質に優れた特性を有し、 過酷な条件下 における材料と して広く使用するこ とができる。
このよう な焼結合金鋼は、 本発明方法を用いて、 ステン レス 鐧粉以外に合金鋼粉を添加せず、 再圧縮、 再焼結の工程を行う こ ともなく、 特別な装置を必要とせずに、 比較的低い温度での 減圧焼結とその後の比較的高温での非酸化性雰囲気下での焼結 の二段焼結によつて容易に製造するこ とができる。

Claims

請求の範囲
1 . ステン レス鋼粉末を用い、 該鋼粉に結合剤を添加混合して 成形した後、 該成形体中の結合剤を加熱して除去する工程① と、 3 O T o r r以下の減圧下で焼結する工程②と、 さ らに実 質的に常圧下での非酸化性雰囲気で前記工程①、 ②よ り も高い 温度で焼結する工程③とを有するこ とを特徴とする耐食性に優 れた焼結合金鋼の製造方法。
2 . 前記 3 0 T o r r 以下の減圧下で焼結する工程②が、
1 0 0 Ο ΐ 〜 1 3 5 0 で行われる請求項 1 記載の製造方 法。
3 . 前記非酸化性雰囲気で焼結する工程③が、 1 2 5 0 t:〜 1 4 0 0 'Cで行われる請求項 1 記載の製造方法。
4 . 前記非酸化性雰囲気が、 N 2 を含む不活性混合ガスである 請求項 1 記載の製造方法。
5 . 前記ステン レス鋼粉末が、 平均粒径 1 5 ^ m以下である請 求項 1 記載の製造方法。
6 . 前記成形体中の結合剤を加熱して除去する工程①におい て、 前記成形体中の C / 0 モル比を 0 . 3 〜 3 . 0 に調整する 請求項 1 記載の製造方法。
7 . 前記 3 0 T o r r以下の減圧下で焼結する工程②に際し、 予め成形体中の C /0 モル比を 0 . 3〜 3 . 0 に調整する請求 項 1記載の製造方法。
8 . C r : 1 6〜 2 5重量%
N i : 8〜 2 4重量%
を含み、 平均粒径 1 5 以下の鋼粉を用い、 該鋼粉に結合剤 を添加混合して成形した後、 該成形体中の結合剤を非酸化性雰 囲気中で加熱して除去し、 続いて温度 1 3 5 0 :以下、 圧力 3 0 T o r r以下の減圧下で焼結し、 さらに非酸化性雰囲気下 で焼結する請求項 1 記載の耐食性に優れた焼結合金鋼の製造方 法。
9 . じ 1« : 1 6〜 2 5重量%
N i : 6〜 2 0重量%
を含む平均粒径 1 5 m以下のステン レス鋼粉を用い、 該鋼粉 に結合剤を添加混合して成形した後、 該成形体中の結合剤を非 酸化性雰囲気中で加熱して除去し、 続いて、 温度 1 3 5 0で以 下、 圧力 3 0 T o r r以下の減圧下で焼結し、 さ らに、 N 2 を 含む (不活性) 混合ガス雰囲気中で焼結するこ とを特徴とする 請求項 1記載の耐食性に優れた焼結合金鋼の製造方法。
1 0 . C r : 1 8〜 2 8重量%
N i : 4〜 : I 2重量%
を含み、 平均粒径 1 5 μ m以下の鋼粉を用い、 該鋼粉に結合剤 を添加混合して成形した後、 該成形体中の結合剤を非酸化性雰 囲気中で加熱して除去し、 続いて温度 1 3 5 0 t)以下、 圧力 3 0 T o r r以下の減圧下で焼結し、 さ らに非酸化性雰囲気下 で焼結する請求項 1 記載の耐食性に優れた焼結合金鋼の製造方 法。
1 1 . じ 1^ : 1 3〜 2 5重量%
を含み、 平均粒径 1 5 ; m以下の鋼粉を用い、 該鐧粉に結合剤 を添加混合して成形した後、 該成形体中の結合剤を非酸化性雰 囲気中で加熱して除去し、 続いて温度 1 3 5 0 t以下、 圧力 3 0 T o r r以下の減圧下で焼結し、 さ らに非酸化性雰囲気下 で焼結する請求項 1 記載の耐食性に優れた焼結合金鋼の製造方 法。
1 2 . ステンレス鋼組成を有し、 かつ、 密度比が 9 2 %以上、 組織内に存在する気孔の最大径が 2 0 μ m以下、 焼結のままで 焼結体表面の C r含有量が焼結体内部の C r含有量の 8 0 %以 上である耐食性にすぐれた焼結合金鋼。
PCT/JP1989/000633 1988-06-27 1989-06-27 Sintered alloy steel with excellent corrosion resistance and process for its production WO1990000207A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE68927094T DE68927094T2 (de) 1988-06-27 1989-06-27 Gesinterter legierungsstahl mit ausgezeichnetem korrosionswiderstand und verfahren zur herstellung
KR1019900700422A KR930001336B1 (ko) 1988-06-27 1989-06-27 내식성이 우수한 소결합금강 및 그 제조방법
EP89907304A EP0378702B1 (en) 1988-06-27 1989-06-27 Sintered alloy steel with excellent corrosion resistance and process for its production

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP63/156841 1988-06-27
JP15684188 1988-06-27
JP20671788 1988-08-20
JP20671888 1988-08-20
JP63/206718 1988-08-20
JP63/206717 1988-08-20
JP20656388 1988-08-21
JP63/206563 1988-08-21

Publications (1)

Publication Number Publication Date
WO1990000207A1 true WO1990000207A1 (en) 1990-01-11

Family

ID=27473444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000633 WO1990000207A1 (en) 1988-06-27 1989-06-27 Sintered alloy steel with excellent corrosion resistance and process for its production

Country Status (7)

Country Link
US (1) US5108492A (ja)
EP (1) EP0378702B1 (ja)
JP (1) JPH0747794B2 (ja)
KR (1) KR930001336B1 (ja)
AU (1) AU614647B2 (ja)
DE (1) DE68927094T2 (ja)
WO (1) WO1990000207A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198616A (en) * 1990-09-28 1993-03-30 Bei Electronics, Inc. Frangible armor piercing incendiary projectile
GB9102290D0 (en) * 1991-02-02 1991-03-20 Mixalloy Ltd Production of flat products
JPH04354839A (ja) * 1991-05-31 1992-12-09 Sumitomo Electric Ind Ltd 時計用外装部品及びその製造方法
US5403373A (en) * 1991-05-31 1995-04-04 Sumitomo Electric Industries, Ltd. Hard sintered component and method of manufacturing such a component
US5154881A (en) * 1992-02-14 1992-10-13 Hoeganaes Corporation Method of making a sintered metal component
TW362999B (en) * 1992-06-02 1999-07-01 Advanced Materials Technplogies Pte Ltd Injection-mouldable metal powder-binder feedstock and method of forming metal injection-moulded article
CA2165087C (en) * 1993-09-16 2004-07-06 Norbert Dautzenberg Process for preparing a powder mixture and its use
JPH07138713A (ja) * 1993-11-15 1995-05-30 Daido Steel Co Ltd Fe基合金粉末及び高耐食性焼結体の製造方法
TW415859B (en) * 1998-05-07 2000-12-21 Injex Kk Sintered metal producing method
SE9803171D0 (sv) * 1998-09-18 1998-09-18 Hoeganaes Ab Warm compaction of steel powders
ES2172366B1 (es) * 1999-07-14 2003-11-01 Tratamientos Termicos Ttt S A Procedimiento para la produccion de componentes de acero rapido mediante la tecnica de metalurgia de polvos.
US6759004B1 (en) * 1999-07-20 2004-07-06 Southco, Inc. Process for forming microporous metal parts
US6514307B2 (en) * 2000-08-31 2003-02-04 Kawasaki Steel Corporation Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
KR20020073623A (ko) * 2001-03-15 2002-09-28 주식회사 엠스페이스 내식성이 우수한 고흡수성 다공질 금속 소결체 및 그제조방법
SE0102102D0 (sv) * 2001-06-13 2001-06-13 Hoeganaes Ab High density stainless steel products and method for the preparation thereof
JP4480084B2 (ja) * 2004-04-23 2010-06-16 株式会社豊田中央研究所 鉄基焼結合金部材およびその製造方法
JP5535576B2 (ja) * 2008-11-10 2014-07-02 株式会社豊田中央研究所 鉄基焼結合金およびその製造方法並びに鉄基焼結合金部材
US20100178194A1 (en) * 2009-01-12 2010-07-15 Accellent, Inc. Powder extrusion of shaped sections
US9144833B2 (en) * 2013-03-14 2015-09-29 The Electric Materials Company Dual-phase hot extrusion of metals
US9844806B2 (en) 2013-03-14 2017-12-19 The Electric Materials Company Dual-phase hot extrusion of metals
JP6133711B2 (ja) * 2013-07-03 2017-05-24 株式会社Ihi クロム炭化物層の形成方法
CN114082939B (zh) * 2021-11-03 2022-07-15 广东省粤钢新材料科技有限公司 一种耐腐蚀的不锈钢线材
CN116408363A (zh) * 2023-04-06 2023-07-11 浙江久立特材科技股份有限公司 一种镍钼耐蚀合金无缝管的制备方法及制得的无缝管

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253349A (ja) * 1985-04-30 1986-11-11 Fuji Electric Co Ltd 耐食性焼結ステンレス鋼とその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516108A (ja) * 1974-07-03 1976-01-19 Arekuseieuichi Areshi Bashirii
US4240831A (en) * 1979-02-09 1980-12-23 Scm Corporation Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom
US4314849A (en) * 1979-02-09 1982-02-09 Scm Corporation Maximizing the corrosion resistance of tin containing stainless steel powder compacts
CA1190418A (en) * 1980-04-21 1985-07-16 Nobuhito Kuroishi Process for producing sintered ferrous alloys
US4552719A (en) * 1980-12-03 1985-11-12 N.D.C. Co., Ltd. Method of sintering stainless steel powder
US4415528A (en) * 1981-03-20 1983-11-15 Witec Cayman Patents, Limited Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
JPS59579B2 (ja) * 1981-08-29 1984-01-07 住友電気工業株式会社 焼結電磁ステンレス材の製法
US4420336A (en) * 1982-02-11 1983-12-13 Scm Corporation Process of improving corrosion resistance in porous stainless steel bodies and article
JPS58213859A (ja) * 1982-06-04 1983-12-12 Mitsubishi Metal Corp 耐食性焼結材料
JPS60190552A (ja) * 1984-03-12 1985-09-28 Sumitomo Metal Ind Ltd 焼結ステンレス鋼およびその製造方法
US4937041A (en) * 1984-03-23 1990-06-26 Carlisle Memory Products Group Incorporated Stainless steel silver compositions
US4770703A (en) * 1984-06-06 1988-09-13 Sumitomo Metal Industries, Ltd. Sintered stainless steel and production process therefor
US4591482A (en) * 1985-08-29 1986-05-27 Gorham International, Inc. Pressure assisted sinter process
US4828630A (en) * 1988-02-04 1989-05-09 Armco Advanced Materials Corporation Duplex stainless steel with high manganese
US4891080A (en) * 1988-06-06 1990-01-02 Carpenter Technology Corporation Workable boron-containing stainless steel alloy article, a mechanically worked article and process for making thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253349A (ja) * 1985-04-30 1986-11-11 Fuji Electric Co Ltd 耐食性焼結ステンレス鋼とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0378702A4 *

Also Published As

Publication number Publication date
EP0378702A4 (en) 1991-01-02
EP0378702B1 (en) 1996-09-04
EP0378702A1 (en) 1990-07-25
AU3841489A (en) 1990-01-23
AU614647B2 (en) 1991-09-05
US5108492A (en) 1992-04-28
DE68927094T2 (de) 1997-02-27
KR930001336B1 (ko) 1993-02-26
DE68927094D1 (de) 1996-10-10
KR900702067A (ko) 1990-12-05
JPH02138435A (ja) 1990-05-28
JPH0747794B2 (ja) 1995-05-24

Similar Documents

Publication Publication Date Title
WO1990000207A1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JP2588272B2 (ja) Fe−Co系焼結磁性材料の製造方法
US8734715B2 (en) Method for the preparation of ferrous low carbon porous material
JP2002531693A (ja) 硬質相の結合剤として、ニッケル及びコバルト非含有、窒素含有スチールを有する硬質の焼結成形体
KR101202462B1 (ko) 내열강 부품 및 그 제조방법
JPH0313329A (ja) 耐食性、寸法精度および経済性に優れる焼結金属複合材料およびその製造方法
JP4206476B2 (ja) アルミニウム焼結材の製造方法
JP2703939B2 (ja) Fe−Si系軟磁性焼結材料の製造方法
JPH0257613A (ja) 焼結金属材料の製造方法およびその原料粉末
JP2008240031A (ja) 鉄粉を原料とする成形用素材およびその製造方法
JPH0717983B2 (ja) 高窒素ステンレス鋼焼結体の製造方法
JPH10317009A (ja) ステンレス焼結体の製造方法
JPH02290901A (ja) 成形用金属微粉およびその焼結体の製造方法
JP2729860B2 (ja) 射出成形用超硬合金粉末および超硬合金焼結品の製造方法
JPH0257666A (ja) 鏡面性に優れた焼結合金とその製造方法
JP2793938B2 (ja) 金属粉末射出成形法による焼結金属部品の製造方法
JP2001294971A (ja) ステンレス鋼焼結体の製造方法
JPS61127848A (ja) 焼結アルニコ磁石の製造方法
JP2613457B2 (ja) 射出成形用バインダーの除去方法
JP2005281736A (ja) 金属粉末射出成形法によるチタン合金焼結体の製造方法
JPH07331379A (ja) 高密度ステンレス鋼焼結品の製造方法
JPH04276041A (ja) 焼結マルテンサイト系ステンレス鋼の製造方法
KR930006442B1 (ko) Fe-Co계 소결자성재로 및 그 제조방법
JPH0257605A (ja) 寸法精度に優れた焼結合金の製造方法
JP2745889B2 (ja) 射出成形法による高強度鋼部材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT SE

WWE Wipo information: entry into national phase

Ref document number: 1989907304

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989907304

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989907304

Country of ref document: EP