TWI829761B - 具有積體雷射的光學結構 - Google Patents

具有積體雷射的光學結構 Download PDF

Info

Publication number
TWI829761B
TWI829761B TW108133747A TW108133747A TWI829761B TW I829761 B TWI829761 B TW I829761B TW 108133747 A TW108133747 A TW 108133747A TW 108133747 A TW108133747 A TW 108133747A TW I829761 B TWI829761 B TW I829761B
Authority
TW
Taiwan
Prior art keywords
layer
stack
waveguide
laser
silicon
Prior art date
Application number
TW108133747A
Other languages
English (en)
Other versions
TW202029602A (zh
Inventor
威廉 查爾斯
約翰 鮑爾斯
道格拉斯 庫柏
達元 鄭
強納森 克萊金
道格拉斯 拉杜利普
杰拉爾德 利克
松濤 劉
賈斯汀 諾曼
Original Assignee
紐約州立大學研究基金會
加州大學董事會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紐約州立大學研究基金會, 加州大學董事會 filed Critical 紐約州立大學研究基金會
Priority to SG11202105177SA priority Critical patent/SG11202105177SA/en
Priority to KR1020217015260A priority patent/KR20220002239A/ko
Priority to PCT/US2019/052232 priority patent/WO2020123008A1/en
Priority to JP2021527106A priority patent/JP2022509947A/ja
Priority to EP19870070.0A priority patent/EP3884321A1/en
Publication of TW202029602A publication Critical patent/TW202029602A/zh
Application granted granted Critical
Publication of TWI829761B publication Critical patent/TWI829761B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12178Epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本發明提出了一種方法,包括:基板;設置於該基板上的介電堆疊;積體設置在該介電堆疊的一個以上光學元件;以及具有雷射堆疊的雷射光源件,該雷射堆疊包括:排列為堆疊的複數個結構,其中複數個該結構之多個結構為積體設置於該介電堆疊,其中該雷射堆疊包括:主動區域,該主動區域經配置為因應電能對該雷射堆疊的施加而發射光線。

Description

具有積體雷射的光學結構
〔相關申請案對照參考〕 本申請案主張在2018年11月21日提出申請的美國臨時申請案序號62/770,623的優先權優惠,名稱為「PHOTONICS STRUCTURE WITH INTEGRATED LASER(具有積體雷射的光學結構)」,其全文內容茲以提述方式納入。
〔政府權利聲明〕 本發明的申請為以授權契約號:FA8650-15-2-5220 ARPA-E、DE-AR0000672、以及DARPA DODOS HR0011-15-C-0055而受美國政府支持。 美國政府可擁有本發明的部分權利。
本發明一般關於光學,具體關於光學結構的製造。
市售光學積體電路為在晶圓上製造,例如大塊矽晶圓(bulk silicon)、絕緣層上矽(silicon-on-insulator)晶圓。
一方面,市售的光學積體電路可包括:傳送光訊號的波導,光訊號是在光學積體電路晶片的不同面區之間以及該晶片上及該晶片外傳送。市售波導為矩形或脊形幾何形狀,並且以矽(單晶或多晶)或氮化矽製成。
市售的光學積體電路可包括:光感測器及其他光學構件。光學積體電路依賴於通訊頻帶(約1.3μm至約1.55μm)中光的發射、調變及檢測。鍺的帶隙吸收限(bandgap absorption edge)接近1.58μm。鍺已被觀察到對於使用1.3μm及1.55μm載波波長的光電應用可以提供足夠的光學反應。
市售的光學積體電路晶片,為在具有光學積體電路晶片的系統上使用,該光學積體電路晶片為設置於印刷電路板上。
本發明藉由光學結構的提供,克服先前技術的缺點並提供附加的優點。
本發明揭露一種結構,該結構包括:基板;設置於該基板上的介電堆疊;積體設置在該介電堆疊的一個以上光學元件;以及具有雷射堆疊的雷射光源件,該雷射堆疊包括:排列為堆疊的複數個結構,其中複數個該結構之多個結構為積體設置於該介電堆疊,其中該雷射堆疊包括:主動區域,該主動區域經配置為因應電能對該雷射堆疊的施加而發射光線。
本發明揭露一種方法,該方法包括:在光學結構之絕緣層上矽(SOI)晶圓的矽層圖案化波導,該光學結構具有由該絕緣層上矽晶圓之絕緣體所構成的介電堆疊;在該光學結構形成延伸通過該介電堆疊之介電層的溝槽;以及在該溝槽內磊晶成長雷射堆疊,該雷射堆疊包括:排列為堆疊的複數個結構,其中複數個該結構之多個結構係設置於該介電堆疊內,且包括:主動區域,該主動區域經配置為因應電能對該雷射堆疊的施加而發射光線。
通過本發明揭露的技術實現了附加的特徵及優點。
以下請參考圖式中的非限制性例子以更全面地解釋本發明的特徵、優點及細節。以下將省略公知材料、製造工具、處理技術等的說明,以免不必要地混淆本發明內容。然而,應理解的是,實施方式及具體例子雖然指出本發明的多個方面,但僅以例示方式給出,而非限制方式。在本發明概念下的精神及/或範圍內的各種替換、修改、添加、及/或排列對於本發明的技術領域中熟習該項技術者將是顯而易見的。
如第1圖所示,光學結構10具有:光學介電堆疊200,其中一個以上光學元件可以整體形成及製造,例如,一個以上光學元件在光學介電堆疊200內整體形成及製造;以及一個以上雷射光源件,具有在介電堆疊200內整體形成及製造的雷射堆疊。
在介電堆疊200內整體形成及製造的一個以上光學元件,可以包括,例如:由矽(Si)脊形波導提供的波導402,且可以包括:由矽矩形波導提供的波導404、由矩形氮化矽波導提供的波導411、由矩形氮化矽波導提供的波導412、由矩形矽波導提供的波導421、以及由矩形氮化矽波導提供的波導422。
在光學結構10中可以積體設置整體形成及製造在介電堆疊200內之其他類型的波導。光學結構10可以包括:在介電堆疊200內整體形成及製造的,例如:具有波導材料構造401的光感測器406、光敏感材料構造407、上接點C1、及下接點C2。
光學結構10可以包括:在介電堆疊200內整體形成及製造的,具有波導材料構造403的調變器408、接點C3、及接點C4。光學結構10可以包括:在介電堆疊200內整體形成及製造的其他類型的光學元件,例如:一個以上光柵、一個以上偏振器、且/或一個以上諧振器。在參考第1圖所描述的實施例中,在介電堆疊200內整體形成及製造的波導,可以是例如:單晶矽波導或由氮化物(例如:氮化矽)構成的波導、多晶矽波導、非晶矽波導、且/或氮化矽或氮氧化矽波導。
根據一個實施例,光學結構10可以使用絕緣層上矽(SOI)晶圓來製造。參照第1圖,基板100可以是絕緣層上矽晶圓的基板,層202可以是絕緣層上矽晶圓的絕緣層,並且層302可以是絕緣層上矽晶圓的矽層。在層302中可具有圖案化形成的波導構造401、脊形波導402、波導材料構造403(構成調變器408)、及波導404。基板100可具有在高度2000處的底部高度。根據一個實施例,基板100可具有一厚度,該厚度的範圍從約10μm至約1000μm。根據一個實施例,基板100可以具有一厚度,該厚度的範圍從約100μm到約1000μm。根據一個實施例,層202可以具有一厚度,該厚度的範圍從約100nm到約10μm。根據一個實施例,層202可以具有一厚度,該厚度的範圍從約1μm到約5μm。根據一個實施例,層302可具有一厚度,該厚度的範圍從約10nm至約1000nm。根據一個實施例,層302可以由單晶矽構成。
光學結構10可以在其中整體形成及製造積體設置之雷射光源件500。每個積體設置之雷射光源件可以包括:雷射堆疊510,該雷射堆疊510由緩衝材料構造502、接點層505、鋁調層511A、覆蓋層512A、鋁調層513A、間隔層514、主動區域515、圖案化層516、鋁調層513B、覆蓋層512B、鋁調層511B、及接點層506所構成。根據一個實施例,雷射堆疊510的每個接續層可以沉積在前一層上。每一層在前一層上的沉積可以通過將該層磊晶成長在前一層上而執行。
每個積體設置之雷射光源件500還可以包括:由一層構成的介電襯裡503、在積體設置之雷射光源件500位置A處之一個以上的下接點(C5及C6)、在積體設置之雷射光源件500位置B處的C8及C9、以及在積體設置之雷射光源件500位置C處的C11及C12。每個積體設置之雷射光源件500可以包括:上接點(在積體設置之雷射光源件500位置A處的C7、在積體設置之雷射光源件500位置B處的C10、以及在積體設置之雷射光源件500位置C處的C13)。
光學結構10可以進一步在其中形成並製造一個以上金屬化層及一個以上通孔層。如第1圖所示,積體光學結構10可以包括:可以被圖案化以構成金屬化構造M1的金屬化層602、可以被圖案化以構成通孔V1的通孔層702、以及可以被圖案化以構成金屬化層構造M2的金屬化層612。金屬化層602及612可以構成水平延伸線路。由金屬化層602及612構成的線路可以水平地延伸通過光學介電堆疊200的區域。
由金屬化層602構成的水平延伸線路,可電連接到一個以上垂直延伸的接點傳導材料構造C1至C12、以及由通孔層702構成的通孔V1,以水平地且垂直地分佈一個以上控制邏輯且/或功率訊號至光學介電堆疊200的不同區域。金屬化層612所構成的水平延伸的線路,可以電連接至由通孔層702所構成的一個以上垂直延伸的通孔V1,以水平地且垂直地分佈一個以上電控制邏輯且/或功率訊號在光學介電堆疊200的不同區域之間。
光學結構10可以包括:一個以上光學元件,例如:在雷射光源件500的前景且/或背景(延伸出且/或進入第1圖之圖式所表示的紙面)的一個以上波導可對齊於積體設置之雷射光源件500之在位置A、B及C處的各個主動區域515,此處進一步相關於如第5A圖至第5E圖所示。光學結構10可包括:例如,數十、數百或數千個光學元件且/或積體設置之雷射光源件500,其中具代表性的光學元件及積體設置之雷射光源件500如第1圖所示。
如第1圖所示,根據一個實施例的光學結構10可指的是,在切割以構成積體電路晶片之前的以晶圓為基礎的光學結構。根據一個實施例的光學結構10指的是整個晶圓基礎結構。
如第1圖所示,根據一個實施例的的光學結構10可以指的是,由包括:光學晶圓基礎結構切割製程所形成的光學積體電路晶片。根據一個實施例的光學結構10可以指的是,由整個晶圓基礎結構切割構成的光學結構積體電路晶片。
提供光學結構10,使得積體設置之雷射光源件500的主動區域515伴隨著被該主動區域515發射光線進入的波導而在介電堆疊200內整體形成及製造,可以有助於積體設置之雷射光源件500的主動區域515及波導的精確對齊。主動區域515可以發射光線進入在積體設置之雷射光源件500的前景且/或背景的此一對齊波導。在共同的光學結構上,整體地製造光學元件及雷射光源件,使得在積體設置之雷射光源件的主動區域的光學元件共同製造且設置在共同介電堆疊內,以有助於此一光學元件與積體設置之雷射光源件500之間的精確對齊,並且減輕了對於促進對齊之封裝技術的需求。
光學結構10可以包括:形成在金屬化層612上的一個以上終端6002。終端6002可以包括:例如,一個以上的(a)形成在介電堆疊200且通向金屬化層612的開口;(b)形成在金屬化層612上的焊墊及通向該焊墊的開口;(c)形成在金屬化層612上的凸塊下金屬化(UBM)層,其在介電堆疊200形成朝向UBM的開口;(d)形成在金屬化層612上的UBM、以及形成在由介電堆疊200向外突出的UBM上的焊料凸塊。
參照第2A圖至第2J圖的製造階段圖,描述了一種製造光學結構10的方法。如第2A圖所示,呈現光學結構10的中間階段圖。根據一個實施例的光學結構10可以使用絕緣層上矽晶圓來製造,該絕緣層上矽晶圓具有由矽(Si)形成的基板100、絕緣層202、及矽層302。在層302內,可有構成光感測器406之圖案化的波導材料構造401、由脊形波導提供的波導402、構成調變器之波導材料構造403、以及由矩形波導提供的波導404。在構造401至404的圖案上,介電材料層,例如:二氧化矽(SiO2 ),可以沉積在構造401至404上、以及可以進行化學機械平坦化(CMP),以便在高度2020處構成水平面。在本發明所描述CMP的每種情況下,CMP都可以伴隨化學機械拋光,從而通過執行CMP而產生原子光滑的表面。
在第2B圖,呈現出在執行進一步的製程以構成波導411及波導412之後,於製造的中間階段之如第2A圖所示的光學結構10。波導411及412可以由氮化矽形成。為了形成波導411及412,由氮化矽形成的層312可以在高度2020處沉積,並且可受圖案化以構成波導411以及412。在通過對層312進行圖案化以構成波導411及412後,介電層可以沉積在波導411及412之上,且可受CMP以將形成光學介電堆疊200的高度減小到高度2022,以於製造的中間階段,在高度2022處構成光學結構10的水平延伸的頂部表面,其中顯示部分由介電材料,例如:二氧化矽、以及波導411與412所構成。
在第2C圖,呈現出在進一步圖案化以構成波導421及波導422之後,於製造的中間階段之如第2B圖所示的光學結構10。對於由氮化物形成之波導421及422的製造,介電層可以沉積在以高度2022延伸的平坦水平表面上,後續接著進一步的CMP製程,以構成在高度2023延伸的水平平面。在高度2023的層322可以進行沉積,接著受圖案化以構成波導421及422。在波導421及422的側壁構成之前,層322可受CMP。在波導421及422的圖案上,一層介電材料可以沉積在波導上,且可接著受CMP以構成水平延伸的平坦表面在高度2024處。介電材料的添加層可以沉積在高度2024處的水平延伸平坦表面上,且受CMP以在高度2025處構成水平延伸的平坦表面。
在第2D圖,呈現出在進一步圖案化以構成光敏感材料構造407之後,於製造的中間階段之如第2C圖所示構成光感測器406的光學結構10。為了提供光敏感材料構造407,複數個鍺層可以在溝槽內磊晶成長及退火處理,該溝槽在反應離子蝕刻(RIE)形成的垂直延伸的平面7001及垂直延伸的平面7003之間形成。所形成的溝槽可包括:垂直延伸的中心軸線7002。在所示高度範圍所形成的溝槽可包括:垂直延伸的平面7001及垂直延伸的平面7003相交的周長。在一個實施例中,鍺可以使用減壓化學氣相沉積(RPCVD)而選擇性地成長。多個磊晶成長及退火階段可以用於光敏感材料構造407的形成。多個沉積及退火處理的循環,光敏感材料構造407,例如:由鍺形成,可以首先過度填充所構成的溝槽,然後可受CMP,以便在高度2025處構成一個平坦水平表面。
在第2E圖,呈現出在添加製程以增加光學介電堆疊200的高度之後,於製造的中間階段之如第2D圖所示的光學結構10。如第2E圖所示,在光敏感材料構造407形成之後,介電材料的添加層,例如:二氧化矽,可以沉積且接著受CMP以構成在高度2030處的光學介電堆疊200的水平平坦頂部表面,如第2E圖的中間製造階段所示。
在第2F圖,呈現出在構成雷射堆疊510及積體設置之雷射光源件500之初始製造構成緩衝材料構造502之後,製造的中間階段之如第2E圖所示的光學結構10。為提供緩衝材料構造502,通常分別在位置A、B及C處,第一、第二、及第三溝槽可在位置A、B、及C處產生。
第一溝槽可以具有垂直延伸的中心軸線7012,並且可以包括:在光學介電堆疊200內相交垂直延伸的平面7011及垂直延伸的平面7013的側壁。第二溝槽可以具有垂直延伸的中心軸線7022,且可以具有相交垂直延伸的平面7021及垂直延伸的平面7023的垂直延伸側壁。第三溝槽可以具有垂直延伸的中心軸線7032,且可以具有相交垂直延伸的平面7031及垂直延伸的平面7033的側壁。所形成的第一、第二及、第三溝槽可以從底部高度2002延伸至頂部高度2030。
通常在位置A、B及C處之每一個第一、第二及第三溝槽的形成可以包括:二階段RIE製程。在第一RIE階段中,其中材料可以被蝕刻至高度2010,對氧化物具有選擇性的蝕刻可以被執行,從而於所描述的實施例中,在不移除矽構成基板100的情況下,移除構成光學介電堆疊200的氧化物材料。在第二RIE階段中,可以選擇性地對矽進行蝕刻,以便在不移除構成光學介電堆疊200之氧化物的情況下移除基板100的材料。
藉由形成具有各自的垂直延伸的中心軸線7012、7022、及7032之溝槽,由介電材料形成且提供介電襯裡的層503可以沉積。層503最初可以具有犧牲部分,該犧牲部分延伸具有中心軸線7012、7022、及7032之形成溝槽的各自的底部。也就是說,每個積體設置之雷射光源件500的層503最初可以具有底部高度,該底部高度相鄰且形成在高度2010處由矽形成之基板100的材料上。
緩衝材料構造502可以磊晶成長在構成矽的基板100上。為了磊晶成長構成緩衝材料構造502之材料的初始層,層503的材料可以從與軸線7012及7022相關之各自溝槽的底部移除,以顯露基板100在高度2002處的矽表面。為了移除各自溝槽底部之層503的材料,透過RIE製程的穿孔可以被使用,該RIE製程的穿孔對於介電材料,例如:二氧化矽的構成層503,具有選擇性,以便在不移除形成基板100之矽的情況下移除層503的介電材料。
緩衝材料構造502可以使用多階段成長及退火處理製程來成長,其中形成緩衝材料構造502的層可以被磊晶成長然後退火處理。可以磊晶成長以形成緩衝材料構造502的材料包括:III至V族材料,例如:砷化鎵或磷化鎵。在成長III至V族材料的初始層之前,與中心軸線7012、7022以及7032相關之溝槽的底部表面可以受進一步的處理,例如:清除RIE生成物的處理且/或磊晶成長矽薄層的處理,例如:矽表面上的單晶矽(構成與中心軸線7012、7022及7032相關之溝槽底部的單晶)。多個磊晶成長及退火處理階段可用於提供緩衝材料構造502。本發明的實施例認知到,當III至V族材料磊晶成長在構成溝槽底部的矽表面上時,將存在造成缺陷的晶格不匹配。退火處理階段可用於消除此一缺陷。
III至V族材料的成長及退火處理以提供緩衝材料構造502,可使用受限的熱預算來執行。為製造緩衝材料構造502所採用受限制的熱預算可以減輕光學元件的熱降解,光學元件諸如:光學元件及構件401至406、411至412、及421至422。根據一個實施例,用於磊晶成長以形成緩衝材料構造502之層的磊晶成長階段,可以在約400℃至約600℃之間的溫度下進行,而用於退火處理緩衝材料構造502之構成次層的退火處理階段,可以在約500℃至約700℃之間的溫度下進行。
緩衝材料構造502可以由例如:以多個磊晶成長及退火處理循環沉積的砷化鎵(GaAs)所形成,藉由執行退火處理循環以移除缺陷而提供緩衝材料構造502的低缺陷密度。緩衝材料構造502可以包括:厚度,例如:根據一個實施例,在約1000nm至約4000nm的範圍內。根據一個實施例的緩衝材料構造502可以主要由砷化鎵(GaAs)形成。根據一個實施例,緩衝材料構造502可包括砷化鎵(GaAs)/砷化銦鎵(InGaAs)應變超晶格(strained superlattice;SSL)。應變超晶格可以被包括在緩衝材料構造502中,以減輕傳播到主動區域515的踏面位置缺陷(treading location defect;TDD)。應變超晶格還可以減小表面粗糙度。根據一個實施例的緩衝材料構造502,可以包括:專門的底部層,例如:沉積在基板100的矽表面上,例如:直接在基板100的矽表面上。該專門的底部層可以包括:例如:GaP/Si或GoVS(001),並且可以減輕反相域缺陷(anti- phase domain defects;APDs)。
進一步參考第2F圖的階段圖,每個緩衝材料構造502在成長到超過表示為基板100之頂部高度的高度2010時,可以受處理以在約高度2010構成平坦水平表面。在位置A及B處,接點層505可沉積在緩衝材料構造502的頂部表面上。接點層505可包括:例如,摻有N型摻雜物,如:矽(Si),的砷化鎵(GaAs)。接點層505可以包括:在從約100nm到約500nm之範圍內的厚度。
在位置C,緩衝材料構造502可以不存在相關沉積接點層沉積於其上,如同在位置A及B處。在透過在位置A及B處進行離子植入的製程而構成接點層505之後,與垂直延伸的中心軸線7012、7022以及7032相關的溝槽可以被氧化物填充。氧化物可以沉積在與中心軸線7012、7022及7032相關的各種溝槽中,並且可以過度填充溝槽。然後,光學結構10可以受CMP,以減小光學介電堆疊200的頂部高度,從而在高度2030處構成平坦且水平延伸表面。
為了雷射堆疊510之剩餘結構的成長,緩衝材料構造502可以提供減少缺陷的界面。雷射堆疊510還可以包括:緩衝材料構造502、接點層505、鋁調層511A、覆蓋層512A、鋁調層513A、間隔層514、主動區域515、圖案化層516、鋁調層513B、覆蓋層512B、鋁調層511B、及接點層506。主動區域515可以包括:量子點。在一些實施例中,緩衝材料構造502可以被犧牲地構成,亦即被製造,然後在其最終形式之光學結構10的製造之前被移除,例如:作為光學積體電路晶片。
在第2G圖,呈現出在進一步製程的執行之後,通常在位置A、B及C處以成長各自雷射堆疊510的添加層的製造的中間階段之如第2F圖所示的光學結構10。
為了成長雷射堆疊510的添加層,堆疊溝槽可以在光學介電堆疊200內形成。參照第2G圖,通常在位置A處的第一溝槽可以形成具有垂直延伸的中心軸線7042以及與垂直延伸的平面7041及7043相交的側壁。通常形成在位置B處的第二溝槽,可以形成具有垂直延伸的中心軸線7052、以及與垂直延伸的平面7051及7053相交的側壁。通常形成在位置C處的第三溝槽,可以形成具有垂直延伸的中心軸線7062、以及與垂直延伸的平面7061及7063相交的側壁。第一及第二雷射堆疊溝槽可以向下延伸,以具有由傳導材料形成之接點層505所構成的底部表面。位置C處的雷射堆疊溝槽可以向下延伸,以具有由位置C處之緩衝材料構造502的頂部表面所構成的底部表面。
參照第2G圖,鋁調層511A可以在位置A、B及C處每個溝槽內沉積,然後是可以沉積在鋁調層511A上的覆蓋層512A。在位置A及B處,鋁調層511A可以在接點層505上磊晶成長。在位置C處,鋁調層511A可以在緩衝材料構造502上磊晶成長。通過形成覆蓋層512A,每個雷射堆疊510的鋁調層511A可以通過在覆蓋層512A上磊晶成長鋁調層511A來沉積。
鋁調層511A可以由複數個次層形成,每個次層具有不同的折射率。鋁調層511A的不同次層可具有不同濃度的鋁。不同濃度的鋁可導致不同的折射率。鋁的濃度可以從離主動區域515的最遠距離處之約40%的鋁,轉變成鋁調層之位置最靠近主動區域515處之0%的鋁的濃度。鋁調層511A的折射率可以在更靠近主動區域515的距離處增加,這可以降低鋁(Al)的濃度。
覆蓋層512A提供光限制,並且也將主動區域515及接點層505分開。覆蓋層512A可以由,例如:具有固定鋁濃度,如:40%,的砷化鋁鎵(AlGaAs)形成。根據一個實施例的覆蓋層512A可以包括:從約500nm到約2000nm之範圍的厚度。
通過形成覆蓋層512A,鋁調層513A可以磊晶成長在覆蓋層512A上。在鋁調層513A的成長期間,調節該區域的鋁含量使得從層512A之界面處約40%濃度的鋁能夠過渡到513A與間隔層514之間接合處的0%。513A的厚度範圍從50nm到100nm。
覆蓋層512A以及鋁調層511A及513A可以起到限制光的作用,並且可以減輕與損失接點層505相互作用的光。
在位置A、B及C處的雷射堆疊溝槽,間隔層514可以磊晶成長在鋁調層513A的頂部表面上,隨後是可以磊晶成長在間隔層514上的主動區域515以及可以磊晶成長在主動區域515上的圖案化層516。間隔層514可以由例如:砷化鎵(GaAs)形成,且可以具有,例如:從200nm至約700nm,的範圍的厚度。圖案化層516可以具有,例如:從200nm至約1000nm,的範圍的厚度。
主動區域515可以由包括多個次層的層所構成,多個次層,例如:包括從約3至9個由砷化銦鎵(InGaAs)形成並構成量子點的次層、以及從約3至9個砷化鎵(GaAs)的次層。砷化鎵(GaAs)的各自薄層(例如:約40nm)可以將構成量子點的砷化銦鎵層分開。主動區域515可以包括下列之層的N個重複:{嵌入量子點的砷化銦鎵(InGaAs)/砷化銦鎵(InGaAs)/砷化鎵(GaAs)}×N,其中N可以在約3至約9的範圍內。
根據一個實施例的主動區域515可以包括:具有嵌入量子點之磊晶成長的砷化銦鎵(InGaAs)層的複數個,例如:從約3至約9個次層、以及砷化鎵。每個次層可以包括:如,約3nm至約50nm,的厚度。根據一個實施例,量子點的每一層可以由具有約40nm的厚度的砷化鎵(GaAs)層隔開,使得主動區域515的厚度在約150nm至500nm的範圍內。
圖案化層516可以由,例如:砷化鎵(GaAs)所形成,且可以被圖案化以選擇主動區域515工作的波長。圖案化層516可以被圖案化,例如:作為波導且/或光柵。根據一個實施例的圖案化層516可以具有,例如:從約50nm到約100nm,的厚度。
圖案化層516可以由,例如:砷化鎵(GaAs),所形成,且可以圖案化以形成光柵,例如:雙面帶(double side band;DSB)光柵,或可替代地圖案化以構成反射器,例如:分佈式布拉格反射器(distributed Bragg reflector;DBR)。圖案化層516可以被圖案化以構成,例如:光柵或反射器,以用於選擇雷射堆疊510的工作頻帶。圖案化層516可以被圖案化以選擇工作波長。
對於在位置A、B及C處的每個雷射堆疊510,鋁調層513B可以磊晶成長在圖案化層516上、覆蓋層512B可以磊晶成長在鋁調層513B上、以及鋁調層511B可以磊晶成長在覆蓋層512B上。
鋁調層513B可以由複數個次層形成,每個次層具有不同的折射率。鋁調層513B的不同次層可具有不同濃度的鋁。不同濃度的鋁可導致不同的折射率。鋁的濃度可以從離主動區域515的最遠距離處之約40%的鋁,轉變成鋁調層之位置最靠近主動區域515處之0%的鋁的濃度。鋁調層513B的折射率可以由於鋁(Al)濃度的降低,而增加靠近主動區域515之距離處的電流。
覆蓋層512B可以提供光限制,且可以在鋁調層513B及鋁調層513A之間提供間隔。覆蓋層512B可以由,例如:具有固定鋁濃度,如,40%鋁濃度,的砷化鋁鎵(AlGaAs)所形成。根據一個實施例的覆蓋層512B可以包括:從約500nm到約2000nm的範圍內的厚度。
通過形成覆蓋層512B,鋁調層511B可以磊晶成長在覆蓋層512B上。鋁調層511B可以由多個次層形成,每個次層具有不同的折射率。鋁調層511B的不同次層可具有不同濃度的鋁。不同濃度的鋁可導致不同的折射率。鋁的濃度可以從離主動區域515的最遠距離處之約40%的鋁,轉變成鋁調層之位置最靠近主動區域515處之0%的鋁的濃度。鋁調層511B的折射率可以在更靠近主動區域515的距離處增加,這可以降低鋁(Al)的濃度。
覆蓋層512B及鋁調層511B、513B可以起到限制光的作用,並且可以減輕與有損接點層之接點層506相互作用的光。
通過形成鋁調層511B,接點層506可以磊晶成長在鋁調層511B上。形成接點層506的傳導材料可以包括:如,砷化鎵(GaAs),砷化鎵(GaAs)摻雜有,例如:鈹(Be)、鋅(Zn)或碳(C)(p型接點)。接點層506的厚度可以在,例如:從約100nm到約500nm,的範圍內。接點層506可以由,例如:摻雜有p型摻雜物的砷化鎵(GaAs)所形成,p型摻雜物,例如:鈹(Be)、鋅(Zn)或碳(C)。接點層506可以包括:從約100nm到約500nm的範圍,的厚度。
根據一個實施例之雷射堆疊510的進一步細節參照表A描述。 〔表A〕
結構 材料及製程條件
緩衝材料構造502 砷化鎵可以多個磊晶成長及退火處理循環的方式沉積;厚度在一範圍內,例如:約1000nm至約4000nm
接點層505 砷化鎵可以矽(n型接點層)摻雜;厚度在一範圍內,例如:約100nm至約500nm
鋁調層511A Al(x)Ga(1-x)As可磊晶成長,此處鋁的莫耳分率從約0.0增加到約0.4;厚度可以在一範圍內,例如:約50nm至約100nm。
覆蓋層512A Al(0.4)Ga(0.6)As可以厚度在一範圍內的方式磊晶成長,該範圍例如:約500nm至約2000nm。
鋁調層513A Al(x)Ga(1-x)As可以磊晶成長,此處鋁的莫耳分率從約0.4降低到約0.0;厚度可在一範圍內,例如:約50nm至約100nm。
間隔層514 砷化鎵可以厚度在一範圍內的方式磊晶成長,該範圍例如:約50nm至約100nm。
主動區域515 {砷化鎵銦/砷化銦量子點/砷化鎵銦/砷化鎵}×N可以磊晶成長,此處N的範圍在約3至約9;n在約3至約9之間。主動區域515的厚度可以在一範圍內,例如:約150nm至約450nm,每個次層在約3nm至約50nm的範圍內。
圖案化層516 層(例如:由砷化鎵所構成)進行圖案化以在雷射工作時選擇波長;厚度在一範圍內,例如:約50nm至約100nm。圖案化層516可以被圖案化而作為,例如:波導且/或光柵。
鋁調層513B Al(x)Ga(1-x)As可以磊晶成長,此處鋁的莫耳分率從約0.0增加到約0.4;厚度可以在一範圍內,例如:約50nm至約100nm。
覆蓋層512B Al(0.4)Ga(0.6)As可以厚度在一範圍內,例如:約500nm至約2000nm,的方式磊晶成長。
鋁調層511B Al(x)Ga(1-x)As可以磊晶成長,此處鋁的莫耳分率從約0.4降低到約0.0;厚度可以在一範圍內,例如:從約50nm到約100nm。
接點層506 砷化鎵可以摻雜例如:鈹(Be)、鋅(Zn)或碳(C)(p型接點),厚度可以在一範圍內,例如:從約100nm到約500nm。
根據一個實施例之雷射堆疊510可以包括:磊晶成長在由矽形成之基板100的構成表面上的緩衝材料構造502、磊晶成長在緩衝材料構造502上的接點層505、磊晶成長在緩衝材料構造502上的鋁調層511A、磊晶成長在鋁調層511A上的覆蓋層512A、磊晶成長在覆蓋層512A上的鋁調層513A、磊晶成長在鋁調層513B上的間隔層514、磊晶成長在鋁調層513B上的主動區域515、磊晶成長在主動區域515上的圖案化層516、磊晶成長在主動區域515上的鋁調層513B、磊晶成長在鋁調層513B上的覆蓋層512B、磊晶成長在覆蓋層512B上的鋁調層513B、以及磊晶成長在鋁調層511B上的接點層506。
根據一個實施例,雷射堆疊510在所示之較低高度處的直徑可以在約2μm至約10μm的範圍內,並且在所示之較高高度處的直徑可以在約1μm至約5μm的範圍內。根據一個實施例,雷射堆疊510的總高度(結構502的底部到結構506的頂部)可以在大約2μm至大約20μm的範圍內,並且根據一個實施例可以在大約4μm至大約12μm的範圍內。根據一個實施例,雷射堆疊510之緩衝材料構造502的高度可以在大約1μm至大約5μm的範圍內,並且根據一個實施例,其高度可以在大約2μm至大約4μm的範圍內。根據一個實施例,來自結構505、511A、512A、513A、514、515、516、513B、512B、511B、及506之結構組合可以具有在從大約1μm到大約10μm的範圍內的高度,並且根據一個實施例從約2μm至6μm。
