TW201215700A - Method for making carbon nanotube array - Google Patents

Method for making carbon nanotube array Download PDF

Info

Publication number
TW201215700A
TW201215700A TW100113624A TW100113624A TW201215700A TW 201215700 A TW201215700 A TW 201215700A TW 100113624 A TW100113624 A TW 100113624A TW 100113624 A TW100113624 A TW 100113624A TW 201215700 A TW201215700 A TW 201215700A
Authority
TW
Taiwan
Prior art keywords
carbon
reaction
temperature
carbon nanotube
source gases
Prior art date
Application number
TW100113624A
Other languages
Chinese (zh)
Other versions
TWI417413B (en
Inventor
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100113624A priority Critical patent/TWI417413B/en
Publication of TW201215700A publication Critical patent/TW201215700A/en
Application granted granted Critical
Publication of TWI417413B publication Critical patent/TWI417413B/en

Links

Abstract

The present invention relates to a method for making a carbon nanotubes array. The method includes the steps of: providing a substrate, the substrate includes a catalyst layer forming on the surface of the substrate; placing the substrate in a reaction chamber; providing at least two kinds of carbon resource gases, the carbon resource gases include different kinds of single carbon isotopic; introducing the at least two kinds of carbon resource gases into the reaction chamber at the same time; making the carbon resource gases react under different reaction temperatures and growing the carbon nanotubes array.

Description

201215700 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種奈米碳管陣列的製備方法,尤其涉及一 種摻有同位素的奈米碳管陣列的製備方法。 【先前技術】 [0002] 同位素標記方法係研究材料生長機理的有力工具,故, 同位素標記的奈米材料可研究該奈米材料的生長機理, 該同位素標記的奈米材料係利用在奈米材料的合成過程 中,將含有某一特定元素(一般係輕元素,如碳、硼、氮 或氧)的同位素的反應物按照預定的濃度(以純物質或混 合物的形式)和順序使其參與反應,從而製備出原位生長 的該同位素標示的奈米材料。 [0003] 范守善等人於2006年4月18曰公告的,公告號為us 7, 029, 751 B2,標題為 “Isotope-doped carb〇n nanotube and method and apparatus f〇r f〇rm-ing the same”的專利揭申了一種摻有同位素的奈米碳 Q 管陣列及其製備方法。該摻有同位素的奈米碳管陣列包 括由單一同位素組成的第一奈米碳管片段和第二奈米碳 管片段,該第一奈米碳管片段和第二奈米碳管片段沿奈 米碳管的縱向父替排列。該摻有同位素的奈米峻管陣列 的製備方法包括如下步驟:提供分別由12C和13c組成的乙 烯氣體;提供其上形成有催化劑層的基底,並將該基底 置入反應室中;將該反應室抽成真空,通入預定壓力的 保護性氣體;在650。〇750。(:的反應條件下,使由12(:組 成的乙烯氣體發生反應並生成第一奈米碳管片段;反應 1002022746-0 100113624 表單編號A0I01 第3頁/共38頁 201215700 預定時間後,將碳源切換至由13c組成的乙烯氣體上,在 650°C〜750°C的反應條件下,使由13C組成的乙烯氣體發 生反應,繼續生長第二奈米碳管片段,從而得到摻有同 位素的奈米碳管陣列。 [0004] 然,先前技術中,所述奈米碳管陣列係採用含有不同種 類單一碳同位素的同一種碳源氣在相同溫度下製備出來 的,並且在製備過程中需要通過切換的方式分別通入不 同種類單一碳同位素的碳源氣,方法較為複雜。 【發明内容】 [0005] 有鑒於此,提供一種同時通入至少兩種碳源氣製備奈米 碳管陣列的方法實為必要。 [0006] 提供一形成有催化劑層的基底,並將該形成有催化劑層 的基底置入一反應室中;提供至少兩種碳源氣,該至少 兩種碳源氣中的碳元素分別由不同種類的單一同位素組 成;以及將所述至少兩種碳源氣同時通入所述反應室中 ,通過控制反應溫度,使所述至少兩種碳源氣在不同的 溫度下發生反應,形成一奈米碳管陣列。 [0007] 相較先前技術,所述奈米碳管陣列的方法採用至少兩種 含有單一同位素的碳源氣同時通入,並控制不同的反應 溫度,使各種碳源氣在不同的溫度下發生反應,得到所 述奈米碳管陣列。該方法無需進行不同碳源氣的切換, 可以方便的獲得多種組合的奈米碳管陣列。 【實施方式】 [0008] 下面將結合附圖及具體實施例,對本發明提供的奈米碳 100113624 表單編號A0101 第4頁/共38頁 1002022746-0 201215700 [0009] Ο [0010] [0011] Ο [0012] 官陣列的製備方法作進一步的詳細說明。 請參閱圖1 ’本發明第一實施例提供一種奈米碳管陣列的 製備方法,該製備方法主要包括以下步驟:(S1〇1)提 供—形成有催化劑層的基底,並將該形成有催化劑層的 基底置入一反應室中;(S102)提供至少兩種碳源氣, 該至少兩種碳源氣中的碳元素分別由不同種類的單一同 位素組成;以及(S103)將所述至少兩種碳源氣同時通 入所述反應室中,通過控制反應溫度,使所述至少兩種 碳源、氣在不同的溫度下發生反應,形成奈米碳管陣列。 步驟S101 ’提供一形成有催化劑層的基底,並將該形成 有催化劑層的基底置入一反應室中。 請參閱圖2,提供一基底132,該基底132具有一平整、光 滑的表面。所述基底132可選用拋光的矽片、拋光的二氧 化矽片或拋光的石英片,該基底132的表面平整度以小於 1〇奈米為佳。本實施例中,選用拋光的矽片作為所述基 底 132。 在所述基底132表面形成一催化劑層13〇 ^該催化劑層 130可通過電子束蒸發法、沈積法、濺射法或蒸鍍法等方 法沈積於所述基底132的表面,該催化劑層13〇的厚度一 般以3奈米〜6奈米為宜。該催化劑層130與所述基底132 形成良好的化學或物理結合。該催化劑層13〇的材料可選 用鐵、銘、鎳及其任意組合的合金材料等。本實施例中 ’選用厚度為5nm的鐵膜作為所述催化劑層13〇〇該鐵膜 可與所述拋光的矽片形成良好的接觸。 100113624 表單编號A0101 第5頁/共38頁 1002022746-0 201215700 [0013] 提供一反應裝置100,該反應裝置100包括:一反應室 120、一用於加熱該反應室120的反應爐122、一保護氣 體輸入通道102、三個碳源氣輸入通道104、106、108以 及一排氣通道110。所述反應室120用於承載所述形成有 催化劑層130的基底132 ;所述反應爐122包括有一加熱 裝置,所述加熱裝置可對所述反應室120進行加熱,並使 反應室120達到一預定溫度。所述保護氣體輸入通道102 設置有一閥門112,通過所述保護氣體輸入通道102可輸 入不同的惰性氣體,如氦氣、氬氣、氮氣等;所述碳源 氣輸入通道104設置一閥門114,所述碳源氣輸入通道 106設置一閥門116,所述碳源氣輸入通道108設置一閥 門118,該碳源氣輸入通道104、106、108可分別輸入不 同的碳源氣。 [0014] 將所述形成有催化劑層130的基底132置入所述反應室 120中。所述催化劑層130朝向碳源氣通入方向並與水平 面形成一定的夾角α,0°$α<90°。可以理解,通過調 整所述催化劑層130與水平面的夾角,可改善奈米碳管陣 列生長均勻性。所述夾角可根據實際需要調整,本實施 例中,所述催化劑層與水平面形成的夾角α為0°。可以 理解,通過將所述形成有催化劑層130的基底132置入所 述反應室120中,就可通過所述反應爐122中的加熱裝置 對所述反應室120及催化劑層130進行加熱使所述反應室 120及催化劑層130達到一預定的溫度。 [0015] 步驟S102,提供至少兩種碳源氣,該至少兩種碳源氣中 的碳元素分別由不同種類的單一同位素組成。 100113624 表單編號Α0101 第6頁/共38頁 1002022746-0 201215700 [0016] 所述唆源氣可通過所料㈣輸人通道104 、:106以及 Ϊ08輪入到所述反應室12〇。所述碳源氣可以為甲烷、乙 烤乙块、丙二烯及其他碳氫化合物。所述至少兩種碳 源氣係指至少兩種不同材料的碳源氣例如乙烯與乙炔 ’或者甲烧與乙稀等’且所述至少兩種不同材料的碳源 氣中的碳元素由不同種類的單一同位素組成’如,uc201215700 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a method for preparing a carbon nanotube array, and more particularly to a method for preparing a carbon nanotube array doped with an isotope. [Prior Art] [0002] The isotope labeling method is a powerful tool for studying the material growth mechanism. Therefore, the isotope-labeled nanomaterial can study the growth mechanism of the nanomaterial, and the isotope-labeled nanomaterial is utilized in the nanomaterial. In the synthesis process, a reactant containing an isotope of a specific element (generally a light element such as carbon, boron, nitrogen or oxygen) is allowed to participate in the reaction at a predetermined concentration (in the form of a pure substance or a mixture) and in sequence. Thereby, the isotope-labeled nanomaterial grown in situ is prepared. [0003] Fan Shoushan and others announced on April 18, 2006, the announcement number is us 7, 029, 751 B2, entitled "Isotope-doped carb〇n nanotube and method and apparatus f〇rf〇rm-ing the same The patent discloses a nanocarbon Q-tube array doped with isotopes and a preparation method thereof. The isotope-doped carbon nanotube array comprises a first carbon nanotube segment and a second carbon nanotube segment composed of a single isotope, the first carbon nanotube segment and the second carbon nanotube segment along the Nai The longitudinal parent of the carbon tube is arranged. The method for preparing an isotope-doped nanotube array comprises the steps of: providing an ethylene gas composed of 12C and 13c, respectively; providing a substrate on which a catalyst layer is formed, and placing the substrate into a reaction chamber; The reaction chamber is evacuated and a protective gas of a predetermined pressure is introduced; at 650. 〇 750. (: Under the reaction conditions, the reaction is carried out by 12 (: composition of ethylene gas and the first carbon nanotube fragments are formed; reaction 1002022746-0 100113624 Form No. A0I01 Page 3 / Total 38 pages 201215700 After the scheduled time, the carbon The source is switched to an ethylene gas composed of 13c, and the ethylene gas composed of 13C is reacted under the reaction condition of 650 ° C to 750 ° C to continue to grow the second carbon nanotube segment, thereby obtaining an isotope-doped Nanocarbon tube array. [0004] However, in the prior art, the carbon nanotube array is prepared at the same temperature by using the same carbon source gas containing different kinds of single carbon isotope, and needs to be prepared in the preparation process. The method of switching into carbon source gas of different kinds of single carbon isotope is complicated, and the method is complicated. [0005] In view of the above, a method for preparing a carbon nanotube array by simultaneously introducing at least two carbon source gases is provided. The method is really necessary. [0006] providing a substrate formed with a catalyst layer, and placing the substrate formed with the catalyst layer into a reaction chamber; providing at least two carbon source gases, The carbon elements in the at least two carbon source gases are respectively composed of different kinds of single isotopes; and the at least two carbon source gases are simultaneously introduced into the reaction chamber, and the at least two carbons are controlled by controlling the reaction temperature The source gas reacts at different temperatures to form an array of carbon nanotubes. [0007] Compared to the prior art, the method of the carbon nanotube array uses at least two carbon source gases containing a single isotope simultaneously. And controlling different reaction temperatures, so that various carbon source gases react at different temperatures to obtain the carbon nanotube array. The method does not need to switch between different carbon source gases, and various combinations of nanocarbons can be conveniently obtained. [Embodiment] [0008] Hereinafter, the carbon carbon 100113624 provided by the present invention will be described with reference to the accompanying drawings and specific embodiments. Form No. A0101 Page 4 / Total 38 Page 1002022746-0 201215700 [0009] [0010] [ 0011] Ο [0012] The preparation method of the official array is further described in detail. Please refer to FIG. 1 'The first embodiment of the present invention provides a method for preparing a carbon nanotube array, the preparation method The method further comprises the steps of: (S1〇1) providing a substrate formed with a catalyst layer, and placing the substrate formed with the catalyst layer into a reaction chamber; (S102) providing at least two carbon source gases, the at least two The carbon elements in the carbon source gas are respectively composed of different kinds of single isotopes; and (S103) simultaneously introducing the at least two carbon source gases into the reaction chamber, and controlling the reaction temperature to make the at least two carbons The source and the gas react at different temperatures to form an array of carbon nanotubes. Step S101 'providing a substrate formed with a catalyst layer, and placing the substrate on which the catalyst layer is formed into a reaction chamber. Referring to Figure 2, a substrate 132 is provided having a flat, smooth surface. The substrate 132 may be a polished ruthenium, a polished ruthenium dioxide sheet or a polished quartz sheet, and the surface roughness of the substrate 132 is preferably less than 1 Å. In this embodiment, a polished cymbal is selected as the substrate 132. A catalyst layer 13 is formed on the surface of the substrate 132. The catalyst layer 130 may be deposited on the surface of the substrate 132 by electron beam evaporation, deposition, sputtering or evaporation, and the catalyst layer 13〇 The thickness is generally from 3 nm to 6 nm. The catalyst layer 130 forms a good chemical or physical bond with the substrate 132. The material of the catalyst layer 13〇 may be selected from iron, indium, nickel, and alloy materials of any combination thereof. In the present embodiment, an iron film having a thickness of 5 nm is selected as the catalyst layer 13 which can form good contact with the polished ruthenium. 100113624 Form No. A0101 Page 5 of 38 1002022746-0 201215700 [0013] A reaction apparatus 100 is provided. The reaction apparatus 100 includes a reaction chamber 120, a reaction furnace 122 for heating the reaction chamber 120, and a The shielding gas input passage 102, the three carbon source gas input passages 104, 106, 108, and an exhaust passage 110 are provided. The reaction chamber 120 is configured to carry the substrate 132 formed with the catalyst layer 130; the reaction furnace 122 includes a heating device that heats the reaction chamber 120 and causes the reaction chamber 120 to reach one Scheduled temperature. The shielding gas input channel 102 is provided with a valve 112 through which different inert gases such as helium, argon, nitrogen, etc. can be input; the carbon source gas input channel 104 is provided with a valve 114, The carbon source gas input passage 106 is provided with a valve 116. The carbon source gas input passage 108 is provided with a valve 118, and the carbon source gas input passages 104, 106, 108 can respectively input different carbon source gases. [0014] The substrate 132 on which the catalyst layer 130 is formed is placed in the reaction chamber 120. The catalyst layer 130 faces the carbon source gas inlet direction and forms a certain angle α, 0°$α < 90° with the horizontal surface. It can be understood that by adjusting the angle between the catalyst layer 130 and the horizontal plane, the uniformity of growth of the carbon nanotube array can be improved. The angle can be adjusted according to actual needs. In the embodiment, the angle formed by the catalyst layer and the horizontal plane is 0°. It can be understood that by placing the substrate 132 on which the catalyst layer 130 is formed into the reaction chamber 120, the reaction chamber 120 and the catalyst layer 130 can be heated by the heating device in the reaction furnace 122. The reaction chamber 120 and the catalyst layer 130 reach a predetermined temperature. [0015] Step S102, providing at least two carbon source gases, wherein the carbon elements in the at least two carbon source gases are respectively composed of different kinds of single isotopes. 100113624 Form No. Α0101 Page 6 of 38 1002022746-0 201215700 [0016] The helium source gas can be introduced into the reaction chamber 12 through the input (4) input channels 104, 106, and Ϊ08. The carbon source gas may be methane, ethyl bromide, propadiene and other hydrocarbons. The at least two carbon source gases refer to carbon source gases of at least two different materials such as ethylene and acetylene 'or tomazan and ethylene, etc.' and the carbon elements in the carbon source gases of the at least two different materials are different a single isotopic composition of the species ', uc

14 A c等。本實施例中’提供兩種不同的碳源氣,該兩種 碳源氣分別係含有C同位素的乙炔及含有13C同位素的乙 ❹ [0017] 婦’所述兩種碳源氣可分別通過所述碳源氣輸入通道1〇4 及106輪入到反應室12〇。 步驟S103 ’將所述至少兩種碳源氣同時通入所述反應室 中’通過控制反應溫度,使所述至少兩種碳源氣在不同 的溫度下發生反應,形成奈求碳管陣列。 [0018] Ο 本實施例中’首先’通過所述排氣通道11〇將所述反應室 120抽真空後,通過保護氣體輸入通道1〇2通入一預定壓 強的保護氣’本實施例為壓強為1個大氣壓的氬氣;打開 閥門114及116 ’通過碳源氣輸入通道1〇4及1〇6向反應室 120内同時通入由12C組成的乙炔氣體和由i3c組成的乙烯 氣體’兩種氣體的流量均為12〇 sccin (標準狀態下,每 分鐘每立方爱米)’流速均為1.2cm/s;通過反應爐122 中的加熱裝置對該反應室12〇進行加熱,使該反應室120 達到一第一溫度’該第一溫度為催化乙炔氣體分解製備 奈米碳管的反應溫度’該第一溫度約為6〇〇°C-650°C。由 於所述第一溫度僅達到乙炔氣體分解製備奈米碳管的反 應溫度’而未達到乙烯氣體分解製備奈米碳管的反應溫 100113624 表單編號A0101 第7頁/共38頁 1002022746-0 201215700 度,故,該反應過程中僅有由12c組成的乙炔氣體發生分 解反應,並生成由12c組成的奈米碳管片段於該催化劑層 鐵膜上。 [0019] 其次,反應預定時間後,通過反應爐122中的加熱裝置對 該反應室120的溫度進行控制,使該反應室120達到一第 二溫度,該第二溫度大於所述第一溫度,該第二溫度為 催化所述乙烯氣體分解製備奈米碳管的反應溫度,該第 二溫度約為650°C-800°C。可以理解,由於所述第二溫度 高於催化乙炔氣體反應製備奈米碳管的反應溫度,並且 由於奈米碳管的生長點在該催化劑鐵膜上,故,在該反 應過程中,由12C組成的乙炔氣體和由13C組成的乙烯氣體 同時發生分解反應,分解反應生成的碳原子沈積於所述 催化劑層鐵膜,並生成由13C和12C組成的奈米碳管片段, 該奈米碳管片段將所述由12C組成的奈米碳管片段頂起, 即,由13C和12C組成的奈米碳管片段生長於所述由12C組 成的奈米碳管片段的底端。 [0020] 最後,繼續反應預定時間後,將反應室1 20冷卻至室溫, 在催化劑層鐵膜上得到一奈米碳管陣列。 [0021] 此外,還可重復以上步驟,製備出週期***替排列的奈 米碳管陣列。 [0022] 請參閱圖3,本發明第一實施例製備得到的奈米碳管陣列 10,該奈米碳管陣列10包括複數個奈米碳管,該複數個 奈米碳管由一第一奈米碳管片段1 2及一第二奈米碳管片 段14組成;該第二奈米碳管片段14形成於所述催化劑層 100113624 表單編號A0101 第8頁/共38頁 1002022746-0 201215700 鐵犋上,該第一奈米碳管片段12形成於該第二奈米碳管 ^段U上;其中,該第—奈米碳管片段12由12〇組成,該 第二奈米碳管片段I4由12c及13C組成。 [0023] 所述奈米碳管可係單壁奈米碳管、雙壁奈米碳管及多壁 不米碳營。本實施例中,該奈米碳管為一多壁奈米碳管 [0024] ❹ 所述奈米碳管的直徑為0.5〜50奈米,長度為50奈米〜5毫 y、所述第一奈米碳管片段12及第二奈米碳管片段14具 有相等或不等的長度,可根據實際需要製備獲得。本實 &例中’奈米碳管的長度優選為100微米〜900微米,所述 奈米碳管片段12及第二奈米碳管片段14具有大致相 等的長度。 [0025] Ο 可以理解,在步驟S103中亦可先通過反應爐122中的加熱 裝置辦該反應室120進行加熱,使該反應室120的第一溫 度達到催化乙烯氣體分解製備奈米碳管的反應溫度,即 ’使該反應室120的第一溫度達到650t-80(TC。此時, 由於該第一溫度高於乙炔氣體分解製備奈米碳管的反應 溫度’故,反應過程中由12C組成的乙炔氣體和由13c組成 的乙烯氣體同時發生分解反應,生成的由13C和12C組成的 奈米碳管片段沈積於該催化劑層鐵膜上;其次,反應預 定時間後’通過反應爐122中的加熱裝置對該反應室12〇 的溫度進行控制,使該反應室120的第二溫度僅達到催化 乙快氣體分解製備奈米碳管的反應溫度,即,使該反應 室120的溫度下降到600。(:-650。(:。此時,由於該第二溫 度僅達到催化乙炔氣體分解製備奈米碳管的反應溫度, 100113624 表單编號A0101 第9頁/共38頁 1002022746-0 201215700 故,該反應祕巾僅有由乂組成的乙純财生分解反 應,並生成的由12c組成的奈米碳管片段沈積於所述催化 劑層鐵膜,將所述由13w12c組成的奈米碳管片段頂起, 即’生成的& 2C組成的奈米碳管片段生長於所述由13(:和 i2C組成的奈米碳管片段的底端。 [0026] [0027] [0028] 本發明第二實施例提供一種奈米碳管陣列的製備方法, 該製備方法主要包括以下步驟:(S2〇1)提供一形成有 催化劑層的基底,並將該形成有催化劑層的基底置入一 反應室中,(S202 )提供至少兩種碳源氣,該至少兩種 碳源氣中的碳元素分別由不同種類的單一同位素組成; 以及(S203 )將所述至少兩種碳源氣同時通入所述反應 室中,通過控制反應溫度,使所述至少兩種碳源氣在不 同的溫度下發生反應,形成奈米碳管陣列。 所述步驟S201和步驟S202與本發明第一實施例中的步驟 S101及步驟S102基本相同,不同之處在於,進一步提供 一第二碳源氣,其中,所述第三碳源氣中的碳元素亦由 單一的同位素組成,且組成所述第三碳源氣中的碳的同 位素與本發明第一實施例中組成所述兩種碳源氣中的碳 的同位素不同。本實施例中所述第三碳源氣為含有丨^同 位素的甲烷。所述含有14C同位素的曱烷由所述碳源氣輪 入通道108輸入到反應室120。 所述步驟S203與本發明第一實施例中的步驟基本相 同,不同之處在於,由12C和13C組成的奈米碳管片段生長 12 於所述由c組成的奈米碳管片段的底端後,進一步包括 :通過反應爐122中的加熱裝置對該反應室120的溫度進 100113624 表單編號A0101 第10頁/共38頁 1002022746-0 201215700 行控制,使該反應室120達刻一第三溫度。該第三溫度為 催化甲烷氣體分解製備奈米碳管的反應溫度,該第三溫 度約為850°C-ll〇〇°C。由於所述第三溫度同時達到乙炔 、乙烯和曱烷氣體分解製供奈米碳管的反應溫度,故, 該反應過程中,由12c組成的乙炔氣體、由13c組成的乙烯 氣體以及由14C組成的甲烷氣體同時發生分解反應,並生 成由12C、UC及14c組成的紊米碳管片段沈積於所述催化 劑層鐵膜,並將由12c和13c組成的奈米碳管片段頂起,即 ,該奈米碳管片段生長於所述由12c和13(:組成的奈米碳管 0 片段的底端。 [0029] 最後,繼續反應預定時間後,將反應室120冷卻至室溫, 在催化劑層鐵膜上得到-#米碳管陣列。 [0030] 另外,還可重復以上步驟,製備出週期性父替排列的奈 米碳管陣列;此外,還可通過反應爐122中的加熱裝置使 所述反應室120先後達到不同的反應溫度最後製備出不 同種類的奈米碳管陣列。 ^ [0031]請參閱圖4,由本發明第二實施例製備得到的奈米碳管陣 列2 0,該奈米破管陣列2 〇包括複數個奈米碳管’該複數 個奈米碳管由一第奈米碳管片段22、一第一奈米碳管 片段24及一第三奈米碳管片段26組成;其中’所述第一 奈米碳管片段22由組成’所述第二奈米奴官片段24由 12C及13C組成,所述第三奈米碳管片段26由12C、13C及 14C組成。所述第〆奈米碳管片段22、第二奈米碳管片段 24及第三奈米碳管片段26具有相等或不等的長度’可根 據實際需要通過控制反應時間來獲得。本實施例中’所 100113624 表單編號A0101 第11黃/共38頁 1002022746-0 201215700 述奈米碳管的長度優選為100微米〜900微米,所述第一奈 米碳管片段22、第二奈米碳管片段24及第三奈米碳管片 段2 6具有大致相等的長度。 [0032] [0033] 可以理解,所述奈米碳管中,第一奈米碳管片段22、第 一奈米碳管片段2 4及第三奈米礙管片段2 6排列的順序可 隨意組合’可通過在反應過程中通過控制溫度的方式實 現按照不同的順序生長不同的奈米碳管片斷。 例如’在步驟203中,亦可先通過反應爐122t的加熱裝 置對該反應室120的溫度進行控制,使反應室120的第一 溫度達到催化甲烷氣體分解製備奈米碳管的反應溫度。 由於所述第一溫度高於催化乙炔和乙烯氣體分解製備奈 米碳管的反應溫度,故’該反應過程中乙块 '乙烯和甲 烷氣體同時發生分解反應,生成由12c、13c及14c組成的 奈米碳管片段沈積於該催化劑層鐵膜上。其次,反應預 定時間後,通過反應爐12 2中的加熱裝置對該反應室12 〇 的溫度進行控制,使反應室12 0的第二溫度僅達到催化乙 稀氣體分解製備奈米碳管的反應溫度。此時,由於所述 第二溫度低於催化甲烷氣體分解製備奈米碳管的反應溫 度,但高於催化乙炔氣體分解製備奈米碳管的反應溫度 ’故,該反應過程中僅有乙快和乙稀氣體發生分解反應 ’並生成由12c及13c組成的奈米碳管片段繼續生長於所述 由12c、13c及14c組成的奈米碳管片段的底端;再次,反 應預定時間後,通過反應爐122中的加熱裝置對該反應室 120的溫度進行控制,使該反應室120的第三溫度僅達到 催化乙炔氣體分解製備奈米碳管的反應溫度。此時,由 100113624 表單編號A0101 第12頁/共38頁 1002022746-0 201215700 於所述第三溫度低於催化曱烧和乙烤氣體分解製備奈米 碳管的反應溫度,故,該反應過程中僅有乙炔氣體發生 分解反應,生成由12C組成的奈米碳管片段繼續生長於所 述由1 C及C組成的奈米碳管片段的底端。 [0034] Ο 請參閱圖5,本發明第三實施例提供一種奈米碳管陣列的 製備方法。該製備方法主要包括以下步驟:(83〇1)提 供一形成有催化劑層的基底,並將該形成有催化劑層的 基底置入一反應室中;(S302 )提供至少兩種碳源氣, 該至少兩種碳源氣中的碳元素分別由不同種類的單一同 位素組成;(S303)將所述至少兩種碳源氣同時通入所 述反應室中’通過一雷射加熱裝置控制反應溫度,使所 述至少兩種碳源氣在不同的溫度下發生反應,形成奈米 碳管陣列。 [0035] ❹ 所述步驟S303與本發明第二實施例中的步驟S203基本相 同,不同之處在於,本實施例中採用一雷射加熱裝置14〇 取代所述反應爐122來加熱反應室120,通過控制該反應 室120的溫度來控制反應溫度,或可採用雷射加熱裝置 140直接對整個催化劑層130進行加熱,通過控制催化劑 層130的溫度來控制反應溫度,使其達到一預定的反應溫 度。所述採用雷射加熱裝置140直接對整個催化劑層丨30 進行加熱的方法為.可將雷射加熱裝置140產生的雷射光 束從正面直接照射在所述催化劑層130上來加熱催化劑層 130 ;亦可將雷射光束從背面照射在基底132上即照射沒 有設置催化劑層的表面’熱量會透過基底132傳遞給催化 劑層130,從而加熱催化劑層130。本實施例中,通過所 100113624 表單編號A0101 第13頁/共38頁 1002022746-0 201215700 述雷射加熱裝置140對所述置入反應室120的整個催化劑 層130進行加熱,使反應溫度先後達到一第一溫度、一第 二溫度以及一第三溫度。反應預定時間後,得到所述奈 米碳管陣列。 [0036] 請參閱圖6,本發明第四實施例進一步提供一種奈米碳管 陣列的製備方法。 [0037] 步驟S401,提供一形成有催化劑層的基底,並將該形成 有催化劑層的基底置入一反應室中。 [0038] 請參閱圖7,首先,提供一基底232,並在該基底232表面 形成一催化劑層230,所述基底232和催化劑層230與本 發明第一實施例的基底132和催化劑層130的材料相同。 [0039] 其次’提供一反應裝置200,該反應裝置200包括:一反 應室220、一用於加熱該反應室220的反應爐222、一保 護氣體輸入通道202、三個碳源氣輸入通道204、206、 208、一排氣通道210、至少一雷射加熱裝置240。所述 反應室220用於承載所述形成有催化劑層230的基底232 :所述反應爐222包括有一加熱裝置,所述加熱裝置可對 所述反應室220進行加熱,並使該反應室220達到一預定 溫度。所述保護氣體輸入通道202設置有一閥門212 ’可 通過所述保護氣體輸入通道2〇2輸入不同的惰性氣體’如 氦氣、氬氣、氮氣等;所述碳源氣輸入通道204設置一閥 門214,所述碳源氣輸入通道2〇6設置一闕門216,所述 碳源氣輸入通道208設置一閥門218,通過所述碳源氣輸 入通道204、206、208可分別輸入不同的碳源氣;所述 100113624 表單編號A0101 第14頁/共38頁 1002022746-0 201215700 至少一雷射加熱裝置240用於對所述置入反應室22〇 Μ# 化劑層230的不同區域進行加熱’控制催化劑層23 的不 同區域達到一預定的反應溫度。 [0040] 最後,將所述形成有催化劑層230的基底232置八& 應室220中,所述催化劑層230朝向碳源氣通入方向並# 水平面形成一定的夾角α ’0 See <90 °。本實施例中 該夾角α =45 °,從而使碳源氣與所述催化劑層23〇开> 成^ 好的接觸 Ο [0041] 通過反應爐222對反應室220加熱可使得催化創層達 到一預定的溫度。通過所述雷射加熱裝置240對所述催化 劑層230的不同區域進行加熱,可使不同區域具有 的 溫度。所述雷射加熱裝置240可直接照射所述催化劑層 ϋ 230,使該催化劑層230達到一預定的溫度,亦可從背面 間接照射所述基底232,使所述催化劑層23〇達到一預定 的溫度。本實施例中,包括兩個雷射加熱裝置24〇,該兩 個雷射加熱裝置24G分別直接對所述催化劑層230的-第 口反應區域和-第二反應區域進行加熱,使該第一反應 區域和-第二反應區域分別達到不同的溫度。 [0042] 步驟S4G2 ’提供至少兩種碳源氣,該至少兩種碳源氣中 的碳凡素分別由不同種類的碳同位素組成。 [0043] L至少兩種碳源氣係、指至少兩種不同材料的碳源氣 例如乙稀與乙炔;或者甲垸與乙稀等,且所述至少兩 不同材料的碳源氣t的碳元素由不同種類的單一同位 組成,如,13「 1 4 L, C等。所述碳源氣可分別由所过 100113624 表單編號A0101 第15頁/共38頁 1002022746-0 201215700 源氣輸入通道204、206、208輸入到所述反應室22(^本 只施例包括三種不同的碳源氣,該三種碳源氣分別係含 12 有C同饭素的乙炔、含有13C同位素的乙烯以及含有14C 同位素的曱烷。 [0044] [0045] 步驟S403 ’將所述至少兩種碳源氣同時通入所述反應室 中’控制所述催化劑層的溫度使該催化劑層不同區域分 別達到不同的反應溫度,並使所述至少兩種碳源氣在催 化劑層不同區域發生反應,分別形成含有不同種類的碳 同位素的奈米碳管,進而形成奈米碳管陣列。 首先’通過所述排氣通道210將所述反應室220抽真空後 通過保瘦氣體輸入通道2〇2通入一預定壓強的保護氣, 本實施例為壓強為1個大氣壓的氬氣;同時打開閥門214 ' 216及218,通過竣源氣輸入通道2〇4、206及208分別 向反應室220内同時通入由12C組成的乙炔氣體、由i3c組 成的乙烯氣體和由14C組成的曱烷氣體,三種氣體的流量 均為120 sccm (標準狀態下,每分鐘每立方釐米),流 速均為1.2Cm/s ;通過反應爐222中的加熱裝置對該反應 至220及置入該反應室22〇的催化劑層23〇進行加熱,使 催化劑層230整體達到一第一溫度,同時額外通過所述兩 個雷射加熱裝置240分別對所述催化劑層23〇的一第一反 應區域和-第三反應區域進行加熱,使該第—反應區域 和第二反應區域分別達到—第二溫度和—第三溫度,所 述第二溫度和第三溫度均大於所述第―溫度。可以理解 ,所述第-反應區域和第二反應區域可具有相同或不相 同的面積及形狀,該第—反應區域和第二反應區域的形 100113624 表單編號A0101 第16 頁/共38頁 1002022746-0 201215700 狀可係方形、圓形、橢圓形、矩形等其他幾何形狀;此 卜所述第一反應區域和第二反應區域可係以並排的方 式 個反應區域包圍另一反應區域的方式或以其他方 弋刀佈於所述催化劑層230的表面。本實施例中所述第— 溫度為催化乙炔氣體分解製備奈米碳管的反應溫度,該 第一溫度約為600。〇-650。(:;所述第二溫度為催化乙烯氣 體分解製備奈米碳管的反應溫度,該第二溫度約為65〇它 Ο — 8〇〇°C ;所述第三溫度為催化曱烷氣體分解製備奈米碳 管的反應溫度’該第三溫度約為85〇。(:-11〇〇。(:;該第一 反應區域和第二反應區域並排分佈於所述催化劑層23〇的 表面,該第一反應區域和第二反應區域為兩個面積相同 的矩形區域。 [0046] Ο 可以理解,由於所述第一反應區域的溫度達到乙炔和乙 烯氣體分解製備奈米碳管的反應溫度,而未達到甲烷氣 體分解製備奈米碳管的反應溫度,故,該第一反應區域 中僅有由12c組成的乙炔氣體和由13c組成的乙烯氣體發生 分解反應,並生成由12c和13c組成的奈米碳管子陣列沈積 於所述第一反應區域的催化劑層鐵膜上;而所述第二反 應區域的的溫度達到乙炔、乙烯和曱烷氣體分解製備奈 米碳管的反應溫度,故,該第二反應區域中由12c組成的 乙炔氣體、由13c組成的乙烯氣體以及由14c組成的曱烷氣 體同時發生分解反應,並生成由12c、13c以及14c組成的 奈米碳管子陣列沈積於所述第二反應區域的催化劑層鐵 膜上;此外,由於所述催化劑層230中除第一反應區域和 第二反應區域以外的其他反應區域僅達到催化乙快氣體 100113624 表單編號A0101 第17頁/共38頁 1002022746-0 201215700 /刀解製備奈米破管的反應溫度,而未達到催化乙稀和甲 烧氣體分解製備奈米碳管的反應溫度,故 5 έ玄反應區域 中僅有由12C紅成的乙炔氣體發生分解反應,生成由12c組 成的奈米碳管子陣列沈積於所述其他反應區域的催化劑 層鐵膜上。 [0047] [0048] [0049] 最後’繼續反應預定時間後,將反應室220冷卻至室溫, 在催化劑層鐵膜上分別形成含有不同種類的碳同位素的 奈米碳管,進而形成一奈米碳管陣列。 可以理解’反應預定時間後,還可通過所述雷射加熱裝 置240分別對所述第一反應區域、第二反應區域以及除第 一、第二反應區域以外的催化劑層區域的溫度進行控制 ,使该第一反應區域、第二反應區域以及除第一、第二 反應區域以外的催化劑層區域分別達到不 同的反應溫度 ’最後製備出具有複數個奈米碳管片段的奈米碳管子陣 列。 凊參閱圖8,本發明第四實施例製備得到的奈来碳管陣列 3〇,该奈米碳管陣列3〇由一第一奈米碳管子陣列32、一 第二奈米碳管子陣列34及一第三奈米碳管子陣列36組成 。其中,所述第二奈米碳管子陣列34和第三奈米碳管子 陣列的形狀為矩形;該第二奈米碳管子陣列34和第三奈 米碳管子陣列3 6的面積相等;該第二奈米碳管子陣列 和第二奈米碳管子陣列3 6間隔分佈,並且被所述第一奈 米碳管子陣列32所包圍。所述第一奈米碳管子陣列32中 的奈米碳管由12C組成,所述第二奈米碳管子陣列34的奈 米碳管由12C及13C組成,所述第三奈米碳管子陣列36的 100113624 表單蝙號A0101 第18頁/共38頁 1002022746-0 201215700 [0050] Ο ❹ [0051] [0052] 100113624 奈米碳管由12c、13c及14C組成《所述第一奈米碳管子陣 列32、第二奈米碳管子陣列34及第三奈米碳管子陣列36 中的奈米碳管具有相等或不等的長度,可根據實際需要 獲得。本實施例中,所述奈米碳管陣列3〇中的奈米碳管 的長度優選為100微米~900微米,所述第一奈米碳管子陣 列32、第二奈米碳管子陣列34及第三奈米碳管子陣列“ 中的奈米碳管具有大致相等的長度。 可以理解,所述奈米碳管陣列3〇中可包括至少兩個奈米 碳管子陣列。所述至少兩個奈米碳管子陣列中的奈米碳 官可由不同種類的單一碳同位素或不同種類的碳同位素 的組合的單一的奈米碳管片段組成。所述奈米碳管子陣 列可具有不同的形狀及面積,該奈米碳管子陣列的形狀 可係方形、圓形 '橢圓形或矩形等其他幾何形狀;該至 少兩種不同的奈米碳管子陣列可通過不同的設置方式组 成所述奈米碳管陣列30。所述具有不同的排列方式係指 .該至少兩種不同的奈米碳管子陣列可以並排設置、一 個子陣列包圍另一個子陣列的方式設置、相互間隔設置 或其他方式組成所述奈米碳管陣列3 〇。 所述奈米碳管可係單壁奈米碳管、雙壁奈米碳管及多壁 奈米碳管。本實施例中,該奈米碳管為一多壁奈米碳管 ’該多壁奈米碳管的直經為0.5〜奈米。 請參閱圖9,本發明第五實施例進一步提供一種奈米碳管 陣列的製備方法。該製備方法包括:(%〇1)提供一形 成有催化劑層的基底,並將該形成有催化劑層的基底置 入一反應室中;(S502 )提供至少兩種碳源氣,該至少 表單編號A0101 第19頁/共38頁 1002022746-0 201215700 兩種碳源氣中的碳元素分別由不同種類的碳同位素組成 ;(S 5 0 3 )將所述至少兩種碳源氣同時通入所述反應室 中’控制所述催化劑層的溫度使該催化劑層不同區域分 別達到不同的反應溫度,並使所述至少兩種碳源氣在催 化劑層不同區域發生反應’分別形成含有不同種類的碳 同位素的奈米碳管’進而形成奈米碳管陣列。 [0053] [0054] 100113624 所述步驟S501及步驟S502與本發明第四實施例中的步驟 S401及步驟S402基本相同。不同之處在於,本實施例中 ’包括二個雷射加熱裝置240 ’所述三個雷射加熱裝置 240分別從所述基底232的背面照射所述基底232的三個 區域’使與所述基底2 3 2的三個區域相對應的催化劑層 230的三個反應區域分別達到不同的溫度。通過從基底的 背面照射基底,可避免該雷射在照射時對奈米碳管的生 長造成破壞。 所述步驟S503與本發明第三實施例中的步驟S4〇3基本相 同。不同之處在於’保持反應爐222中溫度為室溫,同時 通過所述三個雷射加熱裝置240分別對所述的基底232的 一第一區域、一第二區域以及一第三區域進行照射,使 與所述的基底232的第一區域 '第二區域以及第三區域相 對應的催化劑層230的一第一反應區域、一第二反應區域 以及一第三反應區域分別達到一第一溫度、一第二溫度 以及一第三溫度。本實施例中所述第一溫度為催化乙炔 氣體分解製備奈米碳管的反應溫度,該第一溫度約為600 °C-650°C ;所述第二溫度為催化乙烯氣體分解製備奈米 碳管的反應溫度’該第二溫度約為65〇。(:-800。(:;所述第 表單煸號A0101 第20頁/共38頁 1002022746-0 201215700 三溫度為催化甲烷氣體分解製備奈米碳管的反應溫度, 該第三溫度約為850。〇11〇〇。(:。 [0055] Ο ο 可以理解,由於所述第一反應區域的溫度僅達到乙炔氣 體分解製備奈米碳管的反應溫度,而未達到乙烯和曱烷 氣體分解製備奈米碳管的反應溫度,故,該第一反應區 域中僅有由12c組成的乙炔氣體發生分解反應,並生成由 12 C組成的奈米碳管子陣列沈積於所述第一反應區域的催 化劑層鐵膜上;而所述第二反應區域的的溫度僅達到乙 快和乙烯氣體分解製備奈米碳管的反應溫度,而未達到 曱烧氣體分解製備奈米碳管的反應溫度,故,該第二反 應區域中由12c組成的乙炔氣體和由13c組成的乙烯氣體同 時發生分解反應,並生成由12c以及13c組成的奈米碳管子 陣列沈積於所述第二反應區域的催化劑層鐵膜上;由於 所述第三反應區域的反應溫度同時達到催化乙炔、乙烯 和甲烧氣體分解製備奈米碳管的反應溫度,故,該反應 區域中由12c組成的乙炔氣體、由〗3C組成的乙烯氣體和由 14C組成的甲烷氣體同時發生分解反應,生成由12c、13c 以及14c組成的奈米碳管子陣列沈積於所述第三反應區域 的催化劑層鐵膜上《此外,由於所述催化劑層230中除第 一反應區域、第二反應區域以及第三反應區域以外的其 他區域均未達到催化乙炔、乙烯和甲烷氣體分解製備奈 米碳管的反應溫度,故,該區域中沒有任何氣體發生反 應亦沒有奈米碳管沈積於所述區域的催化劑層鐵膜上。 最後’繼續反應預定時間後,將反應室220冷卻至室溫, 在催化劑層鐵骐上分別形成含有不同種類的碳同位素的 100113624 表單編號A0101 第21頁/共38頁 1002022746-0 [0056] 201215700 奈米碳管,進而形成一奈米碳管陣列。 [0057] 可以理解,反應預定時間後,可通過所述雷射加熱裝置 240分別對所述第一反應區域、第二反應區域以及第三反 應區域的溫度進行控制’使該第一反應區域、第二反應 區域以及第三反應區域分別達到不同的反應溫度,最後 製備出具有複數個奈米碳管片段的奈米礙管子陣列。其 中’每一奈米碳管子陣列中的奈米碳管由分別含有不同 種類單一碳同位素或者含有不同種類碳同位素的不同組 合的複數個奈米碳管片段組成。 [0058] 例如’在步驟S503之後,通過所述雷射加熱裝置240分別 對所述第一反應區域、第二反應區域以及第三反應區域 的溫度進行控制’使該第一反應區域的溫度達到65(TC-800°C,即’達到催化乙炔及乙烯氣體分解製備奈米碳管 的反應溫度;使第二反應區域的溫度達到85(rc-110(TC ,即,達到催化曱烷、乙炔及乙烯氣體分解製備奈米碳 管的反應溫度;使第三反應區域的溫度達到6〇〇。(3-650艺 ’即’僅達到催化乙炔氣體分解製備奈米碳管的反應溫 度。可以理解’由於所述第一反應區域的溫度達到催化 乙炔及乙歸氣體分解製備奈米碳管的反應溫度,未達到 催化甲烷氣體分解製備奈米碳管的反應溫度,該反應過 程中’由12C組成的乙炔氣體和由13c組成的乙烯氣體同時 發生分解反應,生成由12c及13c組成的奈米碳管片段生長 於所述由12c組成的奈米碳管片段的底端。由於所述第二 反應區域的溫度達到催化曱烧、乙炔及乙烯氣體分解製 備奈米碳管的反應溫度,該反應過程中,由12C組成的乙 100113624 表單編號A0101 第22頁/共38頁 1002022746-0 201215700 炔氣體、由I3C組成的乙烯氣體以及由〗、組成的甲烷氣體 同時發生分解反應,生成由、】3C&14C組成的奈米碳 管片段生長於所述由12c及13c組成的奈米碳管片段的底端 。此外,由於所述第三反應區域的溫度僅達到催化乙炔 氣體分解製備奈米碳管的反應溫度,該反應過程中,僅 有由12c組成的乙炔氣體發生分解反應,生成由12C組成的 奈米碳管片段生長於所述由12C、13C及組成的奈米碳 管片段的底端。 0 [0059]可以理解,所述奈米碳管子陣列中的奈来碳管片段的排 列順序亦可隨意組合,可通過在反應過程中控制溫度的 方式實現按照不同的順序生長不同的奈来碳管片斷。 [0060]請參閱圖10,由本發明第五實施例製備得到的奈米碳管 陣列40 ’該奈米碳管陣列40由一第一奈米碳管子陣列42 、一第二奈米碳管子陣列44及一第三奈米碳管子陣列46 組成;各個奈米碳管子陣列由含有單一種類碳同位素或 者含有不同種類碳同位素組合的單一的奈米碳管片段組 〇 成。其中’所述第一奈米碳管子陣列42中的奈米碳管由 i2C組成’所述第二奈米碳管子陣列44的奈米碳管由i2c14 A c and so on. In the present embodiment, 'two different carbon source gases are provided, and the two carbon source gases are respectively acetylene containing C isotope and acetylene containing 13C isotope. The carbon source gas input channels 1〇4 and 106 are introduced into the reaction chamber 12A. Step S103', simultaneously introducing the at least two carbon source gases into the reaction chamber. By controlling the reaction temperature, the at least two carbon source gases are reacted at different temperatures to form a carbon nanotube array. [0018] In the present embodiment, the reaction chamber 120 is first evacuated through the exhaust passage 11〇, and a protective gas of a predetermined pressure is introduced through the shielding gas input passage 1〇2. An argon gas having a pressure of 1 atm; opening the valves 114 and 116' to simultaneously pass the acetylene gas composed of 12C and the ethylene gas composed of i3c into the reaction chamber 120 through the carbon source gas input passages 1〇4 and 1〇6 The flow rate of both gases is 12 〇 sccin (standard state, per cubic meter per minute), the flow rate is 1.2 cm / s; the reaction chamber 12 加热 is heated by a heating device in the reaction furnace 122, so that The reaction chamber 120 reaches a first temperature 'the first temperature is a reaction temperature for catalyzing the decomposition of the acetylene gas to prepare the carbon nanotubes'. The first temperature is about 6 ° C - 650 ° C. Since the first temperature only reaches the reaction temperature of the preparation of the carbon nanotubes by the decomposition of the acetylene gas and does not reach the reaction temperature of the carbon gas to prepare the carbon nanotubes by the gas decomposition 100113624 Form No. A0101 Page 7 / 38 pages 1002022746-0 201215700 degrees Therefore, only acetylene gas composed of 12c is decomposed during the reaction, and a carbon nanotube segment composed of 12c is formed on the catalyst layer iron film. [0019] Next, after the predetermined time of the reaction, the temperature of the reaction chamber 120 is controlled by the heating device in the reaction furnace 122, so that the reaction chamber 120 reaches a second temperature, and the second temperature is greater than the first temperature. The second temperature is a reaction temperature for catalyzing the decomposition of the ethylene gas to prepare a carbon nanotube, and the second temperature is about 650 ° C to 800 ° C. It can be understood that since the second temperature is higher than the reaction temperature for preparing the carbon nanotube by reacting the acetylene gas reaction, and since the growth point of the carbon nanotube is on the catalyst iron film, in the course of the reaction, 12C The acetylene gas composed of the acetylene gas and the ethylene gas composed of 13C are simultaneously decomposed, and the carbon atoms formed by the decomposition reaction are deposited on the iron film of the catalyst layer, and a carbon nanotube segment composed of 13C and 12C is formed, and the carbon nanotube is formed. The fragment was lifted up from the 12C carbon nanotube segment, i.e., a carbon nanotube segment composed of 13C and 12C was grown at the bottom end of the 12C carbon nanotube segment. Finally, after the reaction is continued for a predetermined period of time, the reaction chamber 1 20 is cooled to room temperature, and an array of carbon nanotubes is obtained on the iron film of the catalyst layer. [0021] Furthermore, the above steps may be repeated to prepare a carbon nanotube array which is periodically arranged alternately. [0022] Referring to FIG. 3, a carbon nanotube array 10 prepared by the first embodiment of the present invention, the carbon nanotube array 10 includes a plurality of carbon nanotubes, and the plurality of carbon nanotubes are first The carbon nanotube segment 1 2 and a second carbon nanotube segment 14 are formed; the second carbon nanotube segment 14 is formed on the catalyst layer 100113624. Form No. A0101 Page 8 / Total 38 Page 1002022746-0 201215700 Iron The first carbon nanotube segment 12 is formed on the second carbon nanotube segment U; wherein the first carbon nanotube segment 12 is composed of 12 ,, the second carbon nanotube segment I4 consists of 12c and 13C. [0023] The carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon camps. In this embodiment, the carbon nanotube is a multi-walled carbon nanotube [0024] ❹ the carbon nanotube has a diameter of 0.5 to 50 nm and a length of 50 nm to 5 m, and the first The one carbon nanotube segment 12 and the second carbon nanotube segment 14 have equal or unequal lengths and can be prepared according to actual needs. The length of the 'carbon nanotubes' in the present embodiment is preferably from 100 μm to 900 μm, and the carbon nanotube fragments 12 and the second carbon nanotube fragments 14 have substantially equal lengths. [0025] Ο It can be understood that, in step S103, the reaction chamber 120 can be first heated by the heating device in the reaction furnace 122, so that the first temperature of the reaction chamber 120 reaches the decomposition of the ethylene gas to prepare the carbon nanotubes. The reaction temperature, that is, 'the first temperature of the reaction chamber 120 reaches 650t-80 (TC. At this time, since the first temperature is higher than the reaction temperature for preparing the carbon nanotube by decomposition of acetylene gas), the reaction process is carried out by 12C. The acetylene gas composed of 13c and the ethylene gas composed of 13c are simultaneously decomposed, and the formed carbon nanotube segments composed of 13C and 12C are deposited on the iron film of the catalyst layer; secondly, after the reaction for a predetermined time, 'passing through the reaction furnace 122 The heating device controls the temperature of the reaction chamber 12〇 such that the second temperature of the reaction chamber 120 reaches only the reaction temperature for catalyzing the decomposition of the carbon gas to prepare the carbon nanotubes, that is, the temperature of the reaction chamber 120 is lowered to 600. (:-650. (:. At this time, since the second temperature only reaches the reaction temperature for preparing the carbon nanotubes by catalyzing the decomposition of acetylene gas, 100113624 Form No. A0101 Page 9 / 38 pages 1002022 746-0 201215700 Therefore, the reaction secret towel only has a pure chemical decomposition reaction composed of ruthenium, and a carbon nanotube segment composed of 12c is deposited on the catalyst layer iron film, and the composition is composed of 13w12c. The carbon nanotube fragments are lifted up, that is, the 'generated & 2C composed of carbon nanotube fragments are grown at the bottom end of the carbon nanotube fragments consisting of 13 (: and i2C. [0026] [0028] A second embodiment of the present invention provides a method for preparing a carbon nanotube array, the preparation method comprising the following steps: (S2〇1) providing a substrate formed with a catalyst layer, and forming the catalyst layer The substrate is placed in a reaction chamber, (S202) providing at least two carbon source gases, the carbon elements of the at least two carbon source gases are respectively composed of different kinds of single isotopes; and (S203) the at least two carbons The source gas is simultaneously introduced into the reaction chamber, and the at least two carbon source gases are reacted at different temperatures to form an array of carbon nanotubes by controlling the reaction temperature. The step S201 and the step S202 and the present invention Step S101 in the first embodiment Step S102 is substantially the same, except that a second carbon source gas is further provided, wherein the carbon element in the third carbon source gas is also composed of a single isotope, and is composed in the third carbon source gas. The carbon isotope is different from the carbon isotope which constitutes the carbon in the two carbon source gases in the first embodiment of the present invention. In the present embodiment, the third carbon source gas is methane containing a cerium isotope. The 14C isotope is contained. The decane is input to the reaction chamber 120 from the carbon source gas inlet passage 108. The step S203 is substantially the same as the step in the first embodiment of the present invention, except that the carbon carbon composed of 12C and 13C is composed. After the tube segment is grown 12 at the bottom end of the carbon nanotube segment consisting of c, the method further comprises: entering the temperature of the reaction chamber 120 through a heating device in the reaction furnace 122 to 100113624. Form No. A0101 Page 10 of 38 Page 1002022746-0 201215700 Row control, such that the reaction chamber 120 is etched to a third temperature. The third temperature is a reaction temperature for catalyzing the decomposition of methane gas to produce a carbon nanotube, and the third temperature is about 850 ° C - 11 ° C. Since the third temperature simultaneously reaches the reaction temperature of the acetylene, ethylene and decane gas for the carbon nanotubes, the acetylene gas consisting of 12c, the ethylene gas consisting of 13c and 14C are composed during the reaction. The methane gas is simultaneously decomposed, and a carbon nanotube segment composed of 12C, UC, and 14c is formed on the catalyst layer iron film, and a carbon nanotube segment composed of 12c and 13c is lifted up, that is, the A carbon nanotube fragment is grown at the bottom end of the carbon nanotube 0 fragment consisting of 12c and 13 (: [0029] Finally, after continuing the reaction for a predetermined time, the reaction chamber 120 is cooled to room temperature in the catalyst layer. The carbon nanotube array is obtained on the iron film. [0030] In addition, the above steps may be repeated to prepare an array of periodic carbon nanotube arrays; in addition, the heating device in the reaction furnace 122 may also be used. The reaction chamber 120 successively reaches different reaction temperatures to finally prepare different kinds of carbon nanotube arrays. ^ [0031] Please refer to FIG. 4, the carbon nanotube array 20 prepared by the second embodiment of the present invention, the nai Rice broken array 2 〇 includes a plurality of carbon nanotubes', the plurality of carbon nanotubes consisting of a first carbon nanotube segment 22, a first carbon nanotube segment 24, and a third carbon nanotube segment 26; The first carbon nanotube segment 22 is composed of 12C and 13C composed of the second nano slave segment 24, and the third carbon nanotube segment 26 is composed of 12C, 13C and 14C. The carbon nanotube segment 22, the second carbon nanotube segment 24, and the third carbon nanotube segment 26 have equal or unequal lengths, which can be obtained by controlling the reaction time according to actual needs. 100113624 Form No. A0101 No. 11 Yellow/Total 38 pages 1002022746-0 201215700 The length of the carbon nanotubes is preferably from 100 micrometers to 900 micrometers, the first carbon nanotube segment 22, the second carbon nanotube segment 24 and The third carbon nanotube segments 26 have substantially the same length. [0033] It can be understood that in the carbon nanotubes, the first carbon nanotube segment 22, the first carbon nanotube segment 2 4 And the order of the arrangement of the third nanoscopic obstruction fragments 26 can be arbitrarily combined 'can be controlled by the reaction process Different ways to grow different carbon nanotube segments in different order. For example, in step 203, the temperature of the reaction chamber 120 can be controlled first by the heating device of the reaction furnace 122t, so that the reaction chamber 120 is A temperature reaches a reaction temperature for catalyzing the decomposition of methane gas to prepare a carbon nanotube. Since the first temperature is higher than a reaction temperature for preparing a carbon nanotube by catalyzing the decomposition of acetylene and ethylene gas, 'the reaction process is a block of ethylene and The methane gas is simultaneously decomposed to form a carbon nanotube segment composed of 12c, 13c and 14c deposited on the iron film of the catalyst layer. Next, after the predetermined reaction time, the temperature of the reaction chamber 12 is controlled by the heating device in the reaction furnace 12 2, so that the second temperature of the reaction chamber 12 is only catalyzed by the decomposition of the ethylene gas to prepare the carbon nanotubes. temperature. At this time, since the second temperature is lower than the reaction temperature for preparing the carbon nanotube by the decomposition of the catalytic methane gas, but higher than the reaction temperature for preparing the carbon nanotube by the decomposition of the acetylene gas, the reaction process is only fast. Decomposition reaction with ethylene gas and generating a carbon nanotube segment composed of 12c and 13c to continue to grow at the bottom end of the carbon nanotube segment consisting of 12c, 13c and 14c; again, after a predetermined time of reaction, The temperature of the reaction chamber 120 is controlled by a heating means in the reaction furnace 122 such that the third temperature of the reaction chamber 120 reaches only the reaction temperature for catalyzing the decomposition of acetylene gas to produce a carbon nanotube. At this time, by 100113624, the form number A0101, page 12, a total of 38 pages, 1002022746-0 201215700, the third temperature is lower than the reaction temperature of the catalytically calcined and the bake gas decomposition to prepare the carbon nanotubes, so, during the reaction Only the acetylene gas undergoes a decomposition reaction, and a carbon nanotube segment composed of 12C is formed to continue to grow at the bottom end of the carbon nanotube segment composed of 1 C and C. [0034] Referring to FIG. 5, a third embodiment of the present invention provides a method of fabricating a carbon nanotube array. The preparation method mainly comprises the steps of: (83〇1) providing a substrate formed with a catalyst layer, and placing the substrate formed with the catalyst layer into a reaction chamber; (S302) providing at least two carbon source gases, The carbon elements in the at least two carbon source gases are respectively composed of different kinds of single isotopes; (S303) simultaneously introducing the at least two carbon source gases into the reaction chamber, 'controlling the reaction temperature by a laser heating device, The at least two carbon source gases are reacted at different temperatures to form an array of carbon nanotubes. [0035] ❹ The step S303 is substantially the same as the step S203 in the second embodiment of the present invention, except that in the embodiment, a laser heating device 14 is used instead of the reaction furnace 122 to heat the reaction chamber 120. The reaction temperature is controlled by controlling the temperature of the reaction chamber 120, or the entire catalyst layer 130 may be directly heated by the laser heating device 140, and the reaction temperature may be controlled to achieve a predetermined reaction by controlling the temperature of the catalyst layer 130. temperature. The method for directly heating the entire catalyst layer 30 by using the laser heating device 140 is: the laser beam generated by the laser heating device 140 can be directly irradiated on the catalyst layer 130 from the front surface to heat the catalyst layer 130; The laser beam can be heated by irradiating the laser beam from the back surface onto the substrate 132, that is, irradiating the surface on which the catalyst layer is not disposed, and heat is transmitted to the catalyst layer 130 through the substrate 132. In this embodiment, the entire catalyst layer 130 placed in the reaction chamber 120 is heated by the laser heating device 140, which is described in FIG. 100113624, Form No. A0101, Page 13 / 38, 1002022746-0 201215700, so that the reaction temperature reaches one successively. The first temperature, the second temperature, and a third temperature. After the reaction for a predetermined period of time, the carbon nanotube array is obtained. Referring to FIG. 6, a fourth embodiment of the present invention further provides a method for preparing a carbon nanotube array. [0037] Step S401, providing a substrate formed with a catalyst layer, and placing the substrate on which the catalyst layer is formed into a reaction chamber. Referring to FIG. 7, first, a substrate 232 is provided, and a catalyst layer 230 is formed on the surface of the substrate 232, and the substrate 232 and the catalyst layer 230 are combined with the substrate 132 and the catalyst layer 130 of the first embodiment of the present invention. The materials are the same. [0039] Next, a reaction device 200 is provided. The reaction device 200 includes a reaction chamber 220, a reaction furnace 222 for heating the reaction chamber 220, a shielding gas input passage 202, and three carbon source gas input passages 204. 206, 208, an exhaust passage 210, and at least one laser heating device 240. The reaction chamber 220 is configured to carry the substrate 232 formed with the catalyst layer 230: the reaction furnace 222 includes a heating device that heats the reaction chamber 220 and causes the reaction chamber 220 to reach a predetermined temperature. The shielding gas input channel 202 is provided with a valve 212' to input different inert gases such as helium, argon, nitrogen, etc. through the shielding gas input channel 2〇2; the carbon source gas input channel 204 is provided with a valve 214, the carbon source gas input channel 2 〇 6 is provided with a 216, the carbon source gas input channel 208 is provided with a valve 218, through which the carbon source gas input channels 204, 206, 208 can respectively input different carbons Source gas; said 100113624 Form No. A0101 Page 14 of 38 1002022746-0 201215700 At least one laser heating device 240 is used to heat different regions of the reaction chamber 22 that are placed into the reaction chamber 22 Different regions of the catalyst layer 23 are controlled to reach a predetermined reaction temperature. [0040] Finally, the substrate 232 formed with the catalyst layer 230 is placed in the eight & chamber 220, the catalyst layer 230 toward the carbon source gas inlet direction and # water level to form a certain angle α '0 See < 90 °. In the present embodiment, the angle α = 45 °, so that the carbon source gas and the catalyst layer 23 are cleaved into a good contact. [0041] Heating the reaction chamber 220 by the reaction furnace 222 allows the catalytic layer to reach a predetermined temperature. Heating the different regions of the catalyst layer 230 by the laser heating device 240 allows for different regions to have a temperature. The laser heating device 240 can directly illuminate the catalyst layer ϋ 230 to bring the catalyst layer 230 to a predetermined temperature, and can also indirectly illuminate the substrate 232 from the back surface to make the catalyst layer 23 reach a predetermined level. temperature. In this embodiment, two laser heating devices 24 are included, and the two laser heating devices 24G directly heat the -first reaction region and the second reaction region of the catalyst layer 230, respectively. The reaction zone and the second reaction zone respectively reach different temperatures. [0042] Step S4G2' provides at least two carbon source gases, the carbon species of the at least two carbon source gases being composed of different kinds of carbon isotopes, respectively. [0043] L at least two carbon source gas systems, referring to at least two different materials of carbon source gases such as ethylene and acetylene; or formazan and ethylene, and the carbon of the at least two different materials of carbon source gas t The elements are composed of different types of single parity, for example, 13" 1 4 L, C, etc. The carbon source gas can be passed through 100113624 Form No. A0101 Page 15 / 38 pages 1002022746-0 201215700 Source gas input channel 204 And 206, 208 are input to the reaction chamber 22 (the present embodiment includes three different carbon source gases, respectively, which contain 12 acetylene having C-isoline, ethylene containing 13C isotope, and 14C Isotope of decane. [0044] Step S403 'The simultaneous introduction of the at least two carbon source gases into the reaction chamber' controls the temperature of the catalyst layer to achieve different reactions in different regions of the catalyst layer Temperature, and reacting the at least two carbon source gases in different regions of the catalyst layer to form carbon nanotubes containing different kinds of carbon isotopes, respectively, thereby forming a carbon nanotube array. First, 'through the exhaust passage 210 will be the opposite After vacuuming the chamber 220, a protective gas of a predetermined pressure is introduced through the lean gas input passage 2〇2, in this embodiment, argon gas having a pressure of 1 atmosphere; at the same time, the valves 214' 216 and 218 are opened, and the gas is input through the helium gas. The channels 2〇4, 206 and 208 respectively pass into the reaction chamber 220 into the acetylene gas composed of 12C, the ethylene gas composed of i3c and the decane gas composed of 14C, and the flow rates of the three gases are all 120 sccm (standard state) Next, per cubic centimeter per minute, the flow rate is 1.2 cm / s; the reaction to 220 and the catalyst layer 23 置 placed in the reaction chamber 22 加热 are heated by a heating device in the reaction furnace 222 to make the catalyst layer 230 A first temperature is reached as a whole, and a first reaction zone and a third reaction zone of the catalyst layer 23〇 are separately heated by the two laser heating devices 240 to make the first reaction zone and the first reaction zone The second reaction zone reaches a second temperature and a third temperature, respectively, and the second temperature and the third temperature are both greater than the first temperature. It is understood that the first reaction zone and the second reaction zone may have the same Or different areas and shapes, the shape of the first reaction zone and the second reaction zone 100113624 Form No. A0101 Page 16 of 38 1002022746-0 201215700 Shapes can be square, circular, elliptical, rectangular and other geometric shapes The shape of the first reaction zone and the second reaction zone may be such that the reaction zones surround the other reaction zone in a side-by-side manner or are disposed on the surface of the catalyst layer 230 by other methods. The first temperature is a reaction temperature for catalyzing the decomposition of acetylene gas to prepare a carbon nanotube, and the first temperature is about 600. 〇-650. (:; the second temperature is a reaction temperature for catalyzing the decomposition of ethylene gas to prepare a carbon nanotube, the second temperature is about 65 〇 Ο 8 〇〇 ° C; and the third temperature is catalyzed decomposition of decane gas The reaction temperature for preparing the carbon nanotubes is 'the third temperature is about 85 〇. (:-11 〇〇. (:; the first reaction zone and the second reaction zone are distributed side by side on the surface of the catalyst layer 23〇, The first reaction zone and the second reaction zone are two rectangular regions of the same area. [0046] It can be understood that, since the temperature of the first reaction zone reaches the reaction temperature of preparing the carbon nanotube by decomposition of acetylene and ethylene gas, However, the reaction temperature of the carbon nanotubes to be decomposed to prepare the carbon nanotubes is not reached, so that only the acetylene gas composed of 12c and the ethylene gas composed of 13c are decomposed in the first reaction region, and a mixture of 12c and 13c is formed. An array of nano carbon tubes is deposited on the catalyst layer iron film of the first reaction zone; and the temperature of the second reaction zone reaches a reaction temperature at which the acetylene, ethylene and decane gas are decomposed to prepare the carbon nanotubes, so In the second reaction zone, an acetylene gas composed of 12c, an ethylene gas composed of 13c, and a decane gas composed of 14c are simultaneously decomposed, and an array of nanocarbon tubes composed of 12c, 13c, and 14c is deposited on the second reaction zone. The catalyst layer of the second reaction zone is on the iron film; in addition, since the reaction zone other than the first reaction zone and the second reaction zone in the catalyst layer 230 only reaches the catalytic fast gas 100113624, Form No. A0101, page 17 / Total 38 pages 1002022746-0 201215700 / knife solution to prepare the reaction temperature of the nanotube breaking tube, but did not reach the reaction temperature of the catalytic carbon dioxide and the combustion of the gas to prepare the carbon nanotubes, so the 5 έ 反应 reaction area only The 12C red acetylene gas undergoes a decomposition reaction, and an array of nano carbon tubes composed of 12c is formed on the catalyst layer iron film of the other reaction regions. [0049] [0049] Finally, the reaction is continued for a predetermined period of time. Cooling the reaction chamber 220 to room temperature, forming carbon nanotubes containing different kinds of carbon isotopes on the catalyst layer iron film, thereby forming a carbon nanotube array It can be understood that after the predetermined reaction time, the temperature of the first reaction zone, the second reaction zone and the catalyst layer zone other than the first and second reaction zones can be controlled by the laser heating device 240, respectively. The first reaction zone, the second reaction zone, and the catalyst layer zones other than the first and second reaction zones respectively reach different reaction temperatures. Finally, a nano carbon tube array having a plurality of carbon nanotube segments is prepared. Referring to FIG. 8, a carbon nanotube array 3 prepared according to a fourth embodiment of the present invention, the carbon nanotube array 3 is composed of a first carbon nanotube array 32 and a second carbon nanotube array. 34 and a third nano carbon tube array 36 are formed. The second nano carbon tube array 34 and the third nano carbon tube array have a rectangular shape; the second nano carbon tube array 34 and the third nano carbon tube array 36 have the same area; The two nano carbon tube array and the second nano carbon tube array 36 are spaced apart and surrounded by the first nano carbon tube array 32. The carbon nanotubes in the first nano carbon tube array 32 are composed of 12C, and the carbon nanotubes of the second nano carbon tube array 34 are composed of 12C and 13C, the third nano carbon tube array 36113124 Form bat number A0101 Page 18/38 page 1002022746-0 201215700 [0050] 005 ❹ [0052] 100113624 The carbon nanotubes are composed of 12c, 13c and 14C "the first nano carbon pipe The carbon nanotubes in the array 32, the second carbon nanotube array 34, and the third carbon nanotube array 36 have equal or unequal lengths and can be obtained according to actual needs. In this embodiment, the length of the carbon nanotubes in the carbon nanotube array 3 is preferably from 100 micrometers to 900 micrometers, and the first nano carbon tube array 32 and the second nano carbon tube array 34 are The carbon nanotubes in the third nano carbon tube array have substantially the same length. It is understood that the carbon nanotube array 3 can include at least two nano carbon tube arrays. The carbon carbon nanotubes in the carbon carbon tube array may be composed of a single carbon nanotube segment of a different kind of single carbon isotope or a combination of different kinds of carbon isotope. The nano carbon tube array may have different shapes and areas. The shape of the nano carbon tube array may be square, circular 'elliptical or rectangular, and the like; the at least two different carbon nanotube arrays may be composed of the carbon nanotube array 30 by different arrangements. The different arrangement means that the at least two different carbon nanotube arrays can be arranged side by side, one sub-array is surrounded by another sub-array, arranged at intervals, or other manners. The carbon nanotube array is 〇. The carbon nanotubes can be single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. In this embodiment, the carbon nanotubes For a multi-walled carbon nanotube, the direct passage of the multi-walled carbon nanotube is 0.5 to nanometer. Referring to Figure 9, a fifth embodiment of the present invention further provides a method for preparing a carbon nanotube array. The method comprises: (% 〇 1) providing a substrate formed with a catalyst layer, and placing the substrate formed with the catalyst layer into a reaction chamber; (S502) providing at least two carbon source gases, the at least form number A0101 19 pages/38 pages 1002022746-0 201215700 The carbon elements in the two carbon source gases are respectively composed of different kinds of carbon isotopes; (S 5 0 3 ) simultaneously introducing the at least two carbon source gases into the reaction chamber Controlling the temperature of the catalyst layer to different reaction temperatures in different regions of the catalyst layer, and reacting the at least two carbon source gases in different regions of the catalyst layer to form a naphthalene containing different kinds of carbon isotopes Carbon nanotubes, which in turn form a carbon nanotube array [0054] Steps S501 and S502 are substantially the same as steps S401 and S402 in the fourth embodiment of the present invention, except that in the present embodiment, 'the two laser heating devices 240 are included. 'The three laser heating devices 240 respectively illuminate three regions of the substrate 232 from the back side of the substrate 232' to cause three reactions of the catalyst layer 230 corresponding to the three regions of the substrate 233 The regions respectively reach different temperatures. By irradiating the substrate from the back side of the substrate, the laser can be prevented from being damaged by the growth of the carbon nanotubes upon irradiation. The step S503 and the step S4〇3 in the third embodiment of the present invention. Basically the same. The difference is that 'the temperature in the reaction furnace 222 is kept at room temperature, and a first region, a second region, and a third portion of the substrate 232 are respectively separated by the three laser heating devices 240. The region is irradiated such that a first reaction region, a second reaction region, and a third reaction region of the catalyst layer 230 corresponding to the first region 'the second region and the third region of the substrate 232 Reached a first temperature, a second temperature and a third temperature. In the embodiment, the first temperature is a reaction temperature for catalyzing the decomposition of acetylene gas to prepare a carbon nanotube, and the first temperature is about 600 ° C to 650 ° C; and the second temperature is a catalytic ethylene gas decomposition to prepare a nanometer. The reaction temperature of the carbon tube 'this second temperature is about 65 〇. (:-800. (:; The first form nickname A0101 Page 20 / 38 pages 1002022746-0 201215700 The three temperatures are the reaction temperature for catalyzing the decomposition of methane gas to prepare a carbon nanotube, the third temperature is about 850. 〇11〇〇. (: [0055] Ο ο It can be understood that since the temperature of the first reaction zone only reaches the reaction temperature of the acetylene gas to be decomposed to prepare the carbon nanotubes, and the ethylene and decane gas are not decomposed to prepare the naphthalene The reaction temperature of the carbon nanotubes, so that only the acetylene gas composed of 12c is decomposed in the first reaction zone, and a catalyst layer of a carbon nanotube tube composed of 12 C is deposited on the catalyst layer of the first reaction zone. On the iron film; the temperature of the second reaction zone only reaches the reaction temperature of the carbon nanotubes and the decomposition of the ethylene gas to prepare the carbon nanotubes, and does not reach the reaction temperature of the decomposition of the carbon nanotubes to prepare the carbon nanotubes, so In the second reaction zone, the acetylene gas consisting of 12c and the ethylene gas consisting of 13c are simultaneously decomposed, and an array of nanocarbon tubes composed of 12c and 13c is deposited on the second reaction zone. On the iron layer of the agent layer; since the reaction temperature of the third reaction zone simultaneously reaches the reaction temperature for catalyzing the decomposition of acetylene, ethylene and methane gas to prepare the carbon nanotubes, the acetylene gas consisting of 12c in the reaction zone is The ethylene gas composed of 3C and the methane gas composed of 14C are simultaneously decomposed, and an array of nano carbon tubes composed of 12c, 13c and 14c is formed on the catalyst layer iron film of the third reaction zone. The reaction layer 230 does not reach the reaction temperature for catalyzing the decomposition of acetylene, ethylene and methane gas to prepare the carbon nanotubes in the catalyst layer 230 except for the first reaction zone, the second reaction zone and the third reaction zone. No gas reacts and no carbon nanotubes are deposited on the catalyst layer iron film in the region. Finally, after the reaction is continued for a predetermined period of time, the reaction chamber 220 is cooled to room temperature, and the catalyst layer is formed on the iron sill. Type of carbon isotope 100113624 Form No. A0101 Page 21 / Total 38 Page 1002022746-0 [0056] 201215700 Carbon nanotubes, and Forming a carbon nanotube array. [0057] It can be understood that the temperature of the first reaction zone, the second reaction zone, and the third reaction zone can be controlled by the laser heating device 240 after a predetermined reaction time. The first reaction zone, the second reaction zone and the third reaction zone are respectively brought to different reaction temperatures, and finally a nanometer tube array having a plurality of carbon nanotube segments is prepared, wherein each nano carbon tube array The carbon nanotubes in the middle are composed of a plurality of carbon nanotube segments respectively containing different kinds of single carbon isotopes or different combinations of different carbon isotopes. [0058] For example, after step S503, the laser heating device is passed through 240 respectively controlling the temperature of the first reaction zone, the second reaction zone and the third reaction zone to 'make the temperature of the first reaction zone reach 65 (TC-800 ° C, ie 'to catalyze the decomposition of acetylene and ethylene gas The reaction temperature for preparing the carbon nanotubes; the temperature of the second reaction zone is 85 (rc-110 (TC, ie, catalyzed by decane, acetylene and ethylene) The reaction temperature is the decomposition of the prepared nano carbon tubes; the temperature of the third reaction zone reaches 6〇〇. (3-650 art 'that' only achieves the reaction temperature for catalyzing the decomposition of acetylene gas to prepare carbon nanotubes. It can be understood that the reaction of the first reaction zone reaches the reaction of acetylene and ethylene gas decomposition to prepare carbon nanotubes. The temperature does not reach the reaction temperature for catalyzing the decomposition of methane gas to prepare a carbon nanotube. During the reaction, the acetylene gas composed of 12C and the ethylene gas composed of 13c are simultaneously decomposed to form a nanocarbon composed of 12c and 13c. a tube segment is grown at the bottom end of the carbon nanotube segment consisting of 12c. The reaction temperature is obtained by the temperature of the second reaction zone reaching the reaction temperature for preparing the carbon nanotube by catalytic calcination, acetylene and ethylene gas decomposition. Medium, consisting of 12C B 100113624 Form No. A0101 Page 22 / Total 38 Page 1002022746-0 201215700 Alkyne gas, ethylene gas composed of I3C and methane gas composed of 〗, simultaneously decomposition reaction, generate 3C & A carbon nanotube segment composed of 14C is grown at the bottom end of the carbon nanotube segment composed of 12c and 13c. Further, due to the third reaction region The temperature only reaches the reaction temperature for catalyzing the decomposition of acetylene gas to prepare a carbon nanotube. During the reaction, only the acetylene gas composed of 12c is decomposed, and a carbon nanotube segment composed of 12C is formed and grown in the 12C. 13C and the bottom end of the constituent carbon nanotube fragments. [0059] It can be understood that the arrangement order of the carbon nanotube fragments in the nano carbon tube array can also be arbitrarily combined, and the temperature can be controlled during the reaction. The method of growing different carbon nanotube segments in different orders is achieved. [0060] Referring to FIG. 10, a carbon nanotube array 40 prepared by the fifth embodiment of the present invention is composed of a carbon nanotube array 40. A nano carbon tube array 42, a second nano carbon tube array 44 and a third nano carbon tube array 46; each nano carbon tube array is composed of a single carbon isotope or a single carbon isotope combination The carbon nanotube fragments are formed into a group. The carbon nanotubes in the first nano carbon tube array 42 are composed of i2C. The carbon nanotubes of the second nano carbon tube array 44 are made of i2c.

1 Q 及C組成’所述第三奈米碳管子陣列46的奈米碳管由 19 1 〇 -I λ C、 C及C組成。所述第一奈米碳管子陣列42、第二 奈米碳管子陣列44及第三奈米碳管子陣列46中的奈米破 管具有相等或不等的長度,可根據實際需要獲得。本實 施例中’所述奈米碳管陣列40中的奈米碳管的長度優選 為100微米〜900微米,所述第一奈米破管子陣列42、第 二奈米碳管子陣列44及第三奈米碳管子陣列46中的奈米 100113624 表單編號Α0101 第23頁/共38頁 1002022746-0 201215700 碳管具有大致相等的長度。 [0061] 本發明實施例奈米碳管陣列的製備方法,通過提供各種 含有單一同位素的不同碳源氣體,並根據所述不同碳源 氣體分解製備奈米碳管的反應溫度不同,通過控制不同 的反應溫度,可使不同碳源氣體分解生長奈米碳管,從 而得到摻有同位素的奈米破管陣列。該方法可根據實際 需要,通過控制通入不同的碳源氣體以及各種碳源氣體 的反應溫度,方便的獲得多種組合的掺有同位素的奈米 碳管陣列,並可進一步研究奈米碳管的反應機理。 [0062] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0063] 圖1係本發明第一實施例奈米碳管陣列的製備方法的流程 圖。 [0064] 圖2係本發明第一實施例奈米碳管陣列的製備裝置的示意 圖。 [0065] 圖3係本發明第一實施例製備的奈米碳管陣列的示意圖。 [0066] 圖4係本發明第二實施例製備的奈米碳管陣列的示意圖。 [006Ή 圖5係本發明第三實施例奈米碳管陣列的製備裝置的示意 圖0 100113624 表單編號A0101 第24頁/共38頁 1002022746-0 201215700 [0068] 圖6係本發明第四實施例奈米碳管陣列的製備方法的.流程 [0069] 圖。 圖7係本發明第四實施例奈米碳管陣列的製備裝置的示意 圖。 [0070] 圖8係本發明第四實施例製備的奈米碳管陣列的示意圖。 [0071] 圖9係本發明第五實施例奈米碳管陣列的製備裝置的示意 圖。 ^ [0072] 〇 圖1 0係本發明第五實施例製備的奈米碳管陣列的示意圖 〇 [0073] 【主要元件符號說明】 奈米碳管陣列:10 ; 20 ; 30 ; 40 [0074] 奈米碳管片段:12 ; 14 ; 22 ; 24 ; 26 [0075] 奈米碳管子陣列:32 ; 34 ; 36 ; 42 ; 44 ; 46 [0076] 反應裝置:100 ; 200 Ο [0077] 保護氣體輸入通道:102 ; 202 [0078] 碳源氣輸入通道:104 ; 106 ; 108 ; 204 ; 206 ; 208 [0079] 排氣通道:110 ; 210 [0080] 閥門:112;114;116;118;212;214;216;218 [0081] 反應室:120 ; 220 [0082] 反應爐:122 ; 222 [0083] 催化劑層:130 ; 230 100113624 表單編號A0101 第25頁/共38頁 1002022746-0 201215700 [0084] 基底:132 ; 232 [0085] 雷射加熱裝置:140 ; 240 100113624 表單編號A0101 第26頁/共38頁 1002022746-01 Q and C composition The carbon nanotube of the third carbon nanotube array 46 is composed of 19 1 〇 -I λ C, C and C. The nanotubes in the first nano carbon tube array 42, the second nano carbon tube array 44 and the third nano carbon tube array 46 have equal or unequal lengths and can be obtained according to actual needs. In the present embodiment, the length of the carbon nanotubes in the carbon nanotube array 40 is preferably from 100 micrometers to 900 micrometers, and the first nano-tube array 42 and the second nano-carbon tube array 44 and Nano 100113624 in a three-nano carbon tube array 46 Form No. 1010101 Page 23 of 38 1002022746-0 201215700 Carbon tubes have approximately equal lengths. [0061] The method for preparing a carbon nanotube array according to an embodiment of the present invention, by providing various carbon source gases containing a single isotope, and preparing a carbon nanotube according to the decomposition of the different carbon source gases, the reaction temperature is different, and the control is different. The reaction temperature allows the different carbon source gases to decompose and grow the carbon nanotubes, thereby obtaining an isotope-doped nanotube array. The method can conveniently obtain various combinations of isotope-doped carbon nanotube arrays by controlling the reaction temperatures of different carbon source gases and various carbon source gases according to actual needs, and further study of carbon nanotubes. Reaction mechanism. [0062] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0063] Fig. 1 is a flow chart showing a method of preparing a carbon nanotube array according to a first embodiment of the present invention. 2 is a schematic view showing a preparation apparatus of a carbon nanotube array according to a first embodiment of the present invention. 3 is a schematic view of a carbon nanotube array prepared in accordance with a first embodiment of the present invention. 4 is a schematic view of a carbon nanotube array prepared in accordance with a second embodiment of the present invention. [006] FIG. 5 is a schematic view showing a manufacturing apparatus of a carbon nanotube array according to a third embodiment of the present invention. 0 100113624 Form No. A0101 Page 24/38: 1002022746-0 201215700 [0068] FIG. 6 is a fourth embodiment of the present invention. Process for preparing a carbon nanotube array. [0069] Figure. Fig. 7 is a view showing a preparation apparatus of a carbon nanotube array of a fourth embodiment of the present invention. 8 is a schematic view of a carbon nanotube array prepared in accordance with a fourth embodiment of the present invention. 9 is a schematic view showing a manufacturing apparatus of a carbon nanotube array according to a fifth embodiment of the present invention. [0072] FIG. 10 is a schematic view of a carbon nanotube array prepared according to a fifth embodiment of the present invention. [0073] [Major element symbol description] Carbon nanotube array: 10; 20; 30; 40 [0074] Nano carbon tube fragment: 12; 14 ; 22 ; 24 ; 26 [0075] Nano carbon tube array: 32; 34; 36; 42; 44; 46 [0076] Reaction apparatus: 100; 200 Ο [0077] Input channel: 102; 202 [0078] Carbon source gas input channel: 104; 106; 108; 204; 206; 208 [0079] Exhaust channel: 110; 210 [0080] Valve: 112; 114; 116; 118; ;214;216;218 [0081] Reaction chamber: 120; 220 [0082] Reaction furnace: 122; 222 [0083] Catalyst layer: 130; 230 100113624 Form No. A0101 Page 25 of 38 1002022746-0 201215700 [0084 Substrate: 132; 232 [0085] Laser Heating: 140; 240 100113624 Form No. A0101 Page 26 of 38 1002022746-0

Claims (1)

201215700 七、申請專利範圍: 1 . 一種奈米碳管陣列的製備方法,包括以下步驟: 提供一形成有催化劑層的基底,並將該形成有催化劑層的 基底置入一反應室中; 提供至少兩種碳源氣,該至少兩種碳源氣中的碳元素分別 由不同種類的單一同位素組成;以及 將所述至少兩種碳源氣同時通入所述反應室中,通過控制 反應溫度,使所述至少兩種碳源氣在不同的溫度下發生反 〇 應’形成奈米碳管陣列。 2 .如申請專利範圍第i項所述的奈米碳管陣列的製備方法, 其中,該催化劑層的材料選自鈷、鎳、鐵及其任意組合的 合金。 3 .如申請專利範圍第丨項所述的奈米碳管陣列的製備方法, 其中,該至少兩種碳源氣選自甲燒、乙稀、乙块及丙二稀 4 .如申請專利範圍第1項所述的奈米碳管陣列的製備方法, ’、中提供至少兩種碳源4之後,進—步包括將所述反應 至抽真空,並通入預定壓力的保護氣體。 5 .如申請專利範圍第4項所述的奈米碳管陣列的製備方法, 其中,該保護氣體選自氦氣、氬氣及氮氣。 6.如申請專利範圍第1項所述的奈米碳管陣列的製備方法, 其中,所述單一碳同位素選自12。、13匸及14匸。 7 .如申請專利範圍第1項所述的奈米碳管陣列的製備方法, 其中,通過-反應爐或至少-雷射加熱裝置控制反應溫度 ’使所述至少兩種錢氣在不_溫度下發生反應,形成 100113624 表單坞號A0101 第27頁/共38頁 1002022746-0 201215700 奈米碳管陣列。 8 .如申請專利範圍第1項所述的奈米碳管陣列的製備方法, 其中,所述通過控制反應溫度,使所述至少兩種碳源氣在 不同的溫度下發生反應,形成奈米碳管陣列的步驟為:控 制反應室的溫度達到一第一溫度,所述至少兩種碳源氣中 的一種反應生成第一奈米碳管片斷,反應預定時間後,再 控制反應室的溫度使其達到一第二溫度,所述至少兩種碳 源氣中的多種反應生成第二奈米碳管片斷,反應預定時間 後,得到一奈米碳管陣列。 9 .如申請專利範圍第1項所述的奈米碳管陣列的製備方法, 其中,所述通過控制反應溫度,使所述至少兩種碳源氣在 不同的溫度下發生反應,形成奈米碳管陣列的步驟為:控 制反應室的溫度達到一第一溫度,所述至少兩種碳源氣中 的多種反應生成第一奈米碳管片斷,反應預定時間後,再 控制反應室的溫度使其達到一第二溫度,所述至少兩種碳 源氣中的一種反應生成第二奈米碳管片斷,反應預定時間 後,得到一奈米碳管陣列。 10 .如申請專利範圍第1項所述的奈米碳管陣列的製備方法, 其中,將所述至少兩種碳源氣同時通入所述反應室中,並 控制不同的反應溫度,使各種碳源氣在不同的溫度下發生 反應,形成奈米碳管陣列的步驟為:將三種碳源氣同時通 入所述反應室中,並根據所述碳源氣分解製備奈米碳管的 反應溫度不同,控制反應室的溫度分別達到使一種氣體發 生反應的第一溫度、使兩種氣體發生反應的第二溫度以及 使三種氣體同時發生反應的第三溫度,反應預定時間後, 得到一奈米碳管陣列。 100113624 表單編號A0101 第28頁/共38頁 1002022746-0201215700 VII. Patent application scope: 1. A method for preparing a carbon nanotube array, comprising the steps of: providing a substrate formed with a catalyst layer, and placing the substrate formed with the catalyst layer into a reaction chamber; providing at least Two carbon source gases, wherein the carbon elements of the at least two carbon source gases are respectively composed of different kinds of single isotopes; and the at least two carbon source gases are simultaneously introduced into the reaction chamber, by controlling the reaction temperature, The at least two carbon source gases are subjected to a reaction at different temperatures to form an array of carbon nanotubes. 2. The method of preparing a carbon nanotube array according to claim i, wherein the material of the catalyst layer is selected from the group consisting of cobalt, nickel, iron, and any combination thereof. 3. The method for preparing a carbon nanotube array according to the invention of claim 2, wherein the at least two carbon source gases are selected from the group consisting of tomazan, ethylene, ethyl bromide and propylene disulfide 4. In the method for preparing a carbon nanotube array according to Item 1, after the at least two carbon sources 4 are provided, the step further comprises subjecting the reaction to evacuation and introducing a shielding gas of a predetermined pressure. 5. The method of preparing a carbon nanotube array according to claim 4, wherein the shielding gas is selected from the group consisting of helium, argon and nitrogen. 6. The method for producing a carbon nanotube array according to claim 1, wherein the single carbon isotope is selected from the group consisting of 12. , 13匸 and 14匸. 7. The method for preparing a carbon nanotube array according to claim 1, wherein the reaction temperature is controlled by a reaction furnace or at least a laser heating device to make the at least two kinds of money at a temperature The next reaction takes place to form 100113624 Form Dock A0101 Page 27 / Total 38 Page 1002022746-0 201215700 Nano Carbon Tube Array. 8. The method for preparing a carbon nanotube array according to claim 1, wherein the at least two carbon source gases are reacted at different temperatures by controlling the reaction temperature to form a nanometer. The carbon tube array is configured to: control the temperature of the reaction chamber to reach a first temperature, and react one of the at least two carbon source gases to generate a first carbon nanotube segment, and then control the temperature of the reaction chamber after a predetermined time of reaction Taking a second temperature, a plurality of the at least two carbon source gases react to form a second carbon nanotube segment, and after a predetermined time of reaction, an array of carbon nanotubes is obtained. 9. The method for preparing a carbon nanotube array according to claim 1, wherein the at least two carbon source gases are reacted at different temperatures by controlling the reaction temperature to form a nanometer. The carbon tube array has the steps of: controlling the temperature of the reaction chamber to reach a first temperature, and reacting a plurality of the at least two carbon source gases to generate a first carbon nanotube segment, and controlling the temperature of the reaction chamber after a predetermined time of reaction When it reaches a second temperature, one of the at least two carbon source gases reacts to form a second carbon nanotube segment, and after a predetermined time of reaction, an array of carbon nanotubes is obtained. 10. The method for preparing a carbon nanotube array according to claim 1, wherein the at least two carbon source gases are simultaneously introduced into the reaction chamber, and different reaction temperatures are controlled to make various The carbon source gas reacts at different temperatures, and the step of forming the carbon nanotube array is: simultaneously introducing three carbon source gases into the reaction chamber, and preparing a carbon nanotube according to the decomposition of the carbon source gas. The temperature of the reaction chamber is controlled to reach a first temperature at which a gas reacts, a second temperature at which two gases react, and a third temperature at which three gases simultaneously react. After a predetermined reaction time, a reaction is obtained. Carbon tube array. 100113624 Form No. A0101 Page 28 of 38 1002022746-0
TW100113624A 2010-10-07 2011-04-20 Method for making carbon nanotube array TWI417413B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100113624A TWI417413B (en) 2010-10-07 2011-04-20 Method for making carbon nanotube array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW99134181 2010-10-07
TW100113624A TWI417413B (en) 2010-10-07 2011-04-20 Method for making carbon nanotube array

Publications (2)

Publication Number Publication Date
TW201215700A true TW201215700A (en) 2012-04-16
TWI417413B TWI417413B (en) 2013-12-01

Family

ID=46786907

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113624A TWI417413B (en) 2010-10-07 2011-04-20 Method for making carbon nanotube array

Country Status (1)

Country Link
TW (1) TWI417413B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234604C (en) * 2002-11-27 2006-01-04 清华大学 Carbon nano pipe, its preparation process and equipment
CN1328161C (en) * 2004-05-20 2007-07-25 清华大学 Nano carbon tube and preparation method thereof

Also Published As

Publication number Publication date
TWI417413B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5470610B2 (en) Graphene sheet manufacturing method
CN100418876C (en) Device and method for preparing array of Nano carbon tube
KR100923304B1 (en) Graphene sheet and process for preparing the same
US7883580B2 (en) System and method for nanotube growth via Ion implantation using a catalytic transmembrane
CN101993055B (en) Carbon nanotube membrane precursor, carbon nanotube membrane and preparation method thereof
US7713589B2 (en) Method for making carbon nanotube array
US7682658B2 (en) Method for making carbon nanotube array
CN102417172B (en) Preparation method of carbon nanotube array
JP2011136414A (en) Isotope-doped nano-material, method for producing the same, and labeling method
CN102092704A (en) Device and method for preparing carbon nanotube array
CN101857460A (en) Preparation method of carbon nano tube array for spinning
CN104627980B (en) Controllable flame burner and method for synthesizing carbon nano tubes
EP2262726B1 (en) System and method for low-power nanotube growth using direct resistive heating
CN102417171B (en) Carbon nano tube array and preparation method thereof
EP2716600A1 (en) Apparatus and method for producing oriented carbon nanotube aggregate
JP5700819B2 (en) Method for producing aligned carbon nanotube assembly
TW201215700A (en) Method for making carbon nanotube array
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
CN100412231C (en) Hot wire for diamond film growth device and electrode structure thereof
TWI417412B (en) A carbon nanotube array and method for making the same
JP3866692B2 (en) Method for producing carbon nanotube
TW201107235A (en) Carbon nanotube film frecursor, carbon nanotube film and manufacturing method thereof
TWI314917B (en) Method for manufacturing carbon nanotubes array
Zhang et al. Synthesis of multilayered carbon fiber arrays and their growth mechanism
TW201226312A (en) Carbon nanotube composite structure and method for making same