TWI247904B - Circuit pattern inspection device and circuit pattern inspection method - Google Patents

Circuit pattern inspection device and circuit pattern inspection method Download PDF

Info

Publication number
TWI247904B
TWI247904B TW92133778A TW92133778A TWI247904B TW I247904 B TWI247904 B TW I247904B TW 92133778 A TW92133778 A TW 92133778A TW 92133778 A TW92133778 A TW 92133778A TW I247904 B TWI247904 B TW I247904B
Authority
TW
Taiwan
Prior art keywords
inspection
pattern
electrode
inspection target
detection
Prior art date
Application number
TW92133778A
Other languages
Chinese (zh)
Other versions
TW200417742A (en
Inventor
Shuji Yamaoka
Hiroshi Hamori
Shogo Ishioka
Original Assignee
Oht Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc filed Critical Oht Inc
Publication of TW200417742A publication Critical patent/TW200417742A/en
Application granted granted Critical
Publication of TWI247904B publication Critical patent/TWI247904B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors

Abstract

The object of the present invention is to provide a circuit inspection device capable of surely and easily detecting defects of a circuit board. To achieve the object, when inspecting an inspection target pattern on which at least their ends are arranged in a line, the inspection target pattern 15 is moved so as to cross an inspection signal feed electrode 35 and an inspection signal detection sensor electrode 25 with maintaining both the ends of the inspection target pattern 15 spaced from the pattern with a predetermined distance, the inspection signal fed from the feed electrode 35 to the inspection target pattern 15 by capacity coupling is detected by the sensor electrode similarly capacity-coupled to the inspection target pattern, and when the detection signal value is below a predetermined range, it is determined to be a pattern disconnection and when the detection signal value is above the predetermined range, it is determined to be a pattern short circuit.

Description

1247904 玖、發明說明: 【發明所屬之技術領域】 本發明係關於可檢查形成於基板上的導電圖案的良否 的電路圖案檢查裝置及電路圖案檢查方法。 【先前技術】 在製造形成導電圖案於基板上的電路基板時,有對形成 於基板上的導電圖案進行是否有斷線及短路的檢查的必 要。 以往,作為導電圖案的檢查方法,例如,如專利文獻1 所示,週知一種使針腳接觸於導電圖案的兩端而從一端側 的針腳對導電圖案供給電信號,而從另一端側的針腳接受 該電信號,以進行導電圖案的導通測試等的接觸式的檢查 方法(針腳接觸方式)。電信號的供電係藉由將金屬探針立 設於全端子上,並從此處對導電圖案流動電流所進行者。 該針腳接觸方式,因為直接使探針接觸,因此具有S / N 比高的長處。 但是,近年來,因為導電圖案的高密度化,連接用配線 間距也越細密化,5 0 // m以下的間距也已出現。因此,以 狹間距且多根數的探針所構成的探針卡的製造成本高。 另外,與此同時,必須製作適用於每一配線圖案(每一 檢查對象)不同的新探針卡。因此,檢查成本變高且對電子 零件的低成本化造成極大的障礙。 另外,微細構造上的探針卡很脆弱,在實際之使用上有 必要考慮經常破損的危險。 5 312/發明說明書(補件)/93-02/92133778 1247904 因此,如專利文獻2所示,還提出使針腳探針直接接觸 於檢查對象的導體圖案的一端,並施加含有交流成份的檢 查信號,在另一端的探針則定位在不接觸導體圖案且隔開 指定間隔的狀態,介由電容耦合以檢測上述檢查信號的接 觸-非接觸併用方式的方案。 該接觸-非接觸併用方式,因為圖案線的另一端的探針 無如探針般直接接觸於圖案的必要,因此可粗定位制定位 精度。更且,針對複數的圖案線可使非接觸部共用化,因 此可削減探針的根數。為此,還可對應導電圖案的間隔微 細之情況。 (專利文獻1 ) 日本專利特開昭6 2 - 2 6 9 0 7 5號公報 (專利文獻2 ) 曰本專利特開平1 1 - 7 2 5 2 4號公報 【發明内容】 (發明所欲解決之問題) 然而,上述接觸-非接觸併用方式中,配設於導電圖案 的兩端部位置的探針及來自探針的檢測信號處理等,係依 據導電性圖案的配設間隔而設,因此導電圖案的形狀為預 先決定的一種類,若導電圖案不同時,則有配合圖案製作 夾具的必要。 另外,上述接觸-非接觸併用方式中,直接接觸於針腳 探針的檢查對象的導體圖案的一端也微細化,要使針腳探 針接觸的作業變得困難。另外,也無法避免利用針腳探針 6 312/發明說明書(補件)/93-02/92133778 1247904 極,係配設在與可於一端部位置藉由上述供給電極供給檢 查信號之檢查對象圖案鄰接的檢查對象圖案的另一端部位 置上。 另外,例如,其特徵為:上述第1檢測電極的寬度為檢 查對象圖案的圖案寬度以下。 另外,例如,其特徵為:上述第2檢測電極的寬度為檢 查對象圖案的圖案寬度以下。 另外,例如,其特徵為:上述移動機構係在使上述供給 機構的供給電極面及上述檢測機構的檢測電極面,與上述 檢查對象圖案電容耦合的狀態,橫過移動於上述檢查對象 區域的兩端附近的行狀部分。 另外,例如,其特徵為:還具備判斷機構,係在依上述 檢測機構的檢測結果處於指定範圍的情況判斷檢查對象圖 案為正常,而在檢查結果超出指定範圍的情況則判斷檢查 對象圖案為不良。 另外,例如,其特徵為:還具備第2移動機構,在上述 判斷機構判斷為不良的檢查對象圖案的兩端,使上述供給 機構的供給電極與上述檢測機構的檢測電極移動,使上述 供給機構的供給電極或上述檢測機構的檢測電極的任一者 向著另一者沿圖案移動;及位置檢測機構,基於上述檢測 機構的檢測結果檢測其檢測變化位置。 另外,例如,其特徵為:還具備接觸機構俾使上述供給 機構的供給電極或上述檢測機構的檢測電極的任一另一者 接觸於檢查對象圖案。 8 312/發明說明書(補件)/93-02/92133778 1247904 電極或上述供給電極與檢查對象的分離距離,以進行與上 述檢查對象的定位控制。 (發明效果) 根據如上述說明之本發明,可確實檢測檢查對象圖案的 不良。 更且,可容易辨識圖案不良狀況,可進行具體之不良部 位的特定。 更且,即使於檢查對象表面具有凹凸,仍不會傷及圖 案,而可進行確實的圖案檢查。 【實施方式】 以下,參照圖式詳細說明本發明之一發明的實施形態 例。以下之說明中,係以檢查作為應予檢查的圖案而形成 液晶顯示面板的點矩陣顯示用面板的黏貼前的點矩陣圖案 的良否的電路圖案檢查裝置為例進行說明。 但是,本發明並不限於以下所說明之例子,只要為至少 在檢查對象區域的兩端附近形成為行狀的檢查對象圖案, 便無任何的限定。 (第1發明的實施形態例) 圖1為說明本發明之一發明實施形態例之圖案檢查原理 用的說明圖。 圖1中,元件符號1 0為本實施形態例之配設有應予檢 查的導電性圖案的基板,本實施形態例中,使用液晶顯示 面板用的玻璃製基板。 在玻璃製基板1 0的表面,以一定間隔呈行狀配設有形 12 312/發明說明書(補件)/93-02/92133778 1247904 成由本實施形態例之電路圖案檢查裝置所檢查的點矩陣顯 示面板用的導電圖案15。在圖1所示導電圖案例中,各圖 案1 5的寬度大致相同,各圖案間隔也成為大致相等的間 隔。但是,本實施形態例中,即便各圖案間隔不為等間隔 也同樣可進行檢查。 元件符號2 0為感測器;元件符號3 0為檢查信號供給 部;元件符號5 0為處理來自感測器2 0的檢測信號並輸出 於控制部6 0的類比信號處理電路;元件符號6 0為管理本 實施形態例之檢查裝置全體的控制的控制部;元件符號7 0 為控制標量機器人8 0的機器人控制器;元件符號8 0為將 液晶面板1 0定位在檢查位置並予以保持,同時,根據機器 人控制器7 0的控制,以感測器2 0的感測電極及檢查信號 供給部3 0的供給電極順序橫過液晶面板1 0的檢查對象的 導電圖案的所有連接端子的方式進行掃描的標量機器人。 本實施形態例中,標量機器人8 0係用以將檢查對象基 板(液晶面板)1 0定位在指定的檢查位置,而構成為可三維 定位。相同地,將感測器2 0、檢查信號供給部3 0與檢查 對象基板1 0的表面邊保持指定的距離邊在檢查對象圖案 上移動,而構成為可三維定位控制。 又,在以上之說明中,說明了由標量機器人8 0將感測 器2 0、檢查信號供給部3 0與檢查對象基板1 0的表面邊保 持指定的距離邊在檢查對象圖案上移動的例子。但是,本 實施形態例並不限於以上的例子,也可控制為將檢查信號 供給部3 0固定,而使檢查對象基板1 0與感測器2 0、檢查 13 312/發明說明書(補件)/93-02/92133778 1247904 信號供給部3 0的前端電極2 5、3 5的表面邊保持指定的距 離邊在基板上移動的方式。如此般控制也可獲得完全相同 的作用效果。 又,在實際之檢查控制中,在各圖案間隔不為等間隔的 情況及雙端部的圖案間距不同的情況,有使感測電極2 5 的移動距離與供給電極3 5的移動距離相互同步,至少一定 以供給電極3 5成為實際供給檢查信號的圖案的另一端部 位置的方式來控制感測電極2 5的一部分的必要。若如此般 控制的話,例如,即使各圖案間隔成為等間隔,雙端部的 圖案間距不同,仍可僅以標量機器人的兩電極移動速度的 控制來對應。 在本實施形態例之將感測器2 0及檢查信號供給部3 0的 至少前端部表面,分別配設感測電極2 5及供給電極3 5。 感測電極2 5及供給電極3 5係由金屬、例如銅(C u )或金(A u ) 所形成。又,為保護各電極,也可由絕緣材料覆被。另外, 例如,雖也可將半導體作為電極使用,但這是因為由金屬 形成電極,可增大與導電圖案間的靜電電容的緣故。 檢查信號供給部3 0,係為藉由標量機器人8 0以橫過液 晶顯示面板1 0等的檢查對象圖案的一端子部等的方式移 動,而介由電容耦合順序將檢查信號供給各配線圖案者, 前端部的供給電極3 5的寬度,最好在例如檢查對象圖案的 圖案間距以下(檢查圖案的圖案寬度及圖案間隙以下的大 小)。 這是因為若供給電極3 5的寬度,較檢查對象圖案的圖 14 312/發明說明書(補件)/93-02/92133778 1247904 案間距大時,在感測器2 0的感測電極2 5檢測檢查信號時, 會檢測到來自檢查對象圖案以外的檢查對象圖案的檢查信 號的緣故。 但是,不一定要將供給電極3 5的寬度設為檢查對象圖 案的圖案間距以下,若只要可把握複數之檢查對象圖案與 鄰接該圖案的圖案,便可在後續將詳述之本實施形態例之 檢查方法中進行檢查。 感測器2 0,係為藉由標量機器人8 0以橫過液晶顯示面 板1 0等的檢查對象圖案的一端子部等的方式移動,而於各 檢查對象圖案介由電容耦合順序進行將藉由檢查信號供給 部3 0所供給的檢查信號的檢測,前端部的感測電極2 5的 寬度,最好在例如較供給電極3 5寬檢查對象圖案的1間距 以上的寬度。 來自感測器2 0的檢測信號被送至類比信號處理電路 5 0,以進行類比信號處理。由類比信號處理電路5 0作類比 信號處理的類比信號,係送至控制部6 0,以判斷液晶顯示 面板1 0的檢查信號供給部3 0所接觸的檢查對象圖案的良 否。另外,控制部6 0還進行將檢查信號供給檢查信號供給 部30的控制。 類比信號處理電路5 0具有放大來自感測器2 0的檢測信 號的放大器5 1 ;除去由放大器5 1所放大的檢測信號的雜 訊成份以使檢測信號通過用的帶通濾波器5 2 ;將來自帶通 濾波器5 2的信號作全波整流的整流電路5 3 ;及將藉由整 流電路5 3作全波整流的檢測信號作平滑處理的平滑電路 15 312/發明說明書(補件)/93-02/92133778 1247904 5 4。又,並不一定要具備進行全波整流的整流電路5 3及對 檢測信號作平滑處理的平滑電路5 4。 控制部6 0係管理本實施形態例檢查裝置全體的控制, 具備電腦(CPU)61 ;記憶CPU61的控制順序等的R0M62 ;暫 時記憶C P U 6 1的處理經過資訊及檢測信號等的R A Μ 6 3 ;將 來自類比信號處理電路5 0的類比信號變換為對應的數位 信號的A / D變換器6 4 ;將應予檢查信號供給檢查信號供給 部3 0的信號供給部6 5 ;及顯示檢查結果與操作指示導引 等的顯示部6 6。 信號供給部6 5例如作為檢查信號生成交流2 0 0 Κ Η z、2 0 0 V 的正弦波信號,供給檢查信號供給部3 0。該情況,帶通濾 波器5 2係作為使該檢查信號的2 0 0 Κ Η ζ通過的帶通濾波 器。又,檢查信號不一定要為正弦波信號,當然,只要為 交流信號,其為矩形波或脈衝波均無妨。 以下,參照圖2之流程圖說明具備以上之構成的本實施 形態例之導電圖案的檢查控制。圖2為說明本實施形態例 之檢查裝置的檢查控制用的流程圖。 在藉由本實施形態例之檢查裝置進行檢查時,形成檢查 對象導電圖案的玻璃基板,在未圖示的搬運路上被搬運至 本實施形態例的電路圖案檢查裝置位置(工件位置)。為 此,首先在步驟S1,將作為檢查對象的液晶面板1 0設定 於檢查裝置。這可藉由未圖示的搬運機器人將自動搬運來 的檢查對象基板設定於檢查裝置,或是可由操作者來直接 設定。控制部6 0係當於檢查裝置設定檢查對象時,起動.機 16 312/發明說明書(補件)/93-02/92133778 1247904 器人控制器7 0以控制標量機器人8 0,將檢查對象定位於 檢查位置。 接著,在步驟S 3,將檢查信號供給部3 0的供給電極3 5 定位於檢查對象(液晶面板)1 0的檢查對象圖案1 5的一端 部側的初期位置(離開指定距離的最端部的檢查對象圖案 位置),同時,將感測器2 0的感測電極2 5搬運定位於檢查 對象圖案1 5的另一端部側的初期位置(離開指定距離的最 端部的配線圖案位置)。 又,在本實施形態例中,間距(檢查對象圖案與電極間 的距離)被保持在例如1 0 0 // m〜2 0 0 # m的範圍。但是,間 距並不限於以上之例子,本實施形態例中,間距係依檢查 對象圖案的尺寸所決定,若圖案的尺寸增大時則間距也增 大,而在圖案的尺寸小的情況間距也變狹。 另外,在圖案尺寸非常小的情況,藉由在電極表面由絕 緣材料形成覆被,而以無直接接觸的方式形成圖案與電 極,介由絕緣材料將感測器2 0或檢查信號供給部3 0直接 密接於基板上,以間距大致成為絕緣材料的厚度的方式進 行控制,可容易且正確地將檢查對象圖案與電極間的距離 保持為一定距離進行檢查。 藉此,即使為非常精細的圖案,仍可以簡單的構造獲得 容易且正確的檢查結果。 接著,在步驟S 5,於信號供給部6 5作指示而開始對檢 查信號供給部3 0的供給電極3 5供給檢查信號。 接著,進入步驟S7,將圖案與電極間的距離保持為一 17 312/發明說明書(補件)/93-02/92133778 1247904 定,以使感測器2 0與檢查信號供給部3 0的各電極2 5、3 5 同步橫過檢查對象圖案的方式,且以與檢查對象圖案表面 的分離距離保持為一定的方式開始邊控制邊移動的控制。 藉此,於其後,感測電極2 5係藉由與供給電極3 5的電容 耦合以檢測來自備供給有檢查信號的檢查對象圖案的信號 電位。 也就是說,在供給電極3 5位於供給檢查信號的圖案位 置的情況,感測電極2 5的至少一部分位於供給該檢查信號 的檢查對象圖案的另一端部位置,此等均控制為在供給電 極3 5移動於一端部的檢查對象圖案的1個間距期間,另一 端部的感測電極2 5也移動檢查對象圖案的1個間距量的狀 態。 為此,在步驟S1 0,起動類比信號處理電路5 0,進行處 理來自感測電極2 5的檢測信號而輸出於控制部6 0的控 制。在信號處理電路5 0中,如上述,由放大器51將來自 感測器2 0的感測電極2 5的檢測信號放大至必要的位準, 將由放大器5 1所放大的檢測信號傳輸至使檢查信號頻率 的信號通過的帶通濾波器5 2,以除去雜訊成份,其後,由 整流電路5 3將來自帶通濾波器5 2的信號作全波整流,由 平滑電路5 4將被全波整流的檢測信號作平滑處理,並傳輸 至控制部6 0的A / D變換器6 4。 C P U 6 1係起動A / D變換器6 4而將所輸入的類比信號變換 為對應的數位信號,並作為數位值讀取由感測電極2 5所檢 測的檢查信號。 18 312/發明說明書(補件)/93-02/92133778 1247904 C P U 6 1係於後續之步驟S 1 2,將所讀取的檢測信號傳輸 至R A Μ 6 3。R A Μ 6 3順序儲存所傳輸來的檢測信號。又,該所 讀取的檢測信號内包含來自正常的檢查對象圖案的檢測信 號、來自斷線的檢查對象圖案的檢測信號、來自與檢查對 象圖案短路的鄰接的檢查對象圖案的檢測信號的所有檢測 信號。 在步驟S 1 4,判斷該檢查對象圖案的檢查是否有結束, 例如判斷感測電極2 5是否有移動至超過檢查對象圖案的 最後圖案的位置(調查該檢查對象圖案的檢查是否有結 束)。 在檢查只進行至該配線圖案的途中的情況,進入步驟 S 1 6,繼續電極的掃描,將檢查信號供給下一圖案。然後, 返回步驟S 1 0,繼續讀取處理。 另一方面,在步驟S1 4中,在對所有的檢查對象圖案的 檢查結束的情況,進入步驟S 2 0,於信號供給部6 5作指示, 以使檢查信號的供給停止,同時,使信號處理電路5 0、A / D 變換器6 4的動作停止。 然後,最後在步驟S 2 2,使檢查對象離開檢查位置,定 位並搬運至下一搬運位置,以進行必要的後處理。 藉由如上述的控制,進行感測電極2 5與供給電極3 5的 兩者完全不與檢查對象圖案接觸等的圖案的檢查。為此, 即使為檢查對象圖案的強度少的基板,仍可進行不會產生 傷及檢查對象圖案等的問題的檢查。 因此,即使為用於無法充分取得圖案強度的小型行動電 19 312/發明說明書(補件)/93-02/92133778 1247904 話用液晶顯示面板的液晶顯示面板用玻璃基板,仍可不傷 及配線圖案而確實檢查。 另外,在本實施形態例之導電圖案的檢查控制中,因為 邊以橫過檢測對象圖案的方式使感測電極2 5及供給電極 3 5移動,邊從供給電極3 5對檢查對象圖案供給連續信號 之交流正弦波信號,藉由感測電極2 5檢測來自檢查對象圖 案的信號電位,因此,在藉由感測電極2 5所獲得的信號電 位的檢測信號,被作為某種程度一定的連續檢測信號值而 被檢測。 因此,在設於檢查對象圖案的複數檢查對象圖案中,具 有打開(斷線的檢查對象圖案)或短路(與相鄰之檢查對象 圖案短路的檢查對象圖案)的不良檢查對象圖案的情況,在 無打開或短路的正常檢查對象圖案的連續範圍所檢測的某 種程度一定的連續的檢測信號值,及在具有打開或短路的 不良檢查對象圖案位置所檢測的不良的檢測信號值間可產 生數值差。 如此般,在某種程度一定的連續的檢測信號值中,依打 開或短路的不良的檢測信號值被反映作為數值差、亦即數 值的變化,因此,例如,藉由將檢測信號檢測結果製成後 續將詳述之圖3及圖4所示的圖表,即可容易進行檢查對 象基板的不良的判斷及具有打開或短路的不良檢查對象圖 案位置的特定。 更且,藉由在檢查裝置邊順序交換檢查對象基板邊進行 檢查的過程時每次變化的,感測電極2 5與檢查對象圖案的 20 312/發明說明書(補件)/93-02/92133778 1247904 間距的變化或供給電極3與檢查對象圖案的間距的變化 等,某種程度的一定連續的檢測信號值,在交換檢查對象 基板的過程中作為絕對值而成為不同的數值。 但是,依本實施形態例之導電圖案的檢查控制的對檢查 對象基板的不良的判斷及具有打開或短路的不良檢查對象 圖案位置的特定,可利用某種程度一定的連續檢測信號值 中所出現的具有打開或短路的不良檢測信號值的數值差、 亦即檢測信號的相對的數值變化。 因此,對於進行不良的判斷及不良位置特定用的臨限 值,可利用不良檢測信號值對於連續之檢測信號值的比例 或不良檢測信號值對於連續之檢測信號值的變化的比例等 的相對值,即使不使用作為絕對值的某種程度一定的連續 檢測信號值,檢查裝置邊順序交換檢查對象基板邊進行檢 查,仍可確實進行不良的判斷及不良位置的特定。 又,本實施形態例之導電圖案的檢查控制,並不限於以 上之例子,也可在步驟S 1 2與步驟S 1 4之間,設置調查由 步驟S 1 2所讀取的檢測信號是否在上述相對值的臨限值範 圍内,若檢查結果在臨限值範圍内時便進入步驟S 1 4,若 不在臨限值範圍内,則判斷為供給檢查信號中的檢查對象 圖案為具有打開或短路的不良檢查對象圖案,並記憶該檢 查對象圖案的位置及狀態的步驟。 圖3及圖4顯示依上述控制之感測電極2 5的檢查信號 檢測結果。圖3為顯示本實施形態例之檢查裝置的檢查對 象圖案的3個部位斷線(打開)的情況的檢查信號檢測例的 21 312/發明說明書(補件)/93-02/92133778 1247904 圖,圖4為顯示本實施形態例之檢查對象圖案的1個部位 短路的情況的檢查信號檢測例的圖。 在檢查對象圖案為正常的情況,藉由信號供給部6 5供 給供給電極3 5的檢查信號(交流信號),被供給被電容耦合 的檢查對象圖案,並介由該檢查對象圖案到達感測電極25 的下部,藉由與感測電極2 5的電容耦合而由感測電極2 5 檢測,輸出於控制部6 0。 如此般,供給電極3 5與感測電極2 5邊橫過檢查對象圖 案邊供給·檢測檢查信號(交流信號),因此檢測信號被作 為某種程度一定的檢測信號值而連續檢測。 在檢查對象圖案的至少一部分為斷線的情況,藉由信號 供給部6 5供給供給電極3 5的檢查信號(交流電力)的至少 一部分,因檢查對象圖案的斷線部而未到達感測電極2 5 側,因此,檢測信號值變小。因此,如圖3所示,斷線之 檢查對象圖案處的檢測信號值,變得較從正常的檢查對象 圖案所檢測的連續的一定值小。 另一方面,在檢查對象圖案與鄰接之檢查對象圖案短路 的情況,藉由信號供給部6 5供給供給電極3 5的檢查信號 (交流電力),通過與鄰接之檢查對象圖案的短路部,也流 動於鄰接之檢查對象圖案,因此,來自感測電極2 5的檢測 信號與鄰接之檢查對象圖案的檢測信號重疊,使得檢測信 號變大。因此,如圖4所示,短路之檢查對象圖案處的檢 測信號值,變得較從正常的檢查對象圖案所檢測的連續的 一定值大。 22 312/發明說明書(補件)/93-02/92133778 1247904 如上述,可由一個感測電極2 5來檢測該檢測對象圖案 的斷線與斷路,是因為感測電極2 5的寬度係設定為較供給 電極3 5的寬度至少寬檢查對象圖案的1個間距以上的寬度 的緣故。 但是,並不一定要感測電極2 5的寬度設定在較供給電 極3 5的寬度寬檢查對象圖案的1個間距以上,也可進行斷 線之檢查對象圖案的檢查及與相鄰之檢查對象圖案短路的 檢查對象圖案的檢查,例如,可構成為後續將詳述之第2 實施形態例的構成。 此時,在作為絕對值的某種程度一定的連續的檢測信號 值,若在某種程度的範圍内設定臨限值,在檢測信號值較 臨限值小的情況即可判斷為檢查對象圖案的斷線,而在檢 測信號值較臨限值大的情況即可判斷為與檢查對象圖案的 端路。例如,在圖4中,相對某種程度一定的連續的檢測 信號值為0 . 6 0 V p p,若臨限值為0 . 0 2 V p p,則判斷處在成為 0 · 5 8 V ρ ρ以下的感測器移動距離約為2 2 m m、4 2 m m、7 8 m m的 位置的檢查對象圖案處於斷線之中。 另外,於進行不良的判斷及不良位置特定用的臨限值, 利用不良檢測信號值對連續之檢測信號值的比例及不良檢 測信號值對連續之檢測信號值的變化比例等的相對值,例 如,在連續之檢測信號值低於3 %以下的情況,即可判定檢 查對象圖案的斷線,而在連續之檢測信號值上升至3 %以上 的情況便可判定與檢查對象圖案的短路。 如此般,在本實施形態例中,對於圖案的良否的判定可 23 312/發明說明書(補件)/93-02/92133778 1247904 將絕對值作為臨限值予以利用,當然也可將不良圖案的檢 測信號值對正常圖案之檢測信號值的相對變化的比例作為 臨限值予以利用,因此,即便檢查裝置邊順序交換檢查對 象基板邊進行檢查,仍可設定依據檢測結果的最合適的臨 限值,即便於每次檢查時檢測信號值有誤差,另外即使在 檢測信號值低的情況,可完全防止此等的影響,可獲得正 確的檢查結果。 如此般,因為感測器與檢查信號供給部兩方均為非接 觸,因此即使為檢測信號值變微小的檢查方式,藉由使用 本實施形態例的檢查裝置,仍可確實辨識該差異,可容易 且確實進行圖案狀態的檢查。 因此,與將檢測信號值的絕對值作為臨限值以判定良否 的習知方法比較,可非常正確且容易檢測圖案的良否。另 外,因為為非接觸,因此不需要正確的定位精度,即便是 檢查對象圖案的間距非常微細的基板,仍可精度良好地進 行檢查。 (第2發明之實施形態例) 以上的說明中,說明了至少將感測電極25的一部分一 定控制在成為供給電極3 5實際供給檢查信號時的圖案的 另一端部位置的例子。但是,本發明並不限於以上之例子, 例如,也可為設置複數的感測電極2 5,複數設置的感測電 極2 5中的一個,係設置在供給電極3 5實際供給檢查信號 時的圖案的另一端部位置,複數設置的感測電極2 5的其他 至少一個,係設置在供給電極3 5實際供給檢查信號時的圖 241247904 TECHNICAL FIELD OF THE INVENTION The present invention relates to a circuit pattern inspection device and a circuit pattern inspection method capable of inspecting the quality of a conductive pattern formed on a substrate. [Prior Art] When manufacturing a circuit board on which a conductive pattern is formed on a substrate, it is necessary to inspect whether or not the conductive pattern formed on the substrate is broken or short-circuited. Conventionally, as a method of inspecting a conductive pattern, for example, as disclosed in Patent Document 1, it is known that a pin is brought into contact with both ends of a conductive pattern, and an electric signal is supplied from a pin on one end side to a conductive pattern, and a pin is formed on the other end side. This electric signal is received to perform a contact type inspection method (pin contact method) such as a conduction test of a conductive pattern. The electrical signal is supplied by the metal probe on the full terminal and from which the current flows through the conductive pattern. This pin contact method has a high S/N ratio because it directly contacts the probe. However, in recent years, the pitch of the connection wiring has become finer due to the higher density of the conductive pattern, and a pitch of 50 // m or less has also appeared. Therefore, the probe card constituted by the probes having a narrow pitch and a plurality of numbers has a high manufacturing cost. In addition, at the same time, it is necessary to make a new probe card suitable for each wiring pattern (each inspection object). Therefore, the inspection cost becomes high and a great obstacle is caused to the cost reduction of electronic parts. In addition, the probe card on the fine structure is very fragile, and it is necessary to consider the risk of frequent breakage in actual use. 5 312/Inventive Manual (Supplement)/93-02/92133778 1247904 Therefore, as shown in Patent Document 2, it is also proposed to directly contact the pin probe to one end of the conductor pattern of the inspection object and apply an inspection signal containing an AC component. The probe at the other end is positioned in a contact-non-contact combination manner in which the contact signal is not in contact with the conductor pattern and spaced apart by a predetermined interval by capacitive coupling to detect the above-mentioned inspection signal. The contact-non-contact combination method is used because the probe at the other end of the pattern line has no need to directly contact the pattern like a probe, so that the positioning accuracy can be coarsely positioned. Furthermore, the non-contact portions can be shared for a plurality of pattern lines, so that the number of probes can be reduced. For this reason, it is also possible to correspond to the case where the interval of the conductive pattern is fine. (Patent Document 1) Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. 6-2 - No. However, in the contact-non-contact combination method, the probes disposed at the both end portions of the conductive pattern and the detection signal processing from the probe are provided in accordance with the arrangement interval of the conductive patterns. The shape of the conductive pattern is a predetermined type, and if the conductive patterns are different, it is necessary to match the pattern forming jig. Further, in the above-described contact-non-contact combination method, one end of the conductor pattern of the inspection target directly contacting the pin probe is also made fine, and the work of contacting the pin probe becomes difficult. In addition, it is also unavoidable to use the pin probe 6 312 / invention manual (supplement) / 93-02/92133778 1247904 pole to be adjacent to the inspection target pattern which can supply the inspection signal by the supply electrode at one end position Check the object at the other end of the pattern position. Further, for example, the width of the first detecting electrode is equal to or less than the width of the pattern of the inspection target pattern. Further, for example, the width of the second detecting electrode is equal to or less than the width of the pattern of the inspection target pattern. Further, for example, the moving mechanism is configured to capacitively couple the supply electrode surface of the supply mechanism and the detection electrode surface of the detection mechanism to the inspection target pattern, and to traverse the two movements of the inspection target region. The line portion near the end. Further, for example, the determination means further includes determining that the inspection target pattern is normal when the detection result of the detection means is within a predetermined range, and determining that the inspection target pattern is defective when the inspection result is outside the specified range. . Further, for example, it is characterized in that it further includes a second moving mechanism that moves the supply electrode of the supply mechanism and the detection electrode of the detection mechanism at both ends of the inspection target pattern determined to be defective by the determination means, and causes the supply mechanism Any one of the supply electrode or the detection electrode of the detection means moves along the pattern toward the other; and the position detecting means detects the detection change position based on the detection result of the detection means. Further, for example, it is characterized in that it further includes a contact mechanism that brings the other of the supply electrode of the supply mechanism or the detection electrode of the detection mechanism into contact with the inspection target pattern. 8 312/Invention Manual (Supplement)/93-02/92133778 1247904 The separation distance between the electrode or the above-mentioned supply electrode and the inspection object is performed to perform positioning control with respect to the above-mentioned inspection object. (Effect of the Invention) According to the invention as described above, it is possible to reliably detect the defect of the inspection target pattern. Furthermore, the pattern defect can be easily recognized, and the specific defective portion can be specified. Further, even if the surface of the inspection object has irregularities, the pattern is not damaged, and a reliable pattern inspection can be performed. [Embodiment] Hereinafter, an embodiment of an invention of the present invention will be described in detail with reference to the drawings. In the following description, a circuit pattern inspection device for checking the quality of the dot matrix pattern before the pasting of the dot matrix display panel of the liquid crystal display panel as a pattern to be inspected will be described as an example. However, the present invention is not limited to the examples described below, and is not limited as long as it is formed into a line-shaped inspection target pattern at least in the vicinity of both ends of the inspection target region. (Embodiment of the first invention) Fig. 1 is an explanatory view for explaining the principle of pattern inspection according to an embodiment of the present invention. In Fig. 1, the component symbol 10 is a substrate in which a conductive pattern to be inspected is disposed in the embodiment, and in the embodiment, a glass substrate for a liquid crystal display panel is used. A dot matrix display panel which is inspected by the circuit pattern inspection device of the present embodiment is provided on the surface of the glass substrate 10 at a predetermined interval in a line shape 12 312 / invention specification (supplement) / 93-02/92133778 1247904 Conductive pattern 15 used. In the example of the conductive pattern shown in Fig. 1, the width of each pattern 15 is substantially the same, and the interval between the patterns is also substantially equal. However, in the present embodiment, the inspection can be performed in the same manner even if the pattern intervals are not equal intervals. The component symbol 20 is a sensor; the component symbol 30 is an inspection signal supply unit; the component symbol 50 is an analog signal processing circuit that processes the detection signal from the sensor 20 and outputs it to the control unit 60; 0 is a control unit that manages the control of the entire inspection apparatus of the present embodiment; the component symbol 70 is a robot controller that controls the scalar robot 80; and the component symbol 80 is to position and hold the liquid crystal panel 10 at the inspection position. At the same time, according to the control of the robot controller 70, the sensing electrodes of the sensor 20 and the supply electrodes of the inspection signal supply unit 30 sequentially traverse all the connection terminals of the conductive pattern of the inspection target of the liquid crystal panel 10 A scalar robot that scans. In the present embodiment, the scalar robot 80 is configured to position the inspection target substrate (liquid crystal panel) 10 at a predetermined inspection position to be three-dimensionally positionable. In the same manner, the sensor 20 and the inspection signal supply unit 30 are moved by the inspection target pattern while maintaining the predetermined distance between the surface of the inspection target substrate 10 and the three-dimensional positioning control. In the above description, an example in which the scalar robot 80 moves the surface of the inspection target pattern while maintaining the predetermined distance between the surface of the inspection target substrate 10 and the inspection target substrate 10 is described. . However, the present embodiment is not limited to the above example, and the inspection target signal supply unit 30 may be controlled to be fixed, and the inspection target substrate 10 and the sensor 20, the inspection 13 312, and the invention manual (supplement) may be controlled. /93-02/92133778 1247904 The surface of the front end electrodes 2 5 and 35 of the signal supply unit 30 moves on the substrate while maintaining a predetermined distance. This kind of control can also achieve the same effect. Further, in the actual inspection control, when the pattern intervals are not equally spaced and the pattern pitch of the both end portions is different, the moving distance of the sensing electrode 25 and the moving distance of the supply electrode 35 are synchronized with each other. It is necessary to control at least a part of the sensing electrode 25 so that the supply electrode 35 becomes the other end position of the pattern in which the inspection signal is actually supplied. By controlling in this manner, for example, even if the pattern intervals are equally spaced, the pattern pitch of the both end portions is different, and it is possible to correspond only to the control of the moving speed of the two electrodes of the scalar robot. In the present embodiment, the sensing electrode 25 and the supply electrode 35 are disposed on at least the front end surface of the sensor 20 and the inspection signal supply unit 30, respectively. The sensing electrode 25 and the supply electrode 35 are formed of a metal such as copper (C u ) or gold (A u ). Further, in order to protect the respective electrodes, they may be covered with an insulating material. Further, for example, a semiconductor can be used as an electrode, but this is because the electrode is formed of a metal, and the electrostatic capacitance between the conductive pattern and the conductive pattern can be increased. The inspection signal supply unit 30 moves so as to traverse the one terminal portion of the inspection target pattern such as the liquid crystal display panel 10 by the scalar robot 80, and supplies the inspection signal to each wiring pattern via the capacitive coupling sequence. Preferably, the width of the supply electrode 35 at the tip end portion is, for example, equal to or less than the pattern pitch of the inspection target pattern (the pattern width of the inspection pattern and the size below the pattern gap). This is because if the width of the supply electrode 35 is larger than the distance between the image of the inspection target pattern of FIG. 14 312 / the invention specification (supplement) / 93-02/92133778 1247904, the sensing electrode 25 of the sensor 20 When the inspection signal is detected, an inspection signal from the inspection target pattern other than the inspection target pattern is detected. However, the width of the supply electrode 35 is not necessarily set to be equal to or less than the pattern pitch of the inspection target pattern. If a plurality of inspection target patterns and patterns adjacent to the pattern are grasped, the embodiment of the present embodiment will be described in detail later. Check in the inspection method. The sensor 20 moves by scalar robot 80 so as to traverse a terminal portion of the inspection target pattern such as the liquid crystal display panel 10, and the like. The detection signal supplied from the inspection signal supply unit 30 detects the width of the sensing electrode 25 at the distal end portion, for example, at a width equal to or larger than one pitch of the inspection target pattern from the supply electrode 35. The detection signal from the sensor 20 is sent to the analog signal processing circuit 50 for analog signal processing. The analog signal processed by the analog signal processing circuit 50 is sent to the control unit 60 to determine whether or not the inspection target pattern touched by the inspection signal supply unit 30 of the liquid crystal display panel 10 is good. Further, the control unit 60 also performs control for supplying an inspection signal to the inspection signal supply unit 30. The analog signal processing circuit 50 has an amplifier 5 1 for amplifying the detection signal from the sensor 20; the noise component of the detection signal amplified by the amplifier 51 is removed to pass the detection signal through the band pass filter 5 2 ; a rectifying circuit 53 for full-wave rectifying the signal from the band pass filter 52; and a smoothing circuit for smoothing the detection signal for full-wave rectification by the rectifying circuit 53. 312/invention specification (supplement) /93-02/92133778 1247904 5 4. Further, it is not necessary to include a rectifier circuit 53 for performing full-wave rectification and a smoothing circuit 54 for smoothing the detection signal. The control unit 60 is configured to control the entire control device of the present embodiment, and includes a computer (CPU) 61, a ROM 62 that memorizes the control sequence of the CPU 61, and the RA Μ 6 3 that temporarily memorizes the processing information and detection signals of the CPU 6 1 . An A/D converter 6 4 that converts an analog signal from the analog signal processing circuit 50 into a corresponding digital signal; a signal supply unit 6 that supplies the inspection signal to the inspection signal supply unit 30; and displays an inspection result The display unit 66 is guided by an operation instruction guide or the like. The signal supply unit 65 generates a sinusoidal signal of AC 2 0 0 Κ Η z and 2 0 0 V as an inspection signal, for example, and supplies it to the inspection signal supply unit 30. In this case, the band pass filter 52 is a band pass filter that passes the 2 0 0 Κ ζ 该 of the inspection signal. Further, the check signal does not have to be a sine wave signal. Of course, as long as it is an AC signal, it may be a rectangular wave or a pulse wave. Hereinafter, inspection control of the conductive pattern of the present embodiment having the above configuration will be described with reference to a flowchart of Fig. 2 . Fig. 2 is a flow chart for explaining inspection control of the inspection apparatus of the embodiment. When the inspection is performed by the inspection apparatus of the present embodiment, the glass substrate on which the inspection target conductive pattern is formed is transported to the circuit pattern inspection device position (workpiece position) of the present embodiment on a conveyance path (not shown). To this end, first, in step S1, the liquid crystal panel 10 to be inspected is set to the inspection device. In this case, the inspection target substrate that is automatically transported can be set to the inspection device by a transport robot (not shown), or can be directly set by the operator. The control unit 60 activates the machine 16 312 / invention manual (supplement) / 93-02/92133778 1247904 when the inspection device sets the inspection target, and controls the scalar robot 80 to position the inspection object. Check the location. Then, in step S3, the supply electrode 35 of the inspection signal supply unit 30 is positioned at the initial position on the one end side of the inspection target pattern 15 of the inspection target (liquid crystal panel) 10 (the most end portion away from the designated distance) At the same time, the sensing electrode 25 of the sensor 20 is transported and positioned at the initial position on the other end side of the inspection target pattern 15 (the position of the wiring pattern at the end of the specified distance) . Further, in the present embodiment, the pitch (the distance between the inspection target pattern and the electrodes) is maintained in the range of, for example, 1 0 0 // m to 2 0 0 # m. However, the pitch is not limited to the above example. In the present embodiment, the pitch is determined according to the size of the inspection target pattern, and the pitch is also increased when the size of the pattern is increased, and the pitch is also small when the size of the pattern is small. Narrowed. Further, in the case where the pattern size is very small, the pattern and the electrode are formed in a direct contact manner by forming a coating on the surface of the electrode with an insulating material, and the sensor 20 or the inspection signal supply portion 3 is provided via the insulating material. 0 is directly adhered to the substrate, and the pitch is substantially controlled to the thickness of the insulating material, and the inspection target pattern and the distance between the electrodes can be easily and accurately held for a predetermined distance. Thereby, even with a very fine pattern, an easy and correct inspection result can be obtained with a simple configuration. Next, in step S5, the signal supply unit 65 instructs to start supplying the inspection signal to the supply electrode 35 of the inspection signal supply unit 30. Next, proceeding to step S7, the distance between the pattern and the electrode is maintained as a 17 312 / invention specification (supplement) / 93-02 / 92133778 1247904, so that each of the sensor 20 and the inspection signal supply portion 30 The electrodes 2 5 and 3 5 are synchronized so as to traverse the inspection target pattern, and the control of the movement while controlling is started so that the separation distance from the surface of the inspection target pattern is kept constant. Thereby, the sensing electrode 25 is thereafter coupled to the capacitance of the supply electrode 35 to detect the signal potential from the inspection target pattern to which the inspection signal is supplied. That is, in the case where the supply electrode 35 is located at the pattern position at which the inspection signal is supplied, at least a part of the sensing electrode 25 is located at the other end position of the inspection target pattern to which the inspection signal is supplied, and these are all controlled to be at the supply electrode. 3 5 is moved in one pitch period of the inspection target pattern at one end, and the sensing electrode 25 at the other end also moves in a state of one pitch of the inspection target pattern. Therefore, in step S10, the analog signal processing circuit 50 is activated, and the detection signal from the sensing electrode 25 is processed to be output to the control unit 60. In the signal processing circuit 50, as described above, the detection signal from the sensing electrode 25 of the sensor 20 is amplified by the amplifier 51 to a necessary level, and the detection signal amplified by the amplifier 51 is transmitted to the inspection. The signal of the signal frequency passes through the bandpass filter 52 to remove the noise component. Thereafter, the signal from the bandpass filter 52 is full-wave rectified by the rectifier circuit 53, and the smoothing circuit 54 is fully The wave rectified detection signal is smoothed and transmitted to the A/D converter 64 of the control unit 60. The C P U 6 1 activates the A/D converter 64 to convert the input analog signal into a corresponding digital signal, and reads the inspection signal detected by the sensing electrode 25 as a digital value. 18 312/Invention Manual (Supplement)/93-02/92133778 1247904 C P U 6 1 is in the subsequent step S 1 2, and the read detection signal is transmitted to R A Μ 6 3 . R A Μ 6 3 sequentially stores the transmitted detection signals. Further, the detected detection signal includes all detection signals from a normal inspection target pattern, a detection signal from the disconnected inspection target pattern, and a detection signal from an adjacent inspection target pattern that is short-circuited with the inspection target pattern. signal. In step S14, it is judged whether or not the inspection of the inspection target pattern is finished, for example, it is judged whether or not the sensing electrode 25 has moved to a position exceeding the last pattern of the inspection target pattern (it is checked whether or not the inspection of the inspection target pattern is completed). In the case where the inspection is performed only to the middle of the wiring pattern, the process proceeds to step S16, the scanning of the electrode is continued, and the inspection signal is supplied to the next pattern. Then, the process returns to step S10, and the reading process is continued. On the other hand, in step S14, when the inspection of all the inspection target patterns is completed, the process proceeds to step S20, and the signal supply unit 65 gives an instruction to stop the supply of the inspection signal and simultaneously make the signal. The operation of the processing circuit 50 and the A/D converter 64 is stopped. Then, finally, in step S2 2, the inspection object is moved away from the inspection position, positioned, and transported to the next conveyance position to perform necessary post-processing. By the control as described above, the inspection of the pattern in which both the sensing electrode 25 and the supply electrode 35 are not in contact with the inspection target pattern at all is performed. For this reason, even in the case of a substrate having a small strength of the inspection target pattern, it is possible to perform inspection without causing problems such as injury to the inspection target pattern. Therefore, even if it is used for a small mobile phone 19 312/invention specification (supplement)/93-02/92133778 1247904 for a liquid crystal display panel of a liquid crystal display panel, the wiring pattern can be prevented without being damaged. And indeed check. Further, in the inspection control of the conductive pattern of the present embodiment, the sensing electrode 25 and the supply electrode 35 are moved while traversing the detection target pattern, and the inspection target pattern is continuously supplied from the supply electrode 35. The AC sine wave signal of the signal detects the signal potential from the pattern to be inspected by the sensing electrode 25, and therefore, the detection signal of the signal potential obtained by the sensing electrode 25 is regarded as a certain degree of continuous The signal value is detected and detected. Therefore, in the case of the plurality of inspection target patterns provided in the inspection target pattern, there is a case where the inspection target pattern of the (inspection target pattern that is broken) or the short-circuit (inspection target pattern that is short-circuited with the adjacent inspection target pattern) is present. A certain continuous detection signal value detected by a continuous range of the normal inspection target pattern without opening or short-circuiting, and a value between the detection signal values detected at the position of the defective inspection target pattern having an open or short circuit may be generated. difference. In this way, in a certain continuous detection signal value, the value of the defective detection signal that is turned on or short-circuited is reflected as a numerical difference, that is, a change in the numerical value. Therefore, for example, by detecting the detection signal In the graphs shown in FIG. 3 and FIG. 4 which will be described in detail later, it is possible to easily determine the defect of the inspection target substrate and the position of the defective inspection target pattern having the open or short circuit. Further, each time the inspection process is performed while exchanging the inspection target substrate in the inspection apparatus, the sensing electrode 25 and the inspection target pattern 20 312 / invention manual (supplement) / 93-02/92133778 1247904 A change in the pitch or a change in the pitch between the supply electrode 3 and the inspection target pattern, and a certain number of continuous detection signal values are different values as absolute values in the process of exchanging the inspection target substrate. However, the determination of the failure of the inspection target substrate and the determination of the position of the defective inspection target pattern having the open or short circuit according to the inspection control of the conductive pattern of the present embodiment can be made by using a certain degree of continuous detection signal value. The difference in value of the bad detection signal value with open or short circuit, that is, the relative value change of the detection signal. Therefore, for the determination of the failure and the threshold for specifying the defective position, the relative value of the ratio of the failure detection signal value to the continuous detection signal value or the ratio of the failure detection signal value to the change of the continuous detection signal value can be used. Even if a certain continuous detection signal value which is a certain absolute value is not used, the inspection apparatus performs the inspection while sequentially exchanging the inspection target substrate, and can reliably determine the defect and the position of the defective position. Further, the inspection control of the conductive pattern of the present embodiment is not limited to the above example, and it is also possible to set whether or not the detection signal read by the step S 1 2 is between the step S 1 2 and the step S 14 . If the inspection result is within the threshold value, the process proceeds to step S1 4, and if it is not within the threshold value, it is determined that the inspection object pattern in the supply inspection signal is open or The short-circuit defect inspection target pattern and the step of memorizing the position and state of the inspection target pattern. 3 and 4 show the detection signal detection results of the sensing electrodes 25 controlled as described above. FIG. 3 is a view showing an inspection signal detection example 21 312/invention specification (supplement)/93-02/92133778 1247904 in the case where the three portions of the inspection target pattern of the inspection apparatus according to the embodiment are disconnected (opened). FIG. 4 is a view showing an example of inspection signal detection in a case where one portion of the inspection target pattern of the embodiment is short-circuited. When the inspection target pattern is normal, the inspection signal (AC signal) supplied to the supply electrode 35 by the signal supply unit 65 is supplied with the capacitively coupled inspection target pattern, and reaches the sensing electrode via the inspection target pattern. The lower portion of 25 is detected by the sensing electrode 25 by capacitive coupling with the sensing electrode 25, and is output to the control portion 60. In this manner, the supply electrode 35 and the sensing electrode 25 supply and detect the detection signal (AC signal) while traversing the inspection target pattern. Therefore, the detection signal is continuously detected as a certain detection signal value. When at least a part of the inspection target pattern is broken, at least a part of the inspection signal (AC power) supplied to the supply electrode 35 by the signal supply unit 65 does not reach the sensing electrode due to the disconnection portion of the inspection target pattern. 2 5 side, therefore, the detection signal value becomes smaller. Therefore, as shown in Fig. 3, the detection signal value at the inspection target pattern of the disconnection becomes smaller than the continuous constant value detected from the normal inspection target pattern. On the other hand, when the inspection target pattern is short-circuited with the adjacent inspection target pattern, the inspection signal (AC power) supplied to the supply electrode 35 by the signal supply unit 65 is passed through the short-circuit portion of the adjacent inspection target pattern. Since the inspection target pattern is adjacent to each other, the detection signal from the sensing electrode 25 overlaps with the detection signal of the adjacent inspection target pattern, so that the detection signal becomes large. Therefore, as shown in Fig. 4, the value of the detection signal at the short-circuit inspection target pattern becomes larger than a continuous constant value detected from the normal inspection target pattern. 22 312/Invention Manual (Supplement)/93-02/92133778 1247904 As described above, the disconnection and the disconnection of the detection target pattern can be detected by one sensing electrode 25 because the width of the sensing electrode 25 is set to The width of the supply electrode 35 is at least wider than the width of one or more of the inspection target patterns. However, it is not necessary to set the width of the sensing electrode 25 to be larger than one pitch of the width of the inspection target pattern of the supply electrode 35, and it is also possible to inspect the inspection target pattern of the disconnection and the adjacent inspection object. The inspection of the inspection target pattern of the pattern short-circuit can be configured, for example, as a configuration of the second embodiment which will be described in detail later. In this case, if the threshold value is set to a certain extent in a continuous detection signal value which is a certain absolute value, the detection target pattern can be determined as the inspection target pattern when the detection signal value is smaller than the threshold value. The disconnection is determined, and when the detection signal value is larger than the threshold value, it can be judged as the end path of the inspection target pattern. For example, in Fig. 4, a certain continuous detection signal value of a certain degree is 0. 60 V pp, and if the threshold value is 0. 0 2 V pp, it is judged to be 0 · 5 8 V ρ ρ The inspection target pattern at the position where the sensor movement distance is approximately 2 2 mm, 4 2 mm, and 7 8 mm is in the disconnection. Further, in the determination of the defect and the threshold value for the defective position, the relative value of the ratio of the detection signal value to the continuous detection signal value and the ratio of the change of the detection signal value to the continuous detection signal value are used, for example. When the continuous detection signal value is less than 3%, the disconnection of the inspection target pattern can be determined, and when the continuous detection signal value rises to 3% or more, the short circuit with the inspection target pattern can be determined. In this way, in the present embodiment, the determination of the quality of the pattern can be utilized as a threshold value in the determination of the quality of the pattern 23 312 / invention specification (supplement) / 93-02 / 92133778 1247904, of course, the pattern of the defective pattern can also be used. The ratio of the detection signal value to the relative change of the detection signal value of the normal pattern is used as the threshold value. Therefore, even if the inspection apparatus performs the inspection while sequentially exchanging the inspection target substrate, the optimum threshold value according to the detection result can be set. Even if there is an error in the detection signal value at each inspection, even if the detection signal value is low, the influence can be completely prevented, and a correct inspection result can be obtained. In this way, since both the sensor and the inspection signal supply unit are non-contact, even if the detection method has a small detection signal value, the difference can be surely recognized by using the inspection apparatus of the present embodiment. It is easy and sure to check the pattern state. Therefore, compared with the conventional method of determining the quality of the detected signal value as the threshold value, it is possible to detect the quality of the pattern very accurately and easily. In addition, since it is non-contact, accurate positioning accuracy is not required, and even a substrate having a very fine pitch of the inspection target pattern can be inspected with high precision. (Example of the second embodiment of the invention) In the above description, at least a part of the sensing electrode 25 is controlled to be at least the other end position of the pattern when the supply electrode 35 actually supplies the inspection signal. However, the present invention is not limited to the above examples. For example, a plurality of sensing electrodes 25 may be provided, and one of the plurality of sensing electrodes 25 provided in a plurality is provided when the supply electrode 35 actually supplies an inspection signal. The other end position of the pattern, at least one of the other at least one of the sensing electrodes 25 provided in the pattern is provided in FIG. 24 when the supply electrode 35 actually supplies the inspection signal.

312/發明說明書(補件)/93-02/92133778 1247904 案的鄰接圖案的另一端部位置的構成。 以下,參照圖5說明如此般構成之本發明之第2實施形 態例。圖5為說明本發明之第2實施形態例之檢查裝置的 構成用的說明圖。 圖5中,對於與上述第1實施形態例之圖1所示構成相 同的構成元件,則賦予相同的元件符號,並省略詳細說明。 圖5中,在感測器部2 0之至少前端部表面,設置第1 感測電極2 2及第2感測電極2 4。該第1感測電極2 2及第 2感測電極24係僅以檢查對象圖案的圖案間距量分開配 置,另外,第1感測電極2 2係設於供給電極3 5實際供給 檢查信號時的接受檢查對象圖案的另一端部位置,而第2 感測電極2 4係以截止狀態設於供給電極3 5實際供給檢查 信號時的接受檢查對象圖案的鄰接檢查對象圖案的另一端 部位置。 此等第1感測電極2 2及第2感測電極2 4的寬度,最好 在檢查對象圖案的圖案寬度以下。這是為了藉由第1感測 電極2 2進行接受檢查對象圖案的斷線檢查,而由第2感測 電極2 4進行接受檢查對象圖案與鄰接的檢查對象圖案的 短路的檢查,以實現非常高精度的檢查。 具體而言,若第1感測電極2 2的寬度,為檢查對象圖 案的圖案寬度以下時,即使在接受檢查對象圖案斷線,且 接受檢查對象圖案與鄰接的檢查對象圖案短路的情況,第 1感測電極2 2仍極為不易受到從接受檢查對象圖案通過短 路部流入鄰接的檢查對象圖案的來自鄰接的檢查對象圖案 312/發明說明書(補件)/93-02/92133778 25 1247904 的檢測信號的影響。另外,若第2感測電極2 4的寬度,為 檢查對象圖案的圖案寬度以下時,即使在接受檢查對象圖 案無斷線及短路的情況,或是,接受檢查對象圖案無斷線、 但接受檢查對象圖案與鄰接的檢查對象圖案短路的情況, 第2感測電極2 4仍極為不易受到來自接受檢查對象圖案的 檢查信號的影響。 如此般,依第1感測電極2 2與第2感測電極2 4的斷線、 短路的檢查,無論接受檢查對象圖案的斷線的有無及與鄰 接的檢查對象圖案的短路的有無的任何存在情況,均可實 現非常高精度的檢查。 但是,也可不一定要將第1感測電極2 2及第2感測電 極2 4的寬度設定在檢查對象圖案的圖案寬度以下的情 況,藉由第1實施形態例的感測電極1 5即可一目瞭然。 另外,在如上述詳細說明之第2實施形態例中,說明了 被截止的感測電極為第2感測電極24,但是,利用在與鄰 接接受檢查對象圖案的鄰接檢查對象圖案的相反側設置檢 測來自鄰接的第2鄰接檢查對象圖案的檢查信號的第3感 測電極,即可同時檢查與鄰接於接受檢查對象圖案的兩鄰 的2個鄰接檢查對象圖案的短路。 另夕卜,當然設於感測器2 0的感測電極,僅為第1感測 電極2 2或僅為第2感測電極2 4,仍無問題,或是,設置3 個以上的被截止的感測電極亦可。 (第3發明之實施形態例) 以上的說明中,說明了以橫過檢查對象圖案的端部的方 26 312/發明說明書(補件)/93-02/92133778 1247904 式使感測電極2 5及供給電極3 5移動,以檢測不良圖案的 例子。但是,本發明並不限於以上之例子,例如,也可為 沿著檢查對象圖案移動控制感測電極2 5或供給電極3 5的 一者的構成,在以上述控制特定不良圖案後,於不良圖案 位置定位兩電極,並沿著不良圖案使一電極移動於圖案 上,讀入感測電極2 5的檢測信號值,檢測該檢測信號值的 變化位置,並作為圖案不良產生部予以特定。 以下,參照圖6至圖1 0說明如此般構成之本發明之第3 實施形態例。圖6為說明本發明之第3實施形態例之檢查 裝置的構成圖,圖7為說明本發明之第3實施形態例之檢 查裝置的電極移動控制用的說明圖,圖8為說明第3實施 形態例之圖案不良部位特定控制用的流程圖,圖9為說明 第3實施形態例之在感測電極2 5的不良圖案檢測信號波形 的例圖,圖1 0為說明不良圖案之感測電極2 5的檢測信號 波形的例圖。 圖6中,對於與上述第1實施形態例之圖1所示構成相 同的構成元件,則賦予相同的元件符號,並省略詳細說明。 圖6中,在檢測部2 0安裝有攝影機2 6。該攝影機2 6係 為了顯示所攝影的圖像,而連接於如控制部6 0的顯示部 6 6,用於觀察圖案不良產生部位的不良發生狀態。另外, 在檢查信號供給部3 0設置有安裝著供給檢查信號的檢查 信號供給探針的探針接觸機構3 2。該探針接觸機構3 2與 檢查信號供給探針係用於確實進行圖案不良產生部位的特 定0 27 312/發明說明書(補件)/93-02/92133778 1247904 圖 著 沿 僅 不 為 成 構 係 人 器 機 量 標 中 例 態 形 施 3 第 在 極 電 制 控 動 移 可 向 方 長 案 圖 的 11 圖 著 沿 還 向 方 頭 箭 的 控 查 檢 的 示 所 2 圖 之 例 態 形 施 實 11 第 述 上 行 進 先 首 果 結 的 查 檢 於 〇 良 不 有 否 是 案 圖 象 對 查 檢 該 查 檢 制 位 案 象 對 查 檢 該 將 則 案 圖 象 對 查 檢 的 線 斷 為 案 圖 如 例 如 例 於 持 保 置 内 等 定 特 置 位 案 圖 良 不 該 將 並 案 圖 良 不 出 測 檢 般 此 如 當 行定極 移特電 則位測 , 部 感 時良與 示 。 所理① 處之 定 7 特圖 位如 部 , 良 中 不 理 至 處 不 之 例 態 形 施 實 3 第 在 5 3 極 ^¾ 供 使 初 最 處 置 位 案 圖 的 良 不 為 斷 判 被 至 移 步 同 5 2 極號 電 信 測查 感檢 將取 , 讀 示 序 所順 ②邊 之動 7 移 圖邊 D β, 士 咅 , 端 著 一 接另 著 向 部 端 案 圖 從 急 號 信 取 讀 得 求 位 的 化 變 準 位 低 在 或 號 信 測 檢 出 測 檢 未 C' 置 位 的 化 變 遽 置 置 位 良 不 案 圖 為 定 特 置 位 該 將 並 態 認 形確 施, 實理 3 處 第的 在 4 11 O S 明驟 說 步 行之 進 例 細 態 詳形 程施 流實 之 1 8 第 圖述 照 上 參續 , 接 下 , 以 中 例 保存於R A Μ 6 3的檢測信號,調查是否有檢測出不良圖案, 在未檢測出不良圖案的情況,便移行至步驟S 2 0的處理。 另一方面,在檢測出檢查結果不良圖案的情況,則減弱 信號供給部6 5,同時,與步驟S 3相同將電極定位於初期 位置並移行至圖8所示的處理。然後,在圖8所示的處理 結束後只要移行至步驟S 2 0的處理即可。 在第3實施形態例中,最初如圖8所示步驟S 3 1所示, 特定由圖2所示步驟S 1至步驟S1 6的處理所檢測的不良圖 28 312/發明說明書(補件)/93-02/92133778 1247904 案位置。例如,圖9顯示一部分的圖案斷線的情況的檢測 信號波形。在圖9所示之例子中,顯示進行類比信號處理 電路5 0的信號處理前的信號。在圓圈所示的部位,為檢測 出圖案的打開(2根圖案斷線中的情況)的信號波形。 接著,在步驟S 3 3,起動機器人控制器7 0,以控制標量 機器人8 0,邊使感測電極2 5及供電電極3 5同步邊移動至 不良圖案位置。此時,為進行高感的檢測,以使感測電極 25及供電電極35的寬度方向的中心來至不良圖案之寬度 方向大致中央位置與將檢查對象定位於檢查位置的方式進 行定位(圖7之①的控制)。 接著,進入步驟S 3 5,起動信號供給部6 5並將檢查信號 施加於供給電極3 5,將檢查信號供給不良圖案。然後,起 動機器人控制器7 0,沿著圖案將感測電極2 5向供電電極 35方向移動(圖7之②的控制)。 同時,如步驟S 4 0所示,讀取來自感測電極2 5的檢測 信號。然後在步驟S 4 2調查來自感測電極2 5的檢測信號值 是否有大的變化。在無大的變化的情況,返回步驟S37, 繼續感測電極25的移動。 另一方面,在步驟S42,在來自感測電極25的檢測信號 值有大的變化的情況,進入步驟S 4 4,求得來自感測電極 2 5的檢測信號發生大變化的起始位置與大變化消失時的 位置,並將此等位置的中間位置特定為圖案不良部位。 圖1 0顯示感測電極2 5的檢測信號波形的例子。如圖1 0 所示,直至斷線部位為止,由供給電極3 5所供給的檢查信 29 312/發明說明書(補件)/93-02/92133778 1247904 號未到達感測電極2 5,檢測信號值也低,但當超過斷線部 位時,因為有所供給的檢查信號到達,因此檢測信號值也 上升。例如,因為將來自感測電極2 5的檢測信號發生大變 化的起始位置與大變化消失時的位置的中間位置特定為圖 案不良部位,因此,可將該傾斜部分的大致中間的處所特 定為圖案不良部位。 又,以上之說明係使感測電極2 5移動於供給電極方向, 但不一定是感測電極2 5,也可將供給電極3 5移動於感測 電極2 5方向。 根據如上述說明之第3實施形態例,可與上述第1實施 形態例相同以非接觸方式進行高精度的圖案的良否檢查, 同時,利用於X - Y的2方向移動控制感測電極,不僅僅停 留在是否有不良圖案的檢查,還可特定具體的不良部位。 因此,例如還可根據需要在短時間内進行不良部位的修復。 另外,在上述不良部位的修復中,為判斷可否修復,最 好可觀察圖案不良產生部位的不良發生狀態。例如,若知 道在圖案不良產生部位僅黏附灰塵等時,便判斷可現場作 修復,另外,若為致命的不良時則判斷不可修復。為觀察 該圖案不良產生部位的不良發生狀態,使用安裝於檢測部 2 0的攝影機2 6。該攝影機2 6係安裝於檢測部2 0,因此在 步驟S 3 5開始攝影機2 6的攝影,在步驟S 4 0及步驟S 4 2 的進行期間繼續攝影,一直到步驟S 4 2的圖案不良部位的 特定後仍繼續攝影。如此般所攝影的圖案不良產生部位的 圖像,在攝影的續行中及圖案不良產生部位的特定後均顯 30 312/發明說明書(補件)/93-02/92133778 1247904 示於顯示部6 6,用於觀察該圖案不良產生部位的不良發生 狀態。 另外,圖案的不良部位的狀態,係從完全斷線或短路中 的狀態至部分斷線及灰塵等的黏附物引起的部分短路的狀 態,而有各種的狀態。在該部分斷線及部分短路的狀態, 在感測電極2 5與供給電極3 5兩方非接觸的檢查中,有無 法獲得圖1 0所示的檢測信號波形的情況。在如此的情況, 若使探針接觸機構3 2作動,使檢查信號供給探針接觸於不 良圖案的一端部後,沿著不良圖案將感測電極25移動於圖 案上,便可確實特定圖案不良產生部位。 又,也可取代不良圖案的另一端部的感測電極2 5,而使 用接觸型的感測探針,使該感測探針接觸於另一端部,將 非接觸的供給電極3 5移動於不良圖案的另一端部的感測 探針方向。 (第4發明之實施形態例) 以上的說明中,說明了藉由標量機器人8 0而主要於X _ Y 方向以2維控制感測電極2 5及供給電極3 5的移動控制的 例子。這是因為檢查對象基板為液晶面板,且為玻璃基板 而平滑度高的緣故。而在檢查圖案厚度厚、或檢查基板為 大型而無法無視表面凹凸的影響的基板的情況,可為不僅 進行以上的2維控制,還於上下方向(Z方向)進行控制的 構成,只要為即使具有檢查對象基板的凹凸仍可獲得良好 的檢查結果的構成即可。 以下,參照圖1 1說明構成為不僅進行2維控制,還進 31 312/發明說明書(補件)/93-02/92133778 1247904 行上下方向(Z方向)的控制的本發明的第4實施形態例。 圖1 1為說明本發明之第4實施形態例之檢查裝置的構成用 的說明圖。圖1 1中,對於與上述第1實施形態例之圖1 所示構成相同的構成元件,則賦予相同的元件符號,並省 略詳細說明。 圖1 1中,在檢測部2 0安裝有雷射變位計2 8,而在檢查 信號供給部30安裝著雷射變位計38,具備從兩變位計28、 3 8的檢測結果測定檢測部2 0、檢查信號供給部3 0與檢查 對象基板表面距離的距離測定部9 0。 另外,標量機器人8 0除可2維控制檢測部2 0、檢查信 號供給部30外,還構成為可於垂直於圖的方向(上下方向) 進行定位控制。 然後,在具備以上構成之第4實施形態例中,距離測定 部9 0與電極的移動同時起動雷射變位計2 8、3 8,測定各 電極與檢查對象基板表面的距離,並將測定結果輸出於控 制部6 0。另外,控制部6 0係將來自距離測定部9 0的電極 移動一定距離期間的測定距離的測定結果平均化,以平均 化的距離成為一定的方式來控制電極與圖案間的距離。 例如,根據檢查對象圖案的3根量的距離的平均,來控 制電極、基板表面間的距離。 如此般將距離平均化,是為了防止急遽的Z方向控制而 成為較緩的控制,以減輕雜訊、測定誤差等的影響的目的。 如此般不僅在X-Y方向還在Z方向進行控制,尤其對大 型基板的檢查很有效。例如,在大型平板顯示器面板表面 312/發明說明書(補件)/93-02/92133778 32 1247904 圖1 〇為說明不良圖案之感測電極的檢測信號波形的例 圖。 圖1 1為說明本發明之第4實施形態例之檢查裝置的構 成用的說明圖。 (元件符號說明)312/Inventive Manual (Supplement)/93-02/92133778 1247904 The configuration of the other end position of the adjacent pattern. Hereinafter, a second embodiment of the present invention configured as above will be described with reference to Fig. 5 . Fig. 5 is an explanatory view for explaining the configuration of an inspection apparatus according to a second embodiment of the present invention. In FIG. 5, the same components as those in the first embodiment of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 5, the first sensing electrode 2 2 and the second sensing electrode 24 are provided on at least the front end surface of the sensor unit 20. The first sensing electrode 2 2 and the second sensing electrode 24 are disposed apart only by the pattern pitch amount of the inspection target pattern, and the first sensing electrode 2 2 is provided when the supply electrode 35 actually supplies the inspection signal. The other end position of the inspection target pattern is received, and the second sensing electrode 24 is provided at the other end position of the adjacent inspection target pattern of the inspection target pattern when the supply electrode 35 actually supplies the inspection signal in the OFF state. The width of the first sensing electrode 2 2 and the second sensing electrode 24 is preferably equal to or less than the width of the pattern of the inspection target pattern. This is because the first sensing electrode 2 2 performs a disconnection inspection of the inspection target pattern, and the second sensing electrode 24 performs a short-circuit inspection of the inspection target pattern and the adjacent inspection target pattern to realize very High precision inspection. Specifically, when the width of the first sensing electrode 2 2 is equal to or less than the pattern width of the inspection target pattern, even if the inspection target pattern is broken and the inspection target pattern is short-circuited with the adjacent inspection target pattern, 1 The sensing electrode 2 2 is extremely less susceptible to detection signals from the adjacent inspection target pattern 312 / invention manual (supplement) / 93-02/92133778 25 1247904 from the inspection target pattern passing through the short-circuit portion into the adjacent inspection target pattern. Impact. In addition, when the width of the second sensing electrode 24 is equal to or less than the pattern width of the inspection target pattern, even if the inspection target pattern is not broken or short-circuited, or the inspection target pattern is not broken, it is accepted. When the inspection target pattern is short-circuited with the adjacent inspection target pattern, the second sensing electrode 24 is still extremely unlikely to be affected by the inspection signal from the inspection target pattern. In the same manner, the presence or absence of the disconnection of the pattern to be inspected and the presence or absence of a short circuit with the adjacent inspection target pattern are observed regardless of the disconnection or short-circuit of the first sensing electrode 2 2 and the second sensing electrode 24 . In the case of existence, very high precision inspections can be achieved. However, the width of the first sensing electrode 2 2 and the second sensing electrode 24 may not necessarily be set to be smaller than the pattern width of the inspection target pattern, and the sensing electrode 15 of the first embodiment may be used. It can be seen at a glance. In the second embodiment, which is described in detail above, the sense electrode that is turned off is the second sensing electrode 24, but is disposed on the opposite side of the adjacent inspection target pattern adjacent to the inspection target pattern. By detecting the third sensing electrode from the inspection signal of the adjacent second adjacent inspection target pattern, it is possible to simultaneously check for short-circuiting with two adjacent inspection target patterns adjacent to the adjacent inspection target pattern. In addition, of course, the sensing electrodes provided in the sensor 20 are only the first sensing electrode 22 or only the second sensing electrode 24, and there is still no problem, or more than three are provided. The sensing electrodes that are turned off can also be used. (Example of the third embodiment of the invention) In the above description, the sensing electrode 25 is described in the manner of the side 26 312 / the invention specification (supplement) / 93-02/92133778 1247904 traversing the end of the inspection target pattern. And the example in which the supply electrode 35 moves to detect a defective pattern. However, the present invention is not limited to the above examples. For example, the configuration of controlling one of the sensing electrode 25 or the supply electrode 35 may be moved along the inspection target pattern, and after the specific defective pattern is controlled as described above, it may be defective. The pattern position positions the two electrodes, moves an electrode on the pattern along the defective pattern, reads the detection signal value of the sensing electrode 25, detects the change position of the detection signal value, and specifies it as a pattern defect generation unit. Hereinafter, a third embodiment of the present invention configured as described above will be described with reference to Figs. 6 to 10 . Fig. 6 is a view showing a configuration of an inspection apparatus according to a third embodiment of the present invention, and Fig. 7 is an explanatory view for explaining electrode movement control of the inspection apparatus according to the third embodiment of the present invention, and Fig. 8 is a view for explaining the third embodiment. FIG. 9 is a view for explaining a waveform of a defective pattern detection signal of the sensing electrode 25 according to the third embodiment, and FIG. 10 is a sensing electrode for explaining a defective pattern. An example of the detection signal waveform of 2 5 . In FIG. 6, the same components as those in the first embodiment of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In Fig. 6, a camera 26 is attached to the detecting unit 20. In order to display the photographed image, the camera 26 is connected to the display unit 6 6 as the control unit 60 for observing the defective occurrence state of the pattern defective portion. Further, the inspection signal supply unit 30 is provided with a probe contact mechanism 3 2 to which an inspection signal supply probe for supplying an inspection signal is attached. The probe contact mechanism 32 and the inspection signal supply probe are used to specifically perform the pattern defect generation portion. The specific 0 27 312/invention specification (supplement)/93-02/92133778 1247904 shows that the edge is only a structural system. In the case of the human body machine, the example is applied in the case of the singularity of the singularity of the singularity of the singularity of the syllabus. The inspection of the first fruit of the first step is not the case of the case. The image of the case is checked against the image of the inspection and the image of the case is checked. In the case of the internal and special fixed-point maps, it should not be tested in the case of the case, such as when the line is fixed, the special position is measured, and the sense is good. The 7th position of the 1st place is like the Ministry, and the case of the case is not ruined. The 3rd is the 3 3 pole ^3⁄4. The best position of the first place is not judged. Stepping with the 5 2 pole telecommunications survey will be taken, read the sequence of the 2 sides of the move 7 shift map edge D β, gentry, end with another to the end of the case map from the urgent letter The change level of the read position is low. The number of the test is not detected. The change of the C' position is not set. If the map is set to the fixed position, the merged state will be confirmed. The 3rd part of the 4th 11th OS said that the walk is in the form of a fine-grained detailed process. The first step is to continue to follow, and then the test signal stored in the RA Μ 6 3 is saved in the middle example. It is investigated whether or not a defective pattern has been detected. If the defective pattern is not detected, the process proceeds to step S20. On the other hand, when the inspection result defective pattern is detected, the signal supply unit 65 is attenuated, and the electrode is positioned at the initial position and moved to the processing shown in Fig. 8 in the same manner as in the step S3. Then, after the processing shown in Fig. 8 is completed, it is only necessary to move to the processing of step S20. In the third embodiment, as shown in step S3 1 of FIG. 8, the defect map 28 312/invention specification (supplement) detected by the processing of step S1 to step S16 shown in FIG. 2 is specified. /93-02/92133778 1247904 Location. For example, Fig. 9 shows a detection signal waveform in the case where a part of the pattern is broken. In the example shown in Fig. 9, the signal before the signal processing of the analog signal processing circuit 50 is displayed. In the portion shown by the circle, a signal waveform for detecting the opening of the pattern (in the case of two pattern disconnections) is detected. Next, in step S33, the robot controller 70 is started to control the scalar robot 80, and the sensing electrode 25 and the power supply electrode 35 are moved to the defective pattern position while being synchronized. At this time, in order to detect the high-sensitivity, the center of the width direction of the sensing electrode 25 and the power supply electrode 35 is positioned to the substantially central position in the width direction of the defective pattern and the inspection target is positioned at the inspection position (FIG. 7). The control of 1). Next, the process proceeds to step S35, the signal supply unit 65 is activated, and an inspection signal is applied to the supply electrode 35, and the inspection signal is supplied to the defective pattern. Then, the robot controller 70 is activated to move the sensing electrode 25 in the direction of the power supply electrode 35 along the pattern (control of Fig. 2-2). At the same time, as shown in step S40, the detection signal from the sensing electrode 25 is read. Then, it is investigated in step S42 whether there is a large change in the value of the detection signal from the sensing electrode 25. In the case where there is no large change, the flow returns to step S37 to continue the movement of the sensing electrode 25. On the other hand, in step S42, if there is a large change in the value of the detection signal from the sensing electrode 25, the process proceeds to step S4, and the starting position of the detection signal from the sensing electrode 25 is largely changed. The position at which the large change disappears, and the intermediate position of the positions is specified as a defective portion of the pattern. FIG. 10 shows an example of the detection signal waveform of the sensing electrode 25. As shown in FIG. 10, the detection signal 29 312 supplied by the supply electrode 35 / the invention manual (supplement) / 93-02/92133778 1247904 does not reach the sensing electrode 25 until the disconnection portion, the detection signal The value is also low, but when the disconnection portion is exceeded, the detected signal value also rises because the supplied inspection signal arrives. For example, since the initial position of the position where the detection signal from the sensing electrode 25 is largely changed and the position where the large change disappears are specified as the defective portion of the pattern, the substantially intermediate portion of the inclined portion can be specified as Poorly patterned parts. Further, in the above description, the sensing electrode 25 is moved in the direction of the supply electrode, but it is not necessarily the sensing electrode 25, and the supply electrode 35 may be moved in the direction of the sensing electrode 25. According to the third embodiment as described above, it is possible to perform high-precision inspection of the pattern in a non-contact manner as in the first embodiment, and to control the sensing electrodes in the two-direction movement of XY. Only stay in the inspection of whether there is a bad pattern, but also specific specific bad parts. Therefore, for example, repair of a defective portion can be performed in a short time as needed. Further, in the repair of the defective portion described above, in order to determine whether or not the repair is possible, it is preferable to observe the state of occurrence of the defective portion of the pattern defect. For example, if it is known that only dust or the like adheres to a defective portion of the pattern, it is judged that it can be repaired on site, and if it is fatal, it is judged to be unrepairable. In order to observe the state of occurrence of the defective portion of the pattern, the camera 26 attached to the detecting unit 20 is used. Since the camera 26 is attached to the detecting unit 20, the shooting of the camera 26 is started in step S35, and the shooting is continued during the progress of step S40 and step S4, until the pattern is defective in step S42. Photography continues after the specificity of the site. The image of the portion where the pattern defect is photographed as described above is displayed in the continuation of the photographing and the specific portion of the pattern defect occurrence 30 312 / invention specification (supplement) / 93-02/92133778 1247904 is shown on the display portion 6 6. It is used to observe the occurrence state of the defective portion of the pattern. Further, the state of the defective portion of the pattern is in a state of being partially short-circuited from a state of complete disconnection or short-circuiting to a partial disconnection or adhesion of dust, and the like. In the state in which the partial disconnection and partial short-circuit are performed, whether or not the detection signal waveform shown in Fig. 10 is obtained in the inspection in which both the sensing electrode 25 and the supply electrode 35 are not in contact with each other. In such a case, when the probe contact mechanism 3 2 is actuated, the inspection signal supply probe is brought into contact with one end portion of the defective pattern, and then the sensing electrode 25 is moved along the pattern in the defective pattern to confirm the specific pattern defect. The site of production. Alternatively, instead of the sensing electrode 25 at the other end of the defective pattern, a contact type sensing probe may be used to bring the sensing probe into contact with the other end portion, and the non-contact supply electrode 35 may be moved to The direction of the sensing probe at the other end of the defective pattern. (Example of Embodiment of the Fourth Invention) In the above description, an example in which the movement control of the sensing electrode 25 and the supply electrode 35 is controlled in two dimensions mainly in the X_Y direction by the scalar robot 80 has been described. This is because the inspection target substrate is a liquid crystal panel and is a glass substrate, and the smoothness is high. In the case where the thickness of the pattern is large or the substrate is large and the influence of the surface unevenness cannot be ignored, it is possible to control not only the above two-dimensional control but also the vertical direction (Z direction), and it is possible to It suffices that the unevenness of the substrate to be inspected can still obtain a good inspection result. Hereinafter, a fourth embodiment of the present invention configured to control not only two-dimensional control but also 31 312/invention specification (supplement)/93-02/92133778 1247904 in the vertical direction (Z direction) will be described with reference to FIG. example. Fig. 11 is an explanatory view for explaining the configuration of an inspection apparatus according to a fourth embodiment of the present invention. In the first embodiment, the same components as those in the first embodiment of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In Fig. 11, a laser displacement gauge 28 is attached to the detecting unit 20, and a laser displacement gauge 38 is attached to the inspection signal supply unit 30, and the detection results of the two displacement gauges 28 and 38 are measured. The detecting unit 20 and the distance measuring unit 90 that inspects the distance between the signal supply unit 30 and the surface of the inspection target substrate. Further, the scalar robot 80 is configured to perform positioning control in a direction perpendicular to the drawing (up-and-down direction) in addition to the two-dimensional control detecting unit 20 and the inspection signal supply unit 30. Then, in the fourth embodiment having the above configuration, the distance measuring unit 90 and the movement of the electrodes simultaneously activate the laser displacement gauges 28 and 38, and measure the distance between each electrode and the surface of the inspection target substrate, and measure the distance. The result is output to the control unit 60. Further, the control unit 60 averages the measurement results of the measurement distances during which the electrodes from the distance measuring unit 90 are moved by a certain distance, and controls the distance between the electrodes and the pattern so that the averaged distance becomes constant. For example, the distance between the electrode and the surface of the substrate is controlled based on the average of the distances of the three amounts of the inspection target pattern. In this way, the distance is averaged in order to prevent the rapid Z-direction control and to achieve gentle control, so as to reduce the influence of noise and measurement errors. In this way, not only the X-direction is controlled in the Z direction, but also the inspection of large substrates is effective. For example, in the large flat panel display panel surface 312 / invention specification (supplement) / 93-02 / 92133778 32 1247904 Fig. 1 is an illustration of a detection signal waveform of a sensing electrode of a defective pattern. Fig. 11 is an explanatory view for explaining the configuration of an inspection apparatus according to a fourth embodiment of the present invention. (component symbol description)

10 玻 璃 製 基 板 15 導 電 圖 案 20 第 1 感 測 器 22 第 1 感 測 電 極 24 第 2 感 測 電 極 25 感 測 電 極 26 攝 影 機 28 雷 射 變 位 計 30 檢 查 信 號 供 應 部 32 探 針 接 觸 機 構 35 供 給 電 極 38 雷 射 變 位 計 50 類 比 信 號 處 理 電路 51 放 大 器 52 帶 通 渡 波 器 53 整 流 電 路 54 平 滑 電 路 60 控 制 部 61 電 腦 (CPU) 312/發明說明書(補件)/93-02/92133778 34 124790410 Glass substrate 15 Conductive pattern 20 1st sensor 22 1st sensing electrode 24 2nd sensing electrode 25 Sensing electrode 26 Camera 28 Laser displacement meter 30 Inspection signal supply part 32 Probe contact mechanism 35 Supply electrode 38 Laser Displacement Meter 50 Analog Signal Processing Circuit 51 Amplifier 52 Bandpass Ferry Rectifier 53 Rectifier Circuit 54 Smoothing Circuit 60 Control Unit 61 Computer (CPU) 312/Invention Manual (Supplement)/93-02/92133778 34 1247904

6 2 ROM6 2 ROM

63 RAM 64 A/D變換器 6 5 信號供給部 6 6 顯示部 7 0 機器人控制器 8 0 標量機器人 312/發明說明書(補件)/93-02/9213377863 RAM 64 A/D converter 6 5 Signal supply unit 6 6 Display unit 7 0 Robot controller 8 0 Scalar robot 312/Invention manual (supplement)/93-02/92133778

Claims (1)

修(受)正本 94. 6. 28 替換本 拾、申請專利範圍: 1. 一種電路圖案檢查裝置,係從檢查對象區域的兩端附 近形成為行狀的檢查對象圖案的上述檢查對象區域的一端 供給交流的檢查信號,從另一端檢測來自上述檢查對象圖 案的信號以檢查上述檢查對象圖案者,其特徵為具備: 供給機構,具有供給電極用以從上述檢查對象圖案的檢 查對象區域的一端將上述檢查信號供給上述檢查對象圖 案; 檢測機構,具有檢測電極用以檢測來自上述檢查對象圖 案的信號;及 移動機構,使上述供給機構的供給電極與上述檢測機構 的檢測電極從上述檢測對象圖案離開,且橫過移動於上述 檢查對象區域的兩端附近的行狀圖案部。 2. 如申請專利範圍第1項之電路圖案檢查裝置,其中, 上述檢查對象圖案係為在基板上以指定寬度形成大致棒狀 的導電性圖案。 3 .如申請專利範圍第1項之電路圖案檢查裝置,其中, 上述檢測電極的寬度至少為檢查對象圖案的2行程度的寬 度。 4 .如申請專利範圍第1項之電路圖案檢查裝置,其中, 上述檢測機構具備: 第1檢測電極,係配設在可於一端部位置藉由上述供給 電極供給檢查信號的檢查對象圖案的另一端部位置上;及 第2檢測電極,係配設在與可於一端部位置藉由上述供 36 326\總檔\92\92133778\92133778(替換)-1 1247904 給電極供給檢查信號之檢查對象圖案鄰接的檢查對象圖案 的另一端部位置上。 5.如申請專利範圍第4項之電路圖案檢查裝置,其中, 上述第1檢測電極的寬度係為檢查對象圖案的圖案寬度以 下。 6 .如申請專利範圍第4或5項之電路圖案檢查裝置,其 中,上述第2檢測電極的寬度係為檢查對象圖案的圖案寬 度以下。 7 .如申請專利範圍第1項之電路圖案檢查裝置,其中, 上述移動機構係在使上述供給機構的供給電極面及上述檢 測機構的檢測電極面,與上述檢查對象圖案電容耦合的狀 態,橫過移動於上述檢查對象區域的兩端附近的行狀部分。 8 .如申請專利範圍第1項之電路圖案檢查裝置,其中, 還具備判斷機構,係在依上述檢測機構的檢測結果處於指 定範圍的情況判斷檢查對象圖案為正常,而在檢查結果超 出指定範圍的情況則判斷檢查對象圖案為不良。 9.如申請專利範圍第8項之電路圖案檢查裝置,其中, 還具備: 第2移動機構,在上述判斷機構判斷為不良的檢查對象 圖案的兩端,使上述供給機構的供給電極與上述檢測機構 的檢測電極移動,使上述供給機構的供給電極或上述檢測 機構的檢測電極的任一者向著另一者沿圖案移動;及 位置檢測機構,基於上述檢測機構的檢測結果檢測其檢 測變化位置。 37 3 26\總檔\92\92133778\92133778(替換)] 1247904 1 0 .如申請專利範圍第9項之電路圖案檢查裝置,其中, 還具備接觸機構俾使上述供給機構的供給電極或上述檢測 機構的檢測電極的任一另一者接觸於檢查對象圖案。 1 1 .如申請專利範圍第9項之電路圖案檢查裝置,其中, 在藉由上述第2移動機構移動的上述供給電極及上述檢測 電極的至少一者上具備攝影機構。 1 2 .如申請專利範圍第9項之電路圖案檢查裝置,其中, 進一步具備分離距離控制機構用以定位控制藉由上述第2 移動機構移動的上述供給電極及上述檢測電極的至少一 者、與檢查對象圖案的分離距離成為大致一定。 1 3.如申請專利範圍第1項之電路圖案檢查裝置,其中, 進一步具備分離距離控制機構用以定位控制藉由上述移動 機構移動的上述供給電極及上述檢測電極的至少一者,與 檢查對象圖案的分離距離成為大致一定。 1 4.如申請專利範圍第1 2或1 3項之電路圖案檢查裝 置,其中,上述分離距離控制機構具備與上述檢測電極或 上述供給電極一起移動於上述檢測電極或供給電極附近位 置的變位計; 根據上述變位計的檢測結果,以上述檢測電極或供給電 極與檢查對象的分離距離成為大致一定的方式在垂直於上 述檢查對象的方向進行定位控制。 1 5 .如申請專利範圍第1 4項之電路圖案檢查裝置,其 中,上述分離距離控制機構,係將上述檢查對象圖案的複 數間距間的上述變位計的檢測結果的平均變位,作為上述 38 326\總檔\92\92133778\92133778(替換)-1 1247904 檢測電極或上述供給電極與檢查對象的分離距離,而在垂 直於上述檢查對象的方向進行定位控制。 1 6 . —種電路圖案檢查方法,係於電路圖案檢查裝置中 具備供給機構,其具有從檢查對象區域的兩端附近形成為 行狀的檢查對象圖案的檢查對象區域的一端將檢查信號供 給上述檢查對象圖案的供給電極;及檢測機構,具有檢測 電極用以檢測來自上述檢查對象圖案的信號者,其特徵為 包含下述步驟: 將上述供給機構的供給電極與上述檢測機構的檢測電 極,維持在使上述供給機構的供給電極面及上述檢測機構 的檢測電極面,與上述檢測對象圖案的表面分離的狀態; 及使上述供給電極及上述檢測電極與上述檢查對象圖案, 橫過移動於上述檢查對象區域的兩端附近的行狀圖案部, 從上述檢查對象圖案的上述檢查對象區域的一端供給交流 的檢查信號,而從另一端檢測來自上述檢查對象圖案的信 號,以檢查上述檢查對象圖案。 1 7 .如申請專利範圍第1 6項之電路圖案檢查方法,其 中,上述電路圖案係為在基板上以指定寬度形成為大致棒 狀的導電性圖案。 1 8 .如申請專利範圍第1 6項之電路圖案檢查方法,其 中,上述檢測電極的寬度係至少設為檢查對象圖案的2行 程度的寬度,檢測來自與供給檢查信號的導電圖案鄰接的 導電圖案的信號,可檢測鄰接的導電圖案間的短路。 1 9 .如申請專利範圍第1 6項之電路圖案檢查方法,其 39 326\總檔\92\92133778\92133778(替換)-1 1247904 中,由上述檢測機構的第1檢測電極檢測從上述檢測電極 供給檢查信號的來自導電圖案的信號,便可檢測導電圖案 間的斷線;由上述檢測機構的第2檢測電極檢測與從上述 檢測電極供給檢查信號的導電圖案鄰接的來自導電圖案的 信號,可檢測鄰接之導電圖案間的短路。 2 0 .如申請專利範圍第1 6項之電路圖案檢查方法,其 中,以上述檢測機構從成為非檢測的檢測機構位置,來檢 測導電圖案的大致斷線部位的位置。 2 1 .如申請專利範圍第1 6項之電路圖案檢查方法,其 中,進而在依上述檢測機構的檢測結果處於指定範圍的情 況則判斷檢查對象圖案為正常,而在檢查結果超出指定範 圍的情況則判斷檢查對象圖案為不良。 2 2 .如申請專利範圍第2 1項之電路圖案檢查方法,其 中,上述判斷機構辨識並保持已判斷為不良的檢查對象圖 案位置,使上述供給機構的供給電極與上述檢測機構的檢 測電極移動至上述已辨識且判斷為不良的檢查對象圖案的 兩端部,使上述供給電極或上述檢測電極的任一者向著另 一者沿圖案移動,基於上述檢測機構的檢測結果,將變化 位置作為檢查對象圖案的不良位置。 2 3 .如申請專利範圍第2 2項之電路圖案檢查方法,其 中,使上述供給機構的供給電極或上述檢測機構的檢測電 極的任一另一者與檢查對象圖案接觸。 2 4 .如申請專利範圍第2 2項之電路圖案檢查方法,其 中,使備於上述供給電極或上述檢測電極的任一者的攝影 326\總檔\92\92133778\92133778(替換)-1 40 1247904 機構向著另一者沿圖案移動,攝影檢查對象圖案的不良位 置的不良狀態。 2 5 .如申請專利範圍第1 6至2 4項中任一項之電路圖案 檢查方法,其中,在上述檢測電極或上述供給電極附近位 置,配置與上述檢測電極或供給電極一起移動的變位計, 並根據上述變位計的檢測結果,以上述檢測電極或供給電 極與檢查對象的分離距離成為大致一定的方式在垂直於上 述檢查對象的方向進行定位控制以使上述檢測電極的結果 一定化。 2 6 .如申請專利範圍第2 5項之電路圖案檢查方法,其 中,將上述檢查對象圖案的複數間距間的上述變位計的檢 查結果的平均變位,作為上述檢測電極或上述供給電極與 檢查對象的分離距離,以進行與上述檢查對象的定位控制。 41 326\總檔\92\92133778\92133778(替換)-1The repairing and receiving of the original document 94. 6. 28 Replacing the original application, the scope of the patent application: 1. A circuit pattern inspection device is provided at one end of the inspection target region formed in a line-shaped inspection target pattern from the vicinity of both ends of the inspection target region. The inspection signal of the alternating current is detected from the other end of the inspection target pattern to inspect the inspection target pattern, and is characterized in that the supply means includes a supply electrode for the above-mentioned one end of the inspection target region of the inspection target pattern. The inspection signal is supplied to the inspection target pattern; the detection mechanism includes a detection electrode for detecting a signal from the inspection target pattern; and a moving mechanism that causes the supply electrode of the supply mechanism and the detection electrode of the detection mechanism to be separated from the detection target pattern. And the horizontal pattern portion that moves in the vicinity of both ends of the inspection target region is traversed. 2. The circuit pattern inspection device according to the first aspect of the invention, wherein the inspection target pattern is a conductive pattern having a substantially rod shape formed on a substrate with a predetermined width. 3. The circuit pattern inspection device according to claim 1, wherein the width of the detection electrode is at least a width of two lines of the inspection target pattern. (4) The circuit pattern inspection device according to the first aspect of the invention, wherein the detection means includes: a first detection electrode, which is disposed at an inspection target pattern that can supply an inspection signal to the supply electrode at one end position And the second detecting electrode is disposed at an end of the inspection target for supplying an inspection signal to the electrode at the one end position by the above-mentioned 36 326\total file\92\92133778\92133778 (replacement)-1 1247904 The other end portion of the pattern to be inspected adjacent to the pattern is positioned. 5. The circuit pattern inspection device according to claim 4, wherein the width of the first detecting electrode is below a pattern width of the inspection target pattern. 6. The circuit pattern inspection device according to claim 4, wherein the width of the second detecting electrode is equal to or less than a pattern width of the inspection target pattern. The circuit pattern inspection device according to the first aspect of the invention, wherein the moving mechanism is configured to capacitively couple the supply electrode surface of the supply mechanism and the detection electrode surface of the detection mechanism to the inspection target pattern. Moving over the line portion near the both ends of the inspection target area. 8. The circuit pattern inspection device according to the first aspect of the invention, further comprising: a determination means for determining that the inspection target pattern is normal when the detection result of the detection means is within a specified range, and the inspection result is out of the specified range In the case of the case, it is judged that the inspection target pattern is defective. 9. The circuit pattern inspection device according to claim 8, further comprising: a second moving mechanism that supplies the supply electrode of the supply mechanism and the detection at both ends of the inspection target pattern determined to be defective by the determination unit The detecting electrode of the mechanism moves such that either the supply electrode of the supply mechanism or the detecting electrode of the detecting means moves along the pattern toward the other; and the position detecting means detects the detected change position based on the detection result of the detecting means. The circuit pattern inspection device of claim 9 is further provided with a contact mechanism for supplying the supply electrode of the supply mechanism or the above detection. Any other of the detecting electrodes of the mechanism is in contact with the inspection target pattern. The circuit pattern inspection device according to claim 9, wherein at least one of the supply electrode and the detection electrode moved by the second movement mechanism is provided with an imaging mechanism. The circuit pattern inspection device according to claim 9, further comprising: a separation distance control unit for positioning and controlling at least one of the supply electrode and the detection electrode moved by the second movement mechanism; The separation distance of the inspection target pattern becomes substantially constant. 1. The circuit pattern inspection device according to claim 1, further comprising: a separation distance control unit for positioning and controlling at least one of the supply electrode and the detection electrode moved by the movement mechanism, and an inspection target The separation distance of the pattern is substantially constant. 1. The circuit pattern inspection device according to the first or second aspect of the invention, wherein the separation distance control means includes a displacement that moves in the vicinity of the detection electrode or the supply electrode together with the detection electrode or the supply electrode. According to the detection result of the displacement meter, the positioning control is performed in a direction perpendicular to the inspection target such that the separation distance between the detection electrode or the supply electrode and the inspection target is substantially constant. The circuit pattern inspection device according to claim 14, wherein the separation distance control means is an average displacement of the detection result of the displacement meter between the plurality of pitches of the inspection target pattern. 38 326\Total file\92\92133778\92133778 (replacement)-1 1247904 The detection electrode or the separation distance of the above-mentioned supply electrode from the inspection object is performed, and the positioning control is performed in a direction perpendicular to the inspection object. In the circuit pattern inspection device, the circuit pattern inspection device includes a supply mechanism that supplies an inspection signal to the inspection unit at one end of the inspection target region formed in a line shape from the vicinity of both ends of the inspection target region. a supply electrode of the target pattern; and a detecting means having a detecting electrode for detecting a signal from the inspection target pattern, comprising the steps of: maintaining the supply electrode of the supply mechanism and the detecting electrode of the detecting means a state in which the supply electrode surface of the supply mechanism and the detection electrode surface of the detection mechanism are separated from the surface of the detection target pattern; and the supply electrode, the detection electrode, and the inspection target pattern are moved across the inspection object The line pattern portion in the vicinity of both ends of the region is supplied with an AC inspection signal from one end of the inspection target region of the inspection target pattern, and a signal from the inspection target pattern is detected from the other end to inspect the inspection target pattern. The circuit pattern inspection method of claim 16, wherein the circuit pattern is a conductive pattern formed on the substrate in a substantially rod shape with a predetermined width. The circuit pattern inspection method of claim 16, wherein the width of the detection electrode is at least a width of two lines of the inspection target pattern, and the conduction from the conductive pattern adjacent to the conductive pattern to which the inspection signal is supplied is detected. A patterned signal that detects a short between adjacent conductive patterns. 1 9 . In the circuit pattern inspection method of claim 16 of the patent application, 39 326 \ total file \92\92133778\92133778 (replacement)-1 1247904, the first detection electrode of the above detection mechanism detects from the above detection The electrode is supplied with a signal from the conductive pattern of the inspection signal to detect a disconnection between the conductive patterns, and the second detecting electrode of the detecting means detects a signal from the conductive pattern adjacent to the conductive pattern from which the inspection electrode is supplied with the inspection signal. A short circuit between adjacent conductive patterns can be detected. A method of inspecting a circuit pattern according to claim 16 of the patent application, wherein the detecting means detects a position of a substantially broken portion of the conductive pattern from a position of the detecting means that is not detected. In the case of the circuit pattern inspection method of claim 16, wherein the inspection target pattern is normal according to the detection result of the detection mechanism, and the inspection result is out of the specified range. Then, it is judged that the inspection target pattern is defective. The circuit pattern inspection method of claim 21, wherein the determination means recognizes and holds the position of the inspection target pattern that has been determined to be defective, and moves the supply electrode of the supply mechanism and the detection electrode of the detection mechanism The both ends of the supply electrode or the detection electrode are moved along the pattern to the other end of the inspection target pattern that has been identified and determined to be defective, and the change position is used as an inspection based on the detection result of the detection mechanism. Bad position of the object pattern. The circuit pattern inspection method according to claim 2, wherein the other of the supply electrode of the supply means or the detection electrode of the detection means is brought into contact with the inspection target pattern. The method of inspecting a circuit pattern according to the second aspect of the patent application, wherein the photographing 326/total file of the supply electrode or the detecting electrode is used for the image 326\total file\92\92133778\92133778 (replacement)-1 40 1247904 The mechanism moves along the pattern toward the other, and the defective state of the defective position of the image of the inspection object is photographed. The circuit pattern inspection method according to any one of the above-mentioned invention, wherein the position of the detecting electrode or the supply electrode is disposed at a position adjacent to the detecting electrode or the supply electrode According to the detection result of the displacement meter, positioning control is performed in a direction perpendicular to the inspection target such that the separation distance between the detection electrode or the supply electrode and the inspection target is substantially constant, so that the result of the detection electrode is fixed. . The circuit pattern inspection method of claim 25, wherein an average displacement of the inspection result of the displacement gauge between the plurality of pitches of the inspection target pattern is used as the detection electrode or the supply electrode The separation distance of the object is checked to perform positioning control with the above-described inspection object. 41 326\Total file\92\92133778\92133778 (replace)-1
TW92133778A 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method TWI247904B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382813 2002-11-30
JP2003436043A JP3978178B2 (en) 2002-11-30 2003-11-28 Circuit pattern inspection apparatus and circuit pattern inspection method

Publications (2)

Publication Number Publication Date
TW200417742A TW200417742A (en) 2004-09-16
TWI247904B true TWI247904B (en) 2006-01-21

Family

ID=32473767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92133778A TWI247904B (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method

Country Status (5)

Country Link
JP (1) JP3978178B2 (en)
KR (1) KR101013243B1 (en)
AU (1) AU2003302525A1 (en)
TW (1) TWI247904B (en)
WO (1) WO2004051290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467403B (en) * 2012-03-01 2015-01-01 Screen Holdings Co Ltd Area classifying device, substrate detecting device and method for classifying area

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417858B2 (en) * 2005-01-19 2010-02-17 オー・エイチ・ティー株式会社 Circuit pattern inspection apparatus and method
JP3989488B2 (en) * 2005-01-19 2007-10-10 オー・エイチ・ティー株式会社 Inspection device, inspection method, and sensor for inspection device
JP2006284545A (en) * 2005-04-04 2006-10-19 Quanta Display Inc Apparatus and method for inspecting and repairing circuit defect
JP2006300665A (en) * 2005-04-19 2006-11-02 Oht Inc Inspection device, and conductive pattern inspection method
JP5276774B2 (en) * 2005-11-29 2013-08-28 株式会社日本マイクロニクス Inspection method and apparatus
JP4730904B2 (en) * 2006-04-28 2011-07-20 日本電産リード株式会社 Substrate inspection apparatus and substrate inspection method
JP4861755B2 (en) * 2006-06-23 2012-01-25 オー・エイチ・ティー株式会社 Jig for position calibration of sensor part of circuit pattern inspection equipment
KR100799161B1 (en) * 2006-07-20 2008-01-29 마이크로 인스펙션 주식회사 Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
JP4634353B2 (en) * 2006-09-20 2011-02-16 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP2008249522A (en) * 2007-03-30 2008-10-16 Aisin Seiki Co Ltd Glass breakage detection apparatus
JP4644745B2 (en) 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP4723664B2 (en) * 2009-08-17 2011-07-13 株式会社エフカム Conductive pattern inspection apparatus and inspection method
JP5334197B2 (en) 2009-12-15 2013-11-06 株式会社ジャパンディスプレイ Capacitance input device, inspection method for capacitance input device, drive device for capacitance input device
JP5305111B2 (en) * 2011-01-21 2013-10-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP5432213B2 (en) * 2011-05-20 2014-03-05 株式会社ユニオンアロー・テクノロジー Pattern inspection device
JP5417651B1 (en) * 2013-01-08 2014-02-19 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP6311223B2 (en) * 2013-06-07 2018-04-18 日本電産リード株式会社 Inspection device, calibration method of inspection device, and inspection method
JP6202452B1 (en) * 2016-06-01 2017-09-27 オー・エイチ・ティー株式会社 Non-contact type substrate inspection apparatus and inspection method thereof
CN107567199B (en) * 2016-06-30 2020-01-07 Oht株式会社 Non-contact circuit pattern inspection and repair device
JP6476234B2 (en) * 2016-06-30 2019-02-27 オー・エイチ・ティー株式会社 Non-contact type circuit pattern inspection and repair device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693353B2 (en) * 1992-04-28 2005-09-07 松下電器産業株式会社 Electrical inspection machine for printed wiring boards
JPH05333357A (en) * 1992-05-29 1993-12-17 Idemitsu Kosan Co Ltd Method and device for inspecting stripe electrode pattern of liquid crystal display element
JPH07146323A (en) * 1993-11-22 1995-06-06 Inter Tec:Kk Method and device for inspecting glass substrate for liquid crystal display
JP3617013B2 (en) * 1994-08-15 2005-02-02 オー・エイチ・ティー株式会社 Electronic circuit board inspection apparatus and electronic circuit inspection method
JPH10206485A (en) * 1997-01-21 1998-08-07 Hioki Ee Corp Substrate inspecting apparatus
JP3311698B2 (en) * 1998-11-19 2002-08-05 オー・エイチ・ティー株式会社 Circuit board continuity inspection device, continuity inspection method, continuity inspection jig, and recording medium
JP2000221227A (en) * 1999-01-30 2000-08-11 Koperu Denshi Kk Apparatus and method for inspecting conductive pattern
JP2001084905A (en) * 1999-09-14 2001-03-30 Dainippon Printing Co Ltd Inspection device for electrode and method therefor
JP2002365325A (en) * 2001-06-11 2002-12-18 Oht Inc Circuit pattern inspection device, circuit pattern inspection method and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467403B (en) * 2012-03-01 2015-01-01 Screen Holdings Co Ltd Area classifying device, substrate detecting device and method for classifying area

Also Published As

Publication number Publication date
KR20050084001A (en) 2005-08-26
KR101013243B1 (en) 2011-02-09
JP3978178B2 (en) 2007-09-19
WO2004051290A1 (en) 2004-06-17
TW200417742A (en) 2004-09-16
AU2003302525A1 (en) 2004-06-23
JP2004191381A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
TWI247904B (en) Circuit pattern inspection device and circuit pattern inspection method
TWI431705B (en) Method for detecting the position of the needle end of the probe, the alignment method, the needle end position detecting device, and the probe device
JP2006300665A (en) Inspection device, and conductive pattern inspection method
US20060043153A1 (en) Circuit pattern inspection device and circuit pattern inspection method
JP2013164381A (en) Alignment method of substrate inspection device, and substrate inspection device
JPH11163047A (en) Manufacture of semiconductor device and apparatus therefor
JP2006234510A (en) Inspection device, inspection method, and positioning method
KR101384518B1 (en) Electrical conduction pattern inspection apparatus and inspection method
US8860456B2 (en) Non-destructive tilt data measurement to detect defective bumps
US7088107B2 (en) Circuit pattern inspection instrument and pattern inspection method
JP4652699B2 (en) Substrate inspection device, position adjustment method
JP4008949B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
WO2005064354A1 (en) Circuit pattern testing apparatus and circuit pattern testing method
JP4156968B2 (en) Probe apparatus and alignment method
JPH08327658A (en) Inspection equipment for substrate
US6952104B2 (en) Inspection method and apparatus for testing fine pitch traces
JPH01282829A (en) Wafer prober
JP4394113B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP3795373B2 (en) Inspection apparatus and inspection method for semiconductor device
JP5356749B2 (en) Substrate inspection apparatus and probe Z-axis offset acquisition method
JP2008014918A (en) Circuit pattern inspecting device and circuit pattern inspection method
JP5111294B2 (en) Circuit board inspection equipment
TWM570424U (en) Optical inspection apparatus
JP7395950B2 (en) Visual inspection equipment and visual inspection method
JP2979917B2 (en) IC chip positioning method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees