TW201219482A - Polyacrylonitrile-based copolymer/CNT composites, carbon fibers and fabrication method of carbon fiber - Google Patents

Polyacrylonitrile-based copolymer/CNT composites, carbon fibers and fabrication method of carbon fiber Download PDF

Info

Publication number
TW201219482A
TW201219482A TW99138454A TW99138454A TW201219482A TW 201219482 A TW201219482 A TW 201219482A TW 99138454 A TW99138454 A TW 99138454A TW 99138454 A TW99138454 A TW 99138454A TW 201219482 A TW201219482 A TW 201219482A
Authority
TW
Taiwan
Prior art keywords
polyacrylonitrile
carbon
based copolymer
carbon nanotube
copolymer
Prior art date
Application number
TW99138454A
Other languages
Chinese (zh)
Other versions
TWI422633B (en
Inventor
Tun-Fun Way
Kai-Jen Hsiao
Shu-Hui Cheng
Jong-Pyng Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99138454A priority Critical patent/TWI422633B/en
Priority to CN201010578755.1A priority patent/CN102464848B/en
Priority to US12/979,857 priority patent/US8808597B2/en
Publication of TW201219482A publication Critical patent/TW201219482A/en
Application granted granted Critical
Publication of TWI422633B publication Critical patent/TWI422633B/en

Links

Abstract

A polyacrylonitrile-based copolymer/CNT composite, a carbon fiber thereof and a fabrication method of the carbon fiber are provided. The polyacrylonitrile-based copolymer is represented by formula (I): wherein R is methyl or ethyl, x+z=0.5 to 10.0mol%, z ≥ 0.5mol%, y=99.5 to 90.0mol%, and x+y+z=100mol%. Carbon nano-tubes, having functional groups on the surfaces thereof, are mixed with the polyacrylonitrile copolymer to form the polyacrylonitrile-based copolymer/CNT composite. The carbon fiber is fabricated by performing an oxidation and a thermal treatment processes to a precursor of the polyacrylonitrile-based copolymer/CNT composite.

Description

201219482 六、’發明說明、 【發明所屬之技術領域】 本發明係有關於一種碳纖維’特別有關於一種由聚丙 烯腈系共聚物與奈米碳管組成的複合材料所製成之碳纖 維。 【先前技術】 目前針對由聚丙烯腈系共聚物與奈米碳管組成的複合 材料所製作之碳纖維用的原絲(precursor)以及其氧化纖維 與碳纖維的研究已經有許多報導,如Sreekumar T.V.等人 在 Advanced Materials, 16,1,58 (2004)中提及利用聚丙稀酸 甲酉旨-丙烤腈共聚物(poly(methyl acrylate-co-acrylonitrile);簡稱poly (MA-co-AN))與奈米碳管組成的複 合材料進行紡絲製程,製作碳纖維用的原絲;Chae H.G.等 人在 Polymer, 48,3781(2007)中提及利用 p〇ly (MA-co-AN) 與奈米碳管組成的複合材料,以凝膠紡絲(gel spun)製程製 作碳纖維用的原絲’以及其氧化纖維與碳纖維的製作。然 而’上述聚丙烯腈系共聚物内不含酸的成分,而且奈米碳 管會阻礙聚丙烯腈系共聚物的氧化反應,導致其製成的纖 維原絲進行氧化製程形成氧化纖維時較耗時,且聚丙烯腈 系共聚物的氧化率低。此外,其奈米碳管沒有經過表面處 理,在聚丙烯腈系共聚物中的分散性不佳。 另外’ Hwang W.F.等人在國際專利號w〇 2008/054836 及WO 2008/140533中則提及利用發煙濃硫酸製作羧基或 羥基化的奈米碳管,並利用此官能基化奈米碳管與聚衣康 201219482 酸-丙烯酸甲醋-丙婦腈共聚物(poly(itaconic acid-co-methyl acrylate-co-acrylonitrile) ; 簡 稱 poly(IA-co-MA-co-AN))組成複合材料,以及由此複合材料 製作的原絲及氧化纖維。雖然此種官能基化奈米碳管在 poly(IA-co-MA-co-AN)中具有良好的分散性,但是由於 poly(IA-co-MA-co-AN)内部含有酸性化合物,其纖維原絲 容易與金屬無機離子結合,使得後續製成的碳纖維產生較 多的缺陷。 籲本發明之發明人在中華民國專利申請號98146307中揭 示一種聚丙烯腈系碳纖維之原絲,其原料為聚衣康酸二曱 酯-丙烯腈共聚物(p〇ly(dimethyl itaconate-co-acrylonitrile);簡稱 poly(DMI-co-AN)) ’ 其内部不含酸性或 鹼性化合物,但是所製作的纖維原絲於氧化製程時可產生 類似酸催化或鹼催化的效果,可於較低的氧化溫度下進行 氧化/環化反應,提高poly(DMI-co-AN)的氧化率,節省氧 化時間。此外,poly(DMI-co-AN)原絲内部不含酸性或驗性 籲 化合物,可降低與金屬無機離子的結合性,並降低所形成 之碳纖維的缺陷數。 【發明内容】 本發明之實施例提供一種聚丙烯腈系共聚物與奈米碳 管的複合材料,包括:如式⑴所示之聚丙烯腈系共聚物,201219482 VI. Description of the Invention, Technical Field of the Invention The present invention relates to a carbon fiber', particularly to a carbon fiber made of a composite material composed of a polyacrylonitrile-based copolymer and a carbon nanotube. [Prior Art] At present, there have been many reports on the precursors of carbon fibers prepared from composite materials composed of a polyacrylonitrile-based copolymer and a carbon nanotube, and oxidized fibers and carbon fibers, such as Sreekumar TV, etc. In Advanced Materials, 16, 1 , 58 (2004), the use of poly(methyl acrylate-co-acrylonitrile; poly (MA-co-AN)) is mentioned. A composite material composed of a carbon nanotube is subjected to a spinning process to produce a raw yarn for carbon fiber; Chae HG et al., Polymer, 48, 3781 (2007), mentions the use of p〇ly (MA-co-AN) and nai A composite material composed of a carbon nanotube, a raw yarn for carbon fiber produced by a gel spun process, and a production of oxidized fiber and carbon fiber. However, the above-mentioned polyacrylonitrile-based copolymer does not contain an acid component, and the carbon nanotubes hinder the oxidation reaction of the polyacrylonitrile-based copolymer, resulting in the production of the fiber strand by the oxidation process to form an oxidized fiber. At the same time, the polyacrylonitrile-based copolymer has a low oxidation rate. Further, the carbon nanotubes were not subjected to surface treatment, and the dispersibility in the polyacrylonitrile-based copolymer was poor. In addition, 'Hwang WF et al., in International Patent Nos. 2008/054836 and WO 2008/140533, mention the use of fumed sulfuric acid to make carboxyl or hydroxylated carbon nanotubes, and to utilize such functionalized carbon nanotubes. A composite material composed of poly(itaconic acid-co-methyl acrylate-co-acrylonitrile) or poly(IA-co-MA-co-AN), which is a poly(itaconic acid-co-methyl acrylate-co-acrylonitrile) And the raw silk and oxidized fiber produced from the composite material. Although such a functionalized carbon nanotube has good dispersibility in poly(IA-co-MA-co-AN), since poly(IA-co-MA-co-AN) contains an acidic compound, its The fiber strands are easily combined with metal inorganic ions, so that the subsequently produced carbon fibers produce more defects. The inventor of the present invention discloses a raw material of polyacrylonitrile-based carbon fiber in the Republic of China Patent Application No. 98146307, the raw material of which is a poly(decene)-acrylonitrile copolymer (p〇ly(dimethyl itaconate-co-) Acrylonitrile); referred to as poly(DMI-co-AN)) 'There is no acid or basic compound inside, but the fiber precursor produced can produce acid-catalyzed or base-catalyzed effects in the oxidation process, which can be lower. The oxidation/cyclization reaction is carried out at the oxidation temperature to increase the oxidation rate of poly(DMI-co-AN) and save oxidation time. In addition, the poly(DMI-co-AN) precursor does not contain an acid or an organic compound, which reduces the bonding with metal inorganic ions and reduces the number of defects of the formed carbon fibers. SUMMARY OF THE INVENTION An embodiment of the present invention provides a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube, comprising: a polyacrylonitrile-based copolymer represented by the formula (1),

GN CH.-CH co2r ——ch2-c-- y I Jz CO2CH3 CH2CO2R 式(i), 201219482 其中R為曱基或乙基;x+z=0.5~10.0mol% ; 0.5mol% ; y=99.5〜90.0mol% ;並且 x+y+z=100mol% ;以及 表面具有官能基的奈米礙管’混摻於聚丙烯腈系共聚物中。 另外,本發明之實施例還提供一種由聚丙稀腈系共聚 物與奈米碳管的複合材料所製成的碳纖維之製備方法’包 括:提供由上述聚丙烯腈系共聚物與奈米碳管的複合材料 所製成的原料粒或紡絲液;對原料粒或紡絲液進行紡絲製 程,形成纖維原絲;對此纖維原絲進行氧化製程,形成氧 化纖維;以及對此氧化纖維進行熱處理製程,形成碳纖維。 此外,本發明之實施例還提供一種由聚丙烯腈系共聚 物與奈米碳管的複合材料所製成的碳纖維,其中該複合材 料為如上所述之聚丙烯腈系共聚物與奈米碳管的複合材 料。 為了讓本發明之上述目的、特徵、及優點能更明顯易 懂,以下配合所附圖式,作詳細說明如下: 【實施方式】 本發明利用聚衣康酸二曱酯-丙婦腈共聚物 (poly(dimethyl itaconate-co- acrylonitrile) ; 簡 稱 polY(DMI-co-AN))所製作的原絲於氧化製程時可產生類似 酸催化或鹼催化的效果,將poly(DMI-co-AN)與表面具有 官能基的奈米碳管混摻,組成聚丙烯腈系共聚物與奈米碳 管的複合材料。由poly(DMI-co-AN)與奈米碳管的複合材 料所製成之纖維原絲於氧化製程時可提升纖維原絲的氧化 /環化能力,提高纖維原絲的氧化率,因此可於較低的氧化 201219482 度下進行纖維原絲的氧化/環化反應,並節省氧化時間。 此外,本發明利用表面具有羧基、羥基或酚基之官能 基化奈米碳管與聚丙烯腈系共聚物p〇ly(DMI_co_AN)混摻 形成複合材料,藉此可提高奈米碳管在p〇ly(:DMI_c〇_AN) 中的分散性,並且由p〇ly(DMl_c〇_AN)與奈米碳管的複合 材料所製作的氧化纖維與碳纖維也具有較高的強度與伸 度0 在本發明之實施例中,聚丙烯腈系共聚物為聚衣康酸 • 二曱醋_丙烯腈共聚物(poly(DMI-co-AN),如式(I)所示:GN CH.-CH co2r ——ch2-c-- y I Jz CO2CH3 CH2CO2R Formula (i), 201219482 wherein R is a decyl group or an ethyl group; x+z=0.5~10.0 mol%; 0.5 mol%; y=99.5 ~90.0 mol%; and x+y+z=100 mol%; and a nano-tube having a functional group on the surface is blended in a polyacrylonitrile-based copolymer. In addition, an embodiment of the present invention further provides a method for preparing carbon fiber made of a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube, which comprises: providing the above-mentioned polyacrylonitrile-based copolymer and a carbon nanotube a raw material granule or a spinning solution made of a composite material; a spinning process of the raw material granule or the spinning solution to form a fiber raw yarn; an oxidation process of the fiber raw ray to form an oxidized fiber; and the oxidized fiber is subjected to the oxidized fiber The heat treatment process forms carbon fibers. In addition, an embodiment of the present invention further provides a carbon fiber made of a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube, wherein the composite material is a polyacrylonitrile-based copolymer and a nanocarbon as described above. Tube composite. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following detailed description will be made with reference to the accompanying drawings: (Poly(dimethyl itaconate-co- acrylonitrile); abbreviated as polY (DMI-co-AN)) can produce a similar acid or base catalyzed effect in the oxidation process, poly(DMI-co-AN) It is mixed with a carbon nanotube having a functional group on the surface to form a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube. The fiber precursor made of the composite material of poly(DMI-co-AN) and carbon nanotubes can improve the oxidation/cyclization ability of the fiber strand during the oxidation process, and improve the oxidation rate of the fiber strand, so The oxidation/cyclization of the fiber strands is carried out at a lower oxidation of 201219482 degrees and the oxidation time is saved. In addition, the present invention utilizes a functionalized carbon nanotube having a carboxyl group, a hydroxyl group or a phenol group on the surface and a polyacrylonitrile-based copolymer p〇ly (DMI_co_AN) to form a composite material, thereby improving the carbon nanotubes in the p Dispersion in 〇ly(:DMI_c〇_AN), and oxidized fiber and carbon fiber made of composite material of p〇ly(DMl_c〇_AN) and carbon nanotubes also have high strength and elongation. In an embodiment of the present invention, the polyacrylonitrile-based copolymer is polyitaconic acid • diterpene vinegar _acrylonitrile copolymer (poly(DMI-co-AN), as shown in formula (I):

C02R —hcH2-〒 C02CH3 CH2C02R 式⑴, 其中R為曱基或乙基;x+z=〇 5〜;[〇 〇m〇l% ; z 2 0.5mol〇/〇 ; y=99.5〜90.0mol% ;並且 x+y+z=l〇〇mol%。 在本發明之實施例中,奈米碳管可以是單層或多層型 奈米峡管,其表面具有叛基、經基或紛基,其中缓基或經 φ 基化的奈米碳管可以利用發煙濃硫酸製作,而酚基化的奈 米碳管則可利用 3,4-二羥基苯甲醛 (3,4-dihydroxybenzaldehyde)及 N-曱基氨基乙酸 (7V-methylglycine),在有機溶劑反丁 烯二酸二曱酯(dimethyl fumarate ;簡稱DMF)及超音波環&下,與奈米碳管進行反 應製作。在一實施例中,奈米碳管的含量為聚丙烯腈系共 聚物與奈米碳管之總重的約0.5至4重量百分比(wt%)。 依據本發明之實施例,首先,將聚丙烯腈系共聚物 poly(DMI-co-AN)與奈米碳管所組成的複合材料製成原料 201219482 粒或纺絲液。在—. - 貫施例中,對此原料粒進行熔融紡絲製 '、、、、糸’溶融紡絲製程的溫度介於160至230〇C 之間。在另一竇絲;w山 ,^ ^ 、 例中,對此紡絲液進行濕式紡絲製程形 ..,、式紡絲製程的溫度可介於60至85。(:之間, 斤〜= 的纖維原絲之強度介於2〜琴⑶,較佳值範圍為 於丄Γ #最佳值範圍*5〜i5g/den,纖維原絲之伸度介 於5〜30%,較估枯玄斤㈤江 _值犯圍為8〜20%,最佳值範圍為1〇〜15%。 σ月之實施例對訪絲液進行的紡絲製程為濕式紡絲製 私其中紡絲液係藉由二甲基亞石風(dimethylsulfoxide ; DMS0)、Ν,Ν» —甲波 to 一 τ 基甲醯胺(N,N-dimethylf0ramide ; DMF)、Ν,Ν•二曱基乙醯胺(N,N-dimethylacetamide ; dmac)、硫氰酸鈉(NaSCN)、石肖酸(·⑼或至少含n =上的洛劑所配製’其中溶賴濃度介於$〜_,較佳值 範圍為10〜75%’最佳值範圍為1G〜6()%。濕式紡絲製程的 溫度介於20〜98°C,較佳值範圍為3〇〜9〇〇c,最佳值範圍為 40〜85°C,濕式紡絲製程包括使用凝固液,凝固液包括二甲 基亞砜(DMSO)、N,N-二曱基曱醯胺(DMF)、N,N-二曱基乙 醯胺(DMAc)、硫氰酸鈉(NaSCN)、硝酸(HN03)、水或至少 含有一種以上的溶劑所配製,濕式紡絲製程之凝固液溫度 介於.、2〜80°C :較佳值範圍為5〜75°C,最佳值範圍為 10〜60〇C 。 接著’對上述纖維原絲進行氧化製程,形成氧化纖維。 在一實施例中,氧化製程的溫度可以是190¾至260。(:,所 形成的氧化纖維之強度介於0.5〜10g/den,較佳值範圍為 201219482 1〜10g/den ’最佳值範圍 · ^ ^0〇/ , ^ 園為L5〜l〇g/den,氧化纖雉之伸度介 氣化製二Γ值範圍為7〜2G%,最佳值範圍為8〜15%, 佳值Γ圍為1的氧化纖維之密度介於丨.25〜].45 g/cm3,較 巳’”、.32〜M〇以咖3,最佳值範圍為1.34〜1.38 1Γ ^ 的限氧指數(Umiting⑽啊index,_C02R—hcH2-〒 C02CH3 CH2C02R Formula (1), wherein R is decyl or ethyl; x+z=〇5~; [〇〇m〇l%; z 2 0.5mol〇/〇; y=99.5~90.0mol% And x+y+z=l〇〇mol%. In an embodiment of the present invention, the carbon nanotubes may be a single-layer or multi-layered nano-xia duct, and the surface thereof has a rebel base, a warp group or a sulfhydryl group, wherein the slow-base or the φ-based carbon nanotube may be It is made of fumed sulfuric acid, while the phenolated carbon nanotubes can use 3,4-dihydroxybenzaldehyde and N-mercaptoacetic acid (7V-methylglycine) in organic solvents. It is produced by reacting with a carbon nanotube under dimethyl fumarate (DMF) and ultrasonic ring & In one embodiment, the carbon nanotubes are present in an amount of from about 0.5 to 4 weight percent (wt%) based on the total weight of the polyacrylonitrile-based copolymer and the carbon nanotubes. According to an embodiment of the present invention, first, a composite material composed of a polyacrylonitrile-based copolymer poly (DMI-co-AN) and a carbon nanotube is used as a raw material 201219482 pellet or spinning solution. In the example, the melt spinning of the raw material pellets is carried out at a temperature of between 160 and 230 ° C for the melt spinning process of ',,, and 糸'. In another sinus wire; w mountain, ^ ^ , in the example, the spinning solution is subjected to a wet spinning process. The temperature of the spinning process may be between 60 and 85. (Between, the strength of the fiber raw yarn of jin~= is between 2~qin (3), the preferred value range is 丄Γ# the best value range *5~i5g/den, the elongation of the fiber strand is between 5 ~30%, more than the estimated Xuanjin (5) Jiang _ value of the circumference of 8 to 20%, the best value range is 1 〇 ~ 15%. σ月的实施例 The silk spinning process for the silk solution is wet spinning Silk spinning is made by dimethylsulfoxide (DMS0), Ν, Ν» —A, N-dimethylf0ramide (DMF), Ν, Ν• N,N-dimethylacetamide (dmac), sodium thiocyanate (NaSCN), succinic acid (·(9) or at least n-based agent), where the concentration is between $~ _, the preferred value range is 10~75% 'the optimum value range is 1G~6()%. The temperature of the wet spinning process is between 20 and 98 ° C, and the preferred value range is from 3 to 9 〇〇. c, the optimum value range is 40~85 ° C, the wet spinning process includes the use of a coagulating liquid including dimethyl sulfoxide (DMSO), N,N-didecyl decylamine (DMF), N , N-dimercaptoacetamide (DMAc), sodium thiocyanate (NaSCN), nitric acid (HN03), water It is prepared by containing at least one kind of solvent, and the temperature of the coagulation liquid of the wet spinning process is between, 2 and 80 ° C: the preferred value range is 5 to 75 ° C, and the optimum value is 10 to 60 ° C. Then, the fiber precursor is subjected to an oxidation process to form an oxidized fiber. In one embodiment, the temperature of the oxidation process may be 1903⁄4 to 260. (: The strength of the formed oxidized fiber is between 0.5 and 10 g/den, The best value range is 201219482 1~10g/den 'best value range · ^ ^〇/, ^ is L5~l〇g/den, and the elongation of oxidized fiber is 2%. 2G%, the best value range is 8~15%, and the density of the oxidized fiber with a good value of 1 is between 丨.25~].45 g/cm3, which is better than ”'", .32~M〇 The optimal value range is 1.34~1.38 1Γ ^ The oxygen limit index (Umiting(10)啊index,_

” ;5 ,Κ圭值乾11為32〜55,最佳值範圍為35〜50。 ㈣:t二t述氧化纖維進行熱處理製程,形成聚丙稀 …"米碳管的碳纖維。在-實施例中,熱處理 乂程的^可介於約_至1赋之間,形成的碳化纖維 之強度)1於1〜lOGPa ’較佳值範圍為2〜l〇Gpa,最佳值範 圍為3〜lGGPa ’ &化纖維之伸度介於Q i〜肌,較佳值範 圍為〇.2〜5/。’最佳值範圍$ 碳化纖維之模數介 於100〜990GPa’較佳值範圍為2〇〇〜99〇Gpa,最佳值範圍 為230〜99GGPa ’碳化製程形成的碳化纖維之密度介於 1.6-1.9 g/cm3 ’較佳值範圍為17〜185 g/cm3,最佳值範 為 1.75〜1.82 g/cm3。 以下列舉各實施例與比較例說明本發明之聚丙烯腈系 共聚物poly(DMI-CO-AN)與奈米碳管所組成的各種複合材 料之成分,其製成的紡絲液、纖維原絲、氧化纖維及碳纖 維各製造方法與特性: 下述實施例與比較例中,以發煙濃硫酸製作之羧基或 羥基化奈米碳管的製法可參照國際專利號w〇 2008/140533 ;實施例中酚基化奈米碳管的製法可參照"; 5, Κ 值 dry value of 11 is 32 ~ 55, the best value range is 35 ~ 50. (d): t two t oxidized fiber heat treatment process, the formation of polypropylene ... " carbon fiber carbon fiber. In - implementation In the example, the heat treatment process may be between about _ to 1 and the strength of the formed carbonized fiber is 1 to 10 GPa. The preferred value ranges from 2 to 1 〇 Gpa, and the optimum value ranges from 3 to 3. The elongation of lGGPa ' & fiber is between Q i and muscle, and the preferred range is 〇.2~5/. 'The optimal value range is $100. The modulus of carbon fiber is between 100~990GPa'. 2〇〇~99〇Gpa, the optimum value range is 230~99GGPa 'The carbonization fiber formed by the carbonization process has a density of 1.6-1.9 g/cm3'. The preferred value range is 17~185 g/cm3. It is 1.75 to 1.82 g/cm3. The components of various composite materials composed of the polyacrylonitrile-based copolymer poly(DMI-CO-AN) and the carbon nanotube of the present invention will be described below by way of examples and comparative examples. Preparation methods and characteristics of the resulting spinning solution, fiber precursor, oxidized fiber and carbon fiber: In the following examples and comparative examples, the product is made of fuming concentrated sulfuric acid. Group or hydroxylated carbon nanotube production method may refer to International Publication No. 2008/140533 w〇; phenolic groups embodiments of carbon nanotube production method can be referred to

Georgakilas V.,J. Am.Chem. Soc. 130, 8733 (2008),其係利 201219482 用單壁奈米碳管(single wall carbon nano-tube ;簡稱 SWCNT)、3,4-二羥基苯甲醛及N-曱基氨基乙酸,在有機溶 劑DMF及超音波環境下進行合成反應,產生酚基化的奈米 碳管;實施例與比較例中的共聚物之組成比例是依據 ^NMR 光譜計算而得到,例如 Poly(AN89.5-co_DMI10.5) 是表示聚丙烯腈系共聚合物中含有89.5mol%的丙稀腈 (acrylonitrile ;簡稱AN)衍生物以及10.5mol〇/〇的衣康酸二 曱酯(dimethyl itaconate •,簡稱 DMI)衍生物。 【實施例1】 聚衣康酸二曱酯-丙烯腈共聚物(Poly(dimethyl itaconate-co-acrylonitrile))Poly(AN89.5-co-DMI10.5)與發煙 濃硫酸製作之羧基或羥基化奈米碳管(CNT)(0.5wt%)所組 成的複合材料 首先,將92.9mol%的丙烯腈(AN)、7.0mol°/〇的衣康酸 二曱酯(DMI)、0.1 mol%的起始劑氮二異丁晴 (2,2’-azobisisobutyronitrile ;簡稱 AIBN)以及 250 毫升的溶 劑二曱基亞颯(dimethylsulfoxide;簡稱DMSO)混合於5〇〇 毫升的玻璃反應器中進行反應,反應溫度控制在60至7〇。(: 之間,授拌反應7小時之後,利用曱醇以沉殿法取得沉 澱產物。沉澱產物經過濾、乾燥後,進行物性分析。 產物分析的結果如表1所示。IR=2250 (cm'-CN)。 ]HNMR (d6-DMSO,ppm) : 3.5-3.4 (methoxy of carbonyl, copolymerization product of DMI) ; 3.3-3.2 (methoxy 0f 201219482 carbonyl, copolymerization product of DMI) ; 3.2-2.9 (a-H); 2.2- 2.0 (β-Η,copolymerization products of DMI and AN)。依 據1HNMR 光譜計算得到 AN:DMI=89.5: 10.5 (mol/mol%)。 產物 Poly(AN89.5-co-DMI10.5)與 CNT (0.5wt%)於溶劑 DMSO中配成固含量為20 wt%的紡絲液。 【實施例2】Georgakilas V., J. Am. Chem. Soc. 130, 8733 (2008), which is a single wall carbon nano-tube (SWCNT), 3,4-dihydroxybenzaldehyde And N-mercapto-aminoacetic acid, synthesis reaction in an organic solvent DMF and ultrasonic environment to produce a phenolated carbon nanotube; the composition ratio of the copolymer in the example and the comparative example is calculated according to ^NMR spectrum It is obtained, for example, that Poly (AN89.5-co_DMI10.5) is a polyacrylonitrile-based copolymer containing 89.5 mol% of acrylonitrile (AN) derivative and 10.5 mol of lanthanum/niobium itaconate. A derivative of dimethyl itaconate (DMI). [Example 1] Poly(dimethyl itaconate-co-acrylonitrile) Poly (AN89.5-co-DMI10.5) and a carboxyl group or a hydroxyl group produced by fuming concentrated sulfuric acid Composite material composed of carbon nanotubes (CNT) (0.5 wt%) First, 92.9 mol% of acrylonitrile (AN), 7.0 mol/min of diammonium itaconate (DMI), 0.1 mol% The initiator, 2,2'-azobisisobutyronitrile (AIBN for short) and 250 ml of the solvent dimethylsulfoxide (DMSO) were mixed in a 5 mL glass reactor for reaction. The reaction temperature is controlled at 60 to 7 Torr. (Between: 7 hours after the mixing reaction, the precipitated product was obtained by the stagnation method using decyl alcohol. The precipitated product was filtered and dried, and subjected to physical property analysis. The results of the product analysis are shown in Table 1. IR = 2250 (cm '-CN). HNMR (d6-DMSO, ppm): 3.5-3.4 (methoxy of carbonyl, copolymerization product of DMI); 3.3-3.2 (methoxy 0f 201219482 carbonyl, copolymerization product of DMI); 3.2-2.9 (aH) 2.2- 2.0 (β-Η, copolymerization products of DMI and AN). Calculated according to 1H NMR spectrum: AN: DMI = 89.5: 10.5 (mol/mol%). Product Poly (AN89.5-co-DMI10.5) and CNT (0.5 wt%) was formulated into a spinning solution having a solid content of 20 wt% in a solvent DMSO. [Example 2]

Poly(AN96.9-co-DMI3.1)與發煙濃硫酸製作之羧基或 _ 羥基化奈米碳管(CNT)(0.5wt%)所組成的複合材料 反應條件如實施例1所示,但是改變加入單體的莫耳 比例為 AN : DMI=97.9 : 2.0。 產物分析之結果如表1所示。IR=2250 (cm'-CN)。 !HNMR (d6-DMSO,ppm) : 3.5-3.4 (methoxy of carbonyl, copolymerization product of DMI) ; 3.3-3.2 (methoxy of carbonyl, copolymerization product of DMI) ; 3.2-2.9 (a-H); 2.2- 2.0 (β-Η,copolymerization products of DMI and AN)。依 •據1HNMR 光譜計算得到 AN: DMI=96.9 : 3.1 (mol/mol%)。 產物 Poly(AN96.9-co-DMI3.1)與 CNT (0.5wt%)於溶劑 DMSO中配成固含量為25 wt%的紡絲液。 n ·、 【實施例3】 P〇ly(AN89.5-co-DMI10.5)與發煙濃硫酸製作之羧基或 羥基化奈米碳管(CNT)(1 .Owt%)所組成的複合材料 反應條件如實施例1所示,但是改變CNT之加入量為 11 201219482 * c - 1.0 wt% 〇 【實施例4】The reaction conditions of the composite material composed of Poly (AN96.9-co-DMI3.1) and carboxylated or hydroxylated carbon nanotubes (CNT) (0.5 wt%) made of fuming concentrated sulfuric acid are as shown in Example 1. However, the molar ratio of the added monomer was changed to AN: DMI = 97.9: 2.0. The results of the product analysis are shown in Table 1. IR = 2250 (cm'-CN). !HNMR (d6-DMSO, ppm): 3.5-3.4 (methoxy of carbonyl, copolymerization product of DMI); 3.3-3.2 (methoxy of carbonyl, copolymerization product of DMI); 3.2-2.9 (aH); 2.2- 2.0 (β -Η, copolymerization products of DMI and AN). According to 1H NMR spectroscopy, AN: DMI = 96.9: 3.1 (mol/mol%). The product Poly(AN96.9-co-DMI3.1) and CNT (0.5 wt%) were formulated in a solvent DMSO to a spinning solution having a solid content of 25 wt%. n ·, [Example 3] P〇ly (AN89.5-co-DMI10.5) combined with a carboxyl group or a hydroxylated carbon nanotube (CNT) (1.0% by weight) made of fuming concentrated sulfuric acid The material reaction conditions are as shown in Example 1, but the amount of CNT added is 11 201219482 * c - 1.0 wt% 〇 [Example 4]

Poly(AN96.9-co-DMI3· 1)與發煙濃硫酸製作之羧基或 羥基化奈米碳管(CNT)( 1 .Owt%)所組成的複合材料 反應條件如實施例2所示,但是改變CNT之加入量為 1.0 wt%。 【實施例5】The reaction conditions of the composite material composed of Poly (AN96.9-co-DMI3.1) and carboxylated or hydroxylated carbon nanotubes (CNT) (1.0% by weight) made of fuming concentrated sulfuric acid are shown in Example 2. However, the amount of CNT added was changed to 1.0 wt%. [Embodiment 5]

Poly(AN89.5-co-DMI10.5)與酴基化奈米碳管 (CNT)(1.0wt%)所組成的複合材料 反應條件如實施例3所示,但是改變CNT為酚基化奈 米碳管。 【實施例6】The composite reaction conditions of Poly(AN89.5-co-DMI10.5) and thiolated carbon nanotubes (CNT) (1.0wt%) are shown in Example 3, but the CNT is changed to phenolated naphthalene. Carbon tube. [Embodiment 6]

Poly(AN96.9-co-DMI3.1)與盼基化奈米碳管 (CNT)( 1 .Owt%)所組成的複合材料 反應條件如實施例4所示,但是改變CNT為酚基化奈 米碳管。 【比較例1】 聚丙烯腈-丙烯酸甲酯共聚物 (poly (acrylonitrile-co-methyl itaconate))Poly(AN89.5-co-MAl0.5)與發煙濃硫酸製作之羧 12 201219482 基或羥基化奈米碳管(CNT)(0.5wt%)所組成的複合材料 首先,混合11.00 mol%的甲基丙烯酸酯(methyl acrylate, ΜΑ)、88.85 mol%的丙稀腈(acrylonitrile, AN)、0.05mol% 的鏈轉移劑 1-十一硫醇(mercaptoundecane)、0.10 mol %的 起始劑氣二異丁晴(2,2’-azobisisobutyronitrile, ABN)以及 250毫升的溶劑二曱基亞石風(dimethylsulfoxide,DMSO)於 500毫升的玻璃反應器中進行反應。反應溫度控制在60至 70°C之間,攪拌反應5小時。之後,利用甲醇以沉澱法取 • 得沉澱產物。經過濾、乾燥後,進行物性分析。 產物分析之結果如表1所示。IR=2245 (cnT],-CN)。 !ΗΝΜΚ (d6-DMSO,ppm) · 3.5-3.4 (methoxy of carbonyl, copolymerization product of MA) ; 3.2-2.9 (α-H) ; 2.2-2.0 (β-Η, copolymerization products of MA and AN) ; 0.8-1.9 (mercaptoundecane moiety)。依據1HNMR 光譜計算得到: AN ' MA=89.5 ' 10.5 (mol/mol%) 產物 Poly(AN89.5-co_MA10.5)與 CNT (0.5wt%)於溶劑 φ DMSO中配成固含量為20 wt%的紡絲液。 【比較例2】 .、聚衣康酸-丙烯酸-、甲酉旨-丙烯腈共聚物[(poly(itaconic acid-co-methyl acrylate-co-acrylonitrile)Poly(AN97.7-co-MA1.7-co-IA0.6) 與發煙濃硫酸製作之羧基或羥基化奈米碳管(CNT)(1.0wt%) 所組成的複合材料 13 201219482 首先,混合2.0 mol°/〇的甲基丙烯酸醋(methyl acrylate, ΜΑ)、97.4mol%的丙稀腈(acrylonitrile, AN)、0.5mol%的衣 康酸(itaconic acid, ΙΑ)、0.1 mol%的起始劑氮二異丁晴 (2,2’-azobisisobutyronitrile, AIBN)以及 250 毫升的溶劑二 甲基亞石風(dimethylsulfoxide, DMSO)於500毫升的玻璃反 應器中進行反應。反應溫度控制在60至70°C之間,攪拌 反應7小時。之後,利用曱醇以沉澱法取得沉澱產物。經 過濾、乾燥後,進行物性分析。 產物分析之結果如表1所示。IR=3700-300 (-COOH,IA 衍生物);2243 (cm'-CN )。iHNMR (d6-DMSO,ppm): 3.5-3.4 (methoxy of carbonyl, copolymerization product of MA); 3.2-2.9 (α-H) ; 2.2-2.0 (β-Η,copolymerization products of ΜΑ、IA and AN)。依據1HNMR光譜計算得到AN : MA : IA=97.7 : 1.7 : 0.6 (mol/mol%)。 產物 Poly(AN97.7-co-MA1.7-co-IA0.6)與 CNT (1.0 wt%)於溶劑DMSO中配成固含量為25 wt%的紡絲液。 表1各實施例與比較例之複合材料的組成、共聚物的 氧化纖維的氧化率 MA AN DMI -.CNT 氧化率 (mole%) (mole%) (mole%) (wt%) (%) 施例1 0 89.5 10.5 0.5 >99 上施例2 0 96.9 3.1 0.5 82 一貫施例3 0 89.5 10.5 1.0 >99 14 201219482 實施例4 0 96.9 — __3^1 1.0 84 實施例5 0 89.5 10.5 1.0 >99 實施例6 0 96.9 . 3.1 1.0 82 比較例1 10.5 89.5 0 0.5 30 比較例2 1.7 97.7 0(IA=0.6) 1.0 76 【實施例7】 以濕式紡絲製程形成原絲 鲁 分別將實施例1至6與比較例丨至2的各種聚丙烯腈 系(polyacrylonitrile ; PAN)共聚合物原料與奈米碳管(CNT) 以表1所不之重量比例,分別於溶劑DMSO中配製成紡絲 液,固含量濃度為23%。分別以定壓力擠出器(紡口徑為 0.05mm)進行濕式紡絲製程,紡絲溫度為60至85DC ;第1 階段之凝固液為DMSO (80wt%)與水(2〇wt〇/0),第2階段為 DMSO (60wt°/〇)與水(40wt%);捲取速率為 30 至 70 m/min, 產物纖維再以水充分清洗、乾燥,製成纖維原絲。所製成 • 的纖維原絲之強度介於3.5至6.7 g/den,伸度介於11至 21%。 【實施例8】 將原絲以氧化製程製成氧化纖維,比較各種原絲的氧 化反應及氧化纖維的氧化率 將實施例7所製成的各種原絲分別先以熱分析儀 (Differential Scanning Calorimeter;簡稱 DSC)進行熱空氣 15 201219482 環境下之分析,升溫速度=1 〇°C/min),得到各種的捨量 (△H!),此AH!焓量即為各種原絲之最高氧化率值。另外, 將實施例7所製成的各種原絲,分別以吊掛方式(纖維下端 繫以重錘)置於烘箱内進行熱空氣氧化製程,氧化製程的溫 度為190°C-220°C-240DC,各持溫30分鐘。接著將此吊掛 方式氧化後所得到的各氧化纖維以DSC (升溫速度 = 10°C/min)進行測試,得到熱烚量(ΔΗ2),此ΔΗ2給量為 各種原絲經過烘箱内氧化製程後,仍然沒有被氧化的量。 所以(ΔΗ! - ΑΗ2)即為各種原絲經過烘箱内氧化製程後,已 _ 經被氧化的量。故各氧化纖維之氧化率,其計算方式為:氧 化率(%)=1〇〇% X (ΔΗ] - ΑΗ2)/ΑΗ],結果如表 1 所示。 經測試後,所形成的氧化纖維之強度介於1.5〜4.5 g/den,伸度介於10〜28%,密度介於1.25〜1.35 g/cm3,限 氧指數(limiting oxygen index,LOI)介於 28〜60。 【實施例9】 將氧化纖維碳化形成碳纖維 籲 對實施例8所製成的各氧化纖維進行600至1200 °C 的熱處理製程以形成碳纖維,形成的碳纖維之強度介於 2.5〜3.20卩&,.、伸度介於0.2~4.1%,模數介於210〜2410?3, 密度介於1.6〜1.8 g/cm3。 由表1可得知,由本發明各實施例之聚衣康酸二曱酯-丙烯腈共聚物Poly(AN-co-DMI)與奈米碳管組成的複合材 料所製成之氧化纖維的氧化率高於由比較例1及2之共聚 16 201219482 物 Poly(AN-co-MA)、Poly(AN-co-MA-co-IA)與奈米碳管組 成的複合材料所製成之氧化纖維的氧化率。相同氧化製程 下,具有較高的氧化率,即表示可於較短的氧化時間内達 到相同的氧化率。The composite reaction conditions of Poly (AN96.9-co-DMI3.1) and forward-positive carbon nanotubes (CNT) (1.0% by weight) are shown in Example 4, but the CNTs are changed to phenolation. Carbon nanotubes. [Comparative Example 1] Poly(acrylonitrile-co-methyl itaconate) Poly (AN89.5-co-MAl0.5) and carboxylic acid 12 made from fuming concentrated sulfuric acid 2012 20128482 base or hydroxyl group Composite material composed of carbon nanotubes (CNT) (0.5wt%) First, mix 11.00 mol% of methacrylate (methyl acrylate), 88.85 mol% of acrylonitrile (AN), 0.05 Mol% chain transfer agent 1-caprol mercaptan (mercaptoundecane), 0.10 mol% of the initiator diisobutylidene (2,2'-azobisisobutyronitrile, ABN) and 250 ml of solvent bismuth sulphite ( The dimethylsulfoxide (DMSO) was reacted in a 500 ml glass reactor. The reaction temperature was controlled between 60 and 70 ° C, and the reaction was stirred for 5 hours. Thereafter, a precipitated product was obtained by precipitation using methanol. After filtration and drying, physical property analysis was carried out. The results of the product analysis are shown in Table 1. IR = 2245 (cnT), -CN). ΗΝΜΚ (d6-DMSO, ppm) · 3.5-3.4 (methoxy of carbonyl, copolymerization product of MA); 3.2-2.9 (α-H); 2.2-2.0 (β-Η, copolymerization products of MA and AN); -1.9 (mercaptoundecane moiety). Calculated by 1H NMR spectroscopy: AN ' MA=89.5 ' 10.5 (mol/mol%) The product Poly(AN89.5-co_MA10.5) and CNT (0.5wt%) were formulated in a solvent φ DMSO to a solid content of 20 wt%. Spinning solution. [Comparative Example 2]., poly-itaconic acid-co-methyl acrylate-co-acrylonitrile (Poly(AN97.7-co-MA1.7) -co-IA0.6) Composite material composed of carboxy or hydroxylated carbon nanotubes (CNT) (1.0wt%) made of fumed sulfuric acid. 201219482 First, mix 2.0 mol ° / 〇 methacrylate (methyl acrylate, ΜΑ), 97.4 mol% acrylonitrile (AN), 0.5 mol% of itaconic acid (itaconic acid, ΙΑ), 0.1 mol% of the initiator nitrogen diisobutylation (2, 2 '-azobisisobutyronitrile, AIBN) and 250 ml of solvent dimethylsulfoxide (DMSO) were reacted in a 500 ml glass reactor. The reaction temperature was controlled between 60 and 70 ° C, and the reaction was stirred for 7 hours. Thereafter, the precipitated product was obtained by precipitation using decyl alcohol. After filtration and drying, physical property analysis was carried out. The results of product analysis are shown in Table 1. IR = 3700-300 (-COOH, IA derivative); 2243 (cm' -CN ). iHNMR (d6-DMSO, ppm): 3.5-3.4 (methoxy of carbonyl, copolymerization product of MA); 3.2-2.9 (α-H) ; .2-2.0 (β-Η, copolymerization products of ΜΑ, IA and AN). Calculated according to 1H NMR spectrum: AN : MA : IA = 97.7 : 1.7 : 0.6 (mol/mol%) Product Poly (AN97.7-co -MA1.7-co-IA0.6) and CNT (1.0 wt%) in a solvent DMSO to prepare a spinning solution having a solid content of 25 wt%. Table 1 Composition and copolymerization of the composite materials of the respective examples and comparative examples Oxidation rate of oxidized fiber of the material MA AN DMI -.CNT Oxidation rate (mole%) (mole%) (mole%) (wt%) (%) Example 1 0 89.5 10.5 0.5 >99 Upper case 2 0 96.9 3.1 0.5 82 Consistent application 3 0 89.5 10.5 1.0 >99 14 201219482 Example 4 0 96.9 — __3^1 1.0 84 Example 5 0 89.5 10.5 1.0 >99 Example 6 0 96.9 . 3.1 1.0 82 Comparative Example 1 10.5 89.5 0 0.5 30 Comparative Example 2 1.7 97.7 0 (IA = 0.6) 1.0 76 [Example 7] Various polyacrylonitriles of Examples 1 to 6 and Comparative Examples 2 to 2 were formed by a wet spinning process. The polyacrylonitrile (PAN) copolymer raw material and the carbon nanotubes (CNT) were prepared into a spinning solution in a solvent DMSO at a weight ratio of 23%, and the solid content concentration was 23%. The wet spinning process was carried out with a constant pressure extruder (with a diameter of 0.05 mm), and the spinning temperature was 60 to 85 DC; the coagulation liquid of the first stage was DMSO (80 wt%) and water (2〇wt〇/0). The second stage is DMSO (60 wt ° / 〇) and water (40 wt%); the coiling rate is 30 to 70 m / min, and the product fibers are thoroughly washed and dried with water to form a fiber strand. The fiber strands produced are made from 3.5 to 6.7 g/den and have an elongation of 11 to 21%. [Example 8] The raw silk was made into an oxidized fiber by an oxidation process, and the oxidation reaction of various raw wires and the oxidation rate of the oxidized fiber were compared. The various raw wires prepared in Example 7 were respectively subjected to a thermal analyzer (Differential Scanning Calorimeter). (referred to as DSC) for hot air 15 201219482 analysis in the environment, heating rate = 1 〇 ° C / min), to obtain a variety of rounding (△ H!), this AH! 即 is the highest oxidation rate of various raw silk value. In addition, the various raw yarns prepared in Example 7 were placed in an oven in a hanging manner (the lower end of the fiber was a heavy hammer) to perform a hot air oxidation process, and the temperature of the oxidation process was 190 ° C - 220 ° C - 240DC, each holding temperature for 30 minutes. Then, each oxidized fiber obtained by oxidizing the hanging method is tested by DSC (heating rate=10° C./min) to obtain a hot enthalpy amount (ΔΗ2), and the ΔΗ2 is given by various oxidizing processes in the oven. After that, there is still no amount of oxidation. Therefore, (ΔΗ! - ΑΗ2) is the amount of oxidation of various raw silks after passing through the oxidation process in the oven. Therefore, the oxidation rate of each oxidized fiber is calculated as follows: oxidation rate (%) = 1% X (ΔΗ) - ΑΗ2) / ΑΗ], and the results are shown in Table 1. After testing, the formed oxidized fiber has an intensity of 1.5 to 4.5 g/den, an elongation of 10 to 28%, a density of 1.25 to 1.35 g/cm3, and a limiting oxygen index (LOI). At 28~60. [Example 9] Carbonization of oxidized fibers to form carbon fibers. The oxidized fibers prepared in Example 8 were subjected to a heat treatment process at 600 to 1200 ° C to form carbon fibers, and the strength of the formed carbon fibers was between 2.5 and 3.20 Å & The elongation is between 0.2 and 4.1%, the modulus is between 210 and 2410?3, and the density is between 1.6 and 1.8 g/cm3. It can be seen from Table 1 that the oxidation of oxidized fibers made of a composite material composed of a poly(anthene-acrylic acid) copolymer of poly(AN-co-DMI) and a carbon nanotube of various embodiments of the present invention is known. Oxidized fiber made of composite material composed of composites of Comparative Examples 1 and 2, 201219482 Poly(AN-co-MA), Poly(AN-co-MA-co-IA) and carbon nanotubes Oxidation rate. Under the same oxidation process, a higher oxidation rate means that the same oxidation rate can be achieved in a shorter oxidation time.

由上述比較結果顯示,本發明之聚衣康酸二曱醋_丙稀 腈共聚物Poly(AN-co-DMI)可具有較低的氧化時間,因此, 此共聚物與奈米碳管組成的複合材料所製成之原絲可於較 低的溫度下進行氧化反應,並且此原絲氧化後所形成的# 化纖維具有較高的氧化率,亦即形成氧化纖維所需的氧化 時間較少。由於本發明之聚衣康酸二甲酯'丙稀猜妓X Poly(AN-co-DMI)與奈米碳管組成的複合材料可降低' 原絲氧化所需的時間及溫度,因此除了可節省製作妒纖維 的成本之外’也可減少碳纖維產品的缺陷。 反纖維 雖然本發明已揭露較佳實施例如上,然直 、、八亚非用以 定本發明,任何熟悉此項技藝者,在不脫離本發明 广 和範圍内,當可做些許更動與潤飾,因此本發明之精砷 圍當視後附之申請專利範圍所界定為準。 呆濩範 17 201219482 【圖式簡單說明】 jfe 0 #»*> 【主要元件符號說明】 無0From the above comparison results, the poly(Acene nitric acid)-acrylonitrile copolymer Poly(AN-co-DMI) of the present invention can have a lower oxidation time, and therefore, the copolymer is composed of a carbon nanotube. The raw material made of the composite material can be oxidized at a lower temperature, and the oxidized fiber formed by the oxidation of the raw silk has a higher oxidation rate, that is, the oxidation time required for forming the oxidized fiber is less. . The composite material composed of the dimethyl poly(AN-co-DMI) and the carbon nanotube of the present invention can reduce the time and temperature required for the oxidation of the raw silk, so Save on the cost of making enamel fiber' can also reduce the defects of carbon fiber products. The present invention has been disclosed in the preferred embodiments, such as, but is not intended to be used in the present invention. Any one skilled in the art can make some changes and refinements without departing from the scope of the present invention. Therefore, the essence of the present invention is defined by the scope of the patent application.濩范范 17 201219482 [Simple diagram description] jfe 0 #»*> [Main component symbol description] No 0

Claims (1)

201219482 七、申請專利範圍: 1.一種聚丙烯腈系共聚物與奈米碳管的複合材料,包 括: 一如式(I)所示之聚丙烯腈系共聚物, -ch2-ch- CN I -ch2-ch- y c〇2R -ch2-c-4t CO2CH3 ch2co2r 式(1),201219482 VII. Patent application scope: 1. A composite material of a polyacrylonitrile-based copolymer and a carbon nanotube, comprising: a polyacrylonitrile-based copolymer as shown in formula (I), -ch2-ch-CN I -ch2-ch- yc〇2R -ch2-c-4t CO2CH3 ch2co2r formula (1), 其中 R 為曱基或乙基;x+z=0.5〜lO.Omol% ; z$0.5mol% ; y=99.5~90.0mol% ;並且 x+y+z=100mol〇/〇 ; 以及 複數個表面具有官能基之奈米碳管,混摻於該聚丙烯 腈系共聚物中。 2. 如申請專利範圍第1項所述之聚丙烯腈系共聚物與 奈米碳管的複合材料,其中該些奈米碳管的含量為聚丙烯 腈共聚合物與奈米碳管的總合重量之0.01-20重量百分比 (wt%) 0 3. 如申請專利範圍第2項所述之聚丙烯腈系共聚物與 奈米碳管的複合材料,其中該些奈米碳管的含量為聚丙烯 腈共聚合物與奈米碳管的總合重量之0.1-12重量百分比 (wt%)。 4. 如申請專利範圍第3項所述之聚丙稀腈系共聚物與 奈米碳管的複合材料,其中該些奈米碳管的含量為聚丙烯 腈共聚合物與奈米碳管的總合重量之0.3-6重量百分比 (wt%)。 5. 如申請專利範圍第1項所述之聚丙稀腈系共聚物與 19 201219482 羥基或酚基 ㈣㈣腈系共聚物與奈米碳管製成之碳纖維 的製備方法,包括: 項所3 = 其中該紡絲液包括如中請專利範圍第1 項所述之W稀料、絲物與奈米碳管的複合材料; 對該紡絲液進行濕式紡絲製程,形成一纖維原絲 (precursor); 對該纖維原絲進行氧化製程,形成一氧化纖維;以及 對該氧化纖維進行祕理製程,形成—碳纖維。 盘太專/範㈣6項所述之由料騎系共聚物 …丁…卡^製成之碳纖維的製備方法,其中該濕式纺絲製 程的溫度介於60〜饥之間,該紡额中的溶劑包括二甲 基亞砜(DMS0)、N,N-二甲基甲醯胺(DMF)、N,N•二甲基乙 醯胺_Ac)、硫氰酸納(NaSCN)、硝酸(HN〇3j或前述二組 合0 、 8.如中請專利範㈣6項所述之由聚丙烯腈系共聚物 與不米碳管製成之碳纖維的製備方法,其t 程的溫度鄉〜峨之間,且該纺絲液中的溶= 介於5〜80%。 又 9·如申請專利範圍帛7項所述之由聚㈣腈系共聚物 與奈米碳管製成之碳纖維的製備方法,其中該濕式ς絲製 程的溫度介於30〜90。〇之間,且該紡絲液中的溶劑之濃产 201219482 介於10〜75%。 10.如申請專利範圍第9項所述之由聚丙烯腈系共聚物 與奈米碳管製成之碳纖維的製備方法,其中該濕式紡絲製 程的溫度介於40〜85t之間,且該紡絲液中的溶劑之濃度 介於10〜60%。 11.如申請專利範圍第6項所述之由聚丙烯腈系共聚物 與不米碳g製成之碳纖維的製備方法,其中該濕式纺絲製 程包括使用-凝固液,該凝固液包括二甲基亞職(DMS0)、 N’N-二甲基曱酿胺(DMF)、N,N_二甲基乙酿胺(dmAc)、硫 氰酸鈉(NaSCN)、瑞酸_03)、水或前述之組合,且該凝 固液的溫度介於2〜80oC。 12·如巾請專利範圍第„項所述之由聚⑽腈系共聚 物與奈米碳管製成之碳纖維的製備方法,其中該凝固液的 溫度介於5〜75°C。 =中請專利範圍帛12項所述之由聚丙稀腈系共聚 :二未碳管製成之碳纖維的製備方法,其中該凝固液的 >皿度介於〜6〇。〇。 14.如申請專利範圍第6項所述 ^ ^ ^ 由汆丙烯腈系共聚物 〜丁、未奴管製成之韻_製財法 溫度包括190至·。C。 4的 不未石反营製成之碳纖維的製備方法, 的溫度介於600至聽^:之間。 、中1、處理製耘 16.-種由聚丙稀腈系共聚物與奈米碳管的複合材料所 201219482 製成的碳纖維,其中該複合材料為如申請專利範圍第1項 所述之聚丙烯腈系共聚物與奈米碳管的複合材料。 17. 如申請專利範圍第16項所述之由聚丙烯腈系共聚 物與奈米碳管的複合材料所製成的碳纖維,其中該些奈米 碳管的含量為該聚丙烯腈系共聚物與該些奈米碳管之總合 重量的0.01-20重量百分比(wt%)。 18. 如申請專利範圍第16項所述之由聚丙烯腈系共聚 物與奈米碳管的複合材料所製成的碳纖維,其中該些奈米 碳管包括單層或多層型奈米碳管,且該些奈求碳管表面之 該官能基包括羧基、羥基或酚基。Wherein R is a decyl group or an ethyl group; x + z = 0.5 to 10. Omol%; z$0.5 mol%; y = 99.5 to 90.0 mol%; and x + y + z = 100 mol 〇 / 〇; and a plurality of surfaces have A functional carbon nanotube is blended in the polyacrylonitrile-based copolymer. 2. A composite material of a polyacrylonitrile-based copolymer and a carbon nanotube according to claim 1, wherein the content of the carbon nanotubes is a total of a polyacrylonitrile copolymer and a carbon nanotube. The composite material of the polyacrylonitrile-based copolymer and the carbon nanotube according to claim 2, wherein the content of the carbon nanotubes is The total weight of the polyacrylonitrile copolymer and the carbon nanotube is 0.1-12% by weight (wt%). 4. A composite material of a polyacrylonitrile-based copolymer and a carbon nanotube according to claim 3, wherein the content of the carbon nanotubes is a total of a polyacrylonitrile copolymer and a carbon nanotube. 0.3-6 weight percent (wt%) of the combined weight. 5. A method for preparing a polyacrylonitrile-based copolymer as described in claim 1 and a carbon fiber made of a hydroxy or phenolic (tetra) (tetra)-acrylic copolymer and a carbon nanotube, comprising: Item 3 = The spinning solution comprises a composite material of a W thinner, a filament and a carbon nanotube as described in the first item of the patent scope; the spinning solution is subjected to a wet spinning process to form a fiber precursor (precursor) The fiber precursor is subjected to an oxidation process to form a oxidized fiber; and the oxidized fiber is subjected to a secret process to form a carbon fiber. The method for preparing carbon fiber prepared by the material of the material, such as the material of the material, is a mixture of the material of the material, and the temperature of the wet spinning process is between 60 and hunger. Solvents include dimethyl sulfoxide (DMS0), N,N-dimethylformamide (DMF), N,N-dimethylacetamide _Ac), sodium thiocyanate (NaSCN), nitric acid ( HN〇3j or the foregoing two combinations 0, 8. The preparation method of the carbon fiber made of the polyacrylonitrile-based copolymer and the non-carbon carbon tube as described in the sixth paragraph of the patent (4), the temperature of the t-process And the solution in the spinning solution is between 5 and 80%. Further, the method for preparing the carbon fiber made of the poly(tetra)nitrile copolymer and the carbon nanotube according to the scope of claim 7 The temperature of the wet twisting process is between 30 and 90. Between the crucibles, and the concentration of the solvent in the spinning solution is between 20 and 75%. a method for preparing a carbon fiber made of a polyacrylonitrile-based copolymer and a carbon nanotube, wherein the temperature of the wet spinning process is between 40 and 85 tons, and the solvent in the spinning solution 11. The method of preparing a carbon fiber made of a polyacrylonitrile-based copolymer and a non-carbon carbon, as described in claim 6, wherein the wet spinning process comprises using - Coagulating liquid, including dimethyl sub-s (DMS0), N'N-dimethyl octaamine (DMF), N,N-dimethyl ethanoamine (dmAc), sodium thiocyanate (NaSCN) ), retinoic acid _03), water or a combination of the foregoing, and the temperature of the coagulating liquid is between 2 and 80 °C. 12. The method for preparing a carbon fiber made of a poly(10) nitrile copolymer and a carbon nanotube according to the scope of the patent, wherein the temperature of the coagulating liquid is between 5 and 75 ° C. The method for preparing a carbon fiber made of a polyacrylonitrile-based copolymer: a two-carbon tube, wherein the coagulating liquid has a range of ~6〇.〇. The ^^^ described in item 6 ^ ^ ^ is made of acrylonitrile-based copolymer ~ butyl, not slaved _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Method, the temperature is between 600 and listening::, medium 1, processing 耘16.- a carbon fiber made of a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube 201219482, wherein the composite The material is a composite material of a polyacrylonitrile-based copolymer and a carbon nanotube as described in claim 1. The polyacrylonitrile-based copolymer and the nanocarbon as described in claim 16 of the patent application. Carbon fiber made of a composite material of a tube, wherein the content of the carbon nanotubes is the polyacrylonitrile 0.01-20% by weight (wt%) of the total weight of the copolymer and the carbon nanotubes. 18. Composite of a polyacrylonitrile-based copolymer and a carbon nanotube according to claim 16 of the patent application. The carbon fiber produced by the material, wherein the carbon nanotubes comprise single-layer or multi-layer carbon nanotubes, and the functional groups on the surface of the carbon nanotubes include a carboxyl group, a hydroxyl group or a phenol group. 22twenty two
TW99138454A 2009-12-31 2010-11-09 Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber TWI422633B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW99138454A TWI422633B (en) 2010-11-09 2010-11-09 Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber
CN201010578755.1A CN102464848B (en) 2010-11-09 2010-12-06 Composite material of polyacrylonitrile-based copolymer and carbon nanotubes, carbon fiber and preparation method of carbon fiber
US12/979,857 US8808597B2 (en) 2009-12-31 2010-12-28 Pan-based carbon fibers and fabrication method thereof and precursor raw material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99138454A TWI422633B (en) 2010-11-09 2010-11-09 Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber

Publications (2)

Publication Number Publication Date
TW201219482A true TW201219482A (en) 2012-05-16
TWI422633B TWI422633B (en) 2014-01-11

Family

ID=46068996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99138454A TWI422633B (en) 2009-12-31 2010-11-09 Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber

Country Status (2)

Country Link
CN (1) CN102464848B (en)
TW (1) TWI422633B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865106B2 (en) 2011-12-26 2014-10-21 Industrial Technology Research Institute Composite raw material, carbon fiber material and method for forming the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231158B (en) * 2013-06-08 2016-08-17 中国科学院宁波材料技术与工程研究所 A kind of preparation method of carbon fiber PAN precursor
KR101625739B1 (en) * 2013-06-21 2016-06-13 코오롱인더스트리 주식회사 Polyacrylonitrile Precursor for Carbon Fiber and Method for Preparing the Same
CN107383734B (en) * 2017-07-07 2020-06-05 河南工程学院 Preparation method of CNTs modified PAN phase-change material microcapsule composite film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US7338997B2 (en) * 2003-01-23 2008-03-04 Teijin Limited Polymer for carbon fiber precursor
CN100436493C (en) * 2005-08-03 2008-11-26 厦门大学 In situ polymerization one-dimensional electric high purity carbon/polyacrylonitrile composite polymer
WO2008054836A2 (en) * 2006-02-22 2008-05-08 William Marsh Rice University Short, functionalized, soluble carbon nanotubes, methods of making same, and polymer composites made therefrom
JP2009079343A (en) * 2007-09-05 2009-04-16 Toray Ind Inc Method for producing precursor fiber for carbon fiber and carbon fiber
CN101348544A (en) * 2008-09-12 2009-01-21 四川香江实业集团股份有限公司 Polyacrylonitrile for producing high-strength carbon fibre and preparation thereof
CN101413153A (en) * 2008-12-04 2009-04-22 中国科学院长春应用化学研究所 Acrylonitrile biopolymer spinning fluid having homogeneous chain structure and preparation thereof
CN101864015B (en) * 2010-06-25 2011-11-23 东华大学 Method for preparing polyacrylonitrile/carbon nano tube composite material by taking ionic liquid as solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865106B2 (en) 2011-12-26 2014-10-21 Industrial Technology Research Institute Composite raw material, carbon fiber material and method for forming the same

Also Published As

Publication number Publication date
CN102464848A (en) 2012-05-23
TWI422633B (en) 2014-01-11
CN102464848B (en) 2014-05-28

Similar Documents

Publication Publication Date Title
KR100623881B1 (en) Preparation method of polyacrylonitrilePAN/polyimidePI composite nano-fibers by electrospinning, and carbon fibers, activated carbon fibers therefrom
US8808597B2 (en) Pan-based carbon fibers and fabrication method thereof and precursor raw material thereof
CA2711285A1 (en) Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
JP5544510B2 (en) Composite fiber and method for producing composite fiber
US20150118142A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enahnced hybrid structures
CN109518309A (en) The manufacturing method of carbon fiber bundle and carbon fiber bundle
JP2021031831A (en) Optimum preparing method of spinning dope for manufacturing acrylic fiber precursor of carbon fiber, and carbon fiber thereof
TW201219482A (en) Polyacrylonitrile-based copolymer/CNT composites, carbon fibers and fabrication method of carbon fiber
JP5251524B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
TW200530443A (en) Carbon fiber
KR101220947B1 (en) Preparation method of polyacrylonitrile-carbon nanotube composite and the composite thereby
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
CN110565212A (en) Preparation method of high-performance low-cost polyacrylonitrile-based carbon fiber
JP4670100B2 (en) Method for purifying boron nitride nanotubes
KR101158826B1 (en) Manufacturing method for polyacrylonitrile-based carbon fiber comprising carbon nanotube improved dispersibility and interfacial adhesion, and the carbon fiber therefrom
Ju et al. Mechanism and kinetics of stabilization reactions of poly (acrylonitrile-co-β-methylhydrogen itaconate)
TWI432499B (en) Composite raw material, carbon fiber material and methods for forming the same
JP2012193465A (en) Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP7319955B2 (en) Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle
JP2010174161A (en) Method for producing dispersion of polyacrylonitrile-based polymer for precursor fiber of carbon fiber
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
CN114108136B (en) Method for producing carbon fiber
JP6191182B2 (en) Carbon fiber bundle and manufacturing method thereof
TWI402279B (en) Pan-based carbon fibers and precursor material thereof
JP2018111904A (en) Carbon material and method for producing the same