TWI791837B - 遮罩基底、相移遮罩及半導體元件之製造方法 - Google Patents

遮罩基底、相移遮罩及半導體元件之製造方法 Download PDF

Info

Publication number
TWI791837B
TWI791837B TW108118000A TW108118000A TWI791837B TW I791837 B TWI791837 B TW I791837B TW 108118000 A TW108118000 A TW 108118000A TW 108118000 A TW108118000 A TW 108118000A TW I791837 B TWI791837 B TW I791837B
Authority
TW
Taiwan
Prior art keywords
layer
phase shift
film
light
mask
Prior art date
Application number
TW108118000A
Other languages
English (en)
Other versions
TW202004328A (zh
Inventor
宍戸博明
前田仁
橋本雅廣
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202004328A publication Critical patent/TW202004328A/zh
Application granted granted Critical
Publication of TWI791837B publication Critical patent/TWI791837B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Element Separation (AREA)

Abstract

本發明係提供一種具有內面反射率經降低後的相移膜之遮罩基底,該相移膜係兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能,以及會使所穿透之該ArF準分子雷射的曝光光線產生特定相位差之功能。
相移膜係包含有從透光性基板側依序層積有第1層、第2層及第3層之構造。使第1層、第2層及第3層在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,係滿足n1>n2及n2<n3的關係。使第1層、第2層及第3層在曝光光線的波長中之消光係數分別為k1、k2、k3時,係滿足k1<k2及k2>k3的關係。使第1層、第2層及第3層的膜厚分別為d1、d2、d3時,係滿足d1<d3及d2<d3的關係。

Description

遮罩基底、相移遮罩及半導體元件之製造方法
本發明係關於一種遮罩基底及使用該遮罩基底所製造之相移遮罩。又,本發明係關於一種使用上述相移遮罩之半導體元件之製造方法。
一般來說,在半導體元件之製造工序中,係使用光微影法來進行微細圖案的形成。又,此微細圖案的形成通常會使用多片稱作轉印用遮罩的基板。在使半導體元件的圖案微細化時,除了轉印用遮罩所形成之遮罩圖案的微細化以外,亦必須縮短光微影中所使用之曝光源的波長。作為半導體裝置製造之際的曝光源,近年來已由KrF準分子雷射(波長248nm)演進為ArF準分子雷射(波長193nm)而短波長化。
轉印用遮罩的種類除了於傳統的透光性基板上具備有鉻系材料所構成的遮光圖案之二元式遮罩以外,已知有一種半調式相移遮罩。
專利文獻1中揭示一種具備有遮光膜與表面及內面抗反射膜之二元式遮罩基底。此專利文獻1中,為了抑制因來自遮光帶的反射而影響到鄰接的鏡頭之眩光(Flare),或圖案區域內的過度曝光錯誤(Dose Error),而具備有相接形成於遮光膜下,且包含有矽、過渡金屬、氧及氮,膜的折射率n2為1.0~3.5,膜的消光係數k2為2.5以下,及膜厚t2為5~40nm之內面抗反射膜。然後,已實現一種二元式遮罩基底,係相對於來自透明基板側的光線入射之反射率(以下稱作內面反射率)為約30%以下,具體而言,如其實施例所示般為約29%或約23%。
專利文獻2中揭示一種於透光性基板上設置有相移膜之半調式相移遮罩基底,該相移膜係具有能夠讓ArF曝光光線以特定穿透率穿透,且會使穿透之ArF曝光光線產生特定量的相位轉移之功能。此專利文獻2中係使相移膜為包含有高穿透層與低穿透層之層積構造。另外,高穿透層係使用氮含量相對較多的SiN系膜,低穿透層係使用氮含量相對較少的SiN系膜。
又,近年來,對半導體元件上的阻膜進行曝光轉印之際所使用的照明系統亦變得精細、複雜。專利文獻3中揭示一種為了提高基板上的遮罩圖案成像而構成微影裝置的照射源之方法。此方法包含以下6個工序。(1)將照射源分割為像素群,且各像素群係於照射源的光瞳面包含有1個或複數個照射源點之工序。(2)改變各像素群的偏光狀態,來求得由各像素群的偏光狀態變化所造成對於各複數臨界尺寸的漸進性效果之工序。(3)使用所求得之漸進性效果,來計算各複數臨界尺寸相關的第1複數靈敏度係數之工序。(4)選擇初始照射源之工序。(5)使用所計算之第1複數靈敏度係數來重複計算作為初始照射源之像素群的偏光狀態變化結果之微影指標,並生成初始照射源之像素群的偏光狀態變化經改變後的照射源之工序。(6)依據重複計算的結果來調節初始照射源之工序。
[先前技術文獻]
[專利文獻]
專利文獻1:日本專利第5054766號公報
專利文獻2:日本特開2014-137388號公報
專利文獻3:日本特開2012-74695號公報
近年來,轉印圖案被期望更加微細化,且進行曝光轉印之際所使用的照明系統亦變得精細、複雜。例如,專利文獻3中的照明系統係將照射源的位置或角度控制為最佳化。上述般之複雜的照明系統中,若以較短波長之ArF準分子雷射的曝光光線來對轉印用遮罩進行曝光的情況,則會容易在該轉印用遮罩的透光性基板內因多重反射而產生雜散光。對半導體元件上的阻膜進行曝光轉印之際,若此雜散光到達轉印用遮罩之透光性基板中的圖案形成區域外所設置之條碼或對位記號,便會發生映射在半導體元件上的阻膜之現象。若發生此現象,則半導體元件上的阻膜便會產生CD差異。由於透光性基板上的薄膜所形成之條碼或對位記號對於轉印用遮罩的識別或對位來說為不可或缺,故將該等條碼或對位記號予以去除實際上並不可行。又,一般來說,進行曝光轉印之際所使用的照明系統係設置有用以阻隔曝光光線被照射在轉印用遮罩的曝光區域外側之擋門機構。但會因上述照射源的位置或角度的最佳化所致之曝光光線的斜向入射成分增加,而難 以抑制照射在轉印用遮罩的曝光區域內之曝光光線在透光性基板內多重反射至曝光區域的外側區域而產生的雜散光。由於上述般之情事,因而變得難以在過去所被容許之內面反射率為大約30%左右的遮罩基底中滿足轉印圖案的更加微細化要求。
因此,本發明係為解決過去的課題而完成的發明,其目的為提供一種遮罩基底,係於透光性基板上具有相移膜,該相移膜係兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能,以及會使所穿透之該ArF準分子雷射的曝光光線產生特定相位差之功能,且進一步地內面反射率已被降低。又,其目的為提供一種使用該遮罩基底所製造之相移遮罩。然後,本發明之目的為提供一種使用上述般的相移遮罩之半導體元件之製造方法。
為達成上述課題,本發明係具有以下的構成。
(構成1)
一種遮罩基底,係於透光性基板上具有相移膜;該相移膜係包含有從該透光性基板側依序層積有第1層、第2層及第3層之構造;使該第1層、該第2層及該第3層在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,係滿足n1>n2及n2<n3的關係;使該第1層、該第2層及該第3層在該曝光光線的波長中之消光係數分別為k1、k2、k3時,係滿足k1<k2及k2>k3的關係;使該第1層、該第2層及該第3層的膜厚分別為d1、d2、d3時,係滿足d1<d3及d2<d3的關係。
(構成2)
如構成1之遮罩基底,其中該第3層的膜厚d3為該第1層之膜厚d1的2倍以上。
(構成3)
如構成1或2之遮罩基底,其中該第2層的膜厚d2為20nm以下。
(構成4)
如構成1至3任一構成之遮罩基底,其中該第1層的折射率n1為2.0以上,該第1層的消光係數k1為0.5以下,該第2層的折射率n2為小於2.0,該第2層的消光係數k2為1.0以上,該第3層的折射率n3為2.0以上,該第3層的消光係數k3為0.5以下。
(構成5)
如構成1至4任一構成之遮罩基底,其中該相移膜係具有能夠讓該曝光光線以2%以上的穿透率穿透之功能,以及會使穿透該相移膜之該曝光光線,而與在空氣中通過與該相移膜的厚度相同距離之該曝光光線之間產生150度以上200度以下的相位差之功能。
(構成6)
如構成1至5任一構成之遮罩基底,其中該第1層係設置為會相接於該透光性基板的表面。
(構成7)
如構成1至6任一構成之遮罩基底,其中該第1層、該第2層及該第3層係由矽與氮構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氮構成的材料所形成。
(構成8)
如構成7之遮罩基底,其中該第2層的氮含量係少於該第1層及該第3層任一者的氮含量。
(構成9)
如構成1至8任一構成之遮罩基底,其中該相移膜係於該第3層上具有第4層;使該第4層在該曝光光線的波長中之折射率為n4時,係滿足n1>n4及n3>n4的關係;使該第4層在該曝光光線的波長中之消光係數為k4時,係滿足k1>k4及k3>k4的關係。
(構成10)
如構成9之遮罩基底,其中該第4層的折射率n4為1.8以下,該第4層的消光係數k4為0.1以下。
(構成11)
如構成9或10之遮罩基底,其中該第4層係由矽與氧構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氧構成的材料所形成。
(構成12)
一種相移遮罩,係於透光性基板上具備形成有轉印圖案的相移膜;該相移膜係包含有從該透光性基板側依序層積有第1層、第2層及第3層之構造;使該第1層、該第2層及該第3層在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,係滿足n1>n2及n2<n3的關係;使該第1層、該第2層及該第3層在該曝光光線的波長中之消光係數分別為k1、k2、k3時,係滿足k1<k2及k2>k3的關係;使該第1層、該第2層及該第3層的膜厚分別為d1、d2、d3時,係滿足d1<d3及d2<d3的關係。
(構成13)
如構成12之相移遮罩,其中該第3層的膜厚d3為該第1層之膜厚d1的2倍以上。
(構成14)
如構成12或13之相移遮罩,其中該第2層的膜厚d2為20nm以下。
(構成15)
如構成12至14任一構成之相移遮罩,其中該第1層的折射率n1為2.0以上,該第1層的消光係數k1為0.5以下,該第2層的折射率n2為小於2.0,該第2層的消光係數k2為1.0以上,該第3層的折射率n3為2.0以上,該第3層的消光係數k3的0.5以下。
(構成16)
如構成12至15任一構成之相移遮罩,其中該相移膜係具有能夠讓該曝光光線以2%以上的穿透率穿透之功能,以及會使穿透該相移膜之該曝光 光線,而與在空氣中通過與該相移膜的厚度相同距離之該曝光光線之間產生150度以上200度以下的相位差之功能。
(構成17)
如構成12至16任一構成之相移遮罩,其中該第1層係設置為會相接於該透光性基板的表面。
(構成18)
如構成12至17任一構成之相移遮罩,其中該第1層、該第2層及該第3層係由矽與氮構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氮構成的材料所形成。
(構成19)
如構成18之相移遮罩,其中該第2層的氮含量係少於該第1層及該第3層任一者的氮含量。
(構成20)
如構成12至19任一構成之相移遮罩,其中該相移膜係於該第3層上具有第4層;使該第4層在該曝光光線的波長中之折射率為n4時,係滿足n1>n4及n3>n4的關係;使該第4層在該曝光光線的波長中之消光係數為k4時,係滿足k1>k4及k3>k4的關係。
(構成21)
如構成20之相移遮罩,其中該第4層的折射率n4為1.8以下,該第4層的消光係數k4為0.1以下。
(構成22)
如構成20或21之相移遮罩,其中該第4層係由矽與氧構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氧構成的材料所形成。
(構成23)
一種半導體元件之製造方法,係具有使用如構成12至22任一構成之相移遮罩來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。
本發明之遮罩基底可提供一種於透光性基板上具有內面反射率經降低後的相移膜之遮罩基底,該相移膜係兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能,以及會使所穿透之該ArF準分子雷射的曝光光線產生特定相位差之功能。
1‧‧‧透光性基板
2‧‧‧相移膜
21‧‧‧第1層
22‧‧‧第2層
23‧‧‧第3層
24‧‧‧第4層
2a‧‧‧相移圖案
3‧‧‧遮光膜
3a、3b‧‧‧遮光圖案
4‧‧‧硬遮罩膜
4a‧‧‧硬遮罩圖案
5a‧‧‧第1阻劑圖案
6b‧‧‧第2阻劑圖案
100、110‧‧‧遮罩基底
200、210‧‧‧相移遮罩
圖1係顯示本發明第1實施型態之遮罩基底的構成之剖面圖。
圖2係顯示本發明第2實施型態之遮罩基底的構成之剖面圖。
圖3係顯示本發明第1及第2實施型態中相移遮罩的製造工序之剖面示意圖。
以下,便針對本發明之實施型態來加以說明。本案發明人等針對相移膜中,兼具能夠讓ArF準分子雷射的曝光光線(以下簡稱作曝光光線。)以特定穿透率穿透之功能與產生特定相位差之功能,且可更加降低內面反射率之方法苦心進行了研究。
對轉印用遮罩進行曝光時所產生的雜散光被認為是起因於從相移遮罩的透光性基板內側(未設置有相移膜一側)表面(內面)所入射之曝光光線的一部分會在透光性基板與相移膜的界面處被反射,且進一步地在透光性基板內面與空氣的界面處再次被反射,並從透光性基板表側的表面不具相移膜之區域所射出的光線。為了抑制因此雜散光所產生之條碼或對位記號的映射,而希望使雜散光的光強度相對於照射在透光性基板之曝光光線的光強度為0.2%以下。相移遮罩中,形成有轉印圖案之區域的外周區域所設置之遮光帶(相移膜與遮光膜的層積構造)較佳地穿透率為0.2%以下。只要是此穿透率,則縱使有曝光光線穿透,實質上仍不會對半導體元件上之阻膜的CD差異造成影響。
以ArF準分子雷射的曝光光線來對相移遮罩進行曝光之情況,當曝光光線從空氣中入射至透光性基板的內面之際,在透光性基板的內面處反射之光線約為入射光的5%左右(亦即,入射至透光性基板內部之曝光光線的 光強度會減少5%左右。)。另外,在透光性基板與相移膜的界面處被反射之部分曝光光線當在透光性基板之內面與空氣的界面處被反射時,一部分的光線並不會被反射而是從內面射出。檢討這些現象後,結果發現在透光性基板上僅存在有相移膜之狀態下,只要是透光性基板側(內面側)相對於曝光光線的反射率(內面反射率)為9%以下,便可使雜散光的光強度成為0.2%以下,從而可抑制條碼或對位記號的映射。
此外,在實際測量相移膜的內面反射率之情況,係將測量光照射在與透光性基板之設置有相移膜一側為相反側的表面(內面)來測量反射光的光強度,並由該反射光的光強度來求得內面反射率。該所測量之反射光的光強度會成為至少包含有在空氣與透光性基板的界面處被反射之光線,以及,並未在該處被反射便入射至透光性基板的測量光在透光性基板與相移膜的界面處被反射,且並未進一步地在透光性基板之內面與空氣的界面處再次被反射便射出至空氣中之光線(不到入射至該界面之光線的4%之光線)的光線強度。亦即,上述內面反射率為9%以下係指以亦包含有在透光性基板與相移膜的界面處被反射之光線以外的反射光之光線所求得的內面反射率。
然後,本案發明人檢討了具有相移膜之遮罩基底的構成,該相移膜係兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能與產生特定相位差之功能,且實現9%以下的內面反射率。
形成傳統相移膜之材料較佳宜使折射率n儘可能地大,且消光係數k為不會過大且不會過小之範圍內。其係因為傳統相移膜主要是基於以下觀點來設計的緣故,藉由會在相移膜的內部吸收ArF準分子雷射的曝光光線,來讓ArF準分子雷射的曝光光線以特定穿透率穿透,且會使所穿透之該ArF準分子雷射的曝光光線產生特定相位差。單層構造的相移膜中,會難以具有對於相移膜所要求的功能(使穿透相移膜內之ArF準分子雷射的曝光光線產生特定穿透率與相位差之功能),且實現9%以下的內面反射率。因此,本案發明人檢討了以複數層來構成相移膜,並在該等層整體中,兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能與產生特定相位差之功能,且實現9%以下的內面反射率。為了降低相移膜相對於ArF準分子 雷射的曝光光線之內面反射率,亦必須利用透光性基板與相移膜的界面處之反射光,與構成相移膜之層間的界面處之反射光的干擾效果。
考慮上述該等現象後,結果發現藉由使相移膜為從透光性基板側依序層積第1層、第2層及第3層之構造,並調整第1層、第2層、第3層在ArF準分子雷射的曝光光線波長中之折射率n1、n2、n3、消光係數k1、k2、k3及膜厚d1、d2、d3,便可形成相對於ArF準分子雷射的曝光光線而兼具特定穿透率與特定相位差,且內面反射率為9%以下之相移膜。本發明係經由以上苦心研究所完成的發明。
圖1係顯示本發明第1實施型態相關之遮罩基底100的構成之剖面圖。圖1所示之本發明之遮罩基底100係具有於透光性基板1上依序層積有相移膜2、遮光膜3及硬遮罩膜4之構造。
透光性基板1除了合成石英玻璃以外,可由石英玻璃、矽酸鋁玻璃、鹼石灰玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)等來形成。該等當中又以合成石英玻璃相對於ArF準分子雷射光之穿透率較高,故作為形成遮罩基底的透光性基板1之材料來說特佳。形成透光性基板1之材料在ArF準分子雷射的曝光光線波長(約193nm)中之折射率n較佳為1.5以上1.6以下,更佳為1.52以上1.59以下,再更佳為1.54以上1.58以下。
為了在穿透相移膜2內部之曝光光線與穿透空氣中之曝光光線之間產生充分的相移效果,較佳宜使相移膜2相對於ArF準分子雷射的曝光光線之穿透率為2%以上。相移膜2相對於曝光光線之穿透率較佳為3%以上,更佳為4%以上。另一方面,相移膜2相對於曝光光線之穿透率較佳為15%以下,更佳為14%以下。
為了獲得適當的相移效果,較佳宜調整為相移膜2會使所穿透之ArF準分子雷射的曝光光線,而與在空氣中通過與此相移膜2的厚度相同距離之光線之間所產生的相位差為150度以上200度以下的範圍。相移膜2中之該相位差的下限值較佳為155度以上,更佳為160度以上。另一方面,相移膜2中之該相位差的上限值較佳為190度以下。
相移膜2在透光性基板1上係僅存在有相移膜2之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率較佳為至少9%以下。
相移膜2係具有從透光性基板1側層積有第1層21、第2層22及第3層23之構造。相移膜2整體來說至少須滿足上述穿透率、相位差及內面反射率的各條件。本案發明人發現為了使相移膜2滿足上述條件,當使第1層21、第2層22及第3層23在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,必須滿足n1>n2及n2<n3的關係,使第1層、第2層及第3層在該曝光光線的波長中之消光係數分別為k1、k2、k3時,必須滿足k1<k2及k2>k3的關係。
進一步地,第1層21的折射率n1較佳為2.0以上,更佳為2.1以上。又,第1層21的折射率n1較佳為3.0以下,更佳為2.8以下。第1層21的消光係數k1較佳為0.5以下,更佳為0.4以下。又,第1層21的消光係數k1較佳為0.1以上,更佳為0.2以上。此外,第1層21的折射率n1及消光係數k1係將第1層21整體視作光學上為均勻的1個層所導出之數值。
為了使相移膜2滿足上述條件,第2層22的折射率n2較佳為小於2.0,更佳為1.9以下。又,第2層22的折射率n2較佳為1.0以上,更佳為1.2以上。又,第2層22的消光係數k2較佳為1.0以上,更佳為1.2以上。又,第2層22的消光係數k2較佳為2.2以下,更佳為2.0以下。此外,第2層22的折射率n2及消光係數k2係將第2層22整體視作光學上為均勻的1個層所導出之數值。
為了使相移膜2滿足上述條件,第3層23的折射率n3較佳為2.0以上,更佳為2.1以上。又,第3層23的折射率n3較佳為3.0以下,更佳為2.8以下。第3層23的消光係數k3較佳為0.5以下,更佳為0.4以下。又,第3層23的消光係數k3較佳為0.1以上,更佳為0.2以上。此外,第3層23的折射率n3及消光係數k3係將第3層23整體視作光學上為均勻的1個層所導出之數值。
包含有相移膜2之薄膜的折射率n與消光係數k並非僅由該薄膜的組成來決定。該薄膜的膜密度或結晶狀態等亦為左右折射率n或消光係數k之要素。因此,係調整以反應性濺鍍來成膜出薄膜時的諸條件來進行成膜,以使該薄膜成為期望的折射率n及消光係數k。為了使第1層21、第2層22、第3層23成為上述折射率n與消光係數k的範圍,當以反應性濺鍍來 進行成膜之際,並不僅只限於調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體的比率,而亦可調整以反應性濺鍍來進行成膜時的成膜室內壓力、施加於濺鍍靶之電力、以及靶材與透光性基板1之間的距離等位置關係等。該等成膜條件為成膜裝置所固有的,係以所形成之第1層21、第2層22、第3層23會成為期望的折射率n及消光係數k之方式來適當進行調整。
為了使相移膜2滿足上述條件,除了上述第1層21、第2層22、第3層23之光學特性以外,使第1層21、第2層22及第3層23的膜厚分別為d1、d2、d3時,至少需滿足d1<d3及d2<d3的關係。
第1層21的厚度較佳為20nm以下,更佳為18nm以下。又,第1層21的厚度較佳為3nm以上,更佳為5nm以上。
第2層22的厚度較佳為20nm以下,更佳為18nm以下。又,第2層22的厚度較佳為2nm以上,更佳為3nm以上。
第1層21之有助於相移膜2的內面反射率調整之比率係較其他2層要來得高。又,第2層22之有助於相移膜2的穿透率調整之比率係較其他2層要來得高。因此,第1層21與第2層22的膜厚設計自由度會較為狹窄。第3層23已被要求是有助於讓相移膜2具有特定相位差之調整,且被期望膜厚是較其他2層要來得厚。第3層23的膜厚d3較佳為第1層21之膜厚d1的2倍以上,更佳為2.2倍以上,再更佳為2.5倍以上。又,第3層23的膜厚d3更佳為第1層21之膜厚d1的5倍以下。第3層23的厚度較佳為60nm以下,更佳為50nm以下。又,第3層23的厚度較佳為大於20nm,更佳為25nm以上。
第1層21、第2層22、第3層23較佳宜由矽與氮構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氮構成的材料所形成。此類金屬元素當中,若含有選自硼、鍺、銻及碲之1種以上的元素,由於可期待提高作為濺鍍靶所使用之矽的導電性,故較佳,此非金屬元素當中,較佳宜含有選自氮、碳、氟及氫之1種以上的元素。此非金屬元素亦包含有氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體。
第2層22的氮含量較佳宜少於第1層21及第3層23任一者。形成第2層22之材料中的氮含量較佳為40原子%以下,更佳為35原子%以下。其係因為第2層22雖然必須有助於相移膜2的穿透率,但氮含量較多卻會讓穿透率上升的緣故。第1層21及第3層23較佳為50原子%以上,更佳為55原子%以上,再更佳宜由Si3N4(化學計量穩定的材料)所構成。其係因為雖然第1層與第3層較佳宜由折射率高的材料所形成,但若使氮含量較多則折射率會提高的緣故。
第1層21較佳宜設置為會相接於透光性基板1的表面。其係因為若構成為第1層21會相接於透光性基板1的表面,便更能獲得因上述相移膜2之第1層21、第2層22、第3層23的層積構造所產生之降低內面反射率的效果之緣故。只要是對降低相移膜2的內面反射率之效果所造成的影響很微小,則亦可於透光性基板1與相移膜2之間設置有蝕刻停止膜。此情況下,蝕刻停止膜的厚度必須為10nm以下,較佳為7nm以下,更佳為5nm以下。又,由有效地作為蝕刻停止來發揮功能之觀點來看,蝕刻停止膜的厚度必須為3nm以上。形成蝕刻停止膜之材料的消光係數k必須為小於0.1,較佳為0.05以下,更佳為0.01以下。又,形成此情況的蝕刻停止膜之材料的折射率n必須為至少1.9以下,較佳為1.7以下。形成蝕刻停止膜之材料的折射率n較佳為1.55以上。又,蝕刻停止膜較佳宜由含有矽、鋁及氧之材料所形成。
形成第1層21、第2層22之材料與形成除了已氧化之表層部分以外的第3層23之材料較佳皆是由相同的元素所構成。第1層21、第2層22、第3層23係藉由使用相同蝕刻氣體之乾蝕刻而被圖案化。因此,第1層21、第2層22、第3層23最好是在相同的蝕刻腔室內被蝕刻。若構成形成第1層21、第2層22、第3層23的各材料之元素為相同,便能縮小乾蝕刻的對象改變(即第1層21、第2層22、第3層23)時之蝕刻腔室內的環境變化。
相移膜2中的第1層21、第2層22、第3層23雖係藉由濺鍍而形成,但亦可應用DC濺鍍、RF濺鍍及離子束濺鍍等任一濺鍍法。若考慮成膜速度,則較佳宜應用DC濺鍍。若使用導電性低的靶材之情況,雖然較佳為應用RF濺鍍或離子束濺鍍,但若考慮成膜速度,則更佳為應用RF濺鍍。
遮罩基底100係於相移膜2上具有遮光膜3。一般來說二元式遮罩中,形成有轉印圖案之區域(轉印圖案形成區域)的外周區域當使用曝光裝置來曝光轉印在半導體晶圓上的阻膜之際,為了使阻膜不會受到穿透外周區域之曝光光線的影響,而被要求須確保特定值以上的光學濃度(OD)。有關這一點,相移遮罩的情況亦是相同。通常,包含有相移遮罩之轉印用遮罩的外周區域中,OD較佳為2.7以上。相移膜2雖具有能夠讓曝光光線以特定穿透率穿透之功能,但只靠相移膜2會難以確保特定值的光學濃度。因此,在製造遮罩基底100之階段中,為了確保不足的光學濃度,便必須在相移膜2上另外預先層積遮光膜3。藉由成為上述般之遮罩基底100的構成,則在製造相移遮罩200(參閱圖3)的中途,只要去除使用相移效果之區域(基本上為轉印圖案形成區域)的遮光膜3,便可製造出外周區域已被確保為特定值的光學濃度之相移遮罩200。
遮光膜3可使用單層構造及2層以上之層積構造中的任一者。又,單層構造的遮光膜3以及2層以上之層積構造的遮光膜3的各層可構成為在膜或層的厚度方向上為大致相同的組成,抑或構成為在層的厚度方向上使組成呈現梯度。
圖1所記載型態之遮罩基底100係構成為於相移膜2上並未介隔著其他膜而層積有遮光膜3。此構成情況的遮光膜3必須使用相對於在相移膜2形成圖案之際所使用的蝕刻氣體而具有充分蝕刻選擇性之材料。此情況的遮光膜3較佳宜由含鉻材料所形成。形成遮光膜3之含鉻材料除了鉻金屬以外,舉例有於鉻包含有選自氧、氮、碳、硼及氟之一種以上的元素之材料。
一般來說,鉻系材料雖會被氯系氣體與氧氣的混合氣體蝕刻,但鉻金屬相對於此蝕刻氣體的蝕刻率並不太高。若考慮提高相對於氯系氣體與氧氣之混合氣體的蝕刻氣體之蝕刻率這一點,則形成遮光膜3之材料較佳為於鉻包含有選自氧、氮、碳、硼及氟之一種以上的元素之材料。又,亦可使形成遮光膜3之含鉻材料包含有鉬、銦及錫之一種以上的元素。藉由包含有鉬、銦及錫之一種以上的元素,便可更加快相對於氯系氣體與氧氣的混合氣體之蝕刻速度。
又,只要是能夠在與形成第3層23(特別是表層部分)之材料之間相對於乾蝕刻來獲得蝕刻選擇性,則亦可以含有過渡金屬與矽之材料來形成遮光膜3。其係因為含有過渡金屬與矽之材料的遮光性能較高,可使得遮光膜3的厚度較薄的緣故。作為被含有在遮光膜3之過渡金屬舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)、鈀(Pd)等任一種金屬或該等金屬的合金。作為被含有在遮光膜3之過渡金屬元素以外的金屬元素舉例有鋁(Al)、銦(In)、錫(Sn)及鎵(Ga)等。
另一方面,作為其他實施型態之遮罩基底100亦可具有從相移膜2側依序層積有含鉻材料所構成的層與含有過渡金屬與矽之材料所構成的層之構造的遮光膜3。此情況下之含鉻材料及含有過渡金屬與矽之材料的具體事項係與上述遮光膜3的情況相同。
遮罩基底100在層積有相移膜2與遮光膜3之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率較佳為9%以下。
遮罩基底100中,較佳宜構成為在遮光膜3上進一步地層積有相對於蝕刻遮光膜3時所使用之蝕刻氣體而具有蝕刻選擇性之材料所形成的硬遮罩膜4。由於硬遮罩膜4基本上不會受到光學濃度的限制,故可使硬遮罩膜4的厚度較遮光膜3的厚度而大幅地變薄。然後,由於有機系材料的阻膜只要在於該硬遮罩膜4形成圖案之乾蝕刻結束為止的期間,具有能夠發揮作為蝕刻遮罩功能的膜厚即已足夠,故可使厚度較過去要大幅地變薄。阻膜的薄膜化可有效地提升阻劑解析度與防止圖案傾倒,故對於微細化要求來說極為重要。
此硬遮罩膜4當遮光膜3是由含鉻材料所形成的情況,則較佳宜由含矽材料來形成。此外,由於此情況之硬遮罩膜4會有與有機系材料的阻膜之密著性較低之傾向,故較佳宜對硬遮罩膜4的表面施予HMDS(Hexamethyldisilazane)處理來提高表面的密著性。此外,此情況之硬遮罩膜4更佳宜由SiO2、SiN、SiON等來形成。
又,當遮光膜3是由含鉻材料所形成的情況下之硬遮罩膜4的材料除了上述以外,亦可使用含鉭材料。作為此情況下之含鉭材料,除了鉭金屬 以外,舉例有使鉭含有選自氮、氧、硼及碳之一種以上的元素之材料等。舉例有Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。又,硬遮罩膜4當遮光膜3是由含矽材料所形成的情況,則較佳宜由上述含鉻材料來形成。
遮罩基底100中,較佳宜相接於硬遮罩膜4的表面來形成膜厚為100nm以下之有機系材料的阻膜。對應於DRAM hp32nm世代之微細圖案的情況,會有在欲形成於硬遮罩膜4之轉印圖案(相移圖案)設置有線寬為40nm之SRAF(Sub-Resolution Assist Feature)的情況。但縱使為此情況,由於仍可使阻劑圖案的剖面深寬比為1:2.5之較低值,故可抑制在將阻膜顯影時、沖洗時等發生阻劑圖案之傾倒或脫離。此外,阻膜的膜厚更佳為80nm以下。
圖2係顯示本發明第2實施型態相關之遮罩基底110的構成之剖面圖。本實施型態之遮罩基底110中,相移膜2係具有從透光性基板1側層積有第1層21、第2層22、第3層23及第4層24之構造。關於第1層21、第2層22、第3層23,由於較佳折射率或消光係數、膜厚係如第1實施型態中所述,故省略說明。此外,關於透光性基板1、遮光膜3、硬遮罩膜4的構成亦是如第1實施型態中所述。
雖然第4層24本身對於內面反射率造成的影響較少,但使第4層24在ArF準分子雷射的曝光光線波長中之折射率為n4時,較佳宜滿足n1>n4及n3>n4的關係,使第4層24在ArF準分子雷射的曝光光線波長中之消光係數為k4時,較佳宜滿足k1>k4及k3>k4的關係。又,更佳亦滿足n2>n4的關係。第4層24的折射率n4較佳為1.8以下,更佳為1.7以下。又,第4層24的折射率n4較佳為1.5以上,更佳為1.55以上。另一方面,第4層24的消光係數k4較佳為0.1以下,更佳為0.05以下。
第4層24較佳宜由矽與氧構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氧構成的材料所形成。藉由以上述般之材料來形成第4層24,便可抑制容易在氮含量較多的含矽膜所發生之塵霧(haze)的產生。又,第4層24的厚度較佳為15nm以下,更佳為10nm以下。又,第4層24的厚度較佳為1nm以上,更佳為2nm以上。
圖3係顯示由上述第1及第2實施型態之遮罩基底100、110所製造的本發明第1及第2實施型態相關之相移遮罩200、210與其製造工序。如圖3(g)所示,相移遮罩200、210的特徵為於遮罩基底100、110的相移膜2形成有轉印圖案(即相移圖案2a),且於遮光膜3形成有遮光圖案3b。若遮罩基底100、110為設置有硬遮罩膜4之構成的情況,則硬遮罩膜4會在此相移遮罩200、210的製作中途被去除。
本發明第1及第2實施型態相關之相移遮罩200、210的製造方法係使用上述遮罩基底100、110,其特徵為具有以下工序:藉由乾蝕刻來於遮光膜3形成轉印圖案之工序、藉由以具有轉印圖案之遮光膜3作為遮罩之乾蝕刻來於相移膜2形成轉印圖案之工序、以及藉由以具有遮光圖案之阻膜6b作為遮罩之乾蝕刻來於遮光膜3形成遮光圖案3b之工序。以下,便依照圖3所示之製造工序,來加以說明本發明之相移遮罩200、210的製造方法。此外,此處係針對使用於遮光膜3上層積有硬遮罩膜4之遮罩基底100、110之相移遮罩200、210的製造方法來加以說明。又,係針對將含鉻材料使用於遮光膜3,且將含矽材料使用於硬遮罩膜4之情況來加以敘述。
首先,相接於遮罩基底100、110中的硬遮罩膜4,而藉由旋轉塗佈法來形成阻膜。接下來,以電子線來將欲形成於相移膜2之轉印圖案(相移圖案,即第1圖案)曝光描繪在阻膜,並進一步地進行顯影處理等特定處理來形成具有相移圖案之第1阻劑圖案5a(參閱圖3(a))。接著,進行以第1阻劑圖案5a作為遮罩並使用氟系氣體之乾蝕刻,來於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參閱圖3(b))。
接下來,去除阻劑圖案5a後,進行以硬遮罩圖案4a作為遮罩並使用氯系氣體與氧氣的混合氣體之乾蝕刻,來於遮光膜3形成第1圖案(遮光圖案3a)(參閱圖3(c))。接著,進行以遮光圖案3a作為遮罩並使用氟系氣體之乾蝕刻,來於相移膜2形成第1圖案(相移圖案2a)後便去除硬遮罩圖案4a(參閱圖3(d))。
接下來,藉由旋轉塗佈法來於遮罩基底100、110上形成阻膜。接下來,以電子線來將欲形成於遮光膜3之圖案(遮光圖案,即第2圖案)曝光描繪在阻膜,並進一步地進行顯影處理等特定處理來形成具有遮光圖案之第2阻 劑圖案6b(參閱圖3(e))。接著,進行以第2阻劑圖案6b作為遮罩並使用氯系氣體與氧氣的混合氣體之乾蝕刻,來於遮光膜3形成第2圖案(遮光圖案3b)(參閱圖3(f))。進一步地,去除第2阻劑圖案6b並經由洗淨等特定處理來獲得相移遮罩200、210(參閱圖3(g))。
上述乾蝕刻所使用之氯系氣體只要是含有Cl則未特別限制。舉例有Cl2、SiCl2、CHCl3、CH2Cl2、CCl4、BCl3等。又,上述乾蝕刻所使用之氟系氣體只要是含有F則未特別限制。舉例有CHF3、CF4、C2F6、C4F8、SF6等。特別是,由於不含C之氟系氣體相對於玻璃基板之蝕刻率較低,故可更加減少對玻璃基板的損傷。
本發明之相移遮罩200、210係使用上述遮罩基底100、110所製作而成。因此,形成有轉印圖案之相移膜2(相移圖案2a)相對於ArF準分子雷射的曝光光線之穿透率會成為2%以上,並且穿透相移圖案2a之曝光光線與在空氣中通過與相移圖案2a的厚度相同距離之曝光光線之間的相位差會成為150度以上200度以下的範圍內。又,此相移遮罩200、210係未層積有遮光圖案3b之相移圖案2a的區域(僅存在有相移圖案2a之透光性基板1上的區域)中之內面反射率會成為9%以下。藉此,當使用相移遮罩200來對轉印對象物(半導體晶圓上的阻膜等)進行曝光轉印時,便可抑制因上述雜散光而對曝光轉印像造成的影響。
本發明之半導體元件之製造方法的特徵為使用上述相移遮罩200、210來將轉印圖案曝光轉印在半導體基板上的阻膜。相移遮罩200、210係兼具能夠讓ArF準分子雷射的曝光光線以特定穿透率穿透之功能,以及會使所穿透之該ArF準分子雷射的曝光光線產生特定相位差之功能,且內面反射率為9%以下,相較於傳統相移遮罩為大幅降低的。因此,即便是將此相移遮罩200、210安裝在曝光裝置,並進行由該相移遮罩200、210的透光性基板1側來照射ArF準分子雷射的曝光光線並朝轉印對象物(半導體晶圓上的阻膜等)曝光轉印之工序,仍可抑制對相移遮罩200、210所形成之條碼或對位記號的轉印對象物之映射,從而能夠以高精確度來將期望圖案轉印在轉印對象物。
【實施例】
以下,藉由實施例來更加具體地說明本發明之實施型態。
(實施例1)
[遮罩基底之製造]
準備主表面的尺寸為約152mm×約152mm且厚度為約6.35mm之合成石英玻璃所構成的透光性基板1。此透光性基板1係將端面及主表面研磨成特定的表面粗糙度後,再施予特定的洗淨處理及乾燥處理。測量此透光性基板1的光學特性後,折射率n為1.556,消光係數k為0.00。
接下來,相接於透光性基板1的表面來形成厚度12nm之矽及氮所構成相移膜2的第1層21(SiN膜Si:N=43原子%:57原子%)。此第1層21係藉由將透光性基板1設置在單片式RF濺鍍裝置內,並使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍所形成。接著,於第1層21上形成厚度15nm之矽及氮所構成相移膜2的第2層22(SiN膜Si:N=68原子%:32原子%)。此第2層22係藉由使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。接著,於第2層22上形成厚度42nm之矽及氮所構成相移膜2的第3層23(SiN膜Si:N=43原子%:57原子%)。此第3層23係藉由使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。依以上步驟順序來形成相接於透光性基板1的表面而層積有第1層21、第2層22、第3層23之厚度69nm的相移膜2。此相移膜2之第3層23的厚度為第1層21之厚度的3.5倍。此外,第1層21、第2層22、第3層23的組成為藉由X射線光電子光譜法(XPS)來測量所獲得的結果。以下,關於其他膜亦相同。
接下來,使用相移量量測裝置(Lasertec公司製MPM193),來測量該相移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,穿透率為6.2%,相位差為181.8度(deg)。又,以光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量此相移膜2的第1層21、第2層22、第3層23的各光學特性後,第1層21之折射率n1為2.595,消光係數k1為0.357,第2層22之折射率n2為1.648,消光係數k2為1.861,第3層 23之折射率n3為2.595,消光係數k3為0.357。相移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率為3.8%,係低於9%。
接下來,於相移膜2上形成厚度43nm之CrOCN所構成的遮光膜3(CrOCN膜Cr:O:C:N=55原子%:22原子%:12原子%:11原子%)。此遮光膜3係藉由將形成有相移膜2之透光性基板1設置在單片式DC濺鍍裝置內,並使用鉻(Cr)靶材且以氬(Ar)、二氧化碳(CO2)、氮(N2)及氦(He)的混合氣體作為濺鍍氣體之反應性濺鍍(DC濺鍍)所形成。此透光性基板1上層積有相移膜2與遮光膜3之狀態下,相對於ArF準分子雷射之曝光光線波長的光線之內面反射率為4.7%,係低於9%。測量此相移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。另外,準備其他透光性基板1而以相同的成膜條件來僅成膜出遮光膜3,並以上述光譜橢圓偏光計來測量該遮光膜3的光學特性後,折射率n為1.92,消光係數k為1.50。
接下來,於遮光膜3上形成矽及氧所構成之厚度5nm的硬遮罩膜4。此硬遮罩膜4係藉由將層積有相移膜2及遮光膜3之透光性基板1設置在單片式RF濺鍍裝置內,並使用二氧化矽(SiO2)靶材且以氬(Ar)氣體作為濺鍍氣體之RF濺鍍所形成。依以上步驟順序來製造具備有於透光性基板1上層積有3層構造的相移膜2、遮光膜3及硬遮罩膜4之構造的遮罩基底100。
[相移遮罩之製造]
接下來,使用此實施例1之遮罩基底100並依以下的步驟順序來製作實施例1之相移遮罩200。首先,對硬遮罩膜4的表面施予HMDS處理。接著,藉由旋轉塗佈法,而相接於硬遮罩膜4的表面來形成膜厚80nm之電子線描繪用化學增幅型阻劑所構成的阻膜。接下來,以電子線來將欲形成於相移膜2之相移圖案(即第1圖案)描繪在此阻膜。進一步地,進行特定的顯影處理及洗淨處理來形成具有第1圖案之第1阻劑圖案5a(參閱圖3(a))。此時,第1阻劑圖案5a係於圖案形成區域外一併形成有對應於條碼或對位記號之形狀的圖案。
接下來,進行以第1阻劑圖案5a作為遮罩並使用CF4氣體之乾蝕刻,來於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參閱圖3(b))。此時,硬遮罩 膜4係於圖案形成區域外一併形成有對應於條碼或對位記號之形狀的圖案。之後,去除第1阻劑圖案5a。
接著,進行以硬遮罩圖案4a作為遮罩並使用氯與氧的混合氣體(氣體流量比Cl2:O2=10:1)之乾蝕刻,來於遮光膜3形成第1圖案(遮光圖案3a)(參閱圖3(c))。此時,遮光膜3係於圖案形成區域外一併形成有對應於條碼或對位記號之形狀的圖案。接下來,進行以遮光圖案3a作為遮罩並使用氟系氣體(SF6+He)之乾蝕刻,來於相移膜2形成第1圖案(相移圖案2a),且同時去除硬遮罩圖案4a(參閱圖3(d))。此時,相移膜2係於圖案形成區域外一併形成有對應於條碼或對位記號之形狀的圖案。
接下來,於遮光圖案3a上藉由旋轉塗佈法來形成膜厚150nm之電子線描繪用化學增幅型阻劑所構成的阻膜。接下來,將欲形成於遮光膜之圖案(遮光圖案,即第2圖案)曝光描繪在阻膜。進一步地,進行顯影處理等特定處理來形成具有遮光圖案之第2阻劑圖案6b(參閱圖3(e))。接著,進行以第2阻劑圖案6b作為遮罩並使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)之乾蝕刻,來於遮光膜3形成第2圖案(遮光圖案3b)(參閱圖3(f))。進一步地,去除第2阻劑圖案6b並經由洗淨等特定處理來獲得相移遮罩200(參閱圖3(g))。
針對此相移遮罩200,使用AIMS193(Carl Zeiss公司製)來進行以ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻膜時之曝光轉印像的模擬。驗證此模擬所獲得的曝光轉印像後發現已充分滿足設計式樣。又,曝光轉印像中並未見到因條碼或對位記號的映射所造成之CD差異。由以上結果可謂言縱使將由此實施例1之遮罩基底所製造的相移遮罩200安裝在曝光裝置,並以ArF準分子雷射的曝光光線來進行曝光轉印,仍能夠以高精確度來對半導體元件上的阻膜進行曝光轉印。
(實施例2)
[遮罩基底之製造]
實施例2之遮罩基底110除了相移膜2以外,係由和實施例1相同的步驟順序所製造。此實施例2之相移膜2係改變第1層21、第2層22、第3層23的膜厚,並進一地於第3層23上形成有第4層24。具體而言,係相 接於透光性基板1的表面來形成厚度14nm之矽及氮所構成相移膜2的第1層21(SiN膜Si:N=43原子%:57原子%)。此第1層21係藉由將透光性基板1設置在單片式RF濺鍍裝置內,並使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。接著,於第1層21上形成厚度8nm之矽及氮所構成相移膜2的第2層22(SiN膜Si:N=68原子%:32原子%)。此第2層22係藉由使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。接著,於第2層22上形成厚度43nm之矽及氮所構成相移膜2的第3層23(SiN膜Si:N=43原子%:57原子%)。此第3層23係藉由使用矽(Si)靶材且以氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。接著,於第3層23上形成厚度3nm之矽及氧所構成相移膜2的第4層24(SiO膜Si:O=33原子%:67原子%)。此第4層24係藉由使用矽(Si)靶材並以氬(Ar)及氧(O2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)所形成。依以上步驟順序,相接於透光性基板1的表面來形成層積有第1層21、第2層22、第3層23及第4層24之厚度68nm的相移膜2。此相移膜2之第3層23的厚度為第1層21之厚度的3.07倍。
使用上述相移量量測裝置來測量該相移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,穿透率為11.6%,相位差為183.0度(deg)。另外,以上述光譜橢圓偏光計來測量後此相移膜2之第1層21、第2層22、第3層23、第4層24的各光學特性後,第1層21之折射率n1為2.595,消光係數k1為0.357,第2層22之折射率n2為1.648,消光係數k2為1.861,第3層23之折射率n3為2.595,消光係數k3為0.357,第4層24之折射率n4為1.590,消光係數k4為0.000。相移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側的反射率)為7.6%,係低於9%。
依以上步驟順序來製造實施例2之遮罩基底110,該遮罩基底110係具有於透光性基板1上層積有第1層21、第2層22、第3層23、第4層24所構成的相移膜2、遮光膜3及硬遮罩膜4之構造。此外,此實施例2之遮罩基底110在透光性基板1上係層積有相移膜2與遮光膜3之狀態下,相對 於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側的反射率)為7.9%,係低於9%。測量此相移膜2與遮光膜3的層積構造中之相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相移遮罩之製造]
接下來,使用此實施例2之遮罩基底110並以和實施例1相同的步驟順序來製作實施例2之相移遮罩210。
針對此相移遮罩210,使用AIMS193(Carl Zeiss公司製)來進行以ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻膜時之曝光轉印像的模擬。驗證此模擬所獲得的曝光轉印像後發現已充分滿足設計式樣。又,曝光轉印像中並未見到因條碼或對位記號的映射所造成之CD差異。由以上結果可謂言縱使將由此實施例2之遮罩基底所製造的相移遮罩210安裝在曝光裝置,並以ArF準分子雷射的曝光光線來進行曝光轉印,仍能夠以高精確度來對半導體元件上的阻膜進行曝光轉印。
(比較例1)
[遮罩基底之製造]
此比較例1之遮罩基底除了相移膜以外,係由和實施例1相同的步驟順序所製造。此比較例1之相移膜係使用鉬、矽及氮所構成之單層構造的膜。具體而言,係藉由將透光性基板1設置在單片式DC濺鍍裝置內,並使用鉬(Mo)與矽(Si)的混合燒結靶材(Mo:Si=11原子%:89原子%)且以氬(Ar)、氮(N2)及氦(He)的混合氣體作為濺鍍氣體之反應性濺鍍(DC濺鍍),來形成厚度69nm之鉬、矽及氮所構成的相移膜。
使用相移量量測裝置(Lasertec公司製MPM193)來測量該相移膜2相對於ArF準分子雷射的曝光光線之穿透率與相位差後,穿透率為6.1%,相位差為177.0度(deg)。另外,以上述光譜橢圓偏光計來測量此相移膜的光學特性後,在ArF準分子雷射的曝光光線波長中之折射率n為2.39,消光係數k為0.57。又,此相移膜相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側的反射率)為13%,係大幅高於9%。
依以上步驟順序來製造比較例1之遮罩基底,該遮罩基底係具有於透光性基板上層積有MoSiN之單層構造所構成的相移膜、遮光膜及硬遮罩膜 之構造。此外,此比較例1之遮罩基底在透光性基板上係層積有相移膜與遮光膜之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率為11.0%,係大幅高於9%。
[相移遮罩之製造]
接下來,使用此比較例1之遮罩基底並以和實施例1相同的步驟順序來製作比較例1之相移遮罩。
針對所製作之比較例1之半調式相移遮罩,使用AIMS193(Carl Zeiss公司製)來進行以ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻膜時之曝光轉印像的模擬。驗證此模擬所獲得的曝光轉印像後有見到因條碼或對位記號的映射所造成之CD差異,而未滿足設計式樣。由以上結果可謂言由此比較例1之遮罩基底所製造的相移遮罩並無法以高精確度來對半導體元件上的阻膜進行曝光轉印。
(比較例2)
[遮罩基底之製造]
此比較例2之遮罩基底除了相移膜以外,係由和實施例1相同的步驟順序所製造。此比較例2之相移膜係將第1層、第2層、第3層的膜厚分別改變為32nm、10nm、25nm。此相移膜之第3層的厚度為第1層之厚度的0.78倍,係低於2倍。此外,相移膜2之各第1層、第2層、第3層的折射率、消光係數係與實施例1相同。
此相移膜的相位差為178.4度(deg),穿透率為6.5%。為了使相移膜與遮光膜的層積構造中相對於ArF準分子雷射之曝光光線波長(193nm)的光線之光學濃度(OD)為3.0以上,雖已使遮光膜之組成及光學特性與實施例1相同,但厚度仍改變為46nm。相移膜相對於ArF準分子雷射的曝光光線之內面反射率為35.1%,係大幅高於9%。
依以上步驟順序來製造比較例2之遮罩基底,該遮罩基底係具有於透光性基板上層積有相移膜、遮光膜及硬遮罩膜之構造。此外,此比較例2之遮罩基底在透光性基板上係層積有相移膜與遮光膜之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率為34.9%,係大幅高於9%。
[相移遮罩之製造]
接下來,使用此比較例2之遮罩基底並以和實施例1相同的步驟順序來製作比較例2之相移遮罩。
針對所製作之比較例2之半調式相移遮罩,使用AIMS 193(Carl Zeiss公司製)來進行以ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻膜時之曝光轉印像的模擬。驗證此模擬中所獲得的曝光轉印像後有見到因條碼或對位記號的映射所造成之CD差異,而未滿足設計式樣。由以上可謂言由此比較例2之遮罩基底所製造的相移遮罩並無法以高精確度來對半導體元件上的阻膜進行曝光轉印。
1‧‧‧透光性基板
2‧‧‧相移膜
21‧‧‧第1層
22‧‧‧第2層
23‧‧‧第3層
3‧‧‧遮光膜
4‧‧‧硬遮罩膜
100‧‧‧遮罩基底

Claims (23)

  1. 一種遮罩基底,係於透光性基板上具有相移膜;該相移膜係包含有從該透光性基板側依序層積有第1層、第2層及第3層之構造;使該第1層、該第2層及該第3層在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,係滿足n1>n2及n2<n3的關係;使該第1層、該第2層及該第3層在該曝光光線的波長中之消光係數分別為k1、k2、k3時,係滿足k1<k2及k2>k3的關係;該第1層的消光係數k1為0.5以下;使該第1層、該第2層及該第3層的膜厚分別為d1、d2、d3時,係滿足d1<d3及d2<d3的關係;該第1層的膜厚d1為20nm以下;該第2層的膜厚d2為20nm以下;該第3層的膜厚d3為25nm以上。
  2. 如申請專利範圍第1項之遮罩基底,其中該第3層的膜厚d3為該第1層之膜厚d1的2倍以上。
  3. 如申請專利範圍第1或2項之遮罩基底,其中該第1層的折射率n1為2.0以上,該第2層的折射率n2為小於2.0,該第2層的消光係數k2為1.0以上,該第3層的折射率n3為2.0以上,該第3層的消光係數k3為0.5以下。
  4. 如申請專利範圍第1或2項之遮罩基底,其中該相移膜係具有能夠讓該曝光光線以2%以上的穿透率穿透之功能,以及會使穿透該相移膜之該曝光光線,而與在空氣中通過與該相移膜的厚度相同距離之該曝光光線之間產生150度以上200度以下的相位差之功能。
  5. 如申請專利範圍第1或2項之遮罩基底,其中該第1層係設置為會相接於該透光性基板的表面。
  6. 如申請專利範圍第1或2項之遮罩基底,其中該第1層、該第2層及該第3層係由矽與氮構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氮構成的材料所形成。
  7. 如申請專利範圍第6項之遮罩基底,其中該第2層的氮含量係少於該第1層及該第3層任一者的氮含量。
  8. 如申請專利範圍第1或2項之遮罩基底,其中該相移膜係於該第3層上具有第4層;使該第4層在該曝光光線的波長中之折射率為n4時,係滿足n1>n4及n3>n4的關係;使該第4層在該曝光光線的波長中之消光係數為k4時,係滿足k1>k4及k3>k4的關係。
  9. 如申請專利範圍第8項之遮罩基底,其中該第4層的折射率n4為1.8以下,該第4層的消光係數k4為0.1以下。
  10. 如申請專利範圍第8項之遮罩基底,其中該第4層係由矽與氧構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氧構成的材料所形成。
  11. 如申請專利範圍第8項之遮罩基底,其中該第4層的膜厚d4為15nm以下。
  12. 一種相移遮罩,係於透光性基板上具備形成有轉印圖案的相移膜;該相移膜係包含有從該透光性基板側依序層積有第1層、第2層及第3層之構造;使該第1層、該第2層及該第3層在ArF準分子雷射的曝光光線波長中之折射率分別為n1、n2、n3時,係滿足n1>n2及n2<n3的關係;使該第1層、該第2層及該第3層在該曝光光線的波長中之消光係數分別為k1、k2、k3時,係滿足k1<k2及k2>k3的關係;該第1層的消光係數k1為0.5以下;使該第1層、該第2層及該第3層的膜厚分別為d1、d2、d3時,係滿足d1<d3及d2<d3的關係;該第1層的膜厚d1為20nm以下;該第2層的膜厚d2為20nm以下;該第3層的膜厚d3為25nm以上。
  13. 如申請專利範圍第12項之相移遮罩,其中該第3層的膜厚d3為該第1層之膜厚d1的2倍以上。
  14. 如申請專利範圍第12或13項之相移遮罩,其中該第1層的折射率n1為2.0以上,該第2層的折射率n2為小於2.0,該第2層的消光係數k2為1.0以上,該第3層的折射率n3為2.0以上,該第3層的消光係數k3的0.5以下。
  15. 如申請專利範圍第12或13項之相移遮罩,其中該相移膜係具有能夠讓該曝光光線以2%以上的穿透率穿透之功能,以及會使穿透該相移膜之該曝光光線,而與在空氣中通過與該相移膜的厚度相同距離之該曝光光線之間產生150度以上200度以下的相位差之功能。
  16. 如申請專利範圍第12或13項之相移遮罩,其中該第1層係設置為會相接於該透光性基板的表面。
  17. 如申請專利範圍第12或13項之相移遮罩,其中該第1層、該第2層及該第3層係由矽與氮構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氮構成的材料所形成。
  18. 如申請專利範圍第17項之相移遮罩,其中該第2層的氮含量係少於該第1層及該第3層任一者的氮含量。
  19. 如申請專利範圍第12或13項之相移遮罩,其中該相移膜係於該第3層上具有第4層;使該第4層在該曝光光線的波長中之折射率為n4時,係滿足n1>n4及n3>n4的關係;使該第4層在該曝光光線的波長中之消光係數為k4時,係滿足k1>k4及k3>k4的關係。
  20. 如申請專利範圍第19項之相移遮罩,其中該第4層的折射率n4為1.8以下,該第4層的消光係數k4為0.1以下。
  21. 如申請專利範圍第19項之相移遮罩,其中該第4層係由矽與氧構成的材料,或是選自類金屬元素及非金屬元素之1種以上的元素、矽及氧構成的材料所形成。
  22. 如申請專利範圍第19項之相移遮罩,其中該第4層的膜厚d4為15nm以下。
  23. 一種半導體元件之製造方法,係具有使用如申請專利範圍第12至22項中任一項之相移遮罩來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。
TW108118000A 2018-05-30 2019-05-24 遮罩基底、相移遮罩及半導體元件之製造方法 TWI791837B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103475A JP6938428B2 (ja) 2018-05-30 2018-05-30 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2018-103475 2018-05-30

Publications (2)

Publication Number Publication Date
TW202004328A TW202004328A (zh) 2020-01-16
TWI791837B true TWI791837B (zh) 2023-02-11

Family

ID=68697965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118000A TWI791837B (zh) 2018-05-30 2019-05-24 遮罩基底、相移遮罩及半導體元件之製造方法

Country Status (7)

Country Link
US (1) US20210132488A1 (zh)
JP (1) JP6938428B2 (zh)
KR (1) KR20210014100A (zh)
CN (1) CN112166376A (zh)
SG (1) SG11202010537VA (zh)
TW (1) TWI791837B (zh)
WO (1) WO2019230312A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194973A1 (en) * 2020-06-30 2023-06-22 Hoya Corporation Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP2022091338A (ja) * 2020-12-09 2022-06-21 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201116925A (en) * 2009-06-11 2011-05-16 Shinetsu Chemical Co Photomask making method
TW201137514A (en) * 2009-08-25 2011-11-01 Hoya Corp Mask blank, transfer mask, and methods of manufacturing the same
JP2016018192A (ja) * 2014-07-11 2016-02-01 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
TW201708931A (zh) * 2015-08-31 2017-03-01 Hoya Corp 光罩基底、相移光罩及其製造方法、以及半導體裝置之製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262302B2 (ja) * 1993-04-09 2002-03-04 大日本印刷株式会社 位相シフトフォトマスク、位相シフトフォトマスク用ブランクス及びそれらの製造方法
KR0168134B1 (ko) * 1993-05-25 1999-01-15 사토 후미오 반사형 위상쉬프트 마스크와, 투과형 위상쉬프트 마스크 및, 패턴형성방법
JP2001201842A (ja) * 1999-11-09 2001-07-27 Ulvac Seimaku Kk 位相シフトフォトマスクブランクス及び位相シフトフォトマスク並びに半導体装置の製造方法
JP2002258458A (ja) * 2000-12-26 2002-09-11 Hoya Corp ハーフトーン型位相シフトマスク及びマスクブランク
US20020197509A1 (en) * 2001-04-19 2002-12-26 Carcia Peter Francis Ion-beam deposition process for manufacturing multi-layered attenuated phase shift photomask blanks
US7011910B2 (en) * 2002-04-26 2006-03-14 Hoya Corporation Halftone-type phase-shift mask blank, and halftone-type phase-shift mask
JP2005156700A (ja) * 2003-11-21 2005-06-16 Shin Etsu Chem Co Ltd 位相シフトマスクブランク、位相シフトマスク、位相シフトマスクブランクの製造方法、及びパターン転写方法
KR20100009558A (ko) 2007-04-27 2010-01-27 호야 가부시키가이샤 포토마스크 블랭크 및 포토마스크
NL2007303A (en) 2010-09-23 2012-03-26 Asml Netherlands Bv Process tuning with polarization.
US9625806B2 (en) * 2013-01-15 2017-04-18 Hoya Corporation Mask blank, phase-shift mask, and method for manufacturing the same
JP6005530B2 (ja) * 2013-01-15 2016-10-12 Hoya株式会社 マスクブランク、位相シフトマスクおよびこれらの製造方法
JP6373607B2 (ja) * 2013-03-08 2018-08-15 Hoya株式会社 マスクブランクの製造方法および位相シフトマスクの製造方法
KR102261621B1 (ko) * 2014-12-26 2021-06-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
JP6418035B2 (ja) * 2015-03-31 2018-11-07 信越化学工業株式会社 位相シフトマスクブランクス及び位相シフトマスク
JP6352224B2 (ja) * 2015-07-17 2018-07-04 Hoya株式会社 位相シフトマスクブランク及びこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法
TWI720752B (zh) * 2015-09-30 2021-03-01 日商Hoya股份有限公司 空白遮罩、相位移轉遮罩及半導體元件之製造方法
SG10201908855RA (en) * 2015-11-06 2019-10-30 Hoya Corp Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP6302520B2 (ja) * 2016-09-07 2018-03-28 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法および半導体デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201116925A (en) * 2009-06-11 2011-05-16 Shinetsu Chemical Co Photomask making method
TW201137514A (en) * 2009-08-25 2011-11-01 Hoya Corp Mask blank, transfer mask, and methods of manufacturing the same
JP2016018192A (ja) * 2014-07-11 2016-02-01 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
TW201708931A (zh) * 2015-08-31 2017-03-01 Hoya Corp 光罩基底、相移光罩及其製造方法、以及半導體裝置之製造方法

Also Published As

Publication number Publication date
US20210132488A1 (en) 2021-05-06
JP2019207359A (ja) 2019-12-05
KR20210014100A (ko) 2021-02-08
JP6938428B2 (ja) 2021-09-22
SG11202010537VA (en) 2020-11-27
TW202004328A (zh) 2020-01-16
WO2019230312A1 (ja) 2019-12-05
CN112166376A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
TWI689777B (zh) 遮罩基底、相位轉移遮罩及半導體元件之製造方法
JP6575957B2 (ja) マスクブランク、反射型マスクの製造方法、及び半導体デバイスの製造方法
JP6271780B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
CN111344633B (zh) 掩模坯料、相移掩模及制造方法、半导体器件的制造方法
CN109643056B (zh) 掩模坯料、相移掩模、相移掩模的制造方法及半导体器件的制造方法
TWI791837B (zh) 遮罩基底、相移遮罩及半導體元件之製造方法
CN111742259B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
TWI801587B (zh) 遮罩基底、相位轉移遮罩以及半導體元件之製造方法
TWI809232B (zh) 遮罩基底、相移遮罩、相移遮罩之製造方法及半導體元件之製造方法
WO2021044917A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP7179543B2 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
US20230314929A1 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
TW202125093A (zh) 遮罩基底、相移遮罩及半導體元件之製造方法