US20200411307A1 - Substrate treating liquid - Google Patents

Substrate treating liquid Download PDF

Info

Publication number
US20200411307A1
US20200411307A1 US16/910,116 US202016910116A US2020411307A1 US 20200411307 A1 US20200411307 A1 US 20200411307A1 US 202016910116 A US202016910116 A US 202016910116A US 2020411307 A1 US2020411307 A1 US 2020411307A1
Authority
US
United States
Prior art keywords
substrate
pattern
collapse
treating liquid
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/910,116
Other languages
English (en)
Inventor
Yuta Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Assigned to SCREEN Holdings Co., Ltd. reassignment SCREEN Holdings Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SASAKI, YUTA
Publication of US20200411307A1 publication Critical patent/US20200411307A1/en
Priority to US18/423,170 priority Critical patent/US20240162033A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3218Alkanolamines or alkanolimines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/44Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/18Glass; Plastics
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a substrate treating method, a substrate treating liquid and a substrate treating apparatus which remove, from substrates, liquids adhered to various types of substrates such as, for example, a semiconductor substrate, a substrate for a photomask glass, a substrate for a liquid crystal display glass, a substrate for a plasma display glass, a FED (Field Emission Display) substrate, a substrate for an optical disc, a substrate for a magnetic disc and a substrate for a magneto-optical disc.
  • a semiconductor substrate a substrate for a photomask glass
  • a substrate for a liquid crystal display glass a substrate for a plasma display glass
  • FED Field Emission Display
  • Japanese Unexamined Patent Application Publication No. 2012-243869 discloses, as drying technology for the purpose of preventing such collapse of the pattern, for example, a substrate drying method in which a liquid on a substrate having a concave-convex pattern formed on the surface is removed and the substrate is dried.
  • a solution of a sublimable substance is supplied onto a substrate and the inside of recesses of the pattern is filled with the solution, followed by drying of a solvent in the solution.
  • the inside of recesses of the pattern is filled with the sublimable substance in a solid state and the temperature of the substrate is raised to the temperature higher than a sublimation temperature of the sublimable substance to remove the sublimable substance from the substrate.
  • Japanese Unexamined Patent Application Publication No. 2012-243869 mentions that this makes it possible to inhibit stress, which attempts to collapse projections of the pattern formable due to surface tension of a liquid on the substrate, from acting on the projections of the pattern, thus leading to the prevention of pattern collapse.
  • Japanese Unexamined Patent Application Publication No. 2017-76817 discloses a method for producing a semiconductor device in which, in the case of sublimation drying of the surface of a semiconductor substrate having a fine pattern formed thereon, a solution prepared by dissolving a substance to be precipitated such as cyclohexane-1,2-dicarboxylic acid in a solvent such as an aliphatic hydrocarbon is used.
  • This patent document mentions that this method for producing a semiconductor device enables the inhibition of pattern collapse during drying of a semiconductor substrate after a liquid treatment.
  • the present invention has been made in light of the foregoing problems, and an object thereof is to provide a substrate treating liquid capable of removing a liquid adhered to the surface of a substrate while preventing partial or local collapse of a pattern formed on the surface of the substrate.
  • the substrate treating liquid according to the present invention is a substrate treating liquid which is used for removing a liquid on a substrate having a pattern-formed surface, comprises cyclohexanone oxime as a sublimable substance, and at least one solvent selected from the group consisting of alcohols, ketones, ethers, cycloalkanes and water.
  • the substrate treating liquid with the configuration mentioned above enables the removal of the liquid while preventing a collapse of a pattern due to the principle of sublimation drying (or freeze-drying).
  • the substrate treating liquid with the configuration mentioned above can satisfactorily inhibit the collapse of the pattern in the partial or local region of the pattern-formed surface of the substrate, as compared with a substrate treating liquid using a conventional sublimable substance, by including cyclohexanone oxime as the sublimable substance and a solvent such as alcohols.
  • the substrate treating liquid with the configuration mentioned above can also inhibit the collapse of the pattern in the partial or local region, as compared with a conventional substrate treating liquid, even when the substrate has not only a hydrophobic pattern-formed surface but also a hydrophilic pattern-formed surface.
  • the substrate treating liquid with the configuration mentioned above can also inhibit the collapse of the pattern in the partial or local region, as compared with a conventional substrate treating liquid, even when the substrate has a fine pattern with a large aspect ratio.
  • the content of the cyclohexanone oxime is in a range of 0.1% by volume or more and 10% by volume or less based on the total volume of the substrate treating liquid.
  • the solvent is at least one selected from the group consisting of methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol, cyclohexanol, acetone, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, cyclohexane and water.
