TWI564971B - 具有組成分層半導體通道的非平面三族氮化物電晶體 - Google Patents

具有組成分層半導體通道的非平面三族氮化物電晶體 Download PDF

Info

Publication number
TWI564971B
TWI564971B TW104142483A TW104142483A TWI564971B TW I564971 B TWI564971 B TW I564971B TW 104142483 A TW104142483 A TW 104142483A TW 104142483 A TW104142483 A TW 104142483A TW I564971 B TWI564971 B TW I564971B
Authority
TW
Taiwan
Prior art keywords
group iii
iii nitride
nanowires
nitride semiconductor
nanowire
Prior art date
Application number
TW104142483A
Other languages
English (en)
Other versions
TW201626467A (zh
Inventor
漢威 陳
山薩塔克 達斯古塔
馬可 拉多撒福傑維克
班傑明 朱功
宋承宏
薩納斯 珈納
羅伯特 喬
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201626467A publication Critical patent/TW201626467A/zh
Application granted granted Critical
Publication of TWI564971B publication Critical patent/TWI564971B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

具有組成分層半導體通道的非平面三族氮化物電晶體
本發明之實施例大致地有關微電子裝置及製造,且更特別地,有關三族氮化物電晶體構造。
行動計算(例如,智慧型手機及平板電腦)市場得益於較小組件形成因子及較低功率消耗。因為用於智慧型手機及平板電腦之當代平台解決方法依賴所安裝於電路板上的多重封裝積體電路(IC),所以對更小及更多功率有效率形成因子的進一步縮放會受到限制。例如,除了個別的邏輯處理器IC外,智慧型手機將包含個別的功率管理IC(PMIC)、射頻IC(RFIC)、及Wi-Fi/藍牙/GPS IC。系統單晶片(SoC)構造提供縮放的益處,其無法由板層次之組件整合所相比。雖然邏輯處理器IC本身可被考慮為整合記憶體及邏輯功能二者的系統單晶片(SoC),但因為PMIC及RFIC操作以二或更多個高壓、高功率、及高頻,所以用於行動計算平台之更擴展的SoC解決方法依然 係捉摸不定。
就此而論,習知的行動計算平台典型地使用不相容的電晶體技術,其係特別定做以供PMIC及RFIC所執行的不同功能之用。例如,側向擴散之矽MOS(LDMOS)技術係典型地使用於PMIC中,用以管理電壓轉換及電力配置(包含升壓及/或降壓轉換之電池電壓調整,等等)。諸如GaAs異質接面雙極性電晶體(HBT)之三、五族化合物半導體係典型地使用於RFIC中,用以在GHz載波頻率產生足夠的功率放大。實施CMOS技術之習知的矽場效電晶體則帶來第三電晶體技術,而在行動計算平台內被使用於邏輯及控制功能。除了在行動計算平台中的種種IC間之基本的半導體材料不相容性之外,用於PMIC中之DC至DC轉換的電晶體設計已與用於RFIC中之高頻功率放大器的電晶體設計大致地不相容。例如,使矽之相對低的崩潰電壓在直直流轉換器開關中所需要之源極對汲極分離變得更大,可根據載波頻率而准許用於需要超過20GHz且可直至500GHz之Ft的功率放大器電晶體(例如,WPAN係60GHz,且因此,電晶體需60GHz許多倍的Ft)。該等不同的電晶體層次之設計需求使得用於種種電晶體設計之製造處理變成不同,且難以整合成為單一處理。
因此,雖然用以改善可擴充性、降低成本、及增進平台功率效益之用於行動計算空間之將整合PMIC及RFIC功能的SoC解決方法係引人注意,但SoC之一障礙則在 於缺少具有足夠的速度(亦即,足夠高的增益截止頻率Ft)及足夠高的崩潰電壓(BV)二者之可擴充的電晶體技術。
三族氮化物(III-N)裝置以CMOS提供用於PMIC及RFIC功能之整合的希望之路,因為可獲得高的BV及Ft二者。惟現今,三族氮化物電晶體使用二維電子氣體(2DEG)或片電荷做為傳輸通道。例如,此二維片電荷係形成於藉由諸如AlN之膜在GaN上的磊晶沈積所形成之陡峭的異質介面處,而具有較大的自生及壓電的極化。因為極化場係高度方向性的,所以二維片電荷僅形成於該異質介面處的頂部(0001)纖維鋅礦晶體平面中。此材料為主的不對稱對於實施諸如目前由產業領導者所施用於矽中之雙閘極及三閘極設計的多重閘極電晶體構造,打出難題。就此而論,三族氮化物電晶體的足跡可係不利地變大,且與激勵非平面矽裝置(例如,短通道效應)之躍遷的該等者同樣地遭遇種種的性能限制。
115‧‧‧轉換層
120‧‧‧三族氮化物半導體通道
125‧‧‧極化層
201,202‧‧‧三族氮化物電晶體
205‧‧‧基板層
120A-120N‧‧‧層
240‧‧‧閘極電介質
250‧‧‧閘極電極
210A,210B‧‧‧三族氮化物半導體通道側壁
220A-220D‧‧‧傳輸通道
220M‧‧‧區域
220N‧‧‧基底
300‧‧‧方法
301-320‧‧‧操作
410‧‧‧鰭結構
407‧‧‧絕緣體層
412‧‧‧犧牲閘極
420‧‧‧層間電介質層(ILD)
255‧‧‧間隔物
245‧‧‧通道區
421‧‧‧源極/汲極接點
235B‧‧‧源極/汲極區
500‧‧‧計算平台
510‧‧‧系統單晶片(SoC)
513‧‧‧電池
511‧‧‧控制器
515‧‧‧功率管理積體電路
525‧‧‧射頻積體電路
530,531‧‧‧處理器核心
600‧‧‧計算裝置
602‧‧‧板
604‧‧‧處理器
606‧‧‧通訊晶片
本發明之實施例係藉實例而予以描繪,且並非做為限制,以及當結合圖式而加以考慮時,可參閱詳細說明而呈更完整的瞭解,其中:第1A圖係依據實施例之用於非平面三族氮化物電晶體的GaN晶體取向之等距圖式;第1B、1C、及1D圖係依據實施例之對應橫剖面中所 示且具有第1A圖中所描繪的晶體取向之組成分層三族氮化物半導體通道的區域之合金含量的圖形;第1E圖係依據實施例之用於非平面三族氮化物電晶體的GaN晶體取向之等距圖式;第1F圖係依據實施例之對應橫剖面中所示且具有第1E圖中所描繪的晶體取向之組成分層三族氮化物半導體通道的區域之合金含量的圖形;第2A圖描繪依據本發明實施例之三閘極非平面三族氮化物電晶體的通道區之貫穿橫剖面;第2B圖描繪依據本發明實施例之第2A圖中所描繪的通道區內之模型化電荷;第2C圖描繪依據本發明實施例之環繞式閘極非平面三族氮化物電晶體的通道區之貫穿橫剖面;第2D圖描繪依據本發明實施例之第2C圖中所描繪的通道區內之模型化電荷;第3圖係流程圖,描繪依據實施例之非平面高壓電晶體的製造方法;第4A、4B、4C、及4D圖係依據第3圖中所描繪之方法實施例所製造的非平面高壓奈米佈線電晶體之等距圖式;第5圖係依據本發明實施例之行動計算平台的SoC實施之功能方塊圖;以及第6圖係依據本發明一實施例之計算裝置的功能方塊圖。
【發明內容及實施方式】
在以下說明中將陳述許許多多的細節;惟,對熟習本項技藝之人士將呈明顯的是,本發明可無需該等特定的細節而被施行。在若干情況中,為避免使本發明混淆,熟知的方法及裝置係以方塊圖形式予以顯示,而非以細節。在此說明書中對〝實施例〞之引用意指的是,與實施例連結而加以敘述之特殊的特性、結構、功能、或特徵係包含在本發明之至少一實施例中。因此,在此說明書中之種種位置中之片語〝在實施例中〞的出現無需一定要意指本發明之相同的實施例。再者,該等特殊的特性、結構、功能、或特徵可在一或多個實施例中以任一合適之方式予以結合。例如,第一實施例與第二實施例可在該兩實施例並不相互排斥的任何處結合。
〝耦接〞及〝連接〞之用語及它們的衍生語可被一起使用於此,以敘述組件間之結構性的關係。應瞭解的是,該等用語並不打算成為彼此互相的同義字。而是,在特殊實施例中,可使用〝連接〞以指出二或更多個元件係在彼此互相直接的實體或電性接觸中。〝耦接〞可被使用以指出二或更多個元件係在彼此互相直接或間接(具有其他中介元件於其間)的實體或電性接觸中,及/或該二或更多元件彼此互相協力操作或相互作用(例如,如在因果關係中)。
〝在...之上面〞、〝在...之下面〞、〝在...之間〞、 及〝在...之上〞係使用於此以指示一材料層相對於其他層的相關位置。就此而論,例如,設置在另一層之上面或下面的一層可與其他層直接接觸,或可具有一或多個中介層。此外,設置在兩層之間的一層可與該兩層直接接觸,或可具有一或多個中介層。對照地,在第二層之上的第一層係與該第二層直接接觸。
在此所敘述的係具有三族氮化物半導體通道之非平面三族氮化物電晶體的實施例,該三族氮化物半導體通道係以形成三維電子氣體(3DEG)於三族氮化物半導體通道內之方式而予以組成分層。實用上,在此所敘述的非平面三族氮化物電晶體構造有利地提供低的非本徵電阻及/或降低基板表面面積,用於所給定之驅動電流。在實施例中,所分層之三族氮化物半導體通道具有多重閘控表面,而致能降低的短通道效應且致能較高的汲極崩潰電壓(BVDD)。
在實施例中,敘述於此的高電子遷移率場效電晶體(FET)係使用於整合RFIC與PMIC以實施高電壓及/或高功率電路的SoC解決方法中。透過此處所敘述的電晶體結構,SoC解決方法可送出用於行動計算平台所需之產品特定電流及功率需求。快速開關的高壓電晶體能在RF頻率處操縱高的輸入電壓擺動,及提供高的功率附加效率。在實施例中,敘述於此的三族氮化物電晶體構造係單片整合以諸如平面及非平面矽CMOS電晶體技術之四族電晶體構造。在特殊實施例中,敘述於此的三族氮化物電晶體係 於以低功率CMOS邏輯資料處理整合高功率無線資料傳輸及/或高電壓功率管理功能的SoC構造中使用。適用於寬頻無線資料傳輸應用的高頻操作係可能的,而大帶隙三族氮化物材料的使用亦提供足夠RF之高的BV產生以供無線資料傳輸應用之用。此高的Ft/Fmax及高電壓能力之組合亦使此處所敘述的三族氮化物FET構造能被使用於利用降低尺寸之感應元件的直直流轉換器中之高速開關應用。當功率放大及直直流開關應用係智慧型手機、平板電腦、及其他行動平台中的關鍵功能區塊時,則此處所敘述之該等結構可被使用於用於該等裝置的SoC解決方法之中。做為一實例,第一個三族氮化物FET係使用於PMIC的直直流開關電路之中,以及第二個三族氮化物FET係使用於RFIC的放大器電路之中。
在實施例中,三族氮化物FET的三族氮化物半導體通道包含三族氮化物三元素或四元素組成分層的合金。在一三元素實施例中,該三族氮化物半導體通道包含氮化銦鎵(InxGa1-xN),其中x係沿著半導體通道的纖維鋅礦晶體c軸而加以變化。在另一三元素實施例中,三族氮化物半導體通道包含氮化鋁鎵(AlxGa1-xN),其中x係沿著半導體通道的c軸而加以變化。在四元素實施例中,銦及鋁二者係呈現為InxAlyGa1-x-yN合金,而x及/或y沿著半導體通道的c軸而變化。第1A圖係依據實施例之用於非平面三族氮化物電晶體之GaN晶體取向的等距圖式。第1B圖係具有第1A圖中所描繪之晶體取向的以InGaN為 基之組成分層三族氮化物半導體通道的橫剖面視圖。對應該三族氮化物半導體通道的區域之合金含量的圖形被進一步描繪出。
在第1A圖中所描繪的GaN晶體係非中心對稱的,意指的是,該三族氮化物晶體缺少反對稱性,且更特別地,該等{0001}平面並不相等。對於純GaN而言,(0001)平面係典型地稱為Ga面(+c極性,或在[0001]方向中),以及另一者之(000)平面係稱為N面(-c極性,或在[000]方向中)。因此,第1A圖中之取向係Ga面或(0001),而該(0001)平面具有晶格常數a於三族氮化物半導體通道的頂部表面上。
由於極性接合及晶體不對稱性的結果,自生極化場PSP係存在於三族氮化物半導體之內,且當三族氮化物半導體係在平行於(0001)平面之方向中的拉伸應變之下時(沿著如第1B圖中所示之y維),則壓電極化場PPE係以PSP予以配向(遠離(0001)平面且朝向(000)平面)。在三族氮化物半導體內的組成分層可散開該等極化場,而提供相對於特殊晶體面Ga或N之所欲的分佈極化感應電荷載子(例如,n型)。明顯地,當被沈積於GaN的Ga面時,InN及AlN中的自生極化場係彼此互相相反地取向,且因此,在此之實施例藉由以相對於Ga或N面之第一方向分層In含量(例如,增加In百分比),而在三族氮化物半導體通道容積內達成極化載子電荷之所欲分佈,且同時,分層Al含量之實施例亦以相反的方向達成 (例如,減少Al百分比)。
在實施例中,In含量係分層而在寬帶隙材料的介面處具有相對更純的GaN(例如,0%的In)。透過該分層,可形成3D電子氣體於分層的半導體之內,而無電荷載子存在於基板區域的鄰近處,此可有利於降低或防止漏洩路徑,如本文就第2A至2B圖而論之其他處所進一步敘述地。如第1B圖中所示,In含量之分層係有利地對稱於在有關寬帶隙轉換層115的介面與寬帶隙三族氮化物極化層125的介面間的中心之平面。在實施例中,In含量係自個別的三族氮化物面提高地分層,而在所分層之三族氮化物半導體通道120的c軸厚度之約略一半處會合。有關獲得具有最小範圍之合金含量於Ga與N面之間的特殊傳輸通道幾何形狀,該分層輪廓可係有利的。其中In分層係有關中心平面的不對稱之變化例亦係可能的。
對於第1B圖中所示之對稱分層實施例,三族氮化物半導體通道120係在與轉換層115之介面處開始分層,而在第一距離上以遞增之銦含量予以分層,該第一距離約相等於三族氮化物半導體通道120之厚度的一半(1/2T)。然後,三族氮化物半導體通道120係在第二距離上進一步以遞減之銦含量予以分層,該第二距離約相等於對極化層125之介面的1/2T。在該代表性實施例中,於半導體通道120與寬帶隙轉換層及極化層115、125之各者的介面處,In含量係0%(亦即,具有x=0之InxGa1-xN,或純GaN)。如藉由電荷符號之概括位置而於第1B圖中以在 三族氮化物半導體通道120的(000)面之純GaN予以描繪地,電荷載子係缺席於與寬帶隙轉換層115的介面。
在該代表性實施例中,最大的In含量到達大約10%,雖然在其他實施例中可係更高(例如,15至20%)。在此範圍上,分層係在分層距離上有利地均勻,以便獲得均勻的極化電荷密度。在該代表性實施例中,分層係在遠離三族氮化物半導體通道120之(0001)表面及(000)表面而朝向一半厚度或中心平面的方向中呈線性的。當然,非線性分層(例如,在半導體通道120的厚度上呈拋物線,等等)亦係可能的。
第1C圖係依據實施例之具有第1A圖中所描繪之晶體取向的以AlxGa1-xN為基之組成分層三族氮化物半導體通道120的橫剖面視圖。三族氮化物半導體通道120係在與轉換層115之介面處開始分層,而在第一距離上以遞減之Al含量予以分層,該第一距離約相等於三族氮化物半導體通道120之厚度的一半(1/2T)。進一步地,三族氮化物半導體通道120係在第二距離上以遞增之Al含量予以分層,該第二距離約相等於對極化層125之介面的1/2T。在該代表性實施例中,於與寬帶隙轉換層及極化層115、125之各者的介面處具有最大Al含量(例如,30%或更大)之半導體通道120的一半厚度或中心平面處,Al含量係0%(亦即,純GaN)。如第1C圖中所描繪地,電荷載子係再次缺席於與寬帶隙轉換層115的介面。
在半導體通道120內,Al分層係有利地均勻,以便 獲得均勻的極化電荷密度。在該代表性實施例中,分層係自三族氮化物半導體通道120的(0001)及(000)表面朝向一半厚度或中心平面而呈線性的。當然,非線性之分層(例如,在半導體通道120的厚度上呈拋物線,等等)係再次可能的。
對於四元素之實施例,Al及/或In之分層係與第1B、1C圖中所描繪之該等者一致,而Al及In含量的至少一者在第一距離上變化自轉換層115(例如,減少或增加),該第一距離約相等於三族氮化物半導體通道120之厚度的一半(1/2T),且然後,在第二距離上對稱地變化(例如,增加或減少),該第二距離約相等於對極化層125之三族氮化物半導體通道120之厚度的一半(1/2T)。
在其他實施例中,In含量係分層而具有最高In含量於N面(000)之寬帶隙材料的介面處,及最低In含量於Ga面(0001)之寬帶隙材料的介面處。此交變的分層輪廓係伴隨三族氮化物半導體通道120及高帶隙層115、125的對應橫剖面視圖,而被描繪於第1D圖中。如所示地,在與高帶隙轉換層115之介面處的In含量係足夠高,以便當高於臨限電壓的偏壓係施加至閘極電極時,用於將存在於鄰接寬帶隙轉換層115的三族氮化物半導體通道120之內的電荷載子(電子)。在代表性實施例中,峰值In含量係20%,雖然其可在15-20%的範圍。再者,依據代表性的實施例,均勻分層係有利的,該代表性實施 例係線性分層,以致使一半厚度處之In含量係再大約10%,而具有實質地純的GaN於極化層125之介面處。明顯地,即使具有與用於In所敘述之該者相反的輪廓,分層Al含量將不具有相同的功效,因為GaN帶隙係比用於InGaN實施例之該者更寬。
附註地,第1B及1C圖中所示之實施例伴有由於Al及In三元素合金之不同極化強度的結果而彼此相對地反轉的分層輪廓,該分層輪廓可被更便利地表示為帶隙的函數。透過比GaN的帶隙更小之InGaN的帶隙及比GaN的帶隙更寬之AlGaN的帶隙,於第1B、1C,且甚至1D圖中之分層輪廓的各者將在距離該兩寬帶隙材料層115及125的至少一者之一距離上(朝向第1B及1C圖中之半導體通道的中心平面以及朝向第1D圖中之第二寬帶隙材料層),降低帶隙。換言之,對於第1B及1C圖中所描繪之實施例,帶隙自該兩寬帶隙材料層115及125二者朝向中心平面而減少。對於第1D圖中所描繪之實施例,帶隙自寬帶隙材料層125朝向寬帶隙材料層115而減少。
明顯地,在第1A-1D圖中所描繪之分層輪廓可相等地應用至成長於基板之側壁表面上的外延通道層,例如,其可針對提供(110)或(100)基板之(111)或(110)引晶表面的目的而予以做成。用於該等實施例,如第1E圖中所示,結構的樣板表面延伸自基板,以致使三族氮化物纖維鋅礦晶體被旋轉以具有{0001}面形式側壁,以及{1010}面形式頂部及底部表面的其中一者。第1F圖描 繪用於具有第1E圖中的取向之三族氮化物半導體通道120的代表性In及/或Al分層輪廓。
第2A圖描繪依據本發明實施例之三閘極非平面三族氮化物電晶體201的通道區之貫穿橫剖面。概括地,電晶體201使用分層之三族氮化物半導體通道120,如就第1A-1B圖之情況而在本文其他處所敘述地,且因此,參考符號係保留以供在前所敘述的特徵之用。三族氮化物電晶體201係閘極電壓控制裝置(亦即,FinFET),且在代表性實施例中,係包含設置在基板層205上之至少一非平面晶體半導體通道120的n型FinFET。
在實施例中,基板層205包含緩衝層,該緩衝層係由成長於支撐基板(未描繪)上之三族氮化物半導體(描繪於第1A圖中)所構成。在特殊實施例中,基板層205包含設置在矽支撐基板上之一或多層的GaN。在代表性實施例中,矽支撐基板係實質單晶的,且係(100)矽(亦即,具有(100)頂部表面)或(110)矽(亦即,具有(110)頂部表面)。該支撐基板亦可係交變材料的,其可與矽或不與矽結合包含鍺、銻化銦、鍗化鉛、砷化銦、磷化銦、砷化鎵、或銻化鎵、碳(SiC)、及藍寶石,但並未受到限制。
如第2A圖中所進一步顯示地,電晶體201包含非平面三族氮化物半導體本體,其係藉由轉換層115而與基板層205分離。在代表性實施例中,轉換層115係合成的,且相對於三族氮化物半導體道120而被實體地定位,以便 防止或至少降低來自電晶體201直至基板層205內的漏洩(亦即,子鰭漏洩)。因此,轉換層115係比與該轉換層115直接接觸之三族氮化物半導體材料更寬帶隙的材料。轉換層115亦准許三族氮化物半導體通道120的外延成長,且因此,亦具有纖維鋅礦晶體性。就此而論,轉換層115可係一或多個三族氮化物材料或具有包含AlN、AlGaN(例如,Al<0.3Ga>0.7N)、或AlInN(例如,Al0.83In0.17N)之代表性三族氮化物材料的晶體電介質,以及包含諸如TiN、SiN、AlN之纖維鋅礦晶體氮化物及諸如Al2O3、Gd2O3、Sc2O3、Ta2O5、及TiO2之纖維鋅礦晶體氧化物的代表性晶體電介質。該等電介質材料層係典型地沈積為多晶層,且當遭受到三族氮化物半導體的高成長溫度時,則易於形成適合做為用於三族氮化物成長之樣板的晶體。
三族氮化物半導體通道120係設置在轉換層115上。依據實施例,三族氮化物半導體通道120具有纖維鋅礦結構,且係沿著與{0001}底部平面垂直的成長方向(亦即,沿著三族氮化物半導體晶體的c軸)而被組成分層,如就第1A至1C圖的情況所敘述地。在實施例中,三族氮化物半導體通道120具有25奈米(nm)與100奈米(nm)之間的厚度(在第2A圖中之z軸)。在實施例中,三族氮化物半導體通道120具有本徵雜質摻雜位準,而無故意的摻雜物。如第2A圖中所示地,三族氮化物半導體通道120包含複數個層120A-120N,用以強調沿著c 軸之三族氮化物半導體通道厚度內的組成分層。在代表性實施例中,In係在大約半導體通道厚度T的一半處被分層為峰值濃度。在代表性實施例中,三族氮化物半導體通道120包含InGaN,其具有當InGaN之極化場係與AlGaN及GaN的該者相反而被取向時之凌駕AlGaN實施例的優點,且同時,其中距離寬帶隙轉換層115之導電帶偏置將變得更大。此導致相對較佳之載子約束用於給定的轉換層材料及/或放鬆在轉換層組成上之制約(例如,容許較低的Al含量於AlGaN轉換層中)。
如在第2A圖中所進一步描繪地,極化層125係設置在三族氮化物半導體通道120的(0001)表面上。極化層125係功能地用作電荷感應層,用以可控制地供應載子至三族氮化物半導體通道120。在代表性實施例中,於厚度中,極化層125係在1奈米與20奈米之間的範圍。該極化層可進一步用作其中帶隙係足夠寬之載子約束的裝置。在代表性實施例中,極化層125包含AlInGaN、AlGaN、AlInN、或AlN的至少一者。極化層125亦可伴有複數個組成不同層,例如,不同組成之第一電荷感應層及覆蓋式頂部勢壘層,用以容許電晶體臨限電壓調諧,且同時,針對降低之合金散射及高的載子遷移率以確保薄的(例如,>0.5奈米)寬帶隙材料在半導體通道層之表面處。
透過如在第1A-1B圖之情況中所敘述的組成分層,極化場(及帶隙)係在分層的三族氮化物半導體通道120之內變化,而容許該三族氮化物半導體通道120內之大量電 荷的形成,其可接著藉由透過閘極電介質240的電場效應而予以調變,成為閘極電極250上之電壓電位的函數。透過用於閘極電極250之功函數的選擇,可設定臨限電壓(Vt)以界定半導體通道120的源極及汲極端間之導電性的開及關狀態。例如,可使用任何習知的源極/汲極構造以供電晶體201之用,該等源極/汲極區之進一步細節將予以省略。
第2B圖描繪依據本發明實施例之第2A圖中所描繪的電晶體201之三族氮化物通道區內之模型化電荷。三族氮化物半導體通道120的厚度(z維)係模型化為50奈米及10奈米的y維寬度。如所顯示地,相對於區域220M,與傳輸通道相關聯之較高電荷密度區係在大於臨限電壓之閘極偏壓情形下,沿著三族氮化物半導體通道120內的多重表面平面而存在。因此,除了鄰近(0001)頂部三族氮化物半導體通道表面110C之具有較高電荷密度的傳輸通道220C外,亦具有鄰近三族氮化物半導體通道側壁210A及210B(亦即,鄰近{1010}平面)之額外的傳輸通道220A及220B。此更大的傳輸通道尺寸(亦即,三維而非僅只二維)係由於以與就第1A-1B圖的情況所敘述之實施例相同的方式,組成分層該三族氮化物半導體通道120之結果。明顯地,透過轉換層115的介面處之實質純的GaN,即使在大於臨限電壓之閘極偏壓的情形下,亦無鄰近轉換層115之傳輸通道存在。就此而論,側壁傳輸通道220A及220B係夾止於非平面電晶體201的 基底220N處,而使子鰭漏洩降低。因此,該三族氮化物FinFET 201具有有利的多側傳輸通道,其係回應存在於該三族氮化物半導體通道120之側壁上的閘極堆疊。
第2C圖描繪依據本發明實施例之多重閘極非平面三族氮化物電晶體202的通道區之貫穿橫剖面。概括地,電晶體202使用分層之三族氮化物半導體通道120,如就第1D圖之情況而在本文其他處所敘述地;且因此,參考符號係保留以供在前所敘述的特徵之用。三族氮化物電晶體202係閘極電壓控制裝置(亦即,〝環繞式閘極〞或〝奈米佈線〞FET),且在代表性實施例中,係包含設置在基板層205上之至少一非平面晶體半導體通道120的n型奈米佈線FET。
如第2C圖中所示,電晶體202包含非平面三族氮化物半導體本體,其係藉由轉換層115,以及閘極電介質240及閘極電極250,而與基板層205分離。三族氮化物半導體通道120係設置在轉換層115上。依據代表性實施例,三族氮化物半導體通道120係沿著與{0001}底部平面垂直的成長方向(亦即,沿著三族氮化物半導體晶體的c軸)而被組成分層,如就第1D圖的情況所敘述地。在實施例中,三族氮化物半導體通道120具有厚度(在第2C圖中之z軸),該厚度係小於電晶體201之該者,例如,小於30奈米。三族氮化物半導體通道120的y維,或寬度係大於z軸厚度,例如大於等於50奈米,以供〝帶狀物〞幾何形狀之用。當然,其他尺寸係可能的。通 道摻雜係選用的,且在某些實施例,該三族氮化物半導體通道120再次地具有本徵雜質摻雜位準,而無故意的摻雜物。如第2C圖中所示地,三族氮化物半導體通道120包含複數個層120A-120N,用以強調組成分層。在代表性實施例中,In係自轉換層115之介面處的峰值濃度(例如,約20%)分層至極化層125之介面處的0%(純GaN)。
第2D圖描繪依據本發明實施例之在施加正電位於閘極電極250上之下,於第2C圖中所描繪的電晶體202之三族氮化物半導體通道內的模型化電荷。與傳輸通道相關聯的電荷密度係再次在大於臨限電壓的閘極偏壓情形之下,沿著三族氮化物半導體通道120內的多重表面平面而存在。除了鄰近(0001)表面110C的傳輸通道220C之外,亦具有鄰近三族氮化物半導體通道120的(000)表面之額外的傳輸通道220D。此更大的傳輸通道尺寸(亦即,三維而非僅只二維)係由於以與就第1D圖的情況所敘述之實施例相同的方式,組成分層該三族氮化物半導體通道120之結果。明顯地,透過轉換層115的介面處之20%的In含量,鄰近轉換層115之傳輸通道220D可在大於臨限電壓的閘極偏壓情形之下,與傳輸通道220C重疊,以供朝向奈米佈線中心的最高載子濃度之用。因此,奈米佈線半導體之頂部及底部表面二者係功能地閘極耦接。
第3圖係流程圖,其描繪依據本發明實施例之非平面三族氮化物場效電晶體(FET)的製造方法300。雖然方 法300強調主要操作,但各自操作可伴有更多的處理程序,且在第3圖中之操作的編號及該等操作的相關定位並不暗指順序。該方法300藉由諸如MOCVD、MOVPE、或MBE,但未受限制之技術,而在操作301處,以成長三族氮化物半導體堆疊開始。更特別地,操作301伴有形成諸如在本文其他處針對轉換層115所敘述之該等者的任一者之晶體寬帶隙轉換層。三族氮化物三元素或四元素半導體通道層係接著在轉換層之上成長,而合金組分的分壓係適當變化以在該通道層的厚度上分層該三族氮化物半導體通道層的組成,如本文其他處所敘述地(例如,朝向鄰近極化層之較窄帶隙組成)。
進一步地,分層可在有關三族氮化物半導體通道層的一半厚度予以均勻且對稱地執行。例如,在由轉換層之外延成長期間,三族氮化物半導體通道層的組成可以以朝向最窄帶隙組成之單調遞增的銦含量,且以直至第二較寬帶隙組成之單調遞減的銦含量,自鄰近轉換層之第一較低銦含量予以變化。選擇性地,對於奈米佈線實施例,在操作301,三族氮化物半導體通道層的組成可在成長自鄰近轉換層之最高銦含量的期間,以朝向最窄帶隙組成之單調遞減的銦含量,在改變用於極化層之成長的反應器情形之前,予以變化。例如,自0%至10%,或更多之In的分層可在操作301之期間發生。做為另一實例,自30%或更多,向下至0%並回到30%或更多之Al的分層可被執行於操作301。緊隨著三族氮化物半導體通道的分層,寬 帶隙極化層係接著在鄰近寬帶隙組成的三族氮化物半導體通道層上被外延成長。
操作301係可應用至鰭式FET實施例或奈米佈線實施例,且選擇性外延技術可被使用以成長鰭或奈米佈線結構,或選擇性地,圖案化處理可予以執行於操作303而由全面性(非選擇性)外延成長形成鰭或奈米佈線結構。第4A、4B、4C、及4D圖係依據方法300的實施例所製造之非平面三族氮化物奈米佈線電晶體的等距圖式。明顯地,在第4A圖中所描繪的鰭結構410係鰭式FET之更複雜的種類,其具備均勻的鰭式FET 201而具有實質相同的概括結構,且具備單一的三族氮化物半導體層而具有第1B-1C圖中的分層。因此,第4A-4D圖可相等地應用至做為奈米佈線電晶體202之鰭式FET 201的形成。
第4A圖描繪奈米佈線210A及210B的垂直堆疊,其各具有設置在寬帶隙轉換與極化層之間的分層半導體通道,如第1D圖中所描繪地。不同組成的犠牲材料212A、212B、及212C係設置在奈米佈線210A,210B之間。層厚度T1-T4係根據所欲的奈米佈線尺寸而定,且亦根據以閘極堆疊回填厚度T1、T3之能力而定。絕緣體層407係在基板層205上藉由例如,淺溝渠隔離技術,而被形成於鰭結構410的兩側上。
請翻閱第3圖,在操作305,汲極接點係形成以部分地或全部地環繞奈米佈線210A及210B。在操作310,源極接點係相似地形成。在操作315,閘極導體係同軸地完 全環繞三族氮化物堆疊210A及210B內之分層半導體通道。然後,裝置係使用例如,習知互連技術,而被完成於操作320。
第4B圖描繪操作305、310、及315的一實施例,其伴有形成被設置在鰭結構410上之犠牲閘極412。請參閱第4C圖,犧牲閘極412已被去除,而留下間隔物255及層間電介質層(ILD)420之部分。如第4C圖中所進一步顯示地,犧牲半導體層212A、212B、及212C係在由犧牲閘極412所原始覆蓋的通道區中被去除。然後,保留第一半導體材料之分離的奈米佈線210A及210B。
如第4D圖中所示,閘極堆疊係接著同軸地環繞通道區245內的奈米佈線210A、210B。閘極250係在蝕刻外延堆疊成為分離的三族氮化物奈米佈線之後,被形成於層間電介質層420中的溝渠中。此外,第4D圖描繪源極及汲極區235B中之層間電介質層420之隨後的去除及源極/汲極接點421的形成之結果(為描繪之緣故,伴隨著繪製有被暴露之第二源極/汲極末端的區域220)。
第5圖係依據本發明實施例之行動計算平台之SoC實施的功能方塊圖。行動計算平台500可係用於電子資料顯示,電子資料處理及無線電子資料傳輸所組構之任何可攜帶式裝置。例如,行動計算平台500可係平板電腦、智慧型手機、膝上型電腦、及其類似者的任一者,且包含顯示螢幕505、SoC 510、及電池513,該顯示螢幕505在代表性實施例中係觸控螢幕(例如,電容性、電感性、電阻 性、等等),而准許使用者輸入的接收。如所描繪地,SoC 510之整合的層次愈大,則在行動計算平台500內的形成因子愈多,該形成因子可由充電間之用於最長操作壽命的電池513所占有,或由用於最大功能之諸如固態硬碟的記憶體(未描述)所占有。
根據其應用,行動計算平台500可包含其他組件,該等其他組件包含揮發性記憶體(例如,DRAM)、非揮發性記憶體(例如,ROM)、快閃記憶體、圖形處理器、數位信號處理器、加密處理器、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制器、電池、音頻編碼解碼器、視頻編碼解碼器、功效放大器、全球定位系統(GPS)裝置、羅盤、加速計、陀螺儀、揚聲器、相機、及主儲存裝置(諸如硬碟驅動器、小型碟片(CD)、數位多功能碟片(DVD)、及其類似物),但並未受到限制。
SoC 510係進一步描繪於擴展視圖521中。根據實施例,SoC 510包含基板102(亦即,晶片)之部分,其中兩個或更多個功率管理積體電路(PMIC)515、包含RF發射器及/或接收器之RF積體電路(RFIC)525、其控制器511、及一或多個中央處理器核心530、531係製造於其上。RFIC 525可實施許多無線電標準或協定的任一者,包含Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演進(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、 GPRS、CDMA、TDMA、DECT、藍牙、其衍生物、以及被指明為3G、4G、5G、及以上之任何其他的無線電協定,但並未受到限制。RFIC 525可包含複數個通訊晶片。例如,第一通訊晶片可予以專用於諸如Wi-Fi及藍牙之較短距離無線電通訊,以及第二通訊晶片可被專用於諸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、及其類似者之較長距離無線電通訊。
如將由熟習於本項技藝之人士所理解地,除了在PMIC 515及RFIC 525中之外,該等功能不同的電路模組之CMOS電晶體係典型獨有地使用。在本發明之實施例中,PMIC 515及RFIC 525使用一或多個如本文所敘述之三族氮化物電晶體(例如,三族氮化物電晶體401),該等電晶體使用本文所敘述之水平c軸三族氮化物外延堆疊。在進一步的實施例中,使用本文所敘述之三族氮化物電晶體的PMIC 515及RFIC 525係整合以一或多個控制器511及處理器核心530、531,而以矽CMOS技術所提供之該等控制器511及處理器核心530、531係與PMIC 515及/或RF IC 525單片地整合至(矽)基板102上。將被理解的是,在PMIC 515及/或RFIC 525內,本文所敘述之具有高壓、高頻能力的三族氮化物電晶體無需排除CMOS地予以使用,而是矽CMOS可被進一步包含於PMIC 515及RFIC 525的各者之中。
在此所敘述的三族氮化物電晶體可被特別地使用於其中高壓擺動存在之處(例如,PMIC 515內之7至10伏特 電池電力調整、直直流轉換、等等)。如所描繪地,在代表性實施例中,PMIC 515具有被耦接至電池513的輸入,且具有提供電流供應至SoC 510中之所有其他功能模組的輸出。在進一步實施例中,於其中額外的IC係設置在行動計算平台500內,但與SoC 510分離之處,PMIC 515輸出進一步提供電流供應至與SoC 510分離之所有該等額外的IC。
如進一步所描繪地,在代表性實施例中,PMIC 515具有被耦接至天線的輸出,且可進一步具有被耦接至諸如RF類比及數位式基帶模組(未描述)的SoC 510上之通訊模組的輸入。選擇性地,可將該等通訊模組設置在與SoC 510分離的IC晶片上,且耦接至SoC 510內,以供傳輸之用。根據所使用的三族氮化物材料,在此所敘述的三族氮化物電晶體(例如,三族氮化物電晶體401)可進一步提供由具有至少10倍載波頻率之Ft(例如,在設計用於3G或GSM行動通訊的RFIC 525中之1.9GHz)的功率放大器電晶體所需之大功率添加效率(PAE)。
第6圖描繪依據本發明一實施例之計算裝置600。該計算裝置600收容板602。該板602可包含若干組件,包含處理器604及至少一通訊晶片606,但並未受到限制。處理器604係實體地及電性地耦接至板602。在若干實施例中,該至少一通訊晶片606亦係實體地及電性地耦接至板602。在進一步的實施例中,該通訊晶片606係處理器604的一部分。
根據其應用,計算裝置600可包含其他組件,其可以或並未實體地及電性地耦接至板602。該等其他組件包含揮發性記憶體(例如,DRAM)、非揮發性記憶體(例如,ROM)、快閃記憶體、圖形處理器、數位信號處理器、加密處理器、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制器、電池、音頻編碼解碼器、視頻編碼解碼器、功率放大器、全球定位系統(GPS)裝置、羅盤、加速計、陀螺儀、揚聲器、相機、及主儲存裝置(諸如硬碟驅動器、小型碟片(CD)、數位多功能碟片(DVD)、及其類似物),但並未受到限制。
通訊晶片606致能無線電通訊,用於資料至計算裝置600及來自計算裝置600之資料的轉移。〝無線電〞之用語及其衍生之用語可被使用以敘述電路、裝置、系統、方法、技術、通訊頻道、等等,而可透過非固態媒體之調變電磁輻射的使用以通訊資料。該用語並未暗指關聯的裝置不包含任何佈線,雖然在若干實施例中,它們可不包含。通訊晶片606可實施許多無線電標準或協定的任一者,包含Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演進(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍牙、其衍生物、以及被指明為3G、4G、5G、及以上之任何其他的無線電協定,但並未受到限制。計算裝置600可包含複數個通訊晶片606。例如,第一通訊晶片606可予以專用於諸如Wi-Fi及藍牙之 較短距離無線電通訊,以及第二通訊晶片606可被專用於諸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、及其類似者之較長距離無線電通訊。
計算裝置600的處理器604包含被封裝於處理器604內之積體電路晶粒。在本發明之若干實施例中,該處理器的積體電路晶粒包含一或多個裝置,例如,依據本文其他處所敘述之實施例所建立的三族氮化物分層通道MOS-FET。〝處理器〞之用語可意指任何裝置或部分之裝置,其處理例如,來自暫存器及/或記憶體之電子資料,以轉換該電子資料成為可被儲存於暫存器及/或記憶體中之其他的電子資料。
通訊晶片606亦包含被封裝於該通訊晶片606內之積體電路晶粒。依據本發明之另一實施例,通訊晶片的積體電路晶粒包含一或多個裝置,例如,具有依據本文其他處所敘述的實施例之特性及/或所製造的MOS-FET。
在進一步的實施例中,收容於計算裝置600內之另一組件可包含積體電路晶粒,其包含一或多個裝置,例如,具有依據本文其他處所敘述的實施例之特性及/或所製造的MOS-FET。
在實施例中,計算裝置600可係膝上型電腦、小筆電、筆電、超筆電、智慧型手機、平板電腦、個人數位助理(PDA)、超級行動PC、行動電話、桌上型電腦、伺服器、印表機、掃描器、監視器、機上盒、娛樂控制單元、數位相機、可攜帶式音樂播放器、或數位錄影機。
將瞭解的是,上述說明僅係解說的,且非限制的。例如,雖然在圖式中的流程圖顯示由本發明之某些實施例所執行之操作的特殊順序,但應瞭解的是,該順序可非必要的(例如,選擇性實施例可以以不同順序而執行該等操作,可結合若干操作,可重疊若干操作,等等)。再者,一旦閱讀且瞭解上述說明,許多其他的實施例將呈明顯於熟習本項技藝之該等人士。雖然本發明已參照特定例示的實施例而予以敘述,但將認知的是,本發明並未受限於所敘述之實施例,且可以以在附錄申請專利範圍的精神及範疇內之修正例及選擇例而加以施行。因此,本發明之範疇應參照附錄的申請專利範圍,伴隨該等申請專利範圍所賦予權利之等效範圍的全部範疇,而予以決定。
115‧‧‧轉換層
120‧‧‧三族氮化物半導體通道
125‧‧‧極化層
210A‧‧‧三族氮化物半導體通道側壁

Claims (20)

  1. 一種非平面三族氮化物電晶體,係設置在基板上,該電晶體包含:複數個垂直地配置的奈米佈線,各奈米佈線包含兩個寬帶隙材料層在三族氮化物半導體材料的相對表面上,且各奈米佈線具有源極區、通道區和汲極區;閘極堆疊,包含閘極電介質及閘極電極,該閘極堆疊環繞各奈米佈線的該通道區,其中該閘極堆疊係進一步設置在垂直地相鄰的奈米佈線的該些通道區之間;源極接點,設置為側向地相鄰於各奈米佈線的該源極區而不在垂直地相鄰的奈米佈線的該些源極區之間;以及汲極接點,設置為側向地相鄰於各奈米佈線的該汲極區而不在垂直地相鄰的奈米佈線的該些汲極區之間。
  2. 如申請專利範圍第1項之非平面三族氮化物電晶體,更包含:犧牲材料,設置在垂直地相鄰的奈米佈線的該些源極區之間和設置在垂直地相鄰的奈米佈線的該些汲極區之間。
  3. 如申請專利範圍第2項之非平面三族氮化物電晶體,其中該犧牲材料是進一步設置在該複數個垂直地配置的奈米佈線的最底部奈米佈線的源極區和汲極區下方。
  4. 如申請專利範圍第3項之非平面三族氮化物電晶體,其中該犧牲材料是進一步設置在該複數個垂直地配置的奈米佈線的最上部奈米佈線的源極區和汲極區上方。
  5. 如申請專利範圍第1項之非平面三族氮化物電晶體,其中對於各奈米佈線,該兩個寬帶矽材料層設置在該三族氮化物半導體材料的垂直地相對表面上。
  6. 如申請專利範圍第1項之非平面三族氮化物電晶體,其中對於各奈米佈線,該兩個寬帶矽材料層設置在該三族氮化物半導體材料的相對{0001}表面上。
  7. 如申請專利範圍第6項之非平面三族氮化物電晶體,其中該三族氮化物半導體材料具有沿著該兩個寬帶隙晶體材料層間之c軸的組成分層。
  8. 如申請專利範圍第7項之非平面三族氮化物電晶體,其中該三族氮化物半導體材料具有自該兩個寬帶隙材料層的至少一者朝向中心平面減少的帶隙,該中心平面係與該c軸正交且於該三族氮化物半導體通道內的中心位置。
  9. 如申請專利範圍第8項之非平面三族氮化物電晶體,其中有關該中心平面的該組成分層係均勻且對稱的。
  10. 如申請專利範圍第9項之非平面三族氮化物電晶體,其中該組成分層包含鄰近該兩個寬帶隙材料層之各者的最高Al含量,朝向該中心平面而遞減。
  11. 一種製造在基板上方的非平面三族氮化物電晶體的方法,該方法包含:形成包含交替的奈米佈線和犧牲材料層的鰭結構,各奈米佈線包含在三族氮化物半導體材料的相對表面上的兩個寬帶矽材料層,且各奈米佈線具有源極區、通道區和汲 極區;移除該些犧牲材料層的部份,該些犧牲材料層垂直地相鄰該些奈米佈線的該些通道區;形成包含閘極電介質及閘極電極的閘極堆疊,該閘極堆疊環繞各奈米佈線的該通道區,其中該閘極堆疊進一步被形成在垂直地相鄰的奈米佈線的該些通道區之間;形成源極接點,其側向地相鄰於各奈米佈線的該源極區而不在垂直地相鄰的奈米佈線的該些源極區之間;以及形成汲極接點,其側向地相鄰於各奈米佈線的該汲極區而不在垂直地相鄰的奈米佈線的該些汲極區之間。
  12. 如申請專利範圍第11項之方法,其中在垂直地相鄰的奈米佈線的該些源極區之間和在垂直地相鄰的奈米佈線的該些汲極區之間的該些犧牲材料層的部份沒有被移除。
  13. 如申請專利範圍第11項之方法,其中在該複數個垂直地配置的奈米佈線的最底部奈米佈線的源極區和汲極區下方的該些犧牲材料層的部份沒有被移除。
  14. 如申請專利範圍第11項之方法,在該複數個垂直地配置的奈米佈線的最上部奈米佈線的源極區和汲極區上方的該些犧牲材料層的部份沒有被移除。
  15. 如申請專利範圍第11項之方法,其中對於各奈米佈線,該兩個寬帶矽材料層形成在該三族氮化物半導體材料的垂直地相對表面上。
  16. 如申請專利範圍第11項之方法,其中對於各奈 米佈線,該兩個寬帶矽材料層形成在該三族氮化物半導體材料的相對{0001}表面上。
  17. 如申請專利範圍第16項之方法,其中該三族氮化物半導體材料具有沿著該兩個寬帶隙晶體材料層間之c軸的組成分層。
  18. 如申請專利範圍第17項之方法,其中該三族氮化物半導體材料具有自該兩個寬帶隙材料層的至少一者朝向中心平面減少的帶隙,該中心平面係與該c軸正交且於該三族氮化物半導體通道內的中心位置。
  19. 如申請專利範圍第18項之方法,其中有關該中心平面的該組成分層係均勻且對稱的。
  20. 如申請專利範圍第19項之方法,其中該組成分層包含鄰近該兩個寬帶隙材料層之各者的最高Al含量,朝向該中心平面而遞減。
TW104142483A 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體 TWI564971B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/725,546 US8896101B2 (en) 2012-12-21 2012-12-21 Nonplanar III-N transistors with compositionally graded semiconductor channels

Publications (2)

Publication Number Publication Date
TW201626467A TW201626467A (zh) 2016-07-16
TWI564971B true TWI564971B (zh) 2017-01-01

Family

ID=50973667

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104142483A TWI564971B (zh) 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體
TW105135733A TWI610372B (zh) 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體
TW102141053A TWI524529B (zh) 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW105135733A TWI610372B (zh) 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體
TW102141053A TWI524529B (zh) 2012-12-21 2013-11-12 具有組成分層半導體通道的非平面三族氮化物電晶體

Country Status (7)

Country Link
US (3) US8896101B2 (zh)
KR (2) KR101690442B1 (zh)
CN (1) CN104813477B (zh)
DE (1) DE112013005587T5 (zh)
GB (1) GB2523501B (zh)
TW (3) TWI564971B (zh)
WO (1) WO2014099003A1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039515B (zh) 2011-12-19 2021-05-25 英特尔公司 高电压场效应晶体管
WO2013095343A1 (en) 2011-12-19 2013-06-27 Intel Corporation Group iii-n nanowire transistors
CN102945807B (zh) * 2012-11-15 2015-11-25 京东方科技集团股份有限公司 一种薄膜晶体管的制备方法及薄膜晶体管
KR20140102351A (ko) * 2013-02-12 2014-08-22 삼성전자주식회사 게이트 올 어라운드형 반도체 장치
US9385198B2 (en) * 2013-03-12 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Heterostructures for semiconductor devices and methods of forming the same
US9136332B2 (en) 2013-12-10 2015-09-15 Taiwan Semiconductor Manufacturing Company Limited Method for forming a nanowire field effect transistor device having a replacement gate
US9281363B2 (en) * 2014-04-18 2016-03-08 Taiwan Semiconductor Manufacturing Company Ltd. Circuits using gate-all-around technology
TWI633451B (zh) * 2014-06-04 2018-08-21 聯華電子股份有限公司 平面設計至非平面設計之轉換方法
US9306019B2 (en) * 2014-08-12 2016-04-05 GlobalFoundries, Inc. Integrated circuits with nanowires and methods of manufacturing the same
US20170345900A1 (en) * 2014-12-23 2017-11-30 Intel Corporation Diffusion tolerant iii-v semiconductor heterostructures and devices including the same
CN107004711B (zh) 2014-12-23 2021-04-06 英特尔公司 用于非平面半导体器件鳍下中的iii-v族半导体合金及其形成方法
TWI559382B (zh) * 2014-12-25 2016-11-21 旺宏電子股份有限公司 半導體元件及其製造方法
US9287360B1 (en) * 2015-01-07 2016-03-15 International Business Machines Corporation III-V nanowire FET with compositionally-graded channel and wide-bandgap core
US9349860B1 (en) * 2015-03-31 2016-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Field effect transistors and methods of forming same
US10256294B2 (en) * 2015-05-18 2019-04-09 Qorvo Us, Inc. Vertical gallium nitride power field-effect transistor with a field plate structure
US10229997B2 (en) * 2015-06-23 2019-03-12 Intel Corporation Indium-rich NMOS transistor channels
EP3314666A4 (en) 2015-06-26 2019-02-13 INTEL Corporation SOURCE SPACER / SEMICONDUCTOR DRAIN WITH HIGH MOBILITY
KR102358303B1 (ko) * 2015-06-26 2022-02-07 인텔 코포레이션 국한된 서브-핀 격리를 가지는 높은 전자 이동도 트랜지스터들
KR102389363B1 (ko) 2015-06-26 2022-04-22 인텔 코포레이션 기판 상의 갈륨 질화물(GaN) 트랜지스터 구조체들
WO2017003407A1 (en) * 2015-06-27 2017-01-05 Intel Corporation Ge nano wire transistor with gaas as the sacrificial layer
US9425259B1 (en) * 2015-07-17 2016-08-23 Samsung Electronics Co., Ltd. Semiconductor device having a fin
CN107924875B (zh) 2015-09-24 2022-11-01 英特尔公司 混合三栅极和纳米线cmos器件架构
US10388764B2 (en) 2015-09-25 2019-08-20 Intel Corporation High-electron-mobility transistors with counter-doped dopant diffusion barrier
US10340374B2 (en) 2015-09-25 2019-07-02 Intel Corporation High mobility field effect transistors with a retrograded semiconductor source/drain
WO2017052618A1 (en) 2015-09-25 2017-03-30 Intel Corporation High mobility field effect transistors with a band-offset semiconductor source/drain spacer
DE112015006945T5 (de) 2015-09-25 2018-06-21 Intel Corporation Transistoren mit hoher Elektronenbeweglichkeit mit Heteroübergang-Dotierstoffdiffusionsbarriere
CN106611793B (zh) * 2015-10-21 2021-07-06 三星电子株式会社 应变堆叠的纳米片fet和/或量子阱堆叠的纳米片
US9899387B2 (en) * 2015-11-16 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-gate device and method of fabrication thereof
US9735274B2 (en) 2015-11-20 2017-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device including a stacked wire structure
US9583399B1 (en) 2015-11-30 2017-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
KR102434993B1 (ko) 2015-12-09 2022-08-24 삼성전자주식회사 반도체 소자
CN105609552B (zh) * 2015-12-31 2017-11-10 深圳市华讯方舟微电子科技有限公司 高电子迁移率晶体管及其制造方法
CN106960870B (zh) 2016-01-11 2021-09-10 三星电子株式会社 半导体装置及其制造方法
KR102476143B1 (ko) 2016-02-26 2022-12-12 삼성전자주식회사 반도체 장치
KR102435521B1 (ko) 2016-02-29 2022-08-23 삼성전자주식회사 반도체 소자
US11264405B2 (en) * 2016-04-01 2022-03-01 Intel Corporation Semiconductor diodes employing back-side semiconductor or metal
WO2017218015A1 (en) 2016-06-17 2017-12-21 Intel Corporation High-mobility field effect transistors with wide bandgap fin cladding
US10134905B2 (en) * 2016-06-30 2018-11-20 International Business Machines Corporation Semiconductor device including wrap around contact, and method of forming the semiconductor device
US10923584B2 (en) * 2016-07-01 2021-02-16 Intel Corporation Graded channels for high frequency III-N transistors
WO2018094046A1 (en) * 2016-11-16 2018-05-24 The Regents Of The University Of California A structure for increasing mobility in a high electron mobility transistor
US11107924B2 (en) * 2016-12-29 2021-08-31 Intel Corporation Systems and methods to reduce FinFET gate capacitance
US9978872B1 (en) * 2017-03-23 2018-05-22 International Business Machines Corporation Non-polar, III-nitride semiconductor fin field-effect transistor
WO2018182615A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Vertically stacked transistors in a fin
WO2018182655A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Removal of a bottom-most nanowire from a nanowire device stack
WO2018195703A1 (zh) * 2017-04-24 2018-11-01 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
WO2018212777A1 (en) * 2017-05-19 2018-11-22 Intel Corporation Profile engineering of iii-n transistors to reduce contact resistance to 2deg
WO2019066766A1 (en) * 2017-09-26 2019-04-04 Intel Corporation III-N NANOSTRUCTURES FORMED BY CAVITY FILLING
DE112017008118T5 (de) 2017-09-26 2020-07-09 Intel Corporation Durch hohlraumfüllung gebildete nicht-planare kondensatoren mit hohem aspektverhältnis
US11508824B2 (en) * 2017-09-28 2022-11-22 Intel Corporation Gallium nitride transistors with multiple threshold voltages and their methods of fabrication
US10497624B2 (en) 2017-09-29 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
DE102018108821A1 (de) * 2017-09-29 2019-04-04 Taiwan Semiconductor Manufacturing Co. Ltd. Verfahren zur herstellung einer halbleitervorrichtung, und halbleitervorrichtung
US10453736B2 (en) 2017-10-09 2019-10-22 International Business Machines Corporation Dielectric isolation in gate-all-around devices
US11758716B2 (en) 2018-09-05 2023-09-12 Micron Technology, Inc. Electronic devices including vertical memory cells and related methods
US11387329B2 (en) * 2018-09-28 2022-07-12 Intel Corporation Tri-gate architecture multi-nanowire confined transistor
CN109326650B (zh) * 2018-10-10 2022-04-19 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备
US11532719B2 (en) * 2018-12-17 2022-12-20 Intel Corporation Transistors on heterogeneous bonding layers
KR20200141335A (ko) 2019-06-10 2020-12-18 삼성전자주식회사 점진적으로 변화하는 조성을 갖는 채널을 포함하는 전계 효과 트랜지스터
JP7302658B2 (ja) * 2019-06-18 2023-07-04 株式会社ソシオネクスト 半導体装置
US11476333B2 (en) * 2020-03-31 2022-10-18 Taiwan Semiconductor Manufacturing Co., Ltd. Dual channel structure
CN114765218A (zh) 2021-01-11 2022-07-19 联华电子股份有限公司 半导体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252211A1 (en) * 2006-04-26 2007-11-01 Atsushi Yagishita Semiconductor device and manufacturing method for semiconductor device
TWI333243B (en) * 2005-12-29 2010-11-11 Intel Corp A tensile strained nmos transistor using group iii-n source/drain regions
TW201104866A (en) * 2009-05-29 2011-02-01 Taiwan Semiconductor Mfg Integrated circuit structure
JP2011210750A (ja) * 2010-03-26 2011-10-20 Nec Corp 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
US20120292665A1 (en) * 2011-05-16 2012-11-22 Fabio Alessio Marino High performance multigate transistor

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664575B2 (en) * 2000-12-05 2003-12-16 Showa Denko Kabushiki Kaisha GaInP stacked layer structure and field-effect transistor manufactured using the same
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
FR2875338B1 (fr) * 2004-09-13 2007-01-05 Picogiga Internat Soc Par Acti Methode d'elaboration de structures hemt piezoelectriques a desordre d'alliage nul
US7525130B2 (en) * 2004-09-29 2009-04-28 The Regents Of The University Of California Polarization-doped field effect transistors (POLFETS) and materials and methods for making the same
US7714359B2 (en) * 2005-02-17 2010-05-11 Panasonic Corporation Field effect transistor having nitride semiconductor layer
EP1978550A4 (en) * 2005-12-28 2009-07-22 Nec Corp FIELD EFFECT TRANSISTOR AND MULTILAYER EPITAXIAL FILM FOR USE IN THE MANUFACTURE OF A FIELD EFFECT TRANSISTOR
KR20080096789A (ko) * 2006-01-25 2008-11-03 엔엑스피 비 브이 나노와이어를 포함하는 트랜지스터
EP1983563A4 (en) * 2006-02-10 2009-07-29 Nec Corp SEMICONDUCTOR COMPONENT
NZ570678A (en) * 2006-03-10 2010-10-29 Stc Unm Pulsed growth of GaN nanowires and applications in group III nitride semiconductor substrate materials and devices
JP2007258485A (ja) * 2006-03-23 2007-10-04 Toshiba Corp 半導体装置及びその製造方法
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
EP1900681B1 (en) 2006-09-15 2017-03-15 Imec Tunnel Field-Effect Transistors based on silicon nanowires
KR20090075819A (ko) * 2006-09-19 2009-07-09 큐나노 에이비 나노스케일 전계 효과 트랜지스터의 조립체
US7799592B2 (en) 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
JP4296195B2 (ja) * 2006-11-15 2009-07-15 シャープ株式会社 電界効果トランジスタ
US20080135949A1 (en) * 2006-12-08 2008-06-12 Agency For Science, Technology And Research Stacked silicon-germanium nanowire structure and method of forming the same
WO2008112185A1 (en) * 2007-03-09 2008-09-18 The Regents Of The University Of California Method to fabricate iii-n field effect transistors using ion implantation with reduced dopant activation and damage recovery temperature
WO2008121980A1 (en) * 2007-03-29 2008-10-09 The Regents Of The University Of California N-face high electron mobility transistors with low buffer leakage and low parasitic resistance
US7812370B2 (en) 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling
JP4584293B2 (ja) * 2007-08-31 2010-11-17 富士通株式会社 窒化物半導体装置、ドハティ増幅器、ドレイン電圧制御増幅器
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US7892956B2 (en) * 2007-09-24 2011-02-22 International Business Machines Corporation Methods of manufacture of vertical nanowire FET devices
US8188513B2 (en) * 2007-10-04 2012-05-29 Stc.Unm Nanowire and larger GaN based HEMTS
EP2200934A4 (en) * 2007-10-26 2012-10-17 Qunano Ab GROWTH OF NANOWILS ON DISSIMILAR MATERIAL
US8674407B2 (en) * 2008-03-12 2014-03-18 Renesas Electronics Corporation Semiconductor device using a group III nitride-based semiconductor
US8017933B2 (en) * 2008-06-30 2011-09-13 Intel Corporation Compositionally-graded quantum-well channels for semiconductor devices
US9112009B2 (en) * 2008-09-16 2015-08-18 International Rectifier Corporation III-nitride device with back-gate and field plate for improving transconductance
US7898004B2 (en) * 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
WO2010114956A1 (en) * 2009-04-02 2010-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US20100270591A1 (en) * 2009-04-27 2010-10-28 University Of Seoul Industry Cooperation Foundation High-electron mobility transistor
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8264032B2 (en) * 2009-09-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Accumulation type FinFET, circuits and fabrication method thereof
WO2011040012A1 (ja) * 2009-09-30 2011-04-07 国立大学法人北海道大学 トンネル電界効果トランジスタおよびその製造方法
TWI451552B (zh) * 2009-11-10 2014-09-01 Taiwan Semiconductor Mfg 積體電路結構
US8835998B2 (en) * 2009-12-14 2014-09-16 University Of Notre Dame Du Lac Compositionally graded heterojunction semiconductor device and method of making same
US8193523B2 (en) * 2009-12-30 2012-06-05 Intel Corporation Germanium-based quantum well devices
US20120305893A1 (en) * 2010-02-19 2012-12-06 University College Cork-National University of Ireland ,Cork Transistor device
JPWO2011118098A1 (ja) * 2010-03-26 2013-07-04 日本電気株式会社 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
WO2011136052A1 (ja) * 2010-04-28 2011-11-03 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
US8796733B2 (en) 2010-08-09 2014-08-05 University Of Notre Dame Du Lac Low voltage tunnel field-effect transistor (TFET) and method of making same
US9478699B2 (en) * 2010-08-26 2016-10-25 The Ohio State University Nanoscale emitters with polarization grading
TWI415318B (zh) 2010-09-14 2013-11-11 E Ink Holdings Inc 電晶體結構
FR2968125B1 (fr) * 2010-11-26 2013-11-29 Centre Nat Rech Scient Procédé de fabrication d'un dispositif de transistor a effet de champ implémenté sur un réseau de nanofils verticaux, dispositif de transistor résultant, dispositif électronique comprenant de tels dispositifs de transistors, et processeur comprenant au moins un tel dispositif électronique
US8889494B2 (en) * 2010-12-29 2014-11-18 Globalfoundries Singapore Pte. Ltd. Finfet
US8409892B2 (en) * 2011-04-14 2013-04-02 Opto Tech Corporation Method of selective photo-enhanced wet oxidation for nitride layer regrowth on substrates
KR101800745B1 (ko) 2011-05-04 2017-12-20 삼성전자주식회사 기기간 연결 방법 및 그 장치
KR101205872B1 (ko) 2011-05-09 2012-11-28 삼성전자주식회사 질화갈륨계 반도체 소자 및 그 제조 방법
KR20120128088A (ko) 2011-05-16 2012-11-26 가부시끼가이샤 도시바 질화물 반도체 소자, 질화물 반도체 웨이퍼 및 질화물 반도체층의 제조 방법
US8471329B2 (en) 2011-11-16 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel FET and methods for forming the same
WO2013095343A1 (en) * 2011-12-19 2013-06-27 Intel Corporation Group iii-n nanowire transistors
US9337301B2 (en) * 2011-12-21 2016-05-10 Massachusetts Institute Of Technology Aluminum nitride based semiconductor devices
US8823059B2 (en) * 2012-09-27 2014-09-02 Intel Corporation Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack
US8785909B2 (en) * 2012-09-27 2014-07-22 Intel Corporation Non-planar semiconductor device having channel region with low band-gap cladding layer
US8765563B2 (en) * 2012-09-28 2014-07-01 Intel Corporation Trench confined epitaxially grown device layer(s)
US8768271B1 (en) * 2012-12-19 2014-07-01 Intel Corporation Group III-N transistors on nanoscale template structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI333243B (en) * 2005-12-29 2010-11-11 Intel Corp A tensile strained nmos transistor using group iii-n source/drain regions
US20070252211A1 (en) * 2006-04-26 2007-11-01 Atsushi Yagishita Semiconductor device and manufacturing method for semiconductor device
TW201104866A (en) * 2009-05-29 2011-02-01 Taiwan Semiconductor Mfg Integrated circuit structure
JP2011210750A (ja) * 2010-03-26 2011-10-20 Nec Corp 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
US20120292665A1 (en) * 2011-05-16 2012-11-22 Fabio Alessio Marino High performance multigate transistor

Also Published As

Publication number Publication date
US20160293774A1 (en) 2016-10-06
CN104813477B (zh) 2017-10-03
US9806203B2 (en) 2017-10-31
KR20160150121A (ko) 2016-12-28
TW201709351A (zh) 2017-03-01
DE112013005587T5 (de) 2015-10-22
US20140175515A1 (en) 2014-06-26
TW201626467A (zh) 2016-07-16
GB2523501A (en) 2015-08-26
WO2014099003A1 (en) 2014-06-26
KR20150058521A (ko) 2015-05-28
KR101690442B1 (ko) 2016-12-27
US8896101B2 (en) 2014-11-25
US9373693B2 (en) 2016-06-21
TWI610372B (zh) 2018-01-01
KR101991559B1 (ko) 2019-06-20
TW201436222A (zh) 2014-09-16
GB2523501B (en) 2017-11-22
CN104813477A (zh) 2015-07-29
GB201509995D0 (en) 2015-07-22
TWI524529B (zh) 2016-03-01
US20150064859A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
TWI564971B (zh) 具有組成分層半導體通道的非平面三族氮化物電晶體
US10096683B2 (en) Group III-N transistor on nanoscale template structures
US9947780B2 (en) High electron mobility transistor (HEMT) and method of fabrication
CN106887453B (zh) Ⅲ族-n纳米线晶体管
CN103999216A (zh) 用于集成有功率管理和射频电路的片上***(soc)结构的iii族-n晶体管
CN105474401A (zh) 用于增强型GaN半导体器件的复合高K金属栅极堆叠体
TWI556426B (zh) 具有提高之崩潰電壓的iii-v電晶體