如本發明所揭露,可以通過跨接每個雷射堆疊510之接點層505及接點層506的相關接點而施加電壓。這種施加的電壓可以引起電子流過雷射堆疊510的結構511A、512A、513A、514、515、516、513B、512B、及511B。每個主動區域515可包括:傳導帶及價帶。在接點層505及接點層506之間施加電壓可以確保大量的電子存在於主動區域515的傳導帶中,並且可以確保大量的電洞存在於主動區域515的價帶中,從而提供合適主動區域515發射光線的條件。主動區域515可包括:相關的水平延伸之縱向軸線。主動區域515可以在平行於水平延伸之縱向軸線的方向上發射光線。
雷射堆疊510的覆蓋層512A、512B以及鋁調層511A、513A、513B、511B可以被配置為幫助將光限制在主動區域515內,並且可以抑制光與接點層505及接點層506的各自相互作用。為了將光限制在主動區域515內,每個雷射堆疊510可以包括:在主動區域515內的最高折射率,並且可以包括:在雷射堆疊510內位於間隔距離處從主動區域515增加之降低折射率。鋁調層511A、513A、513B、511B可以包括:隨著距主動區域515的距離增加而連續增加的鋁(Al)濃度,並且可以包括:隨著距主動區域515的間隔距離增加而不斷降低的折射率。
對於在雷射堆疊510之前一層上磊晶成長的鋁調層511A、513A的形成,可以控制沉積參數,使得鋁(Al)的原料隨著鋁調層511A、513A的磊晶成長而反復地減少。對於在間隔層514上磊晶成長之鋁調層513B、511B的沉積,可以控制沉積參數,使得鋁(Al)的原料隨著構成第二梯度層之鋁調層513B、511B的磊晶成長而反復地增加。
各種沉積技術可以用於結構502、505、513A、512A、511A、514、515、516、513B、512B、511B及506的磊晶成長。根據一個實施例,結構502、505、513A、512A、511A、514、515、516、513B、512B、511B及506可以使用分子束磊晶(molecular beam epitaxy;MBE)以磊晶成長。各種結構502、505、513A、512A、511A、514、515、516、513B、512B、511B及506可以在約500℃至約700℃的溫度範圍內的一個以上溫度磊晶成長。根據一個實施例,可以將沉積溫度維持在足夠低的溫度,以便不降低先前製造的光學元件及構件的等級,例如:結構401至404、406至408、411至412、421至422。根據一個實施例,磊晶成長的結構502、505、513A、512A、511A、514、515、516、513B、512B、511B及506可以使用金屬有機化學氣相沉積(MOCVD)來磊晶成長。根據一個實施例,各種結構502、505、513A、512A、511A、514、515、516、513B、512B、511B及506可以使用MOCVD在約550℃至約750℃之溫度範圍內的一個以上溫度磊晶成長。
根據一個實施例,用於製造雷射堆疊510的結構的製造溫度可以降低,以用於主動區域515及後續結構的製造。本發明的實施例認知到,主動區域515因較高溫度下的後續製程而性能降低。因此,雷射堆疊510的製造的條件可以被控制,從而可以降低用於製造主動區域515及隨後結構的溫度。舉例而言,根據一個實施例,雷射堆疊510之結構的磊晶成長(及退火處理,在適用的情況下)的溫度可以降低以用於形成主動區域515及隨後的結構,使得在形成主動區域515之後磊晶成長的結構516、513B、512B、511B及506在至少約25℃的溫度製造,低於用以製造主動區域之前之結構的最高溫度。根據一個實施例,主動區域515在大約500℃可以磊晶成長,並且可以使用MOCVD或MBE在約550℃至約580℃的溫度範圍內的退火溫度磊晶成長。根據一個實施例,MOCVD可以用於結構502、505、511A、512A、513A的形成,並且MBE可以用於結構514、515、516、513B、512B、511B及506的磊晶成長。
為了成長雷射堆疊810,可以應用溫度預算。可以將較低的堆疊溫度預算用於製造主動區域515以下的結構,即結構502、505、511A、512A、513A及514。較低的堆疊溫度預算可以用於保護先前製造的光學元件,而不必降低先前製造之光學元件及構件的性能,例如:結構401至404、406至408、411至412、421至422。根據一個實施例,較低的堆疊溫度預算極限可以被建立為約650℃,使得在主動區域515以下的結構,即結構502、505、511A、512A、513A、及514之製造的沉積及退火溫度不超過約650°C。根據一個實施例,較低的堆疊溫度預算極限可以被建立為大約625℃,使得用於在主動區域515以下的結構,即結構502、505、511A、512A、513A及514之製造的沉積及退火溫度不超過約625°C。根據一個實施例,較低的堆疊溫度預算極限可以被建立為大約600℃,使得在主動區域515以下的結構,即結構502、505、511A、512A、513A及514之製造的沉積及退火溫度不超過約600°C。根據一個實施例,較低的堆疊溫度預算極限可以被建立為大約580℃,使得在主動區域515以下的結構,即結構502、505、511A、512A、513A及514之製造的沉積及退火溫度不超過580°C。
可以將堆疊溫度預算上限用於製造包括主動區域515並在其上的結構,即結構515、516、513B、512B、511B及506。堆疊溫度預算上限可以用於保護主動區域。根據一個實施例,堆疊溫度預算上限可以建立為大約650℃,使得用於製造包括主動區域515及其上的結構,即結構515、516、513B、512B、511B及506,的沉積及退火溫度不超過約650℃。根據一個實施例,可以將堆疊溫度預算上限建立為約625℃,使得用於製造包括主動區域515及其上之結構,即結構515、516、513B、512B、511B及506,的沉積及退火溫度不超過約625℃。根據一個實施例,可以將堆疊溫度預算上限設定為大約600℃,使得用於製造包括主動區域515及其上之結構,即結構515、516、513B、512B、511B及506,的沉積及退火溫度不超過約600°C。根據一個實施例,可以將堆疊溫度預算上限建立為大約580℃,使得用於製造包括主動區域515及其上之結構,即結構515、516、513B、512B、511B及506,的沉積及退火溫度不超過580°C。根據一個實施例,堆疊溫度預算上限可以被建立為低於堆疊溫度預算下限。根據一個實施例,每個堆疊溫度預算上限、堆疊溫度預算下限可以建立為低於用於製造光學元件及構件,諸如:結構401至404、406至408、411至412及421至422,的溫度預算限制。
利用電能的輸入,可以將電子注入到雷射堆疊510中。每個雷射光源件500的雷射堆疊510可以被配置為,促進電子流動通過雷射堆疊510並於主動區域515形成高密度電子。通過如本發明所揭露製造之接點而在底部接點層505且/或頂部接點層506輸入適當電能,可以促進電子的流動。在電子佔據雷射堆疊510之主動區域515的情況下,該元件可以發射光線。
在第2H圖,呈現出在用於製造接點C1至C13的製程執行之後,於製造的中間階段之如第2G圖所示的光學結構10。為了形成接點C1至C13,具有各自垂直延伸的中心軸線的接點溝槽可以在光學介電堆疊200中蝕刻出。在接點溝槽形成之後,接點溝槽可以填充有接點傳導材料,例如:傳導金屬。傳導材料可以沉積以過度填充傳導材料溝槽,然後可以受CMP以在高度2026處構成水平延伸平面。
在第2I圖,呈現出在進一步加工以構成金屬化層602、通孔層702及金屬化層612之後,於製造中間階段之如第2H圖所示的光學結構10。為了形成金屬化層602,溝槽可以在光學介電堆疊200中形成,以延伸到構成至高度2026處的底部高度,該高度2026是接點C1至C13的頂部高度。為了形成金屬化層602,金屬化層構造溝槽可以形成包括:如第2I圖所示之金屬化層構造M1之中心處的中心軸線。金屬化層溝槽可以用傳導金屬材料過度填充,然後受CMP以在所描述的金屬化層構造的頂部高度2027處構成平坦的水平表面。介電層可以接著沉積,且受CMP,以將光學介電堆疊200的高度增加到高度2028,並且通孔溝槽可以形成以包括如第2I圖所示之各個通孔V1的垂直中心處的中心軸線。
通孔溝槽可以被過度填充且受CMP,使得光學介電堆疊200的頂部高度在高度2028處構成,高度2028即通孔V1的頂部。介電材料,例如:氧化物可以沉積在高度2028處構成的水平表面上,然後可以受CMP以在高度2029處構成水平平坦化的表面。金屬化層溝槽可以在光學介電堆疊200中形成,該光學介電堆疊200在各個金屬化層構造M2之中心軸線上具有金屬化層溝槽。金屬化層溝槽可以過度填充且受CMP,以在高度2029處構成水平延伸的平坦表面,接著另一介電材料層,例如:氧化物,可以在高度2024處沉積在水平延伸表面上,該添加層可以受CMP以構成在光學介電堆疊200之中間階段視圖在高度2030處的頂部高度。
第2A圖至第2H圖之光學介電堆疊200內描述的所有構件,可以使用半導體元件製程而整體形成及製造在光學介電堆疊200內,半導體元件製程特徵在於光刻半導體元件製造階段且/或化學半導體元件製造階段。
在第2H圖的製造階段描述了一種製程,其中各自雷射光源件的底部接點,例如:接點C5、C6、C8、C9、C11及C12透過使用頂側金屬化來製造。舉例而言,為了形成接點C5,溝槽可以通過光學結構10的頂部表面且填充傳導材料。
位置「C」處之雷射堆疊510的接點層505,被表示為具有比位置「A」或「B」之雷射堆疊更高的高度。將接點層505定位在較高的高度處可以減少能量。在鋁調層513A的沉積上,在位置A及B處之具有相關中心軸線7042及7052的雷射堆疊溝槽可以用光罩材料覆蓋,並且可以將傳導材料形成的接點層505沉積在位置C的鋁調層513A上。在位置C處的雷射堆疊溝槽可以接著用介電材料填充,且雷射堆疊溝槽可以重新形成,以具有再次中心化的中心軸線7062及更窄的直徑,以構成與垂直延伸的平面7065及垂直延伸的平面7067相交之如第2G圖所示的側壁。通常在「A」及「B」處的每個雷射堆疊溝可以接著重新開槽,以進行進一步製程,包括通過雷射堆疊層成長。在位置C處的雷射堆疊溝槽510,接點層505可以蝕刻以顯露鋁調層513A的頂部表面。接點層505及接點層506可以在該層形成之特定沉積階段期間原位摻雜。根據一個實施例,在位置A、B及C中一個以上處的接點層505且/或接點層506,可以通過先前沉積的層之摻雜來形成。在位置C的雷射堆疊510處,例如:可以通過層513A的離子植入來形成接點層505。
第3圖是具有底部接點之光學結構10的剖面側視圖,該具有底部接點之光學結構10係反應第1圖所示之光學結構10而另行形成。形成雷射光源件500之底部接點的替代製程示出對於第4A圖及第4B圖之製造階段使用。
參照第4A圖,在光學介電堆疊200內結構的製造是以第2H圖的方式執行,除了用於形成雷射光源件底部接點C5、C6、C8、C9、C11及C12的階段被避免且未執行而在第4A圖所示中間階段視圖之光學結構10未具有底部接點C5、C6、C8、C9、C11之外。參考第4A圖的中間製造階段視圖,操作晶圓1100(Handle wafer)可以使用粘合層1102附接到光學介電堆疊200的頂部側。如第4A圖所示的操作晶圓1100可以由晶圓固定機(Wafer handler)所固定,以利於光學結構10的背側製程。
在將第4A圖所示之光學結構10放置在晶片分類機以利於背側製程的情況下,基板100,例如:基本上如第2H圖所示的狀態,可以被移除。隨著基板100的移除(第2H圖),雷射堆疊緩衝結構502也可以移除。為了移除基板100及緩衝結構502,研磨製程可以執行以在材料之最後閾值百分比,例如:10%的條件下移除大多數材料,或以反應離子蝕刻(reactive ion etching;RIE)製程移除較少之材料。
在第4B圖,呈現出在進一步製造以製造通過通孔VX2、以擴展光學介電堆疊200且該擴展的光學介電堆疊200內製造添加結構之後,於製造的中間階段之如第4圖B所示的光學結構10。在將基板100的材料移除到高度2012以顯露出雷射堆疊510的接點層505之後,介電材料可以沉積,且接著受CMP以在高度2007處構成水平延伸的平坦表面。溝槽可以接著形成以用於製造通過通孔VX2以及各自雷射堆疊510的底部接點C21、C22及C23。傳導材料可以接著沉積在各個溝槽內以構成通過通孔VX2以及各自雷射堆疊510的底部接點C21、C22及C23。
介電材料可以被沉積並且可受CMP以在高度2006處構成水平延伸的平坦表面。金屬化溝槽可以接著形成。金屬化層1602可以在金屬化溝槽中沉積,且可以受CMP以構成金屬化構造M11並在高度2006處構成光學結構10的頂部表面。介電沉積及CMP可以接著執行,以構成在高度2005處的水平延伸平坦表面。利用在高度2005處具有頂部高度之階段的光學結構10,構成通孔V21的通孔溝槽可以蝕刻,並且形成通孔層1702的傳導材料可以在通孔溝槽內沉積以構成通孔V21。
介電材料可以在高度2005處沉積,接著受CMP以在高度2004處構成水平延伸的平坦表面。金屬化溝槽可以接著形成,並且金屬化層1612可以在金屬化溝槽中沉積以構成金屬化構造M12。
介電材料可以在高度2005處沉積,接著受CMP以在高度2004處構成水平延伸的平坦表面。如圖所示,溝槽可以形成以顯露出金屬化層。終端6002可以接著製造。終端6002可以包括:如,下列之中的一個以上:(a)形成在光學介電堆疊200的開口,該開口通向金屬化層612;(b)形成在金屬化層612上的焊墊及朝向該焊墊的開口;(c)形成在金屬化層612上的凸塊下金屬化(UBM)層,其在光學介電堆疊200形成朝向UBM的開口;(d)形成在金屬化層612上的UBM及形成在UBM上且從光學介電堆疊200向外突出的焊料凸塊。
根據第4A圖及第4B圖之階段圖及最終在第3圖所示之具有由背側終端提供的終端6002的光學結構10的製造,可以減少連接到接點層505之接點的高度需求。因此,可以降低相關這種接點之製造的公差及成本,並且可以提升性能及速度。根據第2A圖至第2I圖的階段圖及最終在第1圖所示之具有由前側終端提供的終端6002的光學結構10的製造,可以避免額外的處理階段,例如:用於移除基板100的材料。
在第1圖至第2I圖,雷射堆疊510被描述為具有一定的底部高度。參照第2F圖,雷射堆疊510被描述為在基板100之高度內的高度2002處具有底部高度,該高度是緩衝材料構造502的底部高度。
本發明中的實施例認知到,雷射堆疊510可以製造為具有不同的底部高度,並且可以通過選擇不同的底部高度來產生不同的高度。本發明的實施例認知到,雷射堆疊510的底部高度可以根據目標光線耦合方案以選擇而最佳化光線耦合。根據一些實施例,雷射堆疊510的底部高度可基於用以將來自雷射堆疊510之主動區域515的光線耦合到一個以上波導之所選耦合方法以選擇。
第5A圖至第5D圖揭露不同的耦合方案、耦合方法及結構,以用於將來自雷射堆疊510的主動區域515的光線耦合到波導,並且還呈現出不同製造方案,其中雷射堆疊510的底部高度可以根據所選擇的耦合方案來選擇,以將來自雷射堆疊510之主動區域515的光線耦合到一個以上波導。
為了將來自主動區域515的光耦合到波導,光學結構10可以被製造,使得波導的水平延伸之縱向軸線可以與主動區域515的水平延伸之縱向軸線對齊且重合。第5A圖描述如第1圖所示之雷射光源件500,沿ZY平面截取而非第1圖所示之沿ZX平面(第5A圖所示為延伸進入紙面及離開紙面的視圖,如第1圖所示)。
參照第5A圖,光學結構10可以製造並相應地配置,使得主動區域515及波導451經佈置,而使主動區域515的水平延伸之縱向軸線與波導451的水平延伸之縱向軸線對齊並重合。主動區域515及波導451的水平延伸之縱向軸線可以與如圖所示之軸線2515重合。波導451可以通過圖案化層302來製造,該層302是如第1圖所示的矽層302,該層是預先製造的絕緣層上矽(SOI)晶圓的矽層。第5A圖描述了主動區域515直接耦合到形成矽的波導451,其中所描述的矽是原先製造絕緣層上矽晶圓的矽層。
第5B圖描述用於將來自雷射堆疊510的主動區域515的光耦合到波導451的替代方案。在第5B圖所揭露的耦合方案,由氮化物層3002製造的波導452及由氮化物層3004製造的波導453可以沉積在由層製造的波導451附近。波導452及波導453可以是以如第1圖及第2A圖至第2D圖所示之波導411及波導421的方式圖案化的氮化物,例如:氮化矽(SiN)波導。
波導452及波導453可以調整尺寸、調整形狀及調整位置,並且執行瞬逝耦合功能,其中關於軸線2515而通過波導451傳播的光線可以瞬逝耦合到波導452且/或波導453上,並且可以通過瞬逝耦合回到波導451而重新耦合,以改善通過波導451的整體光線傳輸。
第5C圖描述了用於將來自雷射堆疊510之主動區域515的光耦合到一個以上波導的替代耦合方案。在如第5C圖所示的光學結構10中,主動區域515的水平延伸之縱向軸線可以對齊於波導467的水平延伸之縱向軸線,並且可以在軸線2515上彼此重合。波導467可以是從氮化物形成之層3014圖案化的波導。
如第5C圖所示,光學結構10可以包括:從層3002圖案化的波導461、從層3004圖案化的波導462、從層3006圖案化的波導463、從層3008圖案化的波導464、從層3010圖案化的波導465、從層3012圖案化的波導466、及從層3014圖案化的波導467。層3002、3004、3006、3008、3010、3012、3014可以是氮化物層,使得所製造的各個波導461至467是氮化物波導。如第5C圖所示之波導461至467可以被製造成階梯狀,以促進波導461至467之間的瞬逝耦合,亦即通過波導467傳播的光可以瞬逝耦合到波導466,該光可以瞬逝耦合到波導465,該光可以瞬逝耦合到波導464,該光可以瞬逝耦合到波導463,該光可以瞬逝耦合到波導462,該光可以瞬逝耦合到波導461,該光可以瞬逝耦合到由矽形成之層3002圖案化的波導451。如第5C圖所示之光學結構10,呈現出耦合方案,其中從雷射堆疊510的主動區域515發射的光線可以直接耦合到由氮化物形成的波導467中,然後通過一系列波導最終耦合到由矽形成的波導451,該波導451可以從矽形成之層302圖案化,該矽可以是預先製造之絕緣層上矽(SOI)晶圓的矽層。為了促進第5C圖所示之耦合方案,雷射堆疊510的底部高度可以選擇並製造以使其具有比第1圖所示之雷射堆疊510更高的高度。
如第5C圖所示,波導4067至461的尺寸、形狀及位置可以被調整以便於光的瞬逝耦合,該光係來自波導467而向下通過波導466至461且最終進入由矽形成的波導451。
在第5D圖所示之耦合方案,雷射堆疊510的底部高度比第5C圖所佈置的高度高。
如第5D圖所示的光學結構10可以被製造,以使緩衝材料構造502磊晶成長在層302的頂部表面上,該層可以是預先製造之絕緣層上矽(SOI)晶圓的矽層。根據一個實施例,如在整個視圖中所示的層302可以具有相關聯於使用高溫處理進行預先製造的優點,該高溫處理例如高於500℃,在某些情況下高於700℃,在某些情況下高於1000℃。作為SOI晶圓之一部分而預先製造的層302可以受以熱預算的使用以消除缺陷的退火製程,熱預算在用於元件製造之層302的圖案化後受到限制。
如第5D圖所示之耦合方案,可以結合第5C圖所示之光學結構10所揭露的耦合方案的方式操作。主動區域515的水平延伸之縱向軸線及波導477的水平延伸之縱向軸線可以對齊並且可以在軸線2515上重合。從主動區域515發射的光線可以直接耦合到由氮化物形成的波導477中。耦合到波導477中的光線可以通過一系列的波導476及475、474、473、472及471連續瞬逝耦合,最後進入波導451,波導451可以從層302進行圖案化,層302可以為預先製造SOI晶圓的矽層。如第5D圖所示之波導477至471可以相對位置地調整位置、調整形狀及調整尺寸,以利於向下通過一系列波導477而穿過波導471且最終進入到波導451的瞬逝耦合,波導451為由矽(Si)形成的層302的圖案化。
耦合到雷射堆疊之主動區域515的波導,諸如:波導451(第5A圖至第5B圖)、波導467(第5C圖)及波導477(第5D圖),可以被邊緣耦合到主動區域515。為了促進光在主動區域515以及耦合到主動區域之波導邊緣之間的耦合,主動區域及波導可以配置為包括:相容的模式外形,其中各自的模式外形構成行進光訊號的各自空間區域分佈。模式外形可以使用,例如:如邊緣耦合波導及主動區域515的各自幾何形狀、邊緣耦合波導、主動區域515的折射率、以及圍繞邊緣耦合波導及雷射堆疊510之介電材料的折射率,而加以調整。藉由為了相容模式外形的配置而調整的設計參數,包括通過反射返回到活動區域(再循環損失)的光訊號損失可以減少。根據一些實施例,為了減少光損失,邊緣耦合到主動區域515之邊緣耦合波導的光進入端可以是錐形。
為了最佳化波導之間的瞬逝耦合,瞬逝耦合波導的尺寸、形狀及位置可以調整。為了調整瞬逝耦合,可以控制的參數可以包括:(a)Z方向間隔距離d,如第5C圖及第5D圖所示;(b)重疊長度l,如第5C圖-5D所示;以及(c)錐形幾何形狀。錐形瞬逝耦合波導表示在第5E圖。為了促進第一及第二波導之間的瞬逝耦合,波導可以具有重疊的錐形端。
如第5E圖所示,其描述了第一波導及第二波導的上視YX平面圖,第一波導491可具有與第二波導492之錐形端4921配合的錐形端4911,其中第二波導的高度低於第一波導491的高度(且因此以虛線形式表示)。第一波導491及第二波導492可表示為,如第5A圖至第5D圖所示之上及下瞬逝耦合波導的任何組合。瞬逝耦合的特性可取決於各種添加參數,例如:第一波導491的折射率、第二波導492的折射率、圍繞波導之光學介電堆疊200之周圍介電材料的折射率、以及行進中光線的波長。
在雷射堆疊510之任何描述的實施例中,用於容納構成緩衝材料構造502之材料的沉積的方形溝槽,可以由第5A圖中由虛線902所指示的V形溝槽代替。根據一些實施例,V形溝槽的存在可以減少在沉積製程期間缺陷的形成。
本發明中使用的術語僅用於描述特定實施例的目的,以並非限制性。在一個實施例中,術語「在……上」可以指一種關係,此處指元件「直接地在特定元件上」而不具有中間元件在元件及特定元件之間。在本發明中所使用的,單數形式「一(a、an)」及「該、所述的」(the)亦包括複數形式,除非上下文另有明確表明。將進一步理解,用語「包含」(以及任何形式的包含,例如「係包含」、「包含有」)、「具有」(以及任何形式的具有,例如「係具有」、「有」)、「包括」(以及任何形式的包括,例如「係包括」、「包括有」)、及「含有」(以及任何形式的含有,例如「係含有」、「含」)為開放式連接詞。其結果,「包含」、「具有」、「包括」或「含有」一個以上的步驟或元件的一種方法或裝置係擁有這些一個以上的步驟或元件,但並不限於僅擁有這些一個以上的步驟或元件。同樣地,「包含」、「具有」、「包括」或「含有」一個以上的特徵的方法之一步驟或裝置之一元件係擁有這些一個以上的特徵,但並不限於僅擁有這些一個以上的特徵。用語「由……所界定(definedby)」係涵蓋元件為部分地由……所界定的關係以及元件為完全地由……所界定的關係。本發明中的數字標識,例,「第一」及「第二」為標出不同元件以非標出元件排序的任意用語。再者,以某種方式以組構的系統方法或裝置係以至少該種方式以組構,但亦可能以未列出的方式以組構。再者,具有一定數量的元件的系統方法或裝置可以少於或多於該一定數量的元件來實施。
以下的申請專利範圍中的所有手段或步驟功能用語的元件的對應的結構、材料、動作及均等物(若有),旨在包括用於實行與所具體請求的其他請求的元件相結合的該功能的任何結構、材料或動作。本發明的描述出於描述及說明的目的以給出,但非旨在窮舉或限制本發明於所揭露的形式。在不脫離本發明的範圍及精神的情況下,許多修改及變化對於所屬技術領域中具有通常知識者而言是顯而易見的。實施例係為了最佳地解釋本發明內容的各方面的原理及實際應用,而加以選擇並說明,並且使其他的所屬技術領域中具有通常知識者理解本發明內容的各方面,以用於具有適合於所預期的特定使用的各種修改的各種實施例。
10:光學結構 100:基板 1100:操作晶圓 1102:粘合層 1602:金屬化層 1612:金屬化層 1702:通孔層 200:光學介電堆疊 2000:高度 2002:高度 2004:高度 2005:高度 2006:高度 2007:高度 2010:高度 2012:高度 202:絕緣層 2020:高度 2022:高度 2023:高度 2024:高度 2025:高度 2026:高度 2027:頂部高度 2028:高度 2029:高度 2030:高度 2515:軸線 3002:層 3004:層 3006:層 3008:層 3010:層 3012:層 3014:層 302:層 312:層 322:層 401:波導材料構造 402:波導 403:波導材料構造 404:波導 406:光感測器 4067:波導 407:光敏感材料構造 408:調變器 411:波導 412:波導 421:波導 422:波導 451:波導 452:波導 453:波導 461:波導 462:波導 463:波導 464:波導 465:波導 466:波導 467:波導 471:波導 472:波導 473:波導 474:波導 475:波導 476:波導 477:波導 491:第一波導 4911:錐形端 492:第二波導 4921:錐形端 500:雷射光源件 502:緩衝材料構造 503:層 505:接點層 506:接點層 510:雷射堆疊 511A:鋁調層 511B:鋁調層 512A:覆蓋層 512B:覆蓋層 513A:鋁調層 513B:鋁調層 514:間隔層 515:主動區域 516:層 6002:終端 602:金屬化層 612:金屬化層 7001:垂直延伸平面 7002:垂直延伸的中心軸線 7003:垂直延伸的平面 7011:垂直延伸的平面 7012:中心軸線 7013:垂直延伸的平面 702:通孔層 7021:垂直延伸的平面 7022:中心軸線 7023:垂直延伸的平面 7031:垂直延伸的平面 7032:垂直延伸的中心軸線 7033:垂直延伸的平面 7041:垂直延伸的平面 7042:垂直延伸的中心軸線 7051:垂直延伸的平面 7052:垂直延伸的中心軸線 7053:垂直延伸的平面 7061:垂直延伸的平面 7062:垂直延伸的中心軸線 7063:垂直延伸的平面 7065:垂直延伸的平面 7067:垂直延伸的平面 810:雷射堆疊 902:虛線 A:位置 B:位置 C:位置 C1:接點 C10:接點 C11:接點 C12:接點傳導材料構造 C13:接點 C2:下接點 C21:底部接點 C22:底部接點 C23:底部接點 C3:接點 C4:接點 C5:底部接點 C6:接點 C7:接點 C8:接點 C9:接點 M1:金屬化層構造 M11:金屬化構造 M12:金屬化構造 M2:金屬化層構造 V1:通孔 V21:通孔 VX2:通過通孔
本發明所揭露的技術內容經特別指出,且在說明書的結論明確地主張申請專利範圍。本發明之前述及其他的目的、特徵及優點,從以下結合圖式的詳細描述,將可明確而得以瞭解內容,其中該圖式具有:
第1圖是光電系統的剖面側視圖;以及
第2A圖至第2I圖為製造階段圖,以表現出根據一個實施例之如第1圖所示之光電系統的製造方法;
第3圖是根據一個實施例之光電系統的剖面側視圖;
第4A圖至第4B圖為製造階段圖,以表現出根據第3圖之光電系統的製造方法;
第5A圖至第5D圖是在Z-Y平面中的製造階段圖,以表現出被製造用於將來自雷射堆疊之主動區域的光耦合到一個以上波導的光學結構;
第5E圖為第一及第二瞬逝耦合波導在Y-X平面的上視圖。
10:光學結構
100:基板
200:光學介電堆疊
2000:高度
202:絕緣層
302:層
312:層
321:層
322:層
401:波導材料構造
402:波導
403:波導材料構造
404:波導
406:光感測器
407:光敏感材料構造
408:調變器
411:波導
412:波導
421:波導
422:波導
500:雷射光源件
502:緩衝材料構造
503:層
505:接點層
506:接點層
510:雷射堆疊
511A:鋁調層
511B:鋁調層
512A:覆蓋層
512B:覆蓋層
513A:鋁調層
513B:鋁調層
514:間隔層
515:主動區域
516:層
6002:終端
602:金屬化層
612:金屬化層
702:通孔層
A:位置
B:位置
C:位置
C1:接點
C10:接點
C11:接點
C12:接點傳導材料構造
C13:接點
C2:下接點
C3:接點
C4:接點
C5:底部接點
C6:接點
C7:接點
C8:接點
C9:接點
M1:金屬化層構造
M2:金屬化層構造
V1:通孔

Claims (26)

  1. 一種光學結構,包含:基板;介電堆疊,設置於該基板上;一個以上的光學元件,積體設置於該介電堆疊;以及雷射光源件,具有雷射堆疊,該雷射堆疊包括:以排列為堆疊而建構的複數個結構,其中複數個該結構之多個結構為積體設置於該介電堆疊,其中該雷射堆疊包括:主動區域,該主動區域經配置為因應於電能對該雷射堆疊的施加而發射光線。
  2. 如請求項1所述之光學結構,其中該雷射光源件包括:緩衝材料構造、覆蓋層、鋁調層及主動區域。
  3. 如請求項1所述之光學結構,其中該介電堆疊係由絕緣層上矽(SOI)晶圓的絕緣層所構成,且其中在一個以上的該光學元件之中的光學元件是由絕緣層上矽晶圓的矽層所構成。
  4. 如請求項1所述之光學結構,其中整體形成在該介電堆疊之內的一個以上的該光學元件包括:波導,其中該主動區域具有與該波導相同的高度,且其中該主動區域係經配置而發射光線進入該波導。
  5. 如請求項1所述之光學結構,其中整體形成在該介電堆疊之內的一個以上的該光學元件包括:具有水平延伸之縱向軸線的單晶矽波導,其中該單晶矽波導的水平延伸之縱向軸線對齊於該主動區域的水平延伸之縱向軸線,且其中該主動區域係經配置而發射光線進入該單晶矽波導。
  6. 如請求項1所述之光學結構,其中整體形成在該介電堆疊之內的一個以上的該光學元件包括:具有水平延伸之縱向軸線的氮化物波導,其中該氮化物波導的水平延伸之縱向軸線對齊於該主動區域的水平延伸之縱向軸線,且其中該主動區域係經配置而發射光線進入該氮化物波導。
  7. 如請求項1所述之光學結構,其中整體形成在該介電堆疊之內的一個以上的該光學元件包括:具有水平延伸之縱向軸線的氮化物波導,其中該氮化物波導的水平延伸之縱向軸線對齊於該主動區域的水平延伸之縱向軸線,且其中該主動區域係經配置而發射光線進入該氮化物波導,其中該介電堆疊由絕緣層上矽(SOI)晶圓的絕緣層所構成,且其中在一個以上的該光學元件之中的光學元件是由絕緣層上矽晶圓的矽層所構成的單晶矽波導,其中該光學結構包括:以逐步重疊模式排列的複數個波導,且複數個該波導經配置以瞬逝耦合於自該主動區域發射進入由該絕緣層上矽晶圓之矽層所構成的該單晶波導的光線。
  8. 如請求項1所述之光學結構,其中該雷射光源件包括:緩衝材料構造、接點層、鋁調層及主動區域。
  9. 如請求項1所述之光學結構,其中該雷射光源件包括:具有底部高度的緩衝材料構造,該底部高度位在該基板之頂部高度之下。
  10. 如請求項1所述之光學結構,其中該雷射光源件包括:具有底部高度的緩衝材料構造,該底部高度位在該基板之頂部高度之下,其中設置在該介電堆疊之內的一個以上的該光學元件包括:具有水平延伸之縱向軸線的單晶矽波導,其中該波導的水平延伸之縱向軸線重合於該主動區域的水平延伸之縱向軸線,且其中該主動區域係經配置而發射光線進入該單晶矽波導。
  11. 如請求項1所述之光學結構,其中該基板為絕緣層上矽(SOI)晶圓的基板,該絕緣層上矽(SOI)晶圓具有形成於絕緣體上的矽層,該絕緣體形成於該基板上,其中一個以上的該光學元件包括:由該矽層所構成的波導,該波導係對齊於該主動區域。
  12. 如請求項1所述之光學結構,其中該基板包括:矽。
  13. 如請求項1所述之光學結構,其中一個以上的該光學元件包括:積體設置於該介電堆疊的光感測器、積體設置於該介電堆疊的調變器、以及積體設置於該介電堆疊的波導中的每一個。
  14. 如請求項1所述之光學結構,其中該光學結構包括:具有第二雷射堆疊的第二雷射光源件,其中該雷射堆疊及該第二雷射堆疊均包括:連接至接點的底部接點層,其中該第二雷射堆疊之底部接點層的高度高於該雷射堆疊之底部接點層的高度。
  15. 如請求項1所述之光學結構,其中該光學結構包括:具有第二雷射堆疊的第二雷射光源件,其中該雷射堆疊及該第二雷射堆疊均包括:連接至接點的底部接點層,其中該第二雷射堆疊之底部接點層的高度高於該雷射堆疊之底部接點層的高度,其中該第二雷射堆疊之底部接點層為磊晶成長於該第二雷射堆疊之鋁調層之上,其中該雷射堆疊之底部接點層為磊晶成長於第一的該雷射光源件之緩衝材料構造之上。
  16. 如請求項1所述之光學結構,其中該介電堆疊是由絕緣層上矽晶圓之絕緣層所構成,且其中該雷射堆疊完全地延伸通過該絕緣層的高度。
  17. 如請求項1所述之光學結構,其中該介電堆疊是由絕緣層上矽晶圓之絕緣層所構成,其中該雷射堆疊的底部高度是由緩衝材料構造的底部高度所構成,該緩衝材料構造具有在該絕緣層之高度內的底部高度。
  18. 一種製造光學結構的方法,包含:在光學結構之絕緣層上矽(SOI)晶圓的矽層圖案化波導,該光學結構具有由該絕緣層上矽晶圓之絕緣體所構成的介電堆疊;在該光學結構形成延伸通過該介電堆疊之介電層的溝槽;以及在該溝槽內磊晶成長雷射堆疊,該雷射堆疊包括:以排列為堆疊建構的複數個結構,其中複數個該結構之多個結構係設置於該介電堆疊內,且包括:主動區域,該主動區域經配置為因應於電能對該雷射堆疊的施加而發射光線。
  19. 如請求項18所述之方法,其中該主動區域對齊於該波導。
  20. 如請求項18所述之方法,其中該波導係水平延伸且設置於與對齊於該波導之該主動區域之高度相同的高度,且其中該主動區域水平地發射光線而使該主動區域所發射的光線耦合於該波導。
  21. 如請求項18所述之方法,其中所述的在該光學結構形成延伸通過該介電堆疊之介電層的溝槽係包括:在該光學結構形成延伸通過該介電堆疊之介電層的溝槽,而使該溝槽具有底部高度,該底部高度低於該絕緣層上矽晶圓之基板之頂部高度。
  22. 如請求項18所述之方法,其中該方法包括:在該介電堆疊內整體地製造光感測器及調變器。
  23. 如請求項18所述之方法,其中所述的在該矽層圖案化波導係包括:使用第一製程溫度範圍,且其中該磊晶成長包括:使用第二製程溫度範圍 磊晶成長構成該雷射堆疊的緩衝材料構造,其中該第二製程溫度範圍的最高溫度低於該第一製程溫度範圍的最高溫度。
  24. 如請求項18所述之方法,其中所述的磊晶成長該雷射堆疊係包括:磊晶成長緩衝材料構造、在該緩衝材料構造上磊晶成長接點層、在該緩衝材料構造磊晶成長第一鋁調層、在該第一鋁調層上磊晶成長第二覆蓋層、在第一的該覆蓋層上磊晶成長第二鋁調層、在該第二鋁調層上磊晶成長間隔層、以及在該間隔層上磊晶成長主動區域。
  25. 如請求項18所述之方法,其中該主動區域係包含多個量子點。
  26. 如請求項18所述之方法,其中所述的在該溝槽內磊晶成長雷射堆疊係包括:在矽表面上磊晶成長緩衝材料構造,該矽表面由該基板所構成,其中該方法包括:移除該基板及該緩衝材料構造的材料而顯露該介電堆疊的底側表面、以及在該介電堆疊的底側表面上製造延伸的介電堆疊區域,其中該方法包括:在該延伸的介電堆疊區域製造接觸該雷射堆疊之接點層的積體的電接點、以及製造電連接於該電接點的終端。
TW108133747A 2018-11-21 2019-09-19 具有積體雷射的光學結構 TWI829761B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202105177SA SG11202105177SA (en) 2018-11-21 2019-09-20 Photonics structure with integrated laser
KR1020217015260A KR20220002239A (ko) 2018-11-21 2019-09-20 집적 레이저를 구비한 포토닉스 구조
PCT/US2019/052232 WO2020123008A1 (en) 2018-11-21 2019-09-20 Photonics structure with integrated laser
JP2021527106A JP2022509947A (ja) 2018-11-21 2019-09-20 集積レーザーを備えるフォトニクス構造
EP19870070.0A EP3884321A1 (en) 2018-11-21 2019-09-20 Photonics structure with integrated laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862770623P 2018-11-21 2018-11-21
US62/770,623 2018-11-21

Publications (2)

Publication Number Publication Date
TW202029602A TW202029602A (zh) 2020-08-01
TWI829761B true TWI829761B (zh) 2024-01-21

Family

ID=70771439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133747A TWI829761B (zh) 2018-11-21 2019-09-19 具有積體雷射的光學結構

Country Status (6)

Country Link
US (1) US11029466B2 (zh)
EP (1) EP3884321A1 (zh)
JP (1) JP2022509947A (zh)
KR (1) KR20220002239A (zh)
SG (1) SG11202105177SA (zh)
TW (1) TWI829761B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202009807UA (en) 2018-04-04 2020-11-27 Univ New York State Res Found Heterogeneous structure on an integrated photonics platform
US11550099B2 (en) 2018-11-21 2023-01-10 The Research Foundation For The State University Of New York Photonics optoelectrical system
TWI829761B (zh) 2018-11-21 2024-01-21 紐約州立大學研究基金會 具有積體雷射的光學結構
US11810986B2 (en) * 2019-11-15 2023-11-07 Institute of Microelectronics, Chinese Academy of Sciences Method for integrating surface-electrode ion trap and silicon photoelectronic device, integrated structure, and three-dimensional structure
US11300852B2 (en) * 2020-07-02 2022-04-12 Robert Bosch Gmbh MEMS optical switch with a cantilever coupler
US11307483B2 (en) 2020-07-02 2022-04-19 Robert Bosch Gmbh MEMS optical switch with dual cantilever couplers
US11360270B2 (en) 2020-07-02 2022-06-14 Robert Bosch Gmbh MEMS optical switch with stop control
US11340399B2 (en) 2020-07-02 2022-05-24 Robert Bosch Gmbh In-plane MEMS optical switch
US11662523B2 (en) * 2021-01-19 2023-05-30 Globalfoundries U.S. Inc. Edge couplers in the back-end-of-line stack of a photonics chip
US11579367B2 (en) * 2021-02-10 2023-02-14 Alpine Optoelectronics, Inc. Integrated waveguide polarizer
US11796735B2 (en) * 2021-07-06 2023-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated 3DIC with stacked photonic dies and method forming same
US11835764B2 (en) * 2022-01-31 2023-12-05 Globalfoundries U.S. Inc. Multiple-core heterogeneous waveguide structures including multiple slots
US20240176072A1 (en) * 2022-11-29 2024-05-30 Tin Komljenovic Heterogenously integrated short wavelength photonic platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164311A1 (en) * 2003-09-05 2007-07-19 Hans Von Kaenel Ingaas/gaas lasers on-silicon produced by-lepecvd and mocvd
TW200950077A (en) * 2008-04-18 2009-12-01 Freescale Semiconductor Inc Optical communication integration
US20110002352A1 (en) * 2009-07-02 2011-01-06 Mitsubishi Electric Corporation Optical waveguide integrated semiconductor optical device and manufacturing method therefor
US20170299809A1 (en) * 2016-04-19 2017-10-19 Stmicroelectronics (Crolles 2) Sas Electro-optic device with multiple photonic layers and related methods
US20180143374A1 (en) * 2016-11-23 2018-05-24 The Research Foundation For The State University Of New York Photonics interposer optoelectronics

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841931A (en) 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
EP0867701A1 (en) 1997-03-28 1998-09-30 Interuniversitair Microelektronica Centrum Vzw Method of fabrication of an infrared radiation detector and more particularly an infrared sensitive bolometer
US6056630A (en) 1998-05-19 2000-05-02 Lucent Technologies Inc. Polishing apparatus with carrier head pivoting device
US6048775A (en) 1999-05-24 2000-04-11 Vanguard International Semiconductor Corporation Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes
US6352942B1 (en) 1999-06-25 2002-03-05 Massachusetts Institute Of Technology Oxidation of silicon on germanium
HUP0000532A2 (hu) 2000-02-07 2002-03-28 Optilink Ab Eljárás és rendszer információ rögzítésére holografikus kártyán
US6879014B2 (en) 2000-03-20 2005-04-12 Aegis Semiconductor, Inc. Semitransparent optical detector including a polycrystalline layer and method of making
US7103245B2 (en) 2000-07-10 2006-09-05 Massachusetts Institute Of Technology High density integrated optical chip
US6631225B2 (en) 2000-07-10 2003-10-07 Massachusetts Institute Of Technology Mode coupler between low index difference waveguide and high index difference waveguide
JP2004503799A (ja) 2000-07-10 2004-02-05 マサチューセッツ インスティテュート オブ テクノロジー グレーデッドインデックス導波路
AUPQ897600A0 (en) 2000-07-25 2000-08-17 Liddiard, Kevin Active or self-biasing micro-bolometer infrared detector
JP2002353205A (ja) 2000-08-28 2002-12-06 Mitsubishi Electric Corp 半導体装置の製造方法およびそれに用いられるウェハ処理装置並びに半導体装置
WO2002033457A2 (en) 2000-10-13 2002-04-25 Massachusetts Institute Of Technology Optical waveguides with trench structures
US6694082B2 (en) 2001-04-05 2004-02-17 Lucent Technologies Inc. Polycrystalline ferroelectric optical devices
GB0122427D0 (en) 2001-09-17 2001-11-07 Denselight Semiconductors Pte Fabrication of stacked photonic lightwave circuits
US6706576B1 (en) 2002-03-14 2004-03-16 Advanced Micro Devices, Inc. Laser thermal annealing of silicon nitride for increased density and etch selectivity
US7190871B2 (en) 2002-04-09 2007-03-13 Massachusetts Institute Of Technology Polysilane thin films for directly patternable waveguides
US6855975B2 (en) 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
KR20050032527A (ko) 2002-06-19 2005-04-07 메사추세츠 인스티튜트 오브 테크놀로지 게르마늄 광검출기
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
FR2842022B1 (fr) 2002-07-03 2005-05-06 Commissariat Energie Atomique Dispositif de maintien d'un objet sous vide et procedes de fabrication de ce dispositif, application aux detecteurs intrarouges non refroidis
JP2004109888A (ja) 2002-09-20 2004-04-08 Yasuo Kokubu 光導波路及びその製造方法
US7389029B2 (en) 2003-07-03 2008-06-17 Applied Research And Photonics, Inc. Photonic waveguide structures for chip-scale photonic integrated circuits
US7095010B2 (en) 2002-12-04 2006-08-22 California Institute Of Technology Silicon on insulator resonator sensors and modulators and method of operating the same
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US7767499B2 (en) 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US20060249753A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes
JP2004259882A (ja) 2003-02-25 2004-09-16 Seiko Epson Corp 半導体装置及びその製造方法
US7262117B1 (en) 2003-06-10 2007-08-28 Luxtera, Inc. Germanium integrated CMOS wafer and method for manufacturing the same
US7123805B2 (en) 2003-06-16 2006-10-17 Massachusetts Institute Of Technology Multiple oxidation smoothing method for reducing silicon waveguide roughness
US7205525B2 (en) 2003-09-05 2007-04-17 Analog Devices, Inc. Light conversion apparatus with topside electrode
US7262140B2 (en) 2003-11-24 2007-08-28 Intel Corporation Method of smoothing waveguide structures
US7251386B1 (en) 2004-01-14 2007-07-31 Luxtera, Inc Integrated photonic-electronic circuits and systems
US7773836B2 (en) 2005-12-14 2010-08-10 Luxtera, Inc. Integrated transceiver with lightpipe coupler
US20050185884A1 (en) 2004-01-23 2005-08-25 Haus Hermann A. Single-level no-crossing microelectromechanical hitless switch for high density integrated optics
US20050220984A1 (en) 2004-04-02 2005-10-06 Applied Materials Inc., A Delaware Corporation Method and system for control of processing conditions in plasma processing systems
DK1779418T3 (en) 2004-06-17 2014-12-08 Ion Optics Inc EMITTER, DETECTOR AND SENSOR WITH photonic crystal
US7397101B1 (en) 2004-07-08 2008-07-08 Luxtera, Inc. Germanium silicon heterostructure photodetectors
US7723754B2 (en) 2004-07-28 2010-05-25 Massachusetts Institute Of Technology Ge photodetectors
US7194166B1 (en) 2004-08-26 2007-03-20 Luxtera, Inc. Use of waveguide grating couplers in an optical mux/demux system
US7321713B2 (en) 2004-09-17 2008-01-22 Massachusetts Institute Of Technology Silicon based on-chip photonic band gap cladding waveguide
US7157300B2 (en) 2004-11-19 2007-01-02 Sharp Laboratories Of America, Inc. Fabrication of thin film germanium infrared sensor by bonding to silicon wafer
US7008813B1 (en) 2005-02-28 2006-03-07 Sharp Laboratories Of America, Inc.. Epitaxial growth of germanium photodetector for CMOS imagers
US7186611B2 (en) 2005-02-28 2007-03-06 Sharp Laboratories Of America, Inc. High-density germanium-on-insulator photodiode array
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060250836A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US7801406B2 (en) 2005-08-01 2010-09-21 Massachusetts Institute Of Technology Method of fabricating Ge or SiGe/Si waveguide or photonic crystal structures by selective growth
US7358107B2 (en) 2005-10-27 2008-04-15 Sharp Laboratories Of America, Inc. Method of fabricating a germanium photo detector on a high quality germanium epitaxial overgrowth layer
US7305157B2 (en) 2005-11-08 2007-12-04 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US7811913B2 (en) 2005-12-19 2010-10-12 Sharp Laboratories Of America, Inc. Method of fabricating a low, dark-current germanium-on-silicon pin photo detector
US20070170536A1 (en) 2006-01-25 2007-07-26 Sharp Laboratories Of America, Inc. Liquid phase epitaxial GOI photodiode with buried high resistivity germanium layer
US7459686B2 (en) 2006-01-26 2008-12-02 L-3 Communications Corporation Systems and methods for integrating focal plane arrays
US7480430B2 (en) 2006-02-08 2009-01-20 Massachusetts Institute Of Technology Partial confinement photonic crystal waveguides
US7508050B1 (en) 2006-03-16 2009-03-24 Advanced Micro Devices, Inc. Negative differential resistance diode and SRAM utilizing such device
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7700975B2 (en) 2006-03-31 2010-04-20 Intel Corporation Schottky barrier metal-germanium contact in metal-germanium-metal photodetectors
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7613369B2 (en) 2006-04-13 2009-11-03 Luxtera, Inc. Design of CMOS integrated germanium photodiodes
US20070262296A1 (en) 2006-05-11 2007-11-15 Matthias Bauer Photodetectors employing germanium layers
US7943471B1 (en) 2006-05-15 2011-05-17 Globalfoundries Inc. Diode with asymmetric silicon germanium anode
US7718965B1 (en) 2006-08-03 2010-05-18 L-3 Communications Corporation Microbolometer infrared detector elements and methods for forming same
WO2008030468A2 (en) 2006-09-07 2008-03-13 Massachusetts Institute Of Technology Microphotonic waveguide including core/cladding interface layer
US7651880B2 (en) 2006-11-04 2010-01-26 Sharp Laboratories Of America, Inc. Ge short wavelength infrared imager
WO2008073967A1 (en) 2006-12-13 2008-06-19 Massachusetts Institute Of Technology Mode transformers for low index high confinement waveguides
JP4996938B2 (ja) 2007-02-16 2012-08-08 株式会社日立製作所 半導体発光素子
TW200837965A (en) 2007-03-05 2008-09-16 Univ Nat Taiwan Photodetector
TWI360232B (en) 2007-06-12 2012-03-11 Univ Nat Taiwan Method for manufacturing photodetector
JP2008311457A (ja) 2007-06-15 2008-12-25 Renesas Technology Corp 半導体装置の製造方法
US7537968B2 (en) 2007-06-19 2009-05-26 Sandisk 3D Llc Junction diode with reduced reverse current
US8072791B2 (en) 2007-06-25 2011-12-06 Sandisk 3D Llc Method of making nonvolatile memory device containing carbon or nitrogen doped diode
US7514751B2 (en) 2007-08-02 2009-04-07 National Semiconductor Corporation SiGe DIAC ESD protection structure
US8787774B2 (en) 2007-10-10 2014-07-22 Luxtera, Inc. Method and system for a narrowband, non-linear optoelectronic receiver
US7994066B1 (en) 2007-10-13 2011-08-09 Luxtera, Inc. Si surface cleaning for semiconductor circuits
US7736934B2 (en) 2007-10-19 2010-06-15 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing vertical germanium detectors
US8343792B2 (en) 2007-10-25 2013-01-01 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing lateral germanium detectors
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
US7723206B2 (en) 2007-12-05 2010-05-25 Fujifilm Corporation Photodiode
US7659627B2 (en) 2007-12-05 2010-02-09 Fujifilm Corporation Photodiode
US8078063B2 (en) 2008-02-05 2011-12-13 Finisar Corporation Monolithic power monitor and wavelength detector
US7902620B2 (en) 2008-08-14 2011-03-08 International Business Machines Corporation Suspended germanium photodetector for silicon waveguide
JP5232981B2 (ja) 2008-03-07 2013-07-10 日本電気株式会社 SiGeフォトダイオード
US7737534B2 (en) 2008-06-10 2010-06-15 Northrop Grumman Systems Corporation Semiconductor devices that include germanium nanofilm layer disposed within openings of silicon dioxide layer
US20100006961A1 (en) 2008-07-09 2010-01-14 Analog Devices, Inc. Recessed Germanium (Ge) Diode
US8168939B2 (en) 2008-07-09 2012-05-01 Luxtera, Inc. Method and system for a light source assembly supporting direct coupling to an integrated circuit
US8238014B2 (en) 2008-09-08 2012-08-07 Luxtera Inc. Method and circuit for encoding multi-level pulse amplitude modulated signals using integrated optoelectronic devices
US8877616B2 (en) 2008-09-08 2014-11-04 Luxtera, Inc. Method and system for monolithic integration of photonics and electronics in CMOS processes
WO2010033641A1 (en) 2008-09-16 2010-03-25 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Gesn infrared photodetectors
KR101000941B1 (ko) 2008-10-27 2010-12-13 한국전자통신연구원 게르마늄 광 검출기 및 그 형성방법
US7916377B2 (en) 2008-11-03 2011-03-29 Luxtera, Inc. Integrated control system for laser and Mach-Zehnder interferometer
WO2010055750A1 (ja) 2008-11-12 2010-05-20 株式会社日立製作所 発光素子並びに受光素子及びその製造方法
US8188512B2 (en) 2008-12-03 2012-05-29 Electronics And Telecommunications Research Institute Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
EP2214042B1 (en) 2009-02-02 2015-03-11 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method of producing a photonic device and corresponding photonic device
US8798476B2 (en) 2009-02-18 2014-08-05 Luxtera, Inc. Method and system for single laser bidirectional links
JP5428400B2 (ja) 2009-03-04 2014-02-26 ソニー株式会社 固体撮像装置、および、その製造方法、電子機器
US8358940B2 (en) 2009-07-10 2013-01-22 Luxtera Inc. Method and system for optoelectronic receivers for uncoded data
US20110027950A1 (en) 2009-07-28 2011-02-03 Jones Robert E Method for forming a semiconductor device having a photodetector
US8592745B2 (en) 2009-08-19 2013-11-26 Luxtera Inc. Method and system for optoelectronic receivers utilizing waveguide heterojunction phototransistors integrated in a CMOS SOI wafer
US8289067B2 (en) 2009-09-14 2012-10-16 Luxtera Inc. Method and system for bandwidth enhancement using hybrid inductors
EP2483925B1 (en) 2009-09-29 2018-05-16 Research Triangle Institute Quantum dot-fullerene junction based photodetectors
US8319237B2 (en) 2009-12-31 2012-11-27 Intel Corporation Integrated optical receiver architecture for high speed optical I/O applications
US8649639B2 (en) 2010-03-04 2014-02-11 Luxtera, Inc. Method and system for waveguide mode filters
US8625935B2 (en) 2010-06-15 2014-01-07 Luxtera, Inc. Method and system for integrated power combiners
US8304272B2 (en) 2010-07-02 2012-11-06 International Business Machines Corporation Germanium photodetector
US8471639B2 (en) 2010-07-06 2013-06-25 Luxtera Inc. Method and system for a feedback transimpedance amplifier with sub-40khz low-frequency cutoff
FR2966977B1 (fr) 2010-11-03 2016-02-26 Commissariat Energie Atomique Detecteur de rayonnement visible et proche infrarouge
FR2966976B1 (fr) 2010-11-03 2016-07-29 Commissariat Energie Atomique Imageur monolithique multispectral visible et infrarouge
CN102465336B (zh) 2010-11-05 2014-07-09 上海华虹宏力半导体制造有限公司 一种高锗浓度的锗硅外延方法
WO2012068451A2 (en) 2010-11-19 2012-05-24 Arizona Board of Regents, a body corporate of the state of Arizona, acting for and on behalf of Dilute sn-doped ge alloys
US8633067B2 (en) 2010-11-22 2014-01-21 International Business Machines Corporation Fabricating photonics devices fully integrated into a CMOS manufacturing process
US8803068B2 (en) 2011-01-26 2014-08-12 Maxim Integrated Products, Inc. Light sensor having a contiguous IR suppression filter and a transparent substrate
US8354282B2 (en) 2011-01-31 2013-01-15 Alvin Gabriel Stern Very high transmittance, back-illuminated, silicon-on-sapphire semiconductor wafer substrate for high quantum efficiency and high resolution, solid-state, imaging focal plane arrays
US8741684B2 (en) 2011-05-09 2014-06-03 Imec Co-integration of photonic devices on a silicon photonics platform
US8399949B2 (en) 2011-06-30 2013-03-19 Micron Technology, Inc. Photonic systems and methods of forming photonic systems
US9653639B2 (en) 2012-02-07 2017-05-16 Apic Corporation Laser using locally strained germanium on silicon for opto-electronic applications
WO2013119981A1 (en) 2012-02-10 2013-08-15 Massachusetts Institute Of Technology Athermal photonic waveguide with refractive index tuning
US8772899B2 (en) 2012-03-01 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for backside illumination sensor
WO2013147813A1 (en) 2012-03-29 2013-10-03 Intel Corporation Photonic device with a conductive shunt layer
US9091827B2 (en) 2012-07-09 2015-07-28 Luxtera, Inc. Method and system for grating couplers incorporating perturbed waveguides
US9105772B2 (en) 2012-07-30 2015-08-11 Bae Systems Information And Electronic Systems Integration Inc. In-line germanium avalanche photodetector
US8723125B1 (en) 2012-11-06 2014-05-13 Laxense Inc. Waveguide end-coupled infrared detector
CN103000650B (zh) 2012-12-10 2015-07-29 复旦大学 近红外-可见光可调图像传感器及其制造方法
US8802484B1 (en) 2013-01-22 2014-08-12 Globalfoundries Singapore Pte. Ltd. Integration of germanium photo detector in CMOS processing
US20140206190A1 (en) 2013-01-23 2014-07-24 International Business Machines Corporation Silicide Formation in High-Aspect Ratio Structures
US9046650B2 (en) 2013-03-12 2015-06-02 The Massachusetts Institute Of Technology Methods and apparatus for mid-infrared sensing
US9360623B2 (en) 2013-12-20 2016-06-07 The Regents Of The University Of California Bonding of heterogeneous material grown on silicon to a silicon photonic circuit
US10571631B2 (en) 2015-01-05 2020-02-25 The Research Foundation For The State University Of New York Integrated photonics including waveguiding material
US9874693B2 (en) 2015-06-10 2018-01-23 The Research Foundation For The State University Of New York Method and structure for integrating photonics with CMOs
WO2017210300A1 (en) * 2016-06-03 2017-12-07 The Regents Of The University Of California Integration of direct-bandgap optically active devices on indirect-bandgap-based substrates
US10643903B2 (en) 2016-07-13 2020-05-05 Rockley Photonics Limited Mode converter and method of fabricating thereof
EP3545349A1 (en) 2016-11-23 2019-10-02 The Research Foundation for The State University of New York Photonics interposer optoelectronics
US10698156B2 (en) 2017-04-27 2020-06-30 The Research Foundation For The State University Of New York Wafer scale bonded active photonics interposer
EP3467973A1 (en) * 2017-10-04 2019-04-10 IMEC vzw Active-passive waveguide photonic system
SG11202009807UA (en) 2018-04-04 2020-11-27 Univ New York State Res Found Heterogeneous structure on an integrated photonics platform
US10816724B2 (en) 2018-04-05 2020-10-27 The Research Foundation For The State University Of New York Fabricating photonics structure light signal transmission regions
TWI829761B (zh) 2018-11-21 2024-01-21 紐約州立大學研究基金會 具有積體雷射的光學結構
US11550099B2 (en) 2018-11-21 2023-01-10 The Research Foundation For The State University Of New York Photonics optoelectrical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164311A1 (en) * 2003-09-05 2007-07-19 Hans Von Kaenel Ingaas/gaas lasers on-silicon produced by-lepecvd and mocvd
TW200950077A (en) * 2008-04-18 2009-12-01 Freescale Semiconductor Inc Optical communication integration
US20110002352A1 (en) * 2009-07-02 2011-01-06 Mitsubishi Electric Corporation Optical waveguide integrated semiconductor optical device and manufacturing method therefor
US20170299809A1 (en) * 2016-04-19 2017-10-19 Stmicroelectronics (Crolles 2) Sas Electro-optic device with multiple photonic layers and related methods
US20180143374A1 (en) * 2016-11-23 2018-05-24 The Research Foundation For The State University Of New York Photonics interposer optoelectronics

Also Published As

Publication number Publication date
US11029466B2 (en) 2021-06-08
JP2022509947A (ja) 2022-01-25
US20200166703A1 (en) 2020-05-28
TW202029602A (zh) 2020-08-01
KR20220002239A (ko) 2022-01-06
EP3884321A1 (en) 2021-09-29
SG11202105177SA (en) 2021-06-29

Similar Documents

Publication Publication Date Title
TWI829761B (zh) 具有積體雷射的光學結構
US11550099B2 (en) Photonics optoelectrical system
US7535089B2 (en) Monolithically integrated light emitting devices
US7732237B2 (en) Quantum dot based optoelectronic device and method of making same
US9966735B2 (en) III-V lasers with integrated silicon photonic circuits
US10763643B2 (en) Laser devices
US11075498B2 (en) Method of fabricating an optoelectronic component
CN111989777A (zh) 用于制造具有二极管的矩阵的光电器件的方法
US10795084B2 (en) Grating with plurality of layers
CN109801930B (zh) 异质半导体结构及其制造方法
CN109478764B (zh) 基于异质结构的集成光子装置、方法和应用
KR20230058639A (ko) Led 디바이스 및 led 디바이스를 제조하는 방법
US20050201436A1 (en) Method for processing oxide-confined VCSEL semiconductor devices
CN114868241A (zh) 激光处理装置和激光处理方法
CN110178229B (zh) 具有提取增强的带有发光二极管的光电设备
JP2017054859A (ja) 半導体発光デバイス
US20230244029A1 (en) Photonics optoelectrical system
WO2020123008A1 (en) Photonics structure with integrated laser
KR20220113727A (ko) 레이저 절단을 위한 3차원 광전자 구성품을 갖는 장치 및 레이저로 그러한 장치를 절단하는 방법.
KR20240036114A (ko) 광전자 장치 및 광전자 반도체 디바이스
CN115803889A (zh) 半导体器件及其制造方法