TWI313670B - Apparatus and method for fabrication of carbon nanotube array - Google Patents

Apparatus and method for fabrication of carbon nanotube array Download PDF

Info

Publication number
TWI313670B
TWI313670B TW94129246A TW94129246A TWI313670B TW I313670 B TWI313670 B TW I313670B TW 94129246 A TW94129246 A TW 94129246A TW 94129246 A TW94129246 A TW 94129246A TW I313670 B TWI313670 B TW I313670B
Authority
TW
Taiwan
Prior art keywords
carbon
reaction chamber
carbon nanotube
nanotube array
gaseous
Prior art date
Application number
TW94129246A
Other languages
Chinese (zh)
Other versions
TW200708477A (en
Inventor
Kai-Li Jiang
Zhuo Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94129246A priority Critical patent/TWI313670B/en
Publication of TW200708477A publication Critical patent/TW200708477A/en
Application granted granted Critical
Publication of TWI313670B publication Critical patent/TWI313670B/en

Links

Description

1313670 九、發明說明: 【發明所屬之技術領域】 置及方法,尤其係利用化學氣相 本發明涉及一種奈米碳管陣列製備事 沈積法之奈米碳管陣列製備裴置及方法。 【先前技術】 可參種新f二材料’由日本研究人員s 11細于蘭年發現, 可參見 Helical microtubules of graphiti ·赞見 ν〇1· 354, P56 (1991)。奈米碳管且有極 ,1脚a,細赃’ 特性等。目前已廣咖於電子1313670 IX. Description of the Invention: [Technical Field] The present invention relates to a carbon nanotube array preparation apparatus and method for depositing a carbon nanotube array. [Prior Art] A new material can be found by the Japanese researcher s 11 in the case of Lan Nian, see Helical microtubules of graphiti. See also ν〇1· 354, P56 (1991). The carbon nanotubes have poles, 1 foot a, fine 赃' characteristics. Currently widely used in electronics

-般而言’奈《管分鱗絲料f與錢奈米碳管_ 米碳管係由㈣層同心圓柱管狀結構疊套而成,這些圓柱管由碳科^ 成’就好像把石別卷起來《,碳原子於轉上呈六邊形排列,兩端由 五邊形或七邊形奴壞組成之端冒封口,形成凹或凸結構。單壁奈米碳管直 徑-般為1〜6奈米(最小直徑為Μ奈米),只有一層石墨結構。由於單壁奈 米碳管具有單層壁結構,其相對於多壁奈米碳管而言,具有更少的原子缺 陷。進而更具較大的應用潛力。 、 先前技術中,單壁奈米破管之製備方法有:⑴Smalle博人於Science 273’ 483〜487(1996), Crystalline Ropes 〇f Metallic Carbon Nanotubes 一文中揭露之雷射蒸發法,其採用聚焦雷射光束消融碳—鎳—鈷混合物製備 出由100〜500根單壁奈米碳管組成之奈米碳管束,該奈米碳管之定向性較 好,產出率為70%左右。(2)Journet等人於Nature 388,756~758(1997), Large scale production of single-walled carbon nanotubes by the electric-arc technique—文中揭露之電弧放電法,其採用直流電弧法製 備出大量之單壁奈米碳管束,該大量單壁奈米碳管束之取向較混亂。(3)Dai 專人於Chemical Physics Letters 292, 567〜574( 1998),Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes — 文中揭 露之化學氣相沈積法,其以曱烷為碳源氣,氧化鎳(NiO)、氧化鈷(CoO)、 或氧化鎳/氧化鈷(NiO/CoO)層作為催化劑;當採用晶態氧化鋁奈米粒子作 為催化劑支撐體時,製備出大量單根之單壁奈米碳管及少量之單壁奈米碳 1313670 僅能 =出(一s Slllca)作為催化劑支撑體時, 先前技術僅可製備出單根單壁奈米碳管,及單根#^ 以=料壁奈米碳管陣列。其將限制單壁奈米碳 示器場發射平Φ光源、以及熱介面材料等領域之應用。 於此,有必要提供—種奈米碳管_製備裝置及方法,I可、 早壁奈米碳管陣列之生長。 /、J具現 【發明内容】 其可實 下面將以具體實施例說明一種奈米碳管陣列製備裝置及方法, 現單壁奈米碳管陣列之生長。 為實現以上内容’提供—種奈米碳管陣列製縣置,其包括: 一反應腔; h ’ 劑;及 局部加熱裝置,用以加熱裝載於該反應腔内的奈米碳管生長用催化 一氣態碳供給裝置,㈣練餅肢應助 該反應腔提供-氣驗。 狀场位置向 優選的,所述局部加熱裝置為一高頻爐或加孰台。 ㈣ΪΪΓ所述錢碳供給裝置包括—石墨塊及懷置,藉由該雷 射衣置産生一雷射光束轟擊該石墨塊以產生一氣態碳。 可優選的,所述氣態碳供給裝置包括一對石墨電極及一電弧放 置藉由電狐放電裝置使s亥對石墨電極進行電弧放電以産生一氣維碳。 =優_,所述氣態碳供給裝置包括—石墨塊及—與該石串聯 氣態碳 形成^轉之電源’藉由該電源加熱紋墨塊至石墨氣化溫度以產生一 以及 提供一種奈米碳管陣列製備方法,其包括以下步驟: 將形成有一催化劑層之基底置於一反應腔内; 向該反應腔内通入保護氣體,以使該反應腔内的空氣排出; 對為反應腔内之基底進行局部加熱,將催化劑加熱至奈米碳管生長溫 1313670 度; 於基底之上游位置(Upstream)向反應腔内提供一氣態碳; 向該反應腔内通入一碳源氣,以進行奈米碳管陣列生長。 優選的,所述奈米碳管生長溫度為65(M200攝氏度。 優選的,所述氣態碳係藉由向一石墨塊通以—加熱電流使其到達高溫 而形成。 可優選的,所述氣態碳係藉由採用雷射光束蒸發一石墨塊而形成。 也可優選的,所述氣態碳係藉由採用電弧放電法使一對石墨電極進行 電弧放電而形成。- In general, 'Nai' pipe-fed squama f and nan n carbon pipe _ m carbon pipe is made up of (four) layers of concentric cylindrical tubular structure, these cylindrical pipes are made of carbon Rolled up, the carbon atoms are arranged in a hexagon on the turn, and the ends of the pentagon or the heptagon are sealed at both ends to form a concave or convex structure. The diameter of a single-walled carbon nanotube is generally 1 to 6 nm (minimum diameter is Μ nanometer) and has only one layer of graphite structure. Since single-walled carbon nanotubes have a single-wall structure, they have fewer atomic defects than multi-walled carbon nanotubes. In turn, it has greater application potential. In the prior art, the preparation method of the single-walled nano-tube is as follows: (1) The laser evaporation method disclosed in the article "Smalle" in Science 273' 483~487 (1996), Crystalline Ropes 〇f Metallic Carbon Nanotubes, which uses a focused mine The beam ablation carbon-nickel-cobalt mixture is used to prepare a carbon nanotube bundle composed of 100~500 single-walled carbon nanotubes. The orientation of the carbon nanotubes is good, and the yield is about 70%. (2) Journet et al., Nature 388, 756-758 (1997), Large scale production of single-walled carbon nanotubes by the electric-arc technique, which uses a DC arc method to prepare a large number of singles. The wall-nano carbon nanotube bundle has a relatively disordered orientation of the large number of single-walled carbon nanotube bundles. (3) Dai specializes in Chemical Physics Letters 292, 567~574 (1998), Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes - chemical vapor deposition method disclosed in the article, which uses decane as a carbon source gas, nickel oxide (NiO), cobalt oxide (CoO), or nickel oxide/cobalt oxide (NiO/CoO) layer as a catalyst; when crystalline alumina nanoparticles are used as a catalyst support, a large number of single-walled single-walled nanoparticles are prepared. When the carbon tube and a small amount of single-walled nanocarbon 1313670 can only be used as a catalyst support, the prior art can only prepare a single-walled single-walled carbon nanotube, and a single root. Nano carbon tube array. It will limit the application of single-walled nanocarbon field emission flat Φ light sources, as well as thermal interface materials. Herein, it is necessary to provide a nanocarbon tube_preparation device and method, and I can grow the early wall carbon nanotube array. [Comparative Description of the Invention] The present invention will be described below with reference to a specific embodiment of a carbon nanotube array preparation apparatus and method for growing a single-walled carbon nanotube array. In order to achieve the above content, a nanocarbon tube array system is provided, which comprises: a reaction chamber; h' agent; and a local heating device for heating the carbon nanotube growth catalyst loaded in the reaction chamber. A gaseous carbon supply device, (4) training the cake limb should help the reaction chamber to provide - gas test. Preferably, the local heating device is a high frequency furnace or a twisting station. (4) The carbon supply device includes a graphite block and a pocket, and a laser beam is generated by the laser coating to bombard the graphite block to generate a gaseous carbon. Preferably, the gaseous carbon supply means comprises a pair of graphite electrodes and an arc placement for arc-discharging the graphite electrode by an electric fox discharge device to produce a gas-dimensional carbon. = 优_, the gaseous carbon supply device comprises - a graphite block and - a power source for forming a gaseous carbon in series with the stone - by the power source heating the ink block to the graphite gasification temperature to produce a and providing a nano carbon a tube array preparation method comprising the steps of: placing a substrate forming a catalyst layer in a reaction chamber; introducing a shielding gas into the reaction chamber to discharge air in the reaction chamber; The substrate is locally heated, and the catalyst is heated to a carbon nanotube growth temperature of 1313670 degrees; a gaseous carbon is supplied into the reaction chamber at an upstream position of the substrate (Upstream); a carbon source gas is introduced into the reaction chamber to carry out the reaction. The carbon nanotube array grows. Preferably, the carbon nanotube growth temperature is 65 (M200 degrees Celsius. Preferably, the gaseous carbon is formed by heating a current to a graphite block to reach a high temperature. Preferably, the gaseous state The carbon system is formed by evaporating a graphite block using a laser beam. It is also preferable that the gaseous carbon is formed by arc-discharging a pair of graphite electrodes by an arc discharge method.

所述基底包括矽、玻璃或氧化鋁。 相較于先刖技術,本技術方案所提供之奈米碳管陣列製備裝置及方 法’其藉由設Ϊ-局部加餘置域態碳供給錢,可於反應腔之催化劑 層位置處形成鴨溫度梯度,及於反應㈣提供紐碳源;其可實現奈米 碳管陣狀快速生長,且可於基底上生長料壁奈米碳管_。 …、 【實施方式】 下面結合附圖將對本發明實施例作進一步之詳細說明。 第一實施例 參見弟目本發明苐一實施例戶斤提供之奈米碳管陣列製備裝置, 其包括-反應腔10,-局部加錄體,及—氣態碳供給裝置3〇。 反應腔10具有-進氣σ 12,及-與該進氣口 12相對設置之出氣口 14。 該反應腔10可為先前技術中化學氣相沈積法生長奈米碳f相之石英管。 ,進氣口 12與域口14分別設於該反應刪之兩端。軌叫可用于向反 魏體(如1氬氣、氮氣、減、或纽合)及线奈米破管 體心’、孔’曱院、乙烯或乙块等碳氫化合物h出氣口丨何用於排放氣 將美It猶置2⑽以·餘反細_之基底4G進行局部加轨,以 土 -、 _層42加熱為佳。本實施射翻高麵,其只能對導 1313670 2熱,因此其可實現僅對形成於基底4G表面之催化舰&加埶 於催化綱做置與催化綱42上舞成·溫度梯度,有渺夺米^ =快速生長。雜’局部加熱裝測也可加熱台,其可對整個^底 加熱,但非對整個反應腔加熱;其也可於催化2位 ^ _ 上方形成日趟溫㈣度。 〃職·42 ㈣iirtt 以向反應腔1G提供—額外碳源。該氣態碳供給裝 置30可産生_碳’並於反應腔1G之賴有絲碳#生仙催化劑層犯之The substrate comprises tantalum, glass or alumina. Compared with the prior art, the carbon nanotube array preparation device and method provided by the technical solution can form a duck at the position of the catalyst layer of the reaction chamber by providing a Ϊ-local plus residual domain state carbon supply money. The temperature gradient and the reaction (4) provide a carbon source; it can realize the rapid growth of the carbon nanotube array and can grow the carbon nanotubes on the substrate. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. First Embodiment Referring to the present invention, a carbon nanotube array preparation apparatus provided by a household is provided, which comprises a reaction chamber 10, a partial addition body, and a gaseous carbon supply unit 3〇. The reaction chamber 10 has an intake air σ 12, and an air outlet 14 disposed opposite the air inlet 12. The reaction chamber 10 can be a quartz tube that grows a nanocarbon f-phase by chemical vapor deposition in the prior art. The air inlet 12 and the domain port 14 are respectively disposed at both ends of the reaction. Rails can be used for anti-Wei body (such as 1 argon, nitrogen, reduction, or nucleus) and line nanotubes, 'holes' broth, ethylene or block B hydrocarbon h outlet For the venting gas, the US It is placed on the base 4G of 2 (10) and the reverse __, and the soil is heated by the soil-, _ layer 42. This embodiment can be used to illuminate the high surface, which can only heat the lead 1313670 2, so that it can achieve only the catalytic ship & formed on the surface of the base 4G and the catalyst and temperature gradient. There is a plundering rice ^ = rapid growth. The hetero-local heating test can also be used to heat the stage, which can heat the entire substrate, but does not heat the entire reaction chamber; it can also form a diurnal temperature (four degrees) above the catalytic 2 position ^ _ . Defamation 42 (4) iirtt to provide additional carbon source to the reaction chamber 1G. The gaseous carbon supply device 30 can generate _carbon and reacts with the silk carbon in the reaction chamber 1G.

上游位置提供氣態碳。所述上雜置係姉化_42之位於進氣叫一側 某-位置處。所述氣態碳供給裝航職封 裝置3。包括-石墨塊(圖未示)及-雷射裝置(圖未示),該雷射匕=二 雷射光束絲該;5墨塊即可產生-氣態碳,該氣態碳可經崎人惰性氣體 ^其導入反應腔_之催化綱歡上游位置。該氣態碳供給裝置3〇也可 私用其他結獅式’如:其包括—對;5墨電極及—電弧放電裝置,將該對 石墨電極裝載於该電弧放電裝肋以進行電孤放電;進而産生—氣態碳。 向該電弧放電裝肋通人-惰性氣體可將該賴碳導人反應腔_之催化 劑層42之上游位置。 當然’也可為另-種氣態碳供給裂置,其包括一石墨塊及與該石墨塊 串聯形成一電氣回路之電源。該石墨塊直接放置於反應腔内裝載催化劑之 上游位置,該電源設於反應腔1〇外部;使用一穿過進氣口 12之導線實現石 墨塊與電源之電氣連接。該電源可於石墨塊兩端施加加熱電路以使石墨塊 到達石墨之氣化溫度而於反應腔1 〇裝載催化劑層42之上游位置産生一氣態 石炭。 下面將詳細描述本實施例中奈米碳管陣列製備裝置1〇〇之操作過程。 (1) 向反應腔10提供一上表面有一催化劑層42之基底40。該基底40之基 體材質可為半導體材料(如,矽)、或玻璃及氧化鋁等。所述催化劑層42為 一金屬膜’其厚度以奈米量級(小於1微米)為佳;該催化劑層42之材質可選 用常用之奈米碳管生長用催化劑,如鐵、銘、鎳、或其合金等。 (2) 經由該進氣口 12向該反應腔10内通入保護氣體,以使該反應腔10内 之空氣經由該出氣口 14排除。並且,於後續催化劑層42加熱及奈米碳管生 1313670 續通人該倾氣體。其巾,鍵氣體可選用氬氣、氮氣、氦氣 荨惰性氣體,或其混合。 石山狄^ 局#加熱裝置30,將該基底40表面之催化劑層42加熱至奈米 °奈料管生長温度—般為65(M2GG攝氏度。本實施例中, ^。’、、、、置30為-南麵’其將基底5G表面之催化綱42加熱至珊暴氏 基底此上游位4(喊職)向反應麟供—氣驗。該氣態碳 係由氣轉供給裝提供,職態奴提供紐Gaseous carbon is provided at the upstream location. The upper hybrid system _42 is located at a certain position on the side of the intake air. The gaseous carbon is supplied to the navigable seal device 3. Including - graphite block (not shown) and - laser device (not shown), the laser 匕 = two laser beam; 5 ink block can produce - gaseous carbon, the gaseous carbon can be inert The gas is introduced into the upstream position of the catalytic chamber. The gaseous carbon supply device 3 can also be used for other lion-like functions, such as: including - pair; 5 ink electrodes and - arc discharge device, the pair of graphite electrodes are loaded on the arc discharge ribs for electrical isolation; In turn, gaseous carbon is produced. The argon-inert gas is introduced into the arc discharge to direct the lanthanum carbon to the upstream of the catalyst layer 42 of the reaction chamber. Of course, it is also possible to provide another gaseous carbon supply cleavage, which comprises a graphite block and a power supply in series with the graphite block to form an electrical circuit. The graphite block is placed directly in the reaction chamber upstream of the loading catalyst, and the power source is disposed outside the reaction chamber 1; an electrical connection between the graphite block and the power source is achieved by using a wire passing through the air inlet 12. The power source can apply a heating circuit across the graphite block to cause the graphite block to reach the vaporization temperature of the graphite to produce a gaseous charcoal upstream of the reaction chamber 1 and the catalyst layer 42. The operation of the carbon nanotube array preparation apparatus 1 in this embodiment will be described in detail below. (1) A reaction substrate 10 is provided with a substrate 40 having a catalyst layer 42 on its upper surface. The substrate of the substrate 40 may be made of a semiconductor material (e.g., germanium), or glass, alumina, or the like. The catalyst layer 42 is a metal film whose thickness is in the order of nanometers (less than 1 micrometer); the material of the catalyst layer 42 can be selected from commonly used catalysts for carbon nanotube growth, such as iron, inscription, nickel, Or its alloys, etc. (2) A shielding gas is introduced into the reaction chamber 10 via the gas inlet 12 so that the air in the reaction chamber 10 is removed through the gas outlet 14. Moreover, the subsequent catalyst layer 42 is heated and the carbon nanotubes are 1313670. For the towel, the key gas may be argon gas, nitrogen gas, helium gas, inert gas, or a mixture thereof. The heating device 30 heats the catalyst layer 42 on the surface of the substrate 40 to a nanometer tube growth temperature of 65 (M2GG degrees Celsius). In this embodiment, ^.', ,, and 30 For the - south side, it heats the catalytic element 42 of the surface of the base 5G to the base of the Shan's base. This upstream position 4 (calling the job) supplies the gas to the reaction. The gaseous carbon is supplied by the gas supply, the slave Offer

啓^,等雷射裝置產生―雷射光束轟擊—石墨塊產生—氣態碳,同(^ 採用一惰性氣體縣氣態碳導人反應刪中之基之上游位置。藉由控 制鐳射功衬控佩態碳之蒸出量,進而可控制奈米碳管之生長速度。⑵ 將-對石墨電歸載於祕放電裝置,並使該對石Μ極之離足夠小(小 於1宅米);啓_電弧放電裝置使石墨雜發生取瓜放電産生—氣態碳。 向電弧放電裝置内通人—惰性氣體以將該氣態碳導人反應腔㈣之基底50 之上游位置。藉由控制電弧放電之放電電流大小可控制氣態碳之蒸出量, 進而可控制奈米碳管之生長速度。⑶於反應㈣輯之催化劑層42之上游 位置放置-石墨塊,藉由-位於反應腔部之電源向石墨塊通入加熱電 肌,使其到達石墨氣化溫度以於催化劑層42之上游位置産生一氣態碳。藉 由控制加熱電流大小可控織態碳之蒸出量,進而可控制奈米碳管之 速度。 ^ ⑸經由進氣口 12向該反應腔_通人—碳源氣,以進行夺米碳管生 長。為精確控制奈米碳管陣列之生長高度,以在通入氣態叙同時通入碳 源氣為佳。於碳雜及紐氣體之攜帶作用下,氣態碳賴帶至基細上 之催化劑層42位置。碳源氣於催化劑層42之高溫下分解出碳與氫;碳源氣 遇高溫分解出之碳及向反應腔1〇通人之祕碳與催化劑糾/中之催化劑粒 子形成金屬碳絲’當金屬碳化物巾之碳制麵後,其巾之餅向低溫 方向(即催化劑上方位置)析出而形成奈米碳管。其中,碳源氣可選: 奈米碳管生長常狀甲烧、乙烯或乙炔等碳氫化合物。第—圖中箭頭所指 方向為氣流方向。於奈米碳管生長過程中,保護氣體與碳源氣之體積比^Kai ^, and other laser devices produce "laser beam bombardment - graphite block production - gaseous carbon, the same (^ using an inert gas county gas carbon to guide the reaction to the upstream position of the base. By controlling the laser lining control The amount of carbon evaporated, which in turn can control the growth rate of the carbon nanotubes. (2) The electroplating of the graphite is carried on the secret discharge device, and the pair of stones is sufficiently small (less than 1 house); The arc discharge device causes the graphite to be discharged to produce a gaseous carbon. The inert gas is introduced into the arc discharge device to guide the gaseous carbon to the upstream position of the substrate 50 of the reaction chamber (4) by controlling the discharge of the arc discharge. The current size controls the amount of vaporization of the gaseous carbon, which in turn controls the growth rate of the carbon nanotubes. (3) The graphite block is placed upstream of the catalyst layer 42 of the reaction (4), and the graphite is located at the power supply of the reaction chamber. The block is heated to the graphite gasification temperature to reach a graphite gasification temperature to generate a gaseous carbon at a position upstream of the catalyst layer 42. The amount of the heating current can be controlled to control the amount of vaporized carbon, thereby controlling the carbon nanotubes. Speed. ^ (5) through the gas inlet 12 to the reaction chamber _ pass-carbon source gas to carry out the carbon nanotube growth. In order to accurately control the growth height of the carbon nanotube array, in order to enter the carbon source while entering the gas state Gas is preferred. Under the action of carbon and neon gas, the gaseous carbon is brought to the position of the catalyst layer 42 on the base. The carbon source gas decomposes carbon and hydrogen at the high temperature of the catalyst layer 42; The carbon which is decomposed and the carbon and the catalyst particles in the reaction chamber are formed into a metal carbon filament. When the carbon surface of the metal carbide towel is formed, the cake of the towel is in a low temperature direction (ie, above the catalyst). The carbon nanotubes are formed by precipitation. Among them, the carbon source gas is optional: the carbon nanotubes are grown in the form of normal hydrocarbons, ethylene or acetylene, etc. The direction indicated by the arrow in the figure is the direction of the gas flow. Volume ratio of protective gas to carbon source gas during the growth of carbon nanotubes^

Cs) 10 1313670 選為1:1〜MO ;反應腔10内之氣壓優選為4〇〇〜60W;6(T〇rr);保護氣體之户 速優選為2GG〜5GG標準立方厘米每分鐘(则);碳源氣之流速優選為 20〜6〇SCCm。本實施例中,反應腔1〇内之氣壓為5〇〇T〇rr ;保護氣體之流速 為360sccm ;石炭源氣選用乙炔,其流速為4〇sccm。 *迷 本實施例中’單壁奈米碳管之生長速率極快,於 奈米碳管陣列高度達1毫米以上,甚至可達2· 5毫米每分鐘。第二 加例中150攝氏度生長條件下生長出之單壁奈米碳管陣列中之單壁奈 =之拉曼猶® ;由第二圖可知,該單壁奈米碳管陣财單壁奈米碳管=Cs) 10 1313670 is selected as 1:1~MO; the gas pressure in the reaction chamber 10 is preferably 4〇〇~60W; 6(T〇rr); the gas velocity of the shielding gas is preferably 2GG~5GG standard cubic centimeters per minute ( The flow rate of the carbon source gas is preferably 20 to 6 〇 SCCm. In this embodiment, the gas pressure in the reaction chamber 1 is 5 〇〇 T 〇 rr; the flow rate of the shielding gas is 360 sccm; the source gas of the charcoal is acetylene, and the flow rate is 4 〇 sccm. * In this embodiment, the growth rate of the single-walled carbon nanotubes is extremely fast, and the height of the carbon nanotube array is more than 1 mm, and even up to 2.5 mm per minute. In the second addition, the single-walled nanotubes in the single-walled carbon nanotube array grown under the condition of 150 degrees Celsius growth; the single-walled nanotubes of Raman Jue®; as shown in the second figure, the single-walled carbon nanotube arrays Carbon tube =

,高計難向呼賴式顯利79· 92顧餘^),其職之單 直徑為1.29奈米- |及e之 ^實關中’藉由實現基底歡局部加熱,於反應刪之基細 度,其有利於碳向溫度低方向析出及催化劑之成核率之 ^升’進而實現奈米碳管之快速生長;藉由提供氣態碳,有其利於 中之:炭供給;並且,充足之碳分子與催化劑形成金i碳: 物了放出大罝熱。而早壁奈米碳管之熱 、 出去細上之催化_上生長出單壁奈米碳二、逮傳導 攝氏生長溫度為_攝氏度。第三圖為麵 2 單絲米碳管_巾之單縣米碳管之拉曼光 陣列中單壁奈米碳管之徑向“ 軍壁奈米碳管之直娜為;其分別對應之 反二之ii域發:精神内做其他變化,如適當變更 計以:於本侧,只要料偏生長㈣等設 以上為t,依法提出專利中請。惟, 本案發明精神所作之等效修部化牛凡=本案技藝之人士,於援依 【圖式簡單說明】 白應匕3於以下之申請專利範圍内。 示意圖。 第-圖係本發㈣—實施鮮壁奈米碳管陣列製備裝置, the high plan is difficult to pay attention to the salaries of 79. 92 Gu Yu ^), the single diameter of his job is 1.29 nm - | and e ^ ^ Guan Guanzhong' by the local heating of the base, in the reaction to delete the fineness, It facilitates the precipitation of carbon to the low temperature and the nucleation rate of the catalyst, thereby achieving rapid growth of the carbon nanotubes; by providing gaseous carbon, it is beneficial to: carbon supply; and, sufficient carbon molecules Forming gold i carbon with the catalyst: the material releases a large amount of heat. The heat of the early-walled carbon nanotubes, the catalysis of the fine-grained _ on the growth of the single-walled nanocarbon II, the conduction of Celsius growth temperature is _ Celsius. The third picture is the surface 2 monofilament carbon tube _ towel of the single county carbon tube Raman light array in the single-walled carbon nanotube radial "the military wall nano carbon tube Zhina Na; Anti-two ii domain hair: make other changes in the spirit, if appropriate change is calculated: on this side, as long as the material is biased to grow (four), etc., the above is t, the patent is requested in accordance with the law. However, the equivalent of the invention spirit Partial Niu Fan = the person skilled in the case, Yu Yiyi [Simple Description] Bai Yingzhen 3 is within the scope of the following patent application. Schematic. The first picture is the hair (4) - the implementation of the preparation of fresh-walled carbon nanotube array Device

11 1313670 第二圖係本發明第一實施例於950攝氏度生長條件下生長出之單壁齐 米碳管拉曼光譜(Raman Shift)圖。 第三圖係本發明另一實施例於1000攝氏度生長條件下生長出之單壁 奈米碟管拉曼光譜(Raman Shift)圖。 【主要元件符號說明】 反應腔 進氣口 局部加熱裝置 基底11 1313670 The second figure is a Raman Shift diagram of a single-walled carbon nanotube grown in a growth condition of 950 ° C in the first embodiment of the present invention. The third figure is a Raman Shift diagram of a single-walled nanotube grown under 1000 ° C growth conditions in another embodiment of the present invention. [Main component symbol description] Reaction chamber Air inlet Local heating device Base

10 奈米碳管陣列製備裝置100 12 出氣口 14 20 氣態碳供給裝置 30 40 催化劑層 4210 carbon nanotube array preparation device 100 12 air outlet 14 20 gaseous carbon supply device 30 40 catalyst layer 42

12 (8)12 (8)

Claims (1)

1313670 '申請專利範圍:匕 1. 種奈米碳管陣列製備裝置,其包括:S 一反應腔; 劑=力’、裂置’用以加熱裝載於該反應腔内之奈米碳管生長用催化 於裝載於該反應腔内之催化劑之上游位置向 陣列 3.如申請專利範圍第丨項所述之奈米綠 供給裝置包括-石墨塊及一雷射與破置,其中’所述氣態石炭 束轟擊該石墨塊以産生—氣態碳。、’藉由雜射裝置產生—雷射光 4·如申請專纖狀絲碳轉 供給裝置包括-對石墨電極及—電弧 ^置j ’所述氣態石炭 該對石墨電極進行電弧放電以產生—氣能^㈣電弧放電裝置使 5·如:請糊_丨顧述之奈米碳料^ 包括-石墨塊及-與該石墨塊串聯形成電氣 由该電源加熱該石墨塊至石墨氣化溫度以産生一氣態碳。源,藉 6. -種奈米碳管陣列製備方法’其包括以下步驟: 將形成有一催化劑層之基底置於—反應腔内; 向該反應腔内通入一保護氣體; 對該基底進行局部加熱’將慨船σ熱至奈米碳#生長温度; 於該基底之上游位置向反應腔内提供一氣熊碳; a 7 向該反應腔内通入一碳源氣,以進行奈米碳管陣列生長。 •如申請專利範圍第6項所述之奈米碳管陣列製備方法,其^ 管生長溫度為650〜1200攝氏度。 现不米碳 &如申請專利制第6項所述之奈米碳管_製備方法,射* 係藉由向一石墨塊通以一加熱電流使其到達高溫而形成。恶石灭 9.如申請專麵綱陳奈姆械織,射,所述氣態碳 13 1313670 藉由採用雷射光束蒸發一石墨塊而形成。 10. 如申請專利範圍第6項所述之奈米碳管陣列製備方法,其中,所述氣態 碳係藉由採用電弧放電法使一對石墨電極進行電弧放電而形成。 11. 如申請專利範圍第6項所述之奈米碳管陣列製備方法,其中,所述基底 包括矽、玻璃或氧化鋁。 12. 如申請專利範圍第6項所述之奈米碳管陣列製備方法,其中,所述保護 氣體包括氬氣、氮氣、氦氣、或其混合。 13. 如申請專利範圍第6項所述之奈米碳管陣列製備方法,其中,所述碳源 氣包括曱烷、乙烯或乙炔。 14. 如申請專利範圍第6項所述之奈米碳管陣列製備方法,其中,所述催化 劑層之材質為鐵、钻、錄、或其合金。1313670 'Scope of application: 匕1. A carbon nanotube array preparation device comprising: S-reaction chamber; agent=force ', splitting' for heating carbon nanotubes loaded in the reaction chamber for growth Catalyzing the upstream position of the catalyst in the reaction chamber to the array 3. The nano green supply device as described in the scope of the patent application includes: a graphite block and a laser and a fracture, wherein the gaseous carbonaceous carbon The beam bombards the graphite block to produce - gaseous carbon. , 'produced by a micro-beam device - laser light 4 · if applying for a special fiber-like carbon carbon supply device includes - for the graphite electrode and - arc ^ set j 'the gaseous carbon stone to arc-discharge the graphite electrode to generate - gas Can ^ (4) arc discharge device to make 5 · such as: please paste _ 丨 之 之 奈 奈 碳 碳 碳 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨 石墨A gaseous carbon. a method for preparing a carbon nanotube array, comprising the steps of: placing a substrate having a catalyst layer in a reaction chamber; introducing a shielding gas into the reaction chamber; and locally applying the substrate Heating 'heating the ship σ to the nano carbon# growth temperature; providing a gas bear carbon to the reaction chamber upstream of the substrate; a 7 introducing a carbon source gas into the reaction chamber to perform the carbon nanotube Array growth. • The method for preparing a carbon nanotube array according to claim 6 of the patent application, wherein the tube growth temperature is 650 to 1200 degrees Celsius. Now, the carbon nanotubes and preparation method described in claim 6 is formed by passing a heating current to a graphite block to reach a high temperature. Evil stone 9. If the application of the special plane Chen Naim is woven, the gaseous carbon 13 1313670 is formed by evaporating a graphite block with a laser beam. 10. The method for producing a carbon nanotube array according to claim 6, wherein the gaseous carbon is formed by arc-discharging a pair of graphite electrodes by an arc discharge method. 11. The method of preparing a carbon nanotube array according to claim 6, wherein the substrate comprises ruthenium, glass or alumina. 12. The method of preparing a carbon nanotube array according to claim 6, wherein the protective gas comprises argon, nitrogen, helium, or a mixture thereof. 13. The method for producing a carbon nanotube array according to claim 6, wherein the carbon source gas comprises decane, ethylene or acetylene. 14. The method for preparing a carbon nanotube array according to claim 6, wherein the catalyst layer is made of iron, diamond, recorded, or an alloy thereof. 1414
TW94129246A 2005-08-26 2005-08-26 Apparatus and method for fabrication of carbon nanotube array TWI313670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94129246A TWI313670B (en) 2005-08-26 2005-08-26 Apparatus and method for fabrication of carbon nanotube array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94129246A TWI313670B (en) 2005-08-26 2005-08-26 Apparatus and method for fabrication of carbon nanotube array

Publications (2)

Publication Number Publication Date
TW200708477A TW200708477A (en) 2007-03-01
TWI313670B true TWI313670B (en) 2009-08-21

Family

ID=45072808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94129246A TWI313670B (en) 2005-08-26 2005-08-26 Apparatus and method for fabrication of carbon nanotube array

Country Status (1)

Country Link
TW (1) TWI313670B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667363B (en) * 2017-06-07 2019-08-01 鴻海精密工業股份有限公司 Method for fabricating carbon nanotube array
US10450191B2 (en) 2017-06-07 2019-10-22 Tsinghua University Device for making carbon nanotube array
US10562774B2 (en) 2017-06-07 2020-02-18 Tsinghua University Method for separating carbon nanotube array from growth substrate
US10689258B2 (en) 2017-06-07 2020-06-23 Tsinghua University Method for making carbon nanotube array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667363B (en) * 2017-06-07 2019-08-01 鴻海精密工業股份有限公司 Method for fabricating carbon nanotube array
US10450191B2 (en) 2017-06-07 2019-10-22 Tsinghua University Device for making carbon nanotube array
US10562774B2 (en) 2017-06-07 2020-02-18 Tsinghua University Method for separating carbon nanotube array from growth substrate
US10689258B2 (en) 2017-06-07 2020-06-23 Tsinghua University Method for making carbon nanotube array

Also Published As

Publication number Publication date
TW200708477A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
KR100923304B1 (en) Graphene sheet and process for preparing the same
CN100418876C (en) Device and method for preparing array of Nano carbon tube
US7854991B2 (en) Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use
Ren et al. Aligned carbon nanotubes: physics, concepts, fabrication and devices
JP5447367B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
US7687109B2 (en) Apparatus and method for making carbon nanotube array
US7682658B2 (en) Method for making carbon nanotube array
CN101213321B (en) Nanostructure production methods and apparatus
WO2008029927A1 (en) Method for production of carbon nanotube
US20110027164A1 (en) Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation
JP2017019718A (en) Manufacturing method of carbon nano-tube
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
US10961123B2 (en) Apparatus and method for synthesizing vertically aligned carbon nanotubes
US8216364B1 (en) System and method for low-power nanotube growth using direct resistive heating
JP2004083293A (en) Method for manufacturing carbon nanotube using fullerene
Maruyama Carbon nanotube growth mechanisms
KR101956920B1 (en) A carbon hybrid structure comprising a graphene layer and hollow carbon tubes
JP5429876B2 (en) Method for producing carbon nanotube
TWI314917B (en) Method for manufacturing carbon nanotubes array
Qian Multiwalled carbon nanotube CVD synthesis, modification, and composite applications
Kumar Synthesis Methods for Carbon-Based Materials
TW200417510A (en) A carbon-nanotubes-based material and a method for making the same