  • the substrate treating liquid of the present invention can inhibit the collapse of the pattern on the pattern-formed surface of the substrate, as compared with a substrate treating liquid containing a conventional sublimable substance, and particularly can satisfactorily inhibit the collapse of the pattern in the partial or local region of the pattern-formed surface.
  • the substrate treating liquid can also satisfactorily inhibit the collapse of the pattern in the partial or local region, as compared with a conventional substrate treating liquid, even when the substrate has a hydrophilic pattern-formed surface, and the substrate has a fine pattern with a large aspect ratio.
  • the substrate treating liquid according to the embodiment of the present invention will be described below.
  • substrate refers to various substrates such as a semiconductor substrate, a substrate for a photomask glass, a substrate for a liquid crystal display glass, a substrate for a plasma display glass, a field emission display (FED) substrate, a substrate for an optical disc, a substrate for a magnetic disc, and a substrate for a magneto-optical disc.
  • FED field emission display
  • a substrate for an optical disc a substrate for a magnetic disc
  • magneto-optical disc a magneto-optical disc.
  • Pattern-formed surface as used herein means a surface in which a concave-convex pattern is formed in an arbitrary region in the substrate regardless of the surface with a planar shape, a curved shape or a concave-convex shape.
  • “Sublimable” as used herein means that a single substance, a compound or a mixture has the property of changing its phase from a solid phase to a gas phase or from a gas phase to a solid phase without the intervention of a liquid phase, and “sublimable substance” means a substance which has the sublimation property mentioned above.
  • the substrate treating liquid according to the present embodiment includes at least cyclohexanone oxime and a solvent.
  • the substrate treating liquid according to the present embodiment performs a function which assists the drying treatment.
  • Cyclohexanone oxime is represented by the following chemical formula (1) and can function as the sublimable substance in the substrate treating liquid according to the present embodiment.
  • Cyclohexanone oxime has the following physical property values: a freezing point of 90.5° C., a boiling point of 210° C., a vapor pressure of 0.00717 Torr to 251.458 Torr (0.96 Pa to 33.52 kPa), a melting entropy ⁇ S of 30.0 J/mol ⁇ K, and an n-octanol/water partition coefficient of +1.2.
  • a freezing point 90.5° C.
  • a boiling point of 210° C. a vapor pressure of 0.00717 Torr to 251.458 Torr (0.96 Pa to 33.52 kPa)
  • a melting entropy ⁇ S of 30.0 J/mol ⁇ K
  • an n-octanol/water partition coefficient of +1.2.
  • cyclohexanone oxime is present in the substrate treating liquid in a state of being dissolved in a solvent.
  • the content of cyclohexanone oxime is appropriately set, for example, according to supplying conditions when the substrate treating liquid is supplied onto a pattern-formed surface of the substrate, and is preferably 0.1% by volume or more and 10% by volume or less, more preferably 1.25% by volume or more and 5% by volume or less, and particularly preferably 2% by volume or more and 4% by volume or less, based on the total volume of the substrate treating liquid.
  • the content of cyclohexanone oxime is appropriately set, for example, according to supplying conditions when the substrate treating liquid is supplied onto a pattern-formed surface of the substrate, and is preferably 0.1% by volume or more and 10% by volume or less, more preferably 1.25% by volume or more and 5% by volume or less, and particularly preferably 2% by volume or more and 4% by volume or less, based on the total volume of the substrate treating liquid.
  • Normal temperature means a temperature in a range of 5° C. to 35° C.
  • Solubility means that 10 g or more of cyclohexanone oxime is dissolved in 100 g of the solvent at 23° C.
  • the solvent can function as a solvent which dissolves cyclohexanone oxime.
  • the solvent is at least one selected from the group consisting of alcohols, ketones, ethers, cycloalkanes and water.
  • alcohols mentioned above include, but are not particularly limited to, methyl alcohol (melting point: ⁇ 98° C., n-octanol/water partition coefficient: ⁇ 0.82 to ⁇ 0.66), ethyl alcohol (melting point: ⁇ 117° C., n-octanol/water partition coefficient: ⁇ 0.32), isopropyl alcohol (melting point: ⁇ 90° C., n-octanol/water partition coefficient: +0.05), n-butyl alcohol (melting point: ⁇ 90° C., n-octanol/water partition coefficient: +0.88), tert-butyl alcohol (melting point: 25° C., n-octanol/water partition coefficient: +0.3), cyclohexanol (melting point: 23° C. to 25° C., n-octanol/water partition coefficient: +1.2) and the like.
  • methyl alcohol melting point: ⁇ 98° C.
  • ketones mentioned above include, but are not particularly limited to, acetone (melting point: ⁇ 95° C., n-octanol/water partition coefficient: ⁇ 0.24) and the like.
  • ethers mentioned above include, but are not particularly limited to, propylene glycol monoethyl ether (melting point: ⁇ 100° C., n-octanol/water partition coefficient: +0.3), propylene glycol monomethyl ether acetate (melting point: ⁇ 87° C., n-octanol/water partition coefficient: +0.43) and the like.
  • cycloalkanes mentioned above include, but are not particularly limited to, cyclohexane (melting point: 7° C., n-octanol/water partition coefficient: +3.4) and the like.
  • Examples of water mentioned above include, but are not particularly limited to, pure water and the like.
  • the solvent is preferably a solvent such that cyclohexanone oxime exhibits satisfactory solubility.
  • isopropyl alcohol or the like is preferably exemplified from the viewpoint of being capable of satisfactorily inhibiting pattern collapse in the partial or local region.
  • the n-octanol/water partition coefficient of the solvent is preferably in a range of ⁇ 0.85 to +3.4, more preferably ⁇ 0.82 to +2.2, still more preferably ⁇ 0.82 to +1.2, and particularly preferably 0 to +1.2.
  • the vapor pressure at a normal temperature of the solvent is preferably 500 Pa or more, more preferably 1,000 Pa or more, and particularly preferably 5,000 Pa or more.
  • the vapor pressure of the solvent is preferably set at 10 kPa or less.
  • Examples of the method for producing a substrate treating liquid according to the present embodiment include, but are not particularly limited to, a method in which crystals of cyclohexanone oxime are added to a solvent at a normal temperature under atmospheric pressure such that a fixed content is achieved.
  • the environment “under atmospheric pressure” means an environment under a pressure of 0.7 atm or more and 1.3 atm or less with the standard atmospheric pressure (1 atmosphere, 1,013 hPa) in the center.
  • filtration may be performed after adding crystals of cyclohexanone oxime to the solvent. This makes it possible to reduce or prevent the generation of the residue derived from the substrate treating liquid on the pattern-formed surface when the substrate treating liquid is supplied onto the pattern-formed surface of the substrate and used for removing the liquid.
  • filtration method There is no particular limitation on the filtration method and, for example, filtration with a filter can be employed.
  • the substrate treating liquid according to the present embodiment can be stored at a normal temperature. From the viewpoint of inhibiting a change in concentration of cyclohexanone oxime due to evaporation of the solvent, it is preferable to store the substrate treating liquid at low temperature, e.g., about 5° C. When using the substrate treating liquid stored at low temperature, the substrate treating liquid is preferably used after controlling the liquid temperature of the substrate treating liquid to the operating temperature or room temperature, from the viewpoint of preventing mixing of moisture due to condensation.
  • the substrate treating liquid according to the present embodiment can be used, for example, for removing a liquid on a substrate having a pattern-formed surface.
  • liquid to be removed examples include isopropyl alcohol (IPA) or the like which is replaced from a washing liquid so as to remove the washing liquid for washing the pattern-formed surface of the substrate.
  • IPA isopropyl alcohol
  • the substrate treating liquid according to the present embodiment is applied onto a pattern-formed surface of the substrate to which IPA is adhered, thus forming a liquid film of the substrate treating liquid.
  • the substrate treating liquid is preferably supplied while rotating the substrate around, as a rotation axis, a vertical direction in the center of the substrate.
  • the substrate treating liquid can be supplied from above the center of the substrate.
  • the substrate treating liquid thus supplied onto the surface of the substrate flows toward the periphery of the substrate from the vicinity of the center of the surface of the substrate by a centrifugal force generated by the rotation of the substrate, thus enabling diffusion over the surface of the substrate.
  • the rotation speed of the substrate can vary depending on the amount of the substrate treating liquid supplied, the content of cyclohexanone oxime in the substrate treating liquid, the thickness of the liquid film of the substrate treating liquid and the like. Usually, the rotation speed of the substrate is appropriately selected in a range of 100 rpm to 3,000 rpm.
  • the liquid film of the substrate treating liquid is solidified to form a solidified film of the substrate treating liquid, more specifically, cyclohexanone oxime.
  • the solidification method include, but are not particularly limited to, a method in which the solvent in the substrate treating liquid is evaporated by continuously rotating the substrate, thus precipitating cyclohexanone oxime.
  • the rotation speed of the substrate is appropriately selected in a range of 100 rpm to 3,000 rpm.
  • Other solidification methods also include a method in which a nitrogen gas is blown from above the substrate treating liquid and a solvent, which is present as a gas above the substrate, is exhausted and thus the solvent in the substrate treating liquid is evaporated (volatilized).
  • the temperature of the nitrogen gas can be set in a range of 0° C. to 80° C.
  • the nitrogen gas is preferably supplied while rotating the substrate, similar to the case where the substrate treating liquid is supplied.
  • the rotation speed of the substrate can vary depending on the amount of the nitrogen gas supplied. Usually, the rotation speed of the substrate is appropriately selected in a range of 100 rpm to 3,000 rpm.
  • the liquid film of the substrate treating liquid may be solidified under cooling by being directly brought into contact with the nitrogen gas.
  • the solidification method of the liquid film of the substrate treating liquid in addition to a solvent evaporation method using the nitrogen gas, a method in which the liquid film of the substrate treating liquid is cooled by bringing cold water into contact with the back side of the substrate, a method in which the solvent in the substrate treating liquid is evaporated by bringing warm water into contact with the back side of the substrate, thus leading to the precipitation of cyclohexanone oxime, and the like.
  • the temperature of cold water can be set, for example, in a range of 0° C. to 20° C.
  • the temperature of warm water can be set, for example, in a range of 25° C. to 80° C.
  • the solidified film is sublimed in a gas state without passing through a liquid state to remove the solidified film.
  • the sublimation method include, but are not particularly limited to, a method in which a nitrogen gas is contacted by directly blowing over the liquid film of the substrate treating liquid, and the like.
  • the temperature of the nitrogen gas can be set, for example, in a range of 0° C. to 80° C.
  • the nitrogen gas is preferably supplied while rotating the substrate, similar to the case where the liquid film of the substrate treating liquid is solidified.
  • the rotation speed of the substrate can vary depending on the amount of the nitrogen gas supplied and the like. Usually, the rotation speed of the substrate is appropriately selected in a range of 100 rpm to 3,000 rpm.
  • the solidified film is naturally sublimated without blowing over the nitrogen gas, and the nitrogen gas is preferably brown from the viewpoint of shortening the drying time (the time until the solidified film is removed by sublimation after the formation of the solidified film) leading to an improvement in throughput.
  • the substrate treating liquid according to the present embodiment can satisfactorily inhibit the collapse of the pattern in the partial or local region of the pattern-formed surface of the substrate, as compared with a substrate treating liquid containing a conventional sublimable substance, even when the substrate has a hydrophilic pattern-formed surface, and the substrate has a fine pattern with a large aspect ratio.
  • cyclohexanone oxime is present in a state of being dissolved in the substrate treating liquid.
  • the present invention is not limited to this aspect and, for example, cyclohexanone oxime may be present in the substrate treating liquid in a molten state.
  • “Molten state” as used herein means a state where cyclohexanone oxime is completely or partially melted to have fluidity and thus cyclohexanone oxime is in a liquid state.
  • cyclohexanone oxime When cyclohexanone oxime is included in the substrate treating liquid in a molten state, of the solvents exemplified above, preferred is a solvent with which cyclohexanone oxime in the molten state exhibits.
  • silicon substrates A and B having a model pattern formed on the surface was prepared, both substrates having a diameter of 300 mm.
  • a pattern is formed in a manner such that cylinders each having an aspect ratio of 18.4 are arranged at intervals of about 17.7 nm.
  • a pattern is formed in a manner such that cylinders each having an aspect ratio of 22.6 are arranged at intervals of about 16.7 nm.
  • the silicon substrate B was subjected to a drying treatment by the following procedure, and the effect of inhibiting pattern collapse was evaluated.
  • DIW deionized water
  • IPA was supplied onto the pattern-formed surface of the silicon substrate B. IPA was supplied while rotating the silicon substrate B around, as a rotation axis, a vertical direction in the center of the silicon substrate B. IPA was supplied from the vertical direction in the center of the silicon substrate B. Whereby, DIW on the pattern-formed surface of the silicon substrate B was replaced by IPA.
  • the rotation speed of the silicon substrate B was set at 500 rpm.
  • a substrate treating liquid having a liquid temperature of 23° C. was supplied onto the pattern-formed surface of the silicon substrate B, to which IPA is adhered.
  • the substrate treating liquid was supplied while rotating the silicon substrate B around, as a rotation axis, a vertical direction in the center of the silicon substrate B.
  • the substrate treating liquid was supplied from the vertical direction in the center of the silicon substrate B.
  • the substrate treating liquid thus supplied onto the surface of the silicon substrate B flows toward the periphery of the silicon substrate B from the vicinity of the center of the surface of the silicon substrate B by a centrifugal force generated by the rotation of the silicon substrate B, thus enabling diffusion over the surface of the silicon substrate B.
  • IPA adhered on the pattern-formed surface was replaced by the substrate treating liquid to form a liquid film made of the substrate treating liquid.
  • the rotation speed of the silicon substrate B was set at 300 rpm.
  • the time from the starting of supplying of the substrate treating liquid to the formation of the liquid film of the substrate treating liquid was set at 30 seconds.
  • the substrate treating liquid a liquid prepared by dissolving cyclohexanone oxime in isopropyl alcohol as a solvent was used.
  • the content of cyclohexanone oxime was set at 0.76% by volume based on the total volume of the substrate treating liquid.
  • a nitrogen gas at 7° C. was supplied onto the surface of the silicon substrate B on which the liquid film of the substrate treating liquid is formed.
  • the nitrogen gas was supplied while rotating the silicon substrate B around, as a rotation axis, a vertical direction in the center of the silicon substrate B.
  • the nitrogen gas was supplied from the vertical direction in the center of the silicon substrate B.
  • the liquid film was solidified (precipitated) by this solvent evaporation of the liquid film to form an amorphous solidified film having high visible light transmittance.
  • the rotation speed of the silicon substrate B was set at 300 rpm.
  • the silicon substrate B was rotated until the solidified film is formed.
  • the amount of the nitrogen gas supplied was set at 40 L/min.
  • the nitrogen gas at 7° C. was continuously supplied while rotating the silicon substrate B, and the solidified film was sublimated.
  • the rotation speed of the silicon substrate B was set at 1,500 rpm.
  • the amount of the nitrogen gas supplied was set at 40 L/min, and the supplying time of nitrogen gas was set at 300 seconds.
  • the solidified film was removed from the pattern-formed surface of the silicon substrate B, followed by sublimation drying.
  • a collapse rate of the pattern on the silicon substrate B was calculated, and the effect of inhibiting pattern collapse on the pattern-formed surface was evaluated by the collapse rate. Specifically, the total number of projections and the number of projections collapsed in the SEM image were counted by a scanning electron microscope (manufactured by Hitachi High-Technologies, Japan, Model number: S-4800) and then the collapse rate of the pattern was calculated by the following formula. As a result, the collapse rate of the pattern was 3.2%. The occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface. The results are shown in Table 1.
  • Collapse rate (%) (number of projections collapsed in arbitrary region)/(total number of projections in the region) ⁇ 100
  • the criterion for evaluating the treating in Table 1 is as follows.
  • the pattern collapse rate is in the range of 0% or more and 1% or less.
  • the pattern collapse rate is in the range of greater than 1% and 5% or less.
  • the pattern collapse rate is in a range greater than 5%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 0 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.42%. The occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 1.28%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate B when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate B was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate B was performed.
  • the effect of inhibiting pattern collapse was also evaluated.
  • the collapse rate of the pattern was 0.89%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 1.47%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 1.7%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 1.25% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 3,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 0 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.56%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.72%. The occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.52%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 3.86%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 3,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 2.16%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 0 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100.00%.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 99.80%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated.
  • the collapse rate of the pattern was 13.10%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.44%. The occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 3,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0.56%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 3 Sublimable substance Cyclohexanone oxime Solvent Isopropyl alcohol Content of sublimable 0.76 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 substance (% by volume)
  • Type of silicon B A A A B A A A A substrate Rotation speed in 300 0 500 1,000 1,000 1,500 2,000 2,500 3,000 supplying step (rpm) Pattern collapse 3.2 100.00 0.42 1.28 0.89 1.47 1.7 100.00 100.00 rate (%) Presence or absence Absent Absent Absent Absent Absent Absent Absent Absent Absent of unevenness in collapse of pattern Evaluation of Good Failure Very Good Very Good Good Failure Failure treating good good good
  • Example 11 Sublimable substance Cyclohexanone oxime Solvent Isopropyl alcohol Content of sublimable 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 substance (% by volume) Type of silicon A A A A A A A A A A A A A A A A A A A A substrate Rotation speed in 0 500 1,000 1,500 2,000 2,500 3,000 supplying step (rpm) Pattern collapse 100.00 100.00 0.56 0.72 0.52 3.86 2.16 rate (%) Presence or absence Absent Absent Absent Absent Absent Absent Absent of unevenness in collapse of pattern Evaluation of Failure Failure Very Very Very Good Good treating good good good good
  • Example 13 Sublimable substance Cyclohexanone oxime Solvent Isopropyl alcohol Content of sublimable 5 5 5 5 5 substance (% by volume) Type of silicon A A A A A A A A A A A A A A A A A substrate Rotation speed 0 5,00 1,000 2,000 3,000 in supplying step (rpm) Pattern collapse 100.00 99.80 13.10 0.44 0.56 rate (%) Presence or absence of Absent Present Present Absent Absent unevenness in collapse of pattern Evaluation of Failure Failure Failure Failure Very good Very good treating
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 12.22%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 22.91%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 12.19%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 98.80%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 3.92%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated.
  • the collapse rate of the pattern was 99.14%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 13.41%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 87.19%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • N-butyl alcohol was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 66.60%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • Example 10 Example 11
  • Example 14 Sublimable substance Cyclohexanone oxime Solvent N-butyl alcohol Content of sublimable 10 10 10 substance (% by volume) Type of silicon A A A A substrate Rotation speed 500 1,000 1,500 2,000 in supplying step (rpm) Pattern collapse 12.22 22.91 12.19 0.00 rate (%) Presence or absence of Present Present Present Absent unevenness in collapse of pattern Evaluation of Failure Failure Failure Very good treating
  • Example 15 Example 16
  • Example 17 Sublimable substance Cyclohexanone oxime Solvent N-butyl alcohol Content of sublimable 5 5 5 5 substance (% by volume)
  • Type of silicon A
  • a A substrate Rotation speed 500 1,000 1,500 2,000 in supplying step (rpm)
  • Pattern collapse 98.80 3.92 0.00 0.00 rate (%) Presence or absence of Present Absent Absent Absent unevenness in collapse of pattern Evaluation of Failure Good Very good Very good treating
  • Example 16 Sublimable substance Cyclohexanone oxime Solvent N-butyl alcohol Content of sublimable 2.5 2.5 2.5 2.5 substance (% by volume) Type of silicon A A A A substrate Rotation speed 500 1,000 1,500 2,000 in supplying step (rpm) Pattern collapse 99.14 13.41 87.19 66.60 rate (%) Presence or absence of Present Absent Absent Absent unevenness in collapse of pattern Evaluation of Failure Failure Failure Failure treating
  • a silicon substrate A was used as the substrate.
  • Propylene glycol monomethyl ether acetate (PGMEA) was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 4.32%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 91.90%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 13.36%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 76.49%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 83.27%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 4.85%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 0%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 4.98%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 25.43%. The occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 99.14%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 100%.
  • a silicon substrate A was used as the substrate.
  • PGMEA was used as the solvent of the substrate treating liquid.
  • the content of cyclohexanone oxime was changed to 2.5% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 2,000 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 99.07%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was not confirmed on the pattern-formed surface.
  • Example 17 Example 18 Example 19 Sublimable substance Cyclohexanone oxime Solvent Propylene glycol monomethyl ether acetate Content of sublimable 10 10 10 substance (% by volume) Type of silicon A A A A substrate Rotation speed 500 1,000 1,500 2,000 in supplying step (rpm) Pattern collapse 4.32 91.90 13.36 76.49 rate (%) Presence or absence of Absent Present Present Present unevenness in collapse of pattern Evaluation of Good Failure Failure Failure treating
  • Example 19 Example 20
  • Example 21 Sublimable substance Cyclohexanone oxime Solvent Propylene glycol monomethyl ether acetate Content of sublimable 5 5 5 5 substance (% by volume)
  • Type of silicon A
  • a A substrate Rotation speed 500 1,000 1,500 2,000 in supplying step (rpm)
  • Pattern collapse 83.27 4.85 0.00 4.98 rate (%) Presence or absence of Present Absent Absent Absent unevenness in collapse of pattern Evaluation of Failure Good Very good Good treating
  • a silicon substrate A was used as the substrate.
  • a substrate treating liquid used as the substrate treating liquid was prepared by dissolving camphor (melting point: 175° C. to 180° C., n-octanol/water partition coefficient: 2.34) in isopropyl alcohol and adjusting the content of camphor to 0.99% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was about 40%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • a substrate treating liquid used as the substrate treating liquid was prepared by dissolving cyclohexanol (melting point: about 24° C., n-octanol/water partition coefficient: 1.25) in isopropyl alcohol and adjusting the content of camphor to 10% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 86.9%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • a silicon substrate A was used as the substrate.
  • a substrate treating liquid used as the substrate treating liquid was prepared by dissolving cyclohexanol (melting point: about 24° C., n-octanol/water partition coefficient: 1.25) in isopropyl alcohol and adjusting the content of camphor to 20% by volume based on the total volume of the substrate treating liquid.
  • the rotation speed of the silicon substrate A when the substrate treating liquid is supplied onto the pattern-formed surface of the silicon substrate A was changed to 1,500 rpm.
  • a drying treatment of the silicon substrate A was performed.
  • the effect of inhibiting pattern collapse was also evaluated. As a result, the collapse rate of the pattern was 87.4%.
  • the occurrence of collapse (unevenness in collapse) of the pattern in the partial or local region was confirmed on the pattern-formed surface.
  • Example 2 Example 3 Sublimable substance Camphor Cyclohexanol Solvent Isopropyl alcohol Content of sublimable 0.99 10 20 substance (% by volume) Type of silicon A A A substrate Rotation speed 1,500 1,500 1,500 in supplying step (rpm) Pattern collapse about 40 86.9 87.4 rate (%) Presence or absence of Present Present Present unevenness in collapse of pattern Evaluation of Failure Failure Failure treating
  • the present invention can be applied to dry technology for removing a liquid adhered to the surface of a substrate, and substrate processing technology in general for processing the surface of a substrate using the dry technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
US16/910,116 2019-06-28 2020-06-24 Substrate treating liquid Abandoned US20200411307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/423,170 US20240162033A1 (en) 2019-06-28 2024-01-25 Substrate treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120655 2019-06-28
JP2019-120655 2019-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,170 Continuation US20240162033A1 (en) 2019-06-28 2024-01-25 Substrate treating method

Publications (1)

Publication Number Publication Date
US20200411307A1 true US20200411307A1 (en) 2020-12-31

Family

ID=73888095

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/910,116 Abandoned US20200411307A1 (en) 2019-06-28 2020-06-24 Substrate treating liquid
US18/423,170 Pending US20240162033A1 (en) 2019-06-28 2024-01-25 Substrate treating method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/423,170 Pending US20240162033A1 (en) 2019-06-28 2024-01-25 Substrate treating method

Country Status (5)

Country Link
US (2) US20200411307A1 (zh)
JP (1) JP7401042B2 (zh)
KR (1) KR102338509B1 (zh)
CN (1) CN112151410A (zh)
TW (1) TWI756719B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417513B2 (en) * 2019-06-28 2022-08-16 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022186047A (ja) * 2021-06-04 2022-12-15 株式会社Screenホールディングス 基板処理方法および昇華乾燥用処理剤
JP2023046626A (ja) * 2021-09-24 2023-04-05 株式会社Screenホールディングス 基板処理方法と基板処理装置と処理液
WO2023068133A1 (ja) * 2021-10-22 2023-04-27 株式会社Screenホールディングス 基板処理方法と基板処理装置
JP2024060140A (ja) * 2022-10-19 2024-05-02 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2024126452A1 (en) 2022-12-15 2024-06-20 Merck Patent Gmbh Substrate treatment solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775449A (en) * 1986-12-29 1988-10-04 General Electric Company Treatment of a polyimide surface to improve the adhesion of metal deposited thereon
US5451701A (en) * 1994-03-11 1995-09-19 Arco Chemical Technology, L.P. Integrated process for cyclohexanone oxime production

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044412A (ja) 1998-05-28 2000-02-15 Sumitomo Chem Co Ltd 衣料用防虫剤
JP5681560B2 (ja) * 2011-05-17 2015-03-11 東京エレクトロン株式会社 基板乾燥方法及び基板処理装置
JP6076887B2 (ja) 2013-11-29 2017-02-08 株式会社東芝 半導体装置の製造方法
JP6117711B2 (ja) * 2014-02-06 2017-04-19 信越化学工業株式会社 半導体基板の洗浄乾燥方法
KR102545804B1 (ko) 2015-12-04 2023-06-20 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
EP3340280A1 (en) 2016-12-26 2018-06-27 SCREEN Holdings Co., Ltd. Substrate treating apparatus and substrate treating method
JP7001423B2 (ja) 2016-12-26 2022-01-19 株式会社Screenホールディングス 基板処理装置及び基板処理方法
JP6271775B2 (ja) * 2017-01-05 2018-01-31 東芝メモリ株式会社 半導体装置の製造方法及び薬液
WO2019024892A1 (zh) * 2017-08-03 2019-02-07 无锡华瑛微电子技术有限公司 一种光刻胶的去除液及光刻胶的去除方法
JP6954793B2 (ja) 2017-09-25 2021-10-27 株式会社Screenホールディングス 基板処理方法、基板処理液及び基板処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775449A (en) * 1986-12-29 1988-10-04 General Electric Company Treatment of a polyimide surface to improve the adhesion of metal deposited thereon
US5451701A (en) * 1994-03-11 1995-09-19 Arco Chemical Technology, L.P. Integrated process for cyclohexanone oxime production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417513B2 (en) * 2019-06-28 2022-08-16 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
US11769663B2 (en) 2019-06-28 2023-09-26 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
KR20210001994A (ko) 2021-01-06
CN112151410A (zh) 2020-12-29
US20240162033A1 (en) 2024-05-16
TW202105498A (zh) 2021-02-01
TWI756719B (zh) 2022-03-01
JP2021010002A (ja) 2021-01-28
KR102338509B1 (ko) 2021-12-10
JP7401042B2 (ja) 2023-12-19

Similar Documents

Publication Publication Date Title
US20200411307A1 (en) Substrate treating liquid
US10153181B2 (en) Substrate treating apparatus and substrate treating method
US11574821B2 (en) Substrate treating method, substrate treating liquid and substrate treating apparatus
JP2013042094A (ja) ウェハの洗浄方法
EP1752829B1 (en) Polymer-stripping composition and method for removing a polymer
TWI741635B (zh) 基板處理方法及基板處理裝置
US20190030576A1 (en) Substrate treating method and substrate treating apparatus
JP2021009988A (ja) 基板処理方法および基板処理装置
JP2018056176A (ja) 基板処理装置及び基板処理方法
WO2019021664A1 (ja) 基板処理方法、基板処理液及び基板処理装置
KR20090012953A (ko) 반도체 소자용 식각액 및 이를 이용한 제조 방법
WO2020189688A1 (ja) 凹凸パターン乾燥用組成物、及び表面に凹凸パターンを有する基板の製造方法
JP7107754B2 (ja) 基板処理方法および基板処理装置
JP2022148451A (ja) 基板処理方法
KR102682999B1 (ko) 기판 처리 방법
EP4120324A1 (en) Sublimable film formation composition and method for producing substrate
EP3923316A1 (en) Novel method for forming silicon or silicon compound pattern in semiconductor manufacturing process
TWI843298B (zh) 基板處理方法及處理液評價方法
US20240120212A1 (en) Substrate treating method, substrate treating apparatus and substrate treating liquid
WO2023047698A1 (ja) 基板処理方法と基板処理装置と処理液
WO2023176824A1 (ja) 基板処理方法と処理液評価方法
TWI837583B (zh) 基板處理方法及處理液
TWI645030B (zh) Substrate processing apparatus and substrate processing method
US20230374669A1 (en) Wet Etching Method
WO2022201807A1 (ja) 基板処理方法および処理液

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCREEN HOLDINGS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SASAKI, YUTA;REEL/FRAME:053020/0977

Effective date: 20200617

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION