TW201141636A - Method for preparing metal nano-particles, metal nano-particles prepared therefrom and metal ink composition comprising the same - Google Patents

Method for preparing metal nano-particles, metal nano-particles prepared therefrom and metal ink composition comprising the same Download PDF

Info

Publication number
TW201141636A
TW201141636A TW100110117A TW100110117A TW201141636A TW 201141636 A TW201141636 A TW 201141636A TW 100110117 A TW100110117 A TW 100110117A TW 100110117 A TW100110117 A TW 100110117A TW 201141636 A TW201141636 A TW 201141636A
Authority
TW
Taiwan
Prior art keywords
acid
metal
fatty acid
particles
main chain
Prior art date
Application number
TW100110117A
Other languages
Chinese (zh)
Other versions
TWI543826B (en
Inventor
Byoung-Uk Kim
Seong-Bae Kim
Sung-Hyun Lee
Hyun-Seok Yoo
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of TW201141636A publication Critical patent/TW201141636A/en
Application granted granted Critical
Publication of TWI543826B publication Critical patent/TWI543826B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Abstract

The subject of this invention is to provide a method for preparing metal nano-particles, metal nano-particles prepared therefrom and a metal ink composition comprising the same. The solution of this invention relates to the preparing method of metal nano particles, including (1) the step to adjust the pH value of the metal precursor solution between 9-11 after the metal precursor is dissolved in water; (2) the step to add one or more of aliphatic hydrocarbon with carboxyl groups having main chain carbon number of 2-11 and one or more of aliphatic hydrocarbon with carboxyl groups having main chain carbon number of 12-26 to form metal-fatty acid ligand compound; and (3) the step to disperse the metal-fatty acid ligand compound made in the step (2) in the polarized or non-polarized organic solvent and amine, and then add reducing agent to reduce and precipitate the metal so as to obtain metal nano-particles. By means of preparing method of this invention, metal nano-particles having superior printing performance (transfer printing characteristics) and stability of pattern formation can be produced with high production rate and can be performed with low temperature firing. The metal nano particles can be used as the ink for forming gate electrode of flexible printed-circuit board of various electronic device or liquid crystal display device.

Description

201141636 六、發明說明: I:發明戶斤屬之技術區域3 技術領域 本發明係有關於一種金屬奈米粒子之製造方法、其所 製造之金屬奈米粒子及含有該金屬奈米粒子金屬墨組成物 者,且藉由本發明之製造方法可以高產率製造印刷性能(轉 印特性)及圖案形成安定性優異且能進行低溫燒成的金屬 奈米粒子。 C先前技冬好]I 背景技術 包含有金屬奈米粒子之金屬墨的開發,可藉由將細微 圖案之金屬配線經由網版印刷、喷墨印刷、凹版膠印 (gravure offset printing)、反轉膠印(reverse offset printing)) 等單一印刷步驟(而非光微影術之複雜步驟)印刷在各式各 樣的基材上而將步驟單純化,不僅可將伴隨於此的製程製 造原價劃時代地減少,亦可使得配線寬度之細微化及高整 合性、高效率的印刷電路製造變得可能。又,在包含金屬 奈米粒子的金屬墨之情況中,由於可以在低溫中燒成,故 可在耐熱性弱的各式各樣基材上形成配線。 如習知電漿顯示面板等所使用的金屬糊(paste)般微米 (# m)大小的金屬粒子雖可藉單一印刷步驟印刷,但仍必須 要經過500°C以上高溫燒成的步驟,其結果,會因高溫燒成 步驟而產生很多不良情況。又,置入個人數位助理機 (personal digital assistants ; PDA)、行動電話、射頻辨識裝 201141636 置(radio-frequency identification ; RFID)等各種電子機器的 軟性印刷電路基板(flexible printed circuit board ; FPCB)、 印刷電路基板(printed circuit boardd ; PCB)、被銅積層板 (copper clad laminate ; CCL)等,係經由光微影術製程且藉 由光阻塗布及蝕刻而僅留下所希望配線之一連串複雜步驟 而製得。 然而,近來因電子零件之小型化及各式各樣的基板之 適用傾向而增加了對經由各式各樣的印刷方式之薄膜的細 微配線形成之要求,為了適用於如此般各式各樣的印刷方 式,必須要有能均勻地分散於溶劑的細微金屬粒子。 特別是,在樹脂膜上印刷電路之軟性印刷電路基板的 情況下,由於經由微影術(lithography)之複雜且一連串的步 驟(即塗布、乾燥、曝光、蝕刻、去除等),且軟性基板本身 會損傷’而迫切地要求有可在樹脂膜上直接描繪電路之經 早分散的奈米粒子之金屬墨。 特別是,在80nm以下奈米粒子的情況中,在粒子的表 面特性變大的同時燒結溫度及熱傳導度亦會上昇,而可以 遠低於一般燒結溫度(即500°C以上)的溫度燒成,因此使得 可適用的基板種類變得多様化。 迄今為了製造可維持均勻分散相的奈米粒子,係利用 機械性研磨之方法、共沉澱法、喷霧法、溶膠_凝膠法、電 分解法、微乳化法等多樣種類的方法。然而,在共沉殿法 的情況中無法控制粒子的大小及分布,而電分解法或溶膠、 凝膠法則具有製造經費高而難以大量生產的問題點。又, 4 201141636 微乳化法雖易控制粒子的大小、形狀及分布,但由於製造 步驟複雜而仍為難以實用化的狀態。 因此,最近有試驗了藉由濕式還原法製造以銅為首之 各式各樣的金屬,特別是有報告指出廣為人知的使用肼之 還原法可作為適於製造0.5//m以上粒子的方法。 然而,在使用包含有以既存濕式還原法製造的金屬奈 米粒子之糊狀墨組成物來以各種印刷方法形成圖案時,會 發生因墨組成物之黏度及彈性不足而造成的圖案不良、因 在所形成的圖案中的粒子凝聚現象而造成的傳導度降低、 因含有在墨組成物製造時所使用的多量單體及聚合物而造 成的傳導度降低等問題。特別是,在適於大量生產的膠印 (offset printing)中,墨組成物之轉印特性雖可左右圖案性 能,但實情是,在使用包含以既存濕式還原法製造的金屬 奈米粒子之墨組成物時,膠印並不圓滑,而無法量產作為 目的之圖案。 【發明内容】 發明概要 發明欲解決之課題 因此,本發明之目的在於提供一種藉由解決既存濕式 還原法之問題點而可以高產率製造金屬奈米粒子的方法, 該金屬奈米粒子係印刷性能(轉印特性)優異、於圖案形成後 不會產生凝聚現象,且具有與下部基板之優異附著力等圖 案形成安定性優異,並可進行低溫燒成者。 又,本發明之其他目的在於提供一種藉由如前述般的 201141636 製造方法製造的金屬奈米粒子。 又,本發明之其他目的在於提供一種包含前述金屬奈 米粒子之金屬墨組成物。 用以解決課題之手段 為達成前述目的,本發明係提供一種金屬奈米粒子之 製造方法,包含以下步驟: (1) 將金屬前驅物溶解於水後,將金屬前驅物水溶液之 pH調節成9〜11之步驟; (2) 於藉前述步驟製造的金屬前驅物水溶液中,添加 1種以上主鏈碳數為2〜11個之含羧基脂肪酸烴,及1種以 上主鏈碳數為12~26個之含羧基脂肪酸烴,而形成金屬_脂 肪酸配位基化合物之步驟.及 (3) 使藉前述步驟(2)製造的金屬脂肪酸配位基化合物 分散於極性或非極性有機溶劑及胺後,於其中添加還_ 而使金屬還原、析出而收得金屬奈米粒子之步驟。 又,本發明係提供-種藉由前述製造方法製造的金屬 奈米粒子。 種包含前述金屬奈米粒子之金屬 又,本發明係提供— 墨組成物。 發明效果 若依據本發明之製造方法,可以高產率製造印刷性能 (轉印特性)優異、於圖案形成後不會產生凝聚現象且具有^ 下部基板之優異附著力等圖案形成安定性優異,且可進行 低溫燒成之金屬奈米抵子。 6 201141636 換°之,包含藉由本發明之製造方法製造的金屬奈米 边子之墨組成物,由於具有:可依各式各樣的印刷方式而 l用在圖案形成後不會凝聚而很安定、即使沒右大景令 合物或寡聚物,其與下部基板之附著力仍優„優點,因 此可有用地適用於TSP、PDP、刪等,且因觸控面板㈣化 Panel)市場的活絡化,可預想到其需要會越變越大。 圖式簡單說明 曰【第1圖】對本發明之方法巾錢二曱基辛酸後藉還原而 侍之金屬奈米粒子進行的TGa觀察之結果。 【第2圖】對本發明之方法中以9: i之重量比使用二甲基 辛酸及賴㈣後藉還原而得之金屬奈米粒子進行的TGA 觀察之結果。 【第3圖】使用以實施例6製造的金屬奈米粒子進行印刷 性能試驗的結果之照片。 【實施方式j 用以實施發明的形態 本發明之金屬奈米粒子製造方法的特徵在於:使用碳 數與分支形態互異的2種以上含羧基脂肪酸烴來形成金屬_ 脂肪酸配位基化合物,並使其分散於極性或非極性有機溶 劑及胺中,且在調節極性及pH後使其還原,藉此得到作為 目的之金屬奈米粒子。 換言之,依據本發明之金屬奈米粒子之製造方法,包 含以下步驟: (1)將金屬前驅物溶解於水後,將金屬前驅物水溶液之 201141636 pH調節成9〜11之步驟; (2) 於藉前述步驟(1)製造的金屬前驅物水溶液中’添加 1種以上主鏈碳數為2~11個之含羧基脂肪酸烴,及1種以 上主鏈碳數為12~26個之含羧基脂肪酸烴,而形成金屬-脂 肪酸配位基化合物之步驟;及 (3) 使藉前述步驟(2)製造的金屬-脂肪酸配位基化合物 分散於極性或非極性有機溶劑及胺後,於其中添加還原劑 而使金屬還原、析出而收得金屬奈米粒子之步驟。 以下,依各步驟分別詳細說明。 步驟(1) 步驟(1)係在將金屬前驅物溶解於水後,將金屬前驅物 水溶液之pH調節成9~11之步驟。 可於步驟(1)使用的金屬刚驅物雖無特別限定,但可混 合使用1種以上選自於金、銀、銅、鋁'鎳、錫、鈀、鉑、 鋅、鐵、銦、鎮等I族、IIA族、IIIA族、iva族及VIIIB 族之金屬的無機鹽’且以混合使用2種以上為佳。前述金 屬前驅物可使用無機鹽即硝酸鹽、硫酸鹽、醋酸鹽、磷酸 鹽、矽酸鹽、鹽酸鹽等。 更佳地,可將作為金屬前驅物的銀之無機鹽作為主成 分使用,並將其他的1種以上前述其他金屬之無機鹽作為 辅助成分使用。此時,係、將輔助成分之金屬以相對於主成 分銀前驅物lmol為0.001~0.3mol之量使用。輔助成分之金 屬可使用除主金屬之外的前所列舉之全部金屬,輔助成分 係依各金屬之性質而可輔助主成分所沒有的性質。當輔助 201141636 成分之金屬小於主成分金屬之O.OOlmol時,會無法在糊製 造後賦予特性變化;而當輔助成分之金屬大於主成分金屬 之0.3mol倍時,由於在還原時會無法充分進行還原,而無 法充分取得金屬奈米粒子。 作為輔助成分之金屬的特性係如下所述。 銅與鈀係可使傳導性墨的彈性增加,而適於疏水性基 板,可於圖案生成後抑制電遷移現象。 鋁與鋅係可使傳導性墨之黏度及彈性增加,而可使與 下部基板之附著力增加,特別是鋅會生成具有傳導性的酸 化鋅而會有防止氧化膜所造成之電阻上昇的效果。 錫係有助於提升與基板之接著力,特別是有助於提升 與玻璃基板之接著力。 鎳因其與氧原子之親和力大故易生成氧化膜,因此若 在必須生成傳導性氧化膜時添加,可更輕易生成傳導性氧 化膜。 又,於前述步驟(1)中為了將金屬前驅物水溶液之pH 調節成為9〜11,可使用氨或胺類作為pH調節劑。 可調節pH之胺類,可使用甲胺、二甲胺、三曱胺、乙 胺、二乙胺、三乙胺、丙胺、二丙胺、三丙胺、丁胺、二 丁胺、三丁胺、乙醇胺、甲基乙醇胺、二曱基乙醇胺、乙 基乙醇胺、二乙基乙醇胺、甲醇胺、曱基甲醇胺、二曱基 甲醇胺、二乙醇胺、曱基二乙醇胺、乙基二乙醇胺、三乙 醇胺、三甲醇胺、。底讲、甲基°辰。井、咮琳、甲基味琳、經 基哌畊、羥基胺、三異丁胺、1,1,3,3-四曱基脈、二異丙基 201141636 苯胺及其等1種以上之混合物。 步驟(2) 步驟(2)係於藉前述步驟(1)製造的金屬前驅物水溶液 中,添加1種以上主鏈碳數為2~11個之含羧基脂肪酸烴, 及1種以上主鏈碳數為12〜26個之含羧基脂肪酸烴,而形 成金屬-脂肪酸配位基化合物之步驟。 可於前述步驟(2)使用的具有羧基的脂肪酸烴,可使用 飽和或不飽和脂肪酸烴;主鏈碳數為2~11個(以主鏈之碳 數為6~11個為佳)之含羧基脂肪酸烴係在直鏈型脂肪酸附 有多數分支之形態的脂肪酸,其可發揮降低燒成溫度之作 用;主鏈碳數為12〜26個之含羧基脂肪酸烴係在直鏈型脂 肪酸幾乎未附有分支的脂肪酸,其可發揮調節黏度及彈性 之作用。碳數及碳之分支形態互異的該等飽和或不飽和脂 肪酸烴,舉例而言可具有下列化學式1至3之結構。 【化學式1】201141636 VI. Description of the invention: I: Technical area for inventing households. Technical Field The present invention relates to a method for producing a metal nanoparticle, a metal nanoparticle produced thereby, and a metal ink containing the metal nanoparticle. According to the production method of the present invention, metal nanoparticles having excellent printing performance (transfer characteristics) and excellent pattern formation stability and capable of low-temperature firing can be produced at a high yield. C. The prior art is good. I Background Art The development of metallic ink containing metal nanoparticle can be achieved by screen printing, inkjet printing, gravure offset printing, reverse offset printing of metal wiring of fine patterns. (reverse offset printing)) A single printing step (rather than a complicated step of photolithography) is printed on a wide variety of substrates and the steps are simplistic, which not only reduces the original cost of the process associated with this process. It is also possible to make the wiring width fine and high-integration, high-efficiency printed circuit manufacturing possible. Further, in the case of a metallic ink containing metal nanoparticles, since it can be fired at a low temperature, wiring can be formed on various types of substrates having low heat resistance. Metal particles having a size of (m) as a metal paste used in a conventional plasma display panel may be printed by a single printing step, but must be subjected to a high temperature firing step of 500 ° C or higher. As a result, many disadvantages occur due to the high temperature firing step. In addition, a flexible printed circuit board (FPP) for various electronic devices such as personal digital assistants (PDAs), mobile phones, and radio frequency identification devices (RFID) is installed. Printed circuit board (PCB), copper clad laminate (CCL), etc., are a series of complicated steps that leave only one of the desired wirings by photolithography and by photoresist coating and etching. And made. However, recently, due to the miniaturization of electronic components and the tendency of various substrates to be applied, the demand for the formation of fine wirings through thin films of various printing methods has been increased, and it has been applied to such a wide variety of applications. In the printing method, it is necessary to have fine metal particles which can be uniformly dispersed in a solvent. In particular, in the case of a flexible printed circuit board on which a circuit is printed on a resin film, a series of steps (ie, coating, drying, exposing, etching, removing, etc.) which are complicated by lithography, and the flexible substrate itself It is impaired that there is an urgent need for a metallic ink which can directly depict the early dispersed nanoparticles of the circuit on the resin film. In particular, in the case of nano particles of 80 nm or less, the sintering temperature and thermal conductivity increase as the surface characteristics of the particles become larger, and can be fired at a temperature far lower than the normal sintering temperature (i.e., 500 ° C or higher). Therefore, the types of substrates that can be applied are made more diverse. Heretofore, in order to produce a nanoparticle capable of maintaining a uniform dispersed phase, various methods such as a mechanical polishing method, a coprecipitation method, a spray method, a sol-gel method, an electrolysis method, and a microemulsification method have been used. However, in the case of the co-sinking method, the size and distribution of the particles cannot be controlled, and the electrolysis method or the sol or gel method has a problem that the manufacturing cost is high and it is difficult to mass-produce. Further, 4 201141636 The micro-emulsification method is easy to control the size, shape, and distribution of particles, but it is still difficult to put into practical use due to complicated manufacturing steps. Therefore, recently, various types of metals including copper have been experimentally produced by a wet reduction method. In particular, it has been reported that a widely used reduction method using ruthenium can be used as a method suitable for producing particles of 0.5/m or more. However, when a pattern is formed by various printing methods using a paste ink composition containing metal nanoparticles produced by the existing wet reduction method, pattern defects due to insufficient viscosity and elasticity of the ink composition may occur. The conductivity due to the aggregation phenomenon of particles in the formed pattern is lowered, and the conductivity is lowered due to the inclusion of a large amount of monomers and polymers used in the production of the ink composition. In particular, in offset printing suitable for mass production, the transfer characteristics of the ink composition can control the pattern properties, but actually, the ink containing the metal nanoparticles prepared by the existing wet reduction method is used. When the composition is formed, the offset printing is not smooth, and it is impossible to mass-produce the pattern for the purpose. SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION Accordingly, it is an object of the present invention to provide a method for producing metal nanoparticle particles in high yield by solving the problem of the existing wet reduction method, which is printed on a metal nanoparticle system. It is excellent in performance (transfer characteristics), does not cause aggregation after pattern formation, and has excellent pattern formation stability such as excellent adhesion to the lower substrate, and can be baked at a low temperature. Further, another object of the present invention is to provide a metal nanoparticle produced by the manufacturing method of 201141636 as described above. Further, another object of the present invention is to provide a metallic ink composition comprising the aforementioned metal nanoparticles. Means for Solving the Problems In order to achieve the above object, the present invention provides a method for producing a metal nanoparticle, comprising the steps of: (1) after dissolving a metal precursor in water, adjusting the pH of the aqueous metal precursor solution to 9 Step (1): (2) Adding one or more kinds of carboxyl group-containing fatty acid hydrocarbons having 2 to 11 main chain carbon atoms in the aqueous solution of the metal precursor produced by the above steps, and having one or more main chain carbon atoms of 12~ 26 steps of forming a metal-fatty acid ligand compound to form a metal-fatty acid ligand compound; and (3) dispersing the metal fatty acid ligand compound produced by the aforementioned step (2) in a polar or non-polar organic solvent and an amine And adding a step _ to reduce and precipitate the metal to obtain the metal nanoparticles. Further, the present invention provides a metal nanoparticle produced by the aforementioned production method. A metal comprising the aforementioned metal nanoparticles. In addition, the present invention provides an ink composition. According to the production method of the present invention, it is possible to produce printing performance (transfer characteristics) at a high yield, to prevent aggregation from occurring after pattern formation, and to have excellent pattern formation stability such as excellent adhesion of a lower substrate, and A low-temperature fired metal nanoparticle is used. 6 201141636 In other words, the ink composition comprising the metal nano-edge manufactured by the manufacturing method of the present invention has: it can be used in various printing methods, and is used for stability after pattern formation. Even if there is no right-angle compound or oligomer, its adhesion to the lower substrate is still superior, so it can be effectively applied to TSP, PDP, deletion, etc., and because of the touch panel (four) Panel market It is expected that the demand will become larger and larger. The following is a brief description of the results of the TGA observation of the metal nanoparticles of the present invention by the method of the present invention. [Fig. 2] The result of TGA observation on the metal nanoparticle obtained by reducing the weight ratio of 9: i in the method of the present invention using dimethyl octanoic acid and lysine (4). [Fig. 3] Photograph of the result of the printing performance test of the metal nanoparticles produced in Example 6. [Embodiment j] The method for producing a metal nanoparticles according to the present invention is characterized in that the carbon number and the branch form are different from each other. 2 kinds a carboxyl-containing fatty acid hydrocarbon to form a metal-fatty acid ligand compound, which is dispersed in a polar or non-polar organic solvent and an amine, and is reduced after adjusting the polarity and pH, thereby obtaining a target metal nanoparticle In other words, the method for producing a metal nanoparticle according to the present invention comprises the following steps: (1) a step of adjusting a pH of the metal precursor aqueous solution of 201141636 to 9 to 11 after dissolving the metal precursor in water; In the aqueous solution of the metal precursor produced by the above step (1), one or more carboxyl group-containing fatty acid hydrocarbons having 2 to 11 main chain carbon atoms and one or more carboxyl groups having 12 to 26 main chain carbon atoms are added. a step of forming a metal-fatty acid ligand compound by a fatty acid hydrocarbon; and (3) adding a metal-fatty acid ligand compound produced by the above step (2) to a polar or non-polar organic solvent and an amine, and adding thereto The step of reducing and precipitating the metal to obtain the metal nanoparticles is described in detail below. Step (1) Step (1) is after dissolving the metal precursor in water, The step of adjusting the pH of the aqueous solution of the metal precursor to 9 to 11. The metal rigid material to be used in the step (1) is not particularly limited, but may be used in combination of at least one selected from the group consisting of gold, silver, copper, and aluminum 'nickel. And tin, palladium, platinum, zinc, iron, indium, and other inorganic salts of metals such as Group I, Group IIA, Group IIIA, Group iva, and Group VIIIB' are preferably used in combination of two or more. The foregoing metal precursor may be used. An inorganic salt, that is, a nitrate, a sulfate, an acetate, a phosphate, a citrate, a hydrochloride, etc. is used. More preferably, an inorganic salt of silver as a metal precursor can be used as a main component, and the other 1 The inorganic salt of the above-mentioned other metal is used as an auxiliary component. In this case, the metal of the auxiliary component is used in an amount of 0.001 to 0.3 mol based on 1 mol of the main component silver precursor. The metal of the auxiliary component may use all of the metals listed above except the main metal, and the auxiliary component may assist the properties which the main component does not have depending on the nature of each metal. When the metal of the auxiliary component 201141636 is less than 0.001 mol of the main component metal, the characteristic change may not be imparted after the paste is produced; and when the metal of the auxiliary component is greater than 0.3 mol times of the main component metal, it may not be sufficiently performed at the time of reduction. Reduction, and the metal nanoparticles are not fully obtained. The characteristics of the metal as an auxiliary component are as follows. Copper and palladium systems increase the elasticity of the conductive ink, and are suitable for hydrophobic substrates to suppress electromigration after pattern formation. Aluminum and zinc can increase the viscosity and elasticity of the conductive ink, and the adhesion to the lower substrate can be increased. In particular, zinc can form conductive zincate and prevent the resistance of the oxide film from rising. . The tin system helps to increase the adhesion to the substrate, and in particular helps to improve the adhesion to the glass substrate. Nickel is easily formed into an oxide film because of its affinity with an oxygen atom. Therefore, if it is added when a conductive oxide film must be formed, a conductive oxide film can be formed more easily. Further, in the above step (1), in order to adjust the pH of the aqueous metal precursor solution to 9 to 11, ammonia or an amine may be used as the pH adjuster. An amine which can adjust pH, and can use methylamine, dimethylamine, tridecylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, Ethanolamine, methylethanolamine, dimethylethanolamine, ethylethanolamine, diethylethanolamine, methanolamine, mercaptoethanolamine, dimercaptomethanolamine, diethanolamine, mercaptodiethanolamine, ethyldiethanolamine, triethanolamine, Trimethanolamine. The bottom, methyl ° Chen. Well, 咮琳, methyl 琳琳, methicillin, hydroxylamine, triisobutylamine, 1,1,3,3-tetramethyl, diisopropyl 201141636 aniline and a mixture of more than one . Step (2) Step (2) is to add one or more kinds of carboxyl group-containing fatty acid hydrocarbons having 2 to 11 main chain carbon atoms and one or more main chain carbons in the aqueous solution of the metal precursor produced by the above step (1). The number of 12 to 26 carboxyl-containing fatty acid hydrocarbons is formed to form a metal-fatty acid ligand compound. The fatty acid hydrocarbon having a carboxyl group which can be used in the above step (2) can be a saturated or unsaturated fatty acid hydrocarbon; the main chain carbon number is 2 to 11 (the number of carbon atoms in the main chain is preferably 6 to 11). The carboxylic fatty acid hydrocarbon is a fatty acid in a form in which a linear fatty acid has a plurality of branches, and has a function of lowering the firing temperature; a carboxyl group-containing fatty acid having a main chain carbon number of 12 to 26 is hardly distributed in a linear fatty acid. Branched fatty acids that act to regulate viscosity and elasticity. The saturated or unsaturated fatty acid hydrocarbons having mutually different carbon number and carbon branch morphology may, for example, have the structures of the following Chemical Formulas 1 to 3. [Chemical Formula 1]

OHOH

【化學式2】[Chemical Formula 2]

【化學式3】 10 201141636[Chemical Formula 3] 10 201141636

於上述式中, R,、Rr、R2、R2'、R3、R3’及R4各自獨立地為氫、烷 基、異烷基、烷氧基、烷醇、羥基或胺基; η係1~20之整數。 依脂肪酸烴之碳數、碳之分支形態及添加2種以上之 脂肪酸的種類,可使以後的金屬墨組成物之燒成溫度改 變’例如’當脂肪酸之碳數越小、分支形態越複雜、分支 與羧酸官能基越是鄰接,燒成溫度會變得越低。 迄今雖以溶劑、聚合物及單體等來調節墨的物性,但 於本發明中則是藉由如此般添加2種以上不同形態的脂肪 酸來調節’且同時可克服藉由添加聚合物、單體等而誘發 的傳導度降低、無法低溫燒成等缺點。 發揮降低燒成溫度作用的主鏈碳數為2〜u個之含羧基 脂肪酸烴之具體例,可列舉丙_酸、丁酸、羥基丁酸、己 酸、異丁酸、绳草酸(戊酸)、三曱基乙酸、曱基辛酸'二甲 基辛酸、甲基己酸、乙基己酸、丁基己酸、二乙基己酸、 -曱基乙基己酸、三甲基壬酸、異硬脂酸及異十六稀酸等, 雖可達成於間之燒成,但具有相對地增大粒子 大小之缺點。 發揮調節黏度及彈性作用的主鍵碳數為12〜26個之含 叛基脂肪酸烴之具體例,可列舉油酸、E蔴油酸、硬脂酸、 201141636 經基硬脂酸、亞麻油酸、胺基癸酸、經基癸酸、月桂酸、 癸烯酸、十一烯酸、棕櫚油酸、己基癸酸、羥基椋櫚酸' 羥基肉豆蔻酸、羥基癸酸、棕櫚油酸及肉豆蔻油酸等。如 此可調節黏度及彈性之脂肪酸,雖具有可相對地減小粒子 大小而使燒成後的表面粗链度増加之優點,但另一方面會 有知·尚燒成溫度而阻礙低溫燒成特性之缺點。 又,為了使150-200 C間之低溫燒成變得可能,較佳 係:相對於金屬前驅物lmol以〇.5〜lm〇1的量使用主鍵碳 數為2〜11個之含羧基脂肪酸烴;且相對於金屬前驅物lm〇i 以0.0001〜0‘5mol的量使用主鏈碳數為12〜26個之含鲮基脂 肪酸烴。在相較於金屬前驅物以小於〇 5m〇1的量使用主鏈 石反數為2〜11個之含缓基脂肪酸烴時,會無法進行低溫燒 成;當以大於lmol的量使用時,會無法順利進行還原反 應。又,當以小於0.0001mol的量使用主鏈碳數為12〜26 個之含羧基脂肪酸烴時,金屬粒子會相對地變大,而在墨 製作之後粒子會沉澱且產生相分離的現象;當以大於 0.5mol的量使用時會有無法進行低溫燒成之缺點。 步驟(3) 步驟(3)係使藉前述步驟(2)製造的金屬_脂肪酸配位基 化合物分散於極性或非極性有機溶劑及胺後,於其中添加 還原齊丨而使金屬還原、析出而收得金屬奈米粒子之步驟。 於步驟(3)中為了調節還原後的奈米金屬表面之極性及 pH’而將極性或非極性有機溶劑及胺投人金屬脂肪酸配位 基化合物溶液巾而使前述配位基化合物分I在投入極性 12 201141636 溶劑及胺時’⑽有脂肪酸的奈米金屬粒子對非極性溶劑 或極性溶#1之分散或轉會變得容胃;而在投人非極性溶 劑及胺時’吸附有脂肪酸的奈米金屬粒子對非極性溶劑之 分散或溶解會變得容易。未調節極性及阳之奈米金屬粒子 會有不易分散的問題點。 適合的極性溶劑可列舉醇類中的甲醇、乙醇及異丙 醇、二甲基亞礙略伽、㈣及其等之混合物; 適合的非極性溶劑可列舉二甲苯、曱苯、苯、三甲基苯、 二乙基苯、碳酸二甲酯及其等之混合物;且,適合的胺可 列舉曱胺、二曱胺、三曱胺、乙胺、二乙胺、三乙胺、丙 胺、二丙胺、三丙胺、丁胺、二丁胺、三丙胺及其等之混 合物。 接著,於其中投入還原劑而使其經歷還原步驟’此時 在形成有脂肪族金屬前驅物之溶液中僅有少量脂肪族吸附 在經還原的金屬表面上而同時發揮使金屬粒子之分散及溶 解度提升的作用。雖然依所使用的脂肪酸烴之種類會使吸 附量有差距’但約5〜1〇重量%左右的脂肪酸吸附在經還原 金屬的表面上’且依所吸附的脂肪酸之熱分解溫度決定燒 成溫度。 舉例而言’如第1圖所示般,已知在使用如二曱基辛 酸之主鏈碳數為2〜11個之含羧基脂肪酸烴時,不僅分解溫 度低至小於200。(:,所吸附的脂肪酸量亦少至5重量%左 右。然而’如第2圖所示般,已知在以9 : 1使用如二曱基 辛酸之主鏈碳數為2〜η個之含羧基脂肪酸烴及如蓖蔴油酸 13 201141636 之主鏈碳數為12~26個之含羧基脂肪酸烴時,不僅最終熱 分解溫度高,所吸附之脂肪酸量亦高達10重量%左右。從 如此的結果可知,分支多的形態之脂肪酸由於物理化學性 吸附相對較弱故容易脫離,而吸附量少,但另一方面,分 支少的形態之脂肪酸由於物理化學性吸附相對較強故不但 較不易脫離,吸附量亦相對較多。為了進行低溫燒成,較 佳係以分支多的脂肪酸之1A0以下來使用分支少的脂肪 酸。 前述步驟(3)所使用的還原劑之具體例,可列舉肼、苯 肼、硼氫化鋁及其等之混合物,且宜緩緩地滴加以使還原 作用不會太劇烈地進行。前述還原劑相對於金屬前驅物 lmol可以l~1.3mol之量使用。 於核生成初期步驟中,作為分散安定劑的脂肪酸可抑 制具有臨界値以上大小的粒子生成後之粒子成長及粒子凝 聚現象’且同時扮演安定粒子成長的重要角色。換言之’ 因隨著反應進行濃度變小的金屬前驅物而使得粒子分布變 廣,相較於粒子之生成,更會發揮抑制粒子成長反應的進 行,且同時使粒子分布變小的作用。 又,在投入還原劑後,較佳係一邊維持一定溫度一邊 攪拌,且前述攪拌係以維持至溶液顏色不再變化時為佳。 此時,在溫度大於50°C時,粒子會成長而難以得到所希望 奈米尺寸之粒子;而在小於15°C時會花費較長的反應時 間,而會有粒度分布變廣之虞,故宜將反應溫度維持在 15〜50°C。 14 201141636 藉前述反應步驟還原金屬後,可立刻使用丙酮、醇 (例:曱醇、乙醇)或其等之混合物而使其急速冷卻,藉此使 金屬奈米粒子析出而收得。將析出的金屬奈米粒子以與前 述相同的溶液充分洗淨3〜4次左右後,可於真空爐中在 30~40°C左右乾燥8小時以上,而得到經均勻地乾燥的金屬 奈米粒子。 又,本發明係提供一種藉由前述製造方法製造的金屬 奈米粒子。 依據本發明的金屬奈米粒子具有狹窄的粒度分布以及 優異的分散性,且可進行低溫燒成。較佳地,前述金屬奈 米粒子以具有10~110nm之平均粒度分布為佳。藉此可有用 地應用於個人數位助理機(personal digital assistants ; PDA)、行動電話、射頻辨識裝置之標籤(tag)或天線等各種 電子機器中的軟性印刷電路基板(FPCB)形成用的金屬墨, 以及液晶顯示裝置(liquid crystal displayay ; LCD)之閘極電 極形成用金屬墨。 又,本發明係提供一種包含前述金屬奈米粒子之金屬 墨組成物。 前述金屬墨組成物可藉由使藉如前述製造方法所製造 的金屬奈米粒子再分散溶劑中來製造。此時,為了可提高 金屬奈米粒子及各種溶劑與下部膜之附著力,金屬墨組成 物可追加含有寡聚物或聚合物。 前述墨組成物之製造中所使用的溶劑可使用如甲醇、 乙醇、丙醇、異丙醇、丁醇、2-丁醇、辛醇、2-乙基己醇、 15 201141636 戊醇、苯甲醇、己醇、2-己醇、環己醇、萜品醇及壬醇的 醇類,如曱一醇、乙二醇、丙二醇、二乙二醇'三乙二醇、 四乙二醇、乙二醇曱基醚、乙二醇乙基醚'乙二醇丁基醚、 二乙二醇曱基醚、二乙二醇乙基醚、二乙二醇丁基醚、二 乙二醇二曱基醚、二乙二醇二乙基醚、二乙二醇二丁基醚、 一乙一醇曱基乙基喊、丙二醇甲基驗 '二丙二醇甲基醚、 丙二醇甲基醚乙酸酯、二丙二醇曱基峻乙酸酯、乙二醇丁 基醚乙酸酯及乙二醇乙基醚乙酸酯之二醇類;及如曱苯、 一曱笨、奴酸一甲醋、碳酸二乙酯及乳酸乙酯之有機溶劑, 且其等係可單獨使用,或混合2種以上使用。 於進行前述金屬奈米粒子之再分散時,宜藉由超音波 分散、均質機所造成之分散等物理性方法等來呈現一定的 分散效果。前述金屬墨組成物内所含之金属奈米粒子的含 量雖可依其用途適當地調節,但較佳係以相對於墨組成物 總重量含有30〜90重量%。 本發明中可以脂肪酸輕易地製造金屬鹽,界面活性劑 可作為非用於製造乳劑之手段的分散劑使用,且具有不需 控制所添加的水量而可輕易地達到誘導均勻核生成之合成 的優點。又’藉由本發明而合成的金屬奈米粒子及含有該 金屬奈米粒子墨組成物具有可依所添加的脂肪酸之碳數, 來控制燒成溫度及表面粗糙度、於高溫下的凝聚 (agglomeration)狀態及表面硬度(hardness)之優點。 以下,雖為了理解本發明提示較佳實施例,但下述實 施例僅止於例示本發明,本發明之範圍當不為下述實施例 201141636 所限定。 實施例 [實施例1] 將硝酸銀lmol與1種以上Ni、Cu、Zn、Pd等金屬前 驅物O.lmol溶解於水200ml中,並添加氨lmol,且於水中 使金屬前驅物完全解離而得到硝酸銀/金屬前驅物之水溶 液。於此,添加0.5mol以上之主鏈碳數為2〜11個之1種 以上脂肪酸以及0.5mol以下之主鏈碳數為12〜26個之1種 以上脂肪酸,實施強制攪拌1小時以上,直到成為具黏度 之不透明液體或金屬鹽析出之白濁液體。其後,添加醇 300ml,並強制攪拌1小時,而作為以經還原粒子均勻分散 於再分散溶劑的方式誘導的步驟,此時,銀/金屬脂肪酸鹽 會因為醇而再析出一部分且同時產生白濁現象。又,提高 再分散溶劑中的pH且為了提高安全性而添加作為胺的三 乙胺lmol,其後立刻10分中内滴加作為還原劑之苯肼 lmol,一邊強制攪拌2小時以上一邊誘導還原。 以曱醇及丙酮沉澱經還原的溶液,並洗淨3次以上而 收得清潔的奈米粒子,並於30°C真空爐中乾燥6小時,而 得到作為目的之金屬奈米粒子。 [實施例2] 硝酸銀lmol與1種以上Ni、Cu、Zn、Pd等前驅物O.lmol 溶解於水200ml中,而得到硝酸銀/金屬前驅物水溶液。於 此,將0.5mol以上之主鏈碳數為2~11個之1種以上脂肪 酸以及0.5mol以下之主鏈碳數為12〜26個之1種以上脂肪 17 201141636 ^讀氨ι_混合的狀態緩緩地滴加至硝酸銀/金屬前驅 水溶液且同時得到白色沉澱物。將如此心色沉殿物過 屬且收得後’以超純水化甲料洗淨丨次以上,並以 真空爐乾燥。 將經乾燥的白色粉末分散、溶解於二曱笨、甲苯等非 極比岭劑後’為了再分散溶劑中的安定性而添加三乙胺 lmol。接著’緩緩地於1Q分勒滴加作為還原劑之苯耕或 肼lmol,強制攪拌2小時以上同時誘導還原。 以甲醇及丙酮沉澱經還原的溶液,並洗淨3次以上而 收得清潔的奈米粒子,並於贼真空爐中乾燥6小時而 得到作為目的之奈米粒子。 [試驗例1] 在將前述合成條件中之脂肪酸及金屬前驅物的條件如 下列表1所提示般調節而製造金屬奈米粒子後,使金屬奈 米粒子分散於萜品醇中,實施印刷性能及低溫燒成性能實 驗。硝酸銀係於各實施例中分別添加Imol。 【表1】In the above formula, R, Rr, R2, R2', R3, R3' and R4 are each independently hydrogen, alkyl, isoalkyl, alkoxy, alkanol, hydroxy or amine; η-system 1~ An integer of 20. The firing temperature of the subsequent metal ink composition can be changed by the carbon number of the fatty acid hydrocarbon, the branched form of the carbon, and the type of the fatty acid added by two or more types. For example, when the carbon number of the fatty acid is smaller, the branching form is more complicated. The closer the branch is to the carboxylic acid functional group, the lower the firing temperature becomes. In the present invention, the physical properties of the ink are adjusted by a solvent, a polymer, a monomer, etc., but in the present invention, by adding two or more different forms of fatty acids as described above, it is adjusted while at the same time overcoming the addition of a polymer, The conductivity induced by the body is lowered, and the low temperature is not able to be fired. Specific examples of the carboxyl group-containing fatty acid hydrocarbon having a main chain carbon number of 2 to u which lowers the calcination temperature include propionic acid, butyric acid, hydroxybutyric acid, caproic acid, isobutyric acid, and oxalic acid (valeric acid). ), tridecyl acetic acid, mercaptooctanoic acid 'dimethyl octanoic acid, methyl hexanoic acid, ethyl hexanoic acid, butyl hexanoic acid, diethyl hexanoic acid, - mercaptoethyl hexanoic acid, trimethyl decanoic acid Isostearic acid, isohexadecanic acid, etc., although it can be achieved by firing, it has the disadvantage of relatively increasing the particle size. Specific examples of the teflon-containing fatty acid having 12 to 26 primary carbon atoms for adjusting viscosity and elasticity include oleic acid, E linoleic acid, stearic acid, 201141636, stearic acid, linoleic acid, and amine. Base acid, citric acid, lauric acid, decenoic acid, undecylenic acid, palmitoleic acid, hexyl decanoic acid, hydroxy hydroxy palmitic acid 'hydroxy myristic acid, hydroxydecanoic acid, palmitoleic acid and nutmeg oil Acid, etc. The fatty acid having such adjustable viscosity and elasticity has the advantage of relatively reducing the particle size to increase the surface thick chain after firing, but on the other hand, it has a known firing temperature and hinders low-temperature firing characteristics. The shortcomings. Further, in order to make the low-temperature firing between 150 and 200 C possible, it is preferred to use a carboxyl group-containing fatty acid having a primary bond carbon number of 2 to 11 in an amount of 〇.5 to lm 〇1 with respect to 1 mol of the metal precursor. Hydrocarbon; and a mercapto-containing fatty acid hydrocarbon having a main chain carbon number of 12 to 26 is used in an amount of 0.0001 to 0'5 mol with respect to the metal precursor lm〇i. When a slow-chain fatty acid-containing hydrocarbon having an inverse number of 2 to 11 main chain stones is used in an amount of less than 〇5 m〇1 as compared with the metal precursor, low-temperature firing may not be performed; when used in an amount of more than 1 mol, The reduction reaction will not proceed smoothly. Further, when a carboxyl group-containing fatty acid hydrocarbon having a main chain carbon number of 12 to 26 is used in an amount of less than 0.0001 mol, the metal particles become relatively large, and the particles precipitate and cause phase separation after the ink is produced; When it is used in an amount of more than 0.5 mol, there is a disadvantage that low-temperature baking cannot be performed. Step (3) Step (3) is: after dispersing the metal-fatty acid ligand compound produced by the above step (2) in a polar or non-polar organic solvent and an amine, adding a reducing oxime thereto to reduce and precipitate the metal. The step of collecting metal nanoparticles. In step (3), in order to adjust the polarity and pH of the surface of the reduced nano metal, the polar or non-polar organic solvent and the amine are added to the metal fatty acid ligand compound solution to make the ligand compound When the polarity 12 201141636 solvent and amine are used, '(10) the dispersion or transfer of the nano metal particles with fatty acid to the non-polar solvent or the polar solution #1 becomes the stomach; and when the non-polar solvent and the amine are injected, the fatty acid is adsorbed. The dispersion or dissolution of the nano metal particles for the non-polar solvent becomes easy. Unregulated polar and cation nano metal particles have problems that are difficult to disperse. Suitable polar solvents include methanol, ethanol and isopropanol, dimethyl sulfoxide, (d), and the like; suitable non-polar solvents include xylene, toluene, benzene, and trimethyl. a mixture of benzene, diethylbenzene, dimethyl carbonate and the like; and suitable amines may be decylamine, diamine, tridecylamine, ethylamine, diethylamine, triethylamine, propylamine, A mixture of propylamine, tripropylamine, butylamine, dibutylamine, tripropylamine, and the like. Next, a reducing agent is introduced therein to undergo a reduction step. At this time, only a small amount of aliphatic groups are adsorbed on the surface of the reduced metal in the solution in which the aliphatic metal precursor is formed, and at the same time, the dispersion and solubility of the metal particles are simultaneously exerted. The role of promotion. Although there is a difference in the amount of adsorption depending on the type of fatty acid hydrocarbon used, 'about 5 to 1% by weight of the fatty acid is adsorbed on the surface of the reduced metal' and the firing temperature is determined by the thermal decomposition temperature of the adsorbed fatty acid. . For example, as shown in Fig. 1, it is known that when a carboxyl group-containing fatty acid hydrocarbon having a main chain carbon number of 2 to 11 such as dimercaptooctanoic acid is used, not only the decomposition temperature is as low as less than 200. (: The amount of fatty acid adsorbed is also as low as about 5% by weight. However, as shown in Fig. 2, it is known that the number of carbon atoms in the main chain such as dimercaptooctanoic acid is 2 to η at 9:1. When a carboxyl group-containing fatty acid hydrocarbon such as ricinoleic acid 13 201141636 has a carboxyl group-containing fatty acid hydrocarbon having 12 to 26 main chains, the final thermal decomposition temperature is high, and the amount of fatty acid adsorbed is as high as about 10% by weight. As a result, it was found that fatty acids having a large number of branches were easily detached due to physicochemical adsorption, and the amount of adsorption was small. On the other hand, fatty acids having a small amount of branching were not easily detached due to relatively strong physicochemical adsorption. In addition, in order to perform low-temperature baking, it is preferable to use a fatty acid having a small amount of branching with a fatty acid having a large number of branches, and a fatty acid having a small amount of branching is used. Specific examples of the reducing agent used in the above step (3) include hydrazine, A mixture of benzoquinone, aluminum borohydride, and the like, and it is preferred to slowly drip so that the reduction does not proceed too much. The reducing agent may be used in an amount of from 1 to 1.3 mol per mol of the metal precursor. In the initial step of nucleation, the fatty acid as a dispersion stabilizer can suppress particle growth and particle agglomeration after particle formation with a critical enthalpy size and at the same time play an important role in the growth of stable particles. In other words, the concentration changes with the reaction. The small metal precursor makes the particle distribution wider, and the particle growth reaction is suppressed as compared with the generation of the particle, and the particle distribution is also reduced. Further, after the reducing agent is introduced, the system is preferably Stirring while maintaining a certain temperature, and the stirring is preferably maintained until the color of the solution does not change. At this time, when the temperature is higher than 50 ° C, the particles grow and it is difficult to obtain particles of a desired nanometer size; When the temperature is less than 15 °C, it takes a long reaction time, and the particle size distribution becomes wider. Therefore, the reaction temperature should be maintained at 15 to 50 ° C. 14 201141636 After the metal is reduced by the above reaction step, acetone can be used immediately. And a mixture of alcohol (for example, decyl alcohol, ethanol) or the like is rapidly cooled to precipitate the metal nanoparticles. The metal nanoparticles obtained are sufficiently washed in the same solution as described above for about 3 to 4 times, and then dried in a vacuum oven at about 30 to 40 ° C for 8 hours or more to obtain uniformly dried metal nanoparticles. Further, the present invention provides a metal nanoparticle produced by the above-described production method. The metal nanoparticle according to the present invention has a narrow particle size distribution and excellent dispersibility, and can be fired at a low temperature. The aforementioned metal nanoparticles preferably have an average particle size distribution of 10 to 110 nm, thereby being usefully applied to personal digital assistants (PDAs), mobile phones, RFID tags, antennas, etc. A metallic ink for forming a flexible printed circuit board (FPCB) in various electronic devices, and a metallic ink for forming a gate electrode of a liquid crystal display (LCD). Further, the present invention provides a metallic ink composition comprising the aforementioned metal nanoparticles. The metal ink composition can be produced by redispersing the metal nanoparticles produced by the above production method in a solvent. In this case, in order to increase the adhesion between the metal nanoparticles and various solvents and the lower film, the metal ink composition may additionally contain an oligomer or a polymer. The solvent used in the production of the aforementioned ink composition may be, for example, methanol, ethanol, propanol, isopropanol, butanol, 2-butanol, octanol, 2-ethylhexanol, 15 201141636 pentanol, benzyl alcohol. Alcohols of hexanol, 2-hexanol, cyclohexanol, terpineol and sterol, such as mercapto alcohol, ethylene glycol, propylene glycol, diethylene glycol 'triethylene glycol, tetraethylene glycol, B Glycol decyl ether, ethylene glycol ethyl ether 'ethylene glycol butyl ether, diethylene glycol decyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol dioxime Ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, monoethyl alcohol decyl ethyl ketone, propylene glycol methyl test 'dipropylene glycol methyl ether, propylene glycol methyl ether acetate, two a diol of propylene glycol sulfhydryl acetate, ethylene glycol butyl ether acetate, and ethylene glycol ethyl ether acetate; and such as benzene, hydrazine, niacin, methyl acetate, and diethyl carbonate The organic solvent of the ester and the ethyl lactate may be used singly or in combination of two or more. When the redispersion of the metal nanoparticles is carried out, it is preferable to exhibit a certain dispersion effect by a physical method such as dispersion by ultrasonic waves or dispersion by a homogenizer. The content of the metal nanoparticles contained in the metal ink composition may be appropriately adjusted depending on the use thereof, but is preferably 30 to 90% by weight based on the total weight of the ink composition. In the present invention, a metal salt can be easily produced from a fatty acid, and the surfactant can be used as a dispersing agent which is not used as a means for producing an emulsion, and has the advantage of easily synthesizing a synthesis which induces uniform nucleation without controlling the amount of water added. . Further, the metal nanoparticle synthesized by the present invention and the composition containing the metal nanoparticle ink have a carbon number that can be added depending on the number of carbon atoms added, thereby controlling the firing temperature and surface roughness, and agglomeration at a high temperature (agglomeration). The advantages of state and surface hardness. In the following, the preferred embodiments of the present invention are intended to be illustrative, but the following examples are merely illustrative of the present invention, and the scope of the present invention is not limited by the following embodiment 201141636. EXAMPLES [Example 1] 1 mol of silver nitrate and one or more metal precursors such as Ni, Cu, Zn, and Pd were dissolved in 200 ml of water, and 1 mol of ammonia was added thereto, and the metal precursor was completely dissociated in water to obtain An aqueous solution of silver nitrate/metal precursor. Here, 0.5 mol or more of one or more fatty acids having a main chain carbon number of 2 to 11 and 0.5 mol or less of one or more fatty acids having a main chain carbon number of 12 to 26 are added, and forced stirring is performed for 1 hour or more until It becomes a white turbid liquid with a viscous opaque liquid or metal salt precipitated. Thereafter, 300 ml of an alcohol was added and forcedly stirred for 1 hour, and as a step of inducing that the reduced particles were uniformly dispersed in the redispersion solvent, at this time, the silver/metal fatty acid salt was reprecipitated due to the alcohol and simultaneously became cloudy. phenomenon. In addition, the pH of the redispersion solvent was increased, and 1 mol of triethylamine as an amine was added for the purpose of improving the safety. Thereafter, 1 mol of phenylhydrazine as a reducing agent was added dropwise thereto for 10 minutes, and the mixture was stirred for 2 hours or more to induce reduction. . The reduced solution was precipitated with decyl alcohol and acetone, and washed three times or more to obtain cleaned nanoparticles, and dried in a vacuum oven at 30 ° C for 6 hours to obtain a target metal nanoparticle. [Example 2] One mol of silver nitrate and one or more kinds of precursors such as Ni, Cu, Zn, and Pd were dissolved in 200 ml of water to obtain a silver nitrate/metal precursor aqueous solution. Here, 0.5 mol or more of the main chain carbon number is 2 to 11 or more kinds of fatty acids, and 0.5 mol or less of the main chain carbon number is 12 to 26 or more types of fats 17 201141636 ^Ammonia 1 mixed The state was slowly added dropwise to the silver nitrate/metal precursor aqueous solution while obtaining a white precipitate. After so, the heart of the temple will be overhauled and collected, and then washed with ultra-pure hydrated nails and dried in a vacuum oven. The dried white powder was dispersed and dissolved in a non-polar ratio agent such as dioxane or toluene. To the stability in the redispersion solvent, 1 mol of triethylamine was added. Then, benzene or 肼lmol as a reducing agent was slowly added dropwise at 1Q, and the mixture was stirred for 2 hours or more to induce reduction. The reduced solution was precipitated with methanol and acetone, and washed three times or more to obtain cleaned nanoparticles, and dried in a thief vacuum oven for 6 hours to obtain a target nanoparticle. [Test Example 1] After the metal nanoparticles were produced by adjusting the conditions of the fatty acid and the metal precursor in the above-mentioned synthesis conditions as shown in the following Table 1, the metal nanoparticles were dispersed in terpineol to carry out printing performance and Low temperature firing performance test. Silver nitrate was added in an amount of 1 mol in each of the examples. 【Table 1】

No 脂肪酸種類( 相對於硝酸銀之莫耳比) 金屬種類(相對於銀之莫耳比、 第1脂 肪酸 第2脂肪酸 第3脂肪酸 第1金屬 第2金屬 第3 金艰 種類 含量 種類 含量 種類 含t 種類 含量 種類 含量 種類 含奇 實施例1 DMOA 0.95 ΟΑ 0.05 Zn 0.1 實施例2 II II II II Cu 0.1 實施例3 •1 II Μ It Ni 0.1 實施例4 Μ Μ " II Zn 0.7 Cu 0.3 實施例5 " II II II Zn 0.5 Cu 0.3 Ni 0 2 實施例6 NDA 0.95 ROA 0.05 Zn 0.1 實施例7 II Μ II ” Cu 0.1 實施例8 " ” Μ «« Ni 0.1 實施例9 II <1 Μ Μ Zn 0.7 Cu 0.3 實施例10 ·( II Μ II Zn 0.5 Cu 0.3 Ni 0.2 18 201141636No fatty acid type (mole ratio to silver nitrate) Metal type (relative to silver molar ratio, first fatty acid, second fatty acid, third fatty acid, first metal, second metal, third gold, hard type, content, type, t type Content Type Content Type Odd Example 1 DMOA 0.95 ΟΑ 0.05 Zn 0.1 Example 2 II II II II Cu 0.1 Example 3 • 1 II Μ It Ni 0.1 Example 4 Μ Μ " II Zn 0.7 Cu 0.3 Example 5 &quot II II II Zn 0.5 Cu 0.3 Ni 0 2 Example 6 NDA 0.95 ROA 0.05 Zn 0.1 Example 7 II Μ II ” Cu 0.1 Example 8 " Μ «« Ni 0.1 Example 9 II <1 Μ Μ Zn 0.7 Cu 0.3 Example 10 · ( II Μ II Zn 0.5 Cu 0.3 Ni 0.2 18 201141636

實施例11 DMOA 0.95 HSA 0.05 Zn 0.1 實施例12 I M II II Cu 0.1 實施例丨3 Μ tt ·· M Ni 0.1 實施例14 II " ft " Zn 0.7 Cu 0.3 實施例15 II It tl " Zn 0.5 Cu 0.3 Ni 0.2 實施例16 EHA 0.95 OA 0.05 Zn 0.1 實施例17 Μ M If " Cu 0.1 實施例18 II M ” II Zn 0.7 Cu 0.3 實施例19 Μ (1 II It Zn 0.5 Cu 0.3 Ni 0.2 實施例20 EHA 0.95 ROA 0.05 Zn 0.1 實施例21 fl II II II Cu 0.1 實施例22 Μ II II It Zn 0.7 Cu 0.3 實施例23 II II II M Zn 0.5 Cu 0.3 Ni 0.2 實施例24 EHA 0.95 HSA 0.05 Zn 0.7 Cu 0.3 實施例25 ISA 0.95 OA 0.05 Zn 0.1 實施例26 H M tl (« Cu 0.1 實施例27 II ” M " Zn 0.7 Cu 0.3 實施例28 II " M " Zn 0.5 Cu 0.3 Ni 0.2 實施例29 ISA 0.95 ROA 0.05 Zn 0.1 實施例30 II ” M M Cu 0.1 實施例31 " Μ ” " Zn 0.7 Cu 0.3 實施例32 " ” ” Zn 0.5 Cu 0.3 Ni 0.2 實施例33 ISA 0.95 HSA 0.05 Zn 0.7 Cu 0.3 實施例34 HA 0.3 BA 0.45 ROA 0.15 Zn 0.1 實施例35 ” It II II μ μ Cu 0.1 實施例36 II II II " II fl Zn 0.7 Cu 0.3 實施例37 HA 0.3 BA 0.45 OA 0.15 Zn 0.7 Cu 0.3 實施例38 HA 0.3 IBA 0.45 ROA 0.15 Zn 0.7 Cu 0.3 實施例39 HA 0.3 BA 0.45 HSA 0.15 Zn 0.7 Cu 0.3 實施例40 HA 0.3 VA 0.45 ROA 0.15 Zn 0.7 Cu 0.3 比較例1 DMOA 比較例2 ROA DMOA :二曱基辛酸、EHA :乙基己酸、ISA :異硬脂酸、 ROA :蓖蔴油酸、OA :油酸、HAS :羥基硬脂酸、HA : 己酸、BA : 丁酸、IBA :異丁酸、VA :纈草酸(戊酸、)、 Zn、Cu、Ni、Pd :分別以硝酸鹽添加 使用以前述實施例1〜40以及比較例1及2合成的奈米 粒子,分別溶解及分散於萜品醇而成為30〜80重量%,且 19 201141636 以準備好的凹版膠印(Gravure Off-set)裝備實施依據印刷性 能實驗、低溫燒成實驗及格子附著性實驗之接著力實驗, 並將其結果示於下列表2。 【表2】Example 11 DMOA 0.95 HSA 0.05 Zn 0.1 Example 12 IM II II Cu 0.1 Example 丨 3 Μ tt ·· M Ni 0.1 Example 14 II " ft " Zn 0.7 Cu 0.3 Example 15 II It tl " Zn 0.5 Cu 0.3 Ni 0.2 Example 16 EHA 0.95 OA 0.05 Zn 0.1 Example 17 If M If " Cu 0.1 Example 18 II M ′ II Zn 0.7 Cu 0.3 Example 19 1 (1 II It Zn 0.5 Cu 0.3 Ni 0.2 was carried out Example 20 EHA 0.95 ROA 0.05 Zn 0.1 Example 21 fl II II II Cu 0.1 Example 22 Μ II II It Zn 0.7 Cu 0.3 Example 23 II II II M Zn 0.5 Cu 0.3 Ni 0.2 Example 24 EHA 0.95 HSA 0.05 Zn 0.7 Cu 0.3 Example 25 ISA 0.95 OA 0.05 Zn 0.1 Example 26 HM tl (« Cu 0.1 Example 27 II " M " Zn 0.7 Cu 0.3 Example 28 II " M " Zn 0.5 Cu 0.3 Ni 0.2 Example 29 ISA 0.95 ROA 0.05 Zn 0.1 Example 30 II MM Cu 0.1 Example 31 " Μ " Zn 0.7 Cu 0.3 Example 32 " ” Zn 0.5 Cu 0.3 Ni 0.2 Example 33 ISA 0.95 HSA 0.05 Zn 0.7 Cu 0.3 Example 34 HA 0.3 BA 0.45 ROA 0.15 Zn 0.1 Example 35 ” It II II μ μ Cu 0.1 Example 36 II II II " II fl Zn 0.7 Cu 0.3 Example 37 HA 0.3 BA 0.45 OA 0.15 Zn 0.7 Cu 0.3 Example 38 HA 0.3 IBA 0.45 ROA 0.15 Zn 0.7 Cu 0.3 Example 39 HA 0.3 BA 0.45 HSA 0.15 Zn 0.7 Cu 0.3 Example 40 HA 0.3 VA 0.45 ROA 0.15 Zn 0.7 Cu 0.3 Comparative Example 1 DMOA Comparative Example 2 ROA DMOA: dimercaptooctanoic acid, EHA: ethylhexanoic acid, ISA: isostearic acid, ROA: ricinoleic acid, OA: oleic acid, HAS: hydroxystearic acid, HA: caproic acid, BA: Butyric acid, IBA: isobutyric acid, VA: shikimic acid (valeric acid,), Zn, Cu, Ni, Pd: Nanos synthesized in the above Examples 1 to 40 and Comparative Examples 1 and 2 were added as nitrates, respectively. The particles are dissolved and dispersed in terpineol to be 30 to 80% by weight, and 19 201141636 is prepared by Gravure Off-set equipment according to printing performance test, low temperature firing test and lattice adhesion test. Then force the experiment and show the results Listing 2. 【Table 2】

No 印刷 低溫燒成(30min) μΩαιη 接著力 膠印 150°C 200°C 250〇C 格子附著性試驗 贲施例1 95 220 9 4 95% 贲施例2 90 70 6 3.5 94% 實施例3 85 230 9 4 50% 货施例4 99 100 6 3.5 99% 實施例5 99 170 6 3.5 99% 實施例6 95 120 7 3.5 95% 實施例7 95 10 6 3 94% 實施例8 90 130 9 3.5 50% 實施例9 100 20 6 3 99% 實施例10 100 80 6 3 99% 實施例11 90 320 13 5 95% 贲施例12 90 70 10 4 94% 實施例13 85 330 15 4.5 50% 實施例14 95 120 10 4 99% 實施例15 95 150 10 4 99% 實施例16 90 180 6 4 93% 實施例17 85 30 5 4 90% 實施例18 95 50 5 4 98% 實施例19 95 95 5 4 98% 實施例20 95 120 6 4 95% 實施例21 90 9 4.5 4 94% 實施例22 95 11 5 4 98% 實施例23 95 21 5 4 98% 實施例24 95 15 5 4 95% 實施例25 95 250 7 4.5 90% 實施例26 90 70 5 4 89% 實施例27 99 I 10 5 4 95% 實施例28 99 180 5 4 94% 實施例29 99 180 5 4 90% 實施例30 95 22 5 4 85% 實施例31 100 50 5 4 92% 實施例32 100 95 5 4 91% 實施例33 90 150 7 4.5 90% 20 201141636 實施例34 100 750 25 6 95% 實施例35 100 550 15 6 93% 實施例36 100 530 17 6 99% 實施例37 100 530 20 6 99% 實施例38 100 520 18 5.5 99% 實施例39 100 520 19 6 99% 實施例40 100 530 17 6 99% 比較例1 10 8 4 3.5 20% 比較例2 10 1200 150 50 30% 凹版膠印係由以下步驟所構成:在輥或板形態之刻有 所希望的圖案之印刷版上塗布墨或糊後’並使用刀(blade) 去除不必要的部分的墨或糊後,轉印至一般由PDMS所構 成之毛氈(blanke)版上的過程之離開(off)步驟;及再其後以 毛數所進行之對所希望的膜或玻璃基板之轉印的過程之設 置(set)步驟;且由於在設置步驟時在毛氈上殘留墨或糊 時,會成為下次印刷時不良之要因,所以必須將幾乎全部 的墨糊糊轉印至所希望基材上。 前述表2之膠印値係指各自的金屬奈米粒子在設置步 驟時從毛氈轉印至基材之轉印率,加入越多碳數在12個以 上的脂肪酸轉印率越高,可知加入羥基的羥基硬脂酸雨及 蓖蔴油酸的轉印率比油酸高,且可知即使是碳數在11個以 下的脂肪酸,越接近11個則轉印率會變得更高。使用實施 例6所合成的奈米粒子進行印刷性能試驗的結果係以照片 示於第3圖,可確認到即便是在孔較細的圖案構造轉印仍 幾近完美地進行。 一般而言,在由微銀粒子及聚合物、單體的組合所構 成的糊之情況下’藉由在450°c以上燒成3〇分鐘以上會呈 現90~100y Ω .cm左右的導電度。本發明中的低溫燒成係 21 201141636 定義為在250°C以下的溫度下展現100 // Ω . cm以下的導 電度,且可知藉由前述合成而得之奈米粒子全部於250°C以 下的溫度展現100 // Ω · cm以下的導電度。 換言之,可知為了得到印刷特性及於低溫下的良好導 電度特性,而在除了硝酸銀之外進一步包含有特性互異的2 種以上的脂肪酸及1種以上之金屬前驅物。 如此的事實雖亦可由從比較例1.及2之結果得知,但 在含有1種脂肪酸的情況下,印刷特性及導電度特性中至 少一種特性會無法得到令人滿足程度的結果。 又,附著力實驗係表現藉由標準實驗規格之ASTM D3359的格子附著性實驗,分別以規格刀於縱、橫每 1mm(總共10個)切開塗布於實驗基材前面的銀電極而製作 總共100個格子,且以50mm/min(0.28kgf之張力)取下規格 接著膠帶而留下的格子數者。 相較於單獨的異種金屬,在適當地組合2種以上來添 加的情況下,依據格子附著性實驗而得之附著力會更為良 好,在單獨異種金屬中添加Ni前驅物時雖呈現最為不佳的 結果,但仍比如在比較例時不添加的情況下展現更為良好 的附著力。又,於碳數11個以下之脂肪酸,越接近11個 會展現更為良好的附著力,且添加越多碳數在12個以上的 脂肪酸會在附著力上展現更為良好的結果。 從前述實驗可確認到,如比較例1及2時一般僅以單 獨脂肪酸合成的情況下,雖無法兼具印刷特性、對基材的 附著力、低溫燒成能力,但藉由將脂肪酸及異種金屬前驅 22 201141636 物符合條件地合成,可由奈米粒子本身發揮良好的性能。 [試驗例2] 於以前述表1之實施例1及34的條件合成的奈米粒子 中,以下列表3所提示般變更分散溶劑及添加劑,並實施 對基材的附著力及印刷特性實驗。又,於以前述表1之比 較例1及2的條件合成的奈米粒子添加分散溶劑,並實施 前述實施例與比較評定。 下述實施例41~50係將以實施例1製造的奈米粒子分 別於30〜80重量%範圍内添加,除奈米粒子之外的分散溶 劑各別的重量比係定為重量比率。 【表3】No Printing low temperature firing (30min) μΩαιη Next offset printing 150°C 200°C 250〇C Grid adhesion test 贲 Example 1 95 220 9 4 95% 贲 Example 2 90 70 6 3.5 94% Example 3 85 230 9 4 50% Example 4 99 100 6 3.5 99% Example 5 99 170 6 3.5 99% Example 6 95 120 7 3.5 95% Example 7 95 10 6 3 94% Example 8 90 130 9 3.5 50% Example 9 100 20 6 3 99% Example 10 100 80 6 3 99% Example 11 90 320 13 5 95% 贲 Example 12 90 70 10 4 94% Example 13 85 330 15 4.5 50% Example 14 95 120 10 4 99% Example 15 95 150 10 4 99% Example 16 90 180 6 4 93% Example 17 85 30 5 4 90% Example 18 95 50 5 4 98% Example 19 95 95 5 4 98% Example 20 95 120 6 4 95% Example 21 90 9 4.5 4 94% Example 22 95 11 5 4 98% Example 23 95 21 5 4 98% Example 24 95 15 5 4 95% Example 25 95 250 7 4.5 90% Example 26 90 70 5 4 89% Example 27 99 I 10 5 4 95% Example 28 99 180 5 4 94% Example 29 99 180 5 4 90% Example 30 95 22 5 4 85% Example 31 100 50 5 4 92% Example 32 100 95 5 4 91% Example 33 90 150 7 4.5 90% 20 201141636 Example 34 100 750 25 6 95% Example 35 100 550 15 6 93% Example 36 100 530 17 6 99% Example 37 100 530 20 6 99% Example 38 100 520 18 5.5 99% Example 39 100 520 19 6 99% Example 40 100 530 17 6 99% Comparative Example 1 10 8 4 3.5 20% Comparative Example 2 10 1200 150 50 30% Gravure offset printing consists of the following steps : After applying ink or paste on a printing plate of a desired pattern in the form of a roll or a plate, and using a blade to remove unnecessary portions of ink or paste, transfer to a felt generally composed of PDMS. (off) step of the process on the (blanke) plate; and a set of steps of the process of transferring the desired film or glass substrate by the number of hairs; and because of the setting step When ink or paste remains on the felt, it is a cause of defects in the next printing, so it is necessary to transfer almost all of the ink paste to the desired substrate. The offset printing enamel of the above Table 2 refers to the transfer rate of the respective metal nanoparticles from the felt to the substrate at the setting step, and the more the carbon number is added, the higher the transfer rate of the fatty acid is 12 or more, and it is known that the hydroxyl group is added. The transfer rate of hydroxystearic acid rain and ricinoleic acid is higher than that of oleic acid, and it is understood that even if the fatty acid has a carbon number of 11 or less, the transfer rate becomes higher as it is closer to eleven. The results of the printing performance test using the nanoparticles synthesized in Example 6 are shown in Fig. 3, and it was confirmed that the transfer of the pattern structure having a fine hole was almost perfectly performed. In general, in the case of a paste composed of a combination of fine silver particles and a polymer or a monomer, 'the conductivity is about 90 to 100 Ω·cm by firing at 450 ° C or more for 3 〇 minutes or more. . The low-temperature firing system 21 201141636 in the present invention is defined as exhibiting a conductivity of 100 //Ω·cm or less at a temperature of 250 ° C or lower, and it is understood that the nanoparticles obtained by the above synthesis are all below 250 ° C. The temperature exhibits a conductivity of less than 100 // Ω · cm. In other words, it is understood that two or more kinds of fatty acids and one or more kinds of metal precursors having different characteristics are contained in addition to silver nitrate in order to obtain printing characteristics and good electrical conductivity characteristics at low temperatures. Such a fact can also be obtained from the results of Comparative Examples 1 and 2. However, in the case of containing one type of fatty acid, at least one of the printing characteristics and the conductivity characteristics may not be satisfactory. In addition, the adhesion test was performed by using the grid adhesion test of ASTM D3359 of the standard test specification, and cutting the silver electrode applied to the front side of the test substrate in the longitudinal direction and the horizontal direction by 1 mm (total of 10), respectively, to make a total of 100. The grid was taken, and the number of grids left by the tape and the tape was removed at 50 mm/min (0.28 kgf tension). Compared with the individual dissimilar metals, when two or more kinds are added in combination as appropriate, the adhesion obtained according to the lattice adhesion test is more favorable, and the Ni precursor is added to the dissimilar metal alone. Good results, but still show better adhesion if not added in the comparative example. Further, the fatty acid having 11 or less carbon atoms exhibits a better adhesion as the closer to the 11th, and the more the fatty acid added in the 12 or more carbon atoms, the more excellent the adhesion is. From the above experiments, it was confirmed that, in the case of Comparative Examples 1 and 2, when only a single fatty acid was synthesized, it was not possible to have both printing characteristics, adhesion to a substrate, and low-temperature baking ability, but by fatty acid and heterogeneous The metal precursor 22 201141636 is chemically synthesized and can perform well by the nanoparticles themselves. [Test Example 2] In the nanoparticles synthesized in the conditions of Examples 1 and 34 of the above Table 1, the dispersion solvent and the additive were changed as shown in the following Table 3, and the adhesion to the substrate and the printing property test were carried out. Further, the dispersion particles were added to the nanoparticles synthesized under the conditions of Comparative Examples 1 and 2 in the above Table 1, and the foregoing examples and comparative evaluations were carried out. In the following Examples 41 to 50, the nanoparticles prepared in Example 1 were added in an amount of 30 to 80% by weight, respectively, and the respective weight ratios of the dispersion solvents other than the nanoparticles were defined as a weight ratio. 【table 3】

No 分散溶劑 印刷 接著力 分散溶劑1 分散溶劑2 分散溶劑2 膠印 格子附著 性試驗 種類 含量 (wt%) 種類 含量 (wt%) 種類 含量 (wt%) 實施例41 TPN 50 MEDG 50 100 100 實施例42 TPN 50 BCA 50 100 100 實施例43 TPN 50 MEDG 25 BCA 25 100 100 實施例44 TPN 50 辛醇 50 96 96 實施例45 TPN 10 IPA 90 100 100 實施例46 辛醇 100 95 95 實施例47 MEDG 100 93 90 實施例48 辛醇 30 MEDG 70 98 99 實施例49 辛醇 50 BCA 50 100 100 實施例50 辛醇 50 MEDG 25 BCA 25 100 100 比較例3 TPN MEDG 30 50 比較例4 TPN MEDG 30 50 TPN :萜品醇、MEDG :二乙二醇甲基乙基醚、BCA :乙二 醇丁基醚乙酸酯、IPA :異丙醇 如從上述表3之結果可知般,TPN以外之分散溶劑由 於可調節印刷步驟中的乾燥時間,因此可藉由凹版膠印導 23 201141636 出良好的結果,亦可提升與下部基材的接著力。又,可知 溶解度與TPN類似的辛醇亦會展現與TPN類似的結果。 從前述結果可知,藉由本發明方法合成的奈米粒子可 良好地分散於非極性溶劑及醇類、二醇類、二醇醚類、二 醇醚乙酸酯類等之中,且印刷特性亦優異。 I:圖式簡單說明3 【第1圖】對本發明之方法中使用二曱基辛酸後藉還原而 得之金屬奈米粒子進行的TGA觀察之結果。 【第2圖】對本發明之方法中以9: 1之重量比使用二甲基 辛酸及蓖蔴油酸後藉還原而得之金屬奈米粒子進行的TGA 觀察之結果。 【第3圖】使用以實施例6製造的金屬奈米粒子進行印刷 性能試驗的結果之照片。 【主要元件符號說明】 (無) 24No Dispersion solvent printing Next force dispersion solvent 1 Dispersion solvent 2 Dispersion solvent 2 Offset grid adhesion test type content (wt%) Species content (wt%) Species content (wt%) Example 41 TPN 50 MEDG 50 100 100 Example 42 TPN 50 BCA 50 100 100 Example 43 TPN 50 MEDG 25 BCA 25 100 100 Example 44 TPN 50 Octanol 50 96 96 Example 45 TPN 10 IPA 90 100 100 Example 46 Octanol 100 95 95 Example 47 MEDG 100 93 90 Example 48 Octanol 30 MEDG 70 98 99 Example 49 Octanol 50 BCA 50 100 100 Example 50 Octanol 50 MEDG 25 BCA 25 100 100 Comparative Example 3 TPN MEDG 30 50 Comparative Example 4 TPN MEDG 30 50 TPN : 萜Sterol, MEDG: diethylene glycol methyl ethyl ether, BCA: ethylene glycol butyl ether acetate, IPA: isopropanol As can be seen from the results of Table 3 above, the dispersion solvent other than TPN is adjustable The drying time in the printing step, so good results can be obtained by gravure offset guide 23 201141636, and the adhesion to the lower substrate can also be improved. Also, it is known that octanol having a solubility similar to that of TPN also exhibits similar results as TPN. From the above results, it is understood that the nanoparticles synthesized by the method of the present invention can be favorably dispersed in a nonpolar solvent, an alcohol, a glycol, a glycol ether, a glycol ether acetate, etc., and excellent in printing characteristics. . I: Brief Description of the Drawings 3 [Fig. 1] The results of TGA observation of metal nanoparticles obtained by reduction using dimercaptooctanoic acid in the method of the present invention. [Fig. 2] The results of TGA observation of the metal nanoparticles obtained by reduction using dimethyloctanoic acid and ricinoleic acid in a weight ratio of 9:1 in the method of the present invention. [Fig. 3] A photograph of the results of a printing performance test using the metal nanoparticles produced in Example 6. [Main component symbol description] (none) 24

Claims (1)

201141636 七、申請專利範圍: 1. 一種金屬奈米粒子之製造方法,包含以下步驟: (1) 將金屬前驅物溶解於水後,將金屬前驅物水溶 液之pH調節成9〜11之步驟; (2) 於前述步驟(1)所製得的金屬前驅物水溶液中, 添加1種以上之主鏈碳數為2〜11個之含羧基脂肪酸烴及 1種以上之主鏈碳數為12~26個之含羧基脂肪酸烴,而形 成金屬-脂肪酸配位基化合物之步驟;及 (3) 使前述步驟(2)所製得的金屬-脂肪酸配位基化 合物分散於極性或非極性有機溶劑及胺中,之後於其中 添加還原劑而使金屬還原、析出而收得金屬奈米粒子之 步驟。 2. 如申請專利範圍第1項之金屬奈米粒子之製造方法,其 中前述金屬前驅物係1種以上選自於由金屬之硕酸鹽、 硫酸鹽、醋酸鹽、磷酸鹽、矽酸鹽及鹽酸鹽所構成之無 機鹽,且該金屬選自金、銀、銅、紹、鎳、錫、纪、I白、 鋅、鐵、銦及鎮。 3. 如申請專利範圍第2項之金屬奈米粒子之製造方法,其 中前述金屬前驅物係以銀之無機鹽作為主成分,且包含 1種以上之銀以外的其他金屬之無機鹽作為輔助成分。 4. 如申請專利範圍第3項之金屬奈米粒子之製造方法,其 係以相對於銀之無機鹽lmol為0.001〜0.3mol之量來使用 前述輔助成分之金屬。 5. 如申請專利範圍第1項之金屬奈米粒子之製造方法,其 25 201141636 添加教或胺類來調節前述金屬前驅物水溶液之pH。 6.如申請專利範圍第1項之金屬奈米粒子之製造方法其 中前述含羧基脂肪酸烴係具有下列化學式1至3之結構 的飽和或不飽和脂肪酸烴: [化學式1]201141636 VII. Patent application scope: 1. A method for manufacturing metal nano particles, comprising the following steps: (1) after dissolving the metal precursor in water, adjusting the pH of the metal precursor aqueous solution to 9-11; 2) In the aqueous solution of the metal precursor obtained in the above step (1), one or more kinds of carboxyl group-containing fatty acid hydrocarbons having 2 to 11 main chain carbon atoms and one or more main chain carbon atoms of 12 to 26 are added. And a step of forming a metal-fatty acid ligand compound; and (3) dispersing the metal-fatty acid ligand compound obtained in the above step (2) in a polar or non-polar organic solvent and an amine Then, a step of adding a reducing agent to reduce and precipitate the metal to obtain the metal nanoparticles is carried out. 2. The method for producing a metal nanoparticle according to the first aspect of the invention, wherein the metal precursor is one or more selected from the group consisting of a metal acid salt, a sulfate, an acetate, a phosphate, a cerium salt, and An inorganic salt composed of hydrochloride, and the metal is selected from the group consisting of gold, silver, copper, sulphur, nickel, tin, ki, white, zinc, iron, indium and town. 3. The method for producing a metal nanoparticle according to the second aspect of the invention, wherein the metal precursor contains an inorganic salt of silver as a main component, and an inorganic salt of a metal other than one or more kinds of silver is used as an auxiliary component. . 4. The method for producing a metal nanoparticle according to the third aspect of the invention, wherein the metal of the auxiliary component is used in an amount of 0.001 to 0.3 mol per mol of the inorganic salt of silver. 5. The method for producing a metal nanoparticle according to claim 1, wherein the teaching or amine is added to adjust the pH of the aqueous solution of the metal precursor. 6. The method for producing a metal nanoparticle according to the first aspect of the invention, wherein the carboxyl group-containing fatty acid hydrocarbon has a saturated or unsaturated fatty acid hydrocarbon having the structure of the following Chemical Formulas 1 to 3: [Chemical Formula 1] [化學式2][Chemical Formula 2] [化學式3][Chemical Formula 3] 於上述式中, K、R2、R2’ ' R3'1,及1各自獨立為氫、烧 基、異烷基、烷氧基、烷醇、羥基或胺基; 且η係1〜20之整數。 如申睛專利範圍第1項之金屬奈米粒子之製造方法,其 中前述主鏈碳數為2〜11個之含羧基脂肪酸烴係丨種以上 選自於由丙酮酸、丁酸、羥基丁酸、己酸、異丁酸、纈 26 201141636 草酸(戊酸)、三甲基乙酸、曱基辛酸、二甲基辛酸、曱 基己酸、乙基己酸、丁基己酸、二乙基己酸、二甲基乙 基己酸、三曱基壬酸、異硬脂酸及異十六烯酸所構成之 群者。 8. 如申請專利範圍第1項之金屬奈米粒子之製造方法,其 中前述主鏈碳數為12~26個之含羧基脂肪酸烴係1種以 上選自於由油酸、蓖蔬油酸、硬脂酸、經基硬脂酸、亞 麻油酸、胺基癸酸、羥基癸酸、月桂酸、癸烯酸、十— 烯酸、棕櫚油酸、己基癸酸、羥基棕櫚酸、羥基肉豆缝 酸、羥基癸酸、棕櫚油酸及肉豆蔻油酸所構成之群者。 9. 如申請專利範圍第1項之金屬奈米粒子之製造方法,其 係以相對於金屬前驅物lmol為0.5~lmol之量使用前述 主鏈之碳數為6〜11個的含叛基脂肪酸烴;且以相對於金 屬前驅物lmol為0.0001〜0.5m〇l之量使用前述主鏈碳數 為12〜26個之含羧基脂肪酸烴。 10. 如申請專利範圍第1項之金屬奈米粒子之製造方法其 中前述還原劑係1種以上選自於由肼、苯肼及硼氫化鋁 所構成之群者。 U'種金屬奈米粒子,係藉由如申請專利範圍第1項之製 造方法所製造者。 、 12·如申請專利範圍第11項之金屬奈米粒子,其中前述金屬 奈米粒子具有10〜llOnm之平均粒度分布。 13. 一種金屬墨組成物’包含有如中請專利範圍第1項之金 屬奈米粒子。 27 201141636 14.如申請專利範圍第13項之金屬墨組成物,其中前述金屬 墨組成物係作為電子機器之軟性印刷電路基板用墨或 液晶顯示裝置之閘極電極形成用墨使用。 28In the above formula, K, R2, R2' 'R3'1, and 1 are each independently hydrogen, alkyl, isoalkyl, alkoxy, alkanol, hydroxy or amine; and η is an integer from 1 to 20 . The method for producing a metal nanoparticle according to the first aspect of the invention, wherein the carboxyl group-containing fatty acid having 2 to 11 main chain carbon atoms is selected from the group consisting of pyruvic acid, butyric acid, and hydroxybutyric acid. , hexanoic acid, isobutyric acid, hydrazine 26 201141636 oxalic acid (pentanoic acid), trimethylacetic acid, decyl octanoic acid, dimethyl octanoic acid, decyl hexanoic acid, ethyl hexanoic acid, butyl hexanoic acid, diethyl hexanoate A group consisting of acid, dimethylethylhexanoic acid, triterpene decanoic acid, isostearic acid, and isohexadecenoic acid. 8. The method for producing a metal nanoparticle according to the first aspect of the invention, wherein the carboxyl group-containing fatty acid having 12 to 26 main chain carbon atoms is one or more selected from the group consisting of oleic acid and oleic acid. Stearic acid, stearic acid, linoleic acid, amino decanoic acid, hydroxy decanoic acid, lauric acid, decenoic acid, decenoic acid, palmitoleic acid, hexyl decanoic acid, hydroxypalmitic acid, hydroxy peas A group of acid, hydroxydecanoic acid, palmitoleic acid, and myristic acid. 9. The method for producing a metal nanoparticle according to claim 1, wherein the carbonic acid having 6 to 11 carbon atoms in the main chain is used in an amount of 0.5 to 1 mol per mol of the metal precursor. The hydrocarbon; and the carboxyl group-containing fatty acid hydrocarbon having 12 to 26 main chain carbon atoms is used in an amount of 0.0001 to 0.5 m〇 with respect to 1 mol of the metal precursor. 10. The method for producing a metal nanoparticle according to the first aspect of the invention, wherein the reducing agent is one or more selected from the group consisting of ruthenium, benzoquinone and aluminum borohydride. U' kind of metal nanoparticles are manufactured by the manufacturing method of the first aspect of the patent application. 12. The metal nanoparticle according to claim 11, wherein the metal nanoparticle has an average particle size distribution of 10 to 11 nm. 13. A metallic ink composition' comprising metal nanoparticles as disclosed in claim 1 of the scope of the patent. The metal ink composition according to claim 13, wherein the metal ink composition is used as an ink for a flexible printed circuit board of an electronic device or a gate electrode for liquid crystal display device. 28
TW100110117A 2010-03-30 2011-03-24 Method for preparing metal nano-particles, metal nano-particles prepared therefrom and metal ink composition comprising same TWI543826B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100028731A KR101700615B1 (en) 2010-03-30 2010-03-30 Method for preparing matal nano-particles, matal nano-particles prepared therefrom and metal ink composition comprising same

Publications (2)

Publication Number Publication Date
TW201141636A true TW201141636A (en) 2011-12-01
TWI543826B TWI543826B (en) 2016-08-01

Family

ID=44694648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110117A TWI543826B (en) 2010-03-30 2011-03-24 Method for preparing metal nano-particles, metal nano-particles prepared therefrom and metal ink composition comprising same

Country Status (3)

Country Link
KR (1) KR101700615B1 (en)
CN (1) CN102205423B (en)
TW (1) TWI543826B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077605A1 (en) * 2011-11-21 2013-05-30 한화케미칼 주식회사 Paste composition for front surface electrode of solar cell and solar cell using same
JP5850784B2 (en) * 2012-03-29 2016-02-03 Dowaエレクトロニクス株式会社 Booster antenna and manufacturing method thereof
KR102023374B1 (en) * 2012-03-29 2019-09-20 주식회사 동진쎄미켐 Copper paste composition for printing and the forming method for metal pattern using the same
KR20140027624A (en) * 2012-08-23 2014-03-07 삼성정밀화학 주식회사 The preparation of metal nano-particles by using phase transfer reduction method and metal inks containing metal nano-particles
KR20140087324A (en) * 2012-12-28 2014-07-09 삼성정밀화학 주식회사 The Synthetic Method of Metal Ink and Metal Ink Prepared by the Method
JP6029719B2 (en) * 2014-07-31 2016-11-24 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, and conductive paste
CN104148668A (en) * 2014-08-22 2014-11-19 宁波蓝威环保科技有限公司 Preparation method of liquid phase nanometer silver colloid
JP6673352B2 (en) * 2015-06-15 2020-03-25 株式会社大阪ソーダ Composition for producing metal nanoparticles
CN107629544A (en) * 2016-07-18 2018-01-26 苏州斯贝孚光电科技有限公司 A kind of preparation method of multi-element compounds nanoelectronic ink combined type
CN106634215A (en) * 2016-12-01 2017-05-10 南京大学 Nano indium ink for flexible electronic devices as well as preparation method and application of nano indium ink
CN106590173A (en) * 2016-12-01 2017-04-26 南京大学 Nano-metal ink capable of being cured at low temperatures, preparation method therefor and application of nano-metal ink
EP3476802A1 (en) * 2017-10-30 2019-05-01 Alessandro La Torre Processing of optically active terrestrial carbon forms
CN108436103A (en) * 2018-05-30 2018-08-24 湖北工程学院 A kind of palladium nano flower and preparation method thereof
JP2020073712A (en) * 2019-09-12 2020-05-14 株式会社新光化学工業所 Method and device for producing nickel fine particles and nickel fine particles
KR102405859B1 (en) * 2020-10-19 2022-06-09 파워팩 주식회사 Antibacterial film comprising metal nano powder and method for preparing thereof
KR102401091B1 (en) * 2020-11-03 2022-05-23 엘에스니꼬동제련 주식회사 Silver powder for conductive paste with improved elasticity and method for producing the same
CN115259978A (en) * 2022-08-12 2022-11-01 南京理工大学 Polydopamine-coated aluminum trihydride compound with core-shell structure and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081501A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
WO2006006462A1 (en) * 2004-07-08 2006-01-19 Mitsubishi Materials Corporation Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
US20060044382A1 (en) * 2004-08-24 2006-03-02 Yimin Guan Metal colloid dispersions and their aqueous metal inks
JP4422041B2 (en) * 2005-02-08 2010-02-24 ハリマ化成株式会社 Method for producing metallic silver fine particles
JP4839767B2 (en) * 2005-10-14 2011-12-21 東洋インキScホールディングス株式会社 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.
KR100790457B1 (en) * 2006-07-10 2008-01-02 삼성전기주식회사 Method for producing metal nanoparticles
EP2052043B1 (en) * 2006-08-07 2016-10-12 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP5252843B2 (en) * 2007-01-09 2013-07-31 Dowaエレクトロニクス株式会社 Silver ink and its manufacturing method
JP5117420B2 (en) * 2008-03-27 2013-01-16 古河電気工業株式会社 Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
CN101503396B (en) * 2009-03-04 2011-07-20 沈阳天峰生物工程技术有限公司 Semisynthesis of paclitaxel

Also Published As

Publication number Publication date
CN102205423B (en) 2015-01-21
CN102205423A (en) 2011-10-05
TWI543826B (en) 2016-08-01
KR20110109139A (en) 2011-10-06
KR101700615B1 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
TWI543826B (en) Method for preparing metal nano-particles, metal nano-particles prepared therefrom and metal ink composition comprising same
JP5394749B2 (en) Synthesis of metal nanoparticle dispersions
JP4697356B1 (en) Metal nanoparticle-containing composite, dispersion thereof, and production method thereof
US9469773B2 (en) Ink composition for making a conductive silver structure
TWI509032B (en) Conductive ink composition which does not form a particle and preparation thereof
TW201247859A (en) Thermal conductive composition and thermal conductive body
US9283618B2 (en) Conductive pastes containing silver carboxylates
JP2010504612A (en) Silver paste for conductive film formation
TWI575108B (en) Method for preparing nanowire having core-shell structure
TW201319307A (en) Pretreatment solution for electroless copper plating and electroless copper plating method
WO2014147079A1 (en) A method to prepare a metallic nanoparticle dispersion
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
TW201437299A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
TW201402252A (en) Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
TW201819546A (en) Conductive film composite and production method thereof
KR20180031635A (en) Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink
TW201704373A (en) Conductive film composite and production method thereof
TWI568804B (en) Method for preparing metal nanoparticles and ink using the same
JP6036185B2 (en) High purity metal nanoparticle dispersion and method for producing the same
JP5943611B2 (en) Cuprous oxide particles and method for producing the same
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
TW201516179A (en) Copper film forming composition
JP2016120604A (en) Laminate, conductive pattern and electronic circuit
KR20110020966A (en) Preparation method of matal nano powder, matal nano powder therefrom and metal ink composition comprising same
JP6443024B2 (en) Method for producing metal nanoparticle non-aqueous dispersion