TW202209013A - 曝光裝置、測量裝置、測量方法和元件製造方法 - Google Patents

曝光裝置、測量裝置、測量方法和元件製造方法 Download PDF

Info

Publication number
TW202209013A
TW202209013A TW110129679A TW110129679A TW202209013A TW 202209013 A TW202209013 A TW 202209013A TW 110129679 A TW110129679 A TW 110129679A TW 110129679 A TW110129679 A TW 110129679A TW 202209013 A TW202209013 A TW 202209013A
Authority
TW
Taiwan
Prior art keywords
spatial light
detection
detection unit
light modulator
light modulation
Prior art date
Application number
TW110129679A
Other languages
English (en)
Inventor
渡邉陽司
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW202209013A publication Critical patent/TW202209013A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明的曝光裝置包括:曝光照明光學系統,對空間光調製器進行照明,所述空間光調製器包括具有配置於排列面的反射面的多個空間光調製器件;投影光學系統,將來自空間光調製器的光投影至被曝光基板;第一檢測部,檢測來自反射面的光;第二檢測部,其為檢測來自反射面的光的檢測部,且檢測視野較第一檢測部廣;以及位置變更機構,使第一檢測部及第二檢測部與空間光調製器之間的位置關係成為空間光調製器與第一檢測部相向的第一位置關係和空間光調製器與第二檢測部相向的第二位置關係中的一者。

Description

曝光裝置、測量裝置、測量方法和元件製造方法
本發明是有關於一種曝光裝置、測量裝置、測量方法和元件製造方法。
作為形成應進行曝光轉印的圖案的構件,提出了一種曝光裝置,其使用使照射光的朝向規定方向的反射率可變的數位反射鏡元件(digital mirror device)等空間光調製器(專利文獻1)。 [現有技術文獻] [專利文獻]
[專利文獻1]美國專利申請案公開第2019/0285988號說明書
基於第一態樣,曝光裝置包括:曝光照明光學系統,對空間光調製器進行照明,所述空間光調製器包括具有配置於排列面的反射面的多個空間光調製器件;投影光學系統,將來自所述空間光調製器的光投影至被曝光基板;第一檢測部,具有第一檢測光學系統並檢測來自所述反射面的光;第二檢測部,其為具有第二檢測光學系統並檢測來自所述反射面的光的檢測部,且檢測視野較所述第一檢測部廣;以及位置變更機構,使所述第一檢測部及所述第二檢測部與所述空間光調製器之間的位置關係成為所述空間光調製器與所述第一檢測部相向的第一位置關係和所述空間光調製器與所述第二檢測部相向的第二位置關係中的一者。 基於第二態樣,測量裝置對空間光調製器進行測量,所述空間光調製器包括分別具有反射面的多個空間光調製器件,所述測量裝置包括:照明系統,向排列有多個所述空間光調製器件的各反射面的排列面照射光;檢測光學系統,基於來自多個所述反射面的光,形成所述排列面的像;攝像部,對所述檢測光學系統所形成的所述排列面的像進行檢測;以及演算部,基於所述攝像部檢測出的所述像的光量即檢測光量,算出所述空間光調製器件的所述反射面於所述排列面的法線方向上的位置資訊、或者與所述空間光調製器件的所述反射面自所述排列面的旋轉角度相關的位置資訊。 基於第三態樣,測量裝置包括:第一檢測部,對於包括具有配置於排列面的反射面的多個空間光調製器件的空間光調製器,檢測來自所述反射面的光;第二檢測部,其為檢測來自所述反射面的光的檢測部,且檢測視野較所述第一檢測部廣;以及位置變更機構,使所述第一檢測部及所述第二檢測部與所述空間光調製器之間的位置關係成為所述空間光調製器與所述第一檢測部相向的第一位置關係、和所述空間光調製器與所述第二檢測部相向的第二位置關係中的一者。 基於第四態樣,測量方法使用空間光調製器,所述空間光調製器包括分別具有反射面的多個空間光調製器件,所述測量方法包括:對於在排列有多個所述空間光調製器件的各反射面的排列面中的第一區域交替配置的第一群組的所述空間光調製器件與第二群組的所述空間光調製器件,將所述第一群組的所述空間光調製器件的所述反射面與所述第二群組的所述空間光調製器件的所述反射面設定於所述排列面的法線方向上的不同位置;利用第一檢測部,測量所述第一群組的所述反射面中的至少一個和所述第二群組的所述反射面中的至少一個的所述法線方向上的距離資訊;利用攝像式的第二檢測部,測量相當於所述第一區域的部分的像的光量即基準光量;基於測量出的所述距離資訊以及所述基準光量,算出所述第一群組的反射面和第二群組的反射面的所述法線方向上的距離與所述像的光量之間的對應關係;將於所述排列面中的與所述第一區域不同的第二區域交替配置的第三群組的空間光調製器件的所述反射面與第四群組的空間光調製器件的所述反射面設定於所述排列面的法線方向上的不同位置;利用所述第二檢測部,測量相當於所述第二區域的部分的像的光量即檢測光量;基於所述檢測光量以及所述對應關係,算出所述第二區域中的第三群組的空間光調製器件的所述反射面和第四群組的空間光調製器件的所述反射面的所述法線方向上的距離資訊。 基於第五態樣,曝光裝置包括:曝光照明光學系統,對空間光調製器進行照明,所述空間光調製器包括具有配置於排列面的反射面的多個空間光調製器件;投影光學系統,將來自所述空間光調製器的光投影至被曝光基板;以及第二態樣或第三態樣的測量裝置。 基於第六態樣,元件製造方法包括:於基板的表面上形成抗蝕劑;使用第一態樣或第五態樣的曝光裝置對曝光圖案進行曝光;以及基於所述曝光圖案來形成電路圖案。
(第一實施方式的測量裝置) 圖1是概略性地表示第一實施方式的測量裝置1的結構的圖。第一實施方式的測量裝置1是用於測量空間光調製器20的運作狀態的裝置,且包括圖1中由單點劃線包圍表示的檢測部5。
於圖1及以下要參照的各圖中,由箭頭表示的X方向、Y方向及Z方向分別為正交的方向,並且X方向、Y方向及Z方向各自於各圖中表示相同的方向。以下,將各箭頭所表示的方向分別稱為+X方向、+Y方向及+Z方向。另外,將X方向上的位置稱為X位置,將Y方向上的位置稱為Y位置,將Z方向上的位置稱為Z位置。
空間光調製器20由保持部28保持,保持部28能夠於引導部29上沿X方向及Y方向移動。因此,空間光調製器20被保持為相對於檢測部5而能夠沿X方向及Y方向相對移動。將保持部28與引導部29一併或各別地亦稱為移動機構27。
圖2(a)、圖2(b)是概略性地表示空間光調製器20的結構的圖,所述空間光調製器20是利用測量裝置1的測量的對象。圖2(a)表示自-Z方向觀察空間光調製器20而得的圖,圖2(b)表示圖2(a)中的AA切斷線處的空間光調製器20的XZ剖面。
於空間光調製器20的-Z側的面,配置有於各自的-Z側的端部具有反射面22R的多個空間光調製器件22。多個空間光調製器件22被配置成各自的反射面22R與排列面DP大體一致,所述排列面DP是空間光調製器20的-Z側的端部附近的一個XY平面。作為一例,多個空間光調製器件22沿著X方向及Y方向配置,空間光調製器件22的X方向上的配置週期為PX,Y方向上的配置週期為PY。
空間光調製器件22各自經由具有彈性的未圖示的保持構件而保持於空間光調製器20的框體21。於框體21的與各空間光調製器件22的+Z側相向的部分,分別配置有相向電極23。當自調製控制部24分別對相向電極23施加規定的電壓作為控制訊號Sa時,各空間光調製器件22沿Z方向平行移動,且被設定於與施加至相向的相向電極23的控制訊號Sa的電壓對應的Z位置。調製控制部24基於自外部供給的控制訊號S1,向各相向電極23發送控制訊號Sa。
如上所述,排列面DP為XY平面之一,因此Z方向為相對於排列面DP的法線方向。 關於圖2(a)中由虛線表示的第一區域A1及第二區域A2,將於之後敘述。
圖3是表示位置設定關係FR的一例的圖,所述位置設定關係FR是由控制訊號S1及控制訊號Sa指定的反射面22R的Z位置即指定位置(橫軸)、與反射面22R實際被設定的Z位置即實際設定位置(縱軸)之間的關係。實際設定位置為相對於排列面DP的Z方向上的相對位置,若實際設定位置為0[nm],則反射面22R成為與排列面DP一致的面。
位置設定關係FR由於構成空間光調製器20的各構件的製造誤差、熱膨脹及帶電等而自理想的比例關係FI偏離。於一個空間光調製器20中,亦有於排列面DP內的位置不同的空間光調製器件22中位置設定關係FR不同的情況。
參照圖1,對測量裝置1的檢測部5的結構進行說明。檢測部5包括:檢測光源11、送光透鏡12、照明孔徑光闌13、分支器件14、物鏡15、檢測孔徑光闌16、成像透鏡17、攝像部18及控制部25。
其中,送光透鏡12、照明孔徑光闌13、分支器件14及物鏡15構成了對構成空間光調製器20的空間光調製器件22的排列面DP照射光的照明系統。 另外,由雙點劃線包圍的部分中包括的物鏡15、分支器件14、檢測孔徑光闌16及成像透鏡17構成了將排列面DP的像形成於固體攝像器件等攝像部18的攝像面19上的檢測光學系統10。
自檢測光源11射出的照明光ILa藉由送光透鏡12而被大致平行化,且藉由照明孔徑光闌13,其直徑受到限制,從而成為照明光ILb。然後,照明光ILb入射至分束器(beam splitter)等分支器件14,且被分支器件14的分支面14s反射後,藉由物鏡15而聚光。然後,作為具有與照明孔徑光闌13的開口直徑對應的數值孔徑(照明數值孔徑(numerical aperture,NA))的照明光束而被照射至空間光調製器20的排列面DP。
照明光ILb藉由配置於排列面DP的附近的多個反射面22R(參照圖2(a)、圖2(b))而反射,其一部分成為檢測光DLa而入射至物鏡15。檢測光DLa隨後入射至分支器件14並透射分支器件14的分支面14s,且藉由檢測孔徑光闌16,其直徑受到限制,從而成為檢測光DLb。
檢測光DLb藉由成像透鏡17而聚光,並入射至攝像部18的攝像面19,於攝像面19上形成排列面DP的像。排列面DP的像由攝像部18檢測,即進行光電轉換而轉換為電性訊號,並作為像訊號S2而被發送至控制部25。 以下,亦將由構成攝像部18的攝像畫素檢測出的、排列面DP的像的各部分的光量稱為「檢測光量」。
檢測光源11作為一例可為半導體雷射,亦可為發光波長區域相對較窄的發光二極體(light emitting diode,LED)。送光透鏡12、物鏡15及成像透鏡17不限於包括圖示的片數(兩片)的透鏡的結構,亦可包括任意片數的透鏡,另外,均可包括反射光學系統。分支器件14並不限於所述分束器,亦可為包括平板玻璃等的半反射鏡(half mirror)。
控制部25向空間光調製器20發送控制訊號S1,以於測量時空間光調製器20的各空間光調製器件22分別被設定於規定的Z位置的方式進行控制。控制部25基於像訊號S2來算出空間光調製器20的位置資訊。因此,亦可將控制部25稱為演算部。
以下,參照圖4(a)~圖4(d)及圖5,對基於像訊號S2的空間光調製器20的測量的原理進行說明。 圖4(a)~圖4(d)是概略性地說明由空間光調製器20形成的正反射光DLa0的光量的調製的原理的圖。圖4(a)及圖4(b)是自-Z方向觀察圖2(a)所示的空間光調製器20的、配置於第一區域A1的多個空間光調製器件22的運作狀態各自的一例而得的圖。再者,所謂第一區域A1可為空間光調製器20的排列面DP上的任意的區域。另外,第一區域A1中包括的空間光調製器件22的數量不限於圖2(a)、圖2(b)及圖4(a)~圖4(d)所示的4×4個,亦可為其他任意的個數。
圖4(c)是自+Y方向觀察圖4(b)所示的運作狀態下第一區域A1的空間光調製器件22以及圖1所示的物鏡15而得的剖面圖。於圖4(c)中,為了避免圖式的複雜化,省略了向空間光調製器20自-Z方向照射的照明光ILb(參照圖1)的圖示。
於圖4(a)至圖4(c)中,將空間光調製器件22中反射面22R與排列面DP大致一致地配置的器件稱為第一群組的空間光調製器件22a。而且,將空間光調製器件22中反射面22R自排列面DP沿+Z方向離開地配置的器件稱為第二群組的空間光調製器件22b。
對第一群組的空間光調製器件22a的反射面22R標註22Ra的符號,對第二群組的空間光調製器件22b的反射面22R標註22Rb的符號。另外,對第一群組的空間光調製器件22a標註自左上向右下延伸的斜線、對第二群組的空間光調製器件22b標註自左下向右上延伸的斜線來進行區別。
第一群組的空間光調製器件22a的反射面22Ra根據來自控制部25的控制訊號S1及來自調製控制部24的控制訊號Sa而被設定成指定位置為0(排列面DP上)。另一第二群組的空間光調製器件22b的反射面22Rb根據來自控制部25的控制訊號S1及來自調製控制部24的控制訊號Sa而被設定成指定位置為自排列面DP沿+Z方向離開指定位置差H1d的位置。
再者,第一群組的空間光調製器件22a的反射面22Ra及第二群組的空間光調製器件22b的反射面22Rb的實際設定值接近各自的指定位置,但如上所述般並非必須一致。 將第一群組的空間光調製器件22a的反射面22Ra和第二群組的空間光調製器件22b的反射面22Rb的實際設定值的Z位置之差稱為位置差H1。關於位置差H1,亦並非必須與所述指定位置差H1d一致。 再者,於圖3(c)中,位置差H1與所述指定位置差H1d的長度的差異與圖式的標尺相比極小,因此設為表示相同部分的長度。
於圖4(a)至圖4(c)中,基於來自控制部25的控制訊號S1,相互具有Z方向上的配置的位置差H1的多個第一群組的空間光調製器件22a與多個第二群組的空間光調製器件22b交替配置。此處,所謂「交替配置」是指於XY面內沿著規定的方向配置的多個空間光調製器件22中,第一群組的空間光調製器件22a與第二群組的空間光調製器件22b以互不相同的方式配置。
圖4(a)示出第一群組的空間光調製器件22a與第二群組的空間光調製器件22b沿著X方向及Y方向這兩個方向交替配置、換言之以黑白方格狀(方格旗(checkered flag)花紋狀)配置的運作狀態。 圖4(b)示出第一群組的空間光調製器件22a與第二群組的空間光調製器件22b沿著X方向交替配置、第一群組的空間光調製器件22a或第二群組的空間光調製器件22b中的任一者沿著Y方向連續配置的運作狀態。
當向各空間光調製器件22的反射面22R自大致-Z方向照射照明光ILb(參照圖1)時,於由各個反射面22Ra、22Rb形成的反射光中附加與各反射面22R的為Z位置的實際設定位置之差、即位置差H1對應的相位差。然後,根據該相位差、以及反射面22R的X方向上的配置週期PX及反射面22R的Y方向上的配置週期PY(參照圖1),反射光被分離為後述的正反射光與多個繞射光,且分別以不同的射出角度(繞射角)自排列面DP射出。
如上所述,圖4(c)是表示來自圖4(b)所示的運作狀態下第一區域A1的空間光調製器件22的反射光的圖,因此反射光被分離為正反射光DLa0、與朝向X方向的+1級繞射光DLap及-1級繞射光DLam等繞射光。 正反射光DLa0沿相對於排列面DP而垂直的方向(-Z方向)射出。關於+1級繞射光DLap及-1級繞射光DLam的繞射角θ,將於之後敘述。
圖4(d)是表示檢測孔徑光闌16中的正反射光DLa0、+1級繞射光DLap、及-1級繞射光DLam等的位置的圖。於檢測孔徑光闌16中,以其中心16c為中心,設置有半徑與檢測光學系統10的空間光調製器20側的數值孔徑NA2相當的開口部16o,較開口部16o更靠外側處成為遮蔽光的遮蔽部。 關於圖4(d)所示的距離DX、距離DY,將於之後敘述。
於圖4(d)中亦一併示出自圖4(a)所示的空間光調製器件22產生的繞射光,該空間光調製器件22中,Z位置不同的第一群組的空間光調製器件22a與第二群組的空間光調製器件22b配置成黑白方格狀。自圖4(a)所示的空間光調製器件22產生(X側級數、Y側級數)為(+1級、+1級)的繞射光DLapp、(X側級數、Y側級數)為(+1級、-1級)的繞射光DLapm、(X側級數、Y側級數)為(-1級、+1級)的繞射光DLamp、及(X側級數、Y側級數)為(-1級、-1級)的繞射光DLamm。另外,亦產生正反射光DLa0。
但是,於任一情況下,來自空間光調製器20的一級繞射光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)均會被檢測孔徑光闌16遮蔽,因此不會到達攝像部18。
另一方面,來自空間光調製器20的正反射光DLa0通過檢測孔徑光闌16的開口部16o並經過成像透鏡17而抵達攝像部18。然後,於攝像部18的攝像面19上形成排列面DP的像。因此,來自排列面DP上的第一區域A1等各區域的正反射光DLa0的光量藉由攝像部18中包括的各攝像畫素而被檢測為排列面DP的各區域的像的光量即檢測光量。
向排列面DP以規定的光量(強度)照射規定的波長的照明光時正反射光DLa0的光量(強度)根據第一群組的空間光調製器件22a和第二群組的空間光調製器件22b的實際設定位置之差即位置差H1來決定。
圖5是表示第一群組的空間光調製器件22a和第二群組的空間光調製器件22b的位置差H1(橫軸)與由空間光調製器20形成的正反射光DLa0的強度(縱軸)之間的對應關係RL1、對應關係RL2的圖。 圖5的橫軸的標尺為[nm],縱軸的標尺設定成當位置差H1為0[nm]時正反射光DLa0的強度(Intensity)為1。
由實線表示的對應關係RL1表示作為一例的正反射光DLa0的波長為546[nm]時的對應關係,由虛線表示的對應關係RL2表示作為另一例的正反射光DLa0的波長為193[nm]時的對應關係。 對應關係RL1是將正反射光DLa0的波長(546[nm])設為λ、相對於位置差H1而大致由以下的式(1)表示的關係。 RL1={1+cos(4π×H1/λ)}/2  …(1) 關於對應關係RL2,亦與對應關係RL1相同。
正反射光DLa0的強度於位置差H1為0[nm]至各波長的1/4的範圍內,隨著位置差H1的增加而單調減少。因此,可根據正反射光DLa0的強度、即第一區域A1等區域的像的檢測光量,並基於對應關係RL1(RL2),算出第一區域A1等區域內的第一群組的空間光調製器件22a和第二群組的空間光調製器件22b的位置差H1。
控制部25基於攝像部18檢測出的像訊號S2以及所述對應關係RL1(或對應關係RL2),算出空間光調製器20的第一區域A1等區域內的第一群組的空間光調製器件22a和第二群組的空間光調製器件22b的位置差H1。控制部25包括預先儲存有對應關係RL1的固態記憶體或磁性記憶體等儲存部25M。如上所述,位置差H1對應的是空間光調製器件22的反射面22R於排列面DP的法線方向(Z方向)上的位置資訊。
包括控制部25的檢測部5可一邊使所述指定位置差H1d的值不同,一邊進行多次所述測量,基於所算出的多個位置差H1與指定位置差H1d,算出用於設定所期望的位置差H1的指定位置差H1d。
為了進一步高精度地算出位置差H1,控制部25可亦基於空間光調製器20的第一區域A1等區域中位置差H1為0[nm]的運作狀態的像的光量即參考光量,根據檢測光量算出空間光調製器件22的位置差H1。
於進行該參考光量的檢測時,控制部25向空間光調製器20發送控制訊號S1,以各空間光調製器件22被設定於相同的Z位置的方式進行控制。然後,與所述檢測光量的檢測同樣地,檢測攝像部18的攝像面19上所形成的空間光調製器20的排列面DP的像的光量分佈來作為參考光量。
作為一例,控制部25可基於空間光調製器20的第一區域A1等區域中的檢測光量除以所述參考光量而得的值,算出空間光調製器件22的位置差H1。藉此,可校正因照明系統(12~15)或檢測光學系統10的透射率不均等而引起的檢測光量的檢測誤差。
為了更高精度地算出位置差H1,宜使用在對應關係RL1、對應關係RL2中強度相對於位置差H1的變化量而大幅變化的區域。作為一例,該區域相當於強度的值為0.8以下且為0.2以上的區域。
例如,於要求作為測量對象的空間光調製器20將波長193[nm]的正反射光DLa0的強度設為0的情況下,空間光調製器20需要將所述位置差H1設定為大致以193/4=48.25[nm]為中心的48±2[nm]左右的範圍內。
此時,若於利用測量裝置1對空間光調製器20的第一區域A1的像進行檢測時同樣使用波長193[nm]的光,則如圖5中作為對應關係RL2所示,相對於其位置差H1而正反射光DLa0的強度大致為0。而且,相對於位置差H1於48[nm]附近的變化,正反射光DLa0的強度幾乎無變化。因此,波長193[nm]的光不適合於準確地測量48[nm]附近的位置差H1的值。
另一方面,若於利用測量裝置1對空間光調製器20的第一區域A1的像進行檢測時使用波長546[nm]的光,則如圖5中作為對應關係RL2所示,48[nm]的位置差H1處的正反射光DLa0的強度為0.7左右。而且,相對於位置差H1於48[nm]附近的變化,正反射光DLa0的強度亦大幅變動。
因此,於測定被要求將波長193[nm]的正反射光DLa0的強度設為0的空間光調製器20的運作的情況下,作為一例,宜使用546[nm]的光作為照明光ILa、照明光ILb。
再者,更普遍而言,於測定被要求將波長λ1的正反射光DLa0的強度設為0的空間光調製器20的運作的情況下,宜使用波長為波長λ1的1.5倍以上且3.3倍以下的波長λ2的光作為照明光ILa、照明光ILb。該情況下,於將波長λ1的正反射光DLa0的強度設為0的位置差H1下,可將波長λ2的光的正反射光DLa0的強度設為0.2至0.8的範圍內,可更高精度地測量位置差H1的值。
如上所述,為了達成位置差H1的高精度的測量,宜不使來自空間光調製器20的1級繞射光入射至檢測器18。因此,於以下,再次參照圖3(a)至圖3(d),對檢測光學系統10的數值孔徑NA2進行說明。
如上所述,自圖4(b)所示的運作狀態的第一區域A1的空間光調製器件22會產生正反射光DLa0、與朝向X方向的+1級繞射光DLap及-1級繞射光DLam等繞射光。+1級繞射光DLap沿自-Z方向朝+X方向傾斜繞射角θ的方向射出。此處,繞射角θ是將照明光ILb的波長設為λ時滿足sin(θ)=λ/(2×PX)的關係的角度。而且,-1級繞射光DLam沿自-Z方向朝-X方向傾斜繞射角θ的方向射出。
再者,照射至排列面DP的照明光ILb如上所述般具有規定的照明NA,因此,關於正反射光DLa0、+1級繞射光DLap及-1級繞射光DLam,亦沿以所述各方向為中心而擴展了規定的角度範圍的方向射出。
如上所述,圖4(d)是表示檢測孔徑光闌16中的正反射光DLa0、+1級繞射光DLap、及-1級繞射光DLam等的位置的圖。由於檢測孔徑光圈16被配置於物鏡15的光瞳面上,因此圖4(d)中的X方向及Y方向上的位置相當於自空間光調製器20射出的光的射出角度的正弦(sin)。具體而言,自中心16c至檢測孔徑光闌16上的各點的距離例如是自空間光調製器20射出並到達各點的光的射出角度的正弦乘以物鏡15的焦距而得的長度。
+1級繞射光DLap及-1級繞射光DLam的中心位置於檢測孔徑光闌16中成為自中心16c分別沿+X方向及-X方向離開距離DX的位置。此處,距離DX是相當於所述繞射角θ的正弦即sin(θ)=λ/(2×PX)的距離。
因此,若檢測光學系統10的空間光調製器20側的數值孔徑即開口部16o的半徑NA2小於λ/(2×PX),則+1級繞射光DLap及-1級繞射光DLam被檢測孔徑光闌16遮蔽而不會到達攝像部18。
圖4(d)所示的所述一次繞射光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)各自的中心位置成為自檢測孔徑光闌16的中心16c分別沿±X方向離開距離DX、沿±Y方向離開距離DY的位置。此處,距離DX如上所述般是相當於sin(θ)=λ/(2×PX)的距離,距離DY是相對於反射面22R的Y方向上的配置週期PY而相當於sin(θ)=λ/(2×PY)的距離。
因此,若檢測光學系統10的空間光調製器20側的數值孔徑小於√[{λ/(2×PX)}2 +{λ/(2×PX)}2 ],則繞射光(DLapp、DLapm、DLamp、DLamm)被檢測孔徑光闌16遮蔽而無法到達攝像部18。
於將反射面22R的X方向上的配置週期PX與Y方向上的配置週期PY的平均設為P時,宜將檢測光學系統10的空間光調製器20側的數值孔徑設定為大致小於√2×λ/(2×P)。藉此,與上述同樣地,可藉由檢測孔徑光闌16將繞射光(DLapp、DLapm、DLamp、DLamm)遮蔽。反射面22R的X方向上的配置週期PX與Y方向上的配置週期PY亦可相等。
再者,如上所述,利用照明光ILb所具有的照明NA,各繞射光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)亦擴展了照明光ILb的照明NA程度的角度範圍。因此,檢測光學系統10的空間光調製器20側的作為開口部16o的半徑NA2的數值孔徑(NA2)亦可設定為小於自所述各值進一步減去照明NA後的值。
但是,若檢測光學系統10的空間光調製器20側的數值孔徑NA2過小,則檢測光學系統的解析降低,難以準確地分離及檢測空間光調製器20的排列面DP的第一區域A1的像與第一區域A1以外的區域的像。因此,檢測光學系統10的空間光調製器20側的數值孔徑NA2宜設定為較相對於所述照明光ILb的波長λ及空間光調製器件22的配置週期P而由λ/(5×P)決定的值大的值。
綜上所述,於將空間光調製器件22的配置週期設為P、將檢測光學系統10要檢測的光的波長設為λ時,檢測光學系統10的空間光調製器20側的數值孔徑NA2宜滿足以下的式(2)的關係。 λ/(5×P)<NA<√2×λ/(2×P)  …(2)
測量裝置1所包括的檢測部5的視野越廣,一次檢測中可測量的空間光調製器件22的數量越多,因此達成測量時間的縮短。因此,檢測部5的視野越廣越佳。但是,於保持了測量空間光調製器件22的運作狀態所需的規定的解析度的基礎上、即於將檢測光學系統10的空間光調製器20側的數值孔徑NA2保持為規定的值以上的基礎上擴大檢測部5的視野並非易事。
因此,於第一實施方式的測量裝置1中,作為一例,設為檢測部5於空間光調製器20上的視野、即作為檢測光學系統10的視野的檢測視野的外徑D[mm]與檢測光學系統10的空間光調製器20側的數值孔徑NA2的積為0.5以上。
此處,所謂檢測視野是指空間光調製器20上的藉由攝像部18的攝像面19而拍攝其像的範圍,且相當於將攝像面19的範圍縮小(或放大)了檢測光學系統10的成像倍率(橫向倍率)的絕對值的範圍。 另外,所謂檢測視野的外徑是指自檢測視野的任意一端至另一端的長度中的最大長度。
再者,於檢測部5的檢測視野較作為測量對象的空間光調製器20的排列有空間光調製器件22的排列面DP窄的情況下,亦可藉由使用所述移動機構27而對排列面DP的整個面進行測量。即,亦可一邊利用移動機構27使空間光調製器20與檢測光學系統10的相對位置移動,一邊利用檢測部5進行多次測量,藉此遍及排列面DP的整個面進行測量。
於以上的說明中,設為測量裝置1對具有可沿Z方向移動的多個空間光調製器件22的空間光調製器20進行測量。但是,測量裝置1的測量對象亦可為角度調製型的空間光調製器20r,所述角度調製型的空間光調製器20r如圖6所示,具有分別可於規定的角度範圍內旋轉的多個空間光調製器件22。
圖6是自+Y方向觀察角度調製型的空間光調製器20r的一部分以及圖1所示的物鏡15而得的剖面圖,且是與所述圖4(c)相同的圖。因此,於以下,亦參照圖1至圖4(a)~圖4(d)的各圖所示的符號進行說明。再者,於圖6中,與圖4(c)同樣地,為了避免圖式的複雜化,亦省略了向空間光調製器20r自-Z方向照射的照明光ILb(參照圖1)的圖示。
空間光調製器件22各自經由未圖示的保持構件而保持於空間光調製器20的框體21,所述保持構件能夠以Y方向為旋轉軸而於規定的角度範圍內旋轉。於空間光調製器20r的框體21中與各空間光調製器件22的+Z側相向的部分,分別配置有相向電極23a、相向電極23b。當自未圖示的調製控制部24(參照圖1)分別對相向電極23a、相向電極23b施加規定的電壓時,各空間光調製器件22被設定於與施加至相向的相向電極23a、相向電極23b的電壓對應地旋轉了規定角度的角度位置。
於各個空間光調製器件22的-Z側的面形成有反射面22R。 於圖6所示的運作狀態下,藉由向相向電極23a、相向電極23b施加電壓,多個空間光調製器件22中的一部分空間光調製器件22c的反射面22Rc與排列面DP平行地配置。另一方面,多個空間光調製器件22中的一部分空間光調製器件22d配置成反射面22Rd自排列面DP以Y方向為旋轉中心而旋轉了角度ϕ。
照射至空間光調製器件22c的照明光(參照圖1)藉由與排列面DP平行的反射面22Rc而沿大致-Z方向被反射,並作為反射光RR而入射至物鏡15。然後,通過檢測孔徑光闌16的開口部16o並經過成像透鏡17而抵達攝像部18(均參照圖1),於攝像面19上形成空間光調製器件22c的像。
另一方面,照射至旋轉了角度ϕ的空間光調製器件22d的照明光藉由反射面22Rc而沿自-Z方向朝-X方向離開大致角度2ϕ的方向被反射,並作為反射光RO入射至物鏡15。而且,至少一部分被檢測孔徑光闌16遮蔽。
再者,如上所述,由於照射至排列面DP的照明光ILb具有規定的照明NA,因此,關於反射光RR及反射光RO,亦分別沿自所述方向擴展了規定角度範圍的方向射出。 因此,於攝像部18的攝像面19,具有相對於排列面DP而發生了旋轉的反射面22Rd的空間光調製器件22d所對應的部分的像的強度與反射面22Rd自排列面DP的旋轉角度對應地降低。
即,排列面DP的各區域的反射面22Rd自排列面DP的旋轉角度ϕ、與藉由攝像部18中包括的各攝像畫素而作為排列面DP的各區域的像的光量被檢測出的檢測光量之間存在規定的對應關係。 因此,測量裝置1的控制部25亦可基於攝像面19上所形成的藉由攝像部18檢測出的像的檢測光量,算出與反射面22Rd自排列面DP的旋轉角度相關的位置資訊。
再者,各空間光調製器件22的旋轉軸不限於與所述Y方向平行的軸,亦可為和與Z軸交叉的任意的方向平行的旋轉軸。 另外,於測量時,要進行測量的規定區域內的空間光調製器件22的反射面22R亦可配置成全部自排列面DP旋轉相同的角度。
再者,於所述第一實施方式的測量裝置中,設為移動機構27使空間光調製器20相對於固定的檢測部5移動,但移動機構27亦可使檢測部5相對於固定的空間光調製器20移動。 即,移動機構27只要是於排列面DP的面內方向上使包括檢測光學系統10的檢測部5相對於空間光調製器20的相對位置移動的移動機構即可。
(第一實施方式的測量裝置的效果) (1)第一實施方式的測量裝置是對空間光調製器20進行測量的測量裝置1,所述空間光調製器20包括分別具有反射面22R的多個空間光調製器件22,所述測量裝置1包括:照明系統(12~15),向排列有多個空間光調製器件22的各反射面22R的排列面DP照射光;以及檢測光學系統10,基於來自多個反射面22R的光,形成排列面DP的像。更包括:攝像部18,對檢測光學系統10所形成的排列面DP的像進行檢測;以及控制部25,基於攝像部18檢測出的像的光量即檢測光量,算出空間光調製器件22的反射面22R於排列面DP的法線方向(Z方向)上的位置資訊、或者與空間光調製器件22的反射面22R自排列面DP的旋轉角度相關的位置資訊。 根據該結構,可準確地測量空間光調製器20中包括的空間光調製器件22的運作狀態。
(第二實施方式的測量裝置) 以下,對第二實施方式的測量裝置1a進行說明。於以下的說明中,對第二實施方式的測量裝置1a的結構中與所述第一實施方式的測量裝置1的結構相同的部分標註同一符號,並適當省略說明。關於以下的說明中參照的空間光調製器20、空間光調製器件22及反射面22R的結構,亦如參照所述圖2(a)、圖2(b)、圖4(a)~圖4(d)及圖6所說明般。
圖7是概略性地表示第二實施方式的測量裝置1a的結構的圖。第二實施方式的測量裝置1a與所述第一實施方式的測量裝置1同樣地是用於測量空間光調製器20的運作狀態的裝置。第二實施方式的測量裝置1a具有第一檢測部6以及第二檢測部5a,所述第一檢測部6以及第二檢測部5a基於來自空間光調製器20的反射面的光,對空間光調製器20的排列面DP的像進行檢測。第二檢測部5a具有較第一檢測部6的檢測視野廣的檢測視野。
第二實施方式的測量裝置1a與所述第一實施方式的測量裝置1同樣地具有移動機構27。空間光調製器20由構成移動機構27的保持部28保持,保持部28可沿著引導部29於X方向(或進一步於Y方向)上移動。第二實施方式中的移動機構27將第一檢測部6及第二檢測部5a與空間光調製器20之間的位置關係切換為空間光調製器20與第一檢測部6相向的第一位置關係和空間光調製器20與第二檢測部5a相向的第二位置關係中的任一者。因此,於以下,亦將移動機構27稱為位置變更機構27。
第一檢測部6包括:圖7的由單點劃線包圍的區域內的檢測光源31、送光透鏡32、第一分支器件33、第二分支器件34、物鏡35、成像透鏡36、參考透鏡39、參考反射面40、可動支撐部41、攝像部37及第一控制部42。
作為一例,第二檢測部5a具有與所述第一實施方式的測量裝置1中包括的檢測部5(參照圖1)相同的結構。因此,第二檢測部5a具有與所述檢測部5的檢測光學系統10及控制部25相同的第二檢測光學系統10a及第二控制部25a。再者,於圖7中,關於構成第二檢測部5a的構件,除第二檢測光學系統10a及第二控制部25a之外省略了圖示。
與所述第一實施方式的測量裝置1中包括的控制部25同樣地,第二檢測部5a的第二控制部25a基於檢測排列面DP的像而得的檢測光量,算出空間光調製器件22的反射面22R的位置資訊。因此,關於第二控制部25a,亦可稱為演算部。
第一檢測部6中,送光透鏡32、第一分支器件33、第二分支器件34及物鏡35構成了第一照明系統,所述第一照明系統對構成空間光調製器20的空間光調製器件22的排列面DP照射光。 另外,由雙點劃線包圍的部分中包括的物鏡35、第二分支器件34、第一分支器件33及成像透鏡36構成了將排列面DP的像形成於固體攝像器件等攝像部37的攝像面38上的第一檢測光學系統30。
自檢測光源31射出的照明光穿過照明光路PIL且藉由送光透鏡32而被大致平行化,並入射至第一分支器件33,被第一分支器件33的分支面33s反射後,入射至第二分支器件34。然後,照明光藉由第二分支器件34的分支面34s而被振幅分割為透射分支面34s並穿過檢測光路PDT的光即檢測光、以及被分支面34s反射並穿過參考光路PRF的光即參考光。
穿過檢測光路PDT的檢測光藉由物鏡35而聚光,並照射至空間光調製器20的排列面DP。然後,檢測光被排列面DP反射,再次穿過物鏡35及檢測光路PDT而抵達第二分支器件34。
穿過參考光路PRF的參考光藉由參考透鏡39而聚光,並照射至參考反射面40。然後,參考光被參考反射面40反射,再次穿過參考透鏡39及參考光路PRF而抵達第二分支器件34。 透射第二分支器件34的分支面34s的檢測光與被第二分支器件34的分支面34s反射的參考光合成為一個光而穿過成像光路PIM,藉由成像透鏡36而聚光,並入射至攝像部37的攝像面38。
即,構成第一檢測部6的構件中,第二分支器件34、物鏡35、成像透鏡36、參考透鏡39、參考反射面40及可動支撐部41等構件構成了所謂的干涉顯微鏡單元。因此,於檢測光路PDT與參考光路PRF的光路長度差為自檢測光源31發出的照明光的相干長度(coherence length)以下的情況下,於攝像面38上形成排列面DP的像與參考反射面40的像於振幅上發生干涉而形成的像(干涉像)。排列面DP與參考反射面40的干涉像由攝像部37檢測,即進行光電轉換而轉換為電性訊號,並作為像訊號S4而被發送至第一控制部42。
沿著作為參考光路PRF的行進方向的±X方向的參考反射面40的位置(X位置)藉由保持參考反射面40的可動支撐部41而可動。隨著參考反射面40向X方向的移動,參考光路PRF的光路長度變化,因此排列面DP與參考反射面40的干涉像的強度發生變動。將控制訊號S5發送至可動支撐部41,於使參考反射面40的X位置變化的同時,對由攝像部37檢測出的像訊號S4進行訊號處理。第一控制部42將控制訊號S5發送至可動支撐部41,於使參考反射面40的X位置變化的同時,對由攝像部37檢測出的像訊號S4進行訊號處理。
第一控制部42基於配置於排列面DP的一個空間光調製器件22的反射面22R的像與參考反射面40的像的干涉像的強度變化、以及參考反射面40的X位置,測量該反射面22R的Z位置。 所述干涉顯微鏡單元(34~36、39~41)以及第一控制部42作為測量空間光調製器件22的反射面22R於Z方向上的位置資訊的位置測量部發揮功能。
再者,位置測量部的結構並不限於所述干涉顯微鏡單元(34~36、39~41)的結構。例如,亦可代替藉由可動支撐部41使參考反射面40於X方向上移動而使第一檢測部6整體於Z方向上移動,藉此使檢測光路PDT的光路長度變化。或者,亦可於第一檢測光學系統30內形成相對於排列面DP的共軛面,並於該共軛面配置聶潑科夫盤(Nipkow disc)(聶潑科夫濾波器(Nipkow filter)),藉此使第一檢測光學系統30作為位置測量部發揮功能。
由於第一檢測部6各別地測量一個空間光調製器件22的反射面22R的Z位置,因此亦可將其解析度設定得高。因此,第一檢測光學系統30的空間光調製器20側的數值孔徑NA1亦可設定成大於第二檢測部5a所具有的第二檢測光學系統的空間光調製器20側的數值孔徑NA2。
作為一例,檢測光源31亦可為LED。另外,若為使用所述聶潑科夫盤的結構,則檢測光源31亦可為雷射光源。送光透鏡32、物鏡35及成像透鏡36不限於包括圖示的片數(兩片)的透鏡的結構,亦可包括任意片數的透鏡,另外,均可包括反射光學系統。與所述第一實施方式的分支器件14同樣地,第一分支器件33及第二分支器件34由分束器、或包括平板玻璃等的半反射鏡等構成。
於測量之前,第一控制部42對空間光調製器20發送用於將作為測量對象的空間光調製器件22的反射面22R的位置設定於規定的指定位置的控制訊號S3。控制訊號S3是與所述第一實施方式的測量裝置1中自檢測部5的控制部25發送至空間光調製器20的控制訊號S1相同的控制訊號。
藉此,包括第一控制部42的第一檢測部6可檢測空間光調製器件22的反射面22R的所述指定位置與測量出的反射面22R的位置、即反射面22R實際被設定的實際設定位置之差作為檢測結果。
包括第一控制部42的第一檢測部6亦可利用控制訊號S3將規定的反射面22R設定於各自不同的多個指定位置,並檢測各自的反射面22R的實際設定位置。藉此,第一控制部42亦可檢測圖3所示的位置設定關係FR作為檢測結果。
第一檢測部6可遍及空間光調製器件22的指定位置的整個範圍內檢測位置設定關係FR,亦可僅針對空間光調製器件22的指定位置的一部分範圍檢測位置設定關係FR。
第一檢測部6中的第一控制部42亦可將位置設定關係FR等檢測結果作為資訊訊號S6發送至第二檢測部5a中的第二控制部25a。第二檢測部5a中的第二控制部25a可亦使用該位置設定關係FR等檢測結果來算出所述位置差H1。
具體而言,於具有與所述檢測部5相同的結構的第二檢測部5a中,作為測量時指定的空間光調製器件22的反射面22R的指定位置,亦可使用基於自第一檢測部6接收的位置設定關係FR等檢測結果對實際設定位置進行了修正的位置。
(第二實施方式的測量裝置的效果) (2)所述第二實施方式的測量裝置1a包括:第一檢測部6,對於包括具有配置於排列面DP的反射面22R的多個空間光調製器件22的空間光調製器20,檢測來自反射面22R的光;以及第二檢測部5a,其為檢測來自反射面22R的光的檢測部,且檢測視野較第一檢測部6廣。而且,更包括位置變更機構27,使第一檢測部6及第二檢測部5a與空間光調製器20之間的位置關係成為空間光調製器20與第一檢測部6相向的第一位置關係、和空間光調製器20與第二檢測部5a相向的第二位置關係中的一者。 根據該結構,可利用第一檢測部6高精度地測量配置於空間光調製器件22的排列面DP內相對較窄的範圍內的空間光調製器件22,並且可利用第二檢測部5a成批且高速地測量配置於相對較廣的範圍內的多個空間光調製器件22。
然而,若空間光調製器20中存在製造誤差等,則來自排列面DP的規定區域的正反射光DLa0的強度與空間光調製器件22的位置差H1的關係、即圖5所示的對應關係RL1有時會偏離由所述式(1)所表示的關係。該情況下,利用第二檢測部5a而得的空間光調製器件22的位置差H1的測量值中有可能產生誤差。
於第二實施方式的測量裝置1a中,如上所述,可利用第一檢測部6高精度地測量(檢測)空間光調製器件22的排列面DP內規定的空間光調製器件22的反射面22R的Z位置(實際設定位置)。藉此,如以下所說明,使用第一檢測部6與第二檢測部5a,可準確地測量正反射光DLa0的強度與空間光調製器件22的位置差H1之間的實際的對應關係RL1。
(第三實施方式的測量方法) 以下,對第三實施方式的測量方法進行說明。第三實施方式的測量方法是使用所述第二實施方式的測量裝置1a的測量方法。再者,以下的說明亦包括關於第二實施方式的測量裝置1a的說明。
於測量所述對應關係RL1時,測量裝置1a首先使用位置變更機構27,使作為空間光調製器20的排列面DP中的任意區域的第一區域A1(參照圖2(a))與第一檢測部6相向地配置。
於該狀態下,第一檢測部6的第一控制部42向空間光調製器20發送控制訊號S3,以如圖4(a)或圖4(b)所示般設定配置於第一區域A1的空間光調製器件22的Z位置。即,將交替配置於第一區域A1的第一群組的空間光調製器件22a的反射面22Ra與第二群組的空間光調製器件22b的反射面22Rb的Z位置設定為相差規定的指定位置差H1d(參照圖2(c))。
第一檢測部6分別測量該狀態下的第一群組的空間光調製器件22a的反射面22Ra中至少一個的實際設定位置、以及第二群組的空間光調製器件22b的反射面22Rb中至少一個的實際設定位置。然後,第一控制部42檢測作為測量出的兩個實際設定位置之差的位置差H1。位置差H1是反射面22Ra與反射面22Rb的Z方向上的距離資訊。
第一檢測部6的第一控制部42將包括反射面22Ra及反射面22Rb的指定位置與測量出的實際設定位置、或者反射面22Ra與反射面22Rb之間的指定位置差H1d以及測量出的位置差H1的檢測結果作為資訊訊號S6而發送至第二檢測部5a中的第二控制部25a。
繼而,測量裝置1a使用位置變更機構27,使空間光調製器20的排列面DP中的第一區域A1與第二檢測部5a相向地配置。於圖7中由虛線表示的空間光調製器20a示出空間光調製器20與第二檢測部5a相向地配置時的運作狀態,由虛線表示的保持部28a表示此時的保持部28。
於該狀態下,第二檢測部5a的第二控制部25a將與上述中第一檢測部6的第一控制部42所發送的控制訊號S3相同的控制訊號S1發送至空間光調製器20。藉此,交替配置於第一區域A1的第一群組的空間光調製器件22a的反射面22Ra與第二群組的空間光調製器件22b的反射面22Rb和與第一檢測部6相向時同樣地,被設定於在Z方向上相差規定的指定位置差H1d的位置。此時的反射面22Ra與反射面22Rb的位置差H1藉由自第一檢測部6的第一控制部42作為資訊訊號S6發送的所述檢測結果而已知。
第二檢測部5a檢測該狀態下的來自第一區域A1的正反射光DLa0的強度,即形成於攝像面19(參照圖1)上的第一區域A1的像的檢測光量。 然後,設置於第二檢測部5a的第二控制部25a的算出部25C基於第一檢測部6檢測出的空間光調製器件22的位置差H1以及第二檢測部5a檢測出的正反射光DLa0的強度即檢測光量,算出對應關係RL1。第二控制部25a將所算出的對應關係RL1儲存於儲存部25Ma中。
關於對應關係RL1的算出,作為一例,可藉由將對所述式(1)進行變形而成的式(3)的校正係數α或校正係數β的值最優化來決定對應關係RL1 RL1=α+β×{1+cos(4π×H1/λ)}/2 …(3) 即,決定式(3)的校正係數α或校正係數β,使得使用位置差H1算出的式(3)或式(4)的左邊的RL1的值與檢測出的檢測光量的值一致,藉此可決定基於檢測結果的對應關係。此時,可於校正係數α為0以外的值時將校正係數β設為1,此時,亦可於校正係數β為1以外的值時將校正係數α設為0。
再者,對應關係RL1亦可基於多組位置差H1與基準光量的值而算出。即,亦可將反射面22Ra與反射面22Rb設定於分別相差不同的指定位置差H1d的Z位置來進行多次所述測量,並根據所獲得的多組位置差H1與基準光量的值來決定所述式(3)的校正係數α及校正係數β。於決定校正係數α及校正係數β時,例如可使用最小二乘法之類的最優化手法。 另外,於基於多組位置差H1與參考光量的值來算出對應關係RL1的情況下,亦可不使用所述式(3)而使用冪級數和等其他任意的函數。
藉由以上所述而算出的對應關係RL1亦可適用於空間光調製器20的排列面DP的第一區域A1以外的區域中所排列的空間光調製器件22。而且,使用該對應關係RL1,可測量配置於第一區域A1以外的、例如圖2(a)所示的第二區域A2等任意區域的空間光調製器件22的位置差H1。
為此,測量裝置1a使用位置變更機構27,使空間光調製器20的排列面DP中的第二區域A2與第二檢測部5a相向地配置。 然後,第二檢測部5a的第二控制部25a將控制訊號S1發送至空間光調製器20,使第二區域A2內的各個空間光調製器件22以與上述相同的配置,於Z方向上隔開指定位置差H1d地配置。即,使第二區域A2內的多個空間光調製器件22與圖4(a)或圖4(b)所示的第一區域A1內的配置相同地配置。
於第二區域A2中,將相當於圖4(a)或圖4(b)所示的第一群組的空間光調製器件22a的空間光調製器件22稱為第三群組的空間光調製器件。另外,於第二區域A2中,將相當於第二群組的空間光調製器件22b的空間光調製器件22稱為第四群組的空間光調製器件。
第三群組的空間光調製器件的反射面22R與第四群組的空間光調製器件的反射面22R於Z方向上隔開指定位置差H1d地配置。 再者,關於第二區域A2內的空間光調製器件22,由於未利用所述第一檢測部6進行位置設定關係FR的測量,因此第三群組的空間光調製器件的反射面22R與第四群組的空間光調製器件的反射面22R的實際位置差H1準確而言不明。
第二檢測部5a檢測該狀態下的來自第二區域A2的正反射光DLa0的強度,即攝像面19(參照圖1)上所形成的相當於第二區域A2的部分的像的檢測光量。 第二檢測部5a的第二控制部25a基於檢測出的檢測光量與上述中所算出的對應關係RL1,測量作為第三群組的空間光調製器件的反射面22R與第四群組的空間光調製器件的反射面22R的Z方向上的距離資訊的位置差H1。
包括第二控制部25a的第二檢測部5a亦可一邊使所述指定位置差H1d的值不同,一邊進行多次所述測量。然後,可基於測量及算出的多個位置差H1與指定位置差H1d之間的關係,算出用於設定所期望的位置差H1的指定位置差H1d,即所期望的指定位置差。
如上所述,第二檢測部5a具有較第一檢測部6的檢測視野廣的檢測視野。於第一區域A1與第二區域A2同時存在於第二檢測部5a的檢測視野內的情況下,於利用第二檢測部5a進行第一區域A1的測量後,可於不使用位置變更機構27使空間光調製器20移動的情況下進行第二區域A2的測量。藉此,達成測量時間的縮短。另外,藉由同時一次測量寬廣的第二區域A2,亦可達成測量時間的進一步縮短。
(第三實施方式的測量方法的效果) (3)所述第三實施方式的測量方法是使用空間光調製器20的測量方法,所述空間光調製器20包括分別具有反射面22R的多個空間光調製器件22,所述測量方法包括:對於在排列有多個空間光調製器件22的各反射面22R的排列面DP中的第一區域A1交替配置的第一群組的所述空間光調製器件22a與第二群組的所述空間光調製器件22b,將第一群組的所述空間光調製器件22a的反射面22R與第二群組的所述空間光調製器件22b的反射面22Rb設定於排列面DP的法線方向(X方向)上的不同位置;以及利用第一檢測部6,測量第一群組的反射面22Ra中的至少一個和第二群組的反射面22Rb中的至少一個的法線方向上的距離資訊。而且,包括:利用攝像式的第二檢測部5a,測量相當於第一區域A1的部分的像的光量即基準光量;以及基於測量出的距離資訊以及基準光量,算出第一群組的反射面22Ra和第二群組的反射面22Rb的法線方向上的距離與像的光量之間的對應關係RL1。所述測量方法更包括:將於排列面DP中的與第一區域A1不同的第二區域A2交替配置的第三群組的空間光調製器件(22a)的反射面22R與第四群組的空間光調製器件(22b)的反射面22R設定於排列面DP的法線方向上的不同位置;利用第二檢測部5b,測量相當於第二區域A2的部分的像的光量即檢測光量;以及基於檢測光量以及對應關係RL1,算出第二區域A2中的第三群組的空間光調製器件(22a)的反射面22R和第四群組的空間光調製器件(22b)的反射面22R的法線方向上的距離資訊。 雖然使用第一檢測部6進行的對應關係RL1的測量需要相對較長的時間,但於該結構中,針對排列面DP內的第一區域A1測量對應關係RL1,從而於使用第二檢測部5a進行其他區域(第二區域A2)的測量時可使用該對應關係RL1進行測量,因此可縮短測量時間。
(第四實施方式的曝光裝置) 圖8是概略性地表示第四實施方式的曝光裝置2的結構的圖。第四實施方式的曝光裝置2包括圖8中由虛線包圍表示的所述第二實施方式的測量裝置1a以及曝光部50。第四實施方式的曝光裝置2所包括的測量裝置1a可均包括關於第二實施方式的測量裝置1a的所述各結構及各特徵中的任一個。
第四實施方式的曝光裝置2所包括的曝光部50是將藉由參照圖2(a)、圖2(b)及圖4(a)~圖4(d)等所說明的空間光調製器20而調製的光的明暗圖案投影至表面形成有感光物質的矽基板或玻璃基板等被曝光基板57上的投影曝光部。
如上所述,第四實施方式的曝光裝置2所具有的測量裝置1a具有第一檢測部6以及第二檢測部5a。而且,第二檢測部的檢測視野較第一檢測部6的檢測視野廣。於第四實施方式的曝光裝置2中,位置變更機構27將空間光調製器20設定於與第一檢測部6相向的第一位置、與第二檢測部5a相向的第二位置、以及與曝光部50相向的第三位置中的任一個位置。
圖8中由虛線示出的空間光調製器20b表示設定於第一位置的空間光調製器20,同樣由虛線示出的空間光調製器20a表示設定於第二位置的空間光調製器20。另外,由虛線示出的保持部28b、保持部28a表示分別保持被設定於第二位置及第一位置的空間光調製器20b、空間光調製器20a時的保持部28的位置。
亦將空間光調製器20於第一位置與第一檢測部6相向的位置關係稱為第一位置關係。亦將空間光調製器20於第二位置與第二檢測部5b相向的位置關係稱為第二位置關係。另外,亦將空間光調製器20於第三位置與曝光部50相向的位置關係稱為第三位置關係。
再者,位置變更機構27亦可將空間光調製器20設定於所述第一位置與所述第二位置中的任一者。該情況下,可更具有使空間光調製器20自所述第一位置或所述第二位置移動至所述第三位置的另一移動機構。
第四實施方式的曝光裝置2所具有的曝光部50包括:送光透鏡52、分支器件54、成像光學系統55、投影孔徑光闌56、試樣台58、載台59及第三控制部60等。 其中,送光透鏡52及分支器件54構成了使用自曝光光源51射出的曝光用照明光對空間光調製器20的排列面DP進行照明的曝光照明光學系統。分支器件54、成像光學系統55、投影孔徑光闌56構成了將來自空間光調製器20的光投影至被曝光基板57的投影光學系統53。
自曝光光源51射出的曝光用照明光藉由送光透鏡52而被整形,並入射至分束器等分支器件54,被分支器件54的分支面54s反射而照射至空間光調製器20的排列面DP。然後,曝光用照明光被配置於排列面DP附近的多個反射面22R(參照圖2(a)、圖2(b))反射,再次入射至分支器件54,透射分支器件54的分支面54s而入射至成像光學系統55。
投影光學系統53的空間光調製器20側的數值孔徑由成像光學系統55所包括的投影孔徑光闌56規定。藉由將投影光學系統53的空間光調製器20側的數值孔徑設定為規定的值,自配置於空間光調製器20的排列面DP的空間光調製器件22(參照圖2(a)、圖2(b)、圖4(a)~圖4(d))產生的所述一級繞射光等被投影孔徑光闌56遮蔽。
因此,藉由對配置於排列面DP內的規定區域(第一區域A1等)的空間光調製器件22賦予規定的位移,可使透射成像光學系統55而照射至被曝光基板57的光的光量局部地降低,從而將明暗圖案投影至被曝光基板57。第三控制部60向空間光調製器20發送與所述控制訊號S1及控制訊號S3同樣的控制訊號S8,以對排列面DP內的規定的空間光調製器件22賦予規定的位移量的位移。
於曝光裝置2中,被曝光基板57被載置於載台59上所配置的試樣台58上。被曝光基板57可藉由試樣台58而於載台59上沿X方向及Y方向移動。另外,被曝光基板57藉由試樣台58,亦可沿Z方向移動微小距離,進而可以X方向及Y方向為旋轉軸而旋轉(傾斜)微小角度。
被曝光基板57的X方向及Y方向上的位置經由設置於試樣台58的標尺板62的位置而由位置測量部61測量,且作為測量訊號Sc而被傳遞至第三控制部60。第三控制部60基於測量訊號Sc,向試樣台58發送位置控制訊號Sd,以將被曝光基板57配置於規定的X位置及Y位置的方式進行控制。 第三控制部60對曝光光源51發送曝光控制訊號Sb,對曝光光源51的發光時序及發光量進行控制。
曝光部50可為對被曝光基板57及試樣台58一邊相對於投影光學系統53沿XY面內方向相對地進行掃描、一邊進行曝光的掃描型的曝光裝置。或者,亦可為步進重覆(step and repeat)型的曝光裝置,該步進重覆型的曝光裝置將被曝光基板57及試樣台58在相對於投影光學系統53而固定的狀態下進行曝光,且於曝光結束後,使被曝光基板57及試樣台58相對於投影光學系統53逐次移動。
作為一例,自曝光光源51發出的曝光用照明光的波長為450[nm]以下的波長。作為又一例,曝光用照明光的波長亦可為193[nm]。曝光光源51可組裝至曝光部50的內部,亦可配置於曝光部50的外部。曝光用照明光可使用光纖等導光構件自曝光光源51被導光至曝光部50。
於曝光裝置2中,亦可於利用曝光部50對被曝光基板57進行曝光之前,使用測量裝置1a測量空間光調製器20的運作狀態。關於空間光調製器20的運作狀態的測量,例如如所述第三實施方式的測量方法般進行測量即可。再者,包括第二控制部25a的第二檢測部5a於測量空間光調製器20的運作狀態時,針對空間光調製器20的排列面DP的各區域進行上述所期望的指定位置差的算出。
即,包括第二控制部25a的第二檢測部5a一邊使所述指定位置差H1d的值不同,一邊進行多次所述測量。然後,基於測量及算出的多個位置差H1與指定位置差H1d之間的關係,針對空間光調製器20的排列面DP的各區域,算出用於設定所期望的位置差H1的指定位置差H1d即所期望的指定位置差。此處,所謂所期望的位置差H1,例如是指使來自圖2(a)、圖2(b)所示的空間光調製器20的正反射光DLa0的強度最小的、相當於曝光用照明光的波長的1/4長度的位置差。
第二檢測部5a中的檢測光的波長亦可設為曝光部50的曝光用照明光的波長的1.5倍以上且3.3倍以下的波長。即,如上所述,相對於利用曝光用照明光(第一波長λ1)進行的曝光中使用的空間光調製器20,第二檢測部5a的檢測光學系統10a可使用波長為曝光用照明光的1.5倍以上且3.3倍以下的第二波長λ2的光,進行排列面DP的像的檢測。
針對空間光調製器20的排列面DP的各區域而算出的所期望的指定位置差作為資訊訊號S7,自第二檢測部5a的第二控制部25a發送至曝光控制部60。於對被曝光基板57的曝光中,曝光控制部60基於自第二控制部25a發送的針對排列面DP的各區域的所期望的指定位置差,向空間光調製器20發送控制訊號S8,以按照所期望的位置差H1配置各空間光調製器件22。
再者,於空間光調製器20為角度調製型的空間光調製器20r的情況下(參照圖6),第二檢測部5a的第二控制部25a算出作為排列面DP的各區域中的反射面22Rd自排列面DP的旋轉角度ϕ的位置資訊與各區域的像的光量之間的對應關係。第二控制部25a將該對應關係作為資訊訊號S7發送至曝光控制部60。該情況下,曝光控制部60基於該對應關係,發送對空間光調製器20的各空間光調製器件22的角度位置進行控制的控制訊號S8。
(第四實施方式的曝光裝置的效果) (4)第四實施方式的曝光裝置2包括:曝光照明光學系統(52、54),對空間光調製器20進行照明,所述空間光調製器20包括具有配置於排列面DP的反射面22R的多個空間光調製器件22;投影光學系統53,將來自空間光調製器20的光投影至被曝光基板57;第一檢測部6,具有第一檢測光學系統30並檢測來自反射面22R的光;第二檢測部5a,其為具有第二檢測光學系統10並檢測來自反射面22R的光的檢測部,且檢測視野較第一檢測部6廣。所述曝光裝置2更包括位置變更機構,所述位置變更機構使第一檢測部6及第二檢測部5a與空間光調製器20之間的位置關係成為空間光調製器20與第一檢測部6相向的第一位置關係和空間光調製器20與第二檢測部5a相向的第二位置關係中的一者。 根據該結構,可於利用曝光部50且使用空間光調製器20對被曝光基板57進行曝光的間隙,使用第一檢測部6與第二檢測部5a於短時間內高精度地測量空間光調製器20的運作狀態。而且,可使用該測量結果,利用曝光部50對被曝光基板57進行高精度的曝光。另外,空間光調製器20的測量所需要的時間可為短時間,因此可達成曝光處理能力高、即生產性高的曝光裝置2。
(曝光裝置的變形例) 設為所述第四實施方式的曝光裝置2(參照圖8)包括使用空間光調製器20進行曝光的曝光部50、以及所述第二實施方式的測量裝置1a。 相對於此的變形例的曝光裝置包括所述第一實施方式的測量裝置1代替第二實施方式的測量裝置1a。該情況下,位置變更機構(或移動機構)27可使空間光調製器20於與曝光部50相向的位置和與測量裝置1相向的位置之間移動。 於變形例的曝光裝置中,亦可獲得與所述第四實施方式的曝光裝置相同的效果。
(第五實施方式的元件製造方法) 於第五實施方式的元件製造方法中,使用所述第四實施方式的曝光裝置2或變形例的曝光裝置,製造半導體積體電路、印刷基板、顯示裝置等元件。 圖9是概略性地表示第五實施方式的元件製造方法的工序的圖。
於步驟S100中,於作為元件的製造對象的半導體基板、陶瓷基板、玻璃基板等基板的表面上,形成包含電介質、金屬或半導體的膜。接著,於步驟S101中,於步驟S100中所形成的膜上形成光致抗蝕劑(抗蝕劑)。表面上形成有抗蝕劑的基板為圖8所示的被曝光基板57。
然後,於步驟S102中,使用所述第四實施方式的曝光裝置2或變形例的曝光裝置,於基板(被曝光基板57)上的抗蝕劑上,對作為明暗圖案的曝光圖案進行曝光。然後,於步驟S103中,對曝光圖案經曝光的抗蝕劑顯影,形成抗蝕劑圖案。然後,於步驟S104中,將抗蝕劑圖案作為遮罩,對形成於基板WF上的膜或基板WF的表面進行蝕刻或離子注入等加工。 步驟S103及步驟S104是基於抗蝕劑上所形成的曝光圖案而於基板上形成電路圖案的工序。
藉由以上的步驟S100至步驟S104,於基板WF上形成構成元件的一層電路圖案。 因此,於步驟S104結束後,轉移至下一工序,並再次重覆執行步驟S100至步驟S104,藉此可製造包括多個層的元件(半導體積體電路、印刷基板、顯示元件等)。
(第五實施方式的元件製造方法的效果) 第五實施方式的元件製造方法包括:於基板(被曝光基板57)的表面上形成抗蝕劑;使用第四實施方式的曝光裝置2或變形例的曝光裝置形成曝光圖案;以及基於曝光圖案形成電路圖案。 藉此,可利用曝光裝置2等對基板進行高精度、且生產性高的曝光,因此可以高生產性製造高性能的元件。 本發明並不限定於以上的內容。於本發明的技術思想範圍內可考慮到的其他態樣亦包含於本發明的範圍內。本實施方式亦可將以上所述的態樣的全部或一部分組合。
1、1a:測量裝置 2:曝光裝置 5:檢測部 5a:第二檢測部 6:第一檢測部 10:檢測光學系統 10a:第二檢測光學系統 11:檢測光源 12、32、52:送光透鏡 13:照明孔徑光闌 14、54:分支器件 14s、33s、34s、54s:分支面 15:物鏡 16:檢測孔徑光闌 16c:中心 16o:開口部 17、36:成像透鏡 18:攝像部 19:攝像面 20、20a、20b、20r:空間光調製器 21:框體 22、22c、22d:空間光調製器件 22a:第一群組的空間光調製器件(第三群組的空間光調製器件) 22b:第二群組的空間光調製器件(第四群組的空間光調製器件) 22R、22Ra、22Rb、22Rc、22Rd:反射面 23、23a、23b:相向電極 24:調製控制部 25:控制部(演算部) 25a:第二控制部(演算部) 25M、25Ma:儲存部 25C:算出部 27:位置變更機構(移動機構) 28、28a、28b:保持部 29:引導部 30:第一檢測光學系統 31:檢測光源 33:第一分支器件 34:第二分支器件 35:物鏡 37:攝像部 38:攝像面 39:參考透鏡 40:參考反射面 41:可動支撐部 42:第一控制部 50:曝光部 51:曝光光源 53:投影光學系統 55:成像光學系統 56:投影孔徑光闌 57:被曝光基板 58:試樣台 59:載台 60:曝光控制部(第三控制部) 61:位置測量部 62:標尺板 A1:第一區域 A2:第二區域 DLa0:正反射光 DLa、DLb:檢測光 DLam:-1級繞射光 DLap:+1級繞射光 DLamm、DLamp、DLapm、DLapp:繞射光 DP:排列面 DX、DY:距離 FI:比例關係 FR:位置設定關係 H1:位置差 H1d:指定位置差 ILa、ILb:照明光 NA1、NA2:數值孔徑 PDT:檢測光路 PIL:照明光路 PIM:成像光路 PRF:參考光路 PX:X方向上的配置週期 PY:Y方向上的配置週期 RL1、RL2:對應關係 RO、RR:反射光 S1、S3、S5、S8、Sa:控制訊號 S2、S4:像訊號 S6、S7:資訊訊號 Sb:曝光控制訊號 Sc:測量訊號 Sd:位置控制訊號 S100、S101、S102、S103、S104:步驟 X、Y、Z、-Z:方向 θ:繞射角 ϕ:角度/旋轉角度 2ϕ:角度
圖1是概略性地表示第一實施方式的測量裝置的結構的圖。 圖2(a)、圖2(b)是概略性地表示空間光調製器的結構的圖。 圖3是表示發送至空間光調製器件的指定位置與空間光調製器件實際被設定的實際設定位置之間的關係的一例的圖。 圖4(a)~圖4(d)是概略性地說明由空間光調製器形成的正反射光的光量的調製原理的圖。 圖5是表示由空間光調製器形成的正反射光的光量與空間光調製器內交替配置的兩個空間光調製器件群組之間的反射面的高度差之間的關係的一例的圖。 圖6是概略性地說明由另一結構的空間光調製器形成的正反射光的光量的調製原理的圖。 圖7是概略性地表示第二實施方式的測量裝置的結構的圖。 圖8是概略性地表示第四實施方式的曝光裝置的結構的圖。 圖9是概略性地表示第五實施方式的元件製造方法的圖。
1a:測量裝置
2:曝光裝置
5a:第二檢測部
6:第一檢測部
10:檢測光學系統
20、20a、20b:空間光調製器
25a:第二控制部(演算部)
25C:算出部
25Ma:儲存部
27:位置變更機構(移動機構)
28、28a、28b:保持部
29:引導部
30:第一檢測光學系統
42:第一控制部
50:曝光部
51:曝光光源
52:送光透鏡
53:投影光學系統
54:分支器件
54s:分支面
55:成像光學系統
56:投影孔徑光闌
57:被曝光基板
58:試樣台
59:載台
60:曝光控制部(第三控制部)
61:位置測量部
62:標尺板
DP:排列面
S6、S7:資訊訊號
S8:控制訊號
Sb:曝光控制訊號
Sc:測量訊號
Sd:位置控制訊號

Claims (31)

  1. 一種曝光裝置,包括: 曝光照明光學系統,對空間光調製器進行照明,所述空間光調製器包括具有配置於排列面的反射面的多個空間光調製器件; 投影光學系統,將來自所述空間光調製器的光投影至被曝光基板; 第一檢測部,具有第一檢測光學系統並檢測來自所述反射面的光; 第二檢測部,其為具有第二檢測光學系統並檢測來自所述反射面的光的檢測部,且檢測視野較所述第一檢測部廣;以及 位置變更機構,使所述第一檢測部及所述第二檢測部與所述空間光調製器之間的位置關係成為所述空間光調製器與所述第一檢測部相向的第一位置關係和所述空間光調製器與所述第二檢測部相向的第二位置關係中的一者。
  2. 如請求項1所述的曝光裝置,其中, 所述位置變更機構使所述位置關係成為所述第一位置關係、所述第二位置關係、及所述空間光調製器與所述投影光學系統相向的第三位置關係中的一個。
  3. 如請求項1或請求項2所述的曝光裝置,其中, 所述第一檢測部檢測所述排列面的像, 所述第二檢測部檢測所述排列面的像。
  4. 如請求項3所述的曝光裝置,其中, 所述第二檢測部包括演算部,所述演算部基於檢測出的所述像的光量即檢測光量,算出所述空間光調製器件的所述反射面於所述排列面的法線方向上的位置資訊、或者與所述空間光調製器件的所述反射面自所述排列面的旋轉角度相關的位置資訊。
  5. 如請求項4所述的曝光裝置,其中, 所述第二檢測部的所述演算部基於由所述第一檢測部而得的檢測結果、以及由所述第二檢測部檢測出的所述像的光量即所述檢測光量,來算出所述位置資訊。
  6. 如請求項3至請求項5中任一項所述的曝光裝置,其中, 所述曝光照明光學系統利用第一波長λ1的光對所述空間光調製器進行照明, 所述第一檢測部使用波長為所述第一波長λ1的1.5倍以上且3.3倍以下的第二波長λ2的光進行所述像的檢測。
  7. 如請求項1至請求項6中任一項所述的曝光裝置,其中, 所述第一檢測光學系統的所述空間光調製器側的數值孔徑大於所述第二檢測光學系統的所述空間光調製器側的數值孔徑。
  8. 如請求項1至請求項7中任一項所述的曝光裝置,其中, 所述第一檢測部具有位置測量部,所述位置測量部測量所述反射面於所述排列面的法線方向上的位置資訊。
  9. 如請求項8所述的曝光裝置,其中, 所述位置測量部包括干涉顯微鏡單元,所述干涉顯微鏡單元使由所述空間光調製器件的所述反射面反射的光與參考光發生干涉。
  10. 如請求項1至請求項9中任一項所述的曝光裝置,其中, 於將多個所述空間光調製器件的配置的週期設為P、將所述第二檢測部檢測的光的波長設為λ2時, 所述第二檢測光學系統的空間光調製器側的數值孔徑NA滿足 λ2/(5×P)<NA<√2×λ2/(2×P)。
  11. 如請求項1至請求項10中任一項所述的曝光裝置,其中, 所述第二檢測光學系統的所述空間光調製器側的檢測視野的外徑D[mm]與所述第二檢測光學系統的空間光調製器側的數值孔徑NA之積為0.5以上。
  12. 一種測量裝置,對空間光調製器進行測量,所述空間光調製器包括分別具有反射面的多個空間光調製器件,所述測量裝置包括: 照明系統,向排列有多個所述空間光調製器件的各反射面的排列面照射光; 檢測光學系統,基於來自多個所述反射面的光,形成所述排列面的像; 攝像部,對所述檢測光學系統所形成的所述排列面的像進行檢測;以及 演算部,基於所述攝像部檢測出的所述像的光量即檢測光量,算出所述空間光調製器件的所述反射面於所述排列面的法線方向上的位置資訊、或者與所述空間光調製器件的所述反射面自所述排列面的旋轉角度相關的位置資訊。
  13. 如請求項12所述的測量裝置,其中, 所述演算部具有儲存部,所述儲存部儲存所述像的光量與所述空間光調製器件的位置資訊之間的對應關係, 所述測量裝置基於所述儲存部中所儲存的所述對應關係,並根據所述像的所述檢測光量來算出所述空間光調製器件的所述位置資訊。
  14. 如請求項12或請求項13所述的測量裝置,其中, 所述演算部亦基於參考光量,並根據所述檢測光量來算出所述空間光調製器件的所述位置資訊,所述參考光量是多個所述空間光調製器件的所述反射面位於所述排列面的法線方向上的同一位置、且與所述排列面平行的第一狀態下的所述反射面的像的光量。
  15. 如請求項12至請求項14中任一項所述的測量裝置,其中, 對於針對第一波長λ1的光而使用的所述空間光調製器, 所述檢測光學系統使用波長為第一波長λ1的1.5倍以上且3.3倍以下的第二波長λ2的光進行所述像的檢測。
  16. 如請求項12至請求項15中任一項所述的測量裝置,其中, 於將多個所述空間光調製器件的配置的週期設為P、將所述檢測光學系統檢測的光的波長設為λ2時, 所述檢測光學系統的空間光調製器側的數值孔徑NA滿足 λ2/(5×P)<NA<√2×λ2/(2×P)。
  17. 如請求項12至請求項16中任一項所述的測量裝置,其中, 所述檢測光學系統的所述空間光調製器側的檢測視野的外徑D[mm]與所述檢測光學系統的空間光調製器側的數值孔徑NA之積為0.5以上。
  18. 如請求項12至請求項17中任一項所述的測量裝置, 更包括移動機構,所述移動機構於所述排列面的面內方向上使所述檢測光學系統相對於所述空間光調製器的相對位置移動。
  19. 一種測量裝置,包括:第一檢測部,對於包括具有配置於排列面的反射面的多個空間光調製器件的空間光調製器,檢測來自所述反射面的光; 第二檢測部,其為檢測來自所述反射面的光的檢測部,且檢測視野較所述第一檢測部廣;以及 位置變更機構,使所述第一檢測部及所述第二檢測部與所述空間光調製器之間的位置關係成為所述空間光調製器與所述第一檢測部相向的第一位置關係、和所述空間光調製器與所述第二檢測部相向的第二位置關係中的一者。
  20. 如請求項19所述的測量裝置,其中, 所述第一檢測部檢測所述排列面的像, 所述第二檢測部檢測所述排列面的像。
  21. 如請求項20所述的測量裝置,其中, 所述第二檢測部包括演算部,所述演算部基於檢測出的所述像的光量即檢測光量,算出所述空間光調製器件的所述反射面於所述排列面的法線方向上的位置資訊、或者與所述空間光調製器件的所述反射面自所述排列面的旋轉角度相關的位置資訊。
  22. 如請求項21所述的測量裝置,其中, 所述第二檢測部的所述演算部基於由所述第一檢測部而得的檢測結果、以及由所述第二檢測部檢測出的所述像的光量即所述檢測光量,算出所述位置資訊。
  23. 如請求項20至請求項22中任一項所述的測量裝置,其中, 所述第一檢測部所具有的第一檢測光學系統的所述空間光調製器側的數值孔徑大於所述第二檢測部所具有的第二檢測光學系統的所述空間光調製器側的數值孔徑。
  24. 如請求項20至請求項23中任一項所述的測量裝置,其中, 所述第一檢測部具有位置測量部,所述位置測量部測量所述反射面於所述排列面的法線方向上的位置資訊。
  25. 如請求項24所述的測量裝置,其中, 所述位置測量部包括干涉顯微鏡單元,所述干涉顯微鏡單元使由所述空間光調製器件的所述反射面反射的光與參考光發生干涉。
  26. 如請求項24或請求項25所述的測量裝置,其中, 包括如請求項12至請求項18中任一項所述的測量裝置作為所述第二檢測部。
  27. 如請求項26所述的測量裝置, 更包括算出部,所述算出部基於所述第一檢測部檢測出的所述空間光調製器件的所述反射面的所述位置資訊、以及所述第二檢測部檢測出的所述像的檢測光量,算出所述第二檢測部中的所述像的所述檢測光量與所述空間光調製器件的所述位置資訊之間的對應關係。
  28. 一種測量方法,使用空間光調製器,所述空間光調製器包括分別具有反射面的多個空間光調製器件,所述測量方法包括: 對於在排列有多個所述空間光調製器件的各反射面的排列面中的第一區域交替配置的第一群組的所述空間光調製器件與第二群組的所述空間光調製器件,將所述第一群組的所述空間光調製器件的所述反射面與所述第二群組的所述空間光調製器件的所述反射面設定於所述排列面的法線方向上的不同位置; 利用第一檢測部,測量所述第一群組的所述反射面中的至少一個和所述第二群組的所述反射面中的至少一個的所述法線方向上的距離資訊; 利用攝像式的第二檢測部,測量相當於所述第一區域的部分的像的光量即基準光量; 基於測量出的所述距離資訊以及所述基準光量,算出所述第一群組的反射面和第二群組的反射面的所述法線方向上的距離與所述像的光量之間的對應關係; 將於所述排列面中的與所述第一區域不同的第二區域交替配置的第三群組的空間光調製器件的所述反射面與第四群組的空間光調製器件的所述反射面設定於所述排列面的法線方向上的不同位置; 利用所述第二檢測部,測量相當於所述第二區域的部分的像的光量即檢測光量; 基於所述檢測光量以及所述對應關係,算出所述第二區域中的第三群組的空間光調製器件的所述反射面和第四群組的空間光調製器件的所述反射面的所述法線方向上的距離資訊。
  29. 如請求項28所述的測量方法,其中, 使用如請求項24至請求項27中任一項所述的測量裝置進行測量。
  30. 一種曝光裝置,包括: 曝光照明光學系統,對空間光調製器進行照明,所述空間光調製器包括具有配置於排列面的反射面的多個空間光調製器件; 投影光學系統,將來自所述空間光調製器的光投影至被曝光基板;以及 如請求項12至請求項27中任一項所述的測量裝置。
  31. 一種元件製造方法,包括: 於基板的表面上形成抗蝕劑; 使用如請求項1至請求項11或請求項30中任一項所述的曝光裝置對曝光圖案進行曝光;以及 基於所述曝光圖案來形成電路圖案。
TW110129679A 2020-08-18 2021-08-11 曝光裝置、測量裝置、測量方法和元件製造方法 TW202209013A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/031161 WO2022038683A1 (ja) 2020-08-18 2020-08-18 露光装置、計測装置、計測方法、およびデバイス製造方法
WOPCT/JP2020/031161 2020-08-18

Publications (1)

Publication Number Publication Date
TW202209013A true TW202209013A (zh) 2022-03-01

Family

ID=80350482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110129679A TW202209013A (zh) 2020-08-18 2021-08-11 曝光裝置、測量裝置、測量方法和元件製造方法

Country Status (6)

Country Link
US (1) US20240027917A1 (zh)
EP (1) EP4202549A4 (zh)
KR (1) KR20230050412A (zh)
CN (1) CN116097172A (zh)
TW (1) TW202209013A (zh)
WO (1) WO2022038683A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217189A (ja) * 2008-03-13 2009-09-24 Hitachi Via Mechanics Ltd マスクレス露光装置
JP5722136B2 (ja) * 2011-06-30 2015-05-20 株式会社Screenホールディングス パターン描画装置およびパターン描画方法
WO2013031901A1 (ja) * 2011-09-02 2013-03-07 株式会社ニコン 空間光変調器の検査方法及び装置、並びに露光方法及び装置
WO2013094733A1 (ja) * 2011-12-22 2013-06-27 株式会社ニコン 計測方法、メンテナンス方法及びその装置
JP2013197568A (ja) * 2012-03-23 2013-09-30 Hitachi High-Technologies Corp 露光装置及び露光方法
JP2014146660A (ja) * 2013-01-28 2014-08-14 Nikon Corp 照明光学装置、露光装置、およびデバイス製造方法
JP7087268B2 (ja) * 2017-03-16 2022-06-21 株式会社ニコン 検査装置及び検査方法、露光装置及び露光方法、並びに、デバイス製造方法
JP7121509B2 (ja) 2018-03-19 2022-08-18 キヤノン株式会社 露光装置、露光方法、および物品製造方法

Also Published As

Publication number Publication date
CN116097172A (zh) 2023-05-09
US20240027917A1 (en) 2024-01-25
JPWO2022038683A1 (zh) 2022-02-24
KR20230050412A (ko) 2023-04-14
EP4202549A1 (en) 2023-06-28
WO2022038683A1 (ja) 2022-02-24
EP4202549A4 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US4908656A (en) Method of dimension measurement for a pattern formed by exposure apparatus, and method for setting exposure conditions and for inspecting exposure precision
US7528966B2 (en) Position detection apparatus and exposure apparatus
TWI461858B (zh) 表面位置偵測裝置、曝光裝置、表面位置偵測方法以及元件製造方法
JP5219534B2 (ja) 露光装置及びデバイスの製造方法
JP3605064B2 (ja) フォーカスモニタ用フォトマスク、フォーカスモニタ方法、フォーカスモニタ用装置および装置の製造方法
JP6393397B2 (ja) リソグラフィ装置の照射線量決定方法、検査装置およびデバイス製造方法
JP5206954B2 (ja) 位置検出装置、位置検出方法、露光装置、およびデバイス製造方法
KR102294481B1 (ko) 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
JP2024095727A (ja) 光源装置、計測装置、露光装置、および計測方法
JP3713354B2 (ja) 位置測定装置
TWI409595B (zh) 測量設備,具有此測量設備之投影曝光設備以及裝置製造方法
JP2008294019A (ja) 空中像計測方法および装置
JP2006269669A (ja) 計測装置及び計測方法、露光装置並びにデバイス製造方法
TW202209013A (zh) 曝光裝置、測量裝置、測量方法和元件製造方法
JP2023125840A (ja) 計測装置、計測方法、リソグラフィ装置及び物品の製造方法
JP2010034319A (ja) 波面収差の測定方法
JP2626076B2 (ja) 位置検出装置
JP3548665B2 (ja) 位置測定装置
JPH021503A (ja) 位置検出装置
JP4052691B2 (ja) 荷電粒子線装置
US20100177290A1 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method
TW202232247A (zh) 包括目標配置之基板、及相關聯之至少一圖案化裝置、微影方法及度量衡方法
JP2022097352A (ja) 露光方法、露光装置、及びデバイス製造方法
US10222293B2 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method by detecting a light amount of measuring light
CN113325665A (zh) 套刻误差测量装置及方法