TW202336267A - 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置 - Google Patents

基板處理方法、半導體裝置之製造方法、程式及基板處理裝置 Download PDF

Info

Publication number
TW202336267A
TW202336267A TW111140791A TW111140791A TW202336267A TW 202336267 A TW202336267 A TW 202336267A TW 111140791 A TW111140791 A TW 111140791A TW 111140791 A TW111140791 A TW 111140791A TW 202336267 A TW202336267 A TW 202336267A
Authority
TW
Taiwan
Prior art keywords
film
mentioned
raw material
material gas
supplying
Prior art date
Application number
TW111140791A
Other languages
English (en)
Inventor
野原慎吾
石橋清久
新田貴史
中谷公彦
Original Assignee
日商國際電氣股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商國際電氣股份有限公司 filed Critical 日商國際電氣股份有限公司
Publication of TW202336267A publication Critical patent/TW202336267A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

可以達成良好的電荷保持特性及良好的階梯覆蓋特性。 [解決手段]具有:形成含有第1元素及第2元素之第1膜的工程;和形成與第1膜相鄰接,含有第1元素及第2元素,具有與第1膜之特性不同的特性的第2膜之工程,第1膜及第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成,(a1)供給含有第1元素之第1原料氣體的工程;和(b1)供給含有第2元素之反應氣體的工程,第1膜及第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成,(a2)供給包含第1元素且比起第1原料氣體熱分解溫度較高的第2原料氣體的工程;和(b2)供給含有第2元素之反應氣體的工程。

Description

基板處理方法、半導體裝置之製造方法、程式及基板處理裝置
本揭示係關於基板處理方法、半導體裝置之製造方法、程式及基板處理裝置。
作為非揮發性記憶體之NAND記憶體近年來朝向多層化,開發3DNAND。3DNAND之各記憶體單元具有保持資料之被稱為電荷捕獲氮化物(CTN)的氮化膜(例如,參照專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2017-117977號公報
[發明所欲解決之課題]
CTN被期待良好的電荷保持特性。再者,CTN係在狹長的溝之中均勻地被成膜,因此,被期待具備良好的階梯覆蓋特性。
本揭示之目的係提供能夠達成良好的電荷保持特性及良好的階梯覆蓋特性的技術。 [用以解決課題之手段]
若藉由本揭示之一態樣時,提供一種技術,具有: 形成含有第1元素及第2元素之第1膜的工程;和 形成與第1膜相鄰接,含有第1元素及第2元素,具有與第1膜之特性不同的特性的第2膜之工程, 第1膜及第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有第1元素之第1原料氣體的工程;和 (b1)供給含有第2元素之反應氣體的工程, 第1膜及第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成, (a2)供給包含第1元素比起第1原料氣體熱分解溫度較高的第2原料氣體的工程;和 (b2)供給含有第2元素之反應氣體的工程。 [發明之效果]
若藉由本揭示時,可以達成良好的電荷保持特性及良好的階梯覆蓋特性。
<本揭示之一態樣>
以下,針對本揭示之一態樣,一面參照圖1~圖6一面予以說明。另外,在以下之說明中所使用的圖面,皆為示意性者,圖面所示的各要素之尺寸關係、各要素之比率等不一定和現實者一致。再者,即使在複數圖面之彼此間,各要素之尺寸的關係、各要素之比率等也不一定要一致。
(1)基板處理裝置之構成 如圖1所示般,處理爐202具有作為加熱機構(溫度調整部)的加熱器207。加熱器207為圓筒形狀,藉由被支持於保持板,被垂直安裝。加熱器207也作為利用熱使氣體活性化(激發)的活性化機構(激發部)而揮發功能。
在加熱器207之內側,以與加熱器207呈同心圓狀地配設有反應管203。反應管203係由例如石英(SiO 2)或碳化矽(SiC)等之耐熱性材料所構成,被形成上端封閉且下端開口之圓筒形狀。在反應管203之筒中空部形成處理室201。處理室201被構成能夠收容作為基板的晶圓200。在該處理室201內進行對晶圓200的處理。
在處理室201內,噴嘴249a、249b被設置成貫通反應管203之下部側壁。在噴嘴249a、249b分別連接氣體供給管232a、232b。
在氣體供給管232a、232b,從氣流之上游側依序分別設置有作為流量控制器(流量控制部)之質量流量控制器(MFC)241a、241b及作為開關閥的閥體243a、243b。在較氣體供給管232a之閥體243a更下游側,連接氣體供給管232c。在氣體供給管232c,從氣流之上游側起依序,設置MFC241c及閥體243c。在較氣體供給管232a、232b之閥體243a、243b更下游側,分別連接氣體供給管232d、232e。在氣體供給管232d、232e,從氣流之上游側依序設置MFC241d、241e及閥體243d、243e之各者。
如圖2所示般,噴嘴249a、249b在反應管203之內壁和晶圓200之間的在俯視觀看下呈圓環狀之空間,分別被設置成從反應管203之內壁之下部沿著上部,朝向晶圓200之配列方向上方豎立。即是,噴嘴249a、249b係在配列晶圓200之晶圓配列區域之側方的水平地包圍晶圓配列區域之區域,分別被設置成沿著晶圓配列區域。在噴嘴249a、249b之側面分別設置有供給氣體之氣體供給孔250a、250b。氣體供給孔250a、250b之各者係以朝向反應管203之中心之方式開口,能夠朝向晶圓200供給氣體。氣體供給孔250a、250b係從反應管203之下部到上部被設置複數個。
含第1元素的第1原料氣體係從氣體供給管232a經由MFC241a、閥體243a、噴嘴249a而被供給至處理室201內。
包含第1元素,且比起第1原料氣體熱分解溫度較高的第2原料氣體係從氣體供給管232c經由MFC241c、閥體243c、噴嘴249a而被供給至處理室201內。
即是,作為第1原料氣體及第2原料氣體,分別使用彼此不同的原料氣體。
包含與第1元素不同的第2元素的反應氣體,從氣體供給管232b經由MFC241b、閥體243b、噴嘴249b而被供給至處理室201內。另外,反應氣體與原料氣體係分子構造(化學構造)不同的物質。
惰性氣體,例如氮(N 2)氣係從氣體供給管232d、232e分別經由MFC241d、241e、閥體243d、243e、氣體供給管232a、232b、噴嘴249a、249b而被供給至處理室201內。N 2氣體係作為淨化氣體、載體氣體、稀釋氣體等而發揮作用。
從各氣體供給管分別流出上述般的氣體之情況,主要藉由氣體供給管232a、MFC241a、閥體243a,構成第1原料氣體供給系統。主要藉由氣體供給管232c、MFC241c、閥體243c構成第2原料氣體供給系統。主要藉由氣體供給管232b、MFC241b、閥體243b構成反應氣體供給系統。主要藉由氣體供給管232d、232e、MFC241d、241e、閥體243d、243e構成惰性氣體供給系統。
在上述各種供給系統之中之任一者或全部的供給系統係被構成積體閥體243a~243e或MFC241a~241e等而構成的積體型供給系統248。積體型供給系統248相對於氣體供給管232a~232e之各者被連接,被構成藉由後述控制器121控制對氣體供給管232a~232e內供給各種氣體的動作,即是閥體243a~243e之開關動作或MFC241a~241e所致的流量調整動作等。積體型供給系統248係被構成一體型或分割型之積體單元,相對於氣體供給管232a~232e等可以以積體單元單位進行裝卸,被構成能夠以積體單元單位進行積體型供給系統248之維修、更換、增設等。
在反應管203之側壁下方連接對處理室201內之氛圍進行排氣的排氣管231。排氣管231係藉由例如SUS等之金屬材料而被構成。在排氣管231連接有作為檢測處理室201內之壓力的壓力檢測器(壓力檢測部)之壓力感測器245及作為壓力調整器(壓力調整部)之APC(Auto Pressure Controller)閥244,連接有作為真空排氣裝置之真空泵246。APC閥244係被構成可以在使真空泵246作動之狀態下,藉由對閥體進行開關,來進行處理室201內之真空排氣及真空排氣停止,並且,可以在使真空泵246作動之狀態下,藉由根據以壓力感測器245所檢測到的壓力資訊,調節閥開度,來調整處理室201內的壓力。主要,藉由排氣管231、壓力感測器245、APC閥244構成排氣系統。即使想像排氣系統包含真空泵246亦可。
在反應管203之下方,設置有作為能夠氣密地封閉反應管203之下端開口的爐口蓋體的密封蓋219。密封蓋219係由例如SUS等之金屬材料構成,被形成為圓盤狀。在密封蓋219之上面,設置有作為與反應管203之下端抵接的密封構件的O型環220。在密封蓋219之下方,設置有使後述晶舟217旋轉的旋轉機構267。旋轉機構267之旋轉軸255係藉由例如SUS等之金屬材料而被構成,貫通密封蓋219而被連接於晶舟217。旋轉機構267係被構成藉由使晶舟217旋轉而使晶圓200旋轉。密封蓋219係被構成藉由作為被設置在反應管203之外部的升降機構的晶舟升降器115而在垂直方向升降。晶舟升降器115係作為藉由使密封蓋219升降,能夠將晶圓200朝處理室201內外搬入及搬出(搬運)的搬運裝置(搬運機構)而被構成。
作為基板支持具的晶舟217係以水平姿勢,並且彼此中心一致的狀態下在垂直方向排列且多層地支持複數片,例如25~200片之晶圓200,即是以隔著間隔被配列之方式被構成。晶舟217係藉由例如石英或SiC等之耐熱性材料而被構成。在晶舟217之下部,以水平姿勢多層地支持藉由例如石英或SiC等之耐熱性材料而被構成的隔熱板218。
在反應管203內,設置作為溫度檢測器的溫度感測器263。根據藉由溫度感測器263被檢測到的溫度資訊,調整對加熱器207的通電狀態,依此處理室201內之溫度成為期望的溫度分布。溫度感測器263係沿著反應管203之內壁而被設置。
如圖3所示般,作為控制部(控制手段)之控制器121係作為具備有CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶裝置121c、I/O埠121d的電腦而被構成。RAM121b、記憶裝置121c、I/O埠121d係被構成可經內部匯流排121e而與CPU121a進行資料交換。在控制器121連接例如作為觸控面板等而被構成的輸入輸出裝置122。
記憶裝置121c係由例如快閃記憶體、HDD(Hard Disk Drive)等所構成。在記憶裝置121c內,以能夠讀出之方式儲存有控制基板處理裝置之動作的控制程式,或記載有後述之成膜處理之程序或條件等之製程配方等。製程配方係使控制器121實行後述之成膜處理中之各程序,組合成可以獲得特定之結果者,作為程式而發揮功能。以下,也將該製程配方或控制程式等總體簡稱為程式。再者,也將製程配方僅稱為配方。在本說明書中使用稱為程式之語句的情況,有僅包含配方單體之情況、僅包含控制程式單體之情況,或者包含其雙方之情況。RAM121b作為暫時性保持藉由CPU121a被讀出之程式或資料等的記憶體區域(工作區域)而被構成。
I/O埠121d被連接於上述MFC241a~241e、閥體243a~243e、壓力感測器245、APC閥244、真空泵246、溫度感測器263、加熱器207、旋轉機構267、晶舟升降器115等。
CPU121a係被構成能夠從記憶裝置121c讀出控制程式而實行,同時因應來自輸入輸出裝置122之操作指令之輸入等而從記憶裝置122c讀出配方等。CPU121a係被構成以沿著讀出的配方之內容,控制MFC241a~241e所致的各種氣體之流量調整動作、閥體243a~243e之開關動作、APC閥244之開關動作及根據壓力感測器245的APC閥244所致的壓力調整動作、真空泵246之啟動及停止、基於溫度感測器263的加熱器207之溫度調整動作、旋轉機構267所致的晶舟217之旋轉及旋轉速度調節動作、晶舟升降器115所致的晶舟217之升降動作等。
控制器121可以藉由將被存儲於外部記憶裝置123之上述程式安裝於電腦而構成。外部記憶裝置123包含例如HDD等之磁碟、CD等之光碟、MO等之光磁碟、USB記憶體等之半導體記憶體等。記憶裝置121c或外部記憶裝置123係被構成為電腦可讀取之記錄媒體。以下,將該些統稱為記錄媒體。在本說明書中使用稱為記錄媒體之語句的情況,有僅包含記憶裝置121c單體之情況,僅包含外部記憶裝置123單體之情況,或者包含其雙方之情況。另外,對電腦提供程式即使不使用外部記憶裝置123而使用網路或專用線路等之通訊手段亦可。
圖4為使用本揭示中之基板處理工程的3DNAND之記憶體單元之剖面構造之一例的圖。圖5(A)~圖5(I)為表示圖4所示的3DNAND之記憶體單元之製造工程之一例的圖。
3DNAND之記憶體單元首先在晶圓200上交替疊層氧化矽層(SiO膜)300和氮化矽膜(SiN膜)302。而且,將其交替疊層的疊層膜之上方至下方蝕刻成凹狀,形成溝槽或孔等的凹部303(參照圖5(A))。
接著,在凹部303之內面,形成阻隔膜(以下,稱為BOx膜)304作為第1氧化膜(參照圖5(B))。BOx膜304係例如SiO膜或High-k膜或該些疊層膜,具有防止電荷穿隧的功能。
接著,在BOx膜304之內面,形成CTN,作為Si xN y膜(x、y為1以上的整數)的電荷捕獲膜(以下,稱為CTN膜)306(參照圖5(C))。CTN膜306具有捕獲電荷的功能。
接著,在CTN膜306之內面,形成隧道氧化膜(以下,稱為TOx膜)308作為第2氧化膜(參照圖5(D))。TOx膜308係例如氮氧化矽膜(SiON膜),具有穿隧電荷的功能。
接著,在TOx膜308之內面,形成多晶矽(Poly-Si)等的通道膜310(圖5(E))。
接著,在通道膜310之內面,在凹部303內之溝,填充埋入氧化膜312(圖5(F))。
接著,在圖5(A)中蝕刻被疊層的SiN膜302(圖5(G))。
接著,在SiN膜302被蝕刻的SiO膜300之內面,形成含金屬膜等的襯墊膜314(圖5(H))。襯墊膜314為例如氧化鋁(AlO)膜或氮化鈦(TiN)膜。
而且,在襯墊膜314之內側填充含金屬膜而作成作為字元電極的控制閘極316(圖5(I))。
如上述般,3DNAND之記憶體單元係依BOx膜304、CTN膜306、TOx膜308、通道膜310、控制閘極316之順序而被作成。
對此,平面型之NAND之記憶體單元係依照通道膜310、TOx膜308、CTN膜306、BOx膜304、控制閘極316之順序而被作成。
在此,NAND之記憶體單元係藉由蓄積電荷而記憶資料。該電荷係在藉由TOx膜308、CTN膜306及BOx膜304被構成的ONO膜320中被CTN膜306捕獲。
在此,CTN膜306不僅良好的電荷保持特性(也稱為電荷捕獲特性)也期望良好的階梯覆蓋特性。電荷保持特性係指保持電荷的能力。再者,階梯覆蓋特性係指階差被覆性,凹部303內之上側面之膜厚和下側面之膜厚的關係。凹部303內之上側面和下側面之差越小,階梯覆蓋特性越良好。
但是,成為CTN膜306之SiN膜係依形成之時使用的氣體種類不同,電荷保持特性和階梯覆蓋特性不同,有使該電荷保持特性和階梯覆蓋特性並存之課題。在本態樣中,為了解除該些課題,在形成CTN膜306之時,以進行以下的基板處理工程。
(2)基板處理工程 使用上述基板處理裝置,作為半導體裝置之製造工程之一工程,針對在作為基板的晶圓200上形成CTN膜306之基板處理序列例,即是,成膜序列例(也為基板處理方法、半導體裝置之製造方法之一例)予以說明。在以下之說明中,構成基板處理裝置之各部的動作藉由控制器121被控制。
若藉由本揭示之一態樣時,具有: 含有第1元素及第2元素之第1膜的工程;和 形成與第1膜相鄰接,含有第1元素及第2元素,具有與第1膜之特性不同的特性的第2膜之工程; 而且,第1膜係藉由實行特定次數進行下述工程而被形成, (a1)供給含有第1元素之第1原料氣體的工程;和 (b2)供給含有第2元素之反應氣體的工程。 再者,第2膜係藉由實行特定次數進行下述工程的循環而被形成, (a2)供給包含第1元素且比起第1原料氣體熱分解溫度較高的第2原料氣體的工程;和 (b2)供給含有第2元素之反應氣體的工程。 更具體而言具有: 形成第1SiN膜以作為含有Si作為第1元素及N作為第2元素的第1膜之工程;和 形成與第1SiN膜相鄰接,含有Si及N,具有與第1SiN膜之特性不同的特性的作為第2膜的第2SiN膜之工程;
而且,第1SiN膜係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有Si之第1原料氣體的工程;和 (b1)供給含有N之反應氣體的工程。
再者,第2SiN膜係藉由實行特定次數進行下述工程的循環而被形成, (a2)供給比起第1原料氣體熱分解溫度較高的第2原料氣體的工程;和 (b2)供給含有N之反應氣體的工程。
在本說明書中,為了方便可以如下述般表示本態樣中之成膜序列。即使在以下之其他態樣等的說明中,也使用相同的標記。(第1原料氣體→反應氣體)×m+(第2原料氣體→反應氣體)×n(m為1以上,以2以上之整數為佳,n為1以上,以2以上之整數為佳)⇒第1SiN膜+第2SiN膜⇒CTN膜
在本說明書中,使用「晶圓」之語句之情況,有意味著晶圓本身之情況,或意味著晶圓和被形成在其表面的特定層或膜等的疊層體之情況。在本說明書中,使用「晶圓之表面」之語句之情況,有意味著晶圓本身之表面之情況,或意味著被形成在晶圓上的特定層等之表面之情況。在本說明書中,記載為「在晶圓上形成特定層」之情況,有意味著直接在晶圓本身之表面上形成特定層之情況,或意味著在被形成在晶圓上之層等上形成特定層之情況。在本說明書中,使用「基板」之語句之情況也與使用「晶圓」之語句之情況同義。
(晶圓裝填及晶舟裝載) 複數片之晶圓200被裝填(晶圓裝填)在晶舟217。之後,如圖1所示般,支持複數片的晶圓200之晶舟217係藉由晶舟升降器115被抬起而被搬入至處理室201內(晶舟裝載)。在該狀態,密封蓋219成為經由O型環220密封反應管203之下端的狀態。此時,例如,如上述圖5(B)所示般,在晶圓200上之凹部303內之表面,凹狀地形成BOx膜304。
(壓力調整及溫度調整) 以處理室201內,即是晶圓200存在的空間成為期望的處理壓力(真空度)之方式,藉由真空泵246被真空排氣(減壓排氣)。此時,處理室201內之壓力係藉由壓力感測器245被測定,根據該被測定到的壓力資訊,APC閥244被反饋控制。再者,以處理室201內之晶圓200成為期望之處理溫度(成膜溫度)之方式,藉由加熱器207被加熱。此時,以處理室201內成為期望之溫度分布之方式,根據溫度感測器263檢測出的溫度資訊,朝加熱器207的通電狀況被反饋控制。再者,開始旋轉機構267所致的晶圓200之旋轉。真空泵246之運轉、晶圓200之加熱及旋轉皆至少在對晶圓200的處理結束為止之期間持續被進行。另外,處理溫度係指晶圓200之溫度之意,處理壓力係指處理室201內之壓力之意。即使在以下之說明中也相同。
(成膜處理) 之後,依序實行以下的步驟。
<第1膜形成工程> [步驟a1] 在上述步驟中,對處理室201內之晶圓200,即是被形成在晶圓200上之BOx膜304,供給第1原料氣體。具體而言,開啟閥體243a,使第1原料氣體流至氣體供給管232a內。第1原料氣體係藉由MFC241a而被流量控制,經由噴嘴249a而被供給至處理室201內,從排氣管231被排氣。此時,對晶圓200供給第1原料氣體。此時,同時開啟閥體243d、243e,使N 2氣體流至氣體供給管232d、232e內。N 2氣體係藉由MFC241d、241e被流量調整。被流量調整之N 2氣體與第1原料氣體一起被供給至處理室201內,從排氣管231被排氣。
作為在本步驟中之處理條件,例示 第1原料氣體供給流量:1~2000sccm,以100~1000sccm為佳 N 2氣體供給流量(各氣體供給管):100~20000sccm 各氣體供給時間:0.5~60秒,以1~30秒為佳 處理溫度(高於第1溫度的溫度,以高於第1溫度且低於第2溫度的溫度):500~1000℃,以600~800℃為佳,以650~750℃為更佳 處理壓力:1~2666Pa,以10~1333Pa為佳。另外,在本說明書中之「500~1000℃」般之數值範圍的記載係指在該範圍包含下限值及上限值之意。依此,例如,「500~1000℃」係指「500℃以上1000℃以下」之意。即使針對其他數值範圍也相同。
另外,在本態樣中,作為本步驟之前處理,進行對晶圓200先供給NH 3氣體等的反應氣體的預流。在預流中,藉由對晶圓200供給NH 3氣體,在晶圓200之表面上形成氫(H)所致的吸附部位,在本步驟或後述步驟b1中,設為容易吸附Si原子之狀態(即是,與Si原子之反應性高的狀態)。預流之順序可以與例如後述步驟b1同樣地進行。
在上述條件下,具有使第1原料氣體之分子構造之大部分熱分解而使Si具有懸空鍵。可以使依此成為具有懸空鍵之Si,在步驟a1與晶圓200表面上之吸附部位反應,而吸附於晶圓200之表面。再者,藉由第1原料氣體之熱分解成為具有懸空鍵之Si彼此鍵結,而形成Si-Si鍵結。藉由使該些Si-Si鍵結與殘存在晶圓200之表面上的吸附部位等反應,能夠使BOx膜304上包含Si-Si鍵結,成為Si多重堆積的層。即是,藉由本步驟,將第1膜所含的Si-Si鍵結的量(含有比率)大於後述第2膜所含的Si-Si鍵結之量(含有比率)。即是,比起第2膜,第1膜成為Si富膜。依此,捕獲位準增加,提升電荷保持特性。即是,第1膜之捕獲位準較第2膜之捕獲位準多。從Si被切離的Cl構成HCl或Cl 2等的氣體狀物質而從排氣管231被排氣。
另外,為了藉由本步驟使第1膜所含的Si-Si鍵結的量大於後述第2膜所含的Si-Si鍵結的量,如上述般,以第1原料氣體之熱分解溫度低於第2原料氣體之熱分解溫度為適合。換言之,第1原料氣體係比起第2原料氣體,在相同條件下,更容易形成Si-Si鍵結的氣體為佳。例如,以第1原料氣體之分子中包含Si-Si鍵結,或比起第2原料氣體,第1原料氣體之分子中的Si對Cl等的鹵元素的組成比較大等為適合。如此一來,在本步驟中,以比起後述步驟a2,更容易形成與殘存於晶圓表面上的吸附部位等反應的Si-Si鍵結之方式,進行各步驟之處理溫度等的處理條件之選擇,或第1原料氣體及第2原料氣體的選擇。
其結果,在本步驟中,形成含Si層,作為第1膜之第1層。
另外,當處理溫度未達500℃時,第1原料氣體變成難熱分解,有難形成第1層之情況。藉由將處理溫度設為500℃以上,能夠在晶圓200上形成第1層。藉由將處理溫度設為600℃以上,能確實地獲得上述效果。藉由將處理溫度設為650℃以上,能更確實地獲得上述效果。
當處理溫度超過1000℃時,因第1原料氣體之熱分解過剩,變成不自飽和的Si之堆積急速進行,故有難略均勻地形成第1層之情況。藉由將處理溫度設為1000℃以下,能夠抑制第1原料氣體之過剩的熱分解,藉由抑制不自飽和的Si之堆積,能夠略均勻地形成第1層。藉由將處理溫度設為800℃以下,能確實地獲得上述效果。藉由將處理溫度設為750℃以下,能更確實地獲得上述效果。
於在晶圓200上形成第1膜之第1層之後,關閉閥體243a,停止對處理室201內供給第1原料氣體。而且,對處理室201內進行真空排氣,從處理室201內排除殘留在處理室201內的氣體等。另外,此時,維持閥體243d、243e開啟之狀態,維持對處理室201內供給作為惰性氣體的N 2氣體。N 2氣體作為淨化氣體發揮作用,依此,可以提升從處理室201內排除殘留在處理室201內之氣體等的效果。
作為第1原料氣體,可以使用作為第1元素的矽(Si)和含鹵元素的鹵代矽烷系氣體。鹵代矽烷係指具有鹵素基的矽烷。鹵素基包括氯基、氟基、溴基、碘基等。即是,鹵素基包含氯(Cl)、氟(F)、溴(Br)、碘(I)等的鹵元素。作為鹵代矽烷系氣體,可以使用例如包含Si及Cl之原料氣體,即是氯矽烷系氣體。作為第1原料氣體,可以使用1分子中含有的Si原子數為2以上,具有Si-Si鍵的氯矽烷系氣體,可以使用例如六氯乙矽烷(Si 2Cl 6,簡稱:HCDS)氣體。Si 2Cl 6氣體係在後述的成膜處理中作為Si源極發揮作用。在本說明書中,在第1原料氣體單獨存在於處理室201內之情況,有將第1原料氣體熱分解之溫度稱為第1溫度之情況。作為第1原料氣體使用Si 2Cl 6氣體之時的第1溫度為500℃以上之範圍內的特定溫度。作為第1原料氣體,除Si 2Cl 6氣體外,可以使用如單矽烷(SiH 4,簡稱:MS)氣體等的氫化矽系氣體、三甲基氨基矽烷(Si[N(CH 3) 2] 3H,簡稱:3DMAS)氣體、雙二乙氨基矽烷(SiH 2[N(C 2H 5) 2] 2,簡稱:BDEAS)氣體等的氨基矽烷系氣體之至少任一者的氣體。作為第1原料氣體,可以使用該些之中的一種以上。
作為惰性氣體,除了N 2氣體之外,可以使用例如Ar氣體、He氣體、Ne氣體、Xe氣體等之稀有氣體。此點即使在後述步驟b1、a2、b2中也相同。
[步驟b1] 在該步驟中,對處理室201內之晶圓200,即是被形成在形成於晶圓200上之BOx膜304上的第1膜之第1層,供給含N的反應氣體。具體而言,開啟閥體243b,使反應氣體流至氣體供給管232b內。反應氣體係藉由MFC241b而被流量控制,經由噴嘴249b而被供給至處理室201內,從排氣管231被排氣。此時,成為對晶圓200供給反應氣體。
作為在本步驟中之處理條件,例示 反應氣體供給流量:100~10000sccm,以1000~5000scc為佳 反應氣體供給時間:1~120秒,以10~60秒為佳 處理壓力:1~4000Pa,以10~1000Pa為佳。其他處理條件設為與步驟a1中之處理條件相同。但是,在步驟b1中之溫度條件從提升成膜處理之生產性的觀點來看,以設為與步驟a1相同的條件為佳,但是即使該些條件不同亦可。
在上述條件下,可以將作為第1膜之第1層的含Si層之至少一部分氮化。第1層所含的Cl構成HCl、Cl 2等之氣體狀物質而從排氣管231被排氣。
其結果,在晶圓200上,形成含Si和N的SiN層,作為第1膜之第2層。另外,藉由將在步驟a1中之第1原料氣體之供給時間設為比在步驟b1中之反應氣體之供給時間更長,可以形成Si富的第1膜。
於在晶圓200上形成第1膜之第2層之後,關閉閥體243b,停止對處理室201內供給反應氣體。而且,藉由與在上述步驟a1之殘留氣體除去之步驟相同的處理程序、處理條件,從處理室201內排除殘留在處理室201內的氣體等。
作為反應氣體,可以使用例如作為氮化氣體(氮化劑)的含氮(N)及氫(H)氣體。含N及H氣體也為含N氣體,也為含H氣體。含N及H氣體以具有N-H鍵結為佳。作為反應氣體,可以使用例如NH 3氣體、二亞胺(N 2H 2)氣體、肼(N 2H 4)氣體、N 3H 8氣體等之氮化氫系氣體。作為反應氣體,可以使用該些之中的一種以上。
[實施特定次數] 藉由將上述步驟a1和步驟b1設為1循環,將該循環實行特定次數(m次,m為1,以2以上之整數為佳),可以在晶圓200之BOx膜304上,形成例如特定組成比及特定膜厚之含Si及N之第1SiN膜306a,作為第1膜。另外,上述循環以重複複數次為佳。即是,以使在每1循環形成的層之厚度小於期望的膜厚,將上述循環重複複數次至成為期望的膜厚為止為佳。再者,即使步驟a1和步驟b1非同時交互進行亦可,即使一部分重疊進行亦可。
其結果,在晶圓200之BOx膜304上,形成第1SiN膜306a。第1SiN膜306a成為Si富且電荷保持特性的良好膜。即是,第1SiN膜306a成為含有Si及N,具有第1電荷保持特性和第1階梯覆蓋特性的膜。
持續(連續)進行接著的第2膜形成工程。
<第2膜形成工程> [步驟a2] 接著,對處理室201內之晶圓200,即是被形成在晶圓200上之第1膜,供給第2原料氣體。具體而言,開啟閥體243c,使第2原料氣體流至氣體供給管232a內。第2原料氣體係藉由MFC241c而被流量調整,經由噴嘴249a而被供給至處理室201內,從排氣管231被排氣。此時,對被形成在晶圓200上之第1SiN膜306a供給第2原料氣體。此時,同時開啟閥體243d、243e,使N 2氣體流至氣體供給管232d、232e內。N 2氣體係藉由MFC241d、241e被流量調整。被流量調整之N 2氣體與第2原料氣體一起被供給至處理室201內,從排氣管231被排氣。
作為在本步驟中之處理條件,例示 第2原料氣體供給流量:1~2000sccm,以100~1000sccm為佳 第2原料氣體供給時間:10~300秒,以30~120秒為佳 處理溫度(低於第2溫度的溫度,以低於第2溫度且高於第1溫度的溫度為佳):400~800℃,以500~800℃為佳,以600~750℃為更佳。其他處理條件設為與步驟a1中之處理條件相同。
在上述條件下,切斷在第2原料氣體中之Si-Cl鍵結之一部分,可以使成為具有懸空鍵之Si吸附於晶圓200之表面之吸附部位。再者,在上述條件下,可以使在第2原料氣體中不被切斷的Si-Cl鍵結保持原樣。例如,可以在構成第2原料氣體之Si具有的4個鍵結鍵之中,3個鍵結鍵分別鍵結Cl之狀態,使成為具有懸空鍵之Si吸附於晶圓200之表面之吸附部位。再者,因從吸附於晶圓200之表面的Si不被切斷而保持的Cl,阻礙該Si鍵結成為具有懸空鍵之其他的Si,故可以迴避在晶圓200上多重地堆積Si之情形。從Si被切離的Cl構成HCl或Cl 2等的氣體狀物質而從排氣管231被排氣。雖然當Si之吸附反應進行,殘存在晶圓200之表面的吸附部位消失時,成為其吸附反應飽和,但是在本步驟中,以於吸附反應飽和之前停止供給第2原料氣體,在吸附部位殘存之狀態結束本步驟為佳。
該些結果,在晶圓200,即是晶圓200之第1膜上,作為第2膜之第1層,形成未達1原子層之厚度的略均勻之厚度的含Si及Cl的層,即是含Cl的含Si層。在此,未達1原子層之厚度的層係指不連續形成的原子層,1原子層之厚度的層係指連續性地被形成的原子層之意。再者,未達1原子層之厚度的層略均勻係指在晶圓200之表面上以略均勻的密度吸附原子之意。因第2膜之第1層在晶圓200上形成略均勻的厚度,故階梯覆蓋特性或晶圓面內膜厚均勻性優良。
另外,當處理溫度未達400℃時,Si難吸附於晶圓200上,有難形成第1層之情況。藉由將處理溫度設為400℃以上,能夠在晶圓200上形成第1層。藉由將處理溫度設為500℃以上,能確實地獲得上述效果。藉由將處理溫度設為600℃以上,能更確實地獲得上述效果。
當處理溫度超過800℃時,難以將在第2原料氣體中之不被切斷的Si-Cl鍵結保持原樣,同時第2原料氣體之熱分解速度增大之結果,有在晶圓200上多重堆積Si,作為第1層,難以形成未達1原子層之厚度之略均勻的厚度的含Si層的情況。藉由將處理溫度設為800℃以下,能夠形成未達1原子層之厚度的略均勻之厚度的含Si層,作為第1層。藉由將處理溫度設為750℃以下,能確實地獲得上述效果。
於在晶圓200之第1SiN膜306a上形成第2膜之第1層之後,關閉閥體243c,停止對處理室201內供給第2原料氣體。而且,藉由與在上述步驟a1之殘留氣體除去之步驟相同的處理程序、處理條件,從處理室201內排除殘留在處理室201內的氣體等。
作為第2原料氣體,可以使用包含第1元素,比起第1原料氣體熱分解溫度較高的鹵代矽烷系氣體。例如,第2原料氣體為包含作為第1元素的Si和鹵元素的鹵代矽烷系氣體。第2原料氣體係藉由使氣體狀態之原料,例如在常溫常壓下為液體狀態的原料氣化而獲得的氣體,或在常溫常壓下為氣體狀態的原料等。作為第2原料氣體,可以使用1分子中所含的Si原子之數量為1個的氯矽烷系氣體,例如四氯矽烷(SiCl 4)氣體。SiCl 4氣體係在後述的成膜處理中作為Si源極發揮作用。在本說明書中,在第2原料氣體單獨存在於處理室201內之情況,有將第2原料氣體熱分解之溫度稱為第2溫度之情況。作為第2原料氣體使用SiCl 4氣體之時的第2溫度為800℃以上之範圍內的特定溫度。作為第2原料氣體,除SiCl 4氣體之外,也可以使用二氯矽烷(SiH 2Cl 2,簡稱:DCS)氣體、三氯矽烷(SiHCl 3,簡稱:TCS)氣體等之鹵代矽烷原料氣體。作為第2原料氣體,可以使用該些之中的一種以上。
[步驟b2] 在該步驟中,對被形成在處理室201內之晶圓200上,例如被形成在第1SiN膜306a上的第2膜之第1層供給反應氣體。具體而言,藉由與上述步驟b1之反應氣體供給步驟相同的處理程序、處理條件,對被形成在第1SiN膜306a上之第2膜之第1層供給反應氣體。
於在晶圓200上形成第2膜之第2層之後,關閉閥體243b,停止對處理室201內供給反應氣體。而且,藉由與在上述步驟a1之殘留氣體除去之步驟相同的處理程序、處理條件,從處理室201內排除殘留在處理室201內的氣體等。
[實施特定次數] 將上述步驟a2、b2設為1循環,藉由將該循環實行特定次數(n次,n為1以上的整數),可以形成與晶圓200上之作為第1膜的第1SiN膜306a相鄰接的作為第2膜,例如特定組成比及特定膜厚之第2SiN膜306b。另外,上述循環以重複複數次為佳。即是,以使在每1循環形成的SiN層之厚度小於期望的膜厚,將上述循環重複複數次至成為期望的膜厚為止為佳。
其結果,在第1SiN膜306a上,形成第2SiN膜306b。第2SiN膜306b係均勻地被成膜,成為階梯覆蓋良好的膜。即是,第2SiN膜306b成為含有Si及N,具有第2電荷保持特性和第2階梯覆蓋特性的膜。即是,第2SiN膜306b成為具有與第1SiN膜306a不同之特性的膜。
即是,第1SiN膜306a和第2SiN膜306b係藉由原料氣體不同,各者具有不同的特性。更具體而言,第1SiN膜306a和第2SiN膜306b係藉由熱分解溫度之不同,成為各者的電荷保持特性及階梯覆蓋特性不同。
第1SiN膜306a之第1電荷保持特性較第2SiN膜306b之第2電荷保持特性優良。例如,第1SiN膜306a之第1電荷保持特性較第2SiN膜306b之第2電荷保持特性優良2倍以上。以第1SiN膜306a之第1電荷保持特性較第2SiN膜306b之第2電荷保持特性優良10倍以上為佳。以第1SiN膜306a之第1電荷保持特性較第2SiN膜306b之第2電荷保持特性優良15倍以上為更佳。再者,第2SiN膜306b之第2階梯覆蓋特性較第1SiN膜306a之第1階梯覆蓋特性優良。例如,若藉由本態樣時,第2SiN膜306b可以獲得至少70%之階梯覆蓋(例如,被形成在溝的第2SiN膜306b之下側面的膜厚比上側面之膜厚厚,上側面之膜厚對下側面之膜厚的比為70%)。再者,例如,若藉由本態樣中之上述任一方法時,第2SiN膜306b也可以獲得80%以上的階梯覆蓋。再者,例如,若藉由本態樣中之上述任一方法時,第2SiN膜306b也可以獲得較佳85%以上的階梯覆蓋。而且,例如,若藉由本態樣中之上述任一方法時,第2SiN膜306b也可以獲得更佳的90%以上的階梯覆蓋。雖然第1SiN膜306a也可以獲得同樣的階梯覆蓋,但是第2SiN膜306b之階梯覆蓋被形成較第1SiN膜306a優良。若藉由如此的第2SiN膜306b時,能夠在適當地設置在晶圓200之表面的凹部內之全區域,形成均勻且共形的膜。
即是,被配置在BOx膜304之界面側的第1SiN膜306a成為具備較第2SiN膜306b之第2電荷保持特性優良的第1電荷保持特性的膜。再者,被配置在TOx膜308之界面側的第2SiN膜306b成為具備較第1SiN膜306a之第1階梯覆蓋特性優良的第2階梯覆蓋特性的膜。換言之,CTN膜306係藉由包含電荷保持特性優良的第1SiN膜306a,和階梯覆蓋特性優良的第2SiN膜306b的疊層膜(也稱為多層膜)而構成。
在此,NAND之記憶體單元係在CTN膜306之BOx膜304界面側(控制閘極316側)充電電荷。因此,在BOx膜304界面側中之CTN膜306之電荷保持特性成為重要。本揭示中的CTN膜306係構成在BOx膜304界面側配置電荷保持特性優良的第1SiN膜306a,在TOx膜308界面側,配置階梯覆蓋特性優良的第2SiN膜306b。依此,CTN膜306成為整體兼備良好的電荷保持特性和良好的階梯覆蓋特性的膜,能夠使提升CTN膜306之電荷保持特性的效果,和提升階梯覆蓋特性的效果並存。
另外,以第1SiN膜306a之膜厚被形成較第2SiN膜306b之膜厚薄為佳。即使在將第1SiN膜306a之膜厚形成比第2SiN膜306b較薄之情況,亦能提升電荷保持特性,藉由將第2SiN膜306b之膜厚形成比第1SiN膜306a之膜厚較厚之情況,可以提升CTN膜306之階梯覆蓋特性。
具體而言,將CTN膜306之中的BOx膜304側的1nm~3nm,例如2nm程度設為電荷保持特性良好的第1SiN膜306a,將TOx膜308側之3nm~7nm,例如6nm程度設為階梯覆蓋特性良好的第2SiN膜306b。雖然第1SiN膜306a和第2SiN膜306b之合計膜厚可適當,但是在此例示8nm。
當第1SiN膜306a之膜厚未達1nm時,有無法保持充分的電荷之情況。當將第1SiN膜306a之膜厚設為1nm以上時,能夠保持充分的電荷。再者,當第1SiN膜306a之膜厚超過3nm時,雖然能夠保持充分的電荷,但是無法增厚第2SiN膜306b,有難以確保充分的階梯覆蓋特性之情形。藉由將第1SiN膜306a之膜厚設為3nm以下,能夠邊保持電荷邊確保充分的階梯覆蓋特性。
再者,當第2SiN膜306b之膜厚未達3nm時,有無法獲得充分的階梯覆蓋特性。當將第2SiN膜306b之膜厚設為3nm以上時,能夠保持充分的階梯覆蓋特性。再者,當第2SiN膜306b之膜厚超過7nm時,雖然能夠保持充分的階梯覆蓋特性,但是無法增厚第1SiN膜306a,有難以確保充分的電荷之情形。當將第2SiN膜306b之膜厚設為7nm以下時,能夠邊確保階梯覆蓋特性邊保持充分的電荷。
如上述般,在第1膜形成工程中,藉由實行依序進行特定次數供給第1原料氣體之步驟a1和供給反應氣體之步驟b1的循環,能夠將被形成在晶圓200上之SiN膜之電荷保持特性設為良好。另一方面,在第1膜形成工程中,由於每1循環被形成的含Si層之厚度在晶圓面內容易成為不均勻,故有難以提升被形成在晶圓200上之SiN膜之階梯覆蓋特性或晶圓面內膜厚均勻性之情形。
再者,在第2膜形成工程中,因藉由實行特定次數進行供給比起第1原料氣體熱分解溫度較高,難熱分解的第2原料氣體之步驟a2,和供給反應氣體之步驟b2的循環,每1循環被形成的含Si層之厚度在整個晶圓面內均勻,故能夠使被形成在晶圓200上之SiN膜之階梯覆蓋特性或晶圓面內膜厚均勻性成為良好。另一方面,有難以提升電荷保持特性之情況。
本揭示中之CTN膜306係基於疊層藉由實行特定次數依序進行步驟a1、步驟b1的循環而被形成的第1SiN膜306a,和藉由實行特定次數依序進行步驟a2和步驟b2的循環而被形成的第2SiN膜306b而被構成。
即是,在本揭示中,藉由將CTN膜306設為疊層電荷保持特性優良的第1SiN膜306a,和階梯覆蓋特性優良的第2SiN膜306b的疊層膜,能夠形成具備優良的電荷保持特性和優良的階梯覆蓋特性的膜。
(後淨化及大氣壓回復) 上述成膜處理結束時,從氣體供給管232d、232e之各者對處理室201內供給作為惰性氣體的N 2氣體,從排氣管231排氣。依此,處理室201內被淨化,殘留在處理室201內的氣體或反應副生成物等從處理室201內被除去(後淨化)。之後,處理室201內之氛圍被置換成惰性氣體(惰性氣體置換),處理室201內之壓力復原成常壓(大氣壓回復)。
(晶舟裝載及晶圓裝填) 之後,密封蓋219藉由晶舟升降器115下降,反應管203之下端開口。而且,在處理完的晶圓200被支持於晶舟217之狀態下,從反應管203之下端被搬出至反應管203之外部(晶舟卸載)。之後,處理完的晶圓200藉由晶舟217被取出(晶圓卸載)。
(3)本態樣所致的效果 若藉由本態樣時,能獲得以下所示的1個或複數效果。
(a)在本態樣中,由於疊層供給第1原料氣體的第1膜,和供給第2原料氣體而形成的第2膜,故能夠使提供被形成在晶圓200上之CTN膜之電荷保持特性的效果,和提升階梯覆蓋特性或晶圓面內膜厚均勻性的效果並存。
在本態樣之一例中,在第1膜形成工程中,當對晶圓200,供給比起作為第2原料氣體的SiC 4氣體,熱分解溫度較低,容易熱分解的Si 2Cl 6氣體作為第1原料氣體時,在晶圓200上形成具有Si-Si鍵結的超過1原子層之厚度的含Si層。依此,比起使用SiCl 4氣體之情況,成為Si富膜,捕獲位準增加,能夠提升電荷保持特性。
再者,在本態樣之一例中,在使用Si 2Cl 6氣體作為第1原料氣體之情況,比起使用SiCl 4氣體作為第2原料氣體之情況,由於每1循環被形成的含Si層之厚度較厚,故能夠將被形成在晶圓200上之SiN膜之成膜速率設為良好。
再者,在本態樣之一例中,在第2膜形成工程中,當作為第2原料氣體,供給比起作為第1原料氣體的Si 2Cl 6氣體,熱分解溫度較高,難熱分解的SiCl 4氣體時,在晶圓200上形成未達1原子層之厚度的略均勻厚度的含Si層。依此,由於每1循環被形成的含Si層之厚度在整個晶圓面內均勻,故能夠使被形成在晶圓200上之SiN膜之階梯覆蓋特性或晶圓面內膜厚均勻性成為良好。
在本態樣中,由於進行第1膜形成工程和第2膜形成工程之兩工程,故能夠使從各工程獲得的各者之效果並存。
(b)在本態樣之一例中,因將步驟a1之處理溫度設為高於Si 2Cl 6氣體之熱分解溫度(第1溫度),將步驟a2之處理溫度設為低於SiCl 4氣體之熱分解溫度(第2溫度),故可以確實地得到上述效果。
在步驟a1中,因將處理溫度設為高於第1溫度的溫度,故可以維持Si 2Cl 6氣體之適當的熱分解,能夠提升最終被形成在晶圓200上之SiN膜之成膜速率。再者,能夠在Si富之方向控制SiN膜之組成比。依此,能夠朝提升電荷保持特性之方向控制。
再者,在本態樣之一例中,在步驟a2中,因將處理溫度設為低於第2溫度的溫度,故可以抑制SiCl 4氣體之熱分解,能夠提升最終被形成在晶圓200上之SiN膜之階梯覆蓋特性或晶圓面內膜厚均勻性。再者,能夠將SiN膜之組成比朝接近Si 3N 4之方向控制。
(c)另外,上述效果即使在上述每個使用第1原料氣體、第2原料氣體、反應氣體、惰性氣體之情況,同樣也可以獲得。上述效果,在使用鹵代矽烷系氣體作為原料氣體之情況,能明顯獲得。再者,上述效果,在使用氯矽烷系氣體作為原料氣體之情況,尤其能明顯獲得。
(4)本揭示之其他態樣 以上,具體性說明本揭示之態樣。但是,本揭示非限定於上述實施型態者,只要在不脫離其主旨之範圍可做各種變更。
例如,即使在進行上述第1膜形成工程之後,進行下一個第2膜形成工程,以取代上述第2膜形成工程亦可。即是,即使在上述第1膜上,形成第3SiN膜,作為具有與第1膜之特性不同之特性的第2膜亦可。
第3SiN膜係藉由實行特定次數進行下述工程的循環而被形成, (a3)供給包含Si,比起第1原料氣體熱分解溫度較高的第2原料氣體的工程; (b3)供給第1原料氣體的工程; (c3)供給含有N之反應氣體的工程。另外,各工程即使彼此非同時被實行亦可,即使以相鄰接的工程之一部分重複之方式被實行亦可。
即是,即使藉由以下所示的成膜序列,在晶圓200上形成CTN膜(SiN膜)亦可。 (第1原料氣體→反應氣體)×m+(第2原料氣體→第1原料氣體→反應氣體)×p(p為1以上,以2以上之整數為佳)⇒第1SiN膜+第3SiN膜⇒CTN膜
即是,即使於進行上述第1膜形成工程之後,接著(連續)進行下一個第2膜形成工程亦可。
<第2膜形成工程> 實行下一個步驟a3~c3。
[步驟a3] 接著,藉由與上述步驟a2相同的處理程序、處理條件,對處理室201內之晶圓200,即是被形成在晶圓200上之第1膜,供給第2原料氣體。即是,對被形成在晶圓200上之第1SiN膜306a供給第2原料氣體。
在上述條件下,切斷在第2原料氣體中之Si-Cl鍵結之一部分,可以使成為具有懸空鍵之Si吸附於晶圓200之表面之吸附部位。再者,在上述條件下,可以使在第2原料氣體中不被切斷的Si-Cl鍵結保持原樣。例如,可以在構成第2原料氣體之Si具有的4個鍵結鍵之中,3個鍵結鍵分別鍵結Cl之狀態,使成為具有懸空鍵之Si吸附於晶圓200之表面之吸附部位。再者,因從吸附於晶圓200之表面的Si不被切斷而保持的Cl,阻礙該Si鍵結成為具有懸空鍵之其他的Si,故可以迴避在晶圓200上多重地堆積Si之情形。從Si被切離的Cl構成HCl或Cl 2等的氣體狀物質而從排氣管231被排氣。雖然當Si之吸附反應進行,殘存在晶圓200之表面的吸附部位消失時,成為其吸附反應飽和,但是在本步驟中,以於吸附反應飽和之前停止供給第2原料氣體,在吸附部位殘存之狀態結束本步驟為佳。
該些結果,在晶圓200之第1SnN膜306a上,形成未達1原子層之厚度的略均勻之厚度的含Si及Cl的層,作為第1層,即是含Cl的含Si層。因第1層在晶圓200上形成略均勻的厚度,故階梯覆蓋特性或晶圓面內膜厚均勻性優良。
在形成第1層之後,關閉閥體243a,停止對處理室201內供給第2原料氣體。而且,對處理室201內進行真空排氣,從處理室201內排除殘留在處理室201內的氣體等。另外,此時,在閥體243d、243e開啟之原樣下,維持對處理室201內供給作為惰性氣體的N 2氣體。N 2氣體作為淨化氣體發揮作用,依此,可以提升從處理室201內排除殘留在處理室201內之氣體等的效果。
[步驟b3] 藉由與上述步驟a1相同的處理程序、處理條件,對處理室201內之晶圓200,即是被形成在第1膜上之第1層,供給第1原料氣體。即是,對第1SiN膜306a上之第1層供給第1原料氣體。
在本步驟中,可以使第1原料氣體之分子構造之大部分熱分解,並使藉此成為具有懸空鍵之Si,與在步驟a3中不形成第1層而殘存的晶圓200之表面上之吸附部位反應,而吸附於晶圓200之表面。另一方面,因在形成有第1層之部分不存在吸附部位,故Si對第1層上的吸附被抑制。其結果,在本步驟中,以被形成略均勻的厚度的第1層為基礎,而以略均勻的厚度形成作為第2層的含Si層。再者,藉由第1原料氣體之熱分解成為具有懸空鍵之Si彼此鍵結,而形成Si-Si鍵結。藉由使該些Si-Si鍵結與殘存在晶圓200之表面上的吸附部位等反應,能夠使第2層包含Si-Si鍵結,成為Si多重堆積的層。即是,藉由本步驟,將第2層所含的Si-Si鍵結的量(含有比率)大於第1層所含的Si-Si鍵結之量(含有比率)。從Si被切離的Cl構成HCl或Cl 2等的氣體狀物質而從排氣管231被排氣。
另外,為了藉由本步驟使第2層所含的Si-Si鍵結的量大於第1層所含的Si-Si鍵結的量,如上述般,以第1原料氣體之熱分解溫度低於第2原料氣體之熱分解溫度為適合。換言之,第1原料氣體係比起第2原料氣體,在相同條件下,更容易形成Si-Si鍵結的氣體為佳。例如,以第1原料氣體之分子中包含Si-Si鍵結,或比起第2原料氣體,第1原料氣體之分子中的Si對Cl等的鹵元素的組成比較大等為適合。如此一來,在本步驟中,以比起步驟a3,更容易形成與殘存在晶圓表面上之吸附部位等反應的Si-Si鍵結之方式,進行各步驟之處理溫度等的處理條件之選擇,或第1原料氣體及第2原料氣體的選擇。
其結果,在本步驟中,形成超過第1層之厚度的略均勻之厚度的含Si層,作為第2膜之第2層。從提升成膜速率等之觀點來看,在本態樣中,尤其,形成超過1原子層之略均勻之厚度的含Si層,作為第2層。另外,在本說明書中,第2層係指藉由每次實行步驟a3及b3而被形成之晶圓200上之含Si層之意。
再者,在步驟a3、b3中之溫度條件以設為實質上相同的條件為佳。依此,在步驟a3、b3之間,因不需要進行晶圓200之溫度變更,即是,處理室201內之溫度變更(加熱器207之設定溫度之變更),故在步驟間不需要直至使晶圓200之溫度穩定的待機時間,可以提升基板處理之處理量。因此,以在步驟a3、b3中,將晶圓200之溫度皆設為例如500~800℃,以600~800℃為佳,以650~750℃之範圍內的特定溫度為更佳。在本態樣中,在步驟a3、b3中之溫度條件實質上相同之情況,以在步驟a3中實質上不產生第2原料氣體之熱分解(即是,被抑制),在步驟b3中產生第1原料氣體的熱分解(即是,被促進)之方式,選擇該溫度條件,和第1原料氣體及第2原料氣體。
在晶圓200上形成第2層之後,關閉閥體243c,停止對處理室201內供給第1原料氣體。而且,藉由與在上述步驟a3之殘留氣體除去之步驟相同的處理程序、處理條件,從處理室201內排除殘留在處理室201內的氣體等。
[步驟c3] 接著,藉由與上述步驟b1相同的處理程序、處理條件,對處理室201內之晶圓200,即是被形成在晶圓200上之疊層第1層和第2層而構成的層,供給NH 3氣體。
其結果,在晶圓200之第1SiN膜306a上,形成包含Si和N之SiN層,作為第2膜之第3層。在晶圓200上形成第3層之後,關閉閥體243b,停止對處理室201內供給反應氣體。而且,藉由與在上述步驟a3之殘留氣體除去之步驟相同的處理程序、處理條件,從處理室201內排除殘留在處理室201內的氣體等。
[實施特定次數] 將上述步驟a3~c3設為1循環,藉由將該循環實行特定次數(p次,p為1以上的整數),可以形成與晶圓200上之作為第1膜的第1SiN膜306a相鄰接,特定組成比及特定膜厚之第3SiN膜306c,以作為第2膜。另外,上述循環以重複複數次為佳。即是,以使在每1循環形成的SiN層之厚度小於期望的膜厚,將上述循環重複複數次至成為期望的膜厚為止為佳。
在上述態樣中,在第2膜形成工程中,由於進行供給第2原料氣體的步驟a3,和供給第1原料氣體的步驟b3之雙方的步驟,故除了與上述態樣相同的效果之外,能夠進一步使被形成在晶圓200上之SiN膜之階梯覆蓋特性,或晶圓面內膜厚均勻性提升之效果,和提升該膜之成膜速率之效果並存。
再者,在上述態樣中,在第2膜形成工程之各循環中,藉由比起步驟b3先進行步驟a3,之後進行步驟b3,能夠邊充分發揮最終被形成在晶圓200上之第3SiN膜306c之階梯覆蓋特性或晶圓面內膜厚均勻性,邊提升其成膜速率。
(5)變形例 上述基板處理工程可以變形成以下所示的變形例。圖7~圖9係表示作為電荷捕獲膜之CTN膜的變形例的圖。另外,除非有特別說明,不然各變形例中之構成與在上述態樣中之構成相同,省略說明。
(變形例1) 在本變形例中,如圖7所示般在BOx膜304和TOx膜308之間,形成從BOx膜304側依序包含第1SiN膜306a、第2SiN膜306b、第1SiN膜306a之三層的CTN膜306。換言之,在與BOx膜304相接之側和與TOx膜304相接之側,形成電荷保持特性優良的第1SiN膜306a,在第1SiN膜306a間形成階梯覆蓋優良的第2SiN膜306b。
即是,在上述基板處理工程中,在形成有BOx膜304之晶圓200上,藉由上述第1膜形成工程形成第1SiN膜306a,藉由上述第2膜形成工程,形成第2SiN膜306b之後,藉由與上述第1膜形成工程相同的處理程序、處理條件,形成電荷保持特性優良的第1SiN膜306a作為第3膜。
即是,在上述態樣中之第2SiN膜306b上形成作為第3膜之第1SiN膜306a。作為第3膜之第1SiN膜306a係如上述般具有較第2SiN膜306b之第2電荷保持特性更優良的第1電荷保持特性。另外,作為第3膜,不限定於使用第1SiN膜306a之情況,即使使用具有較第2SiN膜306b之第2電荷保持特性更優良的第3電荷保持特性的膜亦可。
即是,可以如下述般地表示本變形例中之成膜序列。(第1原料氣體→反應氣體)×m+(第2原料氣體→反應氣體)×n+(第1原料氣體→反應氣體)×q(q為1以上,以2以上之整數為佳)⇒第1SiN膜306a+第2SiN膜306b+第1SiN膜306a⇒CTN膜306
依此,藉由上述,可以形成電荷保持特性良好,且階梯覆蓋良好的CTN膜。再者,藉由即使在TOx膜308側也形成電荷保持特性優良的第1SiN膜306a,可以容易將電荷從TOx膜308取出放入,即使在CTN膜306之TOx膜308側亦能夠蓄積電荷。依此,提升記憶體單元中之寫入讀出的速度。
另外,即使使用上述第3SiN膜306c之情況,取代上述第2SiN膜306b之情況,亦能獲得與上述態樣相同的效果。
(變形例2) 在本變形例中,如圖8所示般在BOx膜304和TOx膜308之間,形成從BOx膜304側依序包含第2SiN膜306b、第1SiN膜306a、第2SiN膜306b之三層的CTN膜306。換言之,在與BOx膜304相接之側和與TOx膜308相接之側,形成階梯覆蓋優良的第2SiN膜306b,在第2SiN膜306b間形成電荷保持特性優良的第1SiN膜306a。以電荷保持特性優良的第1SiN膜306a接近於BOx膜304為佳。因此,在例如CTN膜306膜之膜厚為80Å之情況,將BOx膜304側之第2SiN膜306b之膜厚設為例如1nm,將第1SiN膜306a之膜厚設為例如4nm,將TOx膜308側之第2SiN膜306b設為例如3nm。
即是,在上述基板處理工程中,在形成有BOx膜304之晶圓200上,於實行上述第1膜形成工程之前,且形成第1SiN膜306a之前,藉由與上述第2膜形成工程相同的處理程序、處理條件,形成階梯覆蓋良好的第2SiN膜306b作為第3膜。
即是,於形成作為第1膜的第1SiN膜306a之前,形成作為第3膜之第2SiN膜306b。第2SiN膜306b係如上述般,具有較第1SiN膜306a之第1階梯覆蓋特性更優良的第2階梯覆蓋特性。另外,作為第3膜,不限定於使用第2SiN膜306b之情況,即使使用具有較第1SiN膜306a之第1階梯覆蓋特性更優良的第3階梯覆蓋特性的膜亦可。
即是,可以如下述般地表示本變形例中之成膜序列。(第2原料氣體→反應氣體)×r(r為1以上,以2以上的整數為佳)+(第1原料氣體→反應氣體)×m+(第2原料氣體→反應氣體)×n⇒第2SiN膜306b+第1SiN膜306a+第2SiN膜306b⇒CTN膜306
依此,藉由上述,可以形成電荷保持特性良好,且階梯覆蓋良好的CTN膜。再者,藉由在BOx膜304側和TOx膜308側之兩側,形成階梯覆蓋特性優良的第2SiN膜306b,能夠在橫孔之窄小的凹部等均勻地形成CTN膜306。
另外,即使使用上述第3SiN膜306c之情況,取代上述第2SiN膜306b之情況,亦能獲得與上述態樣相同的效果。
(變形例3) 在本變形例中,如圖9所示般,在BOx膜304和TOx膜308之間,形成BOx膜304之界面側比起TOx膜308之界面側,含Si量較多(Si富)的CTN膜306。即是,BOx膜304側形成電荷保持特性良好,TOx膜308側形成階梯覆蓋良好。
即是,藉由對晶圓200上之BOx膜304,實行特定次數進行上述基板處理工程之上述步驟a1、步驟b1的循環,進行形成含有Si及N之SiN膜的工程。此時,控制成在步驟a1中之第1原料氣體的供給量隨著成為各循環之後的循環而減少來供給。
即是,控制成將在每1循環之步驟a1中之第1原料氣體的供給時間隨著成為各循環之後的循環而縮短。再者,即使控制成將每1循環之在步驟a1中之第1原料氣體的供給流量,隨著成為各循環之後的循環而縮短亦可。
依此,在CTN膜306中,形成BOx膜304側為Si富且電荷保持特性優良,TOx膜308側為階梯覆蓋特性優良的SiN膜,可以形成電荷保持特性良好,階梯覆蓋良好的CTN膜306。
以上,雖然說明本揭示之各種典型的態樣及變形例,但是本揭示不限定於該些態樣及變形例,態樣、變形例等可以適當地組合使用。此時的處理程序、處理條件可以設為例如與上述態樣之處理程序、處理條件相同。
121:控制器 200:晶圓(基板) 201:處理室 217:晶舟 249a,249b:噴嘴 250a,250b:氣體供給孔 232a~232d:氣體供給管
[圖1]係在本揭示之一態樣中適合被使用的基板處理裝置之縱型處理爐之概略構成圖,以縱剖面圖表示處理爐部分的圖。 [圖2]係在本揭示之一態樣中適合被使用的基板處理裝置之縱型處理爐之概略構成圖,以圖1之A-A線剖面圖表示處理爐部分的圖。 [圖3]係以在本揭示之一態樣中適合被使用的基板處理裝置之控制器之概略構成圖,以方塊圖表示控制器之控制系統的圖。 [圖4]為表示3DNAND之記憶體單元之剖面構造之一例的圖。 [圖5]為表示3DNAND之記憶體單元之製造工程之一例的圖。 [圖6]為用以說明藉由在本揭示之一態樣中適合被使用的基板處理工程被形成的CTN之圖。 [圖7]為表示藉由在本揭示之一態樣中適合被使用的基板處理工程被形成的CTN之變形例的圖。 [圖8]為表示藉由在本揭示之一態樣中適合被使用的基板處理工程被形成的CTN之變形例的圖。 [圖9]為表示藉由在本揭示之一態樣中適合被使用的基板處理工程被形成的CTN之變形例的圖。
115:晶舟升降器
121:控制器
200:晶圓(基板)
201:處理室
202:處理爐
203:反應管
207:加熱器
217:晶舟
218:隔熱板
219:密封蓋
220:O型環
231:排氣管
232a~232e:氣體供給管
241a~241e:MFC
243a~243e:閥體
244:APC閥
245:壓力感測器
246:真空泵
248:積體型供給系統
249a,249b:噴嘴
250a,250b:氣體供給孔
255:旋轉軸
263:溫度感測器
267:旋轉機構

Claims (20)

  1. 一種基板處理方法,具有: 形成含有第1元素及第2元素之第1膜的工程;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之工程, 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的工程;和 (b1)供給含有上述第2元素之反應氣體的工程, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成, (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的工程;和 (b2)供給含有上述第2元素之反應氣體的工程。
  2. 如請求項1之基板處理方法,其中 上述第1膜具有第1電荷保持特性,上述第2膜具有第2電荷保持特性,上述第1電荷保持特性比上述第2電荷保持特性更優。
  3. 如請求項1或2之基板處理方法,其中 上述第1膜具有第1階梯覆蓋特性,上述第2膜具有比上述第1階梯覆蓋特性更優的第2階梯覆蓋特性。
  4. 如請求項2之基板處理方法,其中 進一步具有在上述第2膜上形成第3膜的工程, 上述第3膜具有比上述第2電荷保持特性更優的第3電荷保持特性。
  5. 如請求項3之基板處理方法,其中 進一步具有於形成上述第1膜之前形成第3膜的工程, 上述第3膜具有比上述第1階梯覆蓋特性更優的第3階梯覆蓋特性。
  6. 如請求項1之基板處理方法,其中 上述第1膜之膜厚較上述第2膜之膜厚更薄。
  7. 如請求項1之基板處理方法,其中 作為上述第1原料氣體及上述第2原料氣體各使用彼此不同的鹵代矽烷系氣體。
  8. 如請求項1之基板處理方法,其中 作為上述第1原料氣體,使用氫化矽系氣體或氨基矽烷系氣體中之至少任一者。
  9. 如請求項1之基板處理方法,其中 作為上述反應氣體,使用含氮氣體。
  10. 一種基板處理方法,其中 具有: (a)供給含有第1元素之第1原料氣體的工程; (b)供給含有第2元素之反應氣體的工程;和 (c)藉由實行特定次數進行(a)及(b)之工程的循環,形成含有上述第1元素及上述第2元素之膜的工程, 在(a)中之上述第1原料氣體之供給量以隨著成為各循環後之循環而減少之方式被供給。
  11. 一種基板處理方法,具有: 形成含有第1元素及第2元素之第1膜的工程;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之工程; 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的工程;和 (b1)供給含有上述第2元素之反應氣體的工程, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成; (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的工程; (b2)供給上述第1原料氣體的工程;及 (c2)供給含有上述第2元素之反應氣體的工程。
  12. 一種半導體裝置之製造方法,具有: 形成含有第1元素及第2元素之第1膜的工程;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之工程, 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的工程;和 (b1)供給含有上述第2元素之反應氣體的工程, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成; (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的工程;和 (b2)供給含有上述第2元素之反應氣體的工程。
  13. 一種半導體裝置之製造方法,具有: (a)供給含有第1元素之第1原料氣體的工程; (b)供給含有第2元素之反應氣體的工程;和 (c)藉由實行特定次數進行(a)及(b)之工程的循環,形成含有上述第1元素及上述第2元素之膜的工程, 在(a)中之上述第1原料氣體之供給量以隨著成為各循環後之循環而減少之方式被供給。
  14. 一種半導體裝置之製造方法,具有: 形成含有第1元素及第2元素之第1膜的工程;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之工程; 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述工程的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的工程;和 (b1)供給含有上述第2元素之反應氣體的工程, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述工程的循環而被形成; (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的工程; (b2)供給上述第1原料氣體的工程;及 (c2)供給含有上述第2元素之反應氣體的工程。
  15. 一種程式,其係在基板處理裝置之處理室內,藉由電腦使上述基板處理裝置實行下述程序: 形成含有第1元素及第2元素之第1膜的程序;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之程序, 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述程序的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的程序;和 (b1)供給含有上述第2元素之反應氣體的程序, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述程序的循環而被形成; (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的程序;和 (b2)供給含有上述第2元素之反應氣體的程序。
  16. 一種程式,其係在基板處理裝置之處理室內,藉由電腦使上述基板處理裝置實行下述程序: (a)供給含有第1元素之第1原料氣體的程序; (b)供給含有第2元素之反應氣體的程序; (c)藉由實行特定次數進行(a)及(b)之程序的循環,形成含有上述第1元素及上述第2元素之膜的程序, 在(a)中之上述第1原料氣體之供給量以隨著成為各循環後之循環而減少之方式被供給之程序。
  17. 一種程式,其係在基板處理裝置之處理室內,藉由電腦使上述基板處理裝置實行下述程序: 形成含有第1元素及第2元素之第1膜的程序;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之程序; 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述程序的循環而被形成, (a1)供給含有上述第1元素之第1原料氣體的程序;和 (b1)供給含有上述第2元素之反應氣體的程序, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述程序的循環而被形成; (a2)供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體的程序; (b2)供給上述第1原料氣體的程序;及 (c2)供給含有上述第2元素之反應氣體的程序。
  18. 一種基板處理裝置,具有: 處理室,其係收容基板; 第1原料氣體供給系統,其係對上述處理室內供給包含第1元素之第1原料氣體; 第2原料氣體供給系統,其係對上述處理室內供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體; 反應氣體供給系統,其係對上述處理室內供給包含與上述第1元素不同之第2元素的反應氣體;及 控制部,其係被構成能夠控制上述第1原料氣體供給系統、上述第2原料氣體供給系統及上述反應氣體供給系統,以使在上述處理室內,實行下述處理,具有: 形成含有第1元素及第2元素之第1膜的處理;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之處理, 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述處理的循環而形成, (a1)供給上述第1原料氣體的處理;及 (b1)供給上述反應氣體的處理, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述處理的循環而形成; (a2)供給上述第2原料氣體的處理;及 (b2)供給上述反應氣體的處理。
  19. 一種基板處理裝置,具有: 處理室,其係收容基板; 第1原料氣體供給系統,其係對上述處理室內供給包含第1元素之第1原料氣體;和 反應氣體供給系統,其係對上述處理室內供給與上述第1元素不同之第2元素的反應氣體;及 控制部,其係被構成能夠控制上述第1原料氣體供給系統及上述反應氣體供給系統,以使在上述處理室內,實行下述處理,具有: (a)供給上述第1原料氣體的處理;及 (b)供給上述反應氣體的處理, (c)藉由實行特定次數進行(a)及(b)之處理的循環,形成含有上述第1元素及上述第2元素之膜的處理, 實行在(a)中之上述第1原料氣體之供給量以隨著成為各循環後之循環而減少之方式被供給的處理。
  20. 一種基板處理裝置,具有: 處理室,其係收容基板; 第1原料氣體供給系統,其係對上述處理室內供給包含第1元素之第1原料氣體;和 第2原料氣體供給系統,其係對上述處理室內供給包含上述第1元素且比起上述第1原料氣體熱分解溫度較高的第2原料氣體; 反應氣體供給系統,其係對上述處理室內供給包含與上述第1元素不同之第2元素的反應氣體;及 控制部,其係被構成能夠控制上述第1原料氣體供給系統、上述第2原料氣體供給系統及上述反應氣體供給系統,以使在上述處理室內,實行下述處理,具有: 形成含有上述第1元素及上述第2元素之第1膜的工程;和 形成與上述第1膜相鄰接,含有上述第1元素及上述第2元素,具有與上述第1膜之特性不同的特性的第2膜之處理, 上述第1膜及上述第2膜之一方係藉由實行特定次數進行下述處理的循環而形成, (a1)供給上述第1原料氣體的處理;及 (b1)供給上述反應氣體的處理, 上述第1膜及上述第2膜之另一方係藉由實行特定次數進行下述處理的循環而形成; (a2)供給上述第2原料氣體的處理; (b2)供給上述第1原料氣體的處理;及 (c2)供給上述反應氣體的處理。
TW111140791A 2022-03-09 2022-10-27 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置 TW202336267A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022036043A JP7458432B2 (ja) 2022-03-09 2022-03-09 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP2022-036043 2022-03-09

Publications (1)

Publication Number Publication Date
TW202336267A true TW202336267A (zh) 2023-09-16

Family

ID=84888750

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111140791A TW202336267A (zh) 2022-03-09 2022-10-27 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置

Country Status (6)

Country Link
US (1) US20230317447A1 (zh)
EP (1) EP4243053A1 (zh)
JP (1) JP7458432B2 (zh)
KR (1) KR20230133180A (zh)
CN (1) CN116741620A (zh)
TW (1) TW202336267A (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168092A (ja) * 1999-01-08 2001-06-22 Toshiba Corp 半導体装置およびその製造方法
JP2008166518A (ja) 2006-12-28 2008-07-17 Toshiba Corp 不揮発性半導体記憶装置
JP5388993B2 (ja) 2010-11-18 2014-01-15 株式会社東芝 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
JP6042656B2 (ja) * 2011-09-30 2016-12-14 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5975617B2 (ja) 2011-10-06 2016-08-23 キヤノン株式会社 固体撮像装置およびその製造方法ならびにカメラ
JP6486479B2 (ja) 2015-09-03 2019-03-20 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラム、および供給系
JP6594768B2 (ja) 2015-12-25 2019-10-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体

Also Published As

Publication number Publication date
JP2023131341A (ja) 2023-09-22
JP7458432B2 (ja) 2024-03-29
EP4243053A1 (en) 2023-09-13
KR20230133180A (ko) 2023-09-19
CN116741620A (zh) 2023-09-12
US20230317447A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
TWI739263B (zh) 半導體裝置之製造方法、基板處理裝置及程式
KR100660890B1 (ko) Ald를 이용한 이산화실리콘막 형성 방법
US8410003B2 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
JP6953480B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
TWI821626B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
TW202205437A (zh) 半導體裝置之製造方法、基板處理裝置及程式
JP6745887B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6741780B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6470468B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR102671300B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP7315756B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7083890B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
TWI829035B (zh) 半導體裝置的製造方法、基板處理方法、程式及基板處理裝置
TWI811731B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
JP7431343B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
TW202336267A (zh) 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置
WO2024122172A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
JP2022087143A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
TW202325884A (zh) 基板處理方法,半導體裝置的製造方法,基板處理裝置及程式
TW202238725A (zh) 半導體裝置的製造方法,基板處理方法,程式及基板處理裝置
TW202229616A (zh) 半導體裝置的製造方法,基板處理裝置,及程式
JP2022023076A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム