US20140065468A1 - Cell wiring module - Google Patents

Cell wiring module Download PDF

Info

Publication number
US20140065468A1
US20140065468A1 US14/114,807 US201214114807A US2014065468A1 US 20140065468 A1 US20140065468 A1 US 20140065468A1 US 201214114807 A US201214114807 A US 201214114807A US 2014065468 A1 US2014065468 A1 US 2014065468A1
Authority
US
United States
Prior art keywords
unit
connection
connection member
wiring module
cell wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/114,807
Other languages
English (en)
Inventor
Osamu Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Assigned to AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment AUTONETWORKS TECHNOLOGIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAYAMA, OSAMU
Assigned to AUTONETWORKS TECHNOLOGIES, LTD.,, SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., reassignment AUTONETWORKS TECHNOLOGIES, LTD., CORRECTIVE ASSIGNMENT TO CORRECT THE POSTAL CODE OF THE FIRST AND SECOND ASSIGNEE PREVIOUSLY RECORDED ON REEL 031510 FRAME 0829. ASSIGNOR(S) HEREBY CONFIRMS THE THE FIRST AND SECOND POSTAL CODE SHOULD BE 510-8503. Assignors: NAKAYAMA, OSAMU
Publication of US20140065468A1 publication Critical patent/US20140065468A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01M2/206
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cell wiring module.
  • an occurrence of dimensional errors in the cell module is not limited to spacing of electrodes connected by the bus bar (connection member).
  • the cell wiring module is fastened together with a bolt or the like.
  • a mounting failure may occur not only due to a dimensional error in spacing between the electrodes, but also due to a dimensional error between the main body of the single cell and the cell wiring module.
  • connection member includes an engaged portion.
  • at least one of the first unit and the second unit includes an engagement portion capable of engaging with the engaged portion with a predetermined clearance in the connection direction.
  • connection member After each of the units is fixated to the single cells by a portion other than the connection member, sliding of the connection member becomes possible in the range of the predetermined clearance. Accordingly, even in a case where a dimensional error occurs, the connection member can be displaced in the connection direction in the range of the predetermined clearance, and thus work of assembling the connection member can be facilitated.
  • the engaged portion is provided at a plurality of locations in the connection direction.
  • One of the first unit and the second unit includes a fitting projection projecting in the connection direction of the connection member.
  • the other of the first unit and the second unit includes a fitting recess fitting together with the fitting projection.
  • connection members for connection between the first unit and the second unit are placed on base plates, and each of the base plates are fitted together.
  • the first unit and the second unit have identical shapes.
  • connection members are attached to both the first unit and the second unit in a plurality of rows. Of ends of the first unit on the second unit side, an end corresponding to a first row of the connection members protrudes toward the second unit more than an end corresponding to a second row of the connection members. Of ends of the second unit on the first unit side, an end corresponding to the second row of the connection members protrudes toward the first unit more than an end corresponding to the first row of connection members.
  • the first unit and the second unit include positioners for positioning with respect to the single cells.
  • the first unit and the second unit can be positioned with the positioners.
  • a dimensional error occurring between the single cells and each of the units can be absorbed by sliding between the first unit or the second unit and the connection member.
  • the connection members can be fastened.
  • the cell wiring module is fixated to the single cells by inserting a pole-shaped terminal or a shaft of a bolt through a through-hole of the connection member.
  • the through-hole has an elliptical shape long in the connection direction of the connection member.
  • the plurality of single cells have a flat shape and are aligned in a long axis direction of a surface having the electrode terminals, and the connection member connects the electrode terminals adjacent to each other in the long axis direction.
  • Variation in dimensional accuracy is particularly likely to occur with regard to the long axis direction of the single cell due to the length of the axis, and thus a dimensional error between the plurality of single cells and the cell wiring module is likely to increase.
  • failure caused by a dimensional error can be prevented in such a case where dimensional errors are likely to occur.
  • FIG. 1 is a plan view illustrating a cell module according to Embodiment 1.
  • FIG. 2 is a plan view illustrating a cell wiring module.
  • FIG. 3 is a plan view illustrating a connection member.
  • FIG. 4 is a plan view illustrating a first unit and a second unit.
  • FIG. 5 is an explanatory diagram of a clearance created between an engaged recess and an engagement projection.
  • FIG. 6 is a plan view illustrating a cell module according to Embodiment 2.
  • FIG. 8 is a plan view illustrating a long connection member.
  • FIG. 9 is a plan view illustrating a first unit, a second unit, and a connection unit.
  • a cell wiring module 20 of the present embodiment connects, with a connection member 21 , electrode terminals 12 A and 12 B of adjacent single cells 11 .
  • the cell wiring module 20 is attached to a cell module 10 , which is used as a vehicle power source in an electric or hybrid automobile, for example.
  • the description is given with upward in FIG. 1 treated as forward and downward treated as rearward for a front-back direction, while a near face of a sheet of FIG. 1 is treated as upward and a far face of the sheet is treated as downward for a vertical direction.
  • the cell module 10 is configured to include, for example, a plurality (eleven, in FIG. 1 ) of the single cells 11 (a bank of single cells) and the cell wiring module 20 connecting the plurality of single cells 11 .
  • the single cells 11 include terminals 12 A to 12 C projecting perpendicularly from a top surface of a flat, rectangular main body, the main body housing a power generating element (not shown in the drawings) on an interior thereof.
  • the terminals 12 A to 12 C are configured by a front-back pair of electrode terminals 12 A and 12 B (in the drawings, 12 A is a positive electrode and 12 B is a negative electrode), and a squared tubular terminal for voltage detection 12 C provided at a portion intermediate to the pair of electrode terminals 12 A and 12 B.
  • the terminal for voltage detection 12 C detects a voltage of substantially a center of the electrode terminals 12 A and 12 B.
  • Each of the electrode terminals 12 A to 12 C is a squared tubular nut (square nut) with a circular screw hole running through a center thereof.
  • a shaft of a bolt is threaded with the electrode terminals 12 A to 12 C to fixate each of the connection members 21 and a voltage detection terminal 24 .
  • Each of the single cells 11 is arranged in an orientation such that polarities of adjacent electrode terminals 12 A and 12 B are opposite.
  • the bank of single cells is fixated by a holding plate not shown in the drawings.
  • the cell wiring module 20 is configured with a plurality of the connection members 21 connecting the electrode terminals 12 A and 12 B of the adjacent single cells 11 ; a plurality of the voltage detection terminals 24 detecting the voltage of the single cells 11 ; and a linked connection unit 20 A made of a synthetic resin and housing the plurality of connection members 21 and the plurality of voltage detection terminals 24 .
  • connection member 21 is configured with a metal such as copper, a copper alloy, stainless steel (SUS), or aluminum. As shown in FIG. 3 , the connection member 21 has a plate shape of a length corresponding to a measurement between the adjacent electrode terminals 12 A and 12 B. In addition, a pair of through-holes 22 are formed running through the connection member 21 , the shaft of the bolt being inserted through the through-holes 22 (communicating with the screw holes of the electrode terminals 12 A and 12 B). A shape of the through-holes 22 is an elliptical shape long in a left-right direction (a connection direction).
  • a lateral edge in the connection direction of the connection member 21 has engaged recesses 23 formed at four locations on two sides of the through-holes 22 , the engaged recesses 23 being formed by cutting a rectangular shape (step shape) with length in the front-back direction out of the lateral edge (formed by narrowing a width dimension of the connection member 21 in the step shape). Moreover, corners where the engaged recesses 23 constrict in the step shape have a slightly tapered shape.
  • connection member 21 is configured with a linking connection member 21 A linking a first unit 26 and a second unit 43 , and with a housed connection member 21 B housed entirely on the first unit 26 and the second unit 43 .
  • the connection members 21 A and 21 B have identical shapes.
  • the engaged recess 23 provided on the linking connection member 21 A of the connection members 21 is an example of an “engaged portion” configuring the present invention.
  • the voltage detection terminal 24 includes a crimped portion where a voltage detection wire (not shown in the drawings) is crimped on a rear side of a rectangular flat plate portion.
  • a circular through-hole 25 is formed in a center portion of the flat plate portion, through which the shaft of the bolt can be inserted.
  • an exposed core wire portion on the end of the voltage detection wire is crimped.
  • the voltage detection terminal 24 is positioned so as to line up with one side of each of the connection members 21 , in addition to a detection housing.
  • a recess is formed on a periphery of the connection members 21 , the voltage detection terminal 24 fitting into the recess.
  • the voltage detection wire is run through a wire through-trench 41 and connected to a cell ECU not shown in the drawings.
  • a microcomputer, an element, and the like is installed in the cell ECU, which has a known configuration that includes functions for detection of the voltage, current, temperature, and the like of the single cells 11 , and for performing control of power storage and release of each of the single cells 11 , and the like.
  • the linked connection unit 20 A is configured to link, via the connection member 21 , the first unit 26 and the second unit 43 , the first unit 26 being provided on a first left-right direction side and housing the plurality of connection members 21 and the voltage detection terminals 24 , the second unit 43 being provided on a second left-right direction side and housing the plurality of connection members 21 and the voltage detection terminals 24 .
  • the first unit 26 is made of a synthetic resin.
  • the first unit 26 has a shape in which a front end protrudes in a step shape (crank shape) further to the right than a back end, and in which the back end protrudes in a step shape (crank shape) further to the left than the front end.
  • the first unit 26 includes a housing 27 , a holder 31 , a detection housing 38 , and the wire through-trench 41 .
  • the housing 27 is provided to each of a front and back of the first unit 26 and houses the housed connection member 21 B.
  • the holder 31 is provided to left and right ends aligned with the housing 27 and holds a first side in a length direction (connection direction) of the linking connection member 21 A.
  • the detection housing 38 is provided aligned with a front-back direction center portion and houses the voltage detection terminal 24 .
  • the voltage detection wire is passed through the wire through-trench 41 .
  • the housing portion 27 includes a base plate 28 on which the housed connection member 21 B is placed, and a dividing wall 29 having a squared tube shape surrounding the housed connection member 21 B.
  • the base plate 28 links base ends of opposing dividing walls 29 at a left-right direction center portion of the dividing walls 29 .
  • Rectangular openings are formed to the left and right of the base plate 28 .
  • the openings are portions into which the electrode terminals 12 A and 12 B advance, and are slightly larger than the electrode terminals 12 A and 12 B.
  • the fitting projections 45 and 46 are both pole-shaped members and have a flat shape that is thick-walled in the vertical direction and thin-walled in the front-back direction.
  • the fitting recesses 47 and 48 are formed with a depth and size capable of fitting together with the fitting projections 45 and 46 by inserting the fitting projections 45 and 46 until forefront ends thereof are halted.
  • the wire through-trench 41 is provided to front and back of the detection housing 38 so as to lie alongside the detection housings 38 , which are aligned left-to-right.
  • the holder 31 is provided to positions in each of four corners of the first unit 26 and includes a base plate 32 on which one end side of the linking connection member 21 A is placed, and a dividing wall 34 surrounding the one end side of the linking connection member 21 A on three sides.
  • the base plate 32 is formed on left and right end portions of the first unit 26 .
  • a base plate 32 A on a first left-right direction end has a shape in which both lateral edges rise up slightly, while a base plate 32 B is formed on a second left-right direction end.
  • the base plate 32 A of the first unit 26 is fitted together with the base plate 32 B of the second unit 43 and the base plate 32 B of the first unit 26 is fitted together with the base plate 32 A of the second unit 43 .
  • the base plate 32 A receives the base plate 32 B from below.
  • a forefront end of the base plate 32 B is capable of striking a portion formed on the base plate 32 A side, the portion having a diameter constricted in a step shape.
  • a portion with no base plate 32 forms a rectangular opening into which the cylindrical electrode terminals 12 A and 12 B can advance.
  • the dividing wall 34 is set to a height capable of preventing a short circuit caused by a tool or the like contacting the connection member 21 , the bolt, or the like.
  • the dividing wall 34 is configured with a pair of opposing walls opposing on front and back, and a side wall connecting the pair of opposing walls. A side opposite the side wall is left open.
  • a holding piece 36 is formed on each of the opposing walls for holding the linking connection member 21 A within the holders 31 (on the base plate 28 side).
  • the dividing wall 34 includes the squared “U”-shaped notch, thereby forming the holding piece 36 on an inner side of the notch.
  • the holding piece 36 has a shape in which a projection dimension increases in a sloped shape (hook shape) toward the base plate 32 and, by positioning the forefront end side of the hook of the holding piece 36 above an edge portion of the linking connection member 21 A, the linking connection member 21 A is engaged between the bottom end of the holding piece 30 and the base plate 28 .
  • the linking connection member 21 A may also be rendered slidable in resistance to a force of the holding piece 36 pressing against the linking connection member 21 A, or rendered slidable by having a slight gap formed between the holding piece 36 and the linking connection member 21 A (without generating the press-down force).
  • a support wall covering the notched portions is integrally formed with the dividing wall 34 on the exterior side of each of the holding pieces 36 .
  • An engagement projection 37 (an example of an “engagement portion” configuring the present invention) is provided on an interior side of the dividing walls 34 (opposing walls), the engagement projection 37 allowing left-right direction displacement of the linking connection member 21 A within a predetermined range (engaging at or above the predetermined range) by engaging with the engaged recess 23 of the linking connection member 21 A.
  • the engagement projection 37 projects toward an interior in a rectangular shape (a step shape) on a base end portion of each of the opposing walls in a position corresponding to the engaged recess 23 of the linking connection member 21 A, i.e., in a position where the opening is formed through which the electrode terminals 12 A and 12 B are inserted.
  • the projection dimension of the engagement projection 37 is slightly smaller than a notched depth dimension of the engaged recess 23 in a lateral surface of the connection member 21 .
  • the vertical-direction position of the engagement projection 37 is the same as that of the engaged recess 23 of the connection member 21 . Corners of the engagement projection 37 have a tapered shape.
  • a length of the engagement projection 37 in the left-right direction (connection direction of the connection member 21 ) is smaller than a length of the engaged recess 23 in the left-right direction.
  • a dimension of the engaged recess 23 is a dimension in which predetermined clearances CL 1 and CL 2 have been added to a front and back of the engagement projection 37 .
  • the second unit 43 has a shape identical to that of the first unit 26 and thus, as shown in FIG. 4 , identical reference numerals to those of the first unit 26 are given to the second unit 43 and descriptions thereof are omitted.
  • the linking connection member 21 A becomes slidable (slide displaceable) with respect to the second unit 43 in the left-right direction in a range of the predetermined clearances CL 1 and CL 2 (CL 1 +CL 2 ).
  • the linking connection member 21 A also becomes slidable (slide displaceable) with respect to the first unit 26 in the left-right direction in the range of the predetermined clearances CL 1 and CL 2 (CL 1 +CL 2 ).
  • the cell wiring module 20 is formed in which the housed connection members 21 B are housed in each of the housings 27 with respect to the first unit 26 and the second unit 43 , the linking connection members 21 A are held by each of the holders 31 , and the voltage detection terminals 24 are mounted, the voltage detection wire being crimped in the voltage detection terminal 24 (see FIG. 2 ).
  • the cell wiring module 20 is mounted such that the positioners provided to the reverse side of each of the units 26 and 43 are positioned by each of the terminals for voltage detection 12 C of the plurality of single cells 11 positions.
  • the first unit 26 and the second unit 43 can be slid left and right relative to each other by an amount corresponding to the clearance generated by the engagement projection 37 and the engaged recess 23 .
  • the shaft of the bolt is passed through the through-holes 22 of each of the connection members 21 and the connection members 21 are bolt-fastened between the electrode terminals 12 A and 12 B.
  • the through-holes 22 have elliptical shapes long in the left-right direction, errors in the dimensional accuracy between the electrode terminals 12 A and 12 B can be absorbed by the elliptical through-holes 22 and the bolt-fastening can be performed more securely.
  • the cell wiring module 20 is configured to include a plurality of the connection members 21 connecting the adjacent electrode terminals of a plurality of the single cells 11 having positive and negative electrode terminals.
  • the cell wiring module 20 includes the first unit 26 and the second unit 43 , the first unit 26 housing the housed connection member 21 B (connection member), and the second unit 43 being connected to the first unit 26 by the linking connection member 21 A (different connection member) different from the housed connection member 21 B (connection member). Sliding occurs in the connection direction of the connection members 21 between the linking connection member 21 A (connection member) for connection and at least one of the first unit 26 and the second unit 43 .
  • the present embodiment even in a case where a dimensional error occurs between the single cells 11 and the cell wiring module 20 , sliding occurs in the connection direction of the connection members 21 between the linking connection member 21 A (connection member) for connection and (at least one of) the first unit 26 and the second unit 43 . Therefore, the dimensional error between the single cells 11 and the cell wiring module can be absorbed by sliding occurring between the linking connection member 21 A and at least one of the first unit 26 and the second unit 43 . Accordingly, failure caused by a dimensional error or the like when mounting the cell wiring module 20 can be prevented.
  • connection member 21 includes the engaged recess 23 (engaged portion).
  • at least one of the first unit 26 and the second unit 43 includes the engagement projection 37 (engagement portion) capable of engaging with the engaged recess 23 (engaged portion) with a predetermined clearance in the connection direction.
  • connection member 21 After each of the units is fixated to the single cells 11 by a portion other than the connection member 21 , sliding of the connection member becomes possible in the range of the predetermined clearance. Accordingly, even in a case where a dimensional error occurs, the connection member 21 can be displaced in the connection direction in the range of the predetermined clearance, and thus work of assembling the connection members 21 can be facilitated.
  • the engaged recess 23 (engaged portion) is provided at a plurality of locations in the connection direction. Therefore, as compared to a case where the engaged recess 23 (engaged portion) is provided in one location, a larger dimensional error can be absorbed and failure when mounting the cell wiring module 20 can be further prevented.
  • One of the first unit 26 and the second unit 43 includes the fitting projections 45 and 46 projecting in the connection direction of the connection members 21 .
  • the other of the first unit 26 and the second unit 43 includes the fitting recesses 47 and 48 fitting together with the fitting projections 45 and 46 . In this way, the fitting projections 45 and 46 and the fitting recesses 45 and 46 are fitted together, and thus positioning between the units 26 and 43 and inhibition of flexure deformation between the units 26 and 43 is facilitated.
  • the first unit 26 and the second unit 43 have identical shapes. Therefore, the first unit 26 and the second unit 43 can be universalized and the die for molding the first unit 26 and the second unit 43 can be universalized.
  • connection members 21 are attached to both the first unit 26 and the second unit 43 arranged in a plurality of rows.
  • the end 26 A corresponding to a first row of the connection members 21 protrudes toward the second unit 43 more than the end 26 B corresponding to a second row of the connection members 21 .
  • the end 43 B corresponding to the second row of the connection members 21 protrudes toward the first unit 26 more than the end 43 A corresponding to the first row of connection members 21 .
  • the first unit 26 and the second unit 43 include the positioners for positioning with respect to the single cells 11 .
  • the first unit 26 and the second unit 43 can be positioned with the positioners. Accordingly, after a dimensional error is resolved by sliding during positioning, the connection members can be fastened.
  • the cell wiring module 20 is fixated to the single cells 11 by inserting the shaft of the bolt through the through-hole 22 (through-hole) of the connection member 21 .
  • the through-hole 22 (through-hole) has an elliptical shape long in the connection direction of the connection member 21 .
  • the through-hole 22 (through-hole) of the connection member 21 has the elliptical shape long in the connection direction of the connection member 21 , and thus even when there is a dimensional error due to variation in the dimensional accuracy between terminals, the dimensional error can be absorbed and the shaft of the bolt can be inserted through the through-hole of the connection member 21 .
  • Embodiment 2 is described with reference to FIGS. 6 to 11 .
  • the description is given with upward in FIG. 6 treated as forward and downward treated as rearward for the front-back direction, while a near face of a sheet of FIG. 6 is treated as upward and a far face of the sheet is treated as downward for the vertical direction.
  • configurations identical to those of Embodiment 1 are given identical reference numerals and descriptions thereof are omitted.
  • a cell module 50 is configured to include, for example, ten (a plurality) of the single cells 11 and a cell wiring module 51 connecting the ten single cells 11 .
  • the ten single cells 11 are divided into three rows in a long axis (long side) direction of the top surface of the single cells 11 (a surface having the electrode terminals). Two rows on a left side are stacked in four layers in a short axis direction of the top surface of the single cells 11 , and one row on a right end is stacked in two layers in the short axis (short side) direction.
  • the cell wiring module 51 is configured to include a plurality of the connection members 21 (short connection members) connecting the electrode terminals 12 A and 12 B on the top surfaces of different single cells 11 adjacent in the short axis direction; a plurality of the long connection members 52 connecting the electrode terminals 12 A and 12 B of different single cells 11 adjacent in the long axis direction; the voltage detection terminal 24 connected to the voltage detection wire; two (a plurality of) first units 56 A and 56 B housing the connection members 21 and holding the long connection member 52 ; three (a plurality of) second units 65 A and 65 B coupled to the first unit via the connection members 21 and 52 ; and a connection unit 70 connected to the second units 65 A and 65 B.
  • the long connection member 52 is configured by a metal such as copper, a copper alloy, stainless steel (SUS), or aluminum. As shown in FIG. 8 , the long connection member 52 has a plate shape of a length (elongation) corresponding to a measurement between the connected electrode terminals 12 A and 12 B. In addition, a pair of through-holes 53 are formed running through the long connection member 52 at left and right ends thereof, the shaft of the bolt being inserted through the through-holes 53 (communicating with the screw holes of the electrode terminals 12 A and 12 B). A shape, of the through-holes 53 is an elliptical shape long in the left-right direction (the connection direction).
  • Engaged recesses 54 are formed on lateral edges on two sides of the through-holes 53 of the long connection member 52 , the engaged recesses 54 being formed by cutting a rectangular shape (step shape) with length in the left-right direction out of the lateral edge (formed by narrowing a width dimension of the long connection member 52 in the step shape). Corners where the engaged recess 54 constricts in the step shape have a slightly tapered shape.
  • the first units 56 A and 56 B are made of a synthetic resin and, as shown in FIG. 9 , are located on two sides of the second unit 65 B. Both the first units 56 A and 56 B include the housing 27 housing the connection members 21 ; the detection housing 38 housing the voltage detection terminal 24 ; first holders 58 A and 58 B holding one side in the connection direction of the connection members 21 and 52 ; and a first positioner 63 ( FIG. 11 ) provided to the reverse face of the detection housing 38 and having the terminal for voltage detection 12 C fitted and positioned therein.
  • the housing 27 houses the entire connection member 21 within a single unit and, as shown in FIG. 9 , includes the base plate 28 on which the connection member 21 is placed, the dividing wall 29 having a squared tubular shape surrounding the connection member 21 , and the pair of holding pieces 30 engaging the connection member 21 within the housing 27 .
  • the detection housing 38 includes the recess 39 , into which the voltage detection terminal 24 is fitted and through which the voltage detection wire is passed, and the rectangular opening 40 through which the terminal for voltage detection 12 C is passed. The voltage detection wire is led through one of the left and right grooves of the detection housing 38 toward the cell ECU.
  • the first holders 58 A and 58 B are positioned such that the first holder 58 A is provided so as to be capable of holding the connection member 21 , the first holder 58 B is provided so as to be capable of holding the long connection member 52 , and the mounted connection members 21 and 52 are in a mutually orthogonal relationship.
  • the first holders 58 A and 58 B both include a base plate 59 on which the connection members 21 and 52 are placed; a dividing wall 61 provided to a peripheral edge of the base plate 59 enclosing three sides and open on one side; a plurality of the holding pieces 36 projecting toward the inner surface of the dividing wall 61 and engaging on an upper surface side of the lateral edge of the connection members 21 and 52 ; and the engagement projection 37 allowing displacement (positioning drift) in the connection direction of the connection members 21 and 52 within a predetermined range (range of clearance) by engaging with the engaged recesses 23 and 54 of the connection members 21 and 52 .
  • a portion within the dividing walls 61 lacking the base plate 59 is an opening into which the top end portion of the electrode terminals 12 A and 12 B can advance.
  • the dividing wall 61 is formed to a height capable of preventing a short circuit caused by a tool or the like contacting the electrode terminals 12 A and 12 B and the connection member 21 .
  • the dividing wall 61 is configured with a front-back pair of opposing walls and a side wall connecting the pair of opposing walls. A side opposite the side wall is left open.
  • a plurality of the holding pieces 36 are provided to the opposing walls and a front-back pair of the holding pieces 36 project inward from a base end of each of the opposing walls.
  • An engagement strength of each of the holding pieces 36 with respect to the connection members 21 and 52 (a strength of an engagement force determined chiefly by a dimension to the base plate 59 ) is set to a degree such that the connection members 21 and 52 do not escape from between the base plate 59 and the holding pieces 36 and such that the connection members 21 and 52 are capable of sliding in the connection direction.
  • the engagement projection 37 is formed in a position corresponding to the engaged recesses 23 and 54 of the connection members 21 and 52 .
  • the projection dimension of the engagement projection 37 is slightly smaller than the notched depth dimension of the engaged recesses 23 and 54 in the lateral surface of the connection members 21 and 52 .
  • a vertical-direction position of the engagement projection 37 is the same as that of the connection members 21 and 52 .
  • corners of the engagement projection 37 have a tapered shape.
  • connection-direction ends of the engaged recess 54 have the clearances CL 1 and CL 2 (gaps) with the connection-direction ends of the engagement projection 37 .
  • connection members 21 and 52 are capable of sliding (capable of slide-displacing) in the front-back direction with respect to the first units 56 A and 56 B in the range of the predetermined clearances CL 1 and CL 2 (CL 1 +CL 2 ).
  • an end portion connection member 55 is mounted on the first unit 56 B and the connection unit 70 , the end portion connection member 55 being connected to the electrode terminals 12 A and 12 B at an end of the connection (serial connection) of the single cells 11 .
  • a through-hole through which the shaft of the bolt is inserted is formed on the end portion connection member 55 .
  • an external connection terminal for connecting to a terminal of a wire linked to an external inverter or the like is provided projecting on the end portion connection member 55 .
  • the first positioner 63 is provided to the reverse face of the detection housing 38 so as to project in a squared frame shape (squared tube shape) encircling the opening 40 .
  • the first positioner 63 is positioned in a position of the terminal for voltage detection 12 C by the squared tubular (rectangular) top end portion of the terminal for voltage detection 12 C being accommodated (fitted) on an interior thereof with substantially no gaps.
  • the second units 65 A and 65 B are made of a synthetic resin and, as shown in FIG. 9 , are provided at positions adjacent to the first units 56 A and 56 B.
  • the second units 65 A and 65 B include the detection housing 38 housing the voltage detection terminal 24 ; a plurality of second holders 66 A and 66 B holding one side in the connection direction of the connection members 21 and 52 ; and a second positioner 67 ( FIG. 11 ) provided to the reverse face of the detection housing 38 and having the terminal for voltage detection 12 C fitted and positioned therein.
  • the second holders 66 A and 66 B are provided capable of holding one end side of the connection member 21 and of the long connection member 52 .
  • the second holders 66 A and 66 B include the base plate 59 on which the connection members 21 and 52 are placed; the dividing wall 61 provided to the peripheral edge of the base plate 59 enclosing three sides and open on one side; a plurality of the holding pieces 36 projecting toward the inner surface of the dividing wall 61 and engaging on the upper surface side of the lateral edge of the connection members 21 and 52 ; and the engagement projection 37 allowing displacement (positioning drift) in the connection direction of the connection members 21 and 52 within a predetermined range by engaging with the engaged recesses 23 and 54 of the connection members 21 and 52 .
  • a portion where the base plate 59 is not provided is an opening into which the top end portion of the electrode terminals 12 A and 12 B can advance.
  • the dividing wall 61 is formed to a height capable of preventing a short circuit caused by a tool or the like contacting the electrode terminals 12 A and 12 B and the connection member 21 .
  • the dividing wall 61 is configured with the front-back pair of opposing walls and the side wall connecting the pair of opposing walls. The side opposite the side wall is left open.
  • a plurality of the holding pieces 36 are provided to the opposing walls and a front-back pair of the holding pieces 36 project inward from the base end of each of the opposing walls.
  • the engagement strength of each of the holding pieces 36 with respect to the connection members 21 and 52 (the strength of the engagement force determined chiefly by a dimension to the base plate 28 ) is set to a degree such that the long connection member 52 does not escape from between the base plate 28 and the holding pieces 36 and such that the connection members 21 and 52 are capable of sliding forward and backward.
  • the length of each of the engagement projections 37 in the connection direction of the connection members 21 and 52 is slightly smaller than the length of the engaged recess 54 in the connection direction of the connection members 21 and 52 .
  • the engaged recess 54 is a dimension in which the predetermined clearances CL 1 and CL 2 (gaps) have been added to the front and back of the engagement projection 37 .
  • the connection members 21 and 52 are able to slide (able to slide-displace) in the front-back direction with respect to the first units 56 A and 56 B in the range of the predetermined clearances CL 1 and CL 2 (CL 1 +CL 2 ).
  • the second positioner 67 is provided to the reverse face of the detection housing 38 so as to project in a frame shape encircling an opening.
  • the first positioner 63 is positioned in a position of the terminal for voltage detection 12 C by the squared tubular (rectangular) top end portion of the terminal for voltage detection 12 C being accommodated (fitted) on an interior thereof with substantially no gaps.
  • the connection unit 70 includes the detection housing 38 housing the voltage detection terminal 24 ; a holder 71 holding one side in the connection direction of the connection members 21 and 52 ; and a positioner (not shown in the drawings) provided to the reverse face of the detection housing 38 and having the terminal for voltage detection 12 C fitted and positioned therein.
  • the holder 71 is provided in a plurality of locations so as to be capable of holding the connection members 21 and 52 .
  • the holder 71 includes the base plate 59 on which the connection members 21 and 52 are placed; the dividing wall 61 provided to the peripheral edge of the base plate 59 enclosing three sides and open on one side; a plurality of the holding pieces 36 projecting toward the inner surface of the dividing wall 61 and engaging on the upper surface side of the lateral edge of the connection members 21 and 52 ; and the engagement projection 37 allowing displacement (positioning drift) in the connection direction of the connection members 21 and 52 within a predetermined range by engaging with the engaged recesses 23 and 54 of the connection members 21 and 52 .
  • the fitting projections 45 and 46 are both pole-shaped members and have a flat shape that is thick-walled in the vertical direction and thin-walled in the left-right direction.
  • the fitting recesses 47 and 48 are formed with a depth and size capable of fitting together with the fitting projections 45 and 46 by inserting the fitting projections 45 and 46 until forefront ends thereof are halted.
  • the base plate 59 on which the connection members 21 and 52 (used in connection) are placed is configured with a base plate 59 A and a base plate 59 B. Both lateral edges of the base plate 59 A rise up slightly and end portions in the connection direction expand in a step shape.
  • the base plate 59 B is fitted into an interior of the base plate 59 A.
  • the base plate 59 A receives the base plate 59 B from below. Also, a forefront end of the base plate 59 B is capable of striking the step portion of the base plate 59 A.
  • the cell wiring module 51 is integrally mounted to the plurality of single cells 11 such that each of the positioners 63 and 67 of each of the units 56 A, 56 B, 65 A, 65 B, and 70 are positioned on each of the terminals for voltage detection 12 C of the plurality of single cells 11 .
  • each of the units 56 A, 56 B, 65 A, 65 B, and 70 can be slid up and down or left and right relative to each other by an amount corresponding to the clearances CL 1 and CL 2 of the engagement projections 37 and the engaged recesses 23 and 54 .
  • the shaft of the bolt is passed through the through-holes 22 and 53 of the connection members 21 and 52 , respectively, and the bolt is fastened.
  • the through-holes 22 and 53 have an elliptical shape long in the connection direction, and thus are able to absorb dimensional errors.
  • Variation in dimensional accuracy is particularly likely to occur with regard to the long axis direction of the single cell 11 due to the length of the axis, and thus a dimensional error between the plurality of single cells 11 and the cell wiring module 20 is likely to increase.
  • failure caused by a dimensional error can be prevented in such a case where dimensional errors are likely to occur.
  • the plurality of single cells 11 are also aligned in the short axis direction of the surface having the electrode terminals 12 A and 12 B, and the connection member 21 connects the electrode terminals 12 A and 12 B aligned in the short axis direction. Therefore, a degree of freedom of connection of the plurality of single cells 11 can be increased.
  • the engaged recesses 23 and 54 and the engagement projection 37 were provided to both the first units 56 A and 56 B as well as to the second units 65 A and 65 B.
  • the engaged recesses 23 and 54 and the engagement projection 37 may also be provided to any one of the first units 56 A and 56 B and the second units 65 A and 65 B. In this way, failure when mounting the cell wiring module 20 can be prevented by the clearances CL 1 and CL 2 of the engagement projections 37 and the engaged recesses 23 and 54 provided to at least one of the units.
  • the terminals 12 A to 12 C of the single cell 11 were configured to fasten together using bolts (a separate component) having a nut shape.
  • an embodiment is not limited to this and may instead be configured such that a terminal includes a pole-shaped shaft having a thread groove on an outer circumferential surface, and may be configured such that the connecting member 21 is fixated to a terminal by fastening a nut (a separate component).
  • the shaft of the terminal is passed through the through-holes 22 and 53 of the connecting members 21 and 52 , respectively.
  • a number of single cells 11 configuring the cell module 10 is not limited to the number of the above-described embodiments.
  • the shape of the cell wiring module 20 can be set as desired according to the number of single cells 11 .
  • the reference position may be determined by any one positioner per unit, and the other positioners of each unit may be formed within a range of a predetermined dimensional margin with respect to the positioner serving as the reference.
  • the first units 56 A and 56 B and the second units 65 A and 65 B are not limited to including the plurality of positioners 63 and 67 , respectively.
  • Each of the units 56 A, 56 B, 65 A, and 65 B may also include only one of the positioners, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
US14/114,807 2011-07-05 2012-06-01 Cell wiring module Abandoned US20140065468A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011149075A JP5585846B2 (ja) 2011-07-05 2011-07-05 電池配線モジュール
JP2011-149075 2011-07-05
PCT/JP2012/064264 WO2013005515A1 (ja) 2011-07-05 2012-06-01 電池配線モジュール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064264 A-371-Of-International WO2013005515A1 (ja) 2011-07-05 2012-06-01 電池配線モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/206,716 Continuation US10020484B2 (en) 2011-07-05 2016-07-11 Cell wiring module

Publications (1)

Publication Number Publication Date
US20140065468A1 true US20140065468A1 (en) 2014-03-06

Family

ID=47436872

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/114,807 Abandoned US20140065468A1 (en) 2011-07-05 2012-06-01 Cell wiring module
US15/206,716 Active US10020484B2 (en) 2011-07-05 2016-07-11 Cell wiring module

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/206,716 Active US10020484B2 (en) 2011-07-05 2016-07-11 Cell wiring module

Country Status (5)

Country Link
US (2) US20140065468A1 (ja)
EP (1) EP2713422B1 (ja)
JP (1) JP5585846B2 (ja)
CN (1) CN103548180B (ja)
WO (1) WO2013005515A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120212232A1 (en) * 2009-10-28 2012-08-23 Yazaki Corporation Busbar for battery electrode post connection and battery voltage monitor using the same
US20140072861A1 (en) * 2011-07-11 2014-03-13 Autonetworks Technologies, Ltd. Cell wiring module
US20150214534A1 (en) * 2014-01-27 2015-07-30 Ford Global Technologies, Llc Devices and methods for connecting battery cells
US20160133907A1 (en) * 2013-06-18 2016-05-12 Sumitomo Wiring Systems, Ltd. Wiring module
US9780351B2 (en) 2013-10-28 2017-10-03 Autonetworks Technologies, Ltd. Wiring module
US20180122574A1 (en) * 2015-05-28 2018-05-03 Autonetworks Technologies, Ltd. Power storage module
US10215207B2 (en) * 2015-08-07 2019-02-26 Autonetworks Technologies, Ltd. Support member
US10224532B2 (en) 2014-12-17 2019-03-05 Autonetworks Technologies, Ltd. Detection module
US10553999B2 (en) 2017-08-09 2020-02-04 Autonetworks Technologies, Ltd. Connection module
US11031743B2 (en) * 2017-09-22 2021-06-08 Autonetworks Technologies, Ltd. Electric connection member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811396B2 (ja) * 2011-08-02 2015-11-11 株式会社オートネットワーク技術研究所 電池配線モジュール
JP5796746B2 (ja) * 2012-06-07 2015-10-21 株式会社オートネットワーク技術研究所 配線モジュール
JP6068059B2 (ja) 2012-08-30 2017-01-25 矢崎総業株式会社 バスバモジュール
JP6098444B2 (ja) * 2013-09-02 2017-03-22 株式会社デンソー 組電池
JP2017033646A (ja) * 2015-07-29 2017-02-09 株式会社豊田自動織機 電池モジュールの製造方法
JP6335864B2 (ja) 2015-11-20 2018-05-30 矢崎総業株式会社 バスバー保持構造
JP6988687B2 (ja) * 2018-05-21 2022-01-05 株式会社オートネットワーク技術研究所 配線モジュール
JP6981924B2 (ja) * 2018-06-01 2021-12-17 株式会社オートネットワーク技術研究所 配線モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804770A (en) * 1995-09-19 1998-09-08 Sumitomo Wiring Systems, Ltd. Cover equipped electrical connection device and a cover for an electrical connection device
JP2009043637A (ja) * 2007-08-10 2009-02-26 Yazaki Corp 電源装置
US20110104556A1 (en) * 2009-10-30 2011-05-05 Myung-Chul Kim Bus bar holder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409239B2 (ja) * 1997-06-30 2003-05-26 住友電装株式会社 バッテリーと電気接続箱との接続構造
JPH1186831A (ja) * 1997-09-04 1999-03-30 Harness Sogo Gijutsu Kenkyusho:Kk バッテリーの接続構造
JP3707595B2 (ja) * 1998-09-09 2005-10-19 矢崎総業株式会社 バッテリ接続プレート
JP3811348B2 (ja) * 2000-11-27 2006-08-16 矢崎総業株式会社 バッテリ接続プレート
KR100627294B1 (ko) * 2004-10-28 2006-09-25 삼성에스디아이 주식회사 전지 모듈
JP5127154B2 (ja) * 2005-05-23 2013-01-23 パナソニック株式会社 電池モジュール
JP5141965B2 (ja) * 2008-04-09 2013-02-13 株式会社デンソー 組電池
JP5423174B2 (ja) * 2009-06-23 2014-02-19 株式会社オートネットワーク技術研究所 電池接続アセンブリ
JP5537111B2 (ja) * 2009-09-30 2014-07-02 株式会社東芝 二次電池装置
US8460818B2 (en) 2009-10-05 2013-06-11 Samsung Sdi Co., Ltd. Battery module
JP5418522B2 (ja) * 2011-03-07 2014-02-19 株式会社オートネットワーク技術研究所 電池接続アセンブリ及び電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804770A (en) * 1995-09-19 1998-09-08 Sumitomo Wiring Systems, Ltd. Cover equipped electrical connection device and a cover for an electrical connection device
JP2009043637A (ja) * 2007-08-10 2009-02-26 Yazaki Corp 電源装置
US8426056B2 (en) * 2007-08-10 2013-04-23 Yazaki Corporation Power supply device
US20110104556A1 (en) * 2009-10-30 2011-05-05 Myung-Chul Kim Bus bar holder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP 2009043637 Original document obtained from Espacenet *
Translation of JP 2009043637 A obtained from AIPN - Online Translation *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941386B2 (en) * 2009-10-28 2015-01-27 Yazaki Corporation Busbar for battery electrode post connection and battery voltage monitor using the same
US20120212232A1 (en) * 2009-10-28 2012-08-23 Yazaki Corporation Busbar for battery electrode post connection and battery voltage monitor using the same
US9905831B2 (en) * 2011-07-11 2018-02-27 Autonetworks Technologies, Ltd. Cell wiring module
US20140072861A1 (en) * 2011-07-11 2014-03-13 Autonetworks Technologies, Ltd. Cell wiring module
US20160133907A1 (en) * 2013-06-18 2016-05-12 Sumitomo Wiring Systems, Ltd. Wiring module
US9825272B2 (en) * 2013-06-18 2017-11-21 Sumitomo Wiring Systems, Ltd. Wiring module
US9780351B2 (en) 2013-10-28 2017-10-03 Autonetworks Technologies, Ltd. Wiring module
US20150214534A1 (en) * 2014-01-27 2015-07-30 Ford Global Technologies, Llc Devices and methods for connecting battery cells
US10224532B2 (en) 2014-12-17 2019-03-05 Autonetworks Technologies, Ltd. Detection module
US20180122574A1 (en) * 2015-05-28 2018-05-03 Autonetworks Technologies, Ltd. Power storage module
US10141109B2 (en) * 2015-05-28 2018-11-27 Autonetworks Technologies, Ltd. Power storage module
US10215207B2 (en) * 2015-08-07 2019-02-26 Autonetworks Technologies, Ltd. Support member
US10553999B2 (en) 2017-08-09 2020-02-04 Autonetworks Technologies, Ltd. Connection module
US11031743B2 (en) * 2017-09-22 2021-06-08 Autonetworks Technologies, Ltd. Electric connection member

Also Published As

Publication number Publication date
EP2713422A4 (en) 2014-12-31
EP2713422B1 (en) 2017-07-26
WO2013005515A1 (ja) 2013-01-10
US10020484B2 (en) 2018-07-10
US20160322625A1 (en) 2016-11-03
CN103548180A (zh) 2014-01-29
JP2013016380A (ja) 2013-01-24
CN103548180B (zh) 2016-03-09
EP2713422A1 (en) 2014-04-02
JP5585846B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
US10020484B2 (en) Cell wiring module
US9997757B2 (en) Cell connection assembly
JP6164489B2 (ja) 配線モジュール
US9905831B2 (en) Cell wiring module
JP5803630B2 (ja) 電池配線モジュール
JP5209766B2 (ja) 電池配線モジュールのカバー、及び電池配線モジュール
US20140045388A1 (en) Cell wiring module
JP2011008957A (ja) 電池接続アセンブリ
JP2015138605A (ja) 配線モジュールおよび蓄電モジュール
US9991495B2 (en) Wiring module
JP5673464B2 (ja) 電池配線モジュール
JP5648610B2 (ja) 電池配線モジュール
US9368779B2 (en) Cover of battery wiring module, battery wiring module, and battery module
JP5672188B2 (ja) 電池配線モジュール
JP5790742B2 (ja) 電池接続アセンブリ

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUTONETWORKS TECHNOLOGIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:031510/0829

Effective date: 20131021

Owner name: SUMITOMO WIRING SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:031510/0829

Effective date: 20131021

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:031510/0829

Effective date: 20131021

AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD.,, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE POSTAL CODE OF THE FIRST AND SECOND ASSIGNEE PREVIOUSLY RECORDED ON REEL 031510 FRAME 0829. ASSIGNOR(S) HEREBY CONFIRMS THE THE FIRST AND SECOND POSTAL CODE SHOULD BE 510-8503;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:032152/0735

Effective date: 20131021

Owner name: SUMITOMO WIRING SYSTEMS, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE POSTAL CODE OF THE FIRST AND SECOND ASSIGNEE PREVIOUSLY RECORDED ON REEL 031510 FRAME 0829. ASSIGNOR(S) HEREBY CONFIRMS THE THE FIRST AND SECOND POSTAL CODE SHOULD BE 510-8503;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:032152/0735

Effective date: 20131021

Owner name: AUTONETWORKS TECHNOLOGIES, LTD.,, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE POSTAL CODE OF THE FIRST AND SECOND ASSIGNEE PREVIOUSLY RECORDED ON REEL 031510 FRAME 0829. ASSIGNOR(S) HEREBY CONFIRMS THE THE FIRST AND SECOND POSTAL CODE SHOULD BE 510-8503;ASSIGNOR:NAKAYAMA, OSAMU;REEL/FRAME:032152/0735

Effective date: 20131021

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION