JP4670100B2 - Method for purifying boron nitride nanotubes - Google Patents

Method for purifying boron nitride nanotubes Download PDF

Info

Publication number
JP4670100B2
JP4670100B2 JP2006055603A JP2006055603A JP4670100B2 JP 4670100 B2 JP4670100 B2 JP 4670100B2 JP 2006055603 A JP2006055603 A JP 2006055603A JP 2006055603 A JP2006055603 A JP 2006055603A JP 4670100 B2 JP4670100 B2 JP 4670100B2
Authority
JP
Japan
Prior art keywords
boron nitride
phenylene vinylene
nanotubes
nitride nanotubes
dioctoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006055603A
Other languages
Japanese (ja)
Other versions
JP2007230830A (en
Inventor
義雄 板東
チュンイ・ズィ
勧 本多
広明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Teijin Ltd
Original Assignee
National Institute for Materials Science
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Teijin Ltd filed Critical National Institute for Materials Science
Priority to JP2006055603A priority Critical patent/JP4670100B2/en
Publication of JP2007230830A publication Critical patent/JP2007230830A/en
Application granted granted Critical
Publication of JP4670100B2 publication Critical patent/JP4670100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化ホウ素ナノチューブの精製方法に関する。さらに詳しくは、窒化ホウ素ナノチューブのポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]分散液を用いた窒化ホウ素ナノチューブの精製方法に関する。
The present invention relates to a method for purifying boron nitride nanotubes . More particularly, to method of purifying boron nitride nanotubes with poly [m-phenylene vinylene-co-(2,5-Jiokutokishi -p- phenylene vinylene)] dispersion of boron nitride nanotubes.

カーボンナノチューブをはじめとする多くのナノチューブは、通常の溶媒に不溶のため、その成形性が著しく制限されている。この問題が解決されれば、実用上非常に有用であるため、カーボンナノチューブを溶媒に均一分散させる方法が種々検討されている。   Many nanotubes, including carbon nanotubes, are insoluble in ordinary solvents, so their moldability is significantly limited. If this problem is solved, it is very useful in practice, and various methods for uniformly dispersing carbon nanotubes in a solvent have been studied.

単層カーボンナノチューブ均一分散液は、例えば、非特許文献1で報告されている。この均一分散液では、長鎖アルキル基を側鎖に有するポリ(アリレンエチニレン)のクロロホルム溶液に単層カーボンナノチューブを分散させており、単層カーボンナノチューブがポリ(アリレンエチニレン)で被覆、即ち、ポリマーラッピングされている。
例えば、非特許文献2〜5においては、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]のトルエン溶液に単層あるいは多層カーボンナノチューブを分散させ、この単層あるいは多層カーボンナノチューブが上記ポリマーでラッピングされた均一分散液が、既に報告されている。
さらに、ポリビニルピロリドンの水溶液に単層カーボンナノチューブを分散させ、この単層カーボンナノチューブを上記ポリマーでラッピングした、安価で有機溶媒を使用しない無公害の均一分散液も知られている(例えば、非特許文献6参照)。
A single-walled carbon nanotube uniform dispersion is reported in Non-Patent Document 1, for example. In this uniform dispersion, single-walled carbon nanotubes are dispersed in a chloroform solution of poly (arylene ethynylene) having a long-chain alkyl group in the side chain, and the single-walled carbon nanotubes are coated with poly (arylene ethynylene). That is, it is polymer-wrapped.
For example, in Non-Patent Documents 2 to 5, single-walled or multi-walled carbon nanotubes are dispersed in a toluene solution of poly [m-phenylenevinylene-co- (2,5-dioctoxy-p-phenylenevinylene)]. Alternatively, a uniform dispersion in which multi-walled carbon nanotubes are wrapped with the above polymer has already been reported.
Further, a non-polluting, non-polluting uniform dispersion liquid in which single-walled carbon nanotubes are dispersed in an aqueous solution of polyvinylpyrrolidone and the single-walled carbon nanotubes are wrapped with the above-described polymer is also known (for example, non-patented). Reference 6).

これらのポリマーラッピングによるカーボンナノチューブの均一分散液は、成形性の改善だけでなく、カーボンナノチューブから触媒などの不純物を除去する精製手段としても利用されている。   These uniform dispersions of carbon nanotubes by polymer wrapping are used not only for improving moldability but also as a purification means for removing impurities such as catalysts from carbon nanotubes.

上記のようなカーボンナノチューブとポリマーとの非共有結合による均一分散液のほかに、カーボンナノチューブに化学反応によって有機官能基を導入して、さらに分散性、溶解性を向上させる方法も検討されている。例えば、単層カーボンナノチューブに過剰のアルデヒドとグリシン誘導体を作用させて、長鎖のアルキル基あるいはアルコキシ基を化学結合させる方法が、非特許文献7等で報告されている。そして、強酸や過酸化物を作用させて単層カーボンナノチューブにカルボキシル基を導入し、さらに塩化チオニルで処理後、オクタデシルアミンを結合させて、トルエンやジクロロメタンなどへの溶解性を向上させる方法(例えば、非特許文献8参照)も知られている。   In addition to the uniform dispersion by non-covalent bonding between carbon nanotubes and polymers as described above, methods for further improving dispersibility and solubility by introducing organic functional groups into carbon nanotubes by chemical reaction are also being studied. . For example, Non-Patent Document 7 reports a method in which an excessive aldehyde and glycine derivative are allowed to act on single-walled carbon nanotubes to chemically bond a long-chain alkyl group or alkoxy group. Then, a method of introducing a carboxyl group into a single-walled carbon nanotube by acting a strong acid or peroxide, further treating with thionyl chloride, bonding octadecylamine, and improving solubility in toluene or dichloromethane (for example, And non-patent document 8).

窒化ホウ素ナノチューブは、高温での耐酸化性に優れた材料であるとともに高強度であるため、これらの特性が要求される分野、例えば、半導体材料、エミッタ材料、耐熱性充填材料、高強度材料、触媒等において特に有用である。しかしながら、窒化ホウ素ナノチューブは有機溶媒に不溶であるので、均一で透明な分散液が得られていなかった。   Boron nitride nanotubes are a material with excellent resistance to oxidation at high temperatures and high strength, so fields where these characteristics are required, such as semiconductor materials, emitter materials, heat resistant filling materials, high strength materials, It is particularly useful in a catalyst or the like. However, since boron nitride nanotubes are insoluble in organic solvents, uniform and transparent dispersions have not been obtained.

J.Chen, 他、J.Am.Chem.Soc.、124 巻、9034頁、2002年J. Chen, et al., J. Am. Chem. Soc., 124, 9034, 2002 A.B.Dalton, 他、J.Phys.Chem.B.、104 巻、10012 頁、2000年A.B.Dalton, et al., J.Phys.Chem.B., 104, 10012, 2000 J.N.Coleman,他、Adv.Mater.、12巻、213 頁、2000年J.N.Coleman, et al., Adv. Mater., 12, 213, 2000 J.N.Coleman,他、Phys.Rev.B、58巻、R7492 頁、1998年J.N.Coleman, et al., Phys. Rev. B, 58, R7492, 1998 S.A.Curran, 他、Adv.Mater.、10巻、1091頁、1998年S.A.Curran, et al., Adv.Mater., 10, 1091, 1998 M.J.O'Connell,他、Chem.Phys.Lett. 、342 巻、265 頁、2001年M.J.O'Connell, et al., Chem. Phys. Lett., 342, 265, 2001 V.Georgakilas,他、J.Am.Chem.Soc.、124 巻、760 頁、2002年V.Georgakilas, et al., J.Am.Chem.Soc., 124, 760, 2002 J.Chen, 他、Science 、282 巻、95頁、1998年J. Chen, et al., Science, 282, 95, 1998

前述したように、従来の技術においては、窒化ホウ素ナノチューブの均一で透明な分散液が得られていないという課題がある。   As described above, the conventional technique has a problem that a uniform and transparent dispersion of boron nitride nanotubes is not obtained.

窒化ホウ素ナノチューブは高温で製造するほど収率は向上するが、不純物が多くなり、このために純度が低下するが、効率良く精製する精製方法が実現されていないという課題がある。   The yield of boron nitride nanotubes increases as the temperature increases, but the amount of impurities increases. For this reason, the purity decreases, but there is a problem that a purification method for efficient purification has not been realized.

本発明は、上記課題に鑑み、窒化ホウ素ナノチューブのポリマーラッピングによる均一で透明な窒化ホウ素ナノチューブ分散液使用した新規な窒化ホウ素ナノチューブの精製方法を提供することを目的とする
In view of the above problems, and an object thereof is to provide a method for purifying a novel boron nitride nanotubes using a uniform transparent boron nitride nanotube dispersion with a polymer wrapping of boron nitride nanotubes.

窒化ホウ素ナノチューブ分散液は、窒化ホウ素ナノチューブとポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]と有機溶媒と、からなる。
上記構成において、窒化ホウ素ナノチューブ分散液は、好ましくは、窒化ホウ素ナノチューブ1重量部とポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]1〜100重量部と有機溶媒100〜10000重量部と、からなる。この有機溶媒は、好ましくはクロロホルム、N,N−ジメチルアセトアミド、テトラヒドロフラン、トルエンの何れかである。
上記構成によれば、窒化ホウ素ナノチューブが上記のポリマーで被覆された、即ち、ポリマーラッピングされることで、均一で透明な分散液が得られる。
The boron nitride nanotube dispersion is composed of boron nitride nanotubes, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)], and an organic solvent .
In the above configuration, the boron nitride nanotube dispersion preferably contains 1 part by weight of boron nitride nanotubes, 1 to 100 parts by weight of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and organic. And 100 to 10,000 parts by weight of a solvent. This organic solvent is preferably any one of chloroform, N, N-dimethylacetamide, tetrahydrofuran, and toluene.
According to the above configuration, the boron nitride nanotubes are coated with the polymer, that is, polymer-wrapped, whereby a uniform and transparent dispersion liquid is obtained.

窒化ホウ素ナノチューブ分散液は、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]の有機溶媒溶液に窒化ホウ素ナノチューブを添加し、窒化ホウ素ナノチューブを添加した有機溶媒溶液を超音波処理して得ることができる。ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]の有機溶媒溶液に窒化ホウ素ナノチューブを添加して超音波処理し、窒化ホウ素ナノチューブが上記ポリマーによりポリマーラッピングされることで、均一で透明な窒化ホウ素ナノチューブ分散液を容易に製造することができる。
The boron nitride nanotube dispersion liquid is an organic solvent solution in which boron nitride nanotubes are added to an organic solvent solution of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and boron nitride nanotubes are added. Can be obtained by sonication. Boron nitride nanotubes are added to an organic solvent solution of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and subjected to ultrasonic treatment, and the boron nitride nanotubes are polymer-wrapped by the polymer. Thus, a uniform and transparent boron nitride nanotube dispersion can be easily produced.

本発明の窒化ホウ素ナノチューブの精製方法は、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]の有機溶媒溶液に窒化ホウ素ナノチューブを添加し、この窒化ホウ素ナノチューブを添加した有機溶媒溶液を超音波処理して窒化ホウ素ナノチューブ分散液とすると共に、遠心分離操作を施すことにより不純物を除去した後、窒化ホウ素ナノチューブ分散液の有機溶媒を蒸発させ、さらに高温で熱処理してポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を熱分解除去し、窒化ホウ素ナノチューブを精製することを特徴とする。
上記構成によれば、窒化ホウ素ナノチューブを精製して高純度とすることができる。
In the method for purifying boron nitride nanotubes of the present invention, boron nitride nanotubes are added to an organic solvent solution of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)]. The added organic solvent solution is sonicated to form a boron nitride nanotube dispersion, and after removing impurities by centrifuging, the organic solvent in the boron nitride nanotube dispersion is evaporated and heat treated at a higher temperature. Then, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] is thermally decomposed and removed to purify boron nitride nanotubes.
According to the above configuration, the boron nitride nanotubes can be purified to a high purity.

本発明の窒化ホウ素ナノチューブの精製方法によれば、上記方法で得られる均一で透明な窒化ホウ素ナノチューブ分散液を使用し、分散液に含まれている有機溶媒を加熱蒸発した後、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を熱分解して除去することにより、高純度の窒化ホウ素ナノチューブに精製することができる。   According to the method for purifying boron nitride nanotubes of the present invention, the uniform and transparent boron nitride nanotube dispersion obtained by the above method is used, and after heating and evaporating the organic solvent contained in the dispersion, poly [m- By removing phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] by thermal decomposition, it can be purified into high-purity boron nitride nanotubes.

最初に、本発明の窒化ホウ素ナノチューブ分散液について説明する。
本発明の窒化ホウ素ナノチューブ分散液は、窒化ホウ素ナノチューブを高分子であるポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)](以下、適宜にPmPV、又は、単にポリマーと呼ぶ)の有機溶媒溶液を使用し、窒化ホウ素ナノチューブを上記ポリマーで被覆し、即ち、ポリマーラッピングすることで、均一で透明な窒化ホウ素ナノチューブ分散液とするものである。ここで、用いる窒化ホウ素ナノチューブ、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]及び後述する有機溶媒は全て既知である。
First, the boron nitride nanotube dispersion of the present invention will be described.
The boron nitride nanotube dispersion of the present invention is a poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] (hereinafter referred to as PmPV, or simply as appropriate). A solution of an organic solvent (referred to as a polymer), and boron nitride nanotubes are coated with the above polymer, that is, polymer-wrapped to form a uniform and transparent boron nitride nanotube dispersion. Here, the boron nitride nanotube, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and the organic solvent described later are all known.

窒化ホウ素ナノチューブは、酸化マグネシウム、酸化鉄(II)(FeO)及びホウ素粉末の混合物を1100〜1700℃でアンモニアガスと反応させることにより得られる。得られた窒化ホウ素ナノチューブは硝酸で処理することにより、触媒として使用したマグネシウムや鉄が除去される。この方法により、直径が20〜50nmの均一な窒化ホウ素ナノチューブを製造することができる。   Boron nitride nanotubes are obtained by reacting a mixture of magnesium oxide, iron (II) oxide (FeO) and boron powder with ammonia gas at 1100-1700 ° C. The obtained boron nitride nanotube is treated with nitric acid to remove magnesium and iron used as a catalyst. By this method, uniform boron nitride nanotubes having a diameter of 20 to 50 nm can be produced.

上記反応温度を1700℃以上、特に1900℃以上に上昇すると収量は増加するが、直径20〜50nmの窒化ホウ素ナノチューブのほかに、多くの粒子、薄片、数百nm以上の直径を有する繊維状物質が不純物として生成するので好ましくない。逆に、1100℃以下では、窒化ホウ素ナノチューブの収率が低下する。   When the reaction temperature is raised to 1700 ° C. or higher, particularly 1900 ° C. or higher, the yield increases. In addition to boron nitride nanotubes having a diameter of 20 to 50 nm, many particles, flakes, and fibrous materials having a diameter of several hundred nm or more Is not preferable because it is produced as an impurity. Conversely, at 1100 ° C. or lower, the yield of boron nitride nanotubes decreases.

有機溶媒としては、クロロホルム、N,N−ジメチルアセトアミド、テトラヒドロフラン、トルエン等の何れかから選ばれる、既知の安価な市販品を使用することができる。   As the organic solvent, a known inexpensive commercial product selected from chloroform, N, N-dimethylacetamide, tetrahydrofuran, toluene and the like can be used.

上記窒化ホウ素ナノチューブ分散液の組成としては、窒化ホウ素ナノチューブとポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]と有機溶媒と、の重量比は、1:1〜100:100〜10000である。上記範囲よりもポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]及び有機溶媒が多い場合には、これらのポリマー及び有機溶媒が無駄になるので、経済的に利用価値が低下するので好ましくない。逆に、上記範囲よりもポリマー及び及び有機溶媒が少ない場合には、窒化ホウ素ナノチューブの分散性が悪くなるので好ましくない。   As the composition of the boron nitride nanotube dispersion liquid, the weight ratio of boron nitride nanotubes, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and organic solvent is 1: 1. ~ 100: 100-10000. When the amount of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and organic solvent is larger than the above range, these polymers and organic solvent are wasted. Since the utility value decreases, it is not preferable. On the other hand, when the polymer and the organic solvent are less than the above range, the dispersibility of the boron nitride nanotube is deteriorated, which is not preferable.

以下、本発明の窒化ホウ素ナノチューブ分散液について説明する。
最初に、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を有機溶媒に溶解させて均一な溶液とする。この溶液の中に、窒化ホウ素ナノチューブを添加し、室温で超音波処理した後、引き続き、遠心分離操作により、不溶物を除去する。この遠心分離操作を施すことにより上記溶液中に含まれている粒子や薄片などの不純物を除去することができる。
このようにして製造した窒化ホウ素ナノチューブ分散液は透明であり、上記の溶液中に窒化ホウ素ナノチューブが均一に分散している。したがって、本発明の窒化ホウ素ナノチューブ分散液は、1ヶ月以上放置しても沈殿物を生じない。
Hereinafter, the boron nitride nanotube dispersion of the present invention will be described.
First, poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] is dissolved in an organic solvent to obtain a uniform solution. Boron nitride nanotubes are added to this solution and subjected to ultrasonic treatment at room temperature, and then insoluble matters are removed by centrifugation. By performing this centrifugation operation, impurities such as particles and flakes contained in the solution can be removed.
The boron nitride nanotube dispersion thus produced is transparent, and the boron nitride nanotubes are uniformly dispersed in the above solution. Therefore, the boron nitride nanotube dispersion of the present invention does not produce a precipitate even if it is left for more than one month.

本発明の窒化ホウ素ナノチューブ分散液から高純度な窒化ホウ素ナノチューブを精製する方法について下記に説明する。
最初に、上記の窒化ホウ素ナノチューブ分散液から有機溶媒を蒸発させる。この工程で、窒化ホウ素ナノチューブは、固体状のポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]で被覆、つまり、ラッピングされた状態となる。
次に、上記のポリマーでラッピンウされた窒化ホウ素ナノチューブを空気中で、高温に加熱することにより熱分解させて、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を除去する。
これにより、分散液に含まれている窒化ホウ素ナノチューブを高純度に精製することができる。
A method for purifying high-purity boron nitride nanotubes from the boron nitride nanotube dispersion of the present invention will be described below.
First, the organic solvent is evaporated from the boron nitride nanotube dispersion. In this step, the boron nitride nanotubes are covered with solid poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)], that is, in a lapped state.
Next, the boron nitride nanotubes wrapped with the above polymer are thermally decomposed by heating to high temperature in the air, and poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene) ] Is removed.
Thereby, the boron nitride nanotubes contained in the dispersion can be purified with high purity.

次に、実施例を示して、さらに具体的に本発明を説明する。
実施例1として下記の方法により窒化ホウ素ナノチューブ分散液を製造した。
最初に、酸化マグネシウム粉末、酸化鉄(II)粉末及びホウ素粉末の混合物をアルゴンガスを流しながら、1300℃で加熱して、酸化ホウ素の蒸気を発生させ、この蒸気とアンモニアガスを反応させて窒化ホウ素ナノチューブを成長させた。
生成した窒化ホウ素ナノチューブを濃度60wt%の硝酸で洗浄して、触媒の鉄、マグネシウム粒子を除去した。触媒除去後の窒化ホウ素ナノチューブの外観は白色で六方晶系の結晶構造を有し、長さおよそ10μm、直径20〜50nmで、その純度は90vol%以上であった。
アルドリッチ社製のポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]5mgをクロロホルム20cm3 に溶解させた後、この溶液に、上記で製造した窒化ホウ素ナノチューブ5mgを添加し、この混合物を室温で2時間超音波処理した。引き続き、2000rpmで遠心分離して不溶物を除去し、実施例1の窒化ホウ素ナノチューブ分散液を得た。
Next, the present invention will be described more specifically with reference to examples.
As Example 1, a boron nitride nanotube dispersion was produced by the following method.
First, a mixture of magnesium oxide powder, iron (II) oxide powder and boron powder is heated at 1300 ° C. while flowing argon gas to generate boron oxide vapor, which is reacted with ammonia gas for nitriding. Boron nanotubes were grown.
The produced boron nitride nanotubes were washed with nitric acid having a concentration of 60 wt% to remove catalyst iron and magnesium particles. The appearance of the boron nitride nanotubes after removal of the catalyst was white and had a hexagonal crystal structure, a length of about 10 μm, a diameter of 20 to 50 nm, and a purity of 90 vol% or more.
After 5 mg of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] manufactured by Aldrich was dissolved in 20 cm 3 of chloroform, 5 mg of the boron nitride nanotubes produced above were added to this solution. And the mixture was sonicated for 2 hours at room temperature. Subsequently, the resultant was centrifuged at 2000 rpm to remove insoluble matters, and the boron nitride nanotube dispersion liquid of Example 1 was obtained.

このようにして得られた実施例1の均一で透明な分散液は一ヶ月以上放置しても沈殿物を生じなかった。この分散液は、窒化ホウ素ナノチューブ0.2mgとポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]5mgとクロロホルム20cm3 とからなる。 The uniform and transparent dispersion of Example 1 obtained in this way did not produce a precipitate even when left for more than one month. This dispersion is composed of 0.2 mg of boron nitride nanotubes, 5 mg of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and 20 cm 3 of chloroform.

図1は、実施例1で製造した窒化ホウ素ナノチューブ分散液から溶媒を除去した試料の低倍率における透過型電子顕微鏡像を示す図である。試料は、実施例1で得た均一透明な分散液を、透過型電子顕微鏡内の炭素膜で被覆した銅グリッドに滴下して作製した。図1から明らかなように、窒化ホウ素ナノチューブが非常によく分散しているのが分かる。また、その長さは2〜6μmであり、超音波処理する前よりも短くなった。   1 is a view showing a transmission electron microscope image at a low magnification of a sample obtained by removing the solvent from the boron nitride nanotube dispersion liquid produced in Example 1. FIG. The sample was prepared by dropping the uniform transparent dispersion obtained in Example 1 onto a copper grid covered with a carbon film in a transmission electron microscope. As can be seen from FIG. 1, the boron nitride nanotubes are very well dispersed. Moreover, the length was 2-6 micrometers, and became shorter than before ultrasonication.

図2は図1の試料の高分解能透過型電子顕微鏡像を示す図である。図において、四角印(□)の領域の矢印で示す部分が窒化ホウ素ナノチューブの壁部の拡大図である。図2から明らかなように、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]でラッピングされた窒化ホウ素ナノチューブは、まだ完全な結晶状態を保持していることが確認された。   FIG. 2 is a diagram showing a high-resolution transmission electron microscope image of the sample of FIG. In the figure, a portion indicated by an arrow in a square mark (□) is an enlarged view of the wall portion of the boron nitride nanotube. As is apparent from FIG. 2, the boron nitride nanotubes wrapped with poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] still retain a complete crystal state. Was confirmed.

図3は、実施例1の窒化ホウ素ナノチューブ分散液から溶媒を除去した試料のカソードルミネッセンスのスペクトルを示す図である。図3の横軸は発光波長(nm)を示し、縦軸は発光強度(任意目盛)を示している。図には、窒化ホウ素ナノチューブ単体及びポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]単体(図中で、ポリマー単体(PmPV)と表記としている)のカソードルミネッセンスのスペクトルも併せて示している。
図3から明らかなように、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]でラッピングされた窒化ホウ素ナノチューブのカソードルミネッセンスのスペクトルは、窒化ホウ素ナノチューブ及びポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]のそれぞれに由来する信号を有しており、ラッピングされていることが確かめられた。また、ラッピングされたことによるπ−π相互作用のため、図中の点線で示すように、実施例1のポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]及び窒化ホウ素ナノチューブの発光ピーク波長は、単体に比較してそれぞれ20nm及び30nmブルーシフト、即ち、短波長側に移動していることが判明した。
FIG. 3 is a diagram showing the cathodoluminescence spectrum of a sample obtained by removing the solvent from the boron nitride nanotube dispersion liquid of Example 1. The horizontal axis in FIG. 3 indicates the emission wavelength (nm), and the vertical axis indicates the emission intensity (arbitrary scale). The figure shows cathodoluminescence of a boron nitride nanotube alone and a poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] simple substance (indicated as a polymer simple substance (PmPV) in the figure). The spectrum of is also shown.
As is apparent from FIG. 3, the cathodoluminescence spectrum of the boron nitride nanotubes wrapped with poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] is shown in FIG. The signal was derived from each of m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] and confirmed to be wrapped. Further, because of the π-π interaction caused by the wrapping, as shown by the dotted line in the figure, the poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] of Example 1 It was found that the emission peak wavelengths of the boron nitride nanotube and the boron nitride nanotube shifted to 20 nm and 30 nm blue shift, that is, to the short wavelength side, respectively, compared to the single substance.

実施例2として、窒化ホウ素ナノチューブ分散液を用いて、窒化ホウ素ナノチューブの精製を行なった。
最初に、加熱反応温度を1900℃とした以外は、実施例1と同様の原料を用いて窒化ホウ素ナノチューブを製造した。この温度は、窒化ホウ素ナノチューブの収量は増加するが、直径20〜50nmの窒化ホウ素ナノチューブのほかに、多くの粒子、薄片、数百nm以上の直径を有する繊維状物質が不純物として生成する温度である。
次に、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]5mgをクロロホルム20cm3 に溶解し、この溶液に、上記の1900℃で製造した窒化ホウ素ナノチューブ5mgを添加した。
この混合物を室温で2時間超音波処理した後、2000rpmで遠心分離して不溶物を除去し、均一で透明な分散液を製造した。
上記分散液の溶媒であるクロロホルムを60℃で蒸発させて除去し、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]でラッピングされた窒化ホウ素ナノチューブの固体を得た。
この固体を空気中において、700℃で30分加熱して、ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を熱分解させて除去し、純粋な窒化ホウ素ナノチューブに変換することで、実施例2の窒化ホウ素ナノチューブを得た。
As Example 2, boron nitride nanotubes were purified using a boron nitride nanotube dispersion.
First, boron nitride nanotubes were produced using the same raw materials as in Example 1 except that the heating reaction temperature was 1900 ° C. This temperature is a temperature at which the yield of boron nitride nanotubes increases, but in addition to boron nitride nanotubes with a diameter of 20 to 50 nm, many particles, flakes, and fibrous materials with a diameter of several hundred nm or more are generated as impurities. is there.
Next, 5 mg of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] is dissolved in 20 cm 3 of chloroform, and 5 mg of boron nitride nanotubes produced at 1900 ° C. are added to this solution. Added.
The mixture was sonicated at room temperature for 2 hours and then centrifuged at 2000 rpm to remove insoluble matters, thereby producing a uniform and transparent dispersion.
Chloroform, which is the solvent of the dispersion, is removed by evaporation at 60 ° C., and the boron nitride nanotube solid wrapped with poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] is removed. Obtained.
This solid was heated in air at 700 ° C. for 30 minutes to remove poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] by thermal decomposition, and pure boron nitride. The boron nitride nanotube of Example 2 was obtained by converting into a nanotube.

実施例2の窒化ホウ素ナノチューブからポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]が除去されたことは、このポリマーの呈する黄色が消失し、窒化ホウ素ナノチューブが白色になったことでも裏づけされた。   The removal of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)] from the boron nitride nanotubes of Example 2 disappears from the yellow color of the polymer, and the boron nitride nanotubes The fact that it turned white was also supported.

図4は、1900℃で製造した窒化ホウ素ナノチューブを60wt%の硝酸で処理した試料の走査型電子顕微鏡像を示す図である。図4から明らかなように、直径50nmを有する窒化ホウ素ナノチューブのほかに、多くの粒子、薄片、より大きな直径を持つ繊維状物質が存在し、純度が低いことが分かる。   FIG. 4 is a view showing a scanning electron microscope image of a sample obtained by treating boron nitride nanotubes manufactured at 1900 ° C. with 60 wt% nitric acid. As can be seen from FIG. 4, in addition to the boron nitride nanotubes having a diameter of 50 nm, there are many particles, flakes, and fibrous materials having a larger diameter, indicating that the purity is low.

図5は、実施例2の精製処理を施した窒化ホウ素ナノチューブの走査型電子顕微鏡像を示す図である。図5から明らかなように、大部分の窒化ホウ素ナノチューブは直径が約50nmで長さが10μmである。このように、実施例2で精製した窒化ホウ素ナノチューブには、図4と比較すると、窒化ホウ素の粒子、薄片、繊維状物質が存在しないことが確認できた。   FIG. 5 is a view showing a scanning electron microscope image of the boron nitride nanotubes subjected to the purification treatment of Example 2. As is apparent from FIG. 5, most boron nitride nanotubes have a diameter of about 50 nm and a length of 10 μm. Thus, it was confirmed that the boron nitride nanotubes purified in Example 2 were free of boron nitride particles, flakes, and fibrous materials as compared to FIG.

図6は、実施例2で精製した窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。図6から明らかなように、実施例2で精製した窒化ホウ素ナノチューブの直径が約50nmに揃っており、よく精製されていることが確認できた。   6 is a view showing a transmission electron microscope image of the boron nitride nanotubes purified in Example 2. FIG. As is clear from FIG. 6, the diameters of the boron nitride nanotubes purified in Example 2 were approximately 50 nm, confirming that they were well purified.

本発明はこれら実施例に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。例えば、分散液の製造に用いる超音波や遠心分離の条件は、分散液の重量に応じて適宜に選定すればよい。   The present invention is not limited to these examples, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. . For example, the ultrasonic wave and centrifugal conditions used for the production of the dispersion may be appropriately selected according to the weight of the dispersion.

本発明により、窒化ホウ素ナノチューブのポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]ラッピングによる均一で且つ透明な分散液の製造が可能となったので、窒化ホウ素ナノチューブが均一に分散されたコンポジット成形品への応用や均一の直径を有する窒化ホウ素ナノチューブの製造などの応用が可能となる。   The present invention makes it possible to produce a uniform and transparent dispersion by wrapping of boron nitride nanotubes with poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)]. Applications such as composite molded products in which nanotubes are uniformly dispersed and production of boron nitride nanotubes having a uniform diameter are possible.

窒化ホウ素ナノチューブ分散液から溶媒を除去した試料の低倍率における透過型電子顕微鏡像を示す図である。It is a figure which shows the transmission electron microscope image in the low magnification of the sample which removed the solvent from the boron nitride nanotube dispersion liquid. 図1の試料の高分解能透過型電子顕微鏡像を示す図である。It is a figure which shows the high-resolution transmission electron microscope image of the sample of FIG. 実施例1の窒化ホウ素ナノチューブ分散液から溶媒を除去した試料のカソードルミネッセンスのスペクトルを示す図である。FIG. 3 is a diagram showing a cathodoluminescence spectrum of a sample obtained by removing the solvent from the boron nitride nanotube dispersion liquid of Example 1. 1900℃で製造した窒化ホウ素ナノチューブを60wt%の硝酸で処理した試料の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the sample which processed the boron nitride nanotube manufactured at 1900 degreeC with 60 wt% nitric acid. 実施例2の精製処理を施した窒化ホウ素ナノチューブの走査型電子顕微鏡像を示す図である。6 is a view showing a scanning electron microscope image of boron nitride nanotubes subjected to the purification treatment of Example 2. FIG. 実施例2で精製した窒化ホウ素ナノチューブの透過型電子顕微鏡像を示す図である。4 is a transmission electron microscope image of boron nitride nanotubes purified in Example 2. FIG.

Claims (1)

ポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]の有機溶媒溶液に窒化ホウ素ナノチューブを添加し、該窒化ホウ素ナノチューブを添加した有機溶媒溶液を超音波処理して窒化ホウ素ナノチューブ分散液とすると共に、遠心分離操作を施すことにより不純物を除去した後、上記窒化ホウ素ナノチューブ分散液の有機溶媒を蒸発させ、さらに高温で熱処理してポリ[m−フェニレンビニレン−co−(2,5−ジオクトキシ−p−フェニレンビニレン)]を熱分解除去し、上記窒化ホウ素ナノチューブを精製することを特徴とする、窒化ホウ素ナノチューブの精製方法。
Boron nitride nanotubes are added to an organic solvent solution of poly [m-phenylene vinylene-co- (2,5-dioctoxy-p-phenylene vinylene)], and the organic solvent solution to which the boron nitride nanotubes are added is subjected to ultrasonic treatment. After making the boron nitride nanotube dispersion liquid and removing impurities by performing a centrifugal separation operation, the organic solvent of the boron nitride nanotube dispersion liquid is evaporated and heat-treated at a high temperature to obtain poly [m-phenylene vinylene-co- A method for purifying boron nitride nanotubes, wherein (2,5-dioctoxy-p-phenylenevinylene)] is removed by thermal decomposition to purify the boron nitride nanotubes.
JP2006055603A 2006-03-01 2006-03-01 Method for purifying boron nitride nanotubes Expired - Fee Related JP4670100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055603A JP4670100B2 (en) 2006-03-01 2006-03-01 Method for purifying boron nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055603A JP4670100B2 (en) 2006-03-01 2006-03-01 Method for purifying boron nitride nanotubes

Publications (2)

Publication Number Publication Date
JP2007230830A JP2007230830A (en) 2007-09-13
JP4670100B2 true JP4670100B2 (en) 2011-04-13

Family

ID=38551804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055603A Expired - Fee Related JP4670100B2 (en) 2006-03-01 2006-03-01 Method for purifying boron nitride nanotubes

Country Status (1)

Country Link
JP (1) JP4670100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186484B2 (en) 2019-10-21 2021-11-30 Korea Institute Of Science And Technology Method of purifying boron nitride nanotubes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565694B2 (en) * 2010-08-09 2014-08-06 独立行政法人物質・材料研究機構 Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
KR101429559B1 (en) * 2012-02-23 2014-08-14 한국원자력연구원 In-situ purification and surface treatment method of boron nitride nanotubes
KR102513527B1 (en) * 2020-05-11 2023-03-24 재단법인차세대융합기술연구원 Manufacturing Method of BNNT
KR102601243B1 (en) * 2021-03-15 2023-11-13 한국과학기술연구원 Method for purifying crude BNNTs and composition for purified BNNTs

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160811A (en) * 1987-12-15 1989-06-23 Kawasaki Steel Corp Production of hexagonal boron nitride
JPH0912771A (en) * 1995-06-26 1997-01-14 Denki Kagaku Kogyo Kk Filler and bonding sheet
JPH1160216A (en) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd Heat conductive boron nitride filler and insulating heat releasing sheet
JP2000044216A (en) * 1998-04-09 2000-02-15 Horcom Ltd Purifying method of nanotube soot, nanotube composite material suspension and composition
JP2000086210A (en) * 1998-07-09 2000-03-28 Kinya Adachi Boron nitride-oxide composite particles, their production and ultraviolet ray cut-off agent using same
JP2001507328A (en) * 1996-12-27 2001-06-05 ソシエテ・ナシオナル・デテュード・エ・ドゥ・コンストリュクシオン・ドゥ・モトール・ダヴィアシオン−エス.エヌ.ウ.セ.エム.アー. Fabric preform coated with boron nitride coating, composite material incorporating the same, and method for producing the same
JP2001192500A (en) * 2000-01-12 2001-07-17 Edison Polymer Innovation Corp Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
JP2004002849A (en) * 2002-05-02 2004-01-08 Zyvex Corp Polymer for noncovalently functionalizing nanotube and method of noncovalently functionalizing nanotube by using the polymer
JP2004161561A (en) * 2002-11-14 2004-06-10 National Institute For Materials Science Manufacturing process of boron nitride nanotube
JP2004338993A (en) * 2003-05-15 2004-12-02 Hitachi Metals Ltd Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster
JP2004537489A (en) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド High solid content hBN slurry, hBN paste, spherical hBN powder, and methods for producing and using them
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160811A (en) * 1987-12-15 1989-06-23 Kawasaki Steel Corp Production of hexagonal boron nitride
JPH0912771A (en) * 1995-06-26 1997-01-14 Denki Kagaku Kogyo Kk Filler and bonding sheet
JP2001507328A (en) * 1996-12-27 2001-06-05 ソシエテ・ナシオナル・デテュード・エ・ドゥ・コンストリュクシオン・ドゥ・モトール・ダヴィアシオン−エス.エヌ.ウ.セ.エム.アー. Fabric preform coated with boron nitride coating, composite material incorporating the same, and method for producing the same
JPH1160216A (en) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd Heat conductive boron nitride filler and insulating heat releasing sheet
JP2000044216A (en) * 1998-04-09 2000-02-15 Horcom Ltd Purifying method of nanotube soot, nanotube composite material suspension and composition
JP2000086210A (en) * 1998-07-09 2000-03-28 Kinya Adachi Boron nitride-oxide composite particles, their production and ultraviolet ray cut-off agent using same
JP2001192500A (en) * 2000-01-12 2001-07-17 Edison Polymer Innovation Corp Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
JP2004537489A (en) * 2001-08-07 2004-12-16 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド High solid content hBN slurry, hBN paste, spherical hBN powder, and methods for producing and using them
JP2004002849A (en) * 2002-05-02 2004-01-08 Zyvex Corp Polymer for noncovalently functionalizing nanotube and method of noncovalently functionalizing nanotube by using the polymer
JP2004161561A (en) * 2002-11-14 2004-06-10 National Institute For Materials Science Manufacturing process of boron nitride nanotube
JP2004338993A (en) * 2003-05-15 2004-12-02 Hitachi Metals Ltd Manufacturing method of boron nitride cluster, boron nitride cluster solution, and boron nitride cluster
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
JP2007533797A (en) * 2004-04-13 2007-11-22 ザイベックス コーポレーション Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186484B2 (en) 2019-10-21 2021-11-30 Korea Institute Of Science And Technology Method of purifying boron nitride nanotubes

Also Published As

Publication number Publication date
JP2007230830A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Janas et al. Carbon nanotube fibers and films: synthesis, applications and perspectives of the direct-spinning method
Shen et al. Study on amino-functionalized multiwalled carbon nanotubes
Zeng et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior
JP5152716B2 (en) Chemically modified carbon nanotube and method for producing the same
Bu et al. Optically active SiO2/TiO2/polyacetylene multilayered nanospheres: preparation, characterization, and application for low infrared emissivity
JP4670100B2 (en) Method for purifying boron nitride nanotubes
KR20150144219A (en) Process for preparing carbon quantum dots using emulsion
Mallakpour et al. A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly (amide–imide) composites
JP3764986B2 (en) Production method of soluble carbon nanotube
Liu et al. A multi-step strategy for cutting and purification of single-walled carbon nanotubes
WO2016107532A1 (en) Carbon nanotube modified by monoaminoalkyl terminated polysiloxane and preparation method therefor
Yang et al. Noncovalent‐wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide
CN102020267A (en) Purification method of single-wall carbon nano tube
KR101300606B1 (en) Manufacturing method of carbon nanotubes/polyolefin composites with superior mechanical properties
KR100790839B1 (en) Method of nondestructively refining carbon nanotube
CN111908451A (en) Preparation method of hollow vermicular carbon nano tube
Yuca et al. Thermal and electrical properties of carbon nanotubes purified by acid digestion
KR100769992B1 (en) Purification solution for carbon nano tube and method for purifying carbon nano tube thereby
CN105669971B (en) A kind of preparation method of in-situ polymerization carbon nano-tube modification nylon composite materials
JP6338280B2 (en) Chiral solid metals and solid composites and methods for their production
Chakraborty et al. Poly (ethylene) glycol/single-walled carbon nanotube composites
Ahmed et al. Influence of the pH on the Morphology of Sol–Gel‐Derived Nanostructured SiC
Bu et al. Optically active substituted polyacetylene@ carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study
Qi et al. Thermal stability and glass transition behavior of PANI/MWNT composites
Dalila et al. The effect of synthesis temperature on the growth of carbon nanotubes from waste chicken fat precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees