TW201226312A - Carbon nanotube composite structure and method for making same - Google Patents

Carbon nanotube composite structure and method for making same Download PDF

Info

Publication number
TW201226312A
TW201226312A TW99146723A TW99146723A TW201226312A TW 201226312 A TW201226312 A TW 201226312A TW 99146723 A TW99146723 A TW 99146723A TW 99146723 A TW99146723 A TW 99146723A TW 201226312 A TW201226312 A TW 201226312A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
composite structure
substrate
nanotube structure
Prior art date
Application number
TW99146723A
Other languages
Chinese (zh)
Other versions
TWI458677B (en
Inventor
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099146723A priority Critical patent/TWI458677B/en
Publication of TW201226312A publication Critical patent/TW201226312A/en
Application granted granted Critical
Publication of TWI458677B publication Critical patent/TWI458677B/en

Links

Abstract

The present invention relates to a carbon nanotube composite structure and a method for making same. The method includes follow steps: providing a substrate and growing carbon nanotube array on the substrate; drawing a carbon nanotube film from the carbon nanotube array, the carbon nanotube film includes a plurality of carbon nanotubes joined by van der Waals attractive force therebetween; providing another substrate and disposing at least one carbon nanotube film on a surface of the substrate, then the at least one carbon nanotube film forming a first carbon nanotube structure; putting the substrate into a furnace and growing new carbon nanotube on surface of the first carbon nanotube structure by CVD method, the carbon nanotube forming a second carbon nanotube structure, and the first carbon nanotube and the second nanotube forming the carbon nanotube composite structure.

Description

201226312 六、發明說明: 【發明所屬之技術頜威】 [0001] 本發明涉及一種奈米碳管複合結構及其製備方法。 [先前技術] [0002] 1991年,曰本NEC公司研究人員意外發現奈米碳管,請參 見:"Helical microtubules of graphitic carbon,,, S· Iijima, Nature, ν〇ΐ· 354, p56 (1991) ’因為奈米碳管的優異特性,其潛在的應用一直受到人 們廣泛關注,尤其為在電子領域,由於奈米碳管的直徑 極小,大約幾奈米至十幾奈米’在較小的電場作用下就 可以從其尖端發射電子’因而可用作場發射陰極。 [0003] 近年來,人們在奈米材料及其應用領域進行各種研究, 尤其為對奈米碳管的生長方法及其應用。例如,李康雨 等人於2005年10月12日申請於2〇〇9年12月9日公告的公 告號為CN100568436的中國大陸專利揭示了一種奈米碳 管發射器件的製備方法,此明利用PECVD (電漿增強化 學氣相沈積)法在第一奈米碳管表面生長出垂直第一奈 米碳管表面的第二奈米碳管,其包括下列步驟:先在形 成有催化劑材料層的第一基板上生長複數第一奈米碳管 ,然後,從所述第一基板分離所述第一奈米碳管並將分 離的奈米碳管浸入分散溶液,最後用所述分散溶液塗覆 第二基板並且烘培所述第二基板,使所述第一奈米碳管 固定於第二基板,然後從所述第一奈米碳管表面的催化 劑顆粒上生長奈米碳管。 [0004] 然’由於此發明需要將第一奈米碳管從第一基板上通過 099146723 表單編號A0101 第4頁/共25頁 0992080277-0 201226312 超聲波分離,再浸入分散溶液進行分散,然後再塗覆於 第二基板並烘焙,製備方法繁瑣,工藝複雜。並且,由 於分散後的第一奈米碳管浸入分散溶液後,附著在第一 奈米碳管的催化劑顆粒會從奈米碳管表面脫落而減少, 從而在製備奈米碳管發射器的過程中由於催化劑的不足 而只能在第一奈米破管上得到極少量的奈米碳管。 【發明内容】 [0005] Ο [0006]201226312 VI. Description of the Invention: [Technology of the Invention] [0001] The present invention relates to a carbon nanotube composite structure and a preparation method thereof. [Prior Art] [0002] In 1991, researchers at Sakamoto NEC accidentally discovered carbon nanotubes, see: "Helical microtubules of graphitic carbon,,, S·Iijima, Nature, ν〇ΐ· 354, p56 ( 1991) 'Because of the excellent properties of the carbon nanotubes, its potential applications have been widely concerned, especially in the field of electronics, because the diameter of the carbon nanotubes is extremely small, about a few nanometers to a dozen nanometers. The electric field can emit electrons from its tip' and thus can be used as a field emission cathode. [0003] In recent years, various studies have been conducted in the field of nanomaterials and their applications, especially for the growth of carbon nanotubes and their applications. For example, the Chinese mainland patent published by Li Kangyu et al. on October 12, 2005, published on December 9, 2009, with the announcement number CN100568436, discloses a method for preparing a carbon nanotube emitting device, which utilizes PECVD. (plasma enhanced chemical vapor deposition) method for growing a second carbon nanotube on the surface of the first carbon nanotube, perpendicular to the surface of the first carbon nanotube, comprising the steps of: forming a layer of a catalyst material first Growing a plurality of first carbon nanotubes on a substrate, then separating the first carbon nanotubes from the first substrate and immersing the separated carbon nanotubes in a dispersion solution, and finally coating the dispersion solution with the dispersion solution The second substrate is baked and the second substrate is baked, the first carbon nanotube is fixed to the second substrate, and then the carbon nanotube is grown from the catalyst particles on the surface of the first carbon nanotube. [0004] However, due to this invention, the first carbon nanotubes need to be separated from the first substrate by 099146723 Form No. A0101 Page 4 / Total 25 Page 0992080277-0 201226312, and then immersed in the dispersion solution for dispersion, and then coated Covering the second substrate and baking, the preparation method is cumbersome and the process is complicated. Moreover, since the dispersed first carbon nanotubes are immersed in the dispersion solution, the catalyst particles attached to the first carbon nanotubes are detached from the surface of the carbon nanotubes, thereby reducing the process of preparing the carbon nanotube emitters. Due to the lack of catalyst, only a very small amount of carbon nanotubes can be obtained on the first nanotube. SUMMARY OF THE INVENTION [0005] [0006]

[0007] 有鑒於此,提供一種方法簡單易行的奈米碳管複合結構 的製備方法實為必要。 一種奈米碳管複合結構的製備方法,其包括以下步驟: 提供一基底,在基底表面生長奈米碳管陣列;採用一拉 伸工具從奈米碳管陣列中拉取獲得一奈米碳管膜,所述 奈米碳管膜包括複數通過凡得瓦力首尾相連的奈米碳管 以及分散於所述奈米碳管膜中的催化劑顆粒;提供另一 基底,並將至少一奈米碳管膜設置於該基底表面形成一 第一奈米碳管結構;將所述設置有第一奈米碳管結構的 基底置入反應爐中,通過化學氣相沈積法在所述第一奈 米碳管結構表面生長奈米碳管,形成第二奈米碳管結構 得到所述奈米碳管複合結構。 一種奈米碳管複合結構,其中,所述奈米碳管複合結構 包括一第一奈米碳管結構及第二奈米碳管結構,所述第 一奈米碳管結構包括複數奈米碳管沿同一方向擇優取向 延伸並通過凡得瓦力首尾相連,所述第二奈米碳管結構 包括複數奈米碳管設置於所述第一奈米碳管結構的一表 面,並且所述第二奈米碳管結構中每一奈米碳管的根部 099146723 表單編號Α0101 第5頁/共25頁 0992080277-0 201226312 與所述第一奈米碳管結構表面相連,端部向遠離所述第 一奈米碳管結構的方向延伸。 [0008] 相較於先前技術,利用從奈米碳管陣列中直接拉取獲得 一第一奈米碳管結構,然後設置於一基底上,從而在第 一奈米碳管結構表面生長奈米碳管,製備方法簡單易行 ,適合在工業上批量生長;並且由於沒有經過分散溶液 的洗滌分散,因此第一奈米碳管結構表面可以保留更多 的催化劑顆粒,從而可以直接在第一奈米碳管結構表面 得到更多的奈米碳管。 【實施方式】 [0009] 下面將結合附圖及具體實施例對本發明進行詳細說明。 請參閱圖1至圖4,圖1為本發明提供的奈米碳管複合結構 200的製備方法的製造流程圖。所述奈米碳管複合結構 200的製備方法主要包括以下步驟: [0010] 步驟S11,提供一基底,在基底表面生長奈米碳管陣列, 優選地,該陣列為超順排奈米碳管陣列。 [0011] 本實施例中,超順排奈米碳管陣列的製備方法採用化學 氣相沈積法,其具體步驟包括: [0012] 步驟Sill,提供一平整光滑的基底。 [0013] 所述基底可選用矽基底,或選用形成有氧化層的矽基底 ,也可選用其他耐高溫且不易發生反應的材料,如石英 等。本實施例優選為4英寸的矽基底。所述基底表面可以 經過機械拋光、電化學拋光等方法處理,以保證其平整 光滑以適應生長奈米碳管陣列的需要。 099146723 表單編號A0101 第6頁/共25頁 0992080277-0 201226312 [0014] 步驟SI 12,在所述基底的一表面沈積一催化劑層,並將 [0015] 形成有所述催化劑層的基底在空氣中退火。其具體包括 以下步驟: 首先,在所述基底的表面沈積一催化劑層。所述催化劑 層可採用電子束蒸鍍、濺射或液體塗敷等方法將沈積在 基底的表面,使其形成4~10nm厚催化劑層,所述催化劑 層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意 組合的合金之一。 [0016] 其次,將形成有催化劑層的基底在空氣中退火。所述退 火溫度為700°C~900°C,退火時間為30〜90分鐘,使催 化劑層中的催化劑形成分散的奈米級的催化劑顆粒。 [0017] 〇 步驟S113,將經過上述處理的基底置入反應爐中,通入 保護氣體及碳源氣體並加熱,在所述基底的表面生長奈 米碳管陣列。具體地,先通入保護氣體一定時間後,再 向反應爐内通入碳源氣體,並加熱所述基底,在基底表 面生長奈米碳管陣列。所述保護氣體為氮氣、氬氣或其 他惰性氣體中的一種或複數種,本實施例中保護氣體優 選的為氬氣。所述碳源氣體可為甲烷、乙烷、乙炔及乙 烯等化學性質活潑的碳氫化合物中的一種或複數種的混 合物,本實施例優選的為甲烷。所述加熱溫度為500°C ~740°C,通入碳源氣體反應約5〜60分鐘,生長得到奈米 碳管陣列,所述奈米碳管陣列中奈米碳管的高度約為200 〜400微来。 [0018] 可以理解,所述奈米碳管陣列包括多壁奈米碳管陣列、 099146723 表單編號A0101 第7頁/共25頁 0992080277-0 201226312 雙壁奈米碳管陣列或單壁奈米碳管陣列。所述通過化學 氣相沈積法生長奈米碳管陣列時,催化劑顆粒可以位於 奈米碳管的頂端也可以位於奈米碳管的底端,即生長奈 米碳管可為頂端生長或底端生長。生長奈米碳管陣列的 基底的形狀與尺寸不限,形狀可為平板形、曲面型或其 他形狀,尺寸不限於4英寸可為8英寸、12英寸等。 [0019] 步驟S12,從通過上述方法製備的奈米碳管陣列中,選取 一定寬度的奈米碳管片段,利用一拉伸工具以一定速度 沿基本垂直於奈米碳管陣列生長方向拉伸該複數奈米碳 管片斷,形成一奈米碳管膜,所述奈米碳管膜包括複數 通過凡得瓦力首尾相連的奈米碳管以及分散的催化劑顆 粒 213。 [0020] 在上述拉伸複數奈米碳管片斷形成奈米碳管膜的過程中 ,本實施例採用具有一定寬度的膠帶、鑷子或夾子接觸 奈米碳管陣列以選定一具有一定寬度的複數奈米碳管; 以一定速度拉伸該選定的奈米碳管,該拉取方向沿基本 垂直於奈米碳管陣列的生長方向。從而形成首尾相連的 複數奈米碳管片段,進而形成一連續的奈米碳管膜。在 上述拉伸過程中,該複數奈米碳管片段在拉力作用下沿 拉伸方向逐漸脫離基底的同時,由於凡得瓦力作用,該 選定的複數奈米碳管片段分別與其他奈米碳管片段首尾 相連地連續地被拉出,從而形成一連續、均勻且具有一 定寬度的奈米碳管膜。該奈米碳管膜的寬度與奈米碳管 陣列所生長的基底的尺寸有關,該奈米碳管膜的長度不 限,可根據實際需求制得。本實施例中所述奈米碳管膜 099146723 表單編號A0101 第8頁/共25頁 0992080277-0 201226312 的寬度可為lcm~10cm,厚度為0.01~100微米。可以理 解,當該奈米碳管膜的寬度較寬的情況下,可以形成奈 米碳管膜;而在所述奈米碳管膜寬度很窄的情況下,可 以形成奈米碳管線。 [0021] ΟIn view of the above, it is necessary to provide a method for preparing a carbon nanotube composite structure which is simple and easy to implement. A method for preparing a carbon nanotube composite structure, comprising the steps of: providing a substrate for growing an array of carbon nanotubes on a surface of the substrate; and extracting a carbon nanotube from the array of carbon nanotubes by using a stretching tool Membrane, the carbon nanotube membrane comprising a plurality of carbon nanotubes connected end to end by van der Waals and catalyst particles dispersed in the carbon nanotube membrane; providing another substrate and at least one nanocarbon a tubular film is disposed on the surface of the substrate to form a first carbon nanotube structure; the substrate provided with the first carbon nanotube structure is placed in a reaction furnace, and the first nanometer is chemically vapor deposited A carbon nanotube structure is grown on the surface of the carbon nanotube structure to form a second carbon nanotube structure to obtain the carbon nanotube composite structure. A carbon nanotube composite structure, wherein the carbon nanotube composite structure comprises a first carbon nanotube structure and a second carbon nanotube structure, the first carbon nanotube structure comprising a plurality of nano carbon tubes The tubes extend in a preferred orientation in the same direction and are connected end to end by a van der Waals force, the second carbon nanotube structure including a plurality of carbon nanotubes disposed on a surface of the first carbon nanotube structure, and the The root of each carbon nanotube in the two carbon nanotube structure 099146723 Form No. 1010101 Page 5 / Total 25 Page 0992080277-0 201226312 Connected to the surface of the first carbon nanotube structure, the end is away from the above The direction of the carbon nanotube structure extends. [0008] Compared with the prior art, a first carbon nanotube structure is obtained by directly pulling from a carbon nanotube array, and then disposed on a substrate to grow nanometer on the surface of the first carbon nanotube structure. Carbon tube, the preparation method is simple and easy, suitable for industrial batch growth; and since there is no washing and dispersing of the dispersion solution, the surface of the first carbon nanotube structure can retain more catalyst particles, so that it can be directly in the first nai More carbon nanotubes are obtained on the surface of the carbon nanotube structure. [Embodiment] The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 to FIG. 4, FIG. 1 is a manufacturing flow chart of a method for preparing a carbon nanotube composite structure 200 according to the present invention. The preparation method of the carbon nanotube composite structure 200 mainly includes the following steps: [0010] Step S11, providing a substrate, growing a carbon nanotube array on the surface of the substrate, preferably, the array is a super-sequential carbon nanotube Array. [0011] In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: [0012] Step Sill provides a flat and smooth substrate. [0013] The substrate may be selected from a ruthenium substrate, or a ruthenium substrate formed with an oxide layer, or other materials that are resistant to high temperature and are not susceptible to reaction, such as quartz. This embodiment is preferably a 4 inch tantalum substrate. The surface of the substrate can be treated by mechanical polishing, electrochemical polishing, etc. to ensure that it is smooth and smooth to meet the needs of growing carbon nanotube arrays. 099146723 Form No. A0101 Page 6 / Total 25 Page 0992080277-0 201226312 [0014] Step SI 12, depositing a catalyst layer on one surface of the substrate, and [0015] forming the substrate of the catalyst layer in the air annealing. It specifically includes the following steps: First, a catalyst layer is deposited on the surface of the substrate. The catalyst layer may be deposited on the surface of the substrate by electron beam evaporation, sputtering or liquid coating to form a catalyst layer of 4 to 10 nm thick, and the catalyst layer may be made of iron (Fe) or cobalt ( One of alloys of Co), nickel (Ni) or any combination thereof. [0016] Next, the substrate on which the catalyst layer is formed is annealed in the air. The annealing temperature is from 700 ° C to 900 ° C and the annealing time is from 30 to 90 minutes to form the catalyst in the catalyst layer to form dispersed nano-sized catalyst particles. [0017] 〇 Step S113, the substrate subjected to the above treatment is placed in a reaction furnace, and a shielding gas and a carbon source gas are introduced and heated to grow an array of carbon nanotubes on the surface of the substrate. Specifically, after the protective gas is first introduced for a certain period of time, a carbon source gas is introduced into the reactor, and the substrate is heated to grow a carbon nanotube array on the surface of the substrate. The shielding gas is one or a plurality of nitrogen, argon or other inert gas, and the shielding gas in the present embodiment is preferably argon. The carbon source gas may be one or a mixture of chemically active hydrocarbons such as methane, ethane, acetylene and ethylene, and methane is preferred in this embodiment. The heating temperature is from 500 ° C to 740 ° C, and the carbon source gas is introduced for about 5 to 60 minutes to grow to obtain a carbon nanotube array. The height of the carbon nanotubes in the carbon nanotube array is about 200. ~400 micro to come. [0018] It can be understood that the carbon nanotube array comprises a multi-walled carbon nanotube array, 099146723 Form No. A0101, page 7 / 25 pages 0992080277-0 201226312 double-walled carbon nanotube array or single-walled nanocarbon Tube array. When the carbon nanotube array is grown by chemical vapor deposition, the catalyst particles may be located at the top of the carbon nanotube or at the bottom end of the carbon nanotube, that is, the growth carbon nanotube may be the top growth or the bottom end. Growing. The shape of the substrate for growing the carbon nanotube array is not limited, and the shape may be a flat plate shape, a curved surface shape or the like, and the size is not limited to 4 inches, and may be 8 inches, 12 inches or the like. [0019] Step S12, selecting a carbon nanotube segment of a certain width from the carbon nanotube array prepared by the above method, and stretching at a certain speed along a growth direction substantially perpendicular to the growth direction of the carbon nanotube array by using a stretching tool. The plurality of carbon nanotube segments form a carbon nanotube film comprising a plurality of carbon nanotubes connected end to end by van der Waals and dispersed catalyst particles 213. [0020] In the above process of stretching a plurality of carbon nanotube segments to form a carbon nanotube film, the present embodiment adopts a tape, a braid or a clip having a certain width to contact the carbon nanotube array to select a plural having a certain width. The carbon nanotubes; the selected carbon nanotubes are drawn at a speed that is substantially perpendicular to the growth direction of the nanotube array. Thereby, a plurality of carbon nanotube fragments connected end to end are formed to form a continuous carbon nanotube film. During the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube segments are respectively combined with other nanocarbons due to the effect of van der Waals force. The tube segments are continuously drawn end to end to form a continuous, uniform carbon nanotube membrane having a width. The width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. In the present embodiment, the carbon nanotube film 099146723 Form No. A0101 Page 8 of 25 0992080277-0 201226312 may have a width of 1 cm to 10 cm and a thickness of 0.01 to 100 μm. It can be understood that when the width of the carbon nanotube film is wide, a carbon nanotube film can be formed; and in the case where the width of the carbon nanotube film is narrow, a carbon nanotube line can be formed. [0021] Ο

如圖2所示,所述奈米碳管膜為由若干奈米碳管組成的自 支撐結構。所述若干奈米碳管的轴向為沿同一方向擇優 取向延伸。所述擇優取向為指在奈米碳管膜中大多數奈 米碳管的整體延伸方向基本朝同一方向。而且,所述大 多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的 表面。進一步地,所述奈米碳管膜中多數奈米碳管為通 過凡得瓦力首尾相連。具體地,所述奈米碳管膜中基本 朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在 延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當 然,所述奈米碳管膜中存在少數隨機排列的奈米碳管, 這些奈米碳管不會對奈米碳管膜中大多數奈米碳管的整 體取向延伸構成明顯影響。所述自支撐為奈米碳管膜不 需要大面積的載體支撐,而只要相對兩邊提供支撐力即 能整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜 置於(或固定於)間隔一定距離設置的兩個支撐體上時 ,位於兩個支撐體之間的奈米碳管膜能夠懸空保持自身 膜狀狀態。所述自支撐主要通過奈米碳管膜中存在連續 的通過凡得瓦力首尾相連延伸的奈米碳管而實現。 具體地,所述奈米碳管膜中基本朝同一方向延伸的多數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上延伸,可以適當的偏離延伸方 099146723 表單編號Α0101 第9頁/共25頁 0992080277-0 [0022] 201226312 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的多數奈米碳管中並列的奈米碳管之間可能存在部份接 觸。進一步地,所述奈米碳管膜包括複數首尾相連且定 向延伸的奈米碳管片段,奈米碳管片段兩端通過凡得瓦 力相互連接。該奈米碳管片段包括複數相互平行排列的 奈米碳管。該奈米碳管片段具有任意的長度、厚度、均 勻性及形狀。 [0023] 同時,在所述拉伸形成奈米碳管膜的過程中,基底上的 催化劑顆粒213會吸附於所述奈米碳管的一端,從而從所 述基底上分離,並分散在整個奈米碳管膜中,並且所述 催化劑顆粒213基本分散於通過凡得瓦力首尾相連的兩根 奈米碳管之間。由於通過上述方法製備的奈米碳管陣列 中的奈米碳管具有基本相同的長度,從而所述奈米碳管 片段的長度基本相同,因此,在拉伸過程中,催化劑顆 粒213均勻分散於拉伸的奈米碳管膜中,即,在沿奈米碳 管延伸的方向上,所述催化劑顆粒21 3基本以相同的間隔 分散於通過凡得瓦力首尾相連的奈米碳管與奈米碳管之 間的連接處。 [0024] 步驟S13,提供一平整光滑的另一基底220,將通過上述 方法製備的至少一奈米碳管膜設置於基底220表面形成一 第一奈米碳管結構212。 [0025] 如圖3及圖4所示,所述基底220與S11中所述基底材料相 同,所述第一奈米碳管結構212黏附於所述基底220的一 表面,或者將第一奈米碳管結構212平鋪於該基底220上 ,然後利用一固定裝置(圖未示)固定於所述第一奈米 099146723 表單編號A0101 第10頁/共25頁 0992080277-0 201226312 碳管結構21 2兩端,從而將所述第一奈米碳管結構21 2固 定於所述該基底220的表面。另外,也可將所述第一奈米 碳管結構212懸空設置於所述基底220的表面,所述懸空 設置可通過在基底220上設置兩間隔設置的支撐體,所述 支擇體的形狀不限’只需具有一平面,可使所述第一奈 米碳管結構212的兩端分別平鋪黏附即可,然後將該第一 奈米碳管結構212兩端分別設置於該平面。 [0026] Ο ❹ [0027] 進一步的,可將複數層第一奈米碳管結構212層疊設置於 所述基底220的表面。當所埤複數層第一奈米碳管結構 212層疊設置時,相_編着第一奈米破管結構21 2之間通 過凡得瓦力緊密結合,並且相鄰兩層第>奈米碳管結構 212中奈米碳管的擇優取向延伸方向系成一矣角α,其中 0° S a S9(T。當α=0°時,所述相鄰兩層第一奈米碳管 結構212可稱之為彼此同向排列;當〇。< α $ 9 0。時,所 述相鄰兩層第一奈米碳管結構212可稱之為彼此交叉排列 。所述複數層第一奈米碳管結構212層疊設置可以提高其 強度,可更好的保持其形狀及結構。本實施例優選彼此 交叉排列的複數層第一奈米碳管結構212。 步驟S14,將所述鋪設有第一奈米碳管結構212的基底 220置於反應爐中,通入保護氣體及碳源氣體的混合氣並 加熱,新的奈米碳管會從所述第—奈米碳管結構212的表 面生長出來,形成第二奈米碳管結構214,停止加熱並停 止通入氣體,得到所述奈米碳管複合結構2〇〇。 [0028] 099146723 具體的,所述第二奈米碳管結構214中的奈米碳管為生長 於所述第一奈米被管結構212中的催化劑顆粒213上,所 0992080277-0 表單編號Α0101 第11頁/共25頁 201226312 述奈米碳管具有相對的根部與端部,所述奈米碳管的***與所述催化劑顆粒213相連,端部向遠離第一奈米碳管 結構212的方向延伸。 [0029] 所述保護氣體為氮氣、氬氣或其他惰性氣體中的一種或 複數種,本實施例中保護氣體優選的為氬氣。所述碳源 氣體可為曱烷、乙烷、乙炔及乙烯的一種或複數種的混 合物,本實施例優選的為甲烷。進一步的,可在保護氣 體中摻入極少量的氧氣或水蒸汽,所述少量氧氣及水蒸 汽並不影響所述整個系統的安全性,並且,由於所述氧 分子及水分子的存在,可防止過量的碳原子在催化劑顆 粒表面沈積而導致催化劑顆粒鈍化,從而可以保持催化 劑的活性,提高生長奈米碳管的生長速度及品質。 [0030] 所述第二奈米碳管結構214通過化學氣相沈積法形成,其 具體形成條件與前述奈米碳管陣列的條件基本相同。 [0031] 所述加熱溫度為500°C〜740°C,通入碳源氣體反應約 30〜60分鐘,生長得到奈米碳管,形成第二奈米碳管結構 214,所述第二奈米碳管結構214中奈米碳管的高度約為 200〜400微米。 [0032] 進一步的,當所述第一奈米碳管結構212中催化劑顆粒 2 1 3較少時,可在所述第一奈米碳管結構21 2遠離所述基 底220的表面進一步沈積催化劑顆粒213。所述催化劑顆 粒2 13可通過電子束蒸發、濺射、電漿沈積、電沈積或者 催化劑顆粒混合液塗覆等方法沈積於所述第一奈米碳管 結構212的表面,並且所述催化劑顆粒均勻分散於所述第 099146723 表單編號A0101 第12頁/共25頁 0992080277-0 201226312 [0033] ❹ [0034]As shown in Fig. 2, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The axial directions of the plurality of carbon nanotubes extend in a preferred orientation in the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation extension of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a certain distance, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of a continuous carbon nanotube extending through the end of the van der Waals force in the carbon nanotube film. Specifically, a plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or may not extend completely in the extending direction, and may be appropriately deviated from the extending edge 099146723 Form No. 1010101 Page 9/Total 25 Page 0992080277-0 [0022] 201226312 Direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotube membranes extending substantially in the same direction. Further, the carbon nanotube film comprises a plurality of end-to-end and directionally extending carbon nanotube segments, and the carbon nanotube segments are connected to each other by van der Waals force. The carbon nanotube segment includes a plurality of carbon nanotubes arranged in parallel with each other. The carbon nanotube segments have any length, thickness, uniformity and shape. [0023] Meanwhile, in the process of stretching to form a carbon nanotube film, the catalyst particles 213 on the substrate are adsorbed to one end of the carbon nanotube, thereby being separated from the substrate and dispersed throughout In the carbon nanotube film, and the catalyst particles 213 are substantially dispersed between two carbon nanotubes connected end to end by van der Waals force. Since the carbon nanotubes in the carbon nanotube array prepared by the above method have substantially the same length, so that the lengths of the carbon nanotube segments are substantially the same, the catalyst particles 213 are uniformly dispersed in the stretching process. In the stretched carbon nanotube film, that is, in the direction in which the carbon nanotubes extend, the catalyst particles 21 3 are dispersed at substantially the same interval in the carbon nanotubes and the naphthalenes connected end to end by the van der Waals force. The junction between the carbon tubes. [0024] Step S13, providing a flat and smooth other substrate 220, and placing at least one carbon nanotube film prepared by the above method on the surface of the substrate 220 to form a first carbon nanotube structure 212. [0025] As shown in FIG. 3 and FIG. 4, the substrate 220 is the same as the substrate material in S11, and the first carbon nanotube structure 212 is adhered to a surface of the substrate 220, or the first layer is The carbon nanotube structure 212 is laid flat on the substrate 220 and then fixed to the first nano 099146723 by a fixing device (not shown). Form No. A0101 Page 10 / Total 25 Page 0992080277-0 201226312 Carbon tube structure 21 2 ends, thereby fixing the first carbon nanotube structure 21 2 to the surface of the substrate 220. In addition, the first carbon nanotube structure 212 may also be suspended on the surface of the substrate 220. The floating arrangement may be provided by providing two spaced support bodies on the substrate 220, the shape of the support body. It is not necessary to have a flat surface, and both ends of the first carbon nanotube structure 212 can be directly adhered and adhered, and then the two ends of the first carbon nanotube structure 212 are respectively disposed on the plane. Further, a plurality of first carbon nanotube structures 212 may be laminated on the surface of the substrate 220. [0027] Further, a plurality of first carbon nanotube structures 212 may be laminated on the surface of the substrate 220. When the plurality of first carbon nanotube structures 212 are stacked, the phase _ the first nano-tube structure 21 2 is tightly coupled by van der Waals, and the adjacent two layers are > The preferred orientation extension direction of the carbon nanotubes in the carbon tube structure 212 is a corner angle α, where 0° S a S9 (T. When α=0°, the adjacent two layers of the first carbon nanotube structure 212 The two adjacent first carbon nanotube structures 212 may be said to be arranged in a mutually intersecting manner when the 两. The carbon nanotube structure 212 is laminated to increase the strength thereof, and the shape and structure thereof can be better maintained. In this embodiment, the plurality of first carbon nanotube structures 212 are arranged to cross each other. Step S14, the paving is provided. The substrate 220 of the carbon nanotube structure 212 is placed in a reaction furnace, and a mixture of a shielding gas and a carbon source gas is introduced and heated, and a new carbon nanotube is formed from the surface of the first carbon nanotube structure 212. Growing up to form a second carbon nanotube structure 214, stopping heating and stopping the introduction of gas to obtain the nano [0028] Specifically, the carbon nanotubes in the second carbon nanotube structure 214 are grown on the catalyst particles 213 in the first nano-tube structure 212, 0992080277-0 Form No. Α0101 Page 11 of 25 201226312 The carbon nanotubes have opposite roots and ends, and the roots of the carbon nanotubes are connected to the catalyst particles 213, and the ends are away from the first The direction of the carbon nanotube structure 212 extends. [0029] The shielding gas is one or a plurality of nitrogen, argon or other inert gas, and the shielding gas in the embodiment is preferably argon. It may be a mixture of one or more of decane, ethane, acetylene and ethylene. In this embodiment, methane is preferred. Further, a very small amount of oxygen or water vapor may be incorporated into the shielding gas, and the small amount of oxygen and Water vapor does not affect the safety of the entire system, and due to the presence of the oxygen molecules and water molecules, excessive carbon atoms can be prevented from being deposited on the surface of the catalyst particles, thereby causing passivation of the catalyst particles, thereby The activity of the catalyst is increased to increase the growth rate and quality of the growth carbon nanotubes. [0030] The second carbon nanotube structure 214 is formed by a chemical vapor deposition method, and the specific formation conditions are the same as those of the aforementioned carbon nanotube array. The conditions are substantially the same. [0031] The heating temperature is from 500 ° C to 740 ° C, and the carbon source gas is introduced for about 30 to 60 minutes to grow to obtain a carbon nanotube to form a second carbon nanotube structure 214. The height of the carbon nanotubes in the second carbon nanotube structure 214 is about 200 to 400 μm. [0032] Further, when the catalyst particles 2 1 3 in the first carbon nanotube structure 212 are small, Catalyst particles 213 may be further deposited on the surface of the first carbon nanotube structure 21 2 away from the substrate 220. The catalyst particles 213 may be deposited on the surface of the first carbon nanotube structure 212 by electron beam evaporation, sputtering, plasma deposition, electrodeposition or catalyst particle mixture coating, and the catalyst particles Uniformly dispersed in the 099146723 Form No. A0101 Page 12 / Total 25 Page 0992080277-0 201226312 [0033] ❹ [0034]

[0035] 一奈米碳管結構212表面。 本發明提供的奈米碳管複合結構的製備方法,利用一拉 伸工具從基底直接拉取製備的奈米碳管陣列,得到奈米 碳管膜,然後設置於另一基底上形成第一奈米碳管結構 ,從而在第一奈米碳管結構表面生長新的奈米碳管,形 成第二奈米碳管結構,方法簡單易行,適合在工業上批 量生長;並且由於不需要分散溶液的洗滌分散,第一奈 米碳管結構表面可以保留更多的催化劑顆粒,從而可以 直接在第一奈米碳管結構表面得到更多的奈米碳管。另 外,由於催化劑顆粒主要存在於第一奈米碳管結構中通 過凡得瓦力首尾相連的奈米碳管之間的連接處,因此, 所述催化劑顆粒的分散較均勻,從而在第一奈米碳管結 構中生長的奈米碳管可以形成陣列,以利於其在場發射 等領域的應用。 本發明進一步提供一通過上述方法製備的奈米碳管複合 結構200,如圖4及圖5所示,所述奈米碳管複合結構200 包括至少一第一奈米碳管結構21 2及第二奈米碳管結構 214,所述第二奈米碳管結構214包括複數奈米碳管,並 且每一奈米碳管一端與所述第一奈米碳管結構212的表面 相連;所述第一奈米碳管結構212包括複數沿同一方向擇 優取向延伸並通過凡得瓦力首尾相連的奈米碳管。 具體的,所述第一奈米碳管結構212為由若干奈米碳管組 成的自支撐結構,優選的,所述第一奈米碳管結構212為 一奈米碳管拉膜或奈米碳管線。所述若干奈米碳管為沿 同一方向擇優取向延伸。所述擇優取向為指在第一奈米 099146723 表單編號A0101 第13頁/共25頁 0992080277-0 201226312 碳管結構212中大多數奈米碳管的整體延伸方向基本朝同 一方向。而且,所述大多數奈米碳管的整體延伸方向基 本平行於第一奈米碳管結構212的表面。進一步地,所述 第一奈米碳管結構21 2中多數奈米碳管為通過凡得瓦力首 尾相連。具體地,所述第一奈米碳管結構21 2中基本朝同 一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸 方向上相鄰的奈米碳管通過凡得瓦力首尾相連。 [0036] 具體地,所述第一奈米碳管結構212中基本朝同一方向延 伸的多數奈米碳管,並非絕對的直線狀,可以適當的彎 曲;或者並非完全按照延伸方向上延伸,可以適當的偏 離延伸方向。因此,不能排除第一奈米碳管結構212的基 本朝同一方向延伸的多數奈米碳管中並列的奈米碳管之 間可能存在部份接觸。進一步地,所述第一奈米碳管結 構212包括複數首尾相連且定向延伸的奈米碳管片段,奈 米碳管片段兩端通過凡得瓦力相互連接。該奈米碳管片 段包括複數相互平行排列的奈米碳管。該奈米碳管片段 具有任意的長度、厚度、均勻性及形狀。 [0037] 所述第一奈米碳管結構212進一步包括複數催化劑顆粒 21 3,所述催化劑顆粒21 3吸附於所述奈米碳管的一端, 具體的,由於所述奈米碳管具有基本相同長度,因此, 所述催化劑顆粒213均勻分散於所述第一奈米碳管結構 212中,即,在沿奈米碳管延伸的方向上,所述催化劑顆 粒21 3基本以相同的間隔分散於第一奈米碳管結構中通過 凡得瓦力首尾相連的奈米碳管與奈米碳管之間的連接處 〇 099146723 表單編號A0101 第14頁/共25頁 0992080277-0 201226312 [0038] Ο 進一步的,所述奈米碳管複合結構200可包括複數層第一 奈米碳管結構212,所述複數層第一奈米碳管結構212層 疊設置形成一體結構,相鄰兩層第一奈米碳管結構212之 間通過凡得瓦力緊密結合,並且相鄰兩層第一奈米碳管 結構212中奈米碳管的擇優取向延伸方向形成一夾角α, 其中0°SaS90°。當α=0°時,所述相鄰兩層第一奈米 碳管結構212可稱之為彼此同向排列;當0°<a S 90°時 ,所述相鄰兩層第一奈米碳管結構212可稱之為彼此交又 排列。所述複數層第一奈米碳管結構212層疊設置可以提 高其強度,奈米碳管複合結構200工作過程中可更好的保 持其形狀及結構。本實施例優選彼此交叉排列的複數層 第一奈米碳管結構212。 [0039] ϋ 所述第二奈米碳管結構214包括複數奈米碳管,所述複數 奈米碳管基本相互平行且垂直於所述第一奈米碳管結構 212的表面。所述每一奈米碳管的一端均與第一奈米碳管 結構212的表面相連,具體的,所述第二奈米碳管結構 214中的奈米碳管為生長於第一奈米碳管結構212中的催 化劑顆粒213上,並通過所述催化劑顆粒213與所述第一 奈米碳管結構212相連,所述奈米碳管具有相對的根部與 端部,所述奈米碳管的根部與所述第一奈米碳管結構212 的表面相連,所述端部向遠離第一奈米碳管結構212的方 向延伸。並且,所述第二奈米碳管結構214中的奈米碳管 的長度基本相同,即所述奈米碳管的端部位於同一平面 内,所述端部與第一奈米碳管結構212表面之間的距離基 本相同。在與第一奈米碳管結構212中奈米碳管的延伸方 099146723 表單編號Α0101 第15頁/共25頁 0992080277-0 201226312 向平行的方向上,所述第二奈米碳管結構21 4中的奈米碳 管基本以相同的間距排列。 [0040] [0041] [0042] [0043] [0044] [0045] [0046] 099146723 所述奈米碳管複合結構作為場發射器件可應用於場發射 領域,進一步的,所述奈米碳管複合結構可用於熱場發 射,當所述奈米碳管複合結構用於熱場發射時,可在第 一奈米碳管結構中通入電流,利用第一奈米碳管結構產 生熱量而給第二奈米碳管結構加熱,由於第一奈米碳管 結構具有極小的單位面積比熱容,因而具有非常小的加 熱功耗及非常快的回應速度,進而可以有效的減小第二 奈米碳管結構在場發射中的吸附效應。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明提供的奈米碳管複合結構的製備方法的流 程圖。 圖2為本發明提供的奈米碳管複合結構的製備方法製備的 第一奈米碳管結構的結構示意圖。 圖3為本發明提供的奈米碳管複合結構的製備方法中所述 奈米碳管複合結構設置在基底表面的結構示意圖。 圖4為本發明提供的奈米碳管複合結構的結構示意圖。 圖5為本發明提供的奈米碳管複合結構的掃描電鏡照片。 表單編號A0101 第16頁/共25頁 0992080277-0 201226312 【主要元件符號說明】 [0047] 奈米碳管複合結構:200 [0048] 第一奈米碳管結構:21 2 [0049] 催化劑顆粒:213 [0050] 第二奈米碳管結構:214 [0051] 基底:220 0992080277-0 099146723 表單編號A0101 第17頁/共25頁[0035] A carbon nanotube structure 212 surface. The preparation method of the carbon nanotube composite structure provided by the invention uses a stretching tool to directly pull the prepared carbon nanotube array from the substrate to obtain a carbon nanotube film, and then is disposed on another substrate to form the first nai. The carbon nanotube structure, thereby growing a new carbon nanotube on the surface of the first carbon nanotube structure, forming a second carbon nanotube structure, the method is simple and easy, suitable for industrial batch growth; and because no dispersion solution is required The washing and dispersing, the surface of the first carbon nanotube structure can retain more catalyst particles, so that more carbon nanotubes can be obtained directly on the surface of the first carbon nanotube structure. In addition, since the catalyst particles are mainly present in the first carbon nanotube structure, the junction between the carbon nanotubes connected end to end by the van der Waals force, the dispersion of the catalyst particles is relatively uniform, thereby being in the first The carbon nanotubes grown in the carbon nanotube structure can form an array to facilitate their application in fields such as field emission. The present invention further provides a carbon nanotube composite structure 200 prepared by the above method. As shown in FIG. 4 and FIG. 5, the carbon nanotube composite structure 200 includes at least one first carbon nanotube structure 21 2 and a second carbon nanotube structure 214, the second carbon nanotube structure 214 comprising a plurality of carbon nanotubes, and one end of each carbon nanotube is connected to a surface of the first carbon nanotube structure 212; The first carbon nanotube structure 212 includes a plurality of carbon nanotubes extending in a preferred orientation in the same direction and connected end to end by van der Waals force. Specifically, the first carbon nanotube structure 212 is a self-supporting structure composed of a plurality of carbon nanotubes. Preferably, the first carbon nanotube structure 212 is a carbon nanotube film or a nanometer. Carbon pipeline. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation refers to the first nanometer 099146723 Form No. A0101 Page 13 / Total 25 Page 0992080277-0 201226312 The overall extension direction of most carbon nanotubes in the carbon tube structure 212 is substantially in the same direction. Moreover, the overall extension of the majority of the carbon nanotubes is substantially parallel to the surface of the first carbon nanotube structure 212. Further, most of the carbon nanotube structures in the first carbon nanotube structure 21 2 are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the first carbon nanotube structure 21 2 and each of the carbon nanotubes adjacent to each other in the extending direction pass through the van der Waals The force is connected end to end. [0036] Specifically, the majority of the carbon nanotubes 212 in the first carbon nanotube structure 212 extend substantially in the same direction, and are not absolutely linear, and may be appropriately bent; or may not extend completely in the extending direction. Appropriate deviation from the direction of extension. Therefore, partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes of the first carbon nanotube structure 212 extending substantially in the same direction cannot be excluded. Further, the first carbon nanotube structure 212 includes a plurality of end-to-end and oriented extended carbon nanotube segments, and the carbon nanotube segments are connected to each other by van der Waals force. The carbon nanotube segment includes a plurality of carbon nanotubes arranged in parallel with each other. The carbon nanotube segments have any length, thickness, uniformity, and shape. [0037] The first carbon nanotube structure 212 further includes a plurality of catalyst particles 21 3 adsorbed to one end of the carbon nanotubes, specifically, since the carbon nanotubes have basic The same length, therefore, the catalyst particles 213 are uniformly dispersed in the first carbon nanotube structure 212, that is, in the direction in which the carbon nanotubes extend, the catalyst particles 21 3 are substantially dispersed at the same interval. The junction between the carbon nanotubes and the carbon nanotubes connected by van der Waals in the first carbon nanotube structure 〇099146723 Form No. A0101 Page 14 of 25 0992080277-0 201226312 [0038] Further, the carbon nanotube composite structure 200 may include a plurality of first carbon nanotube structures 212, and the plurality of first carbon nanotube structures 212 are stacked to form an integrated structure, and the adjacent two layers are first. The carbon nanotube structures 212 are tightly coupled by van der Waals forces, and the preferred orientation extension directions of the carbon nanotubes in the adjacent two first carbon nanotube structures 212 form an angle α, where 0°SaS90°. When α=0°, the adjacent two layers of first carbon nanotube structures 212 may be said to be aligned with each other; when 0° < a S 90°, the adjacent two layers of the first nai The carbon nanotube structures 212 may be referred to as being aligned with one another. The plurality of first carbon nanotube structures 212 are stacked to increase the strength thereof, and the carbon nanotube composite structure 200 can better maintain its shape and structure during operation. This embodiment is preferably a plurality of layers of first carbon nanotube structures 212 that are arranged in cross-over each other. [0039] The second carbon nanotube structure 214 includes a plurality of carbon nanotubes that are substantially parallel to each other and perpendicular to a surface of the first carbon nanotube structure 212. One end of each of the carbon nanotubes is connected to the surface of the first carbon nanotube structure 212. Specifically, the carbon nanotubes in the second carbon nanotube structure 214 are grown on the first nanometer. On the catalyst particles 213 in the carbon tube structure 212, and connected to the first carbon nanotube structure 212 through the catalyst particles 213, the carbon nanotubes have opposite roots and ends, the nanocarbon The root of the tube is connected to the surface of the first carbon nanotube structure 212, the end extending away from the first carbon nanotube structure 212. Moreover, the lengths of the carbon nanotubes in the second carbon nanotube structure 214 are substantially the same, that is, the ends of the carbon nanotubes are in the same plane, and the ends and the first carbon nanotube structure The distance between the surfaces of 212 is substantially the same. In the first carbon nanotube structure 212, the extension of the carbon nanotube structure 099146723 Form No. 1010101 Page 15 / Total 25 Page 0992080277-0 201226312 In the parallel direction, the second carbon nanotube structure 21 4 The carbon nanotubes in the middle are arranged at substantially the same pitch. [0046] [0046] [0046] 099146723 The carbon nanotube composite structure can be applied to the field of field emission as a field emission device, and further, the carbon nanotube The composite structure can be used for thermal field emission. When the carbon nanotube composite structure is used for thermal field emission, an electric current can be introduced into the first carbon nanotube structure, and heat is generated by using the first carbon nanotube structure. The second carbon nanotube structure is heated, and since the first carbon nanotube structure has a small specific heat capacity per unit area, it has very small heating power consumption and a very fast response speed, thereby effectively reducing the second nanocarbon. The adsorption effect of the tube structure in field emission. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a carbon nanotube composite structure provided by the present invention. 2 is a schematic view showing the structure of a first carbon nanotube structure prepared by the method for preparing a carbon nanotube composite structure provided by the present invention. 3 is a schematic view showing the structure of the carbon nanotube composite structure disposed on the surface of the substrate in the method for preparing a carbon nanotube composite structure provided by the present invention. 4 is a schematic structural view of a carbon nanotube composite structure provided by the present invention. FIG. 5 is a scanning electron micrograph of a carbon nanotube composite structure provided by the present invention. Form No. A0101 Page 16 of 25 0992080277-0 201226312 [Explanation of main component symbols] [0047] Nano carbon nanotube composite structure: 200 [0048] First carbon nanotube structure: 21 2 [0049] Catalyst particles: 213 [0050] Second carbon nanotube structure: 214 [0051] Substrate: 220 0992080277-0 099146723 Form No. A0101 Page 17 of 25

Claims (1)

201226312 七、申請專利範圍: 1 . 一種奈米碳管複合結構的製備方法,其包括以下步驟: 提供一基底,在基底表面生長奈米碳管陣列; 採用一拉伸工具從奈米碳管陣列中拉取獲得一奈米碳管膜 ,所述奈米碳管膜包括複數通過凡得瓦力首尾相連的奈米 碳管以及分散於所述第一奈米碳管結構中的催化劑顆粒; 提供另一基底,並將至少一奈米碳管膜設置於該基底表面 形成一第一奈米破管結構; 將所述設置有第一奈米碳管結構的基底置入反應爐中,通 過化學氣相沈積法在所述第一奈米碳管結構表面生長奈米 碳管,形成第二奈米碳管結構得到所述奈米碳管複合結構 0 2 .如申請專利範圍第1項所述的奈米碳管複合結構的製備方 法,其中,所述第一奈米碳管結構中大多數奈米碳管的軸 向沿同一方向擇優取向延伸。 3 .如申請專利範圍第2項所述的奈米碳管複合結構的製備方 法,其中,所述大多數奈米碳管中每一奈米碳管與在延伸 方向上相鄰的奈米碳管通過凡得瓦力首尾相連。 4 .如申請專利範圍第1項所述的奈米碳管複合結構的製備方 法,其中,所述催化劑顆粒分散於首尾相連的奈米碳管的 連接處。 5 .如申請專利範圍第4項所述的奈米碳管複合結構的製備方 法,其中,所述催化劑顆粒在沿奈米碳管的延伸方向上等 間距排列。 6 .如申請專利範圍第1項所述的奈米碳管複合結構的製備方 099146723 表單編號 A0101 第 18 頁/共 25 頁 0992080277-0 201226312 法,其中,在通過化學氣相沈積法形成第二奈米碳管結構 前進一步包括一在第一奈米碳管結構表面形成催化劑顆粒 的步驟。 7 .如申請專利範圍第6項所述的奈米碳管複合結構的製備方 法,其中,所述催化劑顆粒通過電子束蒸發、濺射、電漿 沈積、電沈積或催化劑顆粒混合液塗覆的方法形成於所述 第一奈米碳管結構的表面。 8 .如申請專利範圍第1項所述的奈米碳管複合結構的製備方 法,其中,所述基底表面層疊設置有複數層奈米碳管膜形 〇 成第一奈米碳管結構。 9 .如申請專利範圍第1項所述的奈米碳管複合結構的製備方 法,其中,所述通過化學氣相沈積法形成第二奈米碳管結 構的方法進一步包括以下步驟: 向設置有第一奈米碳管結構的反應爐中邋入碳源氣體與保 護氣體的混合氣體; 加熱所述第一奈米碳管結構,在所述第一奈米碳管結構的 表面生長奈米碳管; 〇 反應一定時間後,停止加熱並停止通入混合氣體,在所述 第一奈米碳管結構的表面形成所述第二奈米碳管結構。 10 .如申請專利範圍第9項所述的奈米碳管複合結構的製備方 法,其中,所述加熱溫度為500°C〜740°C。 11 . 一種奈米碳管複合結構,其改良在於,所述奈米碳管複合 結構包括一第一奈米碳管結構及第二奈米碳管結構,所述 第一奈米碳管結構包括複數奈米碳管沿同一方向擇優取向 延伸並通過凡得瓦力首尾相連,所述第二奈米碳管結構包 括複數奈米碳管設置於所述第一奈米碳管結構的一表面, 099146723 表單編號A0101 第19頁/共25頁 0992080277-0 201226312 並且所迷第二奈米碳管結構中每一奈米碳管的根部與所述 第不米碳管結構表面相連,端部向遠離所述第_奈米碳 管結構的方向延伸。 ' 12 ·如申請專利範圍第n項所述的奈米礙管複合結構,其卜 所述第一奈米碳管結構中分散有複數催化劑顆粒。 13 ·如申請專利範圍第12項所述的奈米碳管複合結構,其中, 所述複數催化劑顆粒分散於通過凡得瓦力首尾相連的奈米 碳管與奈米碳管之間的連接處。 14 ·如申請專利範圍第12項所述的奈米碳管複合結構,其卜 所述第二奈米碳管結構中的奈米碳管的根部與催化劑顆粒 相連。 15 .如申請專利範圍第丨丨項所述的奈米碳管複合結構其中, 所述第二奈米碳管結構中奈米碳管的端部位於同一平面。 16 .如申請專利範圍第丨丨項所述的奈米碳管複合結構其中, 所地第二奈米碳管結構中的奈米;6炭管垂直於第一奈米碳管 、'’。構的表面。 099146723 表單編號A0101 第20頁/共25頁 0992080277-0201226312 VII. Patent application scope: 1. A method for preparing a carbon nanotube composite structure, comprising the steps of: providing a substrate, growing a carbon nanotube array on the surface of the substrate; using a stretching tool from the carbon nanotube array Extracting a carbon nanotube film, the carbon nanotube film comprising a plurality of carbon nanotubes connected end to end by van der Waals and catalyst particles dispersed in the first carbon nanotube structure; Another substrate, and at least one carbon nanotube film is disposed on the surface of the substrate to form a first nano-tube structure; the substrate provided with the first carbon nanotube structure is placed in the reaction furnace, and passed through the chemical Forming a carbon nanotube on the surface of the first carbon nanotube structure to form a second carbon nanotube structure to obtain the carbon nanotube composite structure 0 2 as described in claim 1 The method for preparing a carbon nanotube composite structure, wherein an axial direction of most of the carbon nanotubes in the first carbon nanotube structure extends in a preferred orientation in the same direction. 3. The method for preparing a carbon nanotube composite structure according to claim 2, wherein each of the plurality of carbon nanotubes has a carbon nanotube adjacent to an extension direction The tubes are connected end to end by van der Waals. 4. The method of preparing a carbon nanotube composite structure according to claim 1, wherein the catalyst particles are dispersed at a junction of the end-to-end carbon nanotubes. 5. The method of preparing a carbon nanotube composite structure according to claim 4, wherein the catalyst particles are arranged at equal intervals along a direction in which the carbon nanotubes extend. 6. The preparation method of the carbon nanotube composite structure described in claim 1 is 099146723 Form No. A0101, page 18/25, 0992080277-0 201226312, wherein the second method is formed by chemical vapor deposition The carbon nanotube structure further includes a step of forming catalyst particles on the surface of the first carbon nanotube structure. 7. The method for preparing a carbon nanotube composite structure according to claim 6, wherein the catalyst particles are coated by electron beam evaporation, sputtering, plasma deposition, electrodeposition or catalyst particle mixture. A method is formed on a surface of the first carbon nanotube structure. 8. The method of preparing a carbon nanotube composite structure according to claim 1, wherein the surface of the substrate is laminated with a plurality of layers of carbon nanotube film formed into a first carbon nanotube structure. 9. The method for preparing a carbon nanotube composite structure according to claim 1, wherein the method for forming a second carbon nanotube structure by chemical vapor deposition further comprises the following steps: a reaction gas of a first carbon nanotube structure is mixed with a mixed gas of a carbon source gas and a shielding gas; heating the first carbon nanotube structure to grow nanocarbon on a surface of the first carbon nanotube structure After the reaction for a certain period of time, the heating is stopped and the introduction of the mixed gas is stopped, and the second carbon nanotube structure is formed on the surface of the first carbon nanotube structure. 10. The method of preparing a carbon nanotube composite structure according to claim 9, wherein the heating temperature is from 500 ° C to 740 ° C. 11. A carbon nanotube composite structure, the improvement comprising the carbon nanotube composite structure comprising a first carbon nanotube structure and a second carbon nanotube structure, the first carbon nanotube structure comprising The plurality of carbon nanotubes extend in a preferred orientation in the same direction and are connected end to end by a van der Waals force, the second carbon nanotube structure comprising a plurality of carbon nanotubes disposed on a surface of the first carbon nanotube structure, 099146723 Form No. A0101 Page 19 of 25 0992080277-0 201226312 And the root of each carbon nanotube in the second carbon nanotube structure is connected to the surface of the first carbon nanotube structure, and the end is far away The direction of the first carbon nanotube structure extends. [12] The nano-barrier composite structure according to item n of the patent application, wherein the plurality of catalyst particles are dispersed in the first carbon nanotube structure. The carbon nanotube composite structure according to claim 12, wherein the plurality of catalyst particles are dispersed at a junction between a carbon nanotube and a carbon nanotube connected end to end by van der Waals force . 14. The carbon nanotube composite structure according to claim 12, wherein the root of the carbon nanotube in the second carbon nanotube structure is connected to the catalyst particles. 15. The carbon nanotube composite structure according to claim 2, wherein the ends of the carbon nanotubes in the second carbon nanotube structure are in the same plane. 16. The carbon nanotube composite structure of claim 2, wherein the carbon nanotubes in the second carbon nanotube structure are perpendicular to the first carbon nanotubes, ''. The surface of the structure. 099146723 Form No. A0101 Page 20 of 25 0992080277-0
TW099146723A 2010-12-29 2010-12-29 Carbon nanotube composite structure and method for making same TWI458677B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099146723A TWI458677B (en) 2010-12-29 2010-12-29 Carbon nanotube composite structure and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099146723A TWI458677B (en) 2010-12-29 2010-12-29 Carbon nanotube composite structure and method for making same

Publications (2)

Publication Number Publication Date
TW201226312A true TW201226312A (en) 2012-07-01
TWI458677B TWI458677B (en) 2014-11-01

Family

ID=46932744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099146723A TWI458677B (en) 2010-12-29 2010-12-29 Carbon nanotube composite structure and method for making same

Country Status (1)

Country Link
TW (1) TWI458677B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106044739B (en) * 2015-04-09 2020-07-17 中国科学院苏州纳米技术与纳米仿生研究所 High-orientation carbon nano tube film or fiber and micro-carding preparation device and method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI274736B (en) * 2003-03-28 2007-03-01 Hon Hai Prec Ind Co Ltd Carbon nanotubes array and method of manufacturing the same
KR20060032402A (en) * 2004-10-12 2006-04-17 삼성에스디아이 주식회사 Carbon nanotube emitter and manufacturing method thereof and field emission device and manufacturing method thereof
CN101407312B (en) * 2007-10-10 2011-01-26 鸿富锦精密工业(深圳)有限公司 Apparatus and method for preparing carbon nano-tube film
TWI365808B (en) * 2009-05-15 2012-06-11 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube film and drawing device for making the same
TWI381990B (en) * 2009-05-15 2013-01-11 Hon Hai Prec Ind Co Ltd Carbon nanotube film precursor, carbon nanotube film, method for fabricating same, and light source having carbon nanotube film

Also Published As

Publication number Publication date
TWI458677B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
US10337098B2 (en) Method for growing carbon nanotubes
TWI485099B (en) Carbon nanotube structure and method for making the same
US10533247B2 (en) Method for growing carbon nanotubes
US9840771B2 (en) Method of growing carbon nanotube using reactor
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
JP5243478B2 (en) Nanomaterial thin film
TWI608994B (en) Carbon fiber film
TWI462873B (en) Method for making carbon nanotube structure
TWI608993B (en) Carbon fiber film and method for making thereof
CN102092670B (en) Carbon nano-tube composite structure and preparation method thereof
TW201125814A (en) Method for making carbon nanotube structure
TWI458677B (en) Carbon nanotube composite structure and method for making same
TWI581664B (en) Field emission device
TWI381990B (en) Carbon nanotube film precursor, carbon nanotube film, method for fabricating same, and light source having carbon nanotube film
CN103086351B (en) Carbon nanotube composite structure
TWI417923B (en) Field emission cathode structure and method for making same
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube
TW201125809A (en) Method for making carbon nanotube structure