CN115803889A - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN115803889A
CN115803889A CN202180049182.XA CN202180049182A CN115803889A CN 115803889 A CN115803889 A CN 115803889A CN 202180049182 A CN202180049182 A CN 202180049182A CN 115803889 A CN115803889 A CN 115803889A
Authority
CN
China
Prior art keywords
layer
semiconductor device
semiconductor
substrate
stressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180049182.XA
Other languages
English (en)
Inventor
加纳赛格·S
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compantek Private Ltd
Original Assignee
Compantek Private Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compantek Private Ltd filed Critical Compantek Private Ltd
Publication of CN115803889A publication Critical patent/CN115803889A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种半导体器件(10),包括衬底(11)、半导体层(12)、应力源层(13)、绝缘屏障(14)和多个电连接器。该半导体层(12)夹在该衬底(11)和该应力源层(13)之间。该应力源层(13)位于该半导体层(12)的顶部,并能够在所述半导体层上诱导应变。半导体器件的制造方法包括形成衬底(110),在该衬底上外延生长半导体层(120),在该半导体层上沉积应力源层(130),以及形成多个电连接器(140)等步骤,该多个电连接器能够将该半导体器件电连接至外部电路。

Description

半导体器件及其制造方法
技术领域
本文所公开的一般涉及半导体,更特别地涉及具有应力源层的半导体器件,例如半导体激光器、发光二极管、激光二极管、电子二极管、光电二极管、传感器和中子探测器,以及半导体器件的制造方法。
背景技术
单片集成光子电路主要作为光学数据链路应用于高性能计算(英文:highperformance computing,HPC)、设备间互连(英文:inter-device interconnects)和光存储器扩展(英文:optical memory extension,OME)。其作为移动设备的输入/输出方式也非常有用,可以在移动设备和主机设备和/或云服务器之间实现快速数据交换,这是无线技术或电缆无法实现的。
在半导体中,带隙定义了相应半导体的特性,如载流子迁移率、光子吸收、发射波长等,并因此定义了它们的应用,如辐射传感、发光等。例如,因为锗能够吸收850nm到1550nm之间的近红外辐射,锗光电二极管是硅光子平台的组成部分。1.3~1.6微米的波长对光通信尤其重要,因为光纤中的二氧化硅和光子集成电路中的硅在这些波长下是透明的,而锗具有很强的吸收性。通过对其进行拉伸应变,可以使锗的直接带隙从0.80eV的本体值(英文:bulk value)降低,从而增强在较长波长的L波段的吸收。
图4示出了厚度为1.65微米的锗(Ge)膜在受到0.20%、0.58%和0.76%应变时的敏感度(英文:responsivity)的图形表示。可以看出,当受到高应变水平时,Ge膜的敏感度提高到更宽的波长。
美国专利:US 9,490,318 B2公开了一种三维应变半导体,例如半导体激光器、发光二极管、激光二极管、电子二极管、光电二极管、传感器、探测器(例如中子探测器),其中通过蚀刻衬底在衬底上方形成三维半导体柱阵列,以使在相邻两个柱之间形成坑洞区。二氧化硅、氮化硅、氧氮化硅或硼膜沉积在坑洞区和柱的表面上,以诱导柱上的应变。通过改变薄膜中固有应力量,可以改变柱上的应变量,而这种固有应力可以通过改变一个或多个沉积条件(如沉积时间、温度、压力、膜中的氢含量等)来控制。
尽管可以根据‘318的教导控制诱导的应变,但由于条件的任何偏差都可能导致柱损坏,因此在配置沉积条件以诱导目标应变时需要非常小心。此外,在三维结构上沉积厚度均匀的膜是一个繁琐的过程,因为与相应的顶部相比,该膜更倾向于在每个柱的底部形成更厚的涂层。或者,可以通过增加应力源膜的厚度来增加应变。然而,当应力源膜厚度大于200纳米时,应力源膜容易开裂。
因此,需要一种具有应力源层的半导体器件的制造方法,能够诱导更高水平的应变,而不需要为不同的应变水平配置制造条件或材料组成。此外,还需要一种半导体器件,其能够以简单的方式以所需的辐射吸收或发射特性制造,同时最大限度地减少制造过程中的损坏。
发明内容
本发明涉及一种半导体器件和该半导体器件的制造方法。该器件包括衬底、半导体层、应力源层和多个用于将该器件连接至外部电路的连接器。该半导体层夹在该应力源层和该衬底之间,该应力源层对该半导体层诱导应变。
该器件包括设置在衬底上的用于限定坑洞的绝缘屏障,该屏障形成该坑洞的周界,该衬底形成该坑洞的底部,以使该半导体层和该应力源层被限制在该坑洞内。优选地,该应力源层由与互补金属氧化物半导体(CMOS)工艺相兼容的电介质(如氮化硅)的化学气相沉积(CVD)(如等离子体增强CVD(PECVD)和低压CVD(LPCVD))形成。优选地,该半导体器件为光电二极管。或者,该半导体器件可以是发光二极管、激光二极管、光伏电池、传感器或中子探测器。
根据本发明的一个方面,该半导体层能够吸收电磁辐射,如近红外辐射。
根据本发明的另一个方面,该半导体层能发射电磁辐射,如可见光辐射。
半导体器件的应力源层的制造方法包括形成衬底、在衬底上外延生长半导体层和在半导体层上沉积应力源层的步骤,其中应力源层能够在半导体层上诱导应变。
另一方面,通过化学气相沉积(CVD)(如等离子体增强CVD(PECVD)或低压CVD(LPCVD))沉积应力源层。在外延生长半导体层之前,在衬底上形成绝缘屏障以限定出坑洞,其中屏障在坑洞周围形成周界,衬底形成坑洞的底部,以使半导体层和应力源层限制在坑洞内。此外,去除多余的应力源层,以使半导体层和应力源层的总厚度不超过坑洞的深度。优选地,通过化学机械抛光(CMP)工艺去除多余的应力源层。或者,也可以通过化学蚀刻工艺去除多余的应力源层。
将应力源层限制在坑洞内可以防止应力源层开裂,当应力源层的厚度超过几百纳米,特别是当厚度超过200纳米时,通常可以观察到应力源层的开裂。因此,通过增加坑洞的深度将应力源层的厚度增加到200纳米以上而不开裂,这又增加了在半导体层上诱导的应变。此外,增加的应变增强了半导体层的吸收或发射能力。通过这种方式,本发明能够实现所需的辐射吸收或发射特性,而不需要改变制造半导体器件的条件,因此能够以简单和廉价的方式制造具有所需特性的半导体器件,同时最大限度地减少制造过程中的损坏。
附图说明
从下文给出的详细描述和仅作为说明而给出的附图中可以充分理解本发明,因此不用于限制本发明,其中:
在附图中:
图1示出了根据本发明的示例性实施例的半导体器件的横截面图;
图2A-2E示出了根据本发明的示例性实施例的在制造过程中的半导体器件的横截面图;
图3示出了根据本发明的示例性实施例的半导体器件的应力源层的制造方法的流程图;
图4示出了受不同应变水平影响的锗光电二极管的光电流敏感度的图形表示。
具体实施方式
本文公开了本发明的优选实施例的详细描述。然而,应当理解,实施例仅仅是本发明的示例,本发明可以以各种形式实施。因此,本文所披露的细节不应被解释为限制,而仅仅是作为权利要求的基础,并用于教导本发明领域的技术人员。说明书中使用的数值数据或范围不应被解释为限制。优选实施例的下述详细描述将根据附图单独或组合地进行描述。
本发明涉及一种半导体器件和该半导体器件的制造方法。该器件包括半导体层和应力源层。其堆叠在衬底上,并限制在由衬底上形成的绝缘屏障定义的坑洞内。将所述应力源层限制在该坑洞内,可防止该应力源层开裂,从而制造出所需厚度的应力源层,该应力源层在该半导体层上诱导所需应变。因此,本发明能够在不需要改变制造半导体器件的条件的情况下实现所需的辐射吸收或发射特性,从而降低制造工艺的成本和复杂性,同时最大限度地减少了制造过程中的损坏。
参考附图,图1示出了根据本发明的示例性实施例的半导体器件(10)的横截面图。该器件(10)包括衬底(11)、半导体层(12)、应力源层(13)、绝缘屏障(14)和多个电连接器(未示出)。优选地,衬底(11)是形成为平面支撑层的绝缘体上覆硅(SOI)衬底,如图2A所示,用于支撑形成在其上的组成部分。或者,该衬底还可以是硅衬底,其中在形成该半导体层(12)之前,可以在该硅衬底上形成额外的半导体层或绝缘材料。半导体层(12)外延生长在衬底(11)的顶部,并且能够吸收或发射电磁辐射,例如近红外辐射和可见光辐射。在优选实施例中,器件(10)是锗(Ge)光电二极管,半导体层(12)是通过化学气相沉积(CVD)工艺(如超高真空CVD(UHVCVD)、减压CVD(RPCVD)和常压CVD(APCVD))外延生长在衬底(11)上的Ge层。或者,器件(10)可以是发光二极管(LED)、激光二极管、光伏电池、传感器和中子探测器,半导体层(12)可以是硅(Si)、锗化硅(SiGe)、碳化硅(SiC)、砷化镓(GaAs)、砷化铝镓(AlGaAs)、氮化镓(GaN)、氮化铝镓(AlGaN)、磷化铟(InP)、磷化砷铟镓(InGaAsP)或两种或多种半导体的组合。同样地,半导体层(12)可以通过分子束外延(MBE)工艺生长在衬底(11)上。
该应力源层(13)位于所述半导体层(12)的顶部,以使所述半导体层(12)夹在该应力源层(13)和该衬底(11)之间。应力源层(13)在半导体层(12)上诱导应变,其中诱导应变的量与应力源层(13)的厚度成正比。优选地,应力源层(13)的厚度在10-1500纳米(nm)范围内。在多应力源层的情况下,诱导应变的量与应力源层的总厚度成正比。优选地,该应力源层(13)是与互补金属氧化物半导体(CMOS)工艺相兼容的电介质的单层,更优选地是氮化硅(SiN)层。或者,应力源层(13)由任何其他与CMOS工艺相兼容的电介质制成,如二氧化硅、氧氮化硅和硼。应力源层(13)由与CMOS工艺相兼容的常规电介质的化学气相沉积(CVD)(如等离子体增强CVD(PECVD)和低压CVD(LPCVD))形成。然而,应力源层(13)也可以通过溅射工艺(如反应性射频(RF)磁控溅射工艺)形成。
如图2B所示,设置在衬底(11)上的绝缘屏障(14)限定了坑洞(15)。该屏障(14)在该坑洞(15)周围形成周界,该衬底(11)形成该坑洞(15)的底部,以使该半导体层(12)和该应力源层(13)被限制在该坑洞(15)内,如图2D所示。优选地,该屏障(14)由二氧化硅(SiO2)形成。或者,任何其他常规绝缘体材料可用于形成屏障(14)。优选地,屏障(14)可以是环形的。或者,该屏障(14)也可以是多边形形状、椭圆形状或能够限定该坑洞(15)的任何其他形状。同样地,该坑洞(15)的横截面可以是多边形形状或弧形的。该应力源层(13)和该半导体层(12)的最大宽度不超过该坑洞(15)的最大宽度。此外,该压力源层(13)被配置成半导体层(12)和该压力源层(13)的总厚度不超过该坑洞(15)的深度,如图1所示。
将应力源层(13)限制在坑洞(15)内可以防止开裂,通常可以在应力源层的厚度超过几百纳米(nm),特别是200纳米时观察到这样的开裂。因此,本发明能够通过增加坑洞(15)的深度将应力源层(13)的厚度增加到200nm以上而不开裂,这又增加了在半导体层(12)上诱导的应变。此外,增加的应变增强了半导体层(12)的吸收或发射能力。通过这种方式,本发明能够实现所需的辐射吸收或发射特性,而不需要改变制造半导体器件的条件,因此能够以简单和廉价的方式制造具有所需特性的半导体器件,同时最大限度地减少制造过程中的损坏。
图3示出了根据本发明的示例性实施例的半导体器件的应力源层的制造方法的流程图。该方法(100)包括步骤:(a)形成衬底(110)、在衬底上外延生长半导体层(120),以及在半导体层上沉积应力源层(130)以及形成多个电连接器(140)。优选地,该半导体器件为锗(Ge)光电二极管,该衬底为绝缘体上覆硅(SOI)衬底,其中该衬底的顶表面的一部分在形成衬底时重掺杂有杂质。同样地,半导体层的顶表面的一部分重掺杂有相反类型的杂质。优选地,这些重掺杂部分的掺杂密度约为每立方厘米1020个原子。或者,掺杂密度可以根据用于形成衬底和半导体层的材料而变化。然而,如果衬底掺杂有p型杂质,则半导体层掺杂有n型杂质,反之亦然。此外,该半导体器件还可以是半导体二极管、激光二极管、发光二极管、光伏电池、传感器或中子探测器,该衬底可以是形成有掺杂区域的硅衬底。
在优选实施例中,该半导体层是可以吸收近红外辐射的Ge层。或者,半导体层可以是一层硅(Si)、锗化硅(SiGe)、碳化硅(SiC)、砷化镓(GaAs)、砷化铝镓(AlGaAs)、氮化镓(GaN)、氮化铝镓(AlGaN)、磷化铟(InP)、磷化砷铟镓(InGaAsP)或两种或多种半导体的组合,其能够发射或吸收电磁辐射,例如可见光辐射。
优选地,通过化学气相沉积(CVD)(如等离子体增强CVD(PECVD)和低压CVD(LPCVD))沉积应力源层。此外,通过CVD工艺在SOI衬底上沉积互补金属氧化物半导体(CMOS)电介质(优选为氮化硅(SiN))形成应力源层。应力源层能够在半导体层上诱导应变,其中应变影响半导体层的辐射吸收或发射能力。例如,如果半导体层是Ge层,那么诱导的应变可以使锗的直接带隙从0.80电子伏(eV)的本体值(英文:bulk value)降低,这又增强了在较长波长的L波段的吸收。
在优选实施例中,在外延生长半导体层时,在衬底上形成绝缘屏障以限定坑洞,该屏障形成该坑洞的周界,该衬底形成该坑洞的底部,以使该半导体层和该应力源层限制在该坑洞内。该屏障可以形成为环形、多边形或椭圆形,该坑洞的横截面可以形成为盒形、弧形或V形。
此外,去除多余的应力源层,以使半导体层和应力源层的总厚度不超过坑洞的深度,如图1所示。优选地,通过化学机械抛光(CMP)去除多余的应力源层。更优选地,使用具有高Si3N4:SiO2选择性的CMP浆料去除多余的应力源层,以使应力源层的顶部和绝缘屏障的顶部形成一个平面。此外,形成所述电连接器,用于将该半导体器件电连接至外部电路,更具体地用于将该半导体层和该衬底连接至外部电路。该外部电路可以是任何常规电源、控制装置、光子装置等等。通过形成穿过该应力源层或绝缘体屏障的孔,并通过该孔***导电材料,使该半导体层和该衬底发生电接触,从而使该电连接器与该半导体层和该衬底连接。此外,该连接器可包括位于该半导体器件顶部或侧面表面的绑定垫片(英文:bonding pad)。
绝缘体屏障的作用是在衬底上生长半导体层时将半导体层限制在坑洞内,并在半导体层顶部沉积应力源层时将应力源层限制在坑洞内,以使应力源层和半导体层的最大宽度不超过坑洞的最大宽度。此外,该半导体层和该应力源层的总厚度不超过该坑洞的深度。
将应力源层限制在坑洞内可以防止开裂,通常可以在应力源层的厚度超过几百纳米,特别是超过200纳米时观察到这样的开裂。因此,可以通过增加坑洞的深度来增加应力源层的厚度而不开裂,这又增加在半导体层上诱导的应变而不损坏应力源层。此外,增加的应变增强了半导体层的吸收或发射能力。通过这种方式,本发明能够以简单和廉价的方式制造具有所需辐射吸收或发射特性的半导体器件,而不需要改变半导体器件的制造条件,同时最大限度地减少制造过程中的损坏。
尽管上述实施例示出了本发明被实施为在半导体层上诱导应变以改变其辐射吸收或发射特性,但应当理解,本发明还可以应用于改变在半导体层的带隙通过外部诱导应变而减小时可以改变的任何其他半导体特性。其包括但不限于电子迁移率、激光状态、晶体管开关速度和光子吸收。
本文中使用的术语仅用于描述特定示例实施例,而不用于限制。如本文所使用,单数形式“一”、“一个”和“所述”也可包括复数形式,除非上下文另有明确指示。术语“包括”、“包含”、“含有”和“具有”是包含性的,因此指定了所述特征、整数、步骤、操作、元素和/或组件的存在,但不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、组件和/或组。
除非特别确定了执行顺序,本文所描述的方法步骤、过程和操作不应被解释为必然要求其以所讨论或所示的特定顺序执行。还应当理解的是,还可以采用额外的或替代的步骤。
“至少”和“至少一个”的使用暗示了一个或多个元素的使用,因为该使用可以在一个实施方案中实现一个或多个期望的目标或结果。

Claims (16)

1.一种半导体器件(10),包括:
(a)衬底(11);
(b)至少一层应力源层(13);以及
(c)夹在所述衬底(11)和所述应力源层(13)之间的至少一层半导体层(12),
其特点是,在所述衬底(11)上提供的绝缘屏障(14)限定出坑洞(15),以使所述半导体层(12)和所述应力源层(13)被限制在所述坑洞内。
2.根据权利要求1所述的半导体器件(10),其中,所述绝缘屏障(14)在所述坑洞(15)周围形成周界,所述衬底(11)形成所述坑洞(15)的底部。
3.根据权利要求1所述的半导体器件(10),其中,多个电连接器将所述半导体器件(10)电连接至外部电路。
4.根据权利要求1所述的半导体器件(10),其中,所述半导体层(12)能够吸收电磁辐射。
5.根据权利要求1所述的半导体器件(10),其中,所述半导体层(12)能够发射电磁辐射。
6.根据权利要求1所述的半导体器件(10),其中,所述应力源层(13)是由与化学气相沉积互补金属氧化物半导体工艺相兼容的电介质形成的。
7.根据权利要求6所述的半导体器件(10),其中,所述与化学气相沉积互补金属氧化物半导体工艺相兼容的电介质是氮化硅。
8.根据权利要求1所述的半导体器件(10),其中,所述应力源层(13)的厚度在10-1500纳米范围内。
9.根据权利要求1所述的半导体器件(10),其中,所述半导体器件(10)是发光二极管、激光二极管和光电二极管中的至少一个。
10.一种半导体器件的制造方法(100),包括步骤:
(a)形成衬底(110);
(b)在所述衬底上外延生长至少一层半导体层(120);以及
(c)在所述半导体层上沉积至少一层应力源层(130),其特征在于,外延生长所述半导体层包括在所述衬底上形成绝缘屏障以限定出坑洞,以使所述半导体层和所述应力源层被限制在所述坑洞内。
11.根据权利要求9所述的方法(100),其中,所述绝缘屏障在所述坑洞周围形成周界,所述衬底形成所述坑洞的底部。
12.根据权利要求9所述的方法(100),还包括形成多个电连接器的步骤(140),其中,所述多个电连接器能够将所述半导体器件电连接至外部电路。
13.根据权利要求9所述的方法(100),其中,所述沉积步骤包括通过化学气相沉积在所述半导体层上沉积与化学气相沉积互补金属氧化物半导体工艺相兼容的电介质。
14.根据权利要求9所述的方法(100),还包括去除多余的应力源层的步骤,以使所述半导体层和所述应力源层的总厚度不超过所述坑洞的深度。
15.根据权利要求9所述的方法(100),其中,所述去除多余的应力源层的步骤包括化学机械抛光工艺和/或化学蚀刻工艺。
16.根据权利要求9所述的方法(100),其中,所述应力源层的厚度在10-1500纳米范围内。
CN202180049182.XA 2020-08-11 2021-08-09 半导体器件及其制造方法 Pending CN115803889A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SG10202007625Q 2020-08-11
SG10202007625Q 2020-08-11
PCT/SG2021/050464 WO2022035375A1 (en) 2020-08-11 2021-08-09 Semiconductor device and fabricating method therefor

Publications (1)

Publication Number Publication Date
CN115803889A true CN115803889A (zh) 2023-03-14

Family

ID=80248215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180049182.XA Pending CN115803889A (zh) 2020-08-11 2021-08-09 半导体器件及其制造方法

Country Status (3)

Country Link
US (1) US20220262986A1 (zh)
CN (1) CN115803889A (zh)
WO (1) WO2022035375A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235190A (ja) * 2003-01-28 2004-08-19 Sony Corp 光半導体装置
US7838887B2 (en) * 2008-04-30 2010-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain carbon implant and RTA anneal, pre-SiGe deposition
US8450133B2 (en) * 2009-03-16 2013-05-28 Acorn Technologies, Inc. Strained-enhanced silicon photon-to-electron conversion devices
US9490318B2 (en) * 2012-06-15 2016-11-08 Lawrence Livermore National Security, Llc Three dimensional strained semiconductors
US9299837B2 (en) * 2013-05-22 2016-03-29 Globalfoundries Inc. Integrated circuit having MOSFET with embedded stressor and method to fabricate same
US9755403B2 (en) * 2015-06-24 2017-09-05 King Abdullah University Of Science And Technology Controlling the emission wavelength in group III-V semiconductor laser diodes
TWI622169B (zh) * 2017-02-17 2018-04-21 Powerchip Technology Corporation 半導體元件的製造方法
US10658531B2 (en) * 2017-10-18 2020-05-19 International Business Machines Corporation Spalling techniques for manufacturing photodiodes
US10797060B2 (en) * 2018-12-17 2020-10-06 Sandisk Technologies Llc Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same

Also Published As

Publication number Publication date
WO2022035375A1 (en) 2022-02-17
US20220262986A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US11728624B2 (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
TWI829761B (zh) 具有積體雷射的光學結構
KR102593511B1 (ko) 마이크로구조-증강 흡수 감광성 디바이스
US10305250B2 (en) III-Nitride nanowire array monolithic photonic integrated circuit on (001)silicon operating at near-infrared wavelengths
US7603016B1 (en) Semiconductor photonic nano communication link apparatus
US8680553B2 (en) Light-emitting device, light-receiving device and method of manufacturing the same
US8938134B2 (en) Hybrid optical modulator for photonic integrated circuit devices
KR101464817B1 (ko) 측벽 광검출기
US10985524B1 (en) High-power hybrid silicon-photonics laser
CN111133590A (zh) 微结构增强的吸收光敏器件
US11309444B1 (en) Microstructure enhanced absorption photosensitive devices
CN115803889A (zh) 半导体器件及其制造方法
WO2008017457A1 (en) Light modulators comprising si-ge quantum well layers
GB2507513A (en) Semiconductor device with epitaxially grown active layer adjacent an optically passive region
JPH01199484A (ja) 光半導体素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination