US3390981A - Method for the production of finely divided metals - Google Patents

Method for the production of finely divided metals Download PDF

Info

Publication number
US3390981A
US3390981A US507038A US50703865A US3390981A US 3390981 A US3390981 A US 3390981A US 507038 A US507038 A US 507038A US 50703865 A US50703865 A US 50703865A US 3390981 A US3390981 A US 3390981A
Authority
US
United States
Prior art keywords
solution
alloy
silver
palladium
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US507038A
Inventor
Lewis C Hoffman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR963903A priority Critical patent/FR1382667A/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US507038A priority patent/US3390981A/en
Priority to BE689502D priority patent/BE689502A/xx
Priority to GB50226/66A priority patent/GB1091347A/en
Priority to FR83153A priority patent/FR91096E/en
Application granted granted Critical
Publication of US3390981A publication Critical patent/US3390981A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D6/00Other treatment of flour or dough before baking, e.g. cooling, irradiating, heating
    • A21D6/003Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • C01G5/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/001Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • C01G7/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to the production of noble metal alloys consisting essentially of two of the following metals: silver, gold, platinum and palladium. More particularly, it relates to the production of such allows in finely divided form.
  • the noble metal alloys produced by this invention are palladium-gold, platinum-gold, silver-gold, silver-palladium, silver-platinum and palladium-platinum alloys.
  • Each of the above metal combinations form continuous series of solid solutions over the entire range of alloy compositions with no eutectics or compounds of the metals being formed.
  • Noble metal alloys in very finely divided form e.g., an average particle size of no larger than 40 microns with no more than about 5% of the particles larger than 42 microns, and preferably with a particle size not exceeding about 5 microns and most preferably of an average size in the range of 0.1 to 0.5 micron; are highly desired for the production of electric current conducting layers on dielectric surfaces, e.g., in the production of capacitors, resistors and conductors.
  • Such finely divided noble metal alloys are virtually impossible to obtain by the comminution of such alloys produced in massive form in the usual manner, by melting together the metal constituents of the alloys.
  • the above objects may be accomplished, in general, by preparing a solution of the metal constituents of the alloy powder in a ratio approximately equal to the compositions of the alloy desired, followed by simultaneously coprecipitating both dissolved metals to provide the desired alloy through the use of a reducing agent or mixture of reducing agents.
  • a reducing agent or mixture of reducing agents for example, gold alloys devoid of silver, platinum alloys devoid of silver, and palladium alloys devoid of silver; chloride compounds (which are the most convenient form of these metals available) can be employed in the preparation of solutions from which the alloys are precipitated.
  • chloride compounds which are the most convenient form of these metals available
  • Other soluble compounds of these metals e.g., cyanides, bromides, nitrates, etc. can be employed equally as well.
  • soluble salts of silver such as the nitrates of this metal, obtained as such or formed by dissolving silver in nitric acid, can be employed.
  • the other noble metal to be alloyed with silver must not, when placed in solution with the silver,
  • both the silver and palladium may be simultaneously dissolved in nitric acid or the palladium may first be dissolved in the acid and the silver subsequently dissolved therein. If desired, the given amount of palladium and silver may be dissolved in separate quantities of nitric acid and the two solutions mixed. Palladium will only dissolve in nitric acid containing at least 3% excess N0 and having a specific gravity of at least 1.5 g./ cc. and, therefore, if the two metals are dissolved in a single quantity of acid, it will be most convenient to first dissolve the palladium and then the silver in the nitric acid. Alternately, the palladium can be dissolved in nitric acid and crystalline silver nitrate in the proper ratio can be dissolved in the palladium nitrate solution.
  • the solvent employed with the noble metal compounds used to make the solution from which the alloy powders are precipitated is conveniently water.
  • Other polar solvents can be used as desired.
  • Chlorinated hydrocarbon solvents can satisfactorily be used to dissolve noble metal halide salts. Concentrations of the dissolved metals of from about 5 to 25% by weight have proven satisfactory in this process, but all concentrations of ingredients from the most dilute up to saturated solutions can be employed as desired. It has been observed that the fineness of alloy powders precipitated is influenced by the concentrations of metals, with finer powders being produced from the lower concentrations.
  • the pH thereof should be maintained acidic to avoid precipitation of metal noble bases and can be varied between pH values of from about 1 to 6.
  • pairs of reducing agents one of which precipitates one of the metal constituents from the solution and the other of which precipitates the other metal constituent, can be used in combination.
  • a single reducing agent for both of the metal constituents of the desired alloys can be used. It is only necessary in forming the metal alloy that the metal constituents thereof be simultaneously precipitated from the same solution.
  • any reducing agents for the alloy constituents which coprecipitate the alloy constituents and any soluble compounds of the alloy constituents can be employed, it will be appreciated that care must be exercised to avoid competitive reactions including interreaction of the soluble compounds, undesired reactions of the metal compounds with the reducing agents, and undesired interreactions between the reducing agents employed.
  • Hydrazine hydrate H N:NH -H O, functions to reduce gold and palladium from their solution to produce goldpalladium alloy powders and is equally usable with a goldplatinum solution to precipitate a gold-platinum alloy powder.
  • Pairs of reducing agents may be selected from the following Table I to precipitate palladium and gold alloy powders.
  • hydroquinone hydrazine sulfate sulfurous acid sodium sulfite zinc dust ferrous sulfate Pairs of reducing agents may be selected from Table II to precipitate platinum-gold alloy powder.
  • the pH of the solution for which they are used must be adjusted to a value of from 4.5 to 6.5 or above. While hydrazine hydrate is the preferred reducing agent for the solutions of palladium-gold and platinum-gold, the pairs of reducing agents set forth above also provide excellent results.
  • Hypophosphorous acid functions to reduce silver and palladium from nitrate solutions thereof.
  • Pairs of reducing agents may be selected from the following Table III to precipitate silver and palladium alloy powders.
  • hypophosphorous acid sodium hydrosulfite for Pt hypophosphorous acid sodium hydrosulfite
  • the pH of the solutions may be adjusted to a pH of between about 4.5 and 6.5 by the addition thereto of concentrated NH OH, NaOH, KOH, Na CO K Mg(OH) Ca(OI-I) Ba(OH) or the like.
  • NH OH is particularly preferred especially when the solution contains dissolved palladium, since it forms a complex with Pd and prevents the formation of small quantities of Pd(OH)
  • the reduction of the nitrates and precipitation of the palladium-silver alloy from such solutions produces an average particle size of alloy particles slightly larger (probably 0.3-0.5 micron) than from nitrate solutions in which the pH has not first been adjusted to between 4.5 and 6.5.
  • the alloy particles produced :by reduction of pH- adjusted solutions are not quite as subject to shrinkage during firing for the production of an electrically conducting film.
  • the neutralizing agents may be added as such or in concentrated aqueous solution.
  • the alloy powder containing silver and palladium produced when ammonium hydroxide is used as the neutralizing agent is superior for certain uses such as capacitor or resistance electrodes to the powders formed through the use of other neutralizing agents.
  • EXAMPLE 1 310 grams of palladium sponge (commercial refiners grade) are dissolved in 5 liters of red, fuming nitric acid (Sp. gr. 1.53 g./cc.) at 5060 C. The solution is allowed to cool. 77.5 grams of silver are then dissolved in the solution to give an /20 weight ratio of Pd/Ag.
  • a mixture of finely divided Pd and Ag in the ratio of 80/20 shows a melting point of 960 C., the melting point of silver, and samples thereof heated to 1000 C., and cooled show the presence of discrete large balls of silver in finely divided palladium.
  • EXAMPLE 2 310 grams of palladium sponge are dissolved in 5 liters of red, fuming nitric acid (Sp. gr. 1.53 g./cc.) at 5060 C. The solution is allowed to cool. 77.5 grams of silver are then dissolved in the solution to give an 80/20 weight ratio of Pd/Ag in the solution. 7.1 liters concentrated ammonium hydroxide (Sp. gr. 0.9) are then slowly dropped into the solution changing the solution from brown through red and yellow to yellow-green. The pH of the solution is about 5.5.
  • the powder has a melting point of about 1400 0., showing that it is an alloy of Pd and Ag rather than a mixture of the two.
  • the average particle size of this powder is about 0.4 micron.
  • Example 2 is repeated but using 1 liter of a 5050 mixture of sodium formate and sodium borohydride, both 50% aqueous solutions, as the reducing agent to reduce the palladium and silver nitrates to finely divided metal alloy powder.
  • the resulting precipitate shows itself to be an alloy of palladium and silver and not a mixture of palladium particles and silver particles.
  • palladium and silver of proportions varying from 5 to parts Pd and to 10 parts Ag were dissolved in nitric acid and reduced with H PO
  • the resulting alloy particles contained proportions of Pd and Ag corresponding substantially to their content in the nitric acid solutions. These alloys had melting points corresponding with the melting points of Pd-Ag alloys on the known liquidus curve of Pd-Ag alloys.
  • Table IV also lists other platinum-gold alloys of various compositions which have been prepared by the same general method as set forth for Example 4, using the metal salt solutions of Example 4, but in different relative amounts and diluted to 2500 ml.
  • the indicated reducing agents dissolved in 1000 ml. of deionized water in the amounts shown were used to precipitate the alloys.
  • the observed melting points were obtained by placing a thermocouple in a furnace containing the test sample of the alloy and observing the temperature at which the first liquid appeared as the temperature inside the furnace was increased. The theoretical melting points were obtained from the literature.
  • Example V The melting point of this alloy powder is set forth in the Table V opposite Example 18.
  • Table V also lists other Pd-Au alloys of various compositions which were prepared by the same general method as set forth by Example 18, using the PdCl and AuCl solutions of Example 18 but in different relative amounts.
  • the solution resulting from mixing the PdCl and AuCl solutions was in each case diluted to 250 ml.
  • the reducing agents and the amounts thereof indicated in Table V dissolved in 100 ml. of deionized water were used to precipitate the alloys from the solutions.
  • the observed melting points were obtained by placing a thermocouple in a furnace containing the test sample of the alloy and observing the temperature at which the first liquid appeared as the temperature inside the furnace TABLE IV
  • Tables VI and VII set forth the particle size distribution of the powders of Examples 4 and 18, respectively. These powders were typical of average particle size and particle size distribution for the powders of the examples of tables 1V and V. These particle size analyses were obtained by microscopic study of enlarged electron photo micrographs of the respective powders.
  • the alloy powders of this invention are characterized in being irregularly shaped, and having a small average size resulting in a high surface area to mass ratio and excellent conductive properties.
  • 90% by count of the particles are within a close small size range, between 0.1 and 5.0 microns, settling and verticle classification of the particles during application and firing of the metalizing compound are reduced. More uniform high quality fired-on coatings can accordingly be produced with the metal powders of this invention.
  • Average particle sizes of about 40 microns and smaller are necessary to enable screen printing thereof with 325 mesh screens.
  • reducing agent as used throughout the specification and claims is meant to include single substances which are capable of individually precipitating all of the metal constituents of the alloy to be formed as well as combinations of substances which together pre cipitate all of the metal constituents of the allo to be formed.
  • the process for the production of noble metal alloys consisting essentially of two noble metals selected from the group consisting of silver, gold, platinum and palladium, which comprises preparing a solution of compounds of the two noble metal constituents of the noble metal alloy to be formed and with each of said two noble metal constituents constituting from 10-90% of the total amount of said two noble metal constituents, and mixing with said solution a reducing agent capable of simultaneously reducing the metal constituents of the compounds to their metals, whereby to precipitate alloy particles from the solution.
  • the process for the production of palladium-silver alloy which comprises preparing an acidic solution containing silver and palladium nitrates, and precipitating a finely divided alloy of Pd-Ag by the addition to said solution of a reducing agent that simultaneously reduces the silver and palladium nitrates to metal.
  • the process for the production of palladium-silver alloy which comprises dissolving palladium in concentrated nitric acid containing at least 3% excess N0 dissolving silver in said nitric acid, adding to the resulting nitric acid solution of palladium and silver nitrates a reducing agent capable of simultaneously reducing said palladium and silver nitrates to their metals.
  • the process which comprises dissolving palladium and silver in concentrated nitric acid containing at least 3% excess N0 to form a nitric acid solution of palladium and silver nitrates, and adding to said solution hypophos phorous acid whereby to precipitate Pd-Ag alloy particles from said solution.

Description

United States Patent 3,390,981 METHOD FOR THE PRODUCTION OF FINELY DIVIDED METALS Lewis C. Hoffman, Wilmington, Del., assignor to E. I. du Pont de Nemours and Company, Wilmington, Del., a corporation of Delaware No Drawing. Continuation-impart of application Ser. No. 258,607, Feb. 14, 1963. This application Nov. 9, 1965, Ser. No. 507,038
17 Claims. (Cl. 75-108) This application is a continuation-in-part of my copending application, Ser. No. 258,607, filed Feb. 14, 1963 now abandoned.
This invention relates to the production of noble metal alloys consisting essentially of two of the following metals: silver, gold, platinum and palladium. More particularly, it relates to the production of such allows in finely divided form.
The noble metal alloys produced by this invention are palladium-gold, platinum-gold, silver-gold, silver-palladium, silver-platinum and palladium-platinum alloys. Each of the above metal combinations form continuous series of solid solutions over the entire range of alloy compositions with no eutectics or compounds of the metals being formed.
Noble metal alloys in very finely divided form, e.g., an average particle size of no larger than 40 microns with no more than about 5% of the particles larger than 42 microns, and preferably with a particle size not exceeding about 5 microns and most preferably of an average size in the range of 0.1 to 0.5 micron; are highly desired for the production of electric current conducting layers on dielectric surfaces, e.g., in the production of capacitors, resistors and conductors. Such finely divided noble metal alloys are virtually impossible to obtain by the comminution of such alloys produced in massive form in the usual manner, by melting together the metal constituents of the alloys.
It is therefore an object of this invention to provide a new method of obtaining finely divided noble metal alloys consisting essentially of two of the metals; silver, gold, platinum and palladium.
It is another object of this invention to provide a method of obtaining finely divided noble metal alloys consisting essentially of two of the metals; silver, gold, platinum or palladium, where the average particle sizes of thealloys are of the order of 0.1 to 0.5 micron.
Other objects will become apparent from the following detailed description of the invention.
The above objects may be accomplished, in general, by preparing a solution of the metal constituents of the alloy powder in a ratio approximately equal to the compositions of the alloy desired, followed by simultaneously coprecipitating both dissolved metals to provide the desired alloy through the use of a reducing agent or mixture of reducing agents. In the preparation of, for example, gold alloys devoid of silver, platinum alloys devoid of silver, and palladium alloys devoid of silver; chloride compounds (which are the most convenient form of these metals available) can be employed in the preparation of solutions from which the alloys are precipitated. Other soluble compounds of these metals, e.g., cyanides, bromides, nitrates, etc. can be employed equally as well. In the preparation of silver alloys, soluble salts of silver, such as the nitrates of this metal, obtained as such or formed by dissolving silver in nitric acid, can be employed. The other noble metal to be alloyed with silver must not, when placed in solution with the silver,
3,390,981 Patented July 2, 1968 effect precipitation of the silver as an insoluble salt. Accordingly, chlorides of noble metals are to be avoided in making silver alloys and the nitrates and cyanides of these noble metals can conveniently be employed.
In the preparation of solutions of palladium and silver, both the silver and palladium may be simultaneously dissolved in nitric acid or the palladium may first be dissolved in the acid and the silver subsequently dissolved therein. If desired, the given amount of palladium and silver may be dissolved in separate quantities of nitric acid and the two solutions mixed. Palladium will only dissolve in nitric acid containing at least 3% excess N0 and having a specific gravity of at least 1.5 g./ cc. and, therefore, if the two metals are dissolved in a single quantity of acid, it will be most convenient to first dissolve the palladium and then the silver in the nitric acid. Alternately, the palladium can be dissolved in nitric acid and crystalline silver nitrate in the proper ratio can be dissolved in the palladium nitrate solution.
The solvent employed with the noble metal compounds used to make the solution from which the alloy powders are precipitated is conveniently water. Other polar solvents can be used as desired. Chlorinated hydrocarbon solvents can satisfactorily be used to dissolve noble metal halide salts. Concentrations of the dissolved metals of from about 5 to 25% by weight have proven satisfactory in this process, but all concentrations of ingredients from the most dilute up to saturated solutions can be employed as desired. It has been observed that the fineness of alloy powders precipitated is influenced by the concentrations of metals, with finer powders being produced from the lower concentrations. When employing Water as a solvent, the pH thereof should be maintained acidic to avoid precipitation of metal noble bases and can be varied between pH values of from about 1 to 6. It has been found that the speed of precipitation increases with increased temperature and pH values. Generally, the coarseness of the alloy powder formed is directly proportional to the speed of precipitation. High quality alloy powders have been obtained using the combination of room temperature and pH values of from 4.5 to 6.5
To produce the desired alloy, pairs of reducing agents, one of which precipitates one of the metal constituents from the solution and the other of which precipitates the other metal constituent, can be used in combination. In addition, a single reducing agent for both of the metal constituents of the desired alloys can be used. It is only necessary in forming the metal alloy that the metal constituents thereof be simultaneously precipitated from the same solution.
While, generally, any reducing agents for the alloy constituents which coprecipitate the alloy constituents and any soluble compounds of the alloy constituents can be employed, it will be appreciated that care must be exercised to avoid competitive reactions including interreaction of the soluble compounds, undesired reactions of the metal compounds with the reducing agents, and undesired interreactions between the reducing agents employed.
Hereinafter, are set forth examples of reducing agents and combinations thereof which can be used in the process of the invention.
Hydrazine hydrate, H N:NH -H O, functions to reduce gold and palladium from their solution to produce goldpalladium alloy powders and is equally usable with a goldplatinum solution to precipitate a gold-platinum alloy powder.
Pairs of reducing agents may be selected from the following Table I to precipitate palladium and gold alloy powders.
TABLE I For Au:
hydroquinone hydrazine sulfate sulfurous acid sodium sulfite zinc dust ferrous sulfate Pairs of reducing agents may be selected from Table II to precipitate platinum-gold alloy powder.
TABLE II For Au:
hydroquinone hydrazine sulfate sulfurous acid sodium sulfite zinc dust ferrous sulfate It was found that the sodium borohydride liberates hydrogen in acid solution and that the metal powders formed therefrom are saturated with hydrogen after filtration and drying. This hydrogen is evolved rapidly in the heating-up stage of the firing of electrical devices which contain alloy powders made by this method with disruptive consequences in those instances where it is desired to produce fired-on coatings having fine, or small dimensions. Accordingly, its use only for large cross-sectioned fired-on coatings is recommended. When employing sodium hydrosulfite and/or ferrous sulfate as reducing agents for the metals indicated above, the pH of the solution for which they are used must be adjusted to a value of from 4.5 to 6.5 or above. While hydrazine hydrate is the preferred reducing agent for the solutions of palladium-gold and platinum-gold, the pairs of reducing agents set forth above also provide excellent results.
Hypophosphorous acid functions to reduce silver and palladium from nitrate solutions thereof. Pairs of reducing agents may be selected from the following Table III to precipitate silver and palladium alloy powders.
TABLE III For Pd:
sodium borohydride hypophosphorous acid hydroquinone For Pd:
hypophosphorous acid sodium hydrosulfite For Pt:
sodium borohydride sodium hydrosulfite For Ag:
sodium formate ammonium formate hydroxylamine formic acid hydrazine sulfate tartaric acid The pH of the solutions may be adjusted to a pH of between about 4.5 and 6.5 by the addition thereto of concentrated NH OH, NaOH, KOH, Na CO K Mg(OH) Ca(OI-I) Ba(OH) or the like. Of these neutralizing agents, NH OH is particularly preferred especially when the solution contains dissolved palladium, since it forms a complex with Pd and prevents the formation of small quantities of Pd(OH) The reduction of the nitrates and precipitation of the palladium-silver alloy from such solutions produces an average particle size of alloy particles slightly larger (probably 0.3-0.5 micron) than from nitrate solutions in which the pH has not first been adjusted to between 4.5 and 6.5. The alloy particles produced :by reduction of pH- adjusted solutions are not quite as subject to shrinkage during firing for the production of an electrically conducting film.
The neutralizing agents may be added as such or in concentrated aqueous solution. The alloy powder containing silver and palladium produced when ammonium hydroxide is used as the neutralizing agent is superior for certain uses such as capacitor or resistance electrodes to the powders formed through the use of other neutralizing agents.
The following examples are given to illustrate, in detail, several preferred embodiments of the invention, it
being understood that the details of these examples are not to be taken as limitations of the invention.
EXAMPLE 1 310 grams of palladium sponge (commercial refiners grade) are dissolved in 5 liters of red, fuming nitric acid (Sp. gr. 1.53 g./cc.) at 5060 C. The solution is allowed to cool. 77.5 grams of silver are then dissolved in the solution to give an /20 weight ratio of Pd/Ag.
With rapid stirring, one liter of 50% H PO solution is slowly dropped into the above solution. A black precipitate forms and settles to the bottom of the reaction vessel. The precipitate is filtered off and dried to produce about 386.5 grams of alloy powder. This powder is found to have an average particle size of about 0.3 micron. The particles, when subjected to a gradual increase in temperature are found to have a melting point of about 1400 C., the known melting temperature of an 80/20 Pd/Ag alloy as shown in the liquidus curve of Pd/Ag alloys.
By contrast, a mixture of finely divided Pd and Ag in the ratio of 80/20 shows a melting point of 960 C., the melting point of silver, and samples thereof heated to 1000 C., and cooled show the presence of discrete large balls of silver in finely divided palladium.
When the precipitated alloy powder is shaken with a 7% aqueous solution of nitric acid, the solution shows no presence of silver nitrate by the usual chloride test, whereas a mixture of finely divided Pd and Ag will, under the same circumstances, show the presence of silver nitrate.
EXAMPLE 2 310 grams of palladium sponge are dissolved in 5 liters of red, fuming nitric acid (Sp. gr. 1.53 g./cc.) at 5060 C. The solution is allowed to cool. 77.5 grams of silver are then dissolved in the solution to give an 80/20 weight ratio of Pd/Ag in the solution. 7.1 liters concentrated ammonium hydroxide (Sp. gr. 0.9) are then slowly dropped into the solution changing the solution from brown through red and yellow to yellow-green. The pH of the solution is about 5.5.
1 liter of 50% H PO solution is next slowly dropped into the above solution. A black precipitate forms and settles to the bottom of the reaction vessel. The precipitate is filtered oif and dried, yielding 386.5 grams of alloy powder.
The powder has a melting point of about 1400 0., showing that it is an alloy of Pd and Ag rather than a mixture of the two. The average particle size of this powder is about 0.4 micron.
EXAMPLE 3 Example 2 is repeated but using 1 liter of a 5050 mixture of sodium formate and sodium borohydride, both 50% aqueous solutions, as the reducing agent to reduce the palladium and silver nitrates to finely divided metal alloy powder. The resulting precipitate, by the tests above set forth in Examples 1 and 2, shows itself to be an alloy of palladium and silver and not a mixture of palladium particles and silver particles. In a series of examples, using the procedure of Example 2, palladium and silver of proportions varying from 5 to parts Pd and to 10 parts Ag were dissolved in nitric acid and reduced with H PO The resulting alloy particles contained proportions of Pd and Ag corresponding substantially to their content in the nitric acid solutions. These alloys had melting points corresponding with the melting points of Pd-Ag alloys on the known liquidus curve of Pd-Ag alloys.
Examples of different materials and amounts thereof used to form platinum-gold alloy powders are set forth below.
EXAMPLE 4 To obtain a 90% gold-10% platinum alloy, 24 grams of a PtCl, solution containing 32.67% platinum by analysis were mixed with 176 grams of an AuCl solu- 5 tion containing 39.09% gold. The resulting solution was diluted to 2500 ml. and a solution of 50 grams of hydrazine hydrate in 1000 m1. of deionized water was dropped in with rapid stirring. A black precipitate of the gold and platinum alloy formed which was allowed to settle, washed with water by decantation, filtered off and dried. The observed melting point of this precipitate together with the theoretical melting point of a 90% gold-% platinum alloy is set forth opposite Example 4 in Table IV.
Table IV also lists other platinum-gold alloys of various compositions which have been prepared by the same general method as set forth for Example 4, using the metal salt solutions of Example 4, but in different relative amounts and diluted to 2500 ml. The indicated reducing agents dissolved in 1000 ml. of deionized water in the amounts shown were used to precipitate the alloys. The observed melting points were obtained by placing a thermocouple in a furnace containing the test sample of the alloy and observing the temperature at which the first liquid appeared as the temperature inside the furnace was increased. The theoretical melting points were obtained from the literature.
of palladium and gold. The resulting solution was diluted to 250 ml. and a solution of 4 grams of hydrazine hydrate in 100 ml. of deionized water was dropped in with rapid stirring. A black precipitate of the gold-palladium alloy formed which was allowed to settle, washed with water by decantation, filtered off and dried.
The melting point of this alloy powder is set forth in the Table V opposite Example 18. Table V also lists other Pd-Au alloys of various compositions which were prepared by the same general method as set forth by Example 18, using the PdCl and AuCl solutions of Example 18 but in different relative amounts. The solution resulting from mixing the PdCl and AuCl solutions was in each case diluted to 250 ml. The reducing agents and the amounts thereof indicated in Table V dissolved in 100 ml. of deionized water were used to precipitate the alloys from the solutions.
The observed melting points were obtained by placing a thermocouple in a furnace containing the test sample of the alloy and observing the temperature at which the first liquid appeared as the temperature inside the furnace TABLE IV Example Wt. of Pd Wt. of Au Percent Observed Melting Number Solution Solution Pd in Reducing Agent and Amount Dissolved in 100 Melting Point in gms. in gins. Alloy m1. of H20 Point, C. (theor.), C. 24 176 10 50 g. hydrazine hydrate l, 080 50 150 21. 4 .do 1,129 68 132 1, 200 110 90 1, 330 130 70 1, 390 148 52 398 1, 425 168 32 525 1, 550 184 16 do 700 1, 680 90 50 25 g. hydroquinone, 25 g. sodium borohydnde 1,332 1, 330 50 21. 4 25 g. hydrazine sulfate, 25 g. sodium borohydri 1,127 1, 129 110 90 50 25 g. sodium borohydride, 25 g. sulfurous ac 1,330 1, 330 110 90 50 25 g. sodium sulfite, 25 g. sodium borohydride. 1, 337 1, 330 110 90 50 25 g. sodium borohydride, 25 g. zinc dust 1, 338 1, 330 110 90 50 25 g. sodium hydrosulfite, 25 g. ferrous sulfate 1, 341 1, 330
1 pH adjusted to about 5.5 with NaOH before adding reducing agent.
The observed melting point values demonstrate that the powder products formed are true alloys since their was increased. The theoretical melting points were obtained from the literature.
TABLE V Example Wt. of Pd Wt. of Au Percent Observed Melting Number Solution Solution Pd in Reducing Agent and Amount Dissolved in 100 Melting Point in gms. in gms. Alloy ml. 011120 Pomt, C. (theor.), C.
15 85 10 4 g. hydrazine hydrat 1, 1, 200 27 73 20 do- 1, 360 1, 350 40 60 30 1, 403 1, 400 50 50 40 454 1, 450 60 40 50 1, 490 1, 475 70 30 60 A 1, 495 1, 500 77 23 70 1, 515 1, 520 87 13 80 1, 541 1, 540 93 7 90 o. 1,570 1,550 60 40 50 2 g. hypophosphorous acid, 2 hydroquinone 1, 482 1, 475 60 40 50 2 g. hypophosphorous acid, 2 g. hydrazine sulfate. 1, 480 1, 475 60 40 50 2 g. hypophosphorous acid, 2 g. sulfurous acid 1, 490 1, 475 60 40 50 2 g. hypophosphorous acid, 2 g. sodium sulfite 1, 481 1,475 60 4o 50 2 g. hypophosphorous acid, 2 g. zinc dust 1, 476 1, 475 60 40 50 2 g. sodium hydrosulfite, 2 g. ferrous sulfate 1, 468 1, 475
1 pH adjusted to about 5.5 with NaOH before adding reducing agent.
15 grams of a PdCl solution containing 26% Pd by analysis were mixed with 85 grams of an AuCl solution containing 39.08% Au so that the weight of palladium in the resulting solution equaled 10% of the total weight The observed melting point values demonstrate that the powder products formed are true alloys since their melting points are within 35 C. of the theoretical values of the alloys. The observed melting points of the alloys are higher than 1062 C., the melting point of gold, further indicating that alloy particles and not mixtures of gold particles and palladium particles are formed.
Tables VI and VII set forth the particle size distribution of the powders of Examples 4 and 18, respectively. These powders were typical of average particle size and particle size distribution for the powders of the examples of tables 1V and V. These particle size analyses were obtained by microscopic study of enlarged electron photo micrographs of the respective powders.
TABLE VI Gold-platinum alloy powder Percentage of particles Patricle size range, microns: within indicated size range 2 TABLE VII Gold-platinum alloy powder Percentage of particles Patricle size range, microns: within indicated size range -0.1 None 0.1-1.0 75 1.04.0 90 -50 50-100 4 100 2 The average particle size was 0.2 micron.
The alloy powders of this invention are characterized in being irregularly shaped, and having a small average size resulting in a high surface area to mass ratio and excellent conductive properties. By reason of the fact that 90% by count of the particles are within a close small size range, between 0.1 and 5.0 microns, settling and verticle classification of the particles during application and firing of the metalizing compound are reduced. More uniform high quality fired-on coatings can accordingly be produced with the metal powders of this invention. Average particle sizes of about 40 microns and smaller are necessary to enable screen printing thereof with 325 mesh screens.
The term reducing agent as used throughout the specification and claims is meant to include single substances which are capable of individually precipitating all of the metal constituents of the alloy to be formed as well as combinations of substances which together pre cipitate all of the metal constituents of the allo to be formed.
Parts, percentages and proportions as herein disclosed unless otherwise stated relates to parts, percentages and proportions by weight.
Since it is obvious that many changes and modifications can be made in the above-described details without departing from the nature and spirit of the invention, it is to be understood that the invention is not to be limited thereto except as set forth in the appended claims.
I claim:
1. The process for the production of a finely divided alloy consisting essentially of two noble metals, which metals form continuous series of solid solutions throughout their entire alloy composition range without the formation of compounds or eutectics which comprises forming a solution of compounds of the two noble metal constituents of the alloy to be formed with the two noble metal constituents present in approximately the same relative proportions that they are to be present in the alloy to be formed and with each of said two noble metal constituents constituting from 10-90% of the total amount of said two noble metal constituents, and mixing with said solution a reducing agent capable of simultaneously reducing the metal constituents of the compounds to their metals, whereby to precipitate alloy particles from the solution.
2. The process for the production of noble metal alloys consisting essentially of two noble metals selected from the group consisting of silver, gold, platinum and palladium, which comprises preparing a solution of compounds of the two noble metal constituents of the noble metal alloy to be formed and with each of said two noble metal constituents constituting from 10-90% of the total amount of said two noble metal constituents, and mixing with said solution a reducing agent capable of simultaneously reducing the metal constituents of the compounds to their metals, whereby to precipitate alloy particles from the solution.
3. The process of claim 2 wherein the solution comprises dissolved compounds of platinum and gold.
4. The process of claim 3 wherein the reducing agent is hydrazine hydrate.
5. The process of claim 2 wherein the solution comprises dissolved compounds of palladium and gold.
6. The process of claim 5 wherein the reducing agent is hydrazine hydrate.
7. The process of claim 2 wherein the solution comprises dissolved compounds of palladium and silver.
8. The process of claim 7 wherein the reducing agent is hypophosphorous acid.
9. The process of claim 2 wherein the solution comprises dissolved compounds of silver and gold.
10. The process of claim 2 wherein the solution comprises dissolved compounds of platinum and palladium.
11. The process for the production of palladium-silver alloy which comprises preparing an acidic solution containing silver and palladium nitrates, and precipitating a finely divided alloy of Pd-Ag by the addition to said solution of a reducing agent that simultaneously reduces the silver and palladium nitrates to metal.
12. The process which comprises dissolving palladium and silver in concentrated nitric acid containing at least 3% excess N0 to form a solution of palladium and silver nitrates, adjusting the pH of the solution to between 4.5 and 6.5, and adding to said solution a reducing agent capable of simultaneously reducing said nitrates to their metals, whereby to precipitate Pd-AG alloy particles from the solution.
13. The process of claim 12 in which the reducing agent is hypophosphorous acid.
14. The process for the production of palladium-silver alloy which comprises dissolving palladium in concentrated nitric acid containing at least 3% excess N0 dissolving silver in said nitric acid, adding to the resulting nitric acid solution of palladium and silver nitrates a reducing agent capable of simultaneously reducing said palladium and silver nitrates to their metals.
15. The process which comprises dissolving palladium and silver in concentrated nitric acid containing at least 3% excess N0 to form a nitric acid solution of palladium and silver nitrates, and adding to said solution hypophos phorous acid whereby to precipitate Pd-Ag alloy particles from said solution.
16. The process of adding hypophosphorous acid to an acidic solution of palladium and silver nitrates whereby to precipitate from said solution finely divided Pd-Ag alloy particles containing palladium and silver in the same relative proportions in which they were present in said solution.
17. The process of claim 2 wherein the solution comprises dissolved compounds of platinum and silver.
References Cited UNITED STATES PATENTS 12/1915 Sulzberger -108 8/1922 Sulzberber 75-108 Disclaimer 3,390,981.Lewis C. H ofl'ma'n, W'ilmington, Del. METHOD FOR THE PRO- DUCTION OF FINELY DIVIDED METALS. Patent dated July 2, 1968. Disclaimer filed Apr. 30, 1976, by the assignee, E. I. du Pont de 1V emours and Company. Hereby enters this disclaimer to claims 1-7, 9-11, and 17 of said patent.
[Oflicial Gazette July 6', 1.976.]

Claims (1)

1. THE PROCESS FOR THE PRODUCTION OF A FINELY DIVIDED ALLOY CONSISTING ESSENTIALLY OF TWO NOBLE METALS, WHICH METALS FROM CONTINUOUS SERIES OF SOLID SOLUTION THROUGHOUT THEIR ENTIRE ALLOY COMPOSITION RANGE WITHOUT THE FORMATION OF COMPOUNDS OF EUTECTICS WHICH COMPRISES FORMING A SOLUTION OF COMPOUNDS OF THE TWO NOBLE METAL CONSTITUENTS OF THE ALLOY TO BE FORMED WITH THE TWO NOBLE METAL CONSTITUENTS PRESENT IN APPROXIMATELY THE SAME RELATIVE PROPORTIONS THAT THEY ARE TO PRESENT IN THE ALLOY TO BE FORMED AND WITH EACH OF SID TWO NOBLE METAL CONSTITUENTS CONSTITUTING FROM 10-90% OF THE TOTAL AMOUNT OF SAAID TWO NOBLE METAL CONSTITUENTS, AND MIXING WITH SAID SOLUTION A REDUCING AGENT CAPABLE OF SIMULTANEOUSLY REDUCING THE METAL CONSTITUENTS OF THE COMPOUNDS TO THEIR METALS, WHEREBY TO PRECIPITATE ALLOY PARTICLES FROM THE SOLUTION.
US507038A 1964-02-14 1965-11-09 Method for the production of finely divided metals Expired - Lifetime US3390981A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR963903A FR1382667A (en) 1964-02-14 1964-02-14 Palladium-silver alloys and their production process
US507038A US3390981A (en) 1964-02-14 1965-11-09 Method for the production of finely divided metals
BE689502D BE689502A (en) 1964-02-14 1966-11-09
GB50226/66A GB1091347A (en) 1964-02-14 1966-11-09 Alloys and the production thereof
FR83153A FR91096E (en) 1964-02-14 1966-11-09 Palladium-silver alloys and their production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1382667T 1964-02-14
US507038A US3390981A (en) 1964-02-14 1965-11-09 Method for the production of finely divided metals

Publications (1)

Publication Number Publication Date
US3390981A true US3390981A (en) 1968-07-02

Family

ID=26235304

Family Applications (1)

Application Number Title Priority Date Filing Date
US507038A Expired - Lifetime US3390981A (en) 1964-02-14 1965-11-09 Method for the production of finely divided metals

Country Status (3)

Country Link
US (1) US3390981A (en)
BE (1) BE689502A (en)
GB (1) GB1091347A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501287A (en) * 1968-07-31 1970-03-17 Mallory & Co Inc P R Metal-metal oxide compositions
US3536479A (en) * 1967-02-21 1970-10-27 Int Nickel Co Method for the production of high purity osmium
US3620714A (en) * 1970-02-26 1971-11-16 Du Pont Process of preparing noble metal alloy powders
US3620713A (en) * 1970-02-26 1971-11-16 Du Pont Process of preparing noble metal powders
US3717481A (en) * 1971-05-13 1973-02-20 Du Pont Gold metallizing compositions
US3856507A (en) * 1973-03-12 1974-12-24 Owens Illinois Inc Recovery of gold from solution in aqua regia
US3940261A (en) * 1974-07-24 1976-02-24 Eastman Kodak Company Process for preparing crystalline silver particles having electrically conductive surfaces and product
US3957505A (en) * 1974-08-05 1976-05-18 Bayside Refining And Chemical Company Gold reclamation process
US4035181A (en) * 1976-09-08 1977-07-12 Minnesota Mining And Manufacturing Company Protection of silver reduction materials
US4036634A (en) * 1975-04-07 1977-07-19 Plessey, Incorporated Oxidation and sinter-resistant metal powders
US4038071A (en) * 1976-07-14 1977-07-26 Tenneco Chemicals, Inc. Process for the removal of mercury from aqueous solutions
US4319922A (en) * 1979-12-26 1982-03-16 Western Electric Company, Inc. Recovery of gold from an etching solution
US4319923A (en) * 1979-12-26 1982-03-16 Western Electric Co., Inc. Recovery of gold and/or palladium from an iodide-iodine etching solution
US4439468A (en) * 1981-04-24 1984-03-27 Gte Products Corporation Platinum coated silver powder
US4456474A (en) * 1983-05-05 1984-06-26 Chemet Corporation Method of making fine silver powder
US4456473A (en) * 1983-05-05 1984-06-26 Chemet Corporation Method of making silver powder
EP0176760A2 (en) * 1984-08-29 1986-04-09 E.I. Du Pont De Nemours And Company Process for forming solid solutions
US4776883A (en) * 1986-05-30 1988-10-11 Mitsui Mining & Smelting Co., Ltd. Process for the production of silver-palladium alloy fine powder
EP0363552A1 (en) * 1988-07-27 1990-04-18 Tanaka Kikinzoku Kogyo K.K. Process for preparing metal particles
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
US5514202A (en) * 1994-12-20 1996-05-07 National Science Council Of R.O.C. Method for producing fine silver-palladium alloy powder
US6506228B2 (en) * 2000-04-04 2003-01-14 Kwangju Institute Of Science And Technology Method of preparing platinum alloy electrode catalyst for direct methanol fuel cell using anhydrous metal chloride
US20040265615A1 (en) * 1997-02-24 2004-12-30 Kodas Toivo T. Gold powders,methods for producing powders and devices fabricated from same
US10220120B2 (en) * 2013-06-26 2019-03-05 Tanaka Kikinzoku Kogyo K.K. Alloy for medical use and method of producing the same
CN112893863A (en) * 2021-01-20 2021-06-04 山东省科学院菏泽分院 Preparation method of gold platinum nano material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2411796C (en) * 2002-11-13 2006-07-25 Chemical Vapour Metal Refining Inc. Purification of metals from mixtures thereof
CA2421832C (en) 2003-03-13 2006-10-10 Bradley A. Saville Enhancement of enzyme activity by selective purification
CN1293969C (en) * 2003-11-14 2007-01-10 中国科学院化学研究所 Method for preparing nano metal and bimetal hollow ball
US8349591B2 (en) 2008-10-16 2013-01-08 Scientek Llc Method and apparatus for producing alcohol or sugar using a commercial-scale bioreactor
CN104625043B (en) * 2015-02-13 2016-09-07 中国人民解放军第三军医大学第二附属医院 A kind of gold rhodium hollow Nano composite and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1164141A (en) * 1914-12-10 1915-12-14 Nathan Sulzberger Process of reduction by means of hydrazin or the like.
US1426517A (en) * 1916-09-11 1922-08-22 Sulzberger Nathan Nonpyrophoric catalysts and process for effecting catalytic reactions therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1164141A (en) * 1914-12-10 1915-12-14 Nathan Sulzberger Process of reduction by means of hydrazin or the like.
US1426517A (en) * 1916-09-11 1922-08-22 Sulzberger Nathan Nonpyrophoric catalysts and process for effecting catalytic reactions therewith

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536479A (en) * 1967-02-21 1970-10-27 Int Nickel Co Method for the production of high purity osmium
US3501287A (en) * 1968-07-31 1970-03-17 Mallory & Co Inc P R Metal-metal oxide compositions
US3620714A (en) * 1970-02-26 1971-11-16 Du Pont Process of preparing noble metal alloy powders
US3620713A (en) * 1970-02-26 1971-11-16 Du Pont Process of preparing noble metal powders
US3717481A (en) * 1971-05-13 1973-02-20 Du Pont Gold metallizing compositions
US3856507A (en) * 1973-03-12 1974-12-24 Owens Illinois Inc Recovery of gold from solution in aqua regia
US3940261A (en) * 1974-07-24 1976-02-24 Eastman Kodak Company Process for preparing crystalline silver particles having electrically conductive surfaces and product
US3957505A (en) * 1974-08-05 1976-05-18 Bayside Refining And Chemical Company Gold reclamation process
US4036634A (en) * 1975-04-07 1977-07-19 Plessey, Incorporated Oxidation and sinter-resistant metal powders
US4038071A (en) * 1976-07-14 1977-07-26 Tenneco Chemicals, Inc. Process for the removal of mercury from aqueous solutions
US4035181A (en) * 1976-09-08 1977-07-12 Minnesota Mining And Manufacturing Company Protection of silver reduction materials
US4319922A (en) * 1979-12-26 1982-03-16 Western Electric Company, Inc. Recovery of gold from an etching solution
US4319923A (en) * 1979-12-26 1982-03-16 Western Electric Co., Inc. Recovery of gold and/or palladium from an iodide-iodine etching solution
US4439468A (en) * 1981-04-24 1984-03-27 Gte Products Corporation Platinum coated silver powder
US4456474A (en) * 1983-05-05 1984-06-26 Chemet Corporation Method of making fine silver powder
US4456473A (en) * 1983-05-05 1984-06-26 Chemet Corporation Method of making silver powder
EP0176760A2 (en) * 1984-08-29 1986-04-09 E.I. Du Pont De Nemours And Company Process for forming solid solutions
US4678505A (en) * 1984-08-29 1987-07-07 E. I. Du Pont De Nemours And Company Process for forming solid solutions
EP0176760A3 (en) * 1984-08-29 1988-05-25 E.I. Du Pont De Nemours And Company Process for forming solid solutions
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
EP0249366B1 (en) * 1986-05-30 1991-02-06 MITSUI MINING & SMELTING CO., LTD. Process for the production of silver-palladium alloy fine powder
US4776883A (en) * 1986-05-30 1988-10-11 Mitsui Mining & Smelting Co., Ltd. Process for the production of silver-palladium alloy fine powder
EP0363552A1 (en) * 1988-07-27 1990-04-18 Tanaka Kikinzoku Kogyo K.K. Process for preparing metal particles
US5514202A (en) * 1994-12-20 1996-05-07 National Science Council Of R.O.C. Method for producing fine silver-palladium alloy powder
US20040265615A1 (en) * 1997-02-24 2004-12-30 Kodas Toivo T. Gold powders,methods for producing powders and devices fabricated from same
US7077882B2 (en) * 1997-02-24 2006-07-18 Cabot Corporation Gold powders, methods for producing powders and devices fabricated from same
US6506228B2 (en) * 2000-04-04 2003-01-14 Kwangju Institute Of Science And Technology Method of preparing platinum alloy electrode catalyst for direct methanol fuel cell using anhydrous metal chloride
US10220120B2 (en) * 2013-06-26 2019-03-05 Tanaka Kikinzoku Kogyo K.K. Alloy for medical use and method of producing the same
CN112893863A (en) * 2021-01-20 2021-06-04 山东省科学院菏泽分院 Preparation method of gold platinum nano material

Also Published As

Publication number Publication date
BE689502A (en) 1967-04-14
GB1091347A (en) 1967-11-15

Similar Documents

Publication Publication Date Title
US3390981A (en) Method for the production of finely divided metals
CN101011747B (en) Method of producing copper powder and copper powder
US4745094A (en) Mono- or multi-metal microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
JP7329941B2 (en) Core-shell particles and their applications
KR900004108B1 (en) Process for forming solid solutions
JP2021113358A (en) Silver-covered metal powder and method for producing the same
KR20070085831A (en) Nickel powder, process for producing the same, and conductive paste
US4721524A (en) Non-pyrophoric submicron alloy powders of Group VIII metals
US3725308A (en) Electrically conductive mass
US20090050857A1 (en) Method of improving the weatherability of copper powder
JP2900650B2 (en) Method for producing nickel fine powder
JP2020063487A (en) AgPd CORE-SHELL PARTICLE AND USE THEREOF
KR910009476B1 (en) Ceramic multilayer electrical capacitors
JPH0557324B2 (en)
JPH01139710A (en) Manufacture of fine granular alloy powder
US3539114A (en) Milling process for preparing flake gold
JP3607656B2 (en) Method for producing noble metal nanoparticles
JPS6148586B2 (en)
US3717481A (en) Gold metallizing compositions
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
US3620714A (en) Process of preparing noble metal alloy powders
JPH0543921A (en) Production of nickel fine powder
US3694254A (en) Method of producing and coating silver powder and the resultant product
JP2017206751A (en) Manufacturing method of nickel powder
US3771996A (en) Process for manufacturing gold